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ABSTRACT

Snow and ice cover exhibits a high degree of spatial and temporal variability.
Data from multispectral optical remote sensing instruments such as Landsat are an
underutilized resource that can extend our ability for mapping these phenomena.

High resolution imagery is used to demonstrate that even at finer spatial
resolutions (below 100 m), pixels with partial snow cover are common throughout
the year and nearly ubiquitous during the meltout period. This underscores the
importance of higher spatial resolution datasets for snow cover monitoring as well
as the utility of fractional snow covered area (fSCA) monitoring approaches.

Landsat data are used to develop a fully automated approach for mapping
persistent ice and snow cover (PISC). This approach relies on the availability of
numerous Landsat scenes, an improved technique for automated cloud cover
mapping, and a series of automated postprocessing routines. Validation at 12 test
sites suggest that the automated PISC mapping approach provides a good
approximation of debris-free glacier extent across the Arctic.

The PISC mapping approach is then used to produce the first single-source,
temporally well-constrained (2010-2014) map of PISC across the conterminous
western U.S. The Landsat-derived PISC map is more accurate than both a previously

published dataset based on aerial photography acquired during the 1960s, 1970s



and 1980s and the National Land Cover Database (NLCD) 2011 extent of perennial
snow and ice cover. Further analysis indicates differences between the newly
developed Landsat-derived PISC dataset and the previously published glacier
dataset can likely be attributed to changes in the extent of PISC over time.

Finally, in order to map mean annual snow cover persistence across the
entire landscape, we implement a novel canopy adjustment approach designed to
improve the accuracy of Landsat-derived fSCA in forested areas. In situ observations
indicate canopy-adjusted snow covered area calculated from all available Landsat
scenes can provide an accurate estimate of mean annual snow cover duration.

The work presented here lays the groundwork for addressing scientific
questions regarding the spatial and temporal variability of snow cover, snow
accumulation and ablation processes, and the impact of changes in snow cover on

physical and ecological systems.
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This dissertation is dedicated to Suka, superstar Siberian husky and connoisseur of
fine snow conditions from Alaska to Utah and everywhere in between.

You will be missed.
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CHAPTER 1

INTRODUCTION

Glaciers and seasonal snow cover serve as a crucial water resource across
many regions of the world. Changes in glaciers and seasonal snow cover also serve
as a key climate indicator across the globe and are particularly valuable where long
term in situ measurements are unavailable. The quantity and timing of seasonal
snow exerts a strong (and in some cases dominant) influence on a wide range of
arctic, alpine, montane and boreal ecosystem processes, ranging from tree seedling
establishment to ungulate travel routes and habitat selection.

At the broadest spatial scales (i.e., regional to global), existing remotely
sensed and modeled data products provide a clear picture of the status and
variability in snow and ice cover and have been used extensively in assessments of
global and regional climate. The spatial resolution of the existing datasets (such as
those derived from MODIS), however, is often insufficient to resolve much of the
finer scale variability in snow and ice cover that impacts regional water supplies and
ecological processes. For instance, a collection of late lying snow patches
approximately 1 ha in size that would not typically be resolved in most regional to

global scale snow cover products can provide substantial summer runoff or serve as



crucial habitat for caribou seeking refuge from mosquitos. Consequently, the ability
to map and monitor snow and ice cover at finer spatial resolutions has the potential
to provide major benefits for science and society.

The Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus
(ETM+), and Operational Land Imager (OLI) have provided a nearly continuous time
series of optical remote sensing data appropriate for snow cover mapping across
many regions of the globe since the mid 1980s. Landsat data have often been
overlooked as a tool for snow cover monitoring because the 16-day interval
between scene acquisitions is insufficient for many snow cover monitoring
applications requiring a higher temporal resolution. However, the high spatial
resolution (nominally 30 m) and extensive archive of scenes stretching back to the
mid 1980s allow for a unique contribution to snow cover monitoring and snow
hydrology. For many regions, the Landsat archive can be used to compute snow
cover duration metrics (e.g., monthly and for the entire year for periods of 5 years
or more) as well as the extent of glaciers and perennial snow cover.

In addition to this introduction and a concluding chapter, this dissertation is
composed of four individual chapters which have been published or submitted as
peer-reviewed journal manuscripts which address the potential for using data from
Landsat or similar multispectral instruments for mapping and monitoring snow and
ice cover at 30 m spatial resolution.

Chapter 2, “Prevalence of pure versus mixed snow cover pixels across spatial
resolutions in alpine environments,” uses a combination of very high spatial

resolution spaceborne imagery and in situ measurements to document the



frequency of partially snow-covered pixels in mountainous environments. The data
presented in this chapter indicate that in mountain regions, pure snow cover pixels
are rare at the scale of most regional to global datasets such as the MODIS snow
cover products, and quite uncommon even at the Landsat spatial scale. The data
show that even in locations where deep and spatially contiguous snowpacks
accumulate during the winter, heterogeneity in accumulation and ablation
processes results in extended periods during the spring and summer when Landsat
scale pixels are partially snow covered. This underscores the utility of higher spatial
resolution datasets, as well as the benefits of remote sensing approaches that
provide estimates of fractional snow covered area for each pixel over more
traditional approaches that only provide binary snow covered area.

Chapter 3, “An automated approach for mapping persistent ice and snow
cover over high latitude regions,” documents an approach developed for automated
classification of glaciers and perennial snow cover across high latitude regions. A
key development presented in this manuscript is a revised version of the CFMask
algorithm for cloud masking optimized for use in mountainous regions where snow,
ice, and rock surfaces are commonly located in close proximity to one another.
Mixed areas of snow, ice and rock are frequently misclassified by the original
version of the CFMask algorithm included with Landsat surface reflectance
products. The revised cloud masking algorithm incorporates the original CFMask
cloud cover classification but substantially reduces errors of commission for cloud

cover.



Chapter 4, “Automated mapping of persistent ice and snow cover across the
western US with Landsat,” expands upon the work presented in Chapter 2. In this
manuscript, the approach developed in the previous chapter is adapted for use at
lower latitudes and applied to the entire western conterminous United States.
Validation of the persistent ice and snow cover (PISC) map using high spatial
resolution imagery indicates the new dataset is more accurate than the 2011
National Land Cover Database snow/ice cover map and more accurate than a USGS
atlas of glacier outlines compiled from topographic maps based on aerial
photography. While the higher accuracy relative to the NLCD snow/ice cover class
can be attributed to differences in mapping methods, the differences between the
Landsat-derived PISC dataset and the dataset compiled from topographic maps
appear to be due primarily to decreases in the extent of persistent ice and snow
cover over time.

Chapter 5, “The USGS Landsat snow covered area products: methods and
preliminary validation,” describes the development and validation of a new set of
Landsat-derived snow covered area products. These products are now available for
production on demand by user request and will eventually be included as standard
products available alongside raw Landsat imagery and surface reflectance data. The
Landsat snow covered area products include scene-based fractional snow covered
area and canopy-adjusted fractional snow covered area as well as mean annual
snow cover duration computed over the period 1986-2015. While viewable
fractional snow covered area is validated in a separate publication, canopy adjusted

fractional snow covered area for individual Landsat scenes is validated using a



network of in situ sensor arrays in the Sierra Nevada. Mean annual snow cover
duration for the period 1986-2015, as well as for shorter 5-year periods, is validated
using data from the SNOTEL network in California, Washington, and Wyoming.
Results indicate that the RMSE for scene-based canopy-adjusted fSCA is 0.21, while
the RMSE for 30-year mean annual snow cover duration is 14.7 days. The canopy
adjustment approach introduced in this manuscript substantially improves accuracy
and reduces bias for both scene-based fSCA and mean annual snow cover duration.
While the research presented in Chapters 2-5 focuses on the remote sensing
and image processing approaches necessary for development and production of
Landsat-derived snow and ice cover datasets, Chapter 6 briefly delves into the

broader scientific questions that can be addressed using these datasets.



CHAPTER 2

PREVALENCE OF PURE VERSUS MIXED SNOW COVER PIXELS ACROSS

SPATIAL RESOLUTIONS IN ALPINE ENVIRONMENTS

Selkowitz, D. ]., Forster, R. R, & Caldwell, M. K. (2014). Prevalence of pure versus
mixed snow cover pixels across spatial resolutions in alpine environments. Remote
Sensing, 6(12), 12478-12508. Published by MDPI 2014. This work was produced as
part of the lead author’s fulfillment of official government duties and is therefore

considered to be in the public domain and not subject to copyright protection.
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Abstract: Remote sensing of snow-covered area (SCA) can be binary (indicating the
presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each
pixel covered by snow). Fractional SCA mapping provides more information than binary
SCA, but is more difficult to implement and may not be feasible with all types of remote
sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies
with the intended application as well as by spatial resolution, temporal resolution and period
of interest, and climate. We quantified the frequency of occurrence of partially snow-covered
(mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study
areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution
imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used
in situ monitoring to estimate the frequency of partially snow-covered conditions for the
period September 2013—August 2014 at 10 60-m grid cell footprints at two study areas with
continental snow climates. Results from the image analysis indicate that at 40 m, slightly
above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%-93% of

total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow
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cover mapping, mixed pixels accounted for 67%-100% of total pixels. Mixed pixels
occurred more commonly at the continental snow climate site than at the maritime snow
climate site. The in situ data indicate that some snow cover was present between 186 and 303
days, and partial snow cover conditions occurred on 10%-98% of days with snow cover. Four
sites remained partially snow-free throughout most of the winter and spring, while six sites
were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid
cells, the late spring/summer transition from snow-covered to snow-free conditions lasted
17-56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free
pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors.
This highlights the additional information available from fractional SCA products and
suggests fractional SCA can provide a major advantage for hydrological and climatological
monitoring and modeling, particularly when accurate representation of the spatial

distribution of snow cover is critical.

Keywords: remote sensing of snow cover; snow-covered area; mixed pixels; spatial
resolution; Landsat; MODIS

1. Introduction

Remotely sensed snow-covered area (SCA) provides crucial information for scientists across a variety
of disciplines. SCA can be used along with ancillary data to estimate the spatial distribution of snow
water equivalent (SWE) [1-4] and can be assimilated into hydrological and land surface model runs to
improve model accuracy [5,6]. The presence of an insulating snow cover also has a large effect on ground
surface temperatures and permafrost [7,8] as well as drainage characteristics [9], and thus SCA time
series data can provide important information for scientists monitoring and modeling permafrost and
soil conditions. Finally, snow cover can have a large impact on plant species distribution [10,11], plant
phenology [12], and animal movement patterns [13—15], and thus SCA data can provide valuable
information for ecologists and wildlife biologists.

Remote sensing of SCA has been conducted for nearly four decades using a variety of techniques and
platforms. While the earlier efforts, as well as many more recent efforts, have focused on monitoring
binary SCA (i.e., the presence/absence of snow cover within each pixel) [16-21], several approaches
have been developed to monitor the per-pixel snow cover fraction, often referred to as fractional SCA
or fSCA [22-26]. Fractional SCA mapping extracts more information than binary SCA mapping from
the same source dataset and, for the MODIS instrument, 500 m fSCA from the MODIS Snow-Covered
Area and Grain Size (MODSCAG) algorithm has been demonstrated to more accurately represent SCA
imaged at finer spatial resolutions with Landsat [27]. Fractional SCA mapping is, however, more
difficult to implement, typically requiring more complicated algorithms as well as additional
computational resources, and it may be more difficult to validate than binary SCA data. Additionally,
some types of data possibly suitable for binary SCA mapping may not be suitable for fractional SCA
mapping, such as panchromatic imagery or Landsat Multi-Spectral Scanner (MSS) imagery. While
fractional SCA mapping can provide major advantages in some cases, such as with coarse resolution
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sensors and when snow cover exhibits fine scale heterogeneity, in other cases, such as with very fine
resolution sensors and where snow cover is homogenous across large areas, fractional SCA monitoring
may not offer the same advantages.

One of the primary factors in determining whether or not a fractional mapping approach is necessary
or highly beneficial is the prevalence of mixed pixels. The effect of spatial resolution on remotely sensed
maps of land surface phenomena, including the prevalence of mixed pixels and the relationship between
accuracy and spatial resolution, has been well documented in the remote sensing literature [28-34].
Fractional mapping approaches have been used for monitoring a wide range of cover types and
environmental phenomena for several decades [22-26,35-39]. Nevertheless, production and widespread
usage of standard (non-fractional) classification products has continued. This is at least partly because
the benefits of fractional remote sensing datasets depend on the spatial resolution of the imagery and the
spatial distribution characteristics of the phenomenon of interest. Snow cover has its own spatial
distribution and scaling characteristics, which depend heavily on meteorological conditions and terrain.
While extensive research has been conducted on the spatial distribution and scaling characteristics of
snow [40-45] to our knowledge, the question of how these affect the choice of remote sensing approach
at fine to moderate spatial resolutions has not been explicitly addressed. In order to better understand
when, where, and at which spatial resolutions fractional SCA mapping would be most and least beneficial
relative to binary SCA mapping, we quantified the frequency of mixed snow-covered/snow-free
pixels across resolutions, over time, and at sites with different snow climate regimes. Our analysis is
limited to high-elevation alpine environments, where remote sensing is particularly crucial due to the
paucity of ground-based monitoring and where estimation of SCA is not significantly affected by
vegetation canopies.

Our analysis covers spatial resolutions between 1 m and 500 m, but we focus our analysis on the
spatial resolutions most relevant to the Landsat and MODIS sensors, with nominal spatial resolutions of
30 m and 500 m, respectively. For our analysis, we aggregate finer spatial resolution data to coarser
spatial resolutions, a well-established approach to simulating coarser spatial resolution pixels in both
remote sensing and modeling [27,28,34]. We employ this approach to estimate the frequency of mixed
pixels across spatial resolutions for five dates between 2010 and 2014 at maritime and continental snow
climate study areas.

An alternate approach to characterization of conditions across a remotely sensed or modeled pixel
footprint is to collect in situ data at point locations throughout the pixel footprint and use the point data to
characterize the aggregate conditions across the pixel. We also employ this approach, using arrays of
temperature data loggers to monitor the daily snow cover fraction between September 2013 and August
2014 at ten 60 x 60 m grid cell footprints at two alpine study areas. The fractional SCA time series from
these sites allows us to provide a more precise estimate of the temporal frequency of days with partial snow
cover at the 60 m pixel resolution, as well as to identify and estimate the length of the transition period
between fully snow-covered and fully snow-free conditions at sites with deep winter snowpacks.

2. Study Area and Methods

Our study areas consisted of two in situ (field) study areas (FSAs) in the Rocky Mountains of
Colorado and two separate imagery study areas (ISAs) in the Rocky Mountains of Colorado and the
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Oregon Cascades (Figure 1). Under ideal circumstances, in situ snow cover monitoring and analysis of
high resolution image data would have occurred at the same locations. The need for cloud-free, high
spatial resolution imagery from five dates spanning a wide variety of snow cover conditions at an alpine
location, however, severely constrained the areas where this sort of analysis would be feasible. Both
locations where we were able to obtain imagery meeting the above specifications were difficult to access
and managed primarily as wildemess (where installation of sensors is typically discouraged or
prohibited). Therefore, we opted to conduct our in situ analysis and image-based analysis at separate

study areas.
2.1. Imagery Study Areas

The two ISAs, both located in the Western United States, consist of an alpine area in the Cascade
Mountains in Oregon and an alpine area in the Rocky Mountains in Colorado (Figure 1). While the
Oregon Cascades ISA exhibits a maritime snow climate characterized by winter temperatures near 0 °C
and abundant precipitation, the Rocky Mountain National Park ISA exhibits a continental snow climate
characterized by winter temperatures well below 0 °C and substantially less precipitation. Geographic
and climatic characteristics of the two ISAs are shown in Table 1. While temperature and precipitation
estimates are derived from the PRISM dataset [46], mean wind speed estimates were calculated from
wind speed data collected at the nearest meteorological stations similar in elevation to the study area with
available wind speed data. The Oregon Cascades ISA is located along the eastern slopes of the Three Sisters
(a group of three volcanic peaks) in central Oregon (Figure 2a). Land cover consists of barren, rocky slopes
with some herbaceous vegetation, several small lakes covering < 10 hectares each, and a few small glaciers
and perennial snow patches, the largest covering < 0.5 km?, amounting to < 14% of the total study area
(determined by the total snow cover fraction on 1 September 2013, which most likely included substantial
areas of late-lying seasonal snow cover). Patches of trees also cover approximately 1% of the study area. The
Rocky Mountain NP ISA is located within Rocky Mountain National Park in central Colorado (Figure 2b).
Land cover consists of barren, rocky slopes interspersed with herbaceous and dwarf shrub vegetation, along

with a handful of small glaciers and perennial snow patches, none larger than 0.1 km?

Table 1. Geographic and climatic characteristics for each study area. Climatic characteristics
are derived from the PRISM Climate Dataset [46].

. Oregon Cascades Rocky Mountain Cinnamon Pass Niwot Ridge
Attribute
ISA NP ISA FSA FSA
Area 9.7 km? 7.7 km? - -
Elevation 2124 to 3157 m 3081 to 3910 m 3669 to 3864 m 3425 to 3666 m
Mean January
Temperature —59t0—43°C =11.5to0 -9.7°C —9.710-8.6°C —-10.7t0-9.4°C
(1981-2010)
Mean July
Temperature 88to12.1°C 8.4t011.0°C 8.4 t0 10.0°C 9346 11.1°€¢
(1981-2010)
Mean Annual Precip.
2318 to 3737 mm 1066 to 1195 mm 1169t0 1329 mm 1017 to 1068 mm

(1981-2010)

10
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Table 1. Cont.

. Oregon Cascades Rocky Mountain Cinnamon Pass Niwot Ridge
Attribute
ISA NP ISA FSA FSA
Mean January Wind R " "
R 3.2 m/s 11.9 nv/s 6.9 m/s 11.9 m/s
Speed (2005-2010)
Mean July Wind . o -
3.6 m/s 4.6 m/s 4.5 m/s 4.6 m/s

Speed (2005-2010)

* Mean wind speed for Oregon Cascades ISA calculated from hourly data from Round Mountain RAWS, elevation 1798
m, maintained by the U.S. Forest Service and archived at the Western Regional Climate Center [47]. ” Mean wind speed
for Rocky Mountain NP ISA and Niwot Ridge SA calculated from daily data from Niwot Ridge LTER Saddle

e

Meteorological Station, elevation 3525 m, archived at the Niwot Ridge LTER [48]. ™ Mean wind speed for Cinnamon
Pass SA calculated from daily data from Putney Study Plot, elevation 3756 m, maintained by the Center for Snow and

Avalanche Studies [49].

Figure 1. Study area locations in the Western United States. The Oregon Cascades ISA is
located in Oregon while the Rocky Mountain NP ISA, Niwot Ridge FSA, and Cinnamon
Pass FSA are located in Colorado.
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Figure 2. (a) Oregon Cascades ISA and (b) Rocky Mountain NP ISA. Extent of ISA is
outlined in red, while the extent of high-relief subsets are outlined in blue and low-relief
subsets are outlined in orange. Image sources: Digital elevation models for both study areas
are from the National Elevation Dataset (NED) [50]. Draped imagery for the Oregon
Cascades ISA is from 0.4 m pan-sharpened natural color WorldView 2 imagery, acquired
1 September 2013. Draped imagery for the Rocky Mountain NP ISA is from 1 m aerial
orthoimagery available from the National Map [51], precise acquisition date not available.

South Sister

121°45' W

—
44°6'N 0 1 km

a. Oregon Cascades ISA

Taylor
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—
0 0.5 km

b. Rocky Mountain NP ISA
2.2. Image Data

High spatial resolution imagery used for classification of snow-covered area in each ISA was derived
from the WorldView-1 and WorldView-2 earth observation satellites operated by DigitalGlobe
corporation. WorldView-1 was launched in 2007 and acquires panchromatic imagery at a nominal spatial
resolution of 0.5 m, while WorldView-2 was launched in 2009 and acquires panchromatic imagery at a
nominal spatial resolution of 0.46 m and multispectral imagery at a nominal spatial resolution of 1.84 m.
For each ISA, we selected five dates (Table 2) when mostly cloud-free WorldView-1 or WorldView-2
image strips covering our study areas were available from the EnhancedView archive provided by
Digital Globe. For each date selected, we acquired high spatial resolution panchromatic (WorldView-1)
or natural color pan-sharpened (WorldView-2) orthorectified image strips. The final analysis extent

12



Remote Sens. 2014, 6 12484

boundary for each ISA was defined by the availability of cloud-free imagery for all five of the selected
image dates as well as the extent of non-forested terrain. We excluded areas with forest cover from our
analysis because for this study, we wanted to focus our analysis on the frequency of mixed pixels
resulting from partially snow-covered ground, rather than mixed pixels that might occur when forest
canopy is present above snow-covered ground. Areas with cloud cover on any of the five dates as well
as areas with any significant forest cover were excluded from the analysis extent, resulting in the final
analysis extents shown in Figure 2. Image strips were clipped to the extent of the study area boundary
and resampled from the delivered panchromatic or pan-sharpened image product (~0.4 m resolution,
with bands other than the panchromatic band acquired at ~1.9 m resolution) to 0.5 m resolution using
nearest neighbor resampling prior to further processing. Resampling to 0.5 was done to maintain
consistency with a larger database of 0.5 m resolution images not used in this study.

Table 2. Study area, image type, date, snow cover fraction, 0.5 m binary SCA classification
accuracy, and recent snowfall history (in terms of snow water equivalent, SWE) for each
WorldView (panchromatic) or WorldView-2 (3 band) image strip included in the analysis.

Snow 0.5m 2 Day 10 Day
Location Image Type  Acquisition Date Cover Classification Snowfall Snowfall
Fraction Accuracy (mm SWE)* (mm SWE)*
Oregon 3-band 12 May 2011 0.93 92% 0 0
Oregon panchromatic 15 July 2011 0.67 98% 0 0
Oregon 3-band 1 September 2013 0.14 92% 0 0
Oregon panchromatic 29 November 2011 0.90 89% 0 36
Oregon 3-band 26 December 2013 093 89% 8 15
Colorado  3-band 26 February 2014 0.83 87% 3 46
Colorado  3-band 20 March 2010 0.93 93% 23 28
Colorado  panchromatic 7 May 2011 0.83 81% 0 16
Colorado  3-band 26 May 2012 0.42 85% 0 0
Colorado ~ 3-band 29 September 2013 0.52 91% 3 6

* Recent snowfall history in table 2 is calculated from snowpack telemetry (SNOTEL) station data at nearby sites. Oregon
Cascades ISA snowfall history was derived from Three Creeks Meadow, elevation 1734 m. Rocky Mountain NP ISA
snowfall history was derived from Bear Lake, elevation 2896 m.

2.3. Image Processing Techniques

We used a version of the ISODATA algorithm [52] to create an unsupervised classification with
7-9 spectral classes for each image date for each ISA with multispectral imagery available. Spectral classes
were determined through visual examination to represent primarily snow-covered or primarily snow-free
pixels. For the three dates where only panchromatic image data was available, we visually determined
the most appropriate value to distinguish between snow-covered and snow-free pixels. In all cases, initial
classifications resulting from either the ISODATA classification approach or the threshold classification
approach required further adjustment. Steep topography at both study sites resulted in variable
illumination, necessitating manual editing in order to accurately map the extent of snow cover for each
image date. Results from the original classifications were examined carefully and polygons identifying
areas where the original classification did not accurately represent the presence or absence of snow cover

13
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were manually identified. The majority of pixels misclassified in the original classification were in areas
with topographic shading. We used a 500 x 500 m grid to ensure all portions of the image were examined
for areas requiring manual editing. The manually identified polygons indicating incorrectly classified
pixels were then used to revise the original classification, resulting in the final binary SCA classification
used for subsequent analysis.

We conducted a basic accuracy assessment of each 0.5 m binary SCA classification. For the accuracy
assessment, we used an image analyst who had not been involved in the production of the binary snow
cover classifications. The analyst identified snow cover presence or absence at separate sets of 100
randomly selected 0.5 m pixels for each date at each ISA based on visual interpretation of the 0.5 m
panchromatic WorldView-1 or 0.5 m pan-sharpened natural color WorldView-2 imagery. Snow cover
presence/absence identified by the analyst was compared to the 0.5 m binary snow cover classification
values at the corresponding pixel locations for each classified image and used to calculate an estimate
for overall classification accuracy for each date at each ISA.

2.4. Snowfall History for Each Date

Significant snow accumulation can quickly transform a patchy snow-covered landscape, where mixed
pixels occur frequently, into a fully (or nearly fully) snow-covered landscape, where mixed pixels are
rare or absent. This transformation from a landscape with abundant mixed pixels to one with few or none
is even more likely if the new snowfall moisture content is high and wind speeds remain relatively low.
Thus recent snowfall history is a key factor that can influence SCA and the prevalence of mixed
snow-covered/snow-free pixels across the landscape. In order to inform our analysis of mixed pixel
prevalence, we estimated two-day and 10-day snowfall accumulation totals (in mm of snow water
equivalent, often referred to as SWE) prior to each image acquisition date at each ISA using data from
nearby snowpack telemetry (SNOTEL) sites. Recent snowfall for the Oregon Cascades ISA was
estimated using data from the Three Creeks Meadow SNOTEL station 10 km east of the ISA at an
elevation of 1734 m, while recent snowfall for the Rocky Mountain NP ISA was estimated using data
from the Bear Lake SNOTEL station 3 km east of the ISA at an elevation of 2896 m. We calculated
daily new SWE accumulation as the difference between SWE reported at 12 p.m. on the current and
previous day and reported new total new snow accumulation for the two-day and 10-day periods prior
to the date of image acquisition.

2.5. Analysis of Snow-Covered Area Images

We used the high spatial resolution binary SCA classifications to calculate several metrics for each
date from each ISA, including total snow cover fraction for the ISA and the fraction of mixed (partially
snow-covered) pixels across a range of spatial resolutions between 1 m and 500 m. Based on the original
binary snow cover image, where the value of s at pixel p is 1 for snow-covered pixels and 0 at snow-free
pixels, fSCA, the fractional snow-covered area for pixel sizes larger than the original binary spatial
resolution (0.5 m in this case) was calculated using Equation (1):

Zpoas

fSCA = P 1
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fSCAIsa, the snow cover fraction for the entire ISA, was calculated using the same approach, using all
the high-resolution pixels within the ISA rather than only pixels within a smaller grid cell footprint
corresponding to a specific spatial resolution. We calculated fSCA for each pixel size between 1 m and
500 m that could fit evenly (i.e., with no remainder) into both the horizontal and vertical dimensions of
the clipped ISA images. The Oregon Cascades ISA image dimensions were 12,000 x 4000 pixels, while
the Rocky Mountain NP ISA image dimensions were 8000 x 4000 pixels. Pixel sizes used for calculation
of the frequency of mixed pixel occurrence are indicated in Table 3, along with the resulting number of
pixels at each spatial resolution within the ISA boundary. For our analysis, at each spatial resolution,

pixels were considered mixed if fSCA was between 0.02 and 0.98. These threshold values were chosen

instead of counting only pixels with all snow-covered or no snow-covered fine-resolution pixels as pure
in order to reduce the effect of noise in the data. We calculated the fraction of mixed pixels for the ISA
at each spatial resolution, fAf,, using Equation (2):

p=n m, =0 for fSCA < 0.02 and fSCA > 0.98
Zp-1 My {mp =1 for 0.02 < fSCA > 0.98
M= -

2

Table 3. Pixel sizes used to compute frequency of mixed pixels and corresponding pixel
sample sizes for each ISA.

X . Oregon Cascades Rocky Mountain NP
Pixel Size
ISA Sample Size ISA Sample Size
7,925,962 6,812,343
2 1,981,062 1,702,693
245 1,267,546 1,089,691
4 494,784 425,503
5 316,572 242:3/12:
8 123,625 106,267
10 79,021 67,957
12.5 50,496 43,513
16 30,765 26,495
20 19,661 16,931
25 12,598 10,859
40 4893 4203
50 3121 2705
62.5 1995 1723
80 1199 1037
100 767 666
125 491 425
200 187 162
250 113 102
400 42 39
500 27 24

Although the differences between minimum and maximum elevation at each ISA were similar (1033 m
for the Oregon Cascades ISA and 829 m for the Rocky Mountain NP ISA), comparison of elevation

semivariograms based on 10 m digital elevation data (Figure 3a) indicated higher semi-variance in
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elevation at the Rocky Mountain NP ISA. In order to allow for comparison between the frequency of
occurrence of mixed snow cover pixels at the ISAs that would not be biased by differences in
topography, we selected a 1500 x 750 m high-relief subset from each ISA as well as a 1500 x 500 m
low-relief subset from each study area (Figure 2). The elevation semivariograms for the high- and
low-relief subsets from each study area are shown Figure 3b. For the high- and low-relief subsets at each
study area, we repeated the analysis described above for spatial resolutions between 1 m and 125 m. The
analysis for the subsets was constrained to 125 m pixels due to the smaller extent of the image subsets.

Figure 3. Semivariograms for elevation derived from 10 m DEM for (a) the Oregon
Cascades and Rocky Mountain NP ISAs, and (b) high- and low-relief subsets from the
Oregon Cascades and Rocky Mountain NP ISAs.
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In order to determine the potential for error in total study area snow cover fraction that might be
introduced by monitoring binary SCA rather than fractional SCA at various spatial resolutions, we also
calculated total ISA snow cover fraction based on binary SCA at spatial resolutions greater than the
original 0.5 m resolution. To accomplish this, at each spatial resolution, 7, we first calculated fSCA for
each pixel at resolution 7 using Equation (1) and then calculated the binary SCA-derived study area snow
cover fraction, bSCA, using Equation (3):

{sp =0, forfSCA <05
sp =1, for fSCA = 0.5 3)
n

bSCA, =

where 7 was equal to the total number of pixels at resolution 7 within the ISA. For this comparison, it
was essential that nearly identical samples of high resolution pixels were used for calculations at all
spatial resolutions considered. For this reason, we were unable to conduct this analysis at spatial
resolutions > 250 m, since the irregularly shaped ISA analysis extent resulted in the elimination of a
substantial number of high resolution pixels that fell within the analysis extent but also within an
aggregated grid cell that extended beyond the boundary extent.

For the Rocky Mountain NP ISA, we conducted additional analysis to determine the overall frequency
and spatial distribution of areas where a Landsat scale (~30 m) binary SCA representation characterizing
pixels with > 50% snow cover as snow-covered and pixels with < 50% snow cover as snow-free would
be prone to error. We chose 40 m spatial resolution for this analysis because, of the pixel resolutions we

16



Remote Sens. 2014, 6 12488

evaluated (shown in Table 3), the 40 m resolution offered the closest approximation of the estimated
ground instantaneous field of view (GIFOV) for the Landsat TM instrument, which is slightly larger
than the nominal spatial resolution of 30 m [53]. To map the spatial distribution of potential errors arising
from the use of binary SCA, we calculated fSCA using Equation (1) for 40 m pixels, and then calculated
bSCA40m for 400 m blocks corresponding with 10 x 10 arrays of 40 m pixels (rather than for the full
ISA extent), using Equation (3). The position of the 10 x 10 (400 m) pixel blocks was determined by the
ISA boundary, with the origin point for the grid located at the northwestern corner of the image. We
then calculated fSCA for each 400 x 400 m block using the original 0.5 m resolution binary image and
the approach described in Equation 1 and compared fSCA to bSCA4om at each block, calculating the
mean absolute difference between fSCA and bSCA4om. By comparing fSCA and bSCA4om at each block,
we calculated the error that would be expected to occur for blocks of 100 40 m pixels if 40 m binary,
rather than 40 m fractional SCA, was used. It is important to note that we were estimating differences
that might arise from binary vs. fraction SCA mapping at 40 m spatial resolution, and in this case, 400
m was the size of the aggregation unit that corresponded to a 10 x 10 array of 40 m pixels, but not the

spatial resolution of interest.
2.6. In Situ Snow Cover Monitoring Overview

In order to estimate the prevalence of partially snow-covered conditions for individual grid cells
similar in size to Landsat pixels, we conducted in situ fractional SCA monitoring at 60 m grid cells at
two field study areas in the Rocky Mountains of Colorado (Figure 1) between September 2013 and
August 2014. In situ fractional SCA data collected at these footprints will be used as part of an ongoing
effort for validation of a Landsat fractional SCA product currently under development, and consequently
we opted for monitoring 60 m footprints rather than 30 m footprints (the nominal pixel size for Landsat).
The 60 m footprint size was selected because the effective resolution of Landsat has been shown to be
larger than the 30 m nominal resolution [53], and also because monitoring the larger 60 m footprint
would reduce the impact of spatial registration errors on comparisons between in situ and remotely

sensed data.
2.7. In Situ Snow Cover Monitoring Study Sites

At the first FSA, referred to from this point forward as the Cinnamon Pass FSA, we measured daily
snow cover fraction over six 60 x 60 m footprints in the vicinity of Cinnamon Pass in the San Juan range
of the Colorado Rocky Mountains (Figure 4a). Sites ranged in elevation from 3669 to 3864 m, with slope
angles ranging from 11° to 28° (Table 3). Modeled mean annual precipitation at the study area for the
period 1981-2010 computed from the PRISM climate dataset [46] ranged from 1169 to 1320 mm; mean
January temperatures ranged from -9.7 °C to -8.6 °C and mean July temperatures ranged from 8.4 °C to
10.0° C for the same period.
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Figure 4. Locations for 60 x 60 m grid cells instrumented with arrays of temperature data
loggers at (a) the Cinnamon Pass FSA and (b) the Niwot Ridge FSA.
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At the second FSA, referred to from this point forward as the Niwot Ridge FSA, we measured daily snow
cover fraction at four 60 x 60 m footprints at and above the alpine tree line on Niwot Ridge (Figure 4b),
located about 3 km east of the continental divide in the Rocky Mountains west of Boulder, Colorado.
Footprints at the Niwot Ridge FSA ranged in elevation from 3425 to 3666 m and included slope angles
from 10°-19° (Table 4). While two of the four sites were > 200 m above tree line and included only
herbaceous and dwarf shrub vegetation, two sites were within 20 m of stunted spruce and fir trees, which
could be found throughout the area above the upper limit of contiguous upright forest. Modeled mean
annual precipitation at the study area for the period 1981-2010 computed from the PRISM climate dataset
ranged from 1017 to 1068 mm, with mean January temperatures ranging from -10.7 °C to -9.4 °C and
mean July temperatures ranging from 9.3 °C to 11.1 °C for the same period (Table 3).
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Table 4. Study area location and site characteristics for 60 x 60 m grid cell footprints where
in situ monitoring was conducted. CP indicates Cinnamon Pass, while NR indicates

Niwot Ridge.
Field Local
. . Slope .
Site Study Elevation (m) Aspect Land Cover Topographic
(Degrees) .
Area Position
1 CP 3850 11 w rocky alpine meadow ridgetop
2 CP 3845 15 NW rocky alpine meadow ridgetop
3 CP 3669 28 SE alpine meadow mid-slope
4 CP 3784 27 E alpine meadow mid-slope
5 CP 3779 15 S alpine meadow mid-slope
6 (e 3776 12 NwW alpine meadow valley
7 NR 3666 19 N rocky alpine meadow  near ridgetop
8 NR 3496 10 N rocky alpine meadow ridgetop
9 NR 3425 19 S talus slope mid-slope
10 NR 3430 14 S rocky alpine meadow valley

2.8. In Situ Snow Cover Monitoring Approach

At each of 10 monitoring sites within our field study areas, we buried 16 HOBO Pendant temperature
data loggers 2—5 cm below the soil surface (Mention of a particular product does not constitute endorsement
by the U.S. federal government). At one site where the pixel footprint was dominated by a rocky talus slope,
some data loggers were placed below rocks near the surface of the talus pile. Our placement of data loggers
varied from the approach used by Raleigh ef al. [54] in the spatial resolution of the footprint monitored
(60 x 60 m in our study vs. 500 x 500 m in Raleigh ef al. [54]), the number of sensors deployed, and the
placement of sensors within the footprint. While Raleigh ez al. [54] deployed between 37 and 89 sensors
in several different sensor configurations, including quasi-regular grids and transects, all of which covered
500 x 500 m or larger areas, we used regular 4 x 4 grids with 20 m spacing at each site, for a total of
16 sensors covering each 60 x 60 m footprint (Figure 5).

Figure 5. Schematic diagram of the arrangement of temperature data loggers at each 60 x 60 m
grid cell footprint. Data loggers are indicated by black circles.

60 m
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Each data logger recorded the temperature at 1.5-hourly intervals. At the Cinnamon Pass study area,
loggers were installed in mid-September 2013 and collected in July—August 2014, while at the Niwot
Ridge study area loggers were installed in mid-October 2013 and also collected in July—August 2014.
While 16 temperature data loggers were installed at each site, in a few cases, we were unable to locate a
buried temperature data logger, and in a few other cases, data loggers stopped recording due to
malfunction or insufficient battery voltage. All data from temperature data loggers that stopped recording
prior to retrieval were discarded in order to ensure that calculated snow cover fraction would be based
on the same set of points for the entire monitoring period.

We used the algorithm introduced by Raleigh et al. [54] to convert the 1.5-hourly temperature time
series from individual sensors to a daily snow cover fraction value for each 60 m grid cell footprint.
Snow cover located above a sensor insulates the uppermost layer of the soil, resulting in a substantial
reduction of the range in temperature variability experienced near the soil surface [7]. At temperate sites,
in the absence of snow cover there is typically a strong diurnal ground temperature oscillation that
disappears when snow cover is present. Monitoring this daily ground temperature variation allows for
the identification of periods of snow cover using time series data collected at hourly to several hour
increments [54-57]. Automated classification of periods with snow cover requires the selection of an
appropriate 24-hour temperature range threshold; 24-hour periods where the temperature range is below
this value will be classified as snow-covered. No single value has been established in the literature as
appropriate for all conditions, as ground surface temperature variability is affected by a number of
factors, including soil type, soil moisture, depth of burial, air temperature variability, and incoming solar
radiation. We selected a 24-hour temperature range threshold of 2 °C, considerably larger than the
temperature threshold used by Raleigh et al. and other studies [54-57]. Visual interpretation of
temperature time series data suggested that this higher value allowed for identification of shallow snow
cover during mid-winter while having minimal impact on the classification of snow cover conditions
during the spring and summer melt period.

For each sensor that recorded data for the entire monitoring period, for each interval in the 1.5-hourly
time series we calculated the difference between minimum and maximum temperatures recorded for the
previous 24 h as well as the next 24 h in the time series. If the 24-hour temperature range value exceeded
2 °C for either the previous 24-hour period or the upcoming 24-hour period, the 1.5-hourly time series
snow cover value was set to 0, indicating snow-free conditions. If the 24-hour temperature range values
for both periods were less than 2 °C, the 1.5-hourly time series snow cover value was set to 1, indicating
snow-covered conditions. Snow cover fraction on the ground at time series interval 7, fSCA: was then
calculated for each interval in the time series using Equation (4):

I=n

1S
fSCA, = == @

where s; was binary snow presence, indicated by 1, or absence, indicated by 0, at temperature data logger /.
We then computed the mean daily snow cover fraction for the footprint, fSCAq, using Equation (5):
(1°fSCA,

fSCAq = ——1¢

&)

While we were not able to validate the methodology for monitoring grid cell snow cover fraction at

any of the 60 m footprints in this study, photographic survey data collected at five 60 m footprints at

20



Remote Sens. 2014, 6 12492

high-elevation subalpine forest and meadow sites in Utah and California indicated good agreement
between photo-derived snow cover fraction and snow cover fraction calculated from similar grids of
temperature data loggers using the same approach (mean absolute difference 0.09) [58].

In order to gauge the impact of the 24-hour temperature range value threshold on computed snow
cover fraction, we conducted a sensitivity analysis where we computed the daily snow cover fraction
using values of 0.5 °C, 1 °C, 2 °C and 3 °C. For each day in the time series, we calculated uncertainty
in grid cell snow cover fraction, fSCAu, by calculating the difference between snow cover fraction
computed using the 0.5 °C threshold, fSCAos, and snow cover fraction computed using the 3 °C
threshold, fSCAs.0, using Equation (6):

fSCA, = fSCA4, — fSCAgs (6)

fSCAu had atheoretical range from 0 (indicating no difference between snow cover fraction computed
using a 0.5° C threshold and snow cover fraction computed using a 3 °C threshold) to 1 (indicating no
snow cover computed using a 0.5 °C threshold and full snow cover computed using a 3 °C threshold).

3. Results
3.1. High Spatial Resolution Binary Snow-Covered Area

Binary SCA classifications at 0.5 m spatial resolution for the Oregon Cascades and Rocky Mountain
NP ISAs are shown in Figures 6 and 7, with examples from each study area shown in Figure 8. Total
study area snow cover fraction for each date from the two ISAs ranged from 0.143 to 0.943 (Table 2).
Classification accuracy for the 0.5 m binary SCA classifications ranged from 81%-98%, with a mean of
90% for all 10 images (Table 2). Mean classification accuracy was slightly higher at the Oregon
Cascades ISA (92.0%) than at the Rocky Mountain NP ISA (87.4%). Mean classification accuracy was
very similar for the three dates where pan-sharpened three-band imagery was used (89.9%) and the three
dates where panchromatic imagery was used (89.3%)

3.2. Prevalence of Mixed Pixels across Spatial Resolutions and between Study Areas

The fraction of mixed pixels at spatial resolutions between 1 m and 500 m is shown in Figure 9. At
40 m spatial resolution, slightly larger than the estimated GIFOV for Landsat at nadir, mixed pixels
accounted for 25%-50% of total pixels at the Oregon Cascades ISA (mean of 36% for five dates), and
41%-93% of total pixels at the Rocky Mountain NP ISA (mean of 69% for five dates). At 500 m, the
nominal spatial resolution for MODIS, mixed pixels accounted for 67%-93% of total pixels at the
Oregon Cascades ISA (mean of 81% for five dates) and from 79%-100% of total pixels at the Rocky
Mountain National Park ISA (mean of 93% for five dates). While the fraction of mixed pixels varied
substantially across the available imagery dates for each ISA, the fraction of mixed pixels was
consistently higher at the Rocky Mountain NP ISA than at the Oregon Cascades ISA.
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Figure 6. WorldView imagery (top row) and high-resolution binary snow-covered area
maps (bottom row) for the Oregon Cascades ISA. Panchromatic band data is displayed for
the 15 July 2011 and 29 November 2013 images, while red band data is displayed for the
12 May 2011, 1 September 2013, and 26 December 2013 images.
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Figure 7. WorldView imagery (top row) and high-resolution binary snow-covered area
maps (bottom row) for the Rocky Mountain NP ISA. Panchromatic band data is displayed
for 7 May, while red band data is displayed for the 26 February 2014, 20 March 2010,
26 May 2012, and 29 September 2013 images.
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Figure 8. Examples of 0.5 m binary snow-covered area classifications (right side) based on
WorldView 2 imagery (left side). Oregon Cascades, 26 December 2013, (panels a and b)
and Colorado Rocky Mountains, 26 February 2014 (panels ¢ and d).
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Figure 9. Fraction of mixed (partially snow-covered) pixels for pixel resolutions between 1 m
and 500 m, for (a) the Oregon Cascades imagery study area, and (b) the Rocky Mountain
NP imagery study area. Vertical blue lines indicate 40 m spatial resolution (slightly above
the nominal spatial resolution for Landsat) and 500 m spatial resolution (the nominal spatial

resolution for MODIS).
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The high-relief subset from the Oregon Cascades ISA and the corresponding high-relief subset from
the Rocky Mountain NP ISA exhibit similar semivariograms, while the low-relief subsets from the two
study areas exhibit nearly identical semivariograms (Figure 3b). Comparisons of the fraction of mixed
pixels at spatial resolutions between 1 m and 125 m indicate higher prevalence of mixed pixels at the
Rocky Mountain NP ISA in both the high-relief and low-relief subsets (Figure 10).

Figure 10. (a) Fraction of mixed pixels for Oregon Cascades ISA high-relief subset,
(b) fraction of mixed pixels for the Rocky Mountain NP ISA high-relief subset, (¢) fraction
of mixed pixels for the Oregon Cascades ISA low-relief subset, and (d) fraction of mixed
pixels for the Rocky Mountain NP ISA low-relief subset. Vertical blue lines indicate 40 m,
slightly above the nominal spatial resolution of Landsat.
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3.3. Differences between Binary and Fractional SCA

Our analysis indicated that as spatial resolution became coarser, the difference between study area snow
cover fraction computed from binary SCA and fractional SCA, and thus the potential for error in binary
SCA mapping, tended to increase (Figure 11). In general, if the 0.5 m snow cover fraction was > 0.6,
binary snow cover fraction for the study area tended to increase at coarser spatial resolutions, while if
the 0.5 m snow cover fraction was < 0.6, binary snow cover fraction for the study area tended to decrease
at coarser spatial resolutions. While differences between study area snow cover fractions derived from
binary versus fractional SCA were generally small, the change in study area snow cover fraction with
spatial resolution was more significant for the July 2011 image from the Oregon Cascades ISA, with the
study area snow cover fraction increasing from 0.67 at 0.5 m to 0.85 at 250 m.
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Figure 11. Relationship between pixel resolution and total study area snow cover fraction
derived from binary SCA for (a) Oregon Cascades ISA (b) and Rocky Mountain NP imagery
ISA. Vertical blue lines indicate 40 m, slightly above the nominal spatial resolution of Landsat.
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Figure 12. Spatial distribution of 400 x 400 m blocks from the Rocky Mountain NP imagery
study area where absolute differences between binary and fractional SCA were low (< 0.05),
medium (0.05-0.10), high (0.10-0.15), and highest (> 0.15).
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More detailed analysis of the spatial and temporal distribution of the differences between binary and
fractional SCA at 40 m spatial resolution were conducted for the Rocky Mountain NP ISA. For a grid
of 400 x 400 m blocks, we mapped the absolute difference between block snow cover fraction derived
from 40 m binary SCA and block snow cover fraction derived from the original 0.5 m binary SCA image.
Although the majority of 400 m blocks indicated absolute differences between binary and fractional
SCA < 0.10, a number of blocks with absolute differences between binary and fractional SCA > 0.15
were identified at the Rocky Mountain National Park ISA (Figure 12). Snow cover within each of these
blocks exhibited very fine scale variability in the original 0.5 m snow cover image.

3.4. Prevalence of Partially Snow-Covered Conditions at In Situ Monitoring Sites

In contrast to the results of the imagery analysis, which allowed us to calculate the prevalence of
partially snow-covered pixels over a range of scales for many pixels on just a few dates, the in situ snow
cover fraction measurements allowed us to calculate the prevalence of partial snow cover conditions at
ten 60 m pixel footprints over all days for a 10-month period. Summary fractional SCA statistics
computed from temperature data loggers are presented in Table 5. As mentioned previously, in a few
cases, we were unable to locate a buried temperature data logger, and in a few other cases, data loggers
malfunctioned or stopped recording due to insufficient battery voltage. The total number of temperature
data loggers used for calculation of snow cover fraction varied between 12 and 16, with valid data
available from at least 14 sensors for eight of the 10 sites (Table 5).

Daily time series of snow cover fraction for five of the six grid cells monitored at the Cinnamon Pass
FSA and three of the four grid cells monitored at Niwot Ridge FSA are shown in Figure 13. Daily grid
cell snow cover fraction calculated from temperature data logger arrays indicate that snow cover
conditions at grid cell footprints fell into two distinct categories. At four of the 10 sites, full snow cover across
the grid cell footprint occurred only rarely (3—45 days), despite snow covering a portion of the footprint for
as many as 243 days during the monitoring period. At the remaining six sites, the grid cell footprint was fully
snow covered between February 1 and late spring or early summer, with partial snow cover conditions
common for some footprints during the earlier part of the season. For the six footprints with continuous or
near continuous full winter snow cover, the first day with less than full snow cover after 1 April occurred
between 3 May and 5 July. The length of the transition period between fully snow-covered and fully

snow-free conditions ranged from 17-56 days, while the mean transition period length was 37 days.

Table S. Full, partial, and total snow cover days, as well as snow-covered to snow-free
transition period metrics for 60 x 60 m footprints. Transition period metrics were not
calculated for sites with intermittent winter snow cover. CP indicates Cinnamon Pass, while

NR indicates Niwot Ridge. fSCA indicates fractional snow-covered area.

Snow Cover Days First Da
_ Study  Valid ek Partial/Total Y
Site . 5 <1.0 <05  Snow- Length
Area Sensors Full Partial Total Ratio
fSCA fSCA Free (days)
1l CP 14 17 223 240 0.93 - - - -

2 CP 16 16 243 259 0.94 - - - -

27



Remote Sens. 2014, 6 12499
Table 5. Cont.
. Study  Valid Snow Cover Days Partial/Total Flrst_Day
Site . . <05  Snow- Length
Area Sensors Full Partial Total Ratio
fSCA fSCA Free (days)
3 CPp 15 144 99 243 0.41 3 May 21 May 15 June 43
4 CP 16 235 25 260 0.10 9 June 23 June 2 July 23
5 CP 16 229 39 268 0.15 1 June 16 June 10 July 39
6 CP 16 242 6l 303 0.20 18June 7 July 13 Aug. 56
7 NR 15 45 223 268 0.83 - - - -
8 NR 12 3 183 186 0.98 - - - -
9 NR 15 186 88 274 0.32 5 July 17 July 22 July 17
10 NR 13 162 137 299 0.46 29 June 15 July 13Aug. 45

Figure 13. Daily 60 m grid cell snow cover fraction time series from (a) grid cells 1, 5, and
6 at Cinnamon Pass FSA (b), grid cells 3 and 4 at Cinnamon Pass FSA, and (c) grid cells 8,
9, and 10 at Niwot Ridge FSA. Time series depicted in the same panel are all from grid cells
within 500 m and could thus be contained within a single 500 m MODIS grid cell. Time
series from the two 60 m grid cells not shown are similar to #1 (south facing) in panel (a)

and #8 (ridgetop) in panel (c).
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3.5. Sensitivity of Calculated Snow Cover Fraction to 24-Hour Temperature Range Threshold

Results from the sensitivity analysis of the effect of 24-hour temperature range threshold on calculated

snow cover fraction at each footprint indicate that, at sites where partially snow-covered conditions were

common throughout the winter, calculated snow cover fraction was highly sensitive to the temperature

threshold value used in the algorithm (Figure 14a, Table 6). At sites where fully snow-covered conditions
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persisted throughout the winter, calculated snow cover fraction was much less affected by varying the
temperature threshold (Figure 14b, Table 6). The mean grid cell snow cover fraction uncertainty
(in terms of snow cover fraction, ranging from 0-1) for all days between 15 October and the last day with
snow cover ranged from 0.01 to 0.39 (Table 6), with an overall mean of 0.16 for all sites and all days. When
only the period between 1 April and the last day of snow cover was considered, mean uncertainty was lower
at all sites, ranging from O to 0.24, with an overall mean of 0.08. For the 15 October—snow-free period, the
fraction of days with uncertainty in snow cover fraction > 0.1 ranged from < 0.01-0.86, while for the
1 April—snow-free period, the fraction of days with uncertainty in snow cover fraction > 0.1 ranged
from 0-0.67. During the 1 April—snow-free period, the fraction of days with > 0.1 uncertainty at five
of the 10 sites was <0.03.

Figure 14. Results from sensitivity analysis indicating 60 m grid cell snow cover fraction
using 0.5 °C, 1 °C, 2 °C, and 3 °C temperature thresholds for (a) an example site with partially
snow-covered conditions throughout the winter and spring (site #2) and (b) for an example site

with consistent fully snow-covered conditions throughout the winter and spring (site #9).
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Table 6. Snow cover fraction uncertainty metrics for each 60 m grid cell. Uncertainty is
expressed in terms of snow cover fraction ranging from 0 to 1.

15 October—Snow-Free Date 1 April—Snow-Free Date
. Partial/Total Fraction of Fraction of
Site S:::sl:::'s Snow Cover  Total Mean Days with ~ Total Mean Days with
Days Ratio Days Uncertainty Uncertainty Days Uncertainty Uncertainty
>0.10 >0.10
1 14 0.93 240 0.29 0.86 72 0.22 0.67
2 16 0.94 258 0.26 0.76 91 0.13 0.45
3 15 0.41 241 0.11 035 75 0.02 0.00
4 16 0.10 257 0.01 0.00 92 0.00 0.00
5 16 0.15 264 0.04 0.12 100 0.03 0.13
6 16 0.20 297 0.03 0.13 135 0.02 0.00
7 15 0.83 262 0.39 0.81 100 0.16 0.49
8 12 0.98 216 0.29 0.81 55 0.24 0.69
9 15 032 22 0.09 0.26 112 0.01 0.03
10 13 0.46 293 0.12 0.29 134 0.01 0.01

- - 0.16 0.44 0.08 0.25

5
£
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4. Discussion

Our analysis of mixed pixel prevalence across spatial resolutions indicates that mixed pixels occur
frequently across the alpine landscape even at fine spatial resolutions (< 10 m), and that they often
dominate the landscape at the spatial resolution imaged by Landsat (nominally 30, with true GIFOV
closer to 40 m). For our analysis, we defined mixed pixels as pixels with fSCA between 0.02 and 0.98.
While these thresholds may seem quite lax for identification of mixed pixels (or conversely, quite strict
for identification of pure pixels), our goal was to estimate the fraction of the alpine landscape at different
places, times, and spatial resolutions where sub-pixel variability in snow-covered area was present. The
thresholds of 0.02 and 0.98 were chosen in lieu of 0 and 1 to account for occasional noise in the data.
Our definition of mixed pixels will likely result in identification of more mixed pixels than would be
mapped using Landsat and MODIS, since fSCA mapping algorithms such as MODSCAG often have
difficulty mapping snow cover at fractions < approximately 0.15, while Landsat-based algorithms will be
prone to overestimation of snow cover when saturation of the visible bands occurs, resulting in fewer
mixed pixels when snow cover fractions are slightly below 1. Nevertheless, we believe it is important to
quantify the prevalence of all mixed snow cover pixels, including those where the fraction of snow-covered
or snow-free ground is quite small. Even very small differences in pixel fSCA, such as the difference
between fSCA fractions of 1.0 and 0.97 can potentially indicate substantial differences in snow cover
conditions, such as the difference between end of winter conditions with deep snow cover and conditions
later in the spring where snow water equivalent has been reduced by 50% but only a tiny fraction of the
pixel has melted out.

We found that mixed pixels were more common across all spatial scales and dates at our continental
ISA in Colorado than at our maritime ISA in Oregon. It is possible that the more rugged topography at
the Rocky Mountain NP ISA may be partially responsible for this difference. The increased prevalence
of mixed pixels across all dates can still be observed, however, even when subsets with similar
topographic characteristics are compared, at least for spatial resolutions < 125 m.

Differences between recent snowfall histories at the two ISAs prior to image acquisition are also
insufficient to explain the greater prevalence of mixed pixels at the Rocky Mountain NP ISA, although
heavy snow accumulation prior to the date of image acquisition did appear to reduce the incidence of
mixed pixels in the Rocky Mountain NP ISA relative to other dates without recent heavy snow
accumulation at the same ISA. At the Rocky Mountain NP ISA, the prevalence of mixed pixels was
much lower for the three dates with > 16 mm snow water equivalent accumulation over the previous
10 days (26 February 2014, 20 March 2010, and 7 May 2011) than for the two dates with little or no
new snow over the previous 10 days (26 May 2012 and 29 September 2013) (Figure 9b). Heavy snow
accumulation did not appear to have as pronounced an effect on the prevalence of mixed pixels in the
Oregon Cascades ISA (Figure 9).

If differences in recent snow accumulation were the primary factor responsible for differences in the
prevalence of mixed pixels between the two ISAs, we would expect to find a higher incidence of mixed
pixels at the Oregon Cascades ISA than at the Rocky Mountain NP ISA, since no snowfall occurred
within 10 days for three of the five dates analyzed at the Oregon Cascades ISA. Instead, we found the
incidence of mixed pixels at the Oregon Cascades ISA was actually consistently lower than the incidence

of mixed pixels at the Rocky Mountain NP ISA. We hypothesize that, over the course of the winter, the
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combined effects of lower moisture content during snow accumulation events, lower overall
precipitation, and higher wind speeds (Table 1) resulted in the development of a more heterogeneous
snow cover at the continental Rocky Mountain NP ISA than at the Oregon Cascades ISA. Snowfall
events with high moisture content (a common occurrence in the maritime snow climate of the Oregon
Cascades) are more likely to coat all terrain surfaces evenly during accumulation. In contrast, snowfall
events with lower moisture content (a common occurrence in the Colorado Rockies) often result in less
uniform accumulation, a situation that is exacerbated by consistently higher wind speeds.

Finally, it is also possible that differences in very fine scale surface roughness that cannot be captured
by a 10-m DEM may also play a role in explaining the differences between the prevalence of mixed
pixels at these two study areas.

It is worth noting that a significant but unknown fraction of the snow cover mapped in the 1 September
2013 image from the Oregon Cascades ISA consisted of exposed glacial ice as well as snow cover from
the current year on top of glacial ice, particularly within the high-relief subset image (Figure 2). While
the presence of glacier cover raises the overall ISA snow cover fraction, it is also likely to reduce the
prevalence of mixed pixels at the spatial resolutions considered here, since glaciers represent a large
mass of contiguous ice and snow that might otherwise be occupied by a patchy distribution of late-lying
seasonal snow cover patches.

The observation that portions of the alpine landscape remain free of snow cover across much of the
winter and spring while other areas remain snow covered well into the summer is not novel. The daily
60 m snow cover fraction time series computed from 1.5-hourly temperature data collected near the
ground surface, however, allowed us to quantify the frequency of partially snow-covered conditions at
a scale similar to that provided by Landsat. While the calculated snow cover fraction for pixel footprints
with intermittent snow cover appeared to be quite sensitive to the 24-hour temperature range threshold
used to classify the presence or absence of snow cover above each sensor, the results from the uncertainty
analysis still indicated that, regardless of the temperature range threshold value used, partial snow cover
conditions occurred with great frequency throughout the winter and spring. For the remaining sites,
where snow covered the entire pixel footprint for most or all days prior to the spring snowmelt period,
the temperature range threshold value appeared to matter very little, suggesting that snow cover fraction
estimates for these footprints can be considered more reliable.

At the four sites where partially snow-covered conditions were common throughout the winter and
spring, monitoring per-pixel snow cover fraction provides a clear advantage over binary monitoring
approaches that use an arbitrary, potentially variable fractional snow cover threshold to classify a pixel
as snow-covered or snow-free. At this type of site, binary snow cover classifications will consistently
overestimate the true snow cover fraction for most instances when snow covers > 50% of the pixel
footprint and consistently underestimate the true snow cover fraction for most instances when snow
covers < 50% of the land surface, although aggregation of results from many pixels can reduce the
magnitude of the error. While at first glance, the need for a fractional monitoring approach may seem
less obvious for sites where fully snow-covered conditions occur throughout the winter, the spring
transition period between fully snow-covered and fully snow-free conditions at these sites spanned a
period when 2—4 scenes would be collected by a single Landsat instrument (with the potential for even
more scenes during periods of concurrent Landsat missions and in areas covered by more than one orbital
path). During this transition period, there is an obvious benefit to retrieving per-pixel snow cover
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fraction, rather than simply the presence or absence of snow cover, as per-pixel fractional snow-covered
area can provide detailed information on the progression of snowmelt at the pixel rather than just a vague
approximation of the time when the pixel transitioned from > 50% snow cover to < 50% snow cover.

The rarity of pure pixels at 500 m spatial resolution and the sometimes dramatic differences in snow
cover conditions that often exist in close proximity within 500 m grid cells (as demonstrated in Figure 13)
present a strong case for the necessity of adopting a fractional SCA mapping approach when working with
MODIS data in high mountain areas. It is important to note that for an instrument such as MODIS, the
actual ground instantaneous field of view (GIFOV) represented by a single pixel is always larger than the
nominal spatial resolution of 500 m, as only approximately 75% of the signal originates from within the
nominal 500 m field of view [59]. In addition, for pixels imaged near the edge of the scan, where the scan
angle can be as high as 55°, the GIFOV represented in a single pixel is approximately 10x as large as at
nadir [60]. While this study does not directly address the frequency of mixed pixels for ground
instantaneous fields of view larger than 500 x 500 m, for resolutions between 1 m and 500 m, the
probability of mixed pixels generally continues to increase with increasing pixel size, and thus it seems
likely that mixed pixels would occur even more frequently for cases where the GIFOV is substantially
larger, as it is for MODIS pixels not located near the center of the scan. Ultimately, the vast diversity of
conditions within a single MODIS pixel footprint, even at the nominal 500 m spatial resolution, emphasizes
the utility of finer scale remote sensing using Landsat or a similar finer resolution platform.

The lower incidence of mixed pixels at the Landsat spatial resolution suggests that a binary SCA
mapping approach may be acceptable for some applications in mountain regions at the Landsat scale. For
example, in a larger basin with a diversity of slopes and aspects, binary SCA overestimation of snow cover
on north-facing slopes with 75% snow cover may often be offset by underestimation of snow cover on
south-facing slopes with 25% snow cover, resulting in a basin-wide SCA estimate that closely approximates
the true SCA for the basin. However, for basins with more homogeneous terrain at scales > 30 m, monitoring
of individual slopes, and any applications where highly accurate spatial distributions are essential, the
additional information provided by a fractional SCA dataset provides a major advantage.

For many applications, the most important measure of snowpack is the snow water equivalent (SWE)
or snow depth. While optical remote sensing cannot be used directly for monitoring either SWE or snow
depth, there is a strong link between SWE and SCA [61], and SCA retrievals from optical sensors can
be used in a variety of ways to assist with the estimation of snow depth or SWE. These include the
provision of melt-out dates used for SWE reconstruction [1-3], constraining modeled SWE to areas
where snow cover is actually present [4], and providing the spatial distribution of snow cover for
validation of modeled snow cover evolution over space and time [62,63]. In all of these cases, there is a
benefit to using fractional SCA at 30 m spatial resolution, particularly if the modeling occurs at 30 m
spatial resolution or finer.

It is important to note that the above discussion assumes similar accuracy in retrievals of both binary
and fractional SCA. Highly accurate binary SCA data will always remain more useful than fractional
SCA data of poor quality. Likewise, highly accurate fractional SCA data will always be more useful
than poorer quality binary SCA data.
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5. Conclusions

While mixed snow-covered/snow-free pixels can occur at any spatial resolution, at both of our ISAs,
mixed pixels become increasingly common at coarser spatial resolutions. The curves representing the
fraction of mixed pixels versus spatial resolution varied substantially depending on total study area snow
cover fraction, time of year, and snow climate regime. Mixed pixels were more prevalent at the colder,
drier continental study area. At the Landsat spatial resolution, mixed pixels comprised 36% of the total
pixels over all dates in the Oregon Cascades ISA and 69% of the total pixels for the Rocky Mountain
NP ISA. At the MODIS spatial resolution, mixed pixels comprised 81% of the total pixels over all dates
in the Oregon Cascades and 93% of the total pixels for the Rocky Mountain NP ISA.

Daily fractional SCA calculated from in situ temperature data loggers covering 60 m grid cell
footprints at two high elevation sites in Colorado suggested sites could be divided into two distinct
categories. Four of the 10 footprints could be characterized as intermittently snow-covered sites where
full snow cover across the entire 60 m footprint occurred rarely (as few as three days at one site), despite
continuous or near continuous partially snow-covered conditions throughout the winter and spring. The
remaining six footprints could be characterized as sites that remained fully snow-covered for most or all
days between late fall and late spring or summer. While these sites experienced fewer days overall with
partially snow-covered conditions, a period of continuous or nearly continuous partially snow-covered
conditions occurred at each site during the transition between fully snow-covered and fully snow-free
conditions. The mean length of this transition period was 37 days, with length varying from as few as
17-56 days.

At the MODIS spatial resolution, the rarity of pure pixels make fractional SCA mapping the obvious
choice for snow cover monitoring in mountainous environments. At the finer Landsat spatial resolution,
binary SCA mapping may be acceptable for some applications, but fractional SCA mapping offers
substantial advantages for a variety of applications, particularly in cases where the accurate representation

of snow cover spatial distributions (rather than just total SCA integrated over larger areas) is important.
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Abstract: We developed an automated approach for mapping persistent ice and snow cover (glaciers
and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier
types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available
Landsat scenes acquired during the late summer (1 August-15 September) over a multi-year
period and employs an automated cloud masking algorithm optimized for snow and ice covered
mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice
covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels
consistently identified as snow/ice covered over a five-year period were classified as persistent
ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds
applied consistently across eight study regions resulted in persistent ice and snow cover maps that
agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI),
with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the
snow /ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of
0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also
compared results from our approach to glacier area mapped from high spatial resolution imagery
at four study regions and found similar results. Accuracy was lowest in regions with substantial
areas of debris-covered glacier ice, suggesting that manual editing would still be required in these
regions to achieve reasonable results. The similarity of our results to those from the RGI as well
as glacier area mapped from high spatial resolution imagery suggests it should be possible to
apply this approach across large regions to produce updated 30-m resolution maps of persistent
ice and snow cover. In the short term, automated PISC maps can be used to rapidly identify areas
where substantial changes in glacier area have occurred since the most recent conventional glacier
inventories, highlighting areas where updated inventories are most urgently needed. From a longer
term perspective, the automated production of PISC maps represents an important step toward fully
automated glacier extent monitoring using Landsat or similar sensors.

Keywords: remote sensing of glaciers; snow and ice; Landsat; arctic

1. Introduction

Glaciers have been identified as one of the most sensitive indicators of changes in climate [1,2] and
have been identified as an essential climate variable that should be monitored globally [3]. Glaciers
not only respond to changes in climate, but can also drive changes in the earth climate system
through changes in albedo and contribution to sea level rise [4-7]. From a more local to regional
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perspective, glaciers often serve as a crucial source of runoff for downstream populations [8] and can
present a potential hazard due to glacier lake outburst floods [9,10].

While the presence of exposed ice at the end of the melt season allows most glaciers to
be positively identified under the right conditions, smaller glaciers cannot always be reliably
distinguished from perennial snow cover patches. The challenge of discriminating between perennial
snow cover patches and glaciers is confounded by the lack of satellite imagery acquired under ideal
conditions when the maximum amount of ice is exposed. Consequently, even high quality glacier
inventories created by image analysts may include some large perennial snow cover patches or omit
some small glaciers. Image analysts are able to use contextual information (such as topographic
position, patch shape, or ice or snow texture) to assist in discriminating between perennial snow
cover patches and glaciers. Here we present a relatively simple automated approach designed to
map glaciers that is likely to include a larger amount of perennial and consistently late lying seasonal
snow cover patches than would be included in more traditional approaches. Therefore, although our
intent is ultimately to map glaciers, we refer to the automated maps produced by the approach we
describe as persistent ice and snow cover (PISC) maps, acknowledging that some perennial snow
cover and late lying seasonal snow cover may be included.

Despite the important role of glaciers in the global earth system, in situ monitoring efforts are
limited to a tiny fraction of the areas containing glaciers [11]. While field measurements of mass
balance are irreplaceable indicators of the status of specific glaciers, spaceborne remote sensing
can provide crucial complementary information such as the areal extent of ice cover over large
regions encompassing numerous glaciers. For this reason, remote sensing approaches have been
implemented as a key component of the tiered global glacier monitoring strategy for the Global
Terrestrial Network for Glaciers (GTN-G) [12]. Optical remote sensing using the visible through
middle infrared bands has been the method of choice for the majority of remote sensing efforts
attempting to map glaciers. This is due to both the widespread availability of optical remote sensing
data from sensors such as those from the Landsat series and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) as well as the relatively unique spectral signature of
snow and ice cover in the optical remote sensing wavelengths.

Landsat image data have been used for a wide variety of glacier monitoring applications for
more than 30 years. Early work with Landsat MultiSpectral Scanner (MSS) and Landsat Thematic
Mapper (TM) focused on identification of glacier zones and calculation of corresponding reflectance
values [13-18]. This was soon followed by glacier area mapping as well as change detection for areas
covered by a single Landsat path-row [19-21]. Since the launch of the Landsat Enhanced Thematic
Mapper Plus (ETM+) in 1999, numerous studies have used either the TM or ETM+ sensors (or in some
cases, both sensors) to create glacier maps for increasingly large areas [22-26], with data from many
of these studies included in the Global Land Ice Measurements from Space (GLIMS) database [27,28].
Even more recently, the Randolph Glacier Inventory (RGI) was compiled to be the first comprehensive
glacier database with global coverage [29].

Despite the potential offered by remote sensing, comprehensive, fully inclusive glacier
monitoring at spatial resolutions fine enough to detect changes in glacier area that typically occur
over a decade or less has remained elusive in some regions. While global monitoring efforts such
as GLIMS and more recently the RGI have been effective for mapping glaciers across many large
regions, global coverage has only been achieved very recently and the glacier inventory dates within
the global database span several decades. In addition, for many regions, mapping of changes in
glacier area over time has not been conducted.

One reason why such large area inventories have not been completed more regularly or for more
regions is because existing approaches have required a substantial time investment by skilled image
analysts. While previous work has demonstrated that automated classification results are typically as
good or better than manually digitized results [30], even automated mapping approaches still require
investment of an analyst’s time in the pre-processing stage (selection and acquisition of appropriate
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scenes with minimal cloud cover and minimal seasonal snow cover) as well as the post-processing
stage (manual editing to correct classification errors, add areas of debris-covered glacier ice, and
remove areas of perennial and seasonal snow cover, sea ice and icebergs) [31]. In many cases,
input from an image analyst is also necessary to determine appropriate thresholds for band ratios
or individual bands during the main processing stage. Manual correction of automatically-derived
drainage divides from digital elevation models can also be a time consuming part of the process in
some cases.

We demonstrate that, across the circumpolar Arctic, and perhaps globally, the extent of PISC can
be regularly monitored using fully automated processing of Landsat data that exploits all available
cloud-free, shadow-free data available from the late summer period. This approach represents an
important step toward fully automated monitoring of glacier extent across large regions. In addition,
PISC maps generated by this approach can also be used to rapidly identify areas where substantial
changes may have occurred since the most recent conventional glacier inventories were conducted
and thus highlight areas where updated glacier inventories are most urgently needed. Finally,
many applications can potentially benefit from regularly updated PISC maps, including land surface
models, runoff models, and general circulation models (GCMs).

2. Study Regions

We developed and tested the automated PISC mapping approach using data from four regions
distributed throughout the Arctic, which we refer to as RGI calibration study areas (Figure 1, Table 1).
Each RGI calibration study area covered a 35 x 35 km area, with glaciers covering as much as 66% of
the study domain at Bylot Island, Canada and as little as 11% of the study domain in the Brooks Range
in the United States (as indicated by the RGI dataset). We tested the PISC mapping algorithm at four
additional 35 x 35 km study areas, referred to as RGI validation study areas, as well as at four smaller
(approximately 15 x 15 km) study areas where we acquired very high resolution imagery (VHRI)
(Figure 1, Table 1), referred to as VHRI validation study areas. The selection of 35 x 35 km bounding
regions for the RGI calibration and RGI validation study areas was constrained to areas within the
RGI database above 65°N with >5% ice cover where the dates of imagery used to construct the RGI
glacier inventory were known to be within a single year. Allowing for these constraints, we selected
35 x 35 km study areas to represent a range of glacier types, topography, and climatic conditions.
The selection of VHRI validation study areas was constrained to areas above 65°N with >5% ice
cover where acceptable very high resolution imagery from the period 2010-2015 was available from
the DigitalGlobe archive of data from the WorldView 2 or WorldView 3 satellites (mention of a
particular product does not constitute endorsement by the U.S. federal government). To be considered
acceptable for our purposes, very high resolution imagery needed to contain a contiguous area of
~15 x 15 km or larger with >5% ice cover that was cloud-free and nearly or completely free of late
lying seasonal snow cover from the previous winter as well as nearly or completely free of recently
accumulated snowfall. Allowing for these constraints, as with the selection of RGI calibration and
RGI validation study areas, we selected study areas intended to represent a range of glacier types,
topography, and climate conditions. Two of the four VHRI validation study areas were 15 x 15 km in
size, while the others were 16 x 14 km and 17.5 x 12.9 km due to cloud cover.
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Table 1. Study area locations and characteristics.
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Study Area Country Type VHRI Sensor Lat Lon Ice Cover WRS-2 Path/Row
RGI — " 68/11,69/12,70/11,71/11,
Brooks Range 1 USA calibration n/a 69.3°N 144.0°W 11% ’ 72‘/,11 ’
Saltfjellet Norway ROl n/a 67N 142°F 26% 197713, 128713, 199/13,
RGI v oo ., 30/8,31/8,32/8,33/8,
Bylot Island Canada calibration n/a 73.4°N 79.0°W 66% 34/8,35/8
RGI o R o 226/9,226/10,227/9,
Jamesonland Greenland calibration n/a 71.8°N 25.0°W 61% 228/9,229/9,230/9, 231 /9
Clavering RGI oNT 51 00 5 227/8,228/7,228/8,229/7,
Island ° Greenland validation n/a 745N 2L0°W 20% 230/7,231/7
Barnes Ice Cap Canada ValiRd(-a,tI‘hn n/a 69.6°N 72.0°W 47% 22/11,23/11,24/11,25/11
o
Trollaskagi RGI SRl 3 P e
Penitiils Iceland validatioh n/a 65.7°N 18.8°W 8% 218/14,219/14,220/14
Sarek NP Sweden Valﬁgém nja 673N 17.7°E 10% 196/13,197/13, 198/13
) VHRI v oN o , /
Brooks Range 2 USA validation ‘WorldView 2 69.2°N 144.8°W 6% 69/11,70/11,71/11,72/11
;
Borden Canada VAR WoldView2  733°N  8.7°W 7% 33/8,34/8,35/8,36/8
Peninsula validation
VHRI . oN o o p /
Pond Inlet Canada validation ‘WorldView 3 72.3°N 75.7°W 83% 27/9,28/9,29/9,30/9
’ 778 171 Y
Sverny Island Russia VHRL  wodView2  743°N 55.7°F 34% 177/8,178/7, 17818,17977,
validation 180/7
Arctic Circle
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Figure 1. Study area locations across the circumpolar Arctic.
3. Data

3.1. Landsat Data

Most land areas on the surface of the Earth are imaged by each active Landsat sensor every
16 days, resulting in 22 or 23 potential scenes each year that cover a specific area of interest. For most
regions outside of the conterminous United States, however, only a limited selection of scenes imaged
by the Landsat TM and ETM+ instruments have been downloaded and archived [32], resulting in the
availability of far less than 22-23 scenes per year for many areas [33]. Finally, persistent cloud cover
is an additional factor that further reduces the number of useful surface views. A typical glacier
monitoring or mapping effort involves identifying cloud-free images (or portions of images), or for
larger regions, collection of images, acquired during the seasonal minimum snow cover extent period.
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While in theory this is straightforward, the typically short duration of the snow-free period on and
around glaciers does not always coincide with the availability of a cloud-free satellite acquisition. As a
result, accurate glacier mapping requires careful scene selection by skilled analysts with knowledge
of the region and the seasonal snow cover conditions during the period of interest. The analyst must
select optimal scenes for automated or semi-automated glacier classification [30].

Overlapping Landsat paths result in more frequent image acquisitions for locations covered
by more than 1 path. While only about 5% of the land surface is covered by multiple paths at the
equator [34], at high latitudes, due to the convergence of Landsat paths, path overlap is ubiquitous,
with many ground locations covered by three or more Landsat paths. This results in a doubling or
even tripling of the number of Landsat scenes covering an area of interest. Assuming a substantial
portion of these scenes have been acquired and archived (global scene availability is described in [33]),
the odds of finding one or more scenes (or portions thereof) that capture the minimum annual extent
of snow and ice under cloud-free conditions theoretically increases substantially with latitude. In our
approach, we exploit this relative abundance of scenes available at many high latitude locations
and consider all available Landsat TM or ETM+ data for each location, using an automated cloud
classification algorithm to identify all instances of cloud-free views for each pixel location.

The majority of studies mapping glacier area using Landsat data have used uncorrected raw
digital number (DN) or top-of-atmosphere (TOA) reflectance image data. Previous work has shown,
however, that the use of atmospherically corrected surface reflectance image data can improve the
accuracy of the results [35], and that atmospheric correction is particularly crucial if the Normalized
Difference Snow Index (NDSI), which incorporates Landsat band 2 where atmospheric scattering
is particularly high, is used [36]. To limit errors that could be introduced by variable atmospheric
conditions when applying a standardized algorithm across large regions and over different dates,
we make use of the atmospherically corrected USGS surface reflectance climate data record (CDR)
product available for the Landsat TM and ETM+ sensors [37]. The surface reflectance CDR
applies atmospheric correction routines originally developed for the Moderate Resolution Imaging
Spectroradiometer (MODIS) to Landsat data. Surface reflectance is computed using the Second
Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer model, which requires
water vapor, ozone, geopotential height, aerosol optical thickness, and a digital elevation model along
with Landsat TOA reflectance data. Application of 65 at high latitudes does violate the assumption of
a plane-parallel atmosphere, which can impact the quality of surface reflectance product. However,
because this is the standard atmospheric correction approach currently applied to all Landsat scenes
and because we have not seen any evidence of errors large enough to affect the ability to discriminate
between ice or snow and other surfaces in high latitude Landsat surface reflectance data, we have
opted to use the standardized Landsat surface reflectance product.

For the RGI calibration and RGI validation study areas, we acquired and processed Landsat
top-of-atmosphere (TOA) reflectance and surface reflectance products [36] from all available Landsat
TM and ETM+ scenes available during the late summer (in this case defined as 1 August-15
September) for five-year periods. The TOA and surface reflectance Landsat scene products were
produced by and acquired from the USGS EROS Data Center. We used the EarthExplorer interface
to identify scenes acquired during the time period of interest at each of our study areas and then
submitted orders for the identified scenes, subset to our study areas, using the EROS Science
Processing Architecture (ESPA) interface. For the RGI calibration and RGI validation study areas,
scenes were acquired for the five-year period centered on the date of the RGI inventory. At the
Saltfjellet, Norway primary study area we acquired data from an additional year (for a total of six
years) due to the poor availability of cloud-free scenes over the five-year period centered on the RGI
mapping year. For the VHRI validation study areas, we acquired Landsat scenes for the 2010-2014
period, as the very high resolution imagery was acquired during 2014 or 2015.
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3.2. Randolph Glacier Inventory Data

At each of the four RGI calibration study areas, we used glacier polygons provided by the RGI
(version 4.0) to conduct sensitivity analysis for two key thresholds described below, as well as to
conduct an accuracy assessment of mapped glacier area using our automated approach. The RGI
provides polygon datasets of all glaciers in a region mapped using a variety of image resources,
including Landat TM and ETM+ data. While the imagery source and mapping approach are not
identified in the RGI database, the date or range of dates used to map each glacier are included in the
database for most entries. Although some RGI polygons indicate a range of years and others provide
no information about date or year of the image or other resource used for mapping, all RGI data used
in this study indicated a specific date or range of dates within a single year covering the entire extent
of each 35 x 35 km study area.

4, Methods

For each pixel in the study domain, our approach identifies the available cloud-free, shadow-free
(and otherwise valid) land surface views and then compiles a stack of NDSI values corresponding to
each valid land surface view. A threshold value is then applied to the stack of NDSI values to identify
each land surface view in the stack as snow or ice-covered or snow or ice-free. The ratio of days with
snow /ice to the total days, which we refer to as the fraction of Days with Ice or Snow Cover (fDISC)
is then computed and a second threshold value is used to identify the pixel as PISC or PISC-free.
A diagram of this processing flow is presented in Figure 2.

Masked due 1o cloud cover,
shadow, or invalid data

invalid data
mask

NDSI stack

| Exclude cloudy, shadowed, and no data instances |

INDS! stack,

(cloud-free,

shadowi-free
only)

Threshold NDS!

snowiice

.
o= covered
snow, —_—
:uvcr:‘:;: Compute ratioof | Fraction of Days
stack snowfice cover daysto —  with Ice ar Snow
total days |

T Cover (fDISC)

snow/
ice free

{DISC > fDISC threshold?

Yes. No.
Classify as Classify as
PISC PISC-free.

Figure 2. Diagram of processing flow for classification of Persistent Ice and Snow Cover (PISC) for
a single pixel.
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4.1. Cloud and Shadow Masking

Analysis of stacks of numerous Landsat scenes requires an accurate automated cloud-masking
approach. The CFmask algorithm [38] uses a series of rules based on cloud physical properties to
develop a potential cloud layer from Landsat top-of-atmosphere reflectance data in bands 1-5 and
7 as well as brightness temperature from band 6. The potential cloud layer is then segmented to
produce cloud objects, and ultimately a cloud mask and cloud-shadow mask that is provided with
each USGS Climate Data Record (CDR) Landsat surface reflectance scene. While the overall accuracy
of the CFmask cloud mask has been reported as 96.4%, our evaluation of CFmask cloud masks found
that in rocky, alpine terrain and areas with a mixture of snow, ice, and other land cover types, the
CFmask algorithm was prone to errors of commission (false positives) for cloud cover (an example
is shown in Figure 3). More importantly, the errors of commission were not randomly distributed
across areas with rock and ice cover, but were consistently present at the same patches of land cover
on multiple occasions, thus resulting in a potential bias in available cloud-free data. We considered
the high rate of errors of commission and particularly the potential for bias to be unacceptable for
our purposes. We implemented a revised cloud masking approach designed to reduce errors of
commission from the CFmask cloud masks over mountainous environments dominated by rock,
snow, and ice, allowing us to fully exploit nearly all available cloud-free land surface views acquired
during the late summer period. The revised cloud masking approach employed classification
trees that reevaluated all instances of pixels where the CFmask product indicated cloud cover.
The classification trees were originally developed for a seasonal snow covered area monitoring project
and are based on over 100,000 pixels acquired from 20 Landsat scenes from mountainous areas across
the globe. The classification tree approach relies on data from Landsat bands 1-5and 7 to make a final
distinction between cloud-covered and cloud-free pixels in cases where the original CFmask indicated
cloud cover. Testing of the classification tree approach in conjunction with the original CFmask data
indicated a slight improvement in overall accuracy (from 89% to 91%), with a major improvement in
accuracy for high mountain areas from around the globe with substantial snow and ice cover (from
66% to 88%).

Landsat surface reflectance Original CFmask cloud cover Revised CFmask cloud cover
(bands 7-4-2)

79°20W  79°0'W  78°40'W

79°20W  79°0'W  78°40'W

a. ¥ .
CLASSIFICATION LEGEND (panels b and c)
area of cloud cover Il couc-ree

I:l cloud-covered

Figure 3. Comparison of original CFmask and revised CFmask for Bylot Island Landsat scene
acquired 12 August 1999. (a) Landsat surface reflectance 7-4-2 band combination; (b) original CFmask
cloud cover classification; and (c) revised CFmask cloud cover classification.

In addition to cloud cover, both cloud shadows and terrain shadows can impact surface
reflectance to the extent that band ratios such as the NDSI no longer provide a reliable indication
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of land surface characteristics. We excluded the most deeply shadowed pixels from further analysis
by masking pixels where apparent surface reflectance in both bands 2 and 4 was <7%, as all land
surface types in our region (with the exception of water) would be expected to exceed 7% reflectance
in one or both of these bands. While our shadow masking approach was relatively unsophisticated
and did not differentiate between cloud shadows and terrain shadows, we found it to be effective for
our needs and ideal in that it required neither accurate cloud heights (for cloud shadow masking) nor
accurate digital elevation model data (for terrain shadow masking).

All ETM+ scenes acquired after 2002 included missing data due to the failure of the Landsat 7
scan line corrector. Pixels that were not sampled due to the scan line corrector failure were identified
and excluded from further analysis along with pixels identified as cloud-covered or shadowed.

4.2. Snow and Ice Mapping

For each late summer cloud-free, shadow-free view of the earth surface within our study areas,
the normalized difference snow index (NDSI) [39,40] was used to discriminate between snow and ice
free land and snow or ice cover. The NDSI typically exhibits positive values for partially and fully
snow or ice covered land and negative values for most other land surface types. For the Landsat TM
and ETM+ sensors, NDSI is defined by the following equation [39]:

NDSI = (TM, — TM5)/(TM; + TMs) o)

where TMj is surface reflectance in Landsat TM or ETM+ band 2, and TM; is surface reflectance in
Landsat TM or ETM+ band 5. The Landsat TM and ETM+ sensors are prone to saturation in the
visible bands, including band 2 used in the calculation of the NDSI, over bright surfaces such as snow
and ice cover. This problem is more pronounced, however, at lower latitudes where higher levels of
incoming solar radiation result in higher levels of reflected solar radiation over comparable surfaces.
We calculated the incidence of saturation in band 2 for all scene subsets used in our study areas and
found that saturation occurred in only 0.7% of cloud-free surface views.

While NDSI values close to 1.0 almost always indicate relatively fresh snow cover with high
albedo and values <0 almost always indicate snow-free or ice-free land, the threshold used for
identification of snow cover presence has varied considerably in previous applications, prompting us
to undertake an uncertainty analysis, described in detail below. The most appropriate threshold value
for discrimination between snow-covered and snow-free pixels depends on several factors, including
contamination with dust or fine debris, snow grain size, illumination characteristics, as well as the
minimum subpixel snow cover fraction for which positive identification of snow cover is desired.

In addition to an NDSI threshold used to discriminate between ice/snow cover and
ice/snow-free land for each available cloud-free, shadow-free land surface view, it was also necessary
to establish a threshold for the total fraction of late summer days with ice/snow cover above which
a pixel is considered to be PISC (Figure 2). We refer to this second threshold as fDISC (fraction of Days
with Ice or Snow Cover). If ice/snow cover could be identified with perfect accuracy, it would make
sense to identify a pixel as PISC only if the selected NDSI threshold was exceeded in all available
cloud-free and shadow-free land surface views. However, the lack of a well-established NDSI
threshold as well as the occasional errors of omission in the cloud masking approach (resulting in
the inclusion of cloud-covered pixels in the dataset of cloud-free and shadow-free pixel observations)
complicated the situation. Due to these and potentially other complicating factors, we hypothesized
that the optimum threshold for fDISC indicating PISC at a pixel would be lower than 1.0.

We addressed the uncertainty in optimum values for both the NDSI threshold and the fDISC
threshold by conducting sensitivity analyses to determine the impact of variation in threshold values
on classification results. For NDSI threshold values ranging from 0.2 to 0.5 (using increments of 0.1)
and for fDISC threshold values ranging from 0.6 to 1.0 (using increments of 0.05), we computed PISC
maps for each incremental value and compared the PISC maps to the RGI glacier outlines for the
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period, calculating the fraction of total pixels in agreement for each instance. Results of the sensitivity
analysis, as well as the threshold value we selected for the final version of our algorithm are discussed
in Section 5.

4.3. Additional Processing Steps

We reduced the number of cases where small perennial snow patches or very late lying seasonal
snow patches were mapped as PISC by applying stricter standards for mapping PISC in smaller
patches less than 300 pixels (27 ha) in size. This was accomplished by applying a sieve routine [41]
at two different steps in the processing. The initial sieve routine was applied to identify patches
mapped as PISC (based on an fDISC threshold of 0.8) <300 contiguous pixels (27 ha) in size. Pixels
within these patches were then reclassified as snow /ice-free if they did not exceed the NDSI threshold
in all available cloud-free, shadow-free Landsat surface views. Pixels located within larger patches of
PISC (>300 contiguous pixels in size) were not subject to the stricter threshold and were mapped as
PISC as long as they exceeded the NDSI threshold in at least 80% of cloud-free, shadow-free views.
We also applied a second sieve routine to remove any mapped patches of PISC <100 pixels (9 ha)
in size. While the implementation of the sieve routines did result in some errors of omission (false
negatives) for small glaciers, it substantially reduced the error of commission and ensured that only
the largest perennial snow cover patches were included in our inventory of PISC. Finally, to minimize
speckle in the resulting classification, we implemented a post-processing 5 x 5 pixel median filter.

4.4. Accuracy Assessment

We assessed the accuracy of the resulting PISC maps at each study area by comparing PISC
maps from our approach to the glacier outlines from the RGIL. While the accuracy at the four RGI
calibration study areas could potentially be biased because those study areas were used to identify
optimal threshold values for NDSI and fDISC used in the algorithm, the four RGI validation study
areas and the VHRI validation study areas were included to allow for an unbiased assessment at
study areas that had not been used in the algorithm development.

For each VHRI study area, an image analyst manually identified polygons of glacier ice. The set
of polygons mapped as ice-covered were then converted to a binary 30-m raster dataset. The 30-m
binary ice cover image was then compared to the PISC maps produced from the automated approach.

For the calculation of accuracy assessment metrics, we considered the RGIl-derived or
VHRI-derived glacier maps to be “truth” in the comparison with PISC maps computed using our
approach. Using this assumption, we placed each pixel into one of four categories: (1) true positive
(PISC mapped in both our approach and in the RGI or VHRI dataset); (2) false positive (PISC mapped
in our approach, but ice-free land indicated by the RGI or VHRI dataset); (3) true negative (ice-free
land mapped in both our approach and the RGI or VHRI dataset); and (4) false negative (ice free land
mapped in our approach, but ice-cover mapped in the RGI or VHRI dataset). Based on these four
categories, for each study area we calculated metrics commonly employed in assessment of binary
snow and ice cover maps [42,43]: overall accuracy, precision (the user’s accuracy for the glacier and
perennial snow cover class), recall (the producer’s accuracy for the glacier and perennial snow cover
class), and F (a metric that incorporates both precision and recall). Accuracy, precision, recall, and F
metrics were calculated using the following equations:

Accuracy = (TP + TN)/(TP + TN + FP + EN) 2)
Precision = TP/(TP + FP) 3)
Recall = TP/(TP + FN) 4

F = 2TP/(2TP + FP + FN) ®)
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where TP is the number of true positive pixels, TN is the number of true negative pixels, FP is
the number of false positive pixels, and FN is the number of false negative pixels. At each study
area, we also calculated each assessment metric for all pixels with a given number of cloud-free and
shadow-free land surface views to assess the impact of the number of observations on accuracy.

5. Results

5.1. Overall Accuracy

After considering the effect of the NDSI and fDISC thresholds on accuracy, discussed further
below, we selected an NDSI threshold of 0.4 and fDISC threshold of 0.8. All results presented below
use these threshold values (unless otherwise noted).

The mean overall accuracy for the primary and RGI validation datasets, defined here as
agreement with the RGI validation dataset, was 0.964, while mean overall precision (user’s accuracy
for the PISC class) was 0.918, mean overall recall (producer’s accuracy for the PISC class) was 0.863,
and mean F was 0.883. The mean overall accuracy for the VHRI validation study areas was 0.968,
while mean overall precision was 0.948, mean overall recall was 0.928, and mean overall F was 0.935.
Accuracy, precision, and recall, as well as the spatial distribution of errors, are shown in Figure 4
for the RGI calibration and RGI validation study areas and in Figure 5 for the VHRI validation
study areas.
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Figure 4. Agreement with the Randolph Glacier Inventory (RGI) glacier extent for each full study
area and validation study area. (a) Brooks Range, USA; (b) Saltfjellet, Norway; (c) Bylot Island,
Canada; (d) Jamesonland, Greenland; (e) Clavering Island, Greenland; (f) Trollaskagi Peninsula,
Iceland; (g) Barnes Ice Cap, Canada; (h) Sarek NP, Sweden.
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Figure 5. Agreement with VHRI-derived glacier extent for each VHRI validation study area.
(a) Severny Island, Russia; (b) Borden Peninsula, Canada; (c) Brooks Range, USA; (d) Pond
Inlet, Canada.

While most Landsat-derived PISC maps closely resemble those from the RGI or from VHRI,
we observed several notable differences. At the Trollaskagi Peninsula study area (Figure 4f),
a substantial area mapped as ice-covered by the RGI was mapped as PISC-free by our technique.
Closer examination of imagery data from this area, shown in Figure 6, indicated that most of the
difference between glacier extent mapped by the RGI and PISC mapped by our technique was due
to the RGI'’s inclusion of substantial areas of debris-covered ice that is spectrally more similar to
nearby ice-free land than to ice or snow cover. For the Brooks Range RGI calibration study area, our
approach mapped numerous patches of PISC not mapped by the RGI (Figure 4a). Most of these false
positive ice cover patches mapped by our technique were located in areas that were deeply shadowed
by surrounding terrain during the latter part of our mapping period. As a result, our mapping
approach was only able to consider data from the earlier part of the mapping period. Areas that
become heavily shadowed later in the mapping period tend to receive lower levels of incoming solar
radiation throughout the earlier part of the summer as well, and consequently often retain seasonal
snow cover for all but a few weeks of the year. In many cases, this brief snow-free period does not
begin until these areas have already become heavily shadowed, and consequently, there are no valid
Landsat surface views of these areas after they have become snow free. Finally, at the Brooks Range
VHRI validation study area, several small- and medium-sized glaciers identified by the RGI were
not mapped as PISC. This is likely due to the strict requirement that patches of PISC smaller than
300 contiguous pixels be mapped as snow or ice covered in every cloud-free and shadow-free surface
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view. As a result, if NDSI dropped below 0.4 due to debris cover or cloud-contamination for any of
the available cloud-free and shadow-free surface views, pixels part of these smaller patches of PISC
were not mapped as PISC.
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Figure 6. Agreement between mapped PISC and glaciers mapped with RGI for the Trollaskagi
Peninsula, Iceland, with area of detail showing Landsat imagery and areas of false positives for PISC
outlined in red.

5.2. Factors Affecting Persistent Ice and Snow Cover Map Accuracy

5.2.1. Use of Original CFmask vs. Revised Cloud Masking Approach

The number of cloud-free and shadow-free land surface views available differed considerably
depending on the cloud masking approach used, with substantially more views available for some
pixels when the revised cloud masking approach, rather than the original CFmask cloud classification
provided with the Landsat surface reflectance product, was used (Table 2, Figure 7). In addition,
well-defined fine scale spatial patterns related to terrain and land cover type were apparent in the
mapped total number of cloud-free and shadow-free views calculated using the original CFmask
algorithm cloud masks, but not in the mapped total number of cloud-free and shadow-free views
calculated using the revised cloud masking approach (Figure 7). While coarser scale patterns in
the geographic distribution of cloud cover likely do exist, the well-defined fine scale patterns in the
number of cloud-free views mapped by CFmask suggest a tendency to classify specific types of land
cover and terrain as cloud-covered even in the absence of actual cloud cover (such as the example
provided in Figure 3). While in some cases the mean number of cloud and shadow free surface views
was not substantially different, at three of the four study areas, the percentage of pixels with <5
cloud-free and shadow-free surface views was substantially higher when the original CFmask was
used for cloud identification (Table 2).

The reduced frequency of pixels with <5 cloud-free and shadow-free surface views for the
revised cloud masking approach is not, in and of itself, an indication that the revised cloud masking
approach is more effective, as this could simply indicate increased errors of omission for cloud cover.
Analysis from previous work we conducted to assess the suitability of the standard CFmask product
for seasonal snow cover monitoring applications does, however, indicate that in mountainous areas
where fine scale mixtures of rock, snow, and ice are common, errors of commission (false positives)
for cloud cover are widespread for the standard CFmask product. A different but equally useful
way to compare the utility of the original and revised cloud masking approaches is to compare the
accuracy (in this case, agreement with the RGI glacier extent) of mapped PISC using the original
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CFmask algorithm with the accuracy of mapped PISC using the revised cloud masking approach.
This comparison indicated that in the majority of cases, the revised cloud masking approach yielded
more accurate final results, and that at some study areas (particularly the Brooks Range), the
improvement in accuracy was substantial (Figure 8).

Table 2. Comparison of cloud-free and shadow-free surface views (CFSFSV) for each study area using
the original CFmask and the revised cloud masking approach.

Original CFmask Revised Approach
Study-Area M CESFSV Pixels with <5 M CESFSV Pixels with <5
can CFSFSV i CFSFSV
Brooks Range 15.0 11.0% 20.8 1.2%
Saltfjellet 73 28.2% 10.0 9.1%
Bylot Island 29.4 0.0% 295 0.0%
Jamesonland 14.4 4.3% 164 0.8%

£ Z £
144t16W 1a8eW 144724W 144T15W UsBW 14424W 144716W 144'8W
Landsat surface reflectance Total cloud-free and shadow- Total cloud-free and shadow-
(bands 7-4-2) free views: original fmask free views: revised fmask
Glacier margin prone to dloud and shadow free views (both panels)
e jon of

cloud con

<4 45
Figure 7. Cloud-free and shadow-free views for a subset of the Brooks Range study area using the
original CFmask and the revised cloud masking approach. Examples of glacier margins where false
cloud cover was consistently identified, resulting in <4 cloud-free and shadow-free surface views are

highlighted in purple.
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Figure 8. Accuracy (agreement with the RGI) for each study area as a function of late summer snow
cover days threshold using the original CFmask and the revised cloud masking approach. (a) Brooks
Range, USA; (b) Saltfjellet, Norway; (c) Bylot Island, Canada; (d) Jamesonland, Greenland.
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5.2.2. Normalized Difference Snow Index (NDSI) threshold

The NDSI threshold value used to distinguish between ice/snow covered and ice/snow free
land for individual dates had a relatively small effect on accuracy in most instances, although the
impact of NDSI threshold was often larger for cases well outside the optimum range of thresholds
for fraction of late summer snow cover days (Figure 9). At the optimum fDISC threshold (between
0.7 and 0.95, depending on the study area), differences in accuracy associated with variable NDSI
thresholds between 0.2 and 0.5 were minimal.
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Figure 9. Effect of fraction of Days With Ice and Snow Cover (fDISC) threshold and Normalized
Difference Snow Index (NDSI) threshold on PISC map accuracy (defined as agreement with RGI
glacier area) for each RGI calibration study area. (a) Brooks Range, USA; (b) Saltfjellet, Norway;
(c) Bylot Island, Canada; (d) Jamesonland, Greenland.

5.2.3. Fraction of Days with Ice and Snow Cover (fDISC) Threshold

The fDISC threshold used to classify pixels as PISC had a larger impact on accuracy than the
NDSI threshold (Figure 9). The optimal fDISC threshold value fell between 0.7 (for Saltjellet, Norway)
and 0.95 (for the Brooks Range, USA). For the Brooks Range and Bylot Island study areas, agreement
with the RGl increased steadily for threshold values above 0.6, peaked around 0.9, and then decreased
(dramatically in the case of Bylot Island). For the Saltjellet, Norway, and Jamesonland, Greenland
study areas, accuracy was quite stable for threshold values between 0.6 and 0.8, with a gradual decline
in accuracy at higher threshold values.

5.2.4. Selection of Algorithm Threshold Values for NDSI fDISC

Based on the sensitivity analysis presented above, we selected an NDSI threshold value of 0.4
and an fDISC threshold value of 0.8. We selected the NDSI threshold of 0.4 because in all cases
we analyzed, the 0.4 NDSI curve included the optimum accuracy value or fell only slightly below
the optimum accuracy value. The wider variability in the value of the optimum fDISC threshold
presented more of a challenge for selecting the ideal threshold for the algorithm that would be applied
across all study areas. While a higher threshold between 0.9 and 0.95 worked best at the Bylot Island
and Brooks Range study areas, a lower threshold around 0.7 resulted in the highest accuracy at
the Saltfjellet, Norway, and Jamesonland, Greenland sites. To select the threshold with the highest
accuracy across the greatest range of sites, we selected a threshold of 0.8, which had yielded accuracy
above 0.9 for all four RGI calibration study areas.
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5.2.5. Number of Cloud-Free and Shadow-Free Land Surface Views

In the majority of cases, both the precision and recall accuracy metrics increased as the number
of cloud-free and shadow-free surface views increased (Figure 10), as we might intuitively expect.
In addition, the rate of increase leveled off in almost all cases, although the number of cloud free
views at which this plateau was reached varied substantially across sites, from as few as 4 cloud-free
and shadow-free views to as many as 30 cloud-free and shadow-free views. The Trollaskagi Peninsula
in Iceland presented an unusual exception, with the recall metric decreasing steadily as a function of
number of cloud and shadow free views. The poor overall accuracy as well as the inverse relationship
between cloud-free, shadow-free views and recall for the Trollaskagi Peninsula study area are likely
due to large areas of debris-covered ice mapped in the RGI but not identified as PISC in our approach.
In most cases, precision was low when <10 cloud-free and shadow-free surface views were available.
The Barnes Ice Cap study area provided a notable exception, where high precision was observed
regardless of the number of cloud-free, shadow-free surface views. Conversely, the recall metric was
low at the Barnes Ice Cap Study Area for cases where <20 cloud-free and shadow-free surface views
were available, although this did not have a large effect on overall accuracy at this study area since
>20 cloud-free and shadow-free surface views were available at the vast majority of pixels.
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Figure 10. Effect of number of cloud and shadow free views on precision (user’s accuracy for
the ice covered class) and recall (producer’s accuracy for the ice-covered class) for RGI validation
study areas and VHRI validation study areas. (a) Effect of the number cloud-free and shadow-free
views on precision for the RGI validation study areas; (b) effect of the number of cloud-free and
shadow-free views on precision for VHRI validation study areas; (c) effect of the number of cloud-free
and shadow-free views on recall for the RGI validation study areas; and (d) effect of the number of
cloud-free and shadow-free views on recall for VHRI validation study areas.

5.3. Spatial Distribution of Errors

Figures 4 and 5 depict the spatial distribution of errors of commission (false positives) and errors
of omission (false negatives) for each of the twelve study areas. While the frequency, type, and
distribution of errors varies by study area, some common patterns emerge. False negatives are often
concentrated along the margins of glaciers, and particularly near the end of glacier tongues where
heavy debris cover is present. False positives, on the other hand, are more frequently concentrated in
patches that are not contiguous with larger glaciers, particularly in the Brooks Range RGI calibration
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study area, Brooks Range VHRI validation study area, and Severny Island VHRI validation study
area. These small patches appear to be primarily patches of late lying or perennial snow cover.
Late lying seasonal snow cover patches mapped as PISC appear to be most common in areas that
experience deep shadowing during the latter part of the image acquisition period. As a result, valid
surface views are only available for these locations during the earlier part of the image acquisition
period, when these areas are still snow covered, and as a result they are classified as PISC.

6. Discussion

6.1. Effect of Fraction of Days with Ice/Snow Cover (fDISC) Threshold

Our results suggest that a standardized approach where pixels with fDISC values >0.8 are
classified as PISC should work well across much of the northern high latitude regions. However, the
data also suggest that it may be possible to optimize the algorithm for specific regions by adjusting the
fDISC threshold. The optimum value for this threshold will depend on a number of factors, including
the prevalence of late lying seasonal snow patches in the region, the typical duration of seasonal
snow cover, the prevalence of partially debris-covered ice on the lower portions of the glacier, and the
number of cloud-free land surface views available.

Although we might intuitively expect a PISC mapping approach would perform best by
mapping PISC only at pixels where all cloud-free and shadow-free views contained snow or ice
cover, our results suggest this is not the case. While the optimum fDISC threshold value varies
by study region, the optimum threshold is <1.0 for all study areas, and for the Bylot Island and
Jamesonland study areas, accuracy drops off substantially as fDISC approaches 1.0. There are two
primary reasons why the optimum threshold is consistently <1.0. First, because we know that
the cloud mapping approach will occasionally classify cloud-contaminated pixels as cloud-free, we
expect that cloud-contaminated observations of snow or ice cover will typically have lower NDSI
values than cloud-free snow or ice and will often be mapped as free of snow and ice. Using a strict
approach (equivalent to an fDISC threshold value of 1.0) would ensure that PISC pixels with even one
cloud-contaminated view would be mapped as ice-free. Second, areas of PISC with debris cover will
generally have NDSI values that decline over the course of the summer as more debris is exposed.
While areas of PISC with partial debris cover will likely always maintain a positive NDSI value (as
opposed to the majority of other land surface types, which will indicate negative NDSI values when
snow-free), the NDSI value may briefly drop below the NDSI threshold (in this case 0.4), resulting in
an occasional surface view that would be classified as free of snow and ice. Again, in these situations,
using the strict approach with an fDISC threshold value of 1.0 would classify these pixels as ice-free.

6.2. Advantages and Disadvantages in Comparison to Traditional Semi-Automated Approaches

The automated PISC mapping approach presented here has both advantages and disadvantages
when compared to more traditional approaches employed to produce the majority of existing glacier
inventories. The primary advantage of the automated approach we present here is that it can be
applied over large areas quickly, without the need for a substantial time investment from skilled
analysts. This allows for generation of comprehensive PISC maps covering multiple time periods,
allowing for analysis of changes in PISC extent over time. Prior to conducting this type of analysis,
however, it will be necessary to develop techniques to distinguish between true changes in PISC and
changes resulting in differences between the available data from different periods of comparison as
well as changes in seasonal snow cover. With appropriate techniques for change analysis, we expect
this type of approach could be used to map general trends in ice-covered area over time. Finally, the
automated approach also ensures that results will be completely reproducible and not dependent on
the level of expertise of a particular image analyst.

Perhaps the largest disadvantage of the automated approach is that it does not take into account
contextual information, such as topographic position, patch size and shape, or snow or ice texture that
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an expert image analyst might be able to use to distinguish between glacier ice and perennial or late
lying seasonal snow cover. To minimize the inclusion of perennial snow cover and late lying seasonal
snow cover patches, we eliminate all patches mapped as PISC that are <100 contiguous pixels (~9 ha).
While this minimum size threshold is somewhat larger than the thresholds typically used in more
traditional glacier mapping approaches, we found that it substantially reduces the incidence of false
positives while only slightly increasing the incidence of false negatives. Analysis of glaciers within
our study areas indicates that, according to the RGI, glaciers <9 ha in size are entirely absent (or not
mapped) in several of our study areas and account for only a tiny fraction of the total ice covered
area where they are present, such as in the Brooks Range, where they account for just 0.6% of the ice
covered area.

Another key disadvantage of the automated approach is that the mapped PISC cannot be tied to
a single year, but instead maps PISC for a five-year period. This would become more important
if the automated approach is implemented for the purpose of monitoring changes in PISC over
time. In addition, the automated approach requires a number of late summer cloud-free views to
be effective, while more traditional approaches where an image analyst carefully selects scenes for
analysis can be effective if only a single, well-timed cloud-free scene is available. Finally, an image
analyst can also typically identify large debris-covered glacier tongues, although delineating the
exact extent of these features can be challenging even in cases where high resolution imagery is
available [29]. In our automated mapping approach, partially debris-covered portions of glaciers
may be mapped as PISC, particularly if seasonal snow cover is present for many of the late summer
land surface views. Fully debris-covered portions of glaciers, however, will generally not be mapped
as PISC. The difficulty of mapping debris-covered glacier ice has been a consistent problem for optical
remote sensing efforts, and while several approaches have shown promise for automated mapping of
debris-covered glacier ice [44-46], accurate mapping of debris-covered glacier ice will likely require
some combination of manual editing or incorporation of other types of remotely sensed data.

Finally, it is important to note that conventional glacier inventories (such as those available from
the RGI) identify and map individual glaciers, whereas our automated approach only identifies the
extent of PISC. A single contiguous patch of ice cover mapped using our automated approach may
represent two or more distinct glaciers separated by a drainage divide. Therefore, even in cases where
the mapped extent of PISC corresponds perfectly with the extent of glacier ice, additional processing
is necessary to generate outlines corresponding to individual glaciers. While in some cases this step
can be accomplished with an automated approach, in certain cases (such as when the available DEM
data is of poor quality), manual editing may be required.

6.3. Importance of Revised Cloud Masking Approach

The revised cloud masking approach implemented here appears to be crucial to the success of
the overall approach, as the data indicate that using the original CFmask would result in substantial
regions with <5 cloud-free and shadow-free observations due to frequent false positives for cloud
cover over certain types of terrain and land cover. Most notably, many of these regions of consistent
cloud cover commission errors are located along the margins of glaciers, which would result in
a disproportionately large effect on the accuracy of the final product. This effect is confirmed by
comparison of accuracy between versions of our approach implemented using the original CFmask
classification and the revised cloud masking approach.

6.4. Application of the Approach to Lower Latitude Regions

A similar approach to the one presented here may be effective for mapping PISC in lower latitude
regions. As the effective implementation of this approach relies on multiple cloud-free views during
a relatively short window, we expect a similar approach would be most effective for lower latitude
regions where cloudy days are relatively rare during the period when seasonal snow cover is at its
minimum, as well as in regions where nearly all potential Landsat scenes have been archived (such
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as the conterminous U.S. and southern Canada). Application of this approach for lower latitude
regions may also require adjustment of the seasonal window for Landsat scene inclusion. Finally,
the relatively greater abundance of debris-covered glaciers at lower latitudes may present a problem
given that the automated approach is not effective for mapping glaciers with extensive, optically thick
debris cover.

6.5. Future Research

Future research should address the key disadvantages discussed above. In particular, it may
be possible to compute various shape and texture metrics from the Landsat imagery as well as
incorporate topographic information from a DEM and then use a machine learning approach to
exploit some of the contextual information used by expert image analysts and improve classification
accuracy. In addition, while we did not use any Landsat OLI data in our implementation of the
automated approach because OLI data from only two late-summer periods had been acquired,
Landsat OLI data offer several advantages that have the potential to improve classification accuracy.
First, the higher radiometric range in the visible bands as well as the additional cirrus cloud detection
band should allow for even more accurate cloud masking, resulting in fewer cloud-covered pixels
being included in the analysis, as well as fewer cloud-free pixels omitted from the analysis. Second,
the storage and transmission capacity of the Landsat 8 platform allows for collection of a greater
number of scenes outside the conterminous United States, potentially allowing for shorter analysis
windows (e.g., three years rather than five). While these improvements present the opportunity for
more accurate monitoring of PISC, any efforts comparing PISC mapped with Landsat 5 (TM) or
Landsat 7 (ETM+) instruments with PISC mapped with the Landsat 8 (OLI) instrument will need
to carefully consider the potential impact of the differences in instrument specifications (particularly
radiometric saturation in the visible bands) to ensure an unbiased analysis of change.

Unfortunately, the Landsat surface reflectance product was not optimized for atmospheric
correction at higher latitudes. Because the plane parallel atmosphere assumption used in the
6S radiative transfer model is violated to some extent in our study region, the resulting surface
reflectance data provided may be less accurate than similar data acquired at lower latitudes.
The overall impact on mapping accuracy, however, is likely to be low, as our sensitivity
analysis demonstrates that accuracy is much more impacted by the fDISC threshold than by
the NDSI threshold. However, future improvements in the USGS surface reflectance CDR that
improve accuracy at higher latitudes could potentially result in higher accuracy for our automated
mapping approach.

7. Conclusions

We demonstrate the feasibility of accurate monitoring of debris-free PISC across the northern
high latitudes using automated processing of Landsat TM and ETM+ data that does not require
manual intervention from an image analyst at any point in the processing chain. This approach is
made possible by the availability of a standardized Landsat surface reflectance product, the large
number of scenes at high latitudes due to Landsat path overlap, and an enhancement to the standard
Landsat surface reflectance cloud mask that reduces the occurrence of cloud cover false positives
in mountainous, partially snow covered environments. Based on eight study areas distributed
throughout the northern high latitudes, we found that results from our fully automated mapping
approach are generally comparable to those obtained from the RGI at six of the eight RGI study
areas. At the Trollaskagi, Iceland RGI validation site, agreement with the RGI glacier extent was
very poor due to the substantial areas of debris-covered glaciers mapped by the RGI, while at the
Brooks Range RGI calibration study area, agreement with the RGI database was lower than at most
other sites due to the considerable amount of perennial and late lying seasonal snow cover mapped
in areas indicated to be ice-free by the RGL Our results agreed well with glacier maps derived from
high resolution imagery at three of four validation sites, with lower accuracy at the Brooks Range
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site resulting from false negatives for portions of glaciers frequently in shadow and for portions of
glaciers with substantial debris cover.

The approach presented here has the potential to quickly map PISC across large high latitude
regions and provide important updates regarding the status of PISC, which can be particularly
valuable when the resources to conduct more precise, traditional glacier monitoring efforts are
not available.
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We implemented an automated approach for mapping persistent ice and snow cover (PISC) across the
conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late sum-
mer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset
provides a more accurate representation of glacial ice and perennial snow cover for the region than either
the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps
(based on aerial photography primarily from the 1960s-1980s) or the National Land Cover Database 2011
Clacis perennial ice and snow cover class. Our 2010-2014 Landsat-derived dataset indicates 28% less glacier and
Snow and ice perennial snow cover than the USGS DRG dataset. There are larger differences between the datasets in
Landsat some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where
the Landsat dataset indicates 54% less PISC area. Analysis of Landsat scenes from 1987-1988 and
2008-2010 for three regions using a more conventional, semi-automated approach indicates substantial
decreases in glaciers and perennial snow cover that correlate with differences between PISC mapped by
the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differ-
ences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in
PISC, as opposed to differences between mapping techniques. While the dataset produced by the
automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that
provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the
conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights areas where
decreases in PISC have been most significant over the past 25-50 years.
Published by Elsevier B.V, on behalf of International Society for Photogrammetry and Remote Sensing, Inc.
(ISPRS).
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1. Introduction

Glaciers act as sensitive indicators of climate change (Lemke
et al,, 2007; Oerlemans, 2005), responding to both changes in tem-
perature and precipitation (McCabe and Fountain, 2013). Along
with perennial and seasonal snow cover, they often serve as an
important source of freshwater runoff for people living down-
stream (Barnett et al., 2005; Immerzeel et al., 2010), but can also
pose a risk to these populations due to glacial lake outburst floods
and other hazards (Kaab et al, 2005; Moore et al, 2009;
Richardson and Reynolds, 2000). Perennial snow cover is also com-
mon in regions with glaciers and is often present in regions where
glaciers are absent or have recently disappeared.

* Corresponding author at: US Geological Survey, Alaska Science Center, 4210
University Drive, Anchorage, AK 99508, USA.
E-mail addresses: dselkowitz@usgs.gov (D.J. Selkowitz), rick forster@geog.utah.
edu (R.R. Forster).

http://dx.doi.org/10.1016/j.isprsjprs.2016.04.001

Substantial evidence indicates that the majority of the world’s
glaciers are currently retreating (Dyurgerov and Meier, 2000;
Kaser et al., 2006; Stocker et al., 2014), although rates of ice loss
vary substantially across regions and over time. Extensive loss of
glacier ice has been documented across the Western conterminous
United States and the neighboring Canadian provinces of British
Columbia and Alberta. Glacier area decreased by 7% between
1958 and 1998 in the North Cascades of Washington (Granshaw
and Fountain, 2006), the region with the largest concentration of
ice cover in the conterminous U.S. Several hundred kilometers to
the south, glaciers have declined in area on Mount Adams by 49%
between 1904 and 2006 (Sitts et al., 2010). Further south, in the
Sierra Nevada of California, an average ice loss of 55% occurred
between 1903 and 2004 (Basagic and Fountain, 2011). In the Rocky
Mountains of Wyoming, ice cover decreased in the Wind River
Range by approximately 47% between 1900 and 2006 (DeVisser
and Fountain, 2015), and 39% between 1967 and 2006 (Maloof
et al, 2014). In the nearby Teton Range, ice cover declined by
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25% between 1967 and 2006 (Edmunds et al., 2012). In Glacier
National Park in northwest Montana, glaciers in the Blackfoot-
Jackson Basin declined in area by 66% between 1850 and 1979
(Hall and Fagre, 2003) and by 29% between 1966 and 2005
(US Geological Survey 2013). Finally, in adjacent areas of Canada,
glaciers decreased in area by 11% in British Columbia and 24% in
Alberta between 1985 and 2005 (Bolch et al., 2010).

Although the loss of ice has been well documented for individual
glaciers and small regions and many of these efforts have produced
updated glacier inventories, the best available glacier database cov-
ering the entire conterminous western U.S. remains a dataset that is
based on aerial photography flown primarily between the 1960s and
1980s. This dataset, hereafter referred to as the USGS DRG dataset, is
derived from 1:100,000 US Geological Survey Digital Raster Graph-
ics (DRG) map products and is available online at http://glaciers.
us/Downloads (Fountain et al., 2007). The well-documented pattern
of glacier retreat across the region means that this inventory, which
is generally 25-50 years old, will not reflect the current state of gla-
ciers and perennial snow cover across many areas in the region. An
updated inventory of glaciers and perennial snow covering the
entire region and attributable to a well constrained period within
the last few years is thus needed. A comprehensive, precise
inventory of glaciers covering the entire region based on recent high
spatial resolution imagery at sub-meter resolution would require a
substantial amount of resources to acquire and process the neces-
sary imagery as well as digitize and label all glacier and perennial
snow cover features. While updated DRGs and associated National
Hydrography Dataset layers have been produced for many areas,
the majority of the updates are based onimagery 5-15 years old that
cover a >10 year range in dates and have not been compiled into a
single regional inventory of glaciers and perennial snow cover. More
importantly, given high rates of change for glaciers and perennial
snow cover, any updated dataset is likely to become outdated within
just a few years.

Recently, several studies have demonstrated the feasibility of
monitoring snow and ice conditions across individual glaciers or
small basins using ground-based high spatial resolution time lapse
photography (Farinotti et al., 2010; Bernard et al., 2013). In addi-
tion, airborne monitoring approaches have been increasingly uti-
lized to provide regularly updated estimates of snow cover
conditions including areal extent and snow depth for portions of
mountain ranges (McGurk and Painter, 2013). Despite the effec-
tiveness of these approaches and the rich information they can
provide, implementing these approaches across a region as large
as the Western U.S. has not been feasible due to high costs.

A potential alternative to techniques using regular ground-
based or airborne monitoring approaches is to use an automated
mapping approach to develop a map of persistent ice and snow
covered area {PISC) from satellite imagery that can be updated
automatically every few years as new imagery becomes available.
Data from the Landsat series of sensors have been widely used for
nearly thirty years for mapping glaciers and perennial snow cover
(Aniya et al,, 1996; Hall et al., 1987; Jacobs et al., 1997; Ventura
et al., 1987), with recent efforts covering regions as large or larger
than the western U.S. (Bolch et al., 2010; Guo et al., 2015; Rastner
et al., 2012). Many recent mapping efforts have begun to incorpo-
rate semi-automated mapping approaches rather than traditional
manual digitization techniques. Even semi-automated mapping
approaches, however, typically still require a substantial effort to
select the most appropriate scenes to minimize cloud-cover and
seasonal snow cover. The effort required for scene selection
becomes quite substantial if the region of interest covers more
than a few Landsat scenes, as is the case in the western U.S.

In 2008, the US Geological Survey made all Landsat scenes avail-
able to the scientific community at no-cost, enabling new research
that exploited the availability of numerous scenes acquired over

time covering a single frame (referred to as a pathfrow). Since
the opening of the archive, a number of recent studies covering a
wide range of remote sensing applications have demonstrated
the utility of processing stacks of Landsat scenes to monitor the
evolution of land surface characteristics and ultimately extract
information that could not be provided by individual scenes or
even annual scene acquisitions. These studies have included
impervious surface mapping (Zhang and Weng, 2016), surface
water monitoring (Tulbure and Broich, 2013), forest mapping
(Zhu and Liu, 2014), and seasonal snow cover monitoring
(Macander et al., 2015). Along these lines, Selkowitz and Forster
(2015) recently developed an automated PISC mapping approach
that considers all available Landsat scenes for a given time period
(typically 5years) and does not require an analyst to select the
most appropriate scenes. This type of fully automated approach
has some disadvantages because it does not capitalize on an ana-
lyst’s ability to select the best scenes or distinguish between ice
and seasonal snow cover based on contextual clues. It has an
important advantage, however, in that it can be implemented for
a large region such as the western U.S. quickly and with far fewer
resources than would be required for a conventional manual or
semi-automated glacier inventory.

Here we present an updated 30 m resolution map of PISC across
the conterminous western United States developed using a fully
automated mapping approach that exploits all available Landsat
TM and ETM+ scenes acquired between August 20 and September
30 during the 2010-2014 period. The approach can potentially be
implemented in any region with sufficient Landsat scene availabil-
ity. The new dataset allows for updated estimates of PISC area across
the western U.S. and for individual sub-regions or mountain ranges,
and, in conjunction with the existing glacier inventory derived from
USGS topographic maps, can be used to construct rough estimates of
changes in PISC area since the mid to late 20th century.

Before proceeding, it is important to note that while glaciers are
moving bodies of ice and perennial snow cover patches are merely
snowfields that persist for many years without disappearing, in
practice, it is not always straightforward to differentiate between
small glaciers and perennial snow cover patches. This is particu-
larly true when mapping is conducted via remote sensing. In the
United States, standard topographic maps produced by the USGS
and used to construct the US Glacier inventory have not, in most
cases, formally differentiated between glaciers and perennial snow
cover patches, and in some cases may even include late lying sea-
sonal snow cover patches (Fountain et al., 2007). While we recog-
nize that an ideal dataset would effectively distinguish between
glaciers, perennial snow cover, and late lying seasonal snow cover,
we also recognize that this is often not possible when inventories
are developed using remote sensing. Therefore, we refer to all areas
mapped as perennial ice or snow features as persistent ice or snow
cover (PISC) to avoid any confusion.

2. Study area and methods
2.1. Study area

The Landsat-derived PISC map covers the western half of the
conterminous United States and includes all mountain ranges
where PISC was mapped in the USGS DRG dataset (Fig. 1). The
major mountain ranges of the western United States with peren-
nial snow and ice features include the Cascades in Washington,
Oregon, and northern California, the Olympic Mountains in
Washington, the Sierra Nevada in California, and the Rocky Moun-
tains in Colorado, Wyoming, Montana, and Idaho. Several small
glaciers and perennial snow cover patches have also been identi-
fied in smaller mountain ranges located between the coastal
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Fig. 1. Overview map of the western United States, including glacier regions defined by the USGS DRG dataset, very high resolution imagery (VHRI) validation subsets, change

analysis regions, and locations for other figures.

ranges and the Rocky Mountains, but are not included in this anal-
ysis as they are generally smaller than the minimum mapping unit
of 2 ha used in this analysis. While the Cascades and Sierra Nevada
typically exhibit maritime snow climates with heavy precipitation
and temperatures near 0°C throughout much of the winter, the
Rocky Mountains typically exhibit more continental conditions,
with lower precipitation totals and winter temperatures well
below 0 °C at higher elevations.

The USGS DRG dataset indicates the Cascades contained approx-
imately 413 km? of PISC, with about 90% of the total PISC area
mapped in the Cascades located in Washington state, 9% located
in Oregon, and 1% located in northern California. With the excep-
tion of the northernmost portion of the range, PISC in the Cascades
is generally confined to isolated volcanic peaks. The USGS DRG
dataset indicates Washington’s Olympic Mountains contain an
additional 41.9 km? of PISC concentrated within a relatively small
area of 9000 km? Both the Cascade and Olympic ranges include
several medium-sized glaciers covering >3 km? that account for a
substantial portion of the total area of PISC in each range. To the
south of the Cascades, 11.4 km? of PISC, composed entirely of small
glaciers and perennial snow cover patches, has been mapped in the
Sierra Nevada of California. In the Rocky Mountains of Wyoming
and Montana, the USGS DRG dataset maps 108 km? of PISC, with
several glaciers in the Lewis and Clark and Wind River Ranges
>1 km?2. Finally, the USGS DRG dataset maps about 2 km? of PISC
scattered across the Rocky Mountains of Colorado.

2.2. Data

2.2.1. The USGS DRG dataset: digital glacier outlines from USGS
topographic maps

The USGS DRG dataset, which has sometimes also been referred
to as the US Glacier Database, is a vector dataset of glacier and
perennial snow cover patch outlines developed from 1:100,000

Digital Raster Graphics (DRG) maps produced by the USGS
(Fountain et al., 2007). The database includes all glaciers and
perennial snow cover features mapped in the 1:100,000 series of
topographic maps. Maps were produced primarily from aerial pho-
tography acquired during the 1960s through the 1980s, although a
small number of maps may have used aerial photography from as
early as the 1940s. The metadata for this dataset clearly states that
not all features included in the database meet the qualifications to
be considered active glaciers. In addition to the set of polygons
indicating the extent of individual glaciers or perennial snow
patches, the database also provides a set of polygons identifying
27 mountain regions where PISC has been mapped.

2.2.2. Landsat data

We obtained 30 m resolution Landsat Climate Data Record
(CDR) top-of-atmosphere (TOA) and surface reflectance products
(Masek et al, 2006) for Landsat Thematic Mapper (TM) and
Enhanced Thematic Mapper (ETM+) scenes located within glacier
regions identified by the USGS DRG dataset. We used the USGS
LSDS Science Research and Development (LSRD) bulk order tool
to order, subset, and reproject all Landsat TM and ETM+ scenes
acquired between August 20 and September 30 for the 2010-
2014 period. The August 20-September 30 period was selected
because scenes acquired earlier in the season often contained sub-
stantial seasonal snow cover remaining from the previous winter,
while scenes acquired after September 30 often included recently
accumulated early season snow cover as well as substantial areas
in deep shadow in the most northern portion of the region. Using
the bulk ordering tool, we subset each scene to the extent of gla-
ciated regions (as defined by the USGS DRG dataset) within the
Landsat path/row and reprojected the data to the Albers Equal Area
Conic projection used by the National Land Cover Database (NLCD)
and other national-scale products. The final PISC classification was
developed using data from 754 Landsat scenes from 30 different
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Worldwide Reference System 2 (WRS-2) path/rows across the
western U.S. The mean number of scenes acquired was 25 per
path/row and ranged from 24 to 27.

2.2.3. Land cover and elevation data

We acquired the NLCD 2011 (Jin et al., 2013) land cover classifi-
cation for the conterminous U.S. in order to assess the extent of PISC
mapped by the NLCD as well as for identification of water features
that are occasionally mapped as PISC by the automated Landsat
approach. While the NLCD 2011 land cover dataset included 25 land
cover classes for the conterminous U.S., our analysis focused exclu-
sively on class 11 {(open water) and class 12 (perennial ice/snow).
We also acquired a seamless 30 m digital elevation model (DEM)
covering the conterminous western U.S. from the National
Elevation Dataset (NED) (Gesch et al., 2002).

2.2.4. Very high resolution imagery used for validation

We acquired 0.5 m resolution pan-sharpened natural color ima-
gery from the Digital Globe Enhanced View archive for August or
September covering 13 separate 3 x 3km subsets that each
included one or more glacier (Fig. 1). Imagery for each high resolu-
tion subset was acquired by the WorldView 2 or WorldView 3
satellites (mention of a specific product does not constitute
endorsement by the U.S. government). The selection of very high
resolution imagery (VHRI) validation subsets was constrained to
3 x 3 km blocks containing at least one previously identified gla-
cier where cloud-free August or September imagery from 2010 to
2014 was available and seasonal snow cover was absent or mini-
mal. Allowing for these constraints, we selected subsets intended
to represent a range of glacier sizes, topography, and climate
conditions.

2.3. Methods

Our approach to mapping PISC uses all available Landsat The-
matic Mapper TM and ETM + scenes acquired between August 20
and September 30 during the 2010-2014 period. Cloud-covered
and shadowed pixels for each date are identified first and excluded
from further analysis. Cloud-free, shadow-free pixels are classified
as snow/ice or snow/ice-free for each available cloud-free, shadow-
free view. Pixels classified as snow/ice-covered in >80% of available
views are initially classified as PISC. We then apply several post-
processing routines designed to reduce the occurrence of errors
of commission (false positives for PISC), including removing
patches of PISC of <25 contiguous pixels, eliminating PISC mapped
below a minimum elevation threshold that varies by region, elim-
inating PISC mapped where the NLCD classification indicates
water, and applying a stricter standard to mapping PISC pixels in
areas not previously mapped as PISC by the USGS DRG dataset.
Fig. 2 provides a visual representation of the approach we used
to classify PISC across the study region.

2.3.1. Cloud and shadow masking

Automated approaches to mapping PISC require a fully auto-
mated cloud-masking approach that performs well in mountainous
environments with mixtures of ice, snow, rock, and other land
cover. The CFmask cloud classification (Zhu and Woodcock, 2012)
provided with the USGS CDR Landsat surface reflectance products
employs a series of rules based on the physical properties of clouds
to develop an initial cloud cover classification using Landsat bands
1-5 and 7 as well as brightness temperature from band 6. The ini-
tial cloud cover classification is then segmented into cloud objects
used to produce the final cloud mask, as well as a cloud shadow
mask based on the cloud objects and solar illumination geometry
at the time of scene acquisition. While the CFMask represents a
substantial improvement over previous cloud classification

approaches and accuracy for the CFmask has been reported as
96.4% (Zhu and Woodcock, 2012), previous work has demonstrated
that it is prone to mapping false cloud cover in mountainous areas
dominated by rock, snow and ice (Selkowitz and Forster, 2015).
Examination of several scenes from mountainous areas of the
western U.S. indicated that CFmask cloud masks provided with
the surface reflectance CDR product frequently identify cloud cover
in cloud-free regions where rock, snow, and ice are the dominant
land cover types (an example is shown in Fig. 3). Although occa-
sional errors of commission in cloud cover masks are to be
expected and would most likely not pose a substantial problem
for an automated PISC mapping approach, the errors of commis-
sion in the CFmask cloud cover masks present a more serious prob-
lem because they tend to occur consistently at certain locations.
This can result in clusters of pixels where very few cloud-free,
shadow-free views are available (as shown in Fig. 3) and ultimately
result in patches of incorrectly mapped PISC.

In order to address this problem and fully exploit all available
cloud-free, shadow-free views acquired between August 20 and
September 30 each year, we employed a cloud masking approach
developed by Selkowitz and Forster (2015) that accepts pixels
mapped as cloud-free by the CFmask approach but re-examines
any pixels mapped as cloud-covered. Under this approach, pixels
identified as cloud-covered by the CFmask are evaluated by a series
of classification trees that provide a final, revised cloud mask value.
While the classification tree approach relies on much of the same
input data as the original CFmask algorithm (with the exception
of band 6 brightness temperature, which is not used), the classifi-
cation trees were developed using a training dataset that included
thousands of pixels from mountainous regions dominated by rock,
ice and snow cover that were incorrectly classified by the CFmask
approach. Selkowitz and Forster (2015) demonstrate that this
approach results in a substantial reduction in errors of commission
and an increase in accuracy in mountainous regions from 66% to
88% (see Fig. 4).

Both cloud shadows and terrain shadows can also impact sur-
face reflectance values, and in some cases, the impact can be severe
enough that band ratios like the NDSI can no longer reliably dis-
criminate between snow or ice and snow or ice free land. There-
fore, it is necessary to identify deeply shadowed pixels and
exclude them from further analysis in the same manner as
cloud-covered pixels. In our approach, we identified and excluded
from further analysis all instances where pixels exhibited an
apparent surface reflectance of <7% in both bands 2 and 4. With
the exception of some water bodies, surface reflectance for all land
surface types in the region would be expected to exceed 7% in one
or both of these bands. Although our shadow masking approach
did not distinguish between cloud shadows and terrain shadows,
it was well-suited for our approach because it did not require accu-
rate cloud heights for identification of cloud shadows or a DEM for
identification of terrain shadows. It is important to note that there
was an additional advantage in using a reflectance threshold rather
than a DEM to identify unusable terrain-shadowed pixels. Many
pixels a terrain-based shadow masking approach would have
identified as unusable due to the absence of modeled direct solar
radiation were actually sufficiently illuminated by diffuse solar
radiation or radiation reflected from nearby terrain surfaces and
were retained for analysis. In total, the combined cloud masking
and shadow masking efforts resulted in no cloud-free,
shadow-free views of the land surface in about 2.2% of total pixels.
These pixels were typically concentrated in small consistently
shadowed patches associated with terrain features such as cirque
basins.

Missing data, including pixels outside of each Landsat scene as
well as pixels not imaged due to the Landsat 7 scan line corrector
failure, were also identified and excluded from further analysis.
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2.3.2. Ice and snow mapping for individual Landsat scenes cloud-free, shadow-free view. For Landsat TM and ETM+, NDSI is
We used the Normalized Difference Snow Index (NDSI) (Dozier, defined by the following equation:
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where TM, is surface reflectance in Landsat TM or ETM+ band 2
(0.52-0.60 pm), and TM;s is surface reflectance in Landsat TM or
ETM+ band 5 (1.55-1.75 um). Pixels with NDSI values =04 were
classified as snow or ice covered while pixels with NDSI values
<0.4 were classified as free of snow and ice.

2.3.3. Identification of persistent ice and snow cover pixels

For each pixel, we considered all cloud-free, shadow-free views
acquired between August 20 and September 30 for the years 2010-
2014 to determine whether the pixel should be classified as PISC.
For the initial classification, pixels identified as snow or ice covered
in >80% of the available cloud-free, shadow-free views were iden-
tified as PISC. While this approach is less intuitive than classifying
only pixels with snow or ice mapped in every available cloud-free,
shadow-free view as PISC, Selkowitz and Forster (2015)
demonstrated that using a threshold value of 80% resulted in
higher accuracy for identifying PISC pixels.

2.3.4. Post processing and incorporation of ancillary data

We implemented several post-processing steps primarily
designed to reduce the prevalence of errors of commission for PISC.
First, we applied a 5 x 5 median filter to reduce spatial noise in the
resulting classification. Second, we applied a sieve routine (ITT
Visual Information Solutions, 2008) to remove patches of PISC of
<25 contiguous pixels. Analysis of our initial PISC maps suggested
that, while some small glaciers and true perennial snow cover
patches <25 contiguous pixels did exist, the majority of PISC
patches of <25 contiguous pixels were actually late lying seasonal
snow cover that generally disappeared completely by the end of
the summer, which we did not wish to include in our PISC inven-
tory. Third, we used a minimum elevation filter to remove PISC
mapped below the minimum elevation at which we would expect
to find PISC in each region. A separate minimum elevation was cal-
culated for each glacier region identified by the USGS DRG dataset
based on the minimum elevation (extracted from the NED DEM) of
glacier polygons mapped by the USGS DRG dataset in that region.
For each region, we eliminated any PISC pixels where the NED
DEM indicated an elevation value >200 m below the minimum ele-
vation of previously mapped PISC within that region. Fourth, in
cases where <100% of cloud-free and shadow-free views of the land
surface at a pixel location indicated snow or ice cover, as well as in
cases where <3 cloud-free, shadow-free views of the land surface
were available at a pixel, we reclassified pixels initially mapped
as PISC if they had not previously been mapped as PISC in the USGS
DRG dataset. Pixels with >3 cloud-free, shadow-free views of the
land surface mapped as snow or ice cover in all available cloud-
free and shadow-free views of the land surface were retained as
PISC pixels even if they were not mapped as PISC in the USGS
DRG dataset. Finally, pixels mapped as PISC where the NLCD clas-
sification indicated water (NLCD class 11) were reclassified as free
of PISC.

2.3.5. Accuracy assessment

We conducted two separate accuracy assessments of our
Landsat-derived PISC map. First, we compared our results to PISC
manually identified in the 13 VHRI subsets (locations shown in
Fig. 1). Second, we applied a 500 m buffer to the USGS DRG dataset
polygons and then randomly selected 1000 points across the west-
ern US. from within the buffered area (inclusive of previously
mapped PISC) to assess the accuracy of our PISC map. For each val-
idation point, we examined all available high resolution imagery in
GoogleEarth acquired in 2000 or later to identify the presence or
absence of PISC. Google Earth imagery originated from a variety
of aerial and satellite imagery programs but typically consisted of
natural color imagery at spatial resolutions between 0.2 and 1 m.
Points which appeared to be within 30 m of the edge of a glacier

or perennial snow cover patch were classified in the same manner
as other points, but were also flagged as edge points. Points with
debris-covered glacier ice were classified as PISC but also flagged
as debris-covered. All points had Google Earth imagery available
from at least two dates from the mid summer to early fall period,
and many points had five or more dates of Google Earth imagery
available. At the vast majority of points, we were able to identify
the presence or absence of PISC with high confidence due to either
the appearance of bare ground or exposed ice on one or more of the
image dates. At the remaining points, we used contextual clues
such as patch size, patch shape, topographic position, and imagery
date to make a final determination of PISC presence or absence.

For both the randomly selected validation points and the VHRI
validation subsets, we calculated accuracy assessment metrics for
our Landsat-derived PISC maps, the USGS DRG dataset, and the
NLCD dataset by considering the manually interpreted PISC classi-
fication from Google Earth imagery or WorldView 2 imagery to be
“truth”. Comparison between each dataset and the validation data-
sets resulted in each pixel or point being placed into one of four
categories: (1) true positive: PISC mapped in the evaluation dataset
and by manual interpretation of high resolution imagery, (2) false
positive: PISC mapped in the evaluation dataset, but PISC-free land
mapped by manual interpretation of high resolution imagery, (3)
true negative: PISC-free land mapped in the evaluation dataset
and by manual interpretation of high resolution imagery, and (4)
false negative: PISC-free land mapped in the evaluation dataset,
but PISC mapped by manual interpretation of high resolution ima-
gery. It is important to note that because the USGS DRG PISC maps
and the WorldView 2 PISC maps were based on imagery acquired
several decades apart, differences in PISC mapped by the USGS
DRG dataset and the WorldView 2 dataset may not reflect mapping
errors, but instead indicate potential changes in PISC over time.

Placing each point or pixel into one of these four categories
allowed us to calculate several metrics commonly used for assess-
ment of binary snow and ice cover maps (Painter et al., 2012;
Rittger et al, 2013): accuracy, precision (the user’s accuracy for
the PISC class), recall (the producer’s accuracy for the PISC class),
and F (an accuracy assessment metric designed to balance the
importance of precision and recall). The four metrics were calcu-
lated using the following equations:

Accuracy = (TP 4+ TN}/ (TP + TN + FP + FN} 2)
Precision = TP/(TP + FP) (3)
Recall = TP /(TP + FN}) 4)
F=2TP/(2 TP + FP + FN) (5)

where TP is the count of true positive pixels, TN is the count of true
negative pixels, FP is the count of false positive pixels, and FN is the
count of false negative pixels.

We calculated each of the four metrics for each dataset to be
evaluated for each 3 x 3 km validation subset as well as for all
the 3 x 3 km validation subsets combined. We also calculated the
four metrics for each subset of pixels with the same number of
cloud-free, shadow-free views of the land surface in order to assess
the impact of the number of available views of the land surface on
mapping accuracy. Each metric was also calculated for the full set
of 1000 randomly selected validation points as well as for a subset
of 834 validation points located >30 m from the edge of a glacier or
perennial snow cover patch.

2.3.6. Calculation of glacier area by region

We calculated the total area of PISC mapped by our automated
Landsat approach, the USGS DRG dataset, and the NLCD for the
entire conterminous western U.S., as well as for 8 regions aggre-
gated from the original 27 regions identified in the USGS DRG
dataset.
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2.3.7. Comparison to conventional Landsat inventories for selected
regions

Our initial comparison between PISC area mapped by the USGS
DRG dataset and PISC mapped by our automated Landsat approach
showed that in some regions, the automated Landsat approach
mapped <50% of PISC mapped by the USGS DRG dataset. In order
to determine whether differences in PISC area mapped by the USGS
DRG dataset and PISC mapped by our automated Landsat approach
were due to changes in PISC area over time or differences between
the mapping approaches, we selected three subset areas for
additional analysis of changes in PISC between 1987-1988 and
2008-2010. We wanted to ensure that our assessment of change
for these regions was conservative and did not overestimate
decreases in PISC area due to differences in seasonal snow cover
conditions. In order to accomplish this, we compared Landsat sce-
nes from years where data from local SNOTEL sites indicated more
seasonal snow accumulation and later snow-free dates for the
recent (2008-2010) Landsat scenes relative to the older
(1987-1988) Landsat scenes, although we still tried to ensure that
scenes used for comparison contained minimal seasonal snow
cover. For each region, we selected Landsat TM images from
1987 or 1988 and from 2008, 2009, or 2010 and used a more con-
ventional, semi-automated approach to map the extent of PISC for
each period.

Each scene selected for analysis of changes in PISC over time
was acquired between September 1 and October 1. PISC for each
scene was initially mapped by classifying pixels with NDSI >0.4
as PISC, applying a 5 x 5 median filter to reduce spatial noise and
eliminate areas of patchy seasonal snow cover, and then applying
a sieve to eliminate PISC patches of <25 contiguous pixels. We then
edited the resulting PISC layer by adding areas of PISC in shadow
not initially mapped as PISC and eliminating misclassified patches
of PISC. In cases where a patch of ice or perennial snow cover
appeared in one date of imagery but did not exceed the 25 contigu-
ous pixel size threshold in the other (usually more recent) date of
imagery, we digitized the outline of the remaining snow patch.
This was done to ensure that small decreases in the size of a peren-
nial snow or ice patch would not translate into overestimates of
change when small patches of ice or perennial snow cover did
not actually disappear but were not mapped due to the 25 contigu-
ous pixels requirement.

We calculated total PISC area for 1987-1988 and for 2008-2010
for each of the three change assessment regions and then com-
pared PISC area for both periods to PISC area calculated from the
USGS DRG dataset and from the 2010-2014 Landsat-derived
dataset.

Table 1

3. Results
3.1. Accuracy assessment

For all 13 3 x 3 km VHRI validation subsets, accuracy and F
were higher for the Landsat-derived PISC dataset than for the USGS
DRG dataset or the NLCD land cover classification (Table 1). Mean F
for the Landsat-derived PISC dataset that incorporated ancillary
data was 0.848, a major improvement over both the USGS DRG
and the NLCD 2011 datasets, with F scores of 0.676 and 0.758
respectively (see Fig. 6).

PISC maps from the USGS DRG, the NLCD, the automated Land-
sat, and the revised automated Landsat approach incorporating
ancillary data are shown for the Mammoth Glacier subset in
Wyoming in Fig. 5.

We observed a weak negative relationship between the fraction
of a validation subset containing PISC and overall accuracy as well
as a much more pronounced positive relationship between the
fraction of a subset containing PISC and F (Fig. 7).

Accuracy assessment metrics for the set of 1000 randomly
selected validation points also indicate the automated Landsat
approach incorporating ancillary data provides a more accurate
depiction of PISC across the western U.S. than the USGS DRG data-
set or the NLCD dataset. Accuracy, precision, recall, and F metrics
for both the full set of 1000 points and the subset of 834 non-
edge points are shown in Fig. 8. The difference in accuracy between
the Landsat PISC dataset and the USGS DRG PISC dataset is primar-
ily due to the higher precision (user's accuracy for the PISC class)
achieved by the automated Landsat mapping approach. This is
not surprising, given that PISC has been demonstrated to have
declined in area across much of the western U.S. between the time
of acquisition for the aerial photographs used for the original USGS
maps and the 2010-2014 period. Pixels covered by PISC at the time
of acquisition for the aerial photographs (generally between 1960
and 1987) but free of PISC during the 2010-2014 period will often
be labeled as true negatives for the automated Landsat datasets but
labeled as false positives for the USGS DRG dataset, even if they
were mapped correctly at the time. On the other hand, recall
{producer’s accuracy for PISC class) metrics are nearly the same
for the USGS DRG dataset and the automated Landsat datasets. This
is also not surprising, as we would expect little difference in recall
metrics between the datasets if both mapping approaches have
similar accuracy, assuming that the majority of pixels with PISC
cover in 2010-2014 were also covered by PISC several decades
earlier when the aerial photographs were acquired (see Table 2).

F metric for USGS Topographic Maps glacier layer, NLCD 2011 perennial snow and ice cover, initial Landsat-derived PISC, and revised Landsat-derived PISC. Revised Landsat-

derived PISC includes revisions based on ancillary data.

Subset name USGS topo maps NLCD 2011 Initial landsat-derived PISC Revised landsat-derived PISC
Mt. Baker Summit 0.951 0.939 0.857 0.963
Mount Baker SW 0.810 0.837 0.831 0.940
Mount Baker NE 0.894 0.830 0.889 0.908
Redoubt Glacier West 0.840 0.747 0.862 0.880
Redoubt Glacier East 0.783 0.636 0.831 0.824
Goat Rocks West 0611 0.384 0.770 0.768
Goat Rocks East 0.680 0515 0.768 0.782
Harrison Glacier 0.813 0.762 0.835 0.857
Blackfoot Pumpelly Glaciers 0.826 0.770 0.891 0.892
Gannett Glacier 0.816 0.675 0.864 0.879
Mammoth Glacier 0.798 0.694 0.868 0.888
Lyell Glacier 0.503 0.491 0.701 0.700
Mount Ritter 0.430 0.502 0.701 0.736
All Subsets 0.758 0.676 0.836 0.848
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Mammoth Glacier, Wyoming
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Fig. 5. Agreement between PISC mapped using late summer WorldView 2 imagery and PISC datasets for the Mammoth Glacier (Wyoming) VHRI subset. (a) WorldView 2
imagery, (b) PISC mapped from WorldView 2 imagery, (c) agreement between WorldView 2 PISC and USGS DRG PISC, (d) agreement between NLCD PISC and WorldView 2
PISC, (e) agreement between Landsat-derived PISC and WorldView 2 PISC, and (f) agreement between Landsat-derived plus ancillary data PISC and WorldView 2 PISC.
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Fig. 6. Agreement between PISC mapped using late summer WorldView 2 imagery and PISC mapped by the automated Landsat approach plus ancillary data for all 13 VHRI
subsets. (a) Mt. Baker (summit), (b) Mt. Baker (northeast), (c) Mt. Baker (southwest), (d) Redoubt Glacier (west), (e) Redoubt Glacier (east), (f) Goat Rocks (west), (g) Goat
Rocks (east), (h) Harrison Glacier, (i) Blackfoot Glacier, (j) Gannet Glacier, (k) Mammoth Glacier, (1) Lyell Glacier, and (m) Mt. Ritter.



136 D.J. Selkowitz, R.R. Forster/ISPRS Journal of Photogrammetry and Remote Sensing 117 (2016) 126-140

1.0 7

e
©
L

Accuracy / F Value
=] o
~N o
[ ]

¢ Accuracy
oF

0.6 T T T T !
0.0 0.2 04 0.6 0.8 1.0

Fraction of Subset with PISC

Fig. 7. Relationship between fraction of validation subset with PISC and Accuracy
and F metrics.

3.1.1. Effect of number of cloud-free, shadow-free views on mapping
accuracy

The relationship between the number of available cloud-free,
shadow-free views of the land surface and the F metric is shown
in Fig. 9. The data indicate that while accuracy is typically poor
when <3 cloud-free, shadow-free views are available, 3 views
appears to be sufficient for accurate mapping, as no increase in F
is associated with increased cloud-free, shadow-free views beyond
this point. The small decrease in F that occurs as the number of
cloud-free views exceeds 8 is likely due to the geographic distribu-
tion of pixels in the dataset with >8 cloud free views. The vast
majority of these pixels are from the two subsets in the Sierra
Nevada, where more cloud-free views were available than in other
regions, and where the automated Landsat approach performed
relatively poorly compared to its performance in other regions.

3.2. Glacier area mapped by different datasets

The USGS DRG dataset maps a total of 5759 km? of PISC, while
the automated Landsat approach maps 28% less PISC for a total of
4123 km? The NLCD 2011 dataset maps a total of 1243.4 km?,
Fig. 10 and Table 3 report the total area of PISC mapped by each
dataset within each region. In most regions, the automated Landsat
approach indicated a much smaller total area of PISC than either
the USGS DRG dataset or the NLCD dataset. The largest difference
between the DRG dataset and the automated Landsat dataset is
in the northern Cascades of Washington, where the automated
Landsat approach mapped 51.9 km? less PISC than the USGS DRG
dataset, which equates to a 21% difference between the two

(@) Al Validation Points
;

0.8 0.8
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NLCD

0.4 Landsat 0.4
Landsat+

0.2

Recall F

Accuracy Precision

datasets. The largest differences by percentage are observed in
the Colorado Rocky Mountains, where 82% less PISC was mapped
by the automated Landsat approach, and in the Sierra Nevada,
where 74% less PISC was mapped by the automated Landsat
approach. While the relative differences for these regions are large,
the actual difference in PISC area mapped is relatively small, as
both the Colorado Rocky Mountains and the Sierra Nevada never
had substantial PISC area to begin with. For regions with more sub-
stantial PISC, the largest differences by percentage are found in the
Southwest Montana/Northwest Wyoming region, where 54% less
PISC was mapped by the automated Landsat approach, and in the
Northwest Montana region, where 37% less PISC was mapped by
the automated Landsat approach.

3.3. Comparison to traditional mapping approaches for selected study
areas

Results from the conventional change detection using the semi-
automated Landsat mapping approach demonstrate substantial
decreases in PISC between 1987-1988 and 2008-2010 (Table 4).
The decrease in PISC between 1987-1988 and 2008-2010 for the
three test regions correlates closely with the difference between
PISC mapped by the USGS DRG dataset and PISC mapped by the
automated Landsat approach. This strongly suggests that much of
the difference between the PISC area mapped in the USGS DRG
dataset and the PISC area mapped by the automated Landsat
approach can be attributed to decreases in PISC area over time
rather than differences in mapping methods.

4. Discussion

Results from two independent validation approaches indicate
that the automated Landsat dataset provides the most accurate
representation of contemporary PISC for the entire conterminous
Western U.S.

The positive relationship between the fraction of a subset with
PISC and F (perhaps the most useful validation metric) indicates
that the automated approach presented here should work well
for the region’s medium and larger glaciers. We anticipate the
approach will not be as effective, however, for mapping the
region’s smallest glaciers and perennial snow cover patches. Many
of these cover <25 contiguous Landsat pixels and would be elimi-
nated by the minimum size threshold in our approach. In addition,
the smallest glaciers are often remnants of larger glaciers that have
retreated into protected north-facing cirques where consistent
shadowing may reduce the odds of PISC detection.

(b) High Confidence Validation Points Only
1

0.2

Accuracy Precision Recall F

Fig. 8. Accuracy, precision, recall, and F metrics for 1000 points randomly selected from areas on or near (within 500 m) of previously mapped glaciers and perennial snow
cover patches. (a) all 1000 points, and (b) High confidence validation points (the subset of 834 points located >30 m from the edge (either on or off) of glacier or perennial

sSnow cover).
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Table 2
Accuracy, precision, recall and F metrics for 1000 randomly selected validation points.

Dataset Full dataset Non-edge points subset
Accuracy Precision Recall F Accuracy Precision Recall F
USGS DRG 0.843 0615 0.753 0677 0.891 0.668 0.836 0.743
NLCD
Landsat 0.922 0.822 0.822 0.822 0.960 0.874 0918 0.895
Landsat + ancillary data 0.921 0.857 0.767 0.810 0.964 0911 0.899 0.905
19 Accurate mapping of PISC extent in consistently terrain-
shadowed locations remains a challenge for optical remote sensing
0s 4 efforts. At the latitude of the western conterminous U.S.
(~30°-49°N) consistently terrain-shadowed pixels covered only a
small fraction of the landscape (2.2% for pixels with no cloud-
0.6 7 free, shadow-free views, and an additional 2.5% for pixels with only
w one cloud-free, shadow-free land surface view). Nevertheless, for
04 these pixels, accuracy can be lower, with both false positive and
false negatives relatively common. False positives can sometimes
occur in terrain-shadowed areas where seasonal snow cover
0.2 remains into the late summer. This is because terrain shadowing
at these locations does not occur during the earlier part of the
0 - , , . T . August 20-September 30 period (when snow is still present), but
0 2 4 6 8 10 12 does occur (due to increasing solar zenith angles) at the end of

Number of Cloud-free, Shadow-free Views

Fig. 9. Relationship between the number of cloud-free, shadow-free views and F
metric for all pixels from VHRI validation subsets.

the period (e.g. September 15-30), when the seasonal snow has
finally melted. As a result, all shadow-free land surface views at
these locations indicate snow, with no usable land surface views
available during the very brief snow-free period. Conversely, false
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Table 3

Area of PISC mapped by the USGS DRG dataset, the automated Landsat dataset, and the NLCD 2011 dataset by region.

Region USGS DRG PISC area Automated landsat PISC area NLCD 2011 Percent difference (DRG vs landsat) (%)
N Washington Cascades 2493 197.4 2432 21
Olympic Mountains 419 38.0 142.3 9
S Washington Cascades 122.6 91.5 1438 25
Oregon/Califernia Cascades 41.1 26.5 374 36
Sierra Nevada 114 29 15.2 74
NW Mentana 35.0 22.0 474 37
SW Mentana/NW Wyoming 72.9 33.7 83.0 54
Colerade Rocky Mountains 17 0.3 531.1 82
Western US Total 575.9 412.3 12434 28
Table 4

PISC area mapped by semi-automated Landsat approach for 1987-1988 and 2008-2010 for three test regions.

Region USGS DRG Automated Difference (relative Semi-automated Semi-automated Difference (relative
landsat to DRG area) (%) landsat landsat to DRG area) (%)
1960s-1980s 2010-2014 1987-1988 2008-2010
Olympic Mountains 358 338 -5.6 342 32.0 -6.6
Sierra Nevada 22 14 -50.0 30 16 —46.7
‘Wind River Mountains 44.9 26.8 —40.3 457 29.8 —348

negatives can occur at locations that are perpetually shadowed
from August 20-September 30 at the time of Landsat scene acqui-
sition, as pixels with no cloud-free, shadow-free land surface views
are automatically flagged as PISC-free in our approach.

The automated Landsat approach using scenes from the 2010-
2014 period maps 28% less PISC area than the USGS DRG dataset,
which is based on aerial photography acquired during the 1960s,
1970s, and 1980s. The difference between PISC mapped by the
two datasets, however, varies substantially between regions, from
as little as 9% difference in the Olympic Mountains to as much as
82% difference in the Colorado Rocky Mountains.

Results from the more conventional change detection approach
employed for test areas in the Olympic Mountains, Sierra Nevada,
and Wind River Mountains indicate that a substantial fraction of
PISC present in the 1987-1988 period had disappeared by the
2008-2010 period in the Wind River Mountains (loss of 15.9 km?
or 34.8%) and in the Sierra Nevada (loss of 1.4 km? or 46.7%). In
the Olympic Mountains, only 6.6% of total PISC disappeared during
this period. Both the absolute and relative amounts of PISC lost at
each of these three study areas correlate closely with the differ-
ences between the USGS DRG dataset and the automated Landsat
dataset. This strongly suggests that a large fraction of the differ-
ence in PISC mapped by the USGS DRG dataset and the automated
Landsat dataset can be attributed to decreases in PISC over time,
rather than differences in methods between the mapping
approaches.

Results from several other studies monitoring changes in glacier
area over time in the western U.S. also indicate substantial reduc-
tions in glacier area, providing further evidence that much of the
difference between PISC mapped by the USGS DRG dataset and
PISC mapped by the automated Landsat approach can be attributed
to changes in PISC area rather than differences between mapping
approaches. The 54% difference in PISC area in the Wind River
Range is similar to the 39% reduction in ice area observed by
Maloof et al. (2014) between 1967 and 2006, and it is not unrea-
sonable to expect that substantial additional ice loss may have
occurred after 2006. While the 21% difference in PISC mapped in
the North Cascades is substantially more than the 7% reduction
observed by Granshaw and Fountain (2006) between 1958 and
1998 in this region, ice loss has continued at a rapid rate since
1998 in the North Cascades (Pelto and Brown, 2012). Finally, the

37% difference in PISC area in Northwest Montana between the
two datasets is only slightly greater than the 29% loss of ice
between 1966 and 2005 reported by the USGS (2013).

It is important to note that, aside from the inclusion of peren-
nial snow cover and most likely some seasonal snow cover
(Fountain et al., 2007), the USGS DRG dataset is essentially a con-
ventional glacier inventory and has been included in the Randolph
Glacier Inventory (Pfeffer et al., 2014) and the Global Land Ice Mea-
surements from Space (GLIMS) datasets (Bishop et al., 2004), along
with other similar inventories from locations around the world.
The automated Landsat-derived dataset, on the other hand, is a
binary raster dataset that maps the presence or absence of PISC
at 30 m resolution and does not provide any of the attribute infor-
mation often included in glacier inventories for each individual
glacier or perennial snow cover patch, such as size, mean elevation,
or aspect. However, an object-based image segmentation approach
where snow and ice cover persistence forms the basis for object
delineation such as the approach introduced by Thompson and
Lees (2014) could facilitate the conversion of a binary raster PISC
dataset into a vector dataset of probable glacier outlines. This
would allow for the calculation of attribute information for each
polygon. It is likely, however, that a substantial amount of editing
would be required to bring the resulting vector dataset up to the
standards of a conventional glacier inventory.

Despite the limitations described above, the 2010-2014
Landsat-derived PISC dataset for the conterminous western U.S.
provides a valuable update to the original USGS DRG dataset and
also provides a more accurate representation of PISC than the
NLCD 2011 classification. We caution against interpreting differ-
ences in area mapped by the Landsat-derived dataset and the USGS
DRG dataset as precise estimates of change in PISC area because
the original DRG dataset is based on a wide range of years and
was created using a different approach. Nevertheless, differences
between the USGS DRG dataset and the 2010-2014 Landsat-
derived dataset do highlight areas in the region that have experi-
enced the greatest and least amount of changes in PISC over the
past 30-50 years. The greatest strength of the dataset and auto-
mated mapping approach presented here is that it can be updated
with relative ease as new imagery, including imagery from Landsat
8's OLI sensor, becomes available and as additional changes in PISC
continue to occur across the region.
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5. Conclusions

We implemented a fully automated approach for mapping
perennial ice and snow cover across the western conterminous
U.S. using Landsat TM and ETM+ imagery acquired between August
20 and September 30 for the years 2010-2014. Accuracy assess-
ment of this dataset using two different validation approaches
indicates that the 2010-2014 Landsat-derived dataset is
substantially more accurate than both the USGS DRG glacier data-
set (based on aerial photography from the 1960s, 1970s, and
1980s) and the National Land Cover Database land cover classifica-
tion perennial snow and ice class. Analysis of change in PISC area
between 1987-1988 and 2008-2010 using a more traditional
semi-automated Landsat-derived mapping approach for each per-
iod indicates substantial loss of PISC and suggests that differences
between PISC mapped by the USGS DRG dataset and PISC mapped
by the automated Landsat approach are due primarily to decreases
in PISC area, rather than differences between mapping approaches.
Our 2010-2014 Landsat-derived PISC dataset indicates that as
much as 28% of PISC has been lost across the western U.S. since
the original USGS maps were developed. In some regions with sub-
stantial PISC, loss of PISC may be as much as 54%, and in regions
with smaller total PISC area, loss of PISC may be as high as 82%.
While our updated Landsat-derived PISC dataset is not designed
to serve as a standard glacier inventory, it identifies areas where
major changes in PISC have occurred since the original USGS maps
were developed, highlighting the need for a regularly updated PISC
inventory across the region.
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5.1 Introduction

Seasonal snow cover is vitally important to Earth’s climate, ecology, and
hydrology. Streamflow is generated primarily by snow cover runoff in many regions,
and approximately one sixth of the world’s population depends on snow cover for
their water supply (Barnett et al., 2005). The timing and duration of seasonal snow
cover is one of the key drivers for both short term fluctuations and long term
changes in Earth’s albedo, and therefore impacts climate dynamics at the global
scale (Cohen & Entekhabi, 1999; Groisman et al., 1994). Snow cover insulates soil
from cold winter temperatures (Groffman et al., 2001; Zhang, 2005) but can also
inhibit thawing when air temperatures rise above the freezing point in the spring,
thus altering drainage characteristics (Quinton et al., 2009). The duration of
seasonal snow cover is often the dominant factor controlling the distribution of
arctic and alpine plant species (Billings & Bliss, 1959; Walker et al., 1993) and can
also impact the configuration of forests and meadows at the alpine treeline and
below (Bekker, 2005; Hessl & Baker, 1997; Magee & Antos, 1992). Snow cover also
impacts animal movement and habitat distribution (Aubry et al., 2007; Stenseth et
al., 2004; Sweeney & Sweeney, 1984). The influence of snow cover on all of these
crucial hydrological, climatological, and ecological processes underscores the
importance of monitoring the spatial and temporal variability of snow cover across
the Earth’s surface at a variety of scales.

Remote sensing is one of the most effective approaches for regular, spatially
comprehensive snow cover monitoring. For many applications, the fine to moderate

scale (10 m to 1 km) spatial distribution of snow cover is important for
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understanding scales of controls and spatial variability (Deems et al., 2006;
Tinkham et al., 2014). Several studies (Anderton et al., 2002; Luce & Tarboton,
1998) have demonstrated that in areas where heterogeneous seasonal snow covers
develop, explicit representation of the spatial variability of snow cover is essential
for accurate simulation of snowmelt runoff unless these parameters can be
effectively accounted for in subgrid parameterization schemes. For snow simulation
models, fine to moderate resolution snow cover patterns retrieved from remote
sensing also provide an additional source of validation data besides runoff. Unlike
runoff, however, remotely sensed snow covered area (SCA) at fine to moderate
spatial resolutions can be used to assess the representation of individual processes
in the model (e.g., wind redistribution of snow cover) (Bloschl et al., 1991).
Lundquist and Dettinger (2005) demonstrate that the spatial heterogeneity of snow
cover plays a key role in determining diurnal streamflow variations in larger basins.
In colder climates, hillslope drainage is largely controlled by fine scale patterns of
snow covered area because high latitude soils overlain by snow cover typically
remain frozen and inhibit subsurface flow (Quinton et al., 2009). Finally, fine to
moderate scale heterogeneity of snow cover controls the distribution and
abundance of many plant species in arctic and alpine environments (Beck et al.,
2005; Billings & Bliss, 1959; Walker et al., 1993), influences animal habitat selection
(Eastland et al., 1989; LaPerriere & Lent, 1977), and impacts predator prey
interactions (Huggard, 1993).

The availability of standardized, freely distributed SCA products derived

from the Moderate Resolution Imaging Spectroradiometer (MODIS) has vastly
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improved our ability to monitor and understand regional to global scale SCA
patterns and variability. Remotely sensed SCA from the Landsat TM, ETM+, and OLI
sensors, however, offers tremendous potential for extending this monitoring to a
finer spatial scale. Landsat sensors are well suited for mapping SCA at 30 m spatial
resolution. This has been demonstrated in numerous studies where Landsat data
were used for snow cover mapping prior to the availability of MODIS data (Bronget
& Bronget*, 1999; Dozier, 1984; Fily et al., 1997; Hall et al., 1989; Klein & Isacks,
1999; Rosenthal & Dozier, 1996; Winther & Hall, 1999), to assist with development
and validation of MODIS snow algorithms (Hall et al., 1995; Klein et al., 1998;
Painter et al.,, 2009; Rittger et al., 2013; Salomonson & Appel, 2004), for validation of
spatially explicit snow cover models (Bernhardt et al., 2010; Bernhardt & Schulz,
2010; Fily et al., 1999; Letsinger & Olyphant, 2007), and for reconstruction of peak
snow water equivalent (Cline et al., 1998; Durand et al., 2008; Margulis et al., 2016;
Martinec & Rango, 1981; Molotch, 2009).

Effective, snow cover remote sensing across most regions requires an
approach that can reliably detect snow cover beneath forest canopies. Optical
remote sensing approaches, however, typically map the viewable fraction of snow
cover not obscured by forest canopy, rather than the true fraction of snow covering
the ground. Although a number of algorithms have been developed with the aim of
monitoring ground snow cover fraction via optical remote sensing (Klein, Hall &
Riggs, 1998; Moloch & Margulis, 2008; Vikhamar & Solberg, 2003), this problem

remains an active area of research.
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The most commonly used approach for adjusting sensor-viewable fSCA to
reflect the true in situ fSCA in areas with forest canopy is to assume that the
viewable snow cover fraction for a given pixel will be identical (or at least similar)
to the hidden (canopy-obscured) snow cover fraction for the same pixel (Coons et
al., 2014; Durand & Molotch, 2008; Molotch & Margulis, 2008; Raleigh et al., 2013).
Approaches assuming similar snow cover fractions for the canopy-obscured and
canopy-free portions of a pixel are usually reasonably accurate as long as a snow
cover fraction > 0 is retrieved at each snow covered pixel. They are, however,
ineffective for identifying snow-covered pixels where the viewable snow cover
fraction is less than the snow cover detection limit for the snow mapping algorithm..
There is therefore a need for a canopy adjustment approach that can identify snow
cover that is frequently missed by optical remote sensing approaches.

Snow covered area is the most basic measurement that can be made from
optical remote sensing and serves as a key input for remote sensing or combined
remote sensing/modeling approaches that endeavor to provide more complex snow
metrics such as SWE. Fractional snow covered area (fSCA) provides more
information per-pixel than binary SCA and is particularly useful in mountainous
environments where 25-93% of all pixels at the Landsat spatial resolution are
mixed pixels composed of two or more land surface types (Selkowitz et al., 2014). In
order to meet the need for a standardized, analysis-ready Landsat snow cover
dataset, the US Geological Survey is now producing a Landsat scene-based snow
cover product based on Painter et al. (2009) that provides 30 m resolution fSCA,

canopy-adjusted fSCA, and a cloud mask optimized for use in mountainous
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environments. The first iteration of the scene-based Landsat snow cover product is
available on demand for nearly any Landsat TM or ETM+ scene available in the
archives stretching back to 1984.

For users more interested in characterizing patterns of snow cover duration
and potential changes in snow and ice cover over decades, the Landsat snow cover
duration product will provide the mean annual snow cover duration days at 30 m
resolution for periods as short as 5 years and as long as the full Landsat 5/Landsat 7
period of record (1984 to the present). The snow cover duration product will
incorporate canopy-adjusted fSCA and cloud mask data from the Landsat scene-
based snow products covering the period of interest. Initial production of the snow
cover duration product will focus on 30-year mean annual snow cover duration
across key mountain ranges in the western U.S., with areas outside of the region
available upon request.

The goals of this publication are: (1) to provide a detailed description of the
methods used for production of both the scene-based fSCA and mean annual snow
cover duration products, and (2) provide limited validation for each of the two

products.

5.2. Study Area and Methods

5.2.1 Study Area Locations

Validation of fSCA from individual Landsat scenes was conducted using in
situ sensor arrays in the Sierra Nevada at sites covered by Landsat path rows 43/33,

43/34,42/34,42/35, and 41/35, while validation of mean annual snow cover



82

duration was conducted using SNOTEL sites in the Cascades of Washington and
Oregon (path rows 45/27 and 45/28), the Sierra Nevada of California (path row
43/33), and the Rocky Mountains of Wyoming, Montana, and Idaho (path rows
38/29 and 38/30) (Figure 5.1, Table 5.1). Detailed analysis of the mean annual
snow cover duration products was also conducted at one 30 x 30 km subset from
each of the three regions (Figure 5.1, Table 5.2). The three regions were selected to
represent the variation in snow climate regimes (Mock & Birkeland, 2000; Trujillo &

Molotch, 2014) and vegetation types present across the western U.S.

5.2.2 Overview of Methods

We retrieved the visible snow cover fraction for each 30 m Landsat pixel
using the TMSCAG (Thematic Mapper Snow Covered Area and Grain Size) model
(Painter et al., 2003; Painter et al., in review), a spectral unmixing approach. We
then applied a series of adjustments (Figure 5.2) designed to produce fSCA values
that more closely matched the fraction of snow covered ground (including rock, soil,
low-growing vegetation, and woody debris) in areas with forest canopy. The first
adjustment handled pixels where retrieved fSCA was > 0 but likely
underrepresented the fraction of snow covered ground. The second adjustment
handled pixels where retrieved fSCA was 0 but a combination of ancillary data and
retrieved viewable fSCA from nearby pixels suggested snow cover was likely
present. Finally, cloud cover was identified and masked using the revised CFMask
approach described in Selkowitz and Forster (2015). These steps resulted in three

layers: (1) viewable fSCA (computed directly from TMSCAG), (2) canopy-adjusted
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Cascades
Subset

45°N-
40°N-
Sierra
Nevada
Subset
Y
35°NA

125°W 120°W
Landsat path row Landsat path row
used fOI_' SNOTEL used for in situ fSCA
comparison comparison
Landsat path row .
used for SNOTEL ®  SNOTELsite
and in situ fSCA ] in situ fSCA site

comparison
] 30 x 30 km subset

Figure 5.1. Study area locations in the western U.S, including Landsat path/rows
used, 30 x 30 km analysis subsets, locations of SNOTEL sites used, and locations of

in situ fSCA sites.



Table 5.1. Landsat scenes used by path row.
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Landsat Type(s) of Analysis Scenes

Path/Row T™ ETM+ Total

45/27 SNOTEL comparison, Cascades subset 370 494 864
analysis

45/28 SNOTEL comparison 369 502 871

43/33 In situ sensor array comparison, SNOTEL 370 511 881
comparison, Sierra subset analysis

43/34 In situ sensor array comparison 5 5

42 /34 In situ sensor array comparison 8 8

42/35 In situ sensor array comparison 7 7

41/35 In situ sensor array 7 7

38/29 SNOTEL comparison 369 510 879

38/30 SNOTEL comparison, Gros Ventre subset 365 499 864
analysis

All Path 877 2516 4393

Rows

Table 5.2. 30 x 30 km subsets used for detailed analysis of the Landsat mean annual
snow cover duration product. Forest cover indicates the percentage of pixels from
the subset where the National Land Cover Database (NLCD) forest canopy layer
indicates > 15% canopy cover. Mean canopy indicates the mean NLCD forest canopy
for all pixels from the subset.

Subset Landsat PR Elev. Range Forest Cover Mean Canopy
(m)
Cascades Path 45 Row 410-2459 84% 52.6%
27
Sierra Nevada  Path 43 Row 1332-3162 33% 34.6%
33
Gros Ventre Path 38 Row 1751-3233 55% 26.7%

30
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Mean annual snow cover duration was calculated using all available Landsat-

derived fSCA layers available for the period of record. For each pixel, we determined

the fraction of cloud-free, valid pixels with snow cover for each month (e.g., the

fraction of cloud free, valid pixels imaged during the month of June over the period

1986-2015). The monthly fractions were then averaged and multiplied by 365 to

calculate mean annual snow cover duration.
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5.2.3 Production of Scene-based Landsat fSCA Product

5.2.3.1 Datasets

We obtained 30 m resolution Landsat Climate Data Record (CDR) top-of-
atmosphere (TOA) and surface reflectance (SR) products (Masek et al., 2006,
available at http://earthexplorer.usgs.gov) for a total of 4383 Landsat scenes
acquired between 1986 and 2016 in mountainous regions of the conterminous
western United States (Table 5.2).

We acquired the 30 m resolution National Land Cover Database (NLCD) 2011
land cover and percent forest canopy datasets for the conterminous U.S. (available
from http://www.mrlc.gov) and then extracted subsets covering our study areas.
Each subset was reprojected to the UTM projection associated with Landsat scenes
within the study area.

We obtained 1/3 arc second (approximately 10 m resolution) digital

elevation models (DEMs) covering each of our study areas from the U.S. 3D Digital

Elevation (3DEP) program (available from https://viewer.nationalmap.gov/basic/).
Individual 1° tiles were mosaicked together, reprojected to the UTM projection
associated with Landsat scenes within the study area, and then aggregated from 10
m to 30 m spatial resolution to correspond with the resolution of the Landsat scenes

and ancillary data.

5.2.4.1 Image Processing
We retrieved fSCA for each pixel from each Landsat scene using TMSCAG, a

spectral mixture analysis model that evolved from the original MEMSCAG algorithm
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that calculated fSCA and snow grain size from optical imaging spectrometer data
(Painter et al., 1998; Painter et al., 2003). The TMSCAG model is similar to the
MODSCAG model (Painter et al., 2009), which works with multispectral MODIS data
and has been widely used for retrieval of fSCA; the key difference is that the
TMSCAG model is configured to handle radiometric saturation in spectral bands 1-4.
A more detailed description of the TMSCAG model as well as validation of model
performance is provided in Painter et al. (in review).

Potential solar radiation grids were calculated at 30 m spatial resolution
using the r.sun algorithm available in GRASS GIS and the resampled 30 m DEM
covering the study area. For each study area, we calculated potential solar radiation
for every 10th day starting with day of year 274 (October 1 for regular years,
September 30 for leap years). Potential solar radiation was interpolated for days in
between, resulting in a daily time series of potential solar radiation. We then
calculated cumulative potential solar radiation since October 1 for each day of the
year.

We used a modification of the CFmask cloud masking approach (Zhu &
Woodcock, 2012) described in Selkowitz and Forster (2015) to identify cloud-
covered pixels in each Landsat scene. While the original CFmask has been
demonstrated to consistently classify certain landscape patches containing snow
and ice or a mixture of snow/ice and rock as cloud cover, this problem is minimized
in the revised version. In high mountain areas, accuracy for the original CFmask
algorithm is 66%, while accuracy for the revised CFmask approach is 88%

(Selkowitz & Forster, 2015).
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Figure 5.2 provides a flow chart that describes the full canopy adjustment
process. In cases where retrieved fSCA is > 0 and < 1, we incorporate the retrieved
fSCA value as well as the forest canopy fraction value from the National Land Cover
Database (NLCD) to calculate an adjusted fSCA value. In previous work, several
authors (Coons et al., 2014; Durand & Molotch, 2008; Molotch & Margulis, 2008;
Raleigh et al., 2013) have used a similar approach that normalizes retrieved fSCAv
by the noncanopy fraction of the pixel (1-F¢) to calculate an adjusted fSCA.q; value.

This approach is defined in Equation 1:

fSCA

r 1.0) (1)

fSCAqq; = min ( —
In our approach, we use the NLCD canopy percent value as Fc. In addition, we add
0.35 F. to the result calculated using equation 1. We added this term to equation 1
because the NLCD canopy dataset tends to underestimate forest canopy by an
average of 9.7% (and by as much as 23.4% in the Sierra Nevada) (Nowak &
Greenfield, 2010), and because the viewable snow fraction in areas with forest cover
tends to be poorly illuminated due to shading from the canopy, often leading to
underestimation of viewable fSCA. Our canopy adjustment approach is defined in

Equation 2:

fSCAy
1-F,

fSCAqq; = min (S + 0.35 Fe, 1.0) (2)
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In cases where retrieved fSCA is 0, we implement an additional approach
designed to detect snow-covered pixels where forest canopy or a combination of
forest canopy and shading would make snow cover detection otherwise impossible
using optical remote sensing. We refer to this approach as the neighborhood canopy
adjustment approach. In many cases where snow cover is present but not initially
detected by TMSCAG, the viewable snow cover fraction is below the TMSCAG
detection threshold of approximately 0.15.

The neighborhood canopy adjustment approach (defined below) relies on
the examination of at least 10 surrogate pixels located near the target pixel. The
ratio of surrogate pixels with snow cover to total surrogate pixels determines
whether snow is classified at the target pixel. This process is conducted in two
separate phases, with the second phase only implemented if necessary. In the first
phase, surrogate pixels are identified within a 11 x 11 pixel neighborhood centered
on the target pixel. To qualify as a surrogate pixel, NLCD forest canopy percent must
be lower than at the target pixel, potential solar radiation must be greater than at
the target pixel, and elevation must be no more than 75 m greater than at the target
pixel (Table 5.3, Figure 5.3). In addition, to qualify as a surrogate pixel a pixel must
also contain valid data (i.e., not be within a Landsat 7 scan line gap) and be cloud-
free, according to the revised cloud cover mask described above.

If at least 10 surrogate pixels can be identified in the 11 x 11 local window, we
compute the ratio of surrogate pixels with snow cover (fSCA > 0) to the total
number of surrogate pixels. If this ratio exceeds 0.3, the target pixel is labeled as

snow covered and given an fSCA value of 0.15. In some cases, however, less than 10
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Table 5.3. Criteria for identification of surrogate pixels in the surrounding 11 x 11 or
31 x 31 pixel neighborhoods.

Criteria Rule for surrogate eligibility

NLCD canopy < target pixel AND < 60%

Potential solar radiation >= target pixel

Elevation < target pixel + 75

Cloud cover Must be cloud-free, and valid (not in SLC gap)

surrogate pixels can be identified within the 11 x 11 pixel window. This can occur
when the target pixel has unique canopy or topographic aspects when compared to
nearby pixels, when all nearby pixels are covered by dense forest, or when the
number of available surrogate pixels is reduced due to the presence of scan line
corrector gaps or cloud cover.

In cases where < 10 surrogate pixels can be identified within the 11 x 11 local
window, we initiate a second phase that examines a larger 31 x 31 pixel window
with a larger pool of potential surrogate pixels. The criteria for identification of
surrogate pixels in the second phase are the same as the criteria used in the first
phase (Table 5.3). If at least 15 surrogate pixels can be identified in the 31 x 31 pixel
window, we compute the ratio of snow covered surrogate pixels to total surrogate
pixels in the same manner as the first phase. For the larger 31 x 31 pixel window, if
the ratio of snow covered pixels to total surrogate pixels exceeds 0.45, the target
pixel is labeled as snow covered and given an fSCA value of 0.15.

The size of neighborhoods used for identification of potential surrogate
pixels was chosen to balance the need for a sufficient sample of surrogate pixels for

decision making with the need to constrain potential surrogate pixels to those pixels
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Figure 5.3. Identification of surrogate pixels meeting criteria listed in Table 5.2 in
the 11 x 11 pixel neighborhood surrounding target pixel. The same process for
identification of surrogate pixels is used for the larger 31 x 31 pixel window used in
phase 2 (if necessary).

with similar climatic characteristics to the target pixel. This excludes solar radiation,
which can vary substantially within the 11 x 11 or 31 x 31 pixel neighborhoods, but
is explicitly accounted for. Initially, we attempt to identify at least 10 surrogate
pixels within 150 m of the target pixel because, given the solar radiation and
elevation constraints, the closest pixels are likely to exhibit snow cover conditions
most similar to the target pixel. When insufficient surrogate pixels are available
within the smaller neighborhood, we examine the larger neighborhood for
surrogate pixels. The algorithm is designed to be conservative when identifying

missed snow cover, and to be especially conservative when missed snow cover is

identified using the larger 31 x 31 pixel neighborhood. For this reason, we require a
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higher ratio of snow-covered to total surrogate pixels to identify additional snow
covered pixels in the larger 31 x 31 pixel neighborhood.

Once the first, and, if necessary, second phases of neighborhood canopy
adjustment have been implemented, standard canopy adjustment described in
Equation 2 is applied to the resulting fSCA value of 0.15 (if snow cover is

determined to be present) at the target pixel.

5.2.5 Calculation of Mean Annual Snow Cover Duration

For the Landsat snow cover duration product, we exploit the historical
Landsat archive by incorporating fSCA and cloud cover calculated for all scenes
acquired during the period of interest. Using these data, we compute the ratio of
snow covered days for all cloud-free surface views to the total number of cloud-free
surface views for each calendar month (e.g., all cloud-free surface views acquired
during the month of June over the period 1986-2015) for each 30 m pixel (Figure
5.4). For this calculation, all fSCA values > 0 are counted as snow cover. The monthly
ratio of snow covered days to total cloud-free days is then weighted by number of
days in the month to compute the fraction of days with snow cover for the entire
year, which is then multiplied by 365 to convert to mean annual snow cover
duration in units of days.

Calculation of individual monthly ratios which are then converted to annual
snow cover days is preferable to simply computing the ratio of snow-covered days

to total cloud-free days for the entire period because at many locations, more cloud-
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Figure 5.4. Calculation of the fraction of days in June with snow cover for the period
1986-2015 for a single 30 m grid cell. The matrix indicates 1 of 4 potential outcomes

for each day in the period 1986-2015. Light grey squares indicate days when no
Landsat data were acquired, dark grey squares indicate days when Landsat was
acquired, but was not used for calculation of snow cover duration statistics due to
cloud cover or missing data, red squares indicate snow free land, and light blue

squares indicate snow-cover. The ratio of snow-covered days to snow-covered and

snow-free days (total cloud-free days) is used to calculate the snow cover days

fraction.
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free views are available during the summer months than during the winter months.
Consequently, computing the ratio of snow cover days to total cloud-free days for
the entire period would result in underestimation of snow cover days because a
disproportionate number of cloud-free views usually come from the summer

months where snow cover is much less common.

5.2.6 Validation Approach

We use separate datasets to provide an accuracy assessment for the scene-
based canopy-adjusted fSCA products and the snow cover duration product.
Validation data for canopy-adjusted fSCA from individual Landsat scenes consisted
of in situ snow cover fraction data collected at sites across the Sierra Nevada of
California, while validation data for the snow cover duration datasets consisted of
data from SNOTEL sites maintained by the Natural Resources Conservation Service
(NRCS) at locations in California, Oregon, Washington, and Wyoming (Figure 5.1).
The two separate datasets were chosen for validation of the two products because
the in situ snow cover fraction data allowed for accuracy assessment of fractional
snow covered area, which was not possible with SNOTEL data. The in situ snow
cover fraction dataset, however, covered only the period 2014-2016 and thus could
not be used for validation of mean annual snow cover duration calculated over
longer periods. The SNOTEL dataset was selected for validation of the snow cover
duration product because this was the only dataset available covering a 30-year
period of record with sites covering multiple mountain ranges in the western United

States.
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5.2.6.1 Validation of Individual Scenes Using In Situ Sensor Arrays

We deployed 100 x 100 m temperature data arrays at 27 forest-covered sites
across the Sierra Nevada of California. Sites ranged in elevation from 1860 m to
2930 m, included a wide range of forest canopy densities (4-83%), and included flat,
gentle, and moderately steep (up to 23°) slopes on all aspects. Arrays consisted of 6
X 6 sensors spaced at 20 m intervals (2014-2015) or 5 x 5 sensors spaced at 25 m
intervals (2015-2016). At each site, an array of temperature data loggers were
buried 2-5 cm below the soil surface. Sensors were set to record temperature at 1.5
hour intervals. Temperature data loggers were deployed between August and
November each year and retrieved between April and August of each year.

We used the algorithm designed by Raleigh et al. (2013) and adapted by
Selkowitz et al. (2014) to convert hourly or 1.5 hourly temperature time series from
individual temperature data loggers to daily snow cover fraction for each 100 m
grid cell footprint we monitored. This algorithm classifies snow cover if
temperature varies by less than 1°C at an individual temperature data logger over
two consecutive 24-hour periods. A more detailed discussion of this approach can
be found in Raleigh et al. (2013), Selkowitz et al. (2014), and Lundquist and Lott
(2008).

The number of temperature data loggers used to compute daily snow cover
fraction varied from 15-34. Although either 25 or 36 data loggers were installed at
each site, some data loggers malfunctioned or stopped recording due to insufficient
battery power and some data loggers could not be located (often as a result of

ground disturbance by marmots or ground squirrels).
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In order to verify that in situ temperature data loggers could accurately
monitor the presence/absence of snow cover, we observed the presence/absence of
snow cover at the location of the deployed temperature data loggers at four sites for
a total of 5 days (one site was surveyed twice) in the spring and early summer of
2016. We used a GPS unit that provided real-time accuracy of +- 1.5 m or better to
navigate to the location of temperature data loggers and record snow cover
presence or absence above each temperature data logger. We collected 106 visual
snow cover presence/absence observations for comparison with snow cover
presence/absence classified using hourly temperature data from the data loggers

using the algorithm described above.

5.2.6.2 Validation of Mean Annual Snow Cover Duration for 30-year
and 5-year Periods Using SNOTEL Data

In order to assess the accuracy of the snow cover duration product, we used
data from 72 SNOTEL sites from California, Oregon, Washington, and Wyoming.
While SNOTEL pillow measurements of snow water equivalent cover < 2 m?, a much
smaller area than the 900 m? covered by the nominal Landsat pixel size, they are
one of the only long term measurements of snow cover in mountains regions of the
western U.S. Therefore, despite the mismatch in area monitored by a SNOTEL pillow
compared to a Landsat pixel, SNOTEL sites still represent the best source of data for
validation of mean annual snow cover duration over decades.

For our analysis, we calculated the mean annual snow cover duration (days

with SWE > 0) observed at each SNOTEL station for the 30-year period 1986-2015
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and compared this to the mean annual snow cover duration calculated from Landsat
using the methods described above. We also conducted the same comparison
between SNOTEL and Landsat-derived mean annual snow cover duration for the
five year periods 1991-1995, 1996-2000, 2001-2005, 2006-2010, and 2011-2015.
The period 1986-1990 was excluded because relatively few Landsat scenes were

available during this period.

5.3 Results

5.3.1 Validation of In Situ Temperature Data Logger Snow

Cover Monitoring Approach

Assessment of snow cover classification using in situ temperature data
loggers compared to visual observations of snow cover in May and June of 2016
indicated agreement in 102 out of 106 cases, with one false positive and three false

negatives (96% accuracy).

5.3.2 Landsat-derived fSCA Compared to In Situ fSCA

Comparison of TMSCAG and TMSCAG canopy adjusted fSCA to in situ fSCA
from temperature data logger arrays indicated the canopy adjustment approaches
used here substantially improved agreement between Landsat-derived and in situ
measured fSCA (Table 5.4, Figure 5.5). While the standard canopy adjustment
approach alone resulted in a substantial increase in accuracy, reducing RMSE from

0.49 to 0.25, the neighborhood adjustment approach resulted in further
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Table 5.4. Accuracy metrics for TMSCAG, canopy adjusted TMSCAG, and
neighborhood canopy adjusted TMSCAG.

Metric TMSCAG Adjusted Adjusted +
Neighborhood
Canopy
Adjustment
RMSE 0.49 0.25 0.20
Mean Error (Bias) -0.38 -0.11 -0.07
Binary Accuracy 0.94 0.94 0.96
Binary Precision 0.99 0.99 0.99
Binary Recall 0.95 0.95 0.97
Binary F 0.97 0.97 0.98

improvement, reducing RMSE to 0.20. The mean error (bias) was initially -0.38 for
the unadjusted TMSCAG data but was reduced to -0.07 when both adjustment
approaches were applied. In the 139 instances where in situ fSCA was compared
with TMSCAG and canopy-adjusted TMSCAG fSCA, there was only a single false
positive snow cover result. There were no false positives resulting from addition of
snow cover via the neighborhood canopy adjustment approach.

It is important to note that the full impact of the neighborhood canopy
adjustment approach is less evident in this comparison because fSCA from 9 Landsat
pixels is compared to in situ fSCA across a 100 x 100 m grid, reducing the impact of
individual 30 m Landsat pixels where snow cover is missed on the overall accuracy.
An example of TMSCAG fSCA compared to fSCA adjusted using both the standard
canopy adjustment approach and neighborhood canopy adjustment approach is
shown in Figure 5.6, which also maps the spatial distribution of additional snow

cover pixels added using the neighborhood canopy adjustment approach.
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Figure 5.5. TMSCAG canopy-adjusted fSCA compared to in situ fSCA calculated from
temperature data logger arrays. Both the standard canopy adjustment approach and
the neighborhood canopy adjustment approach were applied to produce canopy-
adjusted fSCA.

5.3.3 Mean Annual Snow Cover Duration

Mean annual snow cover duration computed from canopy-adjusted Landsat-
derived fSCA for three 30 x 30 km subsets and three corresponding areas of detail
are shown in Figure 5.7. The effect of elevation on snow cover duration is evident at
the broader scale for the 30 x 30 km subsets, while the effects of both elevation and
topographic position are evident at the finer scale shown for the 5 x 5 km areas of
detail. The spatial distribution of additional snow cover days added via the canopy
adjustment algorithm is shown for the three 30 x 30 km subsets in Figure 5.8. The
three maps of additional snow cover days added via neighborhood canopy
adjustment and the corresponding cumulative histograms demonstrate that impact
of the canopy adjustment algorithm was largest in the Cascades subset, where 30 or

more days were added to 27% of all pixels. The impact of the canopy adjustment
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Figure 5.6. Demonstration of canopy adjustment for an area in the northern Sierra
Nevada on April 20, 2009: (a) Landsat surface reflectance (bands 7-4-2), (b)
TMSCAG fSCA, (c) canopy adjusted TMSCAG fSCA, and (d) areas of snow cover added
using the neighborhood canopy adjustment approach.



101

mean annual snow cover days
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Figure 5.7. Mean annual snow cover duration for three 30 x 30 km subsets: (a)
Cascades (Washington), (b) Sierra Nevada (California), and (c) Gros Ventre
(Wyoming).
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Figure 5.8. Additional snow cover days added using the neighborhood canopy
adjustment approach for three 30 x 30 km subsets: (a) Cascades (Washington), (b)
Sierra Nevada (California), and (c) Gros Ventre (Wyoming). The dashed line
corresponds to 30 days added via the neighborhood canopy adjustment approach.
algorithm was substantially less for the Sierra Nevada subset, where 30 or more
days were added to just 9% of pixels, and for the Gros Ventre subset, where 30 more
days were added to only 5% of all pixels.

The percent of all cloud-free pixels where snow cover was added via
neighborhood canopy adjustment, shown by month (Figure 5.9) tells a similar story,
with snow cover added for substantially more instances in the Cascades subset than

in the Sierra Nevada subset or Gros Ventre subset. Figure 5.9 also indicates how the

impact on mapped SCA varies seasonally. For all three subsets, the percentage of
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Figure 5.9. Percent of all cloud-free pixels where snow cover was added via canopy
adjustment, shown by month.

snow cover pixels added is high during December and January and low during the
summer and early fall months. In the Cascades, and to a lesser extent in the Sierra
Nevada, a secondary peak in the percentage of added snow cover pixels occurs in
April and May. The neighborhood canopy adjustment approach occasionally fails
due to insufficient surrogate pixels within both the 11 x 11 and 31 x 31 pixel
neighborhoods. The incidence of failure is determined ultimately by not only the
prevalence of surrogate pixels within the local neighborhood, but, on a scene-by-
scene basis, whether or not those potential surrogate pixels are obscured by clouds
or scan-line correction failure gaps. The spatial distribution of failure frequency (as
a fraction of total valid cloud-free days at each pixel) is shown in Figure 5.10, along
with cumulative histograms that indicate the percent of pixels affected by various
model failure rates. These data suggest that failure of the neighborhood canopy
adjustment approach is more common in the Cascades subset than in the other two

subsets, where 17% of pixels experienced failure in more than 10% of instances. By
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Figure 5.10. Canopy adjustment model failure frequency for three 30 x 30 km
subsets: (a) Cascades (Washington), (b) Sierra Nevada (California) and, (c) Gros
Ventre (Wyoming).

contrast, in the Sierra Nevada and Gros Ventre subsets, only about 2% of pixels
experienced model failure in more than 10% of instances.

Comparison between mean annual snow cover duration calculated from
SNOTEL stations and from the original TMSCAG and canopy-adjusted TMSCAG
image data allow for quantification of the improvement in accuracy achieved via the
neighborhood canopy adjustment approach. This comparison is based on binary
snow cover retrievals, where the total fraction of days with fSCA > 0 is compared to
the number of days where the corresponding SNOTEL site recorded SWE > 0. It is

important to note that the standard canopy adjustment approach described in

Equation 2 therefore has no impact on accuracy in this comparison. This is because
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the standard canopy adjustment approach only adjusts pixels where a snow cover
fraction > 0 has been detected. Consequently, differences between the unadjusted
and adjusted results for mean annual snow cover duration are due entirely to the

implementation of the neighborhood canopy adjustment approach.

While the unadjusted results are reasonably accurate for sites with canopy
cover < 50%, mean annual snow cover duration is severely underestimated at many
sites with canopy cover > 50% (Figure 5.11a). When fSCA from individual scenes is
adjusted using the neighborhood canopy adjustment approach, however, agreement
between mean annual snow cover duration from SNOTEL sites and from Landsat
improves substantially at all but one site (Figure 5.11b). The local window canopy
adjustment approach reduces RMSE from 22.6 days to 14.7 days and essentially
eliminates the negative bias in mean snow cover duration (Table 5.5). Figures 5.11c
and 5.11d also indicate that neighborhood canopy adjustment has a much larger
impact at sites in the Cascades than at sites in the Sierra Nevada or Rocky
Mountains.

Agreement between TMSCAG canopy-adjusted snow cover duration and
snow cover duration calculated from SNOTEL sites for 5-year periods is slightly
lower than for the full 30 1986-2015 period, with RMSE ranging from 15.4 - 20.7
(Table 5.6). However, the improvement in accuracy resulting from the
neighborhood canopy adjustment approach is still evident, and the negative bias for

the canopy adjusted results is < 3 days for 4 of the 5 periods considered.
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Figure 5.11. Comparison between mean annual snow cover duration calculated from
SNOTEL data and mean annual snow cover duration calculated from Landsat. (a)
unadjusted snow cover duration, with colors indicating forest canopy density (b)
adjusted snow cover duration, with colors indicating forest canopy density, (c)
unadjusted snow cover duration, with colors indicating region, and (d) adjusted
snow cover duration, with colors indicating region.

Table 5.5. Accuracy metrics for mean annual snow cover duration (days) calculated
using unadjusted TMSCAG and canopy adjusted TMSCAG relative to mean annual
snow cover duration calculated from SNOTEL sites.

Metric TMSCAG Canopy Adjusted

RMSE 22.6 14.7
Mean Error (Bias) -10.4 0.6
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Table 5.6. Accuracy metrics for mean annual snow cover days calculated using
adjusted TMSCAG for periods 1991-1995, 1996-2000, 2001-2005, 2006-2011, and
2011-2015.

Metric 1986 - 1991 - 1996 - 2001- 2006 - 2011-

2015 1995 2000 2005 2010 2015
RMSE 15.1 20.0 15.4 18.1 19.3 20.7
Mean Error 0.5 -1.3 -5.0 -2.3 0.0 -0.4
(Bias)

5.4 Discussion

TMSCAG has been demonstrated effective for retrieval of visible fSCA across
a wide range of snow cover conditions, topography, vegetation types, and solar
illumination conditions (Painter et al., in review). When significant forest canopy is
present, however, the difference between the retrieved viewable fSCA and in situ
fSCA beneath the canopy can be significant. In cases where snow cover is missed
entirely, this can also impact mean annual snow cover duration calculated using all
available scenes for a period of record. The results presented here indicate that
TMSCAG fSCA mapping can be extended to allow for effective retrievals of in situ
fSCA under forest canopies across the forests of the western conterminous U.S.
mountains, and likely in other regions as well.

The canopy adjustment approach presented here not only adjusts viewable
fSCA values > 0, but also adds snow to forested pixels where snow cover was
initially not retrieved if conditions at surrounding pixels with similar characteristics

suggest that snow cover was likely missed. The adjustment of initial fSCA values > 0



108

has been applied previously in several studies (Coons et al., 2014; Durand &
Molotch, 2008; Molotch & Margulis, 2008; Raleigh et al., 2013). Addition of snow
cover to forested pixels initially identified as snow-free, however, is a novel
approach critical for effectively monitoring snow cover conditions in forested
regions at the Landsat spatial resolution.

Comparison between TMSCAG fSCA and in situ fSCA in forested areas of the
Sierra Nevada indicated that, as expected, the viewable snow cover fraction
retrieved from TMSCAG is usually substantially lower than the in situ fSCA. While
the standard canopy adjustment approach improved agreement between in situ
fSCA and Landsat-derived fSCA in many instances, the neighborhood canopy
adjustment approach resulted in further improvement in cases where snow cover
was initially missed at some of the 9 Landsat pixels covering the 100 x 100 m in situ
grid.

The lack of false positives for snow cover resulting from application of the
neighborhood canopy adjustment approach suggest that this is a relatively
conservative approach to the problem of missed snow cover beneath forest canopy.
In fact, the algorithm is structured so that snow cover can only be added if a
substantial fraction of pixels within 450 m of the target pixel have been identified as
snow covered by TMSCAG. Checks are also in place to prohibit the addition of snow
cover when nearby snow cover is only identified at pixels with a lower cumulative
solar radiation load or at substantially higher elevations. Despite these conditions

and the lack of false positives for snow cover identified in the in situ fSCA
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comparison dataset, we acknowledge that some false positives will inevitably result
from this canopy adjustment approach.

Our results suggest the importance of the neighborhood canopy adjustment
varies both by region and over time, with frequent instances of adjustment to add
snow cover initially missed concentrated in both clusters of pixels and specific times
of year. The substantially higher amount of snow covered pixels added in the
Cascades from neighborhood canopy adjustment relative to the Sierra Nevada and
Gros Ventre subsets can be explained primarily by the higher forest density and
greater prevalence of dense forest in the Cascades. The canopy adjustment approach
may also be less necessary in mid-winter in the colder continental climate of the
Gros Ventre subset, where snow cover is often retained for long periods in the
canopy (Hedstrom & Pomeroy, 1998), resulting in a higher viewable fSCA and thus
fewer missed snow cover pixels.

The higher percentage of added snow cover pixels occurring in the months of
November, December, and January for all three subsets can be explained by the
relatively poor solar illumination conditions resulting from higher solar zenith
angles during these months. Painter et al. (in review) found that TMSCAG is more
likely to underestimate snow cover under poor illumination conditions, and this is
likely exacerbated by forest canopy that leads to a further reduction in illumination
at the snow surface. Under these conditions, which result in a higher frequency of
pixels where snow cover is not initially identified by TMSCAG, the neighborhood
canopy adjustment approach is employed more frequently. The secondary peak of

added snow cover pixels during the months of April and May in the Cascades and
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Sierra Nevada is likely due to the higher prevalence of partially snow covered pixels
during this period, which typically corresponds with snowmelt across much of these
two study areas. The density of forest canopy cover necessary to result in errors of
omission declines substantially as the ground snow cover fraction declines.

The comparison between mean annual snow cover duration calculated from
SNOTEL data and from Landsat-derived fSCA confirms the effectiveness of the
neighborhood canopy adjustment approach. Without an approach that considers
nearby pixels or some sort of ancillary data, mean annual snow cover duration
calculated from Landsat-derived fSCA is significantly underestimated at many pixels
with moderate to dense forest canopy. While the canopy adjustment approach
described here is not effective for eliminating all errors of omission at all Landsat
pixels in all instances, it significantly reduces underestimation of mean snow cover
duration at many forested pixels.

Perhaps the largest limitation for the current approach to production of both
scene-based and mean annual snow cover duration products is the inability of the
neighborhood canopy adjustment approach to effectively correct all pixels. While
instances of failure due to insufficient surrogate pixels are relatively rare, they are
typically concentrated in both space and time and can therefore have a notable
impact on results in certain areas and for certain periods. It may be possible to
reduce the number of cases where the neighborhood canopy adjustment approach
fails by extending the size of the neighborhood for identification of surrogate pixels.

A completely effective solution to this limitation, however, will likely require the
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inclusion of different remote sensing data such as lidar or a physically-based
modeling approach.

Another limitation of both the scene-based canopy-adjusted fSCA and the
snow cover duration products is that the accuracy of canopy-adjusted snow covered
area depends on accurate and consistent forest canopy information. Presently, this
information is provided by the NLCD 2011 forest canopy layer, which has been
shown to underestimate forest canopy by an average of 9.7% nationally and by
23.4% in the Sierra Nevada (Nowak & Greenfield, 2010). Perhaps more importantly,
the NLCD canopy layer represents only a brief period of time and is likely to be
incorrect in instances where land cover change has occurred either before or after
the publication of the dataset. For example, a large fire might remove most or all of
the canopy for a patch of pixels. If the reduction in canopy from the fire is not
reflected in the canopy layer, canopy adjustment will be incorrectly applied to this
patch of pixels, resulting in an overestimation of fSCA and possibly the generation of
false positive snow cover pixels (although only if other nearby pixels are snow
covered). A possible solution would be to generate new canopy layers annually or
possibly even a new canopy layer for every Landsat scene processed in order to
reduce the possibility of these types of errors.

The relatively long 16-day interval between scene acquisitions from Landsat
also limits our ability to produce a snow cover duration product for time periods
shorter than about 5 years. The sporadic occurrence of cloud cover and the 16-day
repeat interval for the Landsat 5 and 7 spacecraft have resulted in an irregular

frequency of cloud-free surface views. Over periods longer than approximately 5
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years, this irregular availability of cloud-free surface views amounts to a semi-
random sample of cloud-free surface views from the early, middle and late portions
of each month and from above-average, average, and below-average snow cover
years. For shorter periods, however, the impact of the timing of each cloud-free
surface view can skew the calculation of mean annual snow cover duration. Our
results indicate that accuracy of the snow cover duration product is lower for 5-year
periods than it is for the full 1986-2015 period. Future iterations of the Landsat
snow cover products will incorporate data from Landsat 8 and possibly from the
Sentinel 2A instrument, potentially allowing for generation of snow cover duration

products based on as little as one year of data.

5.5 Conclusions

Results presented here indicate that while the unadjusted Landsat snow
cover products underestimate fSCA for individual scenes and underestimate mean
annual snow cover duration calculated from all available scenes, this
underestimation is substantially reduced for the canopy-adjusted versions of these
products. The incorporation of a canopy adjustment approach that considers the
snow cover status of nearby pixels allows for accurate estimation of scene-based
fSCA in many cases even when the initially retrieved fSCA value is zero. When
combined with a cloud mask optimized for use in mountainous environments, the
resulting canopy-adjusted Landsat fSCA data can be used to provide an accurate
estimate of mean annual snow cover duration at 30 m spatial resolution for the

entire Landsat period of record as well as for temporal subsets as short as 5 years.
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Data from the SNOTEL network indicate the mean annual snow cover duration for
the period 1986-2015 calculated using this approach has an RMSE of 14.7 days and
a bias of +0.6 days over the range of 90-270 days of annual snow cover.

While the impact of the canopy adjustment approach varies by region due
primarily to differences in forest cover, it can have a large impact on local snow
cover duration estimates for pixels with forest canopy even within regions where
forest cover is relatively sparse or mostly absent. The primary limitation of the
canopy adjustment approach is that it is ineffective in cases where an insufficient
number of surrogate pixels can be located within the local neighborhood, such as
when a target pixel is surrounded by large tracts of contiguous, high density forest
cover. Despite this limitation, the canopy adjustment approach substantially
increases accuracy of fSCA maps in forested and partially forested regions. Together,
the improved accuracy of the scene-based fSCA product and the approach developed
to incorporate all Landsat data acquired during a period of record to calculate mean
annual snow cover duration enables the production of an accurate snow cover
duration product at a higher spatial resolution than has previously been available.
The relatively high spatial resolution of both the Landsat scene-based snow cover
product and the Landsat snow cover duration product can help illuminate relatively
fine scale snow cover patterns common in rugged topography that would be
obscured by the coarser spatial resolution of sensors like MODIS or VIIRS. This will
result in enhanced understanding and possibly new insights into snow cover
patterns and processes, particularly in regions with complex topography that

consistently feature a high degree of fine scale snow cover variability.
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CHAPTER 6

CONCLUSIONS

Work presented in Chapters 2-5 demonstrates the utility of Landsat and
other moderate to high spatial resolution multispectral instruments for mapping
both seasonal snow cover and persistent ice and snow cover such as glaciers and
perennial snowfields. While the approaches described in Chapters 3-5 for mapping
persistent ice and snow cover, snow covered area in forested areas, and mean snow
cover duration have been validated, additional innovation and adjustments will
likely lead to further improvements in product accuracy. There are two specific
avenues of research with strong potential for improving Landsat-derived snow
cover data products. First, snow covered area mapping algorithms should be
extended to work with data from similar multispectral sensors such as the
Operational Land Imager (onboard Landsat 8) and the European Space Agency’s
Sentinel-2 instrument. Extension of the basic algorithms, including the TMSCAG
spectral unmixing algorithm, the forest canopy adjustment approach, and the
approach for mapping persistent ice and snow cover will be relatively
straightforward. However, comprehensive assessment of differences between
products resulting from differences in the spectral and spatial resolutions of these

sensors will be necessary. In particular, the reduced potential for radiometric
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saturation in the visible bands provided by Landsat 8 and Sentinel-2 relative to
Landsat 5/7 may have a substantial impact on the retrieval of snow covered area
and could bias change analysis that incorporates data from both sensors if not
explicitly addressed.

Extension of the algorithms presented here to sensors with similar spatial
resolutions and spectral bands will be essential for maximizing the available data
for analysis, particularly in regions where cloud-free views of the earth surface are
relatively scarce. Ideally, snow cover products will eventually incorporate data from
multiple sensors with different capabilities. Combining Landsat-derived snow cover
with data from optical remote sensing instruments with significantly different
spatial resolutions (e.g., MODIS, VIIRS) offers the potential for providing snow
covered area products with better temporal resolution. Finally, combination of data
from Landsat, other types of instruments such as radar or lidar, and physically-
based snow cover modeling enables the estimation of snow water equivalent,
perhaps the most sought-after snow metric.

The science data products described in Chapters 3-5 have a wide array of
potential uses across a variety of disciplines. These datasets can improve our
understanding of basic snow processes as well as the variability of snow and ice
cover in the recent past and into the future. While a comprehensive discussion of
potential scientific questions these datasets could help answer is beyond the scope
of this work, several of the most pressing questions and research applications that

could benefit from Landsat-derived snow cover data are outlined below.



122

Landsat-derived snow cover datasets are particularly valuable for providing
a comprehensive inventory of snow cover across the full range of elevations, slope-
aspect combinations and vegetation types present throughout a region such as an
individual mountain range. Remotely sensed snow cover data are also crucial for
monitoring snow cover above the treeline, where in situ observations are typically
sparse or nonexistent. While other remotely sensed snow cover products, such as
the MODIS snow products, can also provide this type of comprehensive inventory,
Landsat’s higher spatial resolution provides a unique opportunity to assess the
relationship between snow cover duration and landscape characteristics such as
slope, aspect, topographic position, and vegetation type and density. The higher
spatial resolution snow cover data can be used to assess changes in snow cover
duration for specific landscape types or positions over time. For example, recent
research suggests that under future warming scenarios, topographic effects will
have a strong impact on the timing of snowmelt (and resulting streamflow), with
areas subject to topographic shading potentially more resistant to earlier snowmelt
brought on by warmer temperatures (Lundquist & Flint, 2006). Landsat-derived
snow cover duration data have the potential to provide a detailed assessment of this
hypothesis. In another example, assessment of the spatial patterns of snow cover
duration can also provide insight into the physical processes impacting snow
accumulation, redistribution, and accumulation. Arctic and alpine environments
typically experience substantial redistribution of snow by wind transport, resulting
in substantial snow cover heterogeneity at scales < 100 m (Liston, 1998; Pomeroy,

2004). In recent years, understanding and modeling physical processes like wind
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redistribution of snow has been a top priority for snow researchers. Landsat-
derived patterns of snow cover duration can be used to validate and improve
physically-based snow evolution models. These models will in turn be useful for
forecasting changes in snow cover that will accompany forecasted changes in
temperature and precipitation.

The comprehensive, high spatial resolution snow cover duration datasets
derived from Landsat can also be used to identify areas of persistent ice and snow
cover, such as glaciers and perennial snow cover, as demonstrated in Chapters 3 and
4. While automated identification of areas of PISC for a single time period represents
a significant step forward, the next step is to monitor changes in persistent ice and
snow cover over time. While numerous efforts have already explored changes in
glacier area for various regions and over various periods of time, the use of
automated techniques that exploit the full Landsat data archive will allow this
process to be standardized and extended to regions where previous analysis has not
been conducted. The creation of regional 30 m resolution datasets at regular
temporal intervals can provide further insight into the processes responsible for
changes in glaciers by examining the distribution of changes in relation to
topography. For example, glaciers with accumulation zones in protected cirque
basins (ideal for both enhanced accumulation and reduced insolation) are often less
responsive to regional climate signals (Hoffman et al., 2007). Landsat-derived PISC
datasets can be used to test this and other hypotheses. Insights derived from this
type of analysis can be applied to improve predictions of change for individual

glaciers and snowfields.
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Landsat-derived snow cover duration datasets can also be used to assess the
impact of changes in snow cover duration on the distribution of plant communities.
Research has demonstrated feedback loops between snow cover and vegetation
often play a role in the establishment of shrubs in arctic tundra (Sturm et al., 2001;
Sturm et al., 2005) and trees in alpine tundra (Bekker, 2005; Moir et al., 1999). Since
these types of land cover conversion typically occur incrementally and begin as
changes isolated to small patches < 100 x 100 m in size, changes occurring since the
establishment of satellite remote sensing programs are best observed at finer
spatial resolutions such as the 30 m resolution of Landsat. Finally, the detailed
patterns of snow cover duration available from Landsat provide the opportunity to
assess the impact of snow cover patterns on animal movement, habitat preferences,
and reproductive success. For example, ungulates often search out landscape
patches with the shallowest snow cover (Ball et al.,, 2001). Snow cover duration
combined with physically-based snow modeling can be used to reconstruct depth
and snow water equivalent (Molotch, 2009), over the course of a winter and identify
these areas. In another example, caribou often seek out late lying snow patches
(easily identified from a Landsat-derived snow cover duration product) for
protection from mosquitos during the spring calving season.

The individual questions and scientific applications addressed here
represent only a limited subset of those that can be explored using Landsat snow
cover data. In summary, the high spatial resolution, wall-to-wall coverage, and
relatively long period of record of the Landsat sensors have the potential to provide

insight into changing snow and ice cover conditions across arctic, alpine, and
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montane systems that would not be possible using limited in situ observations or

coarser resolution remote sensing data.
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