
ALGORITHMS AND METHODOLOGY TO DESIGN

ASYNCHRONOUS CIRCUITS USING

SYNCHRONOUS CAD TOOLS

AND FLOWS

by

Vikas S. Vij

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

The University of Utah

December 2013



Copyright c© Vikas S. Vij 2013

All Rights Reserved



The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

This dissertation of Vikas S. Vij

has been approved by the following supervisory committee members:

Kenneth S. Stevens , Chair 11/5/2013
Date Approved

Chris Myers , Member 10/31/2013
Date Approved

Erik Brunvand , Member 11/5/2013
Date Approved

Priyank Kalla , Member 10/31/2013
Date Approved

Christos Sotiriou , Member
Date Approved

and by Gianluca Lazzi , Chair of

the Department of Electrical and Computer Engineering

and by David B. Kieda, Dean of the Graduate School.



ABSTRACT

Asynchronous design has a very promising potential even though it has largely received

a cold reception from industry. Part of this reluctance has been due to the necessity of

custom design languages and computer aided design (CAD) flows to design, optimize,

and validate asynchronous modules and systems. Next generation asynchronous flows

should support modern programming languages (e.g., Verilog) and application specific

integrated circuits (ASIC) CAD tools. They also have to support multifrequency designs

with mixed synchronous (clocked) and asynchronous (unclocked) designs. This work

presents a novel relative timing (RT) based methodology for generating multifrequency

designs using synchronous CAD tools and flows.

Synchronous CAD tools must be constrained for them to work with asynchronous

circuits. Identification of these constraints and characterization flow to automatically derive

the constraints is presented. The effect of the constraints on the designs and the way they

are handled by the synchronous CAD tools are analyzed and reported in this work.

The automation of the generation of asynchronous design templates and also the

constraint generation is an important problem. Algorithms for automation of reset addition

to asynchronous circuits and power and/or performance optimizations applied to the circuits

using logical effort are explored thus filling an important hole in the automation flow.

Constraints representing cyclic asynchronous circuits as directed acyclic graphs (DAGs)

to the CAD tools is necessary for applying synchronous CAD optimizations like sizing,

path delay optimizations and also using static timing analysis (STA) on these circuits. A

thorough investigation for the requirements of cycle cutting while preserving timing paths is

presented with an algorithm to automate the process of generating them.

A large set of designs for 4 phase handshake protocol circuit implementations with early

and late data validity are characterized for area, power and performance. Benchmark circuits

with automated scripts to generate various configurations for better understanding of the

designs are proposed and analyzed. Extension to the methodology like addition of scan



insertion using automatic test pattern generation (ATPG) tools to add testability of datapath

in bundled data asynchronous circuit implementations and timing closure approaches are also

described. Energy, area, and performance of purely asynchronous circuits and circuits with

mixed synchronous and asynchronous blocks are explored. Results indicate the benefits that

can be derived by generating circuits with asynchronous components using this methodology.

iv



This dissertation is dedicated to my parents, my brother and his family who

have always motivated me and supported me.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Overview of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Asynchronous Circuit Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Asynchronous Circuit Classification . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 2-Phase and 4-Phase Signaling Protocol . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2.1 2-Phase Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2.2 4-Phase Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Bundled Data Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3.1 Handshake Channel Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3.2 Data Validity in Bundled Data Protocols . . . . . . . . . . . . . . . . . . 14

2.2 Relative Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Synchronous CAD Tool Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. ASYNCHRONOUS CAD TOOLS AND FLOWS . . . . . . . . . . . . . . . . . . . . 18
3.1 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Clock Compatible Multifrequency IC Flow . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 RT Element Design and Characterization . . . . . . . . . . . . . . . . . . . . . 21
3.3.1.1 Element Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1.2 Automatic Sequential RT Characterization . . . . . . . . . . . . . . . . 23

3.3.2 Clocked Design Flow Using RT Sequentials . . . . . . . . . . . . . . . . . . . 27
3.3.3 Mapping RT Constraints Onto Design Instances . . . . . . . . . . . . . . . . 27
3.3.4 Timing Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.5 Final RT Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4. AUTOMATIC RESET ADDITION BASED ON POWER/PERFORMANCE
OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Generate Cycles to Reset when PI’s are Defined . . . . . . . . . . . . . . . . 37
4.3.2 Generate Paths to Reset when PIs are Undefined . . . . . . . . . . . . . . . . 40
4.3.3 Gate Modifications for Reset Insertion . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.4 Optimization Heuristics for Selecting the Best Solution . . . . . . . . . . . 42

4.3.4.1 Delta Logical Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.4.2 Relative Load on a Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.4.3 Performance or Power Optimization . . . . . . . . . . . . . . . . . . . . . 45

4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5. TIMING PATH DRIVEN CYCLE CUTTING FOR SEQUENTIAL
CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Timing Constraint Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Classification of Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.3 Benefits of Correct Cycle Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.4 Generality of Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Rules for Timing Path Driven Cycle Cutting . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.1 Gate Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.2 Architectural Cycles are Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.3 Timing Arc Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.4 Specifying the Correct Causal Path . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.5 Defining Causal Paths that are Not GCPs . . . . . . . . . . . . . . . . . . . . . 67

5.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.1 Adjacency List Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5.2 Finding All the Cycles Present in the Circuit . . . . . . . . . . . . . . . . . . . 69
5.5.3 Timing Constraint Paths with Noncausal Path Removal . . . . . . . . . . . 71
5.5.4 Generating Cycle Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.5 Uncut Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6.1 Four-cycle Handshake Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6.2 Benchmark Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



6. CHARACTERIZATION OF FAMILY OF 4-PHASE LATE PROTOCOLS . 86
6.1 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Late Data Validity Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Concurrency Reduction on MAX with Cuts . . . . . . . . . . . . . . . . . . . 90
6.3.1.1 Concurrency Reduction from Right Cuts R . . . . . . . . . . . . . . . 90
6.3.1.2 Concurrency Reduction from Left Cuts L . . . . . . . . . . . . . . . . 91
6.3.1.3 Untimed Protocol Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.1.4 L and R Cut Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5 Hand-optimized Handshake Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7. CASE STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2.1 Constraint Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2.2 Delay Controllability in Pipelines with Variable Frequency of Operation109
7.2.3 Wireload Models and its Impact on RT Methodology . . . . . . . . . . . . 114
7.2.4 Automatic Scan Insertion using Tetramax . . . . . . . . . . . . . . . . . . . . . 117

7.3 FIFO Design Automation for Template Characterization . . . . . . . . . . . . . . 119
7.3.1 Linear FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.2 Parallel FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3.3 Tree FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3.4 Square FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 OCP-IP Case Study for Synchronous and Asynchronous Domain Interfacing125
7.4.1 Open Core Protocol (OCP) Background . . . . . . . . . . . . . . . . . . . . . . 129
7.4.2 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.4.3 Asynchronous OCP Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4.4 Domain Interface Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4.4.1 The sync-sync Domain Interface FIFO . . . . . . . . . . . . . . . . . . . 137
7.4.4.2 The async-sync Domain Interface FIFO . . . . . . . . . . . . . . . . . . 138
7.4.4.3 The sync-async Domain Interface FIFO . . . . . . . . . . . . . . . . . . 140

7.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.5 Asynchronous 64-point FFT Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5.1 FFT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.5.2 FFT Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.5.2.1 Asynchronous Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.5.2.2 Synchronous Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.5.4 Timing Closure Approaches for Asynchronous Circuits . . . . . . . . . . . 157

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

viii



APPENDICES

A. RESULTS FOR CHAPTER 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B. RESULTS FOR CHAPTER 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

ix



LIST OF FIGURES

2.1 2-Phase protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 4-Phase protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Timed (bundled data) handshake design. Delay sized by RT constraint
reqi ↑ 7→ Li+1/d + s ≺ Li+1/clk↑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 4-phase protocol: data validity schemes [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Frequency based (clocked) design. Clock frequency and datapath delay of
first pipeline stage is constrained by Li/clk↑i 7→ Li+1/d + s ≺ Li+1/clk↑i+1. 16

2.6 Synchronous CAD tool flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 CCS specification of pipeline controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Simplified relative timing multifrequency design flow. . . . . . . . . . . . . . . . . . 21

3.3 Design element creation flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 LC circuit implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Structural Verilog in 65nm Artisan library. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Automated sequential RT characterization flow. . . . . . . . . . . . . . . . . . . . . . . 24

3.7 The semimodular specification of a 2-input NAND gate. Inputs that would
disable an output are not permitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 RT constraints for pipeline controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.9 Verilog code snippet for simple adder pipeline stage. . . . . . . . . . . . . . . . . . . 28

3.10 An SDC example for simple adder pipeline stage. . . . . . . . . . . . . . . . . . . . . . 29

4.1 A cyclic directed graph example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Gate conversion example for Lemma 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Example 1: Circuit implementation before reset. . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Example 1: Circuit implementation with power optimization. . . . . . . . . . . . . 43

4.5 Example 1: Circuit implementation with performance optimization. . . . . . . . 44

4.6 Example 2: Circuit implementation before reset. . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Example 2: Circuit implementation with power/performance optimization. . . 44

4.8 Example 1: Power optimization with undefined inputs. . . . . . . . . . . . . . . . . . 48

4.9 Example 1: Performance optimization with undefined inputs. . . . . . . . . . . . . 48

4.10 Example 1: Circuit implementation using Petrify. . . . . . . . . . . . . . . . . . . . . . 49



4.11 Example 2: Circuit implementation using Petrify. . . . . . . . . . . . . . . . . . . . . . 49

5.1 LC circuit implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Classification of cycles example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 WCHB circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 WCHB circuit with cycle cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Cycle cut constraints for WCHB circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 L0000 R0044 circuit implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Adjacency list for LC circuit of Fig 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8 Covering table for LC circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.9 Local cycle cut constraints for LC circuit of Fig 5.1. . . . . . . . . . . . . . . . . . . 74

5.10 LC circuit with cycle cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.11 Architectural cycle cut constraints for LC circuit of Fig. 5.1. . . . . . . . . . . . . . 76

6.1 Minimized state graph of max, configured as a shape for early data validity
protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 STG for the abstracted max protocol for early data validity protocols. . . . . . . 89

6.3 Minimized state graph of max, configured as a shape for late data validity
protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 STG for the abstracted max protocol for late data validity protocols. . . . . . . . 91

6.5 Right cut R denotation and range for late data validity protocols. . . . . . . . . . 91

6.6 The shape resulting from cutaway R2200. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.7 Left cut L denotation and range. The top row is duplicated at the bottom of
the shape to more easily show the left cut ordering. . . . . . . . . . . . . . . . . . . . . 92

6.8 The shape (above the duplicated line) resulting from cutaway L0011. . . . . . . 93

6.9 The symmetric lattices of untimed DI/SI left and right cuts. . . . . . . . . . . . . . 95

6.10 L0011◦R4220 circuit implementation using Petrify. . . . . . . . . . . . . . . . . . . . 105

6.11 Hand-optimized L0011◦R4220 circuit implementation. . . . . . . . . . . . . . . . . 105

7.1 Example design: a simple ASIC mathematical pipeline segment computing
dout = x2 +3x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 The synthesized arithmetic Verilog for our toy example. . . . . . . . . . . . . . . . . 110

7.3 Petri net specification of linear control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Loop breaking constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5 Comparison of results for linear FIFO. All reported numbers are averages with
respect to the buffering depth of FIFO except for cycle time and simulation
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xi



7.6 Comparison of results for parallel FIFO. All reported numbers are averages
with respect to the buffering depth of FIFO except for cycle time and
simulation time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.7 Comparison of results for tree FIFO. All reported numbers are averages with
respect to the buffering depth of FIFO except for cycle time and simulation
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.8 Comparison of results for square FIFO. All reported numbers are averages
with respect to the buffering depth of FIFO except for cycle time and
simulation time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.9 OCP implementation block diagram with native OCP master and slave. . . . . 130

7.10 Basic OCP master and slave interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.11 OCP implementation block diagram with domain interface (DI) and back-end
(BE) modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.12 State machine control network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.13 OCP master control network with steering and stalling block. . . . . . . . . . . . . 135

7.14 sync-sync domain interface FIFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.15 async-sync domain interface FIFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.16 sync-async domain interface FIFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.17 Multirate FFT architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.18 Fork/Join template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.19 Synchronous decimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.20 Asynchronous decimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.21 Synchronous expander. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.22 Asynchronous expander. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.23 Data flow graph of 4-point FFT calculation. . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.24 4-point FFT design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.25 Verilog code snippet for FFT 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.26 64-point FFT design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xii



LIST OF TABLES

4.1 Results comparison for benchmark circuits. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Controller circuit comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Comparison of performance metrics using timing path cycle cutting versus
the algorithm in a commercial CAD tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Comparison of performance metrics using timing path cycle cutting versus
the algorithm in a commercial CAD tool for WCHB example. . . . . . . . . . . . 64

5.3 Total number of cycles found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Cycles left uncut for V1 algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Unsized gates for V1 algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 eτ ratio of cycle cutting done by the commercial CAD tool and V1 algorithm. 80

5.7 Comparison of performance metrics using the algorithm in a commercial
CAD tool versus timing path based cycle cutting (V1) (Commercial CAD
tool number/V1 number). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 Benchmark circuits design comparison (*Number of gates with all the input
to output paths cut). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.9 Results comparison for benchmark circuits. . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Number of gates before adding reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Total number of cycles found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Forward latency (ps/pipestage) (Power optimization). . . . . . . . . . . . . . . . . . 97

6.4 Forward latency (ps/pipestage) (Performance optimization). . . . . . . . . . . . . 97

6.5 Backward latency (ps/pipestage) (Power optimization). . . . . . . . . . . . . . . . . 98

6.6 Backward latency (ps/ pipestage) (Performance optimization). . . . . . . . . . . 98

6.7 Cycle time (ps) (Power optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.8 Cycle time (ps) (Performance optimization). . . . . . . . . . . . . . . . . . . . . . . . . 99

6.9 Buffering depth for circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.10 Routed core area (um2) (Power optimization). . . . . . . . . . . . . . . . . . . . . . . . . 101

6.11 Routed core area (um2) (Performance optimization). . . . . . . . . . . . . . . . . . . . 101

6.12 Power consumed (mW ) (Power optimization). . . . . . . . . . . . . . . . . . . . . . . . 102

6.13 Power consumed (mW ) (Performance optimization). . . . . . . . . . . . . . . . . . . . 102



6.14 Simulation time (ns) (Power optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.15 Simulation time (ns) (Performance optimization). . . . . . . . . . . . . . . . . . . . . . 103

6.16 Energy consumed (pJ/token) (Power optimization). . . . . . . . . . . . . . . . . . . . 104

6.17 Energy consumed (pJ/token) (Performance optimization). . . . . . . . . . . . . . . 104

7.1 Example comparing flop and latch based design with identical pipeline
frequency. The ICS column uses an incomplete constraint set. Energy
reported in pJ per token, clock period in nsec. . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Version with variable pipeline frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Latch based time borrowing versions with and without variable pipeline
frequencies using incomplete and complete timing path constraints. . . . . . . . 114

7.4 Data check timing report summary on some RT constraints. Listed slacks are
all worst case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5 Timing report summary for constraints between pipeline stages. The latches
in datapath borrow time from the next stages with LSup (library setup time),
MxTB (maximum time borrowing) and TB (real time borrowing) listed. All
the numbers are in nanoseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.6 Results for toy example using different wireload models. . . . . . . . . . . . . . . . 116

7.7 Scan insertion coverage and stuck at fault summary. . . . . . . . . . . . . . . . . . . . 118

7.8 Energy, performance and area comparison for design with no domain crossing.142

7.9 Energy, performance and area comparison for design with domain crossing. . 143

7.10 The 16-point FFT comparison result (* constant field scaled to 65 nm
technology). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.11 The 64-point FFT comparison result (* constant field scaled to 65 nm
technology, + nominal process voltage). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.12 Design comparisons (+ The nominal process voltage). . . . . . . . . . . . . . . . . . 157

7.13 Comparison of Timing Closure Approaches on 64-point FFT. . . . . . . . . . . . . 160

A.1 Forward latency (ps/pipestage) for circuits with lr→la and lr→rr con-
straints (Performance optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.2 Backward latency (ps/pipestage) for circuits with lr→la and lr→rr con-
straints (Performance optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.3 Cycle time (ps) for circuits with lr→la and lr→rr constraints (Performance
optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.4 Routed core area (um2) for circuits with lr→la and lr→rr constraints (Per-
formance optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.5 Power consumed (mW ) for circuits with lr→la and lr→rr constraints (Per-
formance optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.6 Simulation time (Post-APR with SDF back-annotation) (ns) for circuits with
lr→la and lr→rr constraints (Performance optimization). . . . . . . . . . . . . . . 171

xiv



A.7 Energy consumed (pJ/token) for circuits with lr→la and lr→rr constraints
(Performance optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.8 Forward latency (ps/pipestage) for circuits with lr→la and lr→rr con-
straints (Power optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.9 Backward latency (ps/pipestage) for circuits with lr→la and lr→rr con-
straints (Power optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.10 Cycle time (ps) for circuits with lr→la and lr→rr constraints (Power opti-
mization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.11 Routed core area (um2) for circuits with lr→la and lr→rr constraints (Power
optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.12 Power consumed (mW ) for circuits with lr→la and lr→rr constraints (Power
optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.13 Simulation time (Post-APR with SDF back-annotation) (ns) for circuits with
lr→la and lr→rr constraints (Power optimization). . . . . . . . . . . . . . . . . . . . 178

A.14 Energy consumed (pJ/token) for circuits with lr→la and lr→rr constraints
(Power optimization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.15 Forward latency (ps/pipestage) for circuits with lr→la and lr→rr con-
straints (Petrify). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.16 Backward latency (ps/pipestage) for circuits with lr→la and lr→rr con-
straints (Petrify). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.17 Cycle time (ps) for circuits with lr→la and lr→rr constraints (Petrify). . . . . 182

A.18 Routed core area (um2) for circuits with lr→la and lr→rr constraints (Petrify).183

A.19 Power consumed (mW ) for circuits with lr→la and lr→rr constraints (Petrify).184

A.20 Simulation time (Post-APR with SDF back-annotation) (ns) for circuits with
lr→la and lr→rr constraints (Petrify). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.21 Energy consumed (pJ/token) for circuits with lr→la and lr→rr constraints
(Petrify). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.1 Forward latency (ps) for circuits with cycle cuts generated by my algorithm. 187

B.2 Forward latency (ps) for circuits with cycle cuts generated by commercial
CAD tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.3 Backward latency (ps) for circuits with cycle cuts generated by my algorithm. 189

B.4 Backward latency (ps) for circuits with cycle cuts generated by commercial
CAD tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.5 Cycle time (ps) for circuits with cycle cuts generated by my algorithm. . . . . 191

B.6 Cycle time (ps)for circuits with cycle cuts generated by commercial CAD tool.192

B.7 Routed core area (um2) for circuits with cycle cuts generated by my algorithm.193

B.8 Routed core area (um2) for circuits with cycle cuts generated by commercial
CAD tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

xv



B.9 Power consumed (mW ) for circuits with cycle cuts generated by my algorithm.195

B.10 Power consumed (mW ) for circuits with cycle cuts generated by commercial
CAD tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.11 Simulation time (Post-APR with SDF back-annotation) (ns) for circuits with
cycle cuts generated by my algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.12 Simulation time (Post-APR with SDF back-annotation) (ns) for circuits with
cycle cuts generated by commercial CAD tool. . . . . . . . . . . . . . . . . . . . . . . . 198

B.13 Energy consumed (pJ/token) for circuits with cycle cuts generated by my
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B.14 Energy consumed (pJ/token) for circuits with cycle cuts generated by com-
mercial CAD tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

xvi



ACKNOWLEDGEMENTS

I would like to thank Dr. Ken Stevens for his guidance, understanding, patience, and

most importantly, his assistance through my graduate studies at the University of Utah. His

mentorship, expertise and humor provided me with the motivation to pursue my doctoral

research. His support and encouragement were crucial through this whole experience. I

would like to thank Dr. Chris Myers, Dr. Erik Brunvand, Dr. Priyank Kalla, and Dr. Christos

Sotiriou for their constructive reviews of my work and for their constant assistance through

my graduate studies.

I wish to thank my friends in the research group: William Lee, Shomit Das, Raghu Prasad

Gudla, Krishnaji Desai, Dan Gebhardt and Junbok You for having all those constructive

discussions and presentations to learn from and teach each other. Their reviews and critical

comments on my manuscripts and work helped improve the quality immensely.

I would like to thank the Electrical and Computer Engineering Department at the

University of Utah, especially Lori Sather for guiding me through the administrative stuff

at the University and always being there to help. The long stay in Salt Lake City would

not have been fun without the presence and help of my friends. Special thanks to Sai and

Hemang for always being there to motivate me. Last but not the least my parents, my brother,

my sister-in-law and my nephews for sticking by me through all this time and making this

whole journey a fun filled one.



CHAPTER 1

INTRODUCTION

Integrated circuits continue to grow in performance and transistor count, with current

designs exceeding a few billion transistors. Distributing the clock to the entire chip in such

designs poses significant design effort and energy. Power consumed by the chip increases

from generation to generation because total chip area remains constant or grows. This

results in power hungry clock drivers that require high slew rates in order to distribute a high

frequency clock with limited skew. This has resulted in designs where nearly 40 percent of

the total on chip power consumption is due to the clock generation and distribution network

[2, 3]. Earlier, performance and area were the metrics around which VLSI designers would

build and optimize their chips, but in the last decade power has arguably become the most

important metric.

The presence of a large number of transistors has also resulted in different approaches to

design which involve different intellectual property (IP) blocks characterized and optimized

for a specific frequency of operation. These IP blocks being integrated together to create

a chip with multiple clock frequency domains is called multisynchronous design. The

overhead of clock domain crossing and also the increase in design complexity of the system

are becoming a big issue in terms of power and also performance.

Asynchronous circuits are a potential solution to all these problems, as they switch only

to do useful work. The frequency of operation of asynchronous circuits is dynamic and is

dependent on the amount of logic in the pipeline as well as on the operating frequency of

the pipelines adjacent to it. Since there is no global clock and all the communication is local,

there is no need for power hungry low skew drivers. These circuits are based on handshake

protocols, which enhance the modularity and composability of the designs and thus assist in

supporting multiple frequency designs without the need for synchronization. By operating

the asynchronous system at frequencies that best optimize the power and performance of



2

each individual asynchronous modules an overall better design is achieved. One of the better

silicon examples of such an architecture is the Pentium Processor front end, which operates

at three frequencies: 720MHz for instruction decode, 3.6GHz for instruction selection, and

900MHz for instruction steering and issue [4]. This design was fabricated in the same

foundry as its commercial counterpart, and achieved an 17 fold improvement in eτ2 (energy

delay squared product).

If the timing models employed in the clocked design style can be leveraged by general

multifrequency design, the same tools, languages, and flows can be used with all methods

of timing for design and architecture optimization. Relative timing (RT) does just that;

it bridges the gap between the incompatible timing used by unclocked design styles by

expressing the timing in a form used by commercial clocked electronic design automation

(EDA) tools. Once timing compatibility is achieved, common design languages, standard cell

libraries, and tool flows become common to all design styles. This compatibility enhances

productivity, reduces the cost of adopting multifrequency design methodologies and results

in power and performance advantages. A flow based on RT to generate multifrequency

designs using commercial clocked EDA tools is described in this dissertation.

1.1 Related Work
The convergence of asynchronous design approaches and the synchronous (clocked)

computer aided design (CAD) tools and flows has been an actively researched topic. Based

on different timing models used for the asynchronous design, different approaches are

proposed to use the synchronous CAD tools and flows either partially or fully.

Flows related to approaches that use delay insensitive (DI) encoding use only the clocked

synthesis CAD tool like Synopsys Design Compiler (DC) [5]. The synthesized design output

is then mapped to specific DI gate implementations, which preserve the hazard properties of

the design. Since timing is inherent in the DI systems, there is no requirement to specify

timing constraints for functional correctness. The NULL Convention Logic (NCL) designs

by Theseus Logic ([6]), the Proteus flow by University of Southern California and Fulcrum

Microsystems ([7]) and the phased logic ([8]) approach to design circuit using the level

encoded two-phase dual rail (LEDR) encoding follow this partial use of synchronous CAD

tools and flows.



3

Commercial companies like Silistix working on DI design also have attempted to

address this problem for network-on-chip (NoC) designs with their toolflow, which requires

a precharacterized technology library [9]. The library contains adapters for their IP interface

protocols and hard macroblocks for the CHAIN interconnect ([10]), which is used to connect

the system blocks. The toolflow is named CHAINarchitect and it converts the network

specified in a custom language called the connect specification language (CSL) into an

on-chip network implementation. The benefits of this toolflow are its completeness in

terms of all the general CAD flow steps like place and route, testing and static timing

analysis (STA). This flow applies only to NoC designs developed using the technology

library precharacterized by Silistix. Hence, it is not a general design flow. Also, the

synchronous CAD tool optimizations are not applied because of the use of precharacterized

hard macroblocks.

Desynchronization approach is the most complete existing method for generating an

asynchronous bundled data design using the synchronous CAD flows [11, 12, 13, 14, 15]. It

also uses standard library cells and hardware description languages (HDLs) to specify the

circuit. This approach is built on the marked graph theory and hence proves the liveness,

safeness and flow equivalence properties of the circuits. It accomplishes a direct mapping

of the synchronous design into an asynchronous equivalent by removing the clock network

and replacing it with an asynchronous handshake network. Postsilicon numbers for the

ASPIDA DLX processor and a DES core were published for comparison of the asynchronous

design with its synchronous counterpart [11, 12, 13, 14, 15]. Desynchronization provides

significant benefits in electromagnetic interference (EMI) improvements and shorter design

cycles. However, design results show little or no power improvement over the initial

clocked design. The asynchronous design operates at average case speed as compared to

worst case speed for the synchronous design, thus resulting in performance benefits for the

fabricated desynchronized DLX processor. The base of the timing constraint specification

for this approach is first to divide each flip-flop into a pair of latches which are individually

controlled by a handshake controller. Then, a virtual clock is created to enable each latch

for timing. This approach restricts the design to the clock paradigm, thus preventing the

application of asynchronous architectural and design optimizations, which are important to



4

gain the benefits similar to the Pentium front-end example. The benefit of this approach is

that the representation is completely like the clocked definition.

The application of synchronous synthesis tools for high-level timed asynchronous

bundled-data design has also been investigated by using a channel-level VHDL code [16].

The circuit implementation was shown on a field programmable gate array (FPGA). The

asynchronous control circuit for this implementation is derived using the ATACS tool [17],

while the FPGA synthesis tool synthesizes the datapath. The benefit of this approach

is the use of an HDL language to generate the asynchronous circuit and the concept of

utilizing synchronous CAD tools to synthesize the combinational logic in the datapath. The

timing and sizing algorithms of the synchronous CAD tools are not used to optimize the

asynchronous design, hence delay elements are created by manually adding buffers based

on the delay requirement.

Another approach that addresses generation of asynchronous bundled data as well as

quasi delay insensitive (QDI) Micropipeline designs is the Weaver flow [18]. It modifies

the library to make it compatible with DC, thus enabling synthesis of asynchronous circuits.

The application of this approach is presented for deterministic as well as data dependent

token propagation which enables its application to a large set of asynchronous circuits. The

major drawback of this approach, however, is that it requires modifying the standard cell

libraries to make it compatible with the flow. Hence, knowledge of library characterization

and modification is required to derive the benefits.

A detailed study of the limitations of the synchronous CAD tools and flows with respect

to applying them on an on-chip network is presented in [19]. These limitations are as

follows:

• There is no mechanism to ensure that delays are matched on different paths in a circuit,

thus making the use of bundled-data infeasible for large networks, since each path

would require manual consideration. Due to this inability to specify relative delay

constraints, there is no automated hazard (glitch) avoidance available.

• The CAD tools do not tolerate combinational feedback paths, hence they are unable

to infer sequential circuits built from combinational gates. Because of this restriction,

circuits that create sequential elements that are not explicitly defined in the standard

cell library cannot be optimized using automatic gate sizing or repeater insertion.



5

• For automatic circuit optimization, each path must be referenced to a common global

clock. If this reference cannot be made, the tool simply ignores the path and the delay

on that path is not optimized.

• The circuit optimization tools are only designed to insert repeaters to manage wire

delays. They do not have the ability to insert sequential elements.

The presence of these limitations resulted in the selection of DI circuit over bundled data

implementation. Hence, if these problems can be addressed then bundled data designs could

be developed using synchronous CAD tools.

Timing is the key to generation of complex asynchronous systems, which show im-

provements in terms of power, performance and even area. But to leverage timing in the

CAD flows, there needs to be a representation that describes it in both the synchronous and

asynchronous domains similarly. Relative timing is one such unifying approach. It defines

the timing as a sequence of competing events that have a specific order of arrival at a point

in the circuit [20]. Hence the problem of timing is simplified into a problem of ordering.

1.2 Motivation
Asynchronous circuits have a lot of benefits like modularity, composability, low power,

and robustness against process, voltage and temperature (PVT) variations. For a long

time, they have been proposed as the solution for most of the design challenges faced by

synchronous designs, but this promise has not materialized commercially. Design examples

like the Pentium front-end, the low power asynchronous ARM, the desynchronized DLX and

many other examples have shown these benefits exist and can be derived [4, 21, 22, 23, 11, 12,

13, 14, 15]. The approaches to achieve these benefits are specific to a certain asynchronous

design style which uses noncommercial research tools and custom specification languages.

The flexibility in terms of design approaches and the vast choices of asynchronous design

styles prevent us from achieving these benefits due to the lack of a unifying methodology.

The asynchronous protocol-based interfaces between design elements are one of the

most efficient multifrequency designs, since this reactive design style requires no overhead

to synchronize between frequency domains. Thus, one might expect the design of unclocked

multifrequency architectures to exhibit reasonable design productivity due to their modular-

ity; however, that has not been shown to be the case when compared with similar clocked



6

design flows. The primary reason for this lack of productivity is related to the difference in

the timing models between clocked and unclocked architectures and the clocked commercial

CAD that has been developed to support design productivity.

The primary goal of this work is to present a multifrequency methodology that develops

pure asynchronous designs or both synchronous and asynchronous designs together. The

existing mature CAD tools and flows available for synchronous designs can be leveraged

to generate asynchronous circuits, thus enhancing the acceptance of asynchronous circuits.

This work also assists in an easy transition from the traditional synchronous designs with

discrete-time domain into asynchronous design domain with continuous-time and reactive

systems.

The new multifrequency methodology must facilitate in deriving the above mentioned

benefits for any design style. It must give the designers the freedom necessary to choose

any design style and easily develop a working system with either asynchronous or mixed

asynchronous and synchronous timing domains.

1.3 Contributions of this Work
The goal of this research is to develop a multifrequency flow which addresses one of the

major bottlenecks related to development and acceptance of asynchronous designs. Major

contributions of this work are as follows:

• A methodology is presented to enable design of asynchronous circuits using syn-

chronous CAD tools and flows. It facilitates an easy transition for any circuit

designer/company to adopt asynchronous methodology.

• A flow for the characterization of asynchronous circuit templates has been defined,

which enables their use with synchronous CAD tools and flows. This flow provides a

systematic way of characterizing the asynchronous designs to be used with the overall

methodology.

• Algorithms have been developed and presented for reset addition and cycle cutting

for automatic characterization of asynchronous design templates to be used with

synchronous CAD tools and flows. Understanding reset addition and a systematic

approach for its addition for power/performance optimization of the overall design is

necessary and is often a manual step in designing asynchronous circuits. The algorithm



7

presented in this dissertation addresses these issues. Similarly, the cycle cutting

algorithm is an indispensable component of the methodology and flow presented here.

It enables the use of timing and STA algorithms of synchronous CAD tools for sizing,

validation and optimization of asynchronous circuits.

• Benchmark circuit templates have been developed and provided for rapid character-

ization of bundled-data asynchronous designs with respect to power, performance

and area. Also, CAD has been developed to automate the generation of the charac-

terization results. Comparison results for 4-phase protocols with early and late data

validity, as well as asynchronous first in first out (FIFO) structures, with respect to

energy, performance and area, are presented by using the tool flow presented in this

dissertation. These results assist in quick selection of asynchronous templates based

on the design requirements.

• The application of the tool flow and methodology on 16-point and 64-point fast Fourier

transform (FFT) circuit are presented. Also, synchronous, asynchronous, globally

asynchronous locally synchronous (GALS) and locally asynchronous globally syn-

chronous (LAGS) implementations of the open core protocol (OCP) are implemented

and compared. These case studies show that this methodology can be applied to

large circuits as well as to circuits with mixed timing schemes i.e., synchronous and

asynchronous.

• This dissertation presents approaches for timing closure for designing better asynch-

ronous designs. The increase in the number of constraints result in an increase in the

effort to achieve no negative slack for all the paths in the circuit. The timing closure

approaches address a key manual step for rapid development of large asynchronous

designs. Its applicability is shown on the 64-point FFT example. Wireload models

are explored to understand their effects on timing and application of optimizations on

asynchronous bundled-data circuits. Also, automatic scan insertion is applied using

Tetramax to explore datapath testability and application of ATPG on bundled-data

circuits.



8

1.4 Overview of this Dissertation
This dissertation describes a methodology to generate asynchronous circuits as well

as circuits with both synchronous and asynchronous blocks using synchronous CAD tools

and flows. The methodology consists of two parts: the first part develops the asynchronous

circuit templates and characterizes them for timing and cycle cut constraints. These circuit

templates and their constraints are then used in the second part with the synchronous

CAD flows to apply timing driven optimization and sizing on the asynchronous design and

synthesize the combinational logic for the datapath. The application of the methodology is

described to design asynchronous circuit templates; additionally, some case studies to show

the applicability of the methodology to derive asynchronous and mixed timed circuits are

detailed.

Chapter 2 describes the concept of asynchronous circuits, RT, and synchronous CAD

tool flow. Chapter 3 presents the approach and methodology of designing asynchronous

circuits using synchronous CAD tools and flows. The generation of constraints and their

applicability to allow timing driven sizing and optimizations on asynchronous designs are

also described. The reset algorithm, which assists in automatic addition of the reset signal

in an asynchronous circuit, is explained in Chapter 4. Additionally, the relationship between

cycles and the addition of a reset signal as well as power or performance optimization is

detailed. Use of STA algorithms and performing timing driven optimization on asynchronous

designs requires the asynchronous circuit to be specified as a directed acyclic graph (DAG)

to the synchronous CAD tools. Chapter 5 gives an algorithm to generate the cycle cuts

constraints while preserving timing paths, thus representing asynchronous circuits as a DAG.

Automatic generation of the cycle cut constraints and the addition of the reset signal enables

automation of asynchronous circuit design and its characterization. Chapter 6 explains the

application of the tool flow to generate results for a family of 4-phase handshake protocol

with data valid at the falling edge of the request signal which are also known as 4-phase

handshake protocols with late data validity. Any methodology and tool flow needs to be

explored by generating circuits of varying complexity to show the merits of the approach.

Chapter 7 describes the applicability of the tool flow on pure asynchronous designs like a

simple 3-stage pipeline computing x2 +3x, 4 types of asynchronous FIFO configurations of

varying depths and datapath widths, a 16-point and a 64-point asynchronous FFT design,



9

and also synchronous, asynchronous OCP and OCP design with both clocked and unclocked

domains. Chapter 8 concludes this work with proposals for future extensions.



CHAPTER 2

BACKGROUND

Asynchronous design is becoming increasingly attractive because of its potential benefits

such as lower power, modularity, composability, ease of global timing issues, robustness

against process, voltage and temperature (PVT) variations, and elasticity to name a few

[24, 25]. This chapter gives an overview of asynchronous design approaches and an overview

of the various terminologies used throughout this dissertation. A detailed understanding of

asynchronous circuit design can be gained through following reference books: [26, 1, 27] .

The basics of relative timing and an overview of the synchronous CAD (computer aided

design) flows are also presented.

2.1 Asynchronous Circuit Basics
Asynchronous designs remove the discrete time assumption from the synchronous design

approach and are continuous in terms of time. The presence of flexibility in terms of design

style and approaches leads to a vast number of solutions to any given problem. They can be

designed with or without any timing assumptions with respect to a specific delay model.

2.1.1 Asynchronous Circuit Classification

Different classes of asynchronous circuits can be defined based on the various assump-

tions they make on timing and environment. These assumptions are made with respect to

how delays are modeled, i.e., as fixed, bounded and unbounded. The fixed delay model

assumes the delay to have a fixed value. The bounded delay model considers delay to be

bounded by a time interval. The unbounded delay model does not restrict the delay in

any bounds and hence it can have any finite value. Based on these models, the following

classification of circuits is defined.

• Delay insensitive (DI) - These circuits operate correctly irrespective of the delays on

its gates and wires. An unbounded delay model is assumed while designing these



11

circuits. These designs are the most conservative and are limited to a small set of

circuits [28].

• Quasi delay insensitive (QDI) - The unbounded delay model for DI circuits is relaxed

for a specific case with wire forks considered to have exactly the same delay, also

known as “isochronic forks.” This assumption leads to wider applicability of these

circuits [29].

• Speed independent (SI) - These circuits assume arbitrary gate delays, but the wire

delays are considered to be zero or negligible. Hence these circuits also consider wire

forks to be isochronic.

• Timed circuits - These circuits are designed using the bounded delay model with

specific minimum and maximum delays for each gate. The presence of defined bounds

leads to more timing constraints and hence greater effort in timing verification. These

circuits are generally faster, smaller, and consume less power [30].

The addition of timing assumptions can lead to performance benefit as well as simpler

and lower power circuits, but this benefit is gained at the cost of robustness against PVT

variation [31]. This occurs due to the reduction in functional redundancy in the circuits with

the increase in the timing assumptions. It is helpful to keep these timing assumptions local

so that they can be easily controlled. One of the design styles which exploits this is the

bundled data design. Thus, to derive the maximum benefit in terms of power, performance

and area, approaches to handle timing need to be explored.

2.1.2 2-Phase and 4-Phase Signaling Protocol

Asynchronous communication between two asynchronous entities is generally indicated

by transitions on a request (req) and an acknowledge (ack) signal. These transitions indicate

the initiation and the end of a valid transaction. The ordering of the events in a transaction

is governed by the transitions on these signals, and this ordering results in the handshake

protocol between two asynchronous entities. There are two signaling protocols that are

commonly used, the 2-phase protocol and 4-phase protocol.



12

2.1.2.1 2-Phase Protocol

The 2-phase protocol, also known as non-return to zero (NRZ) protocol or transition

signaling protocol, consists of two transitions for any valid transaction as shown in Fig. 2.1.

One transition is on the request line, and it indicates the presence of a new data word and the

other transition is on the acknowledge line, and it indicates the acceptance of the new data

and also the end of the transaction. Each transition on the request and acknowledge line (i.e.,

from high to low and from low to high) indicates a new transaction [32]. 2-phase protocols

are considered to be more efficient, as each transaction consists of only two transitions. The

circuit implementation of the 2-phase protocols tend to be large due to the edge detection

requirements of the protocol and at the register storage level. The family of untimed 2-phase

protocols consists of a very small set of eight protocols [33].

2.1.2.2 4-Phase Protocol

The 4-phase protocol, also known as return to zero (RZ) protocol or level signaling

protocol, consists of four transitions for any valid transaction as shown in Fig. 2.2. Since

each transaction consists of four transitions, there is a greater flexibility in terms of selection

of edges when the data word is valid, but there is greater overhead of the reset phase in

the protocol which is a performance bottleneck. This results in lower throughput, which

is one of the reason why asynchronous network-on-chip implementations use 2-phase

protocols for long wires instead of 4-phase [34]. For designs whose delays are dominated

by logic delays and not by wire delays, this protocol presents a wide variety of options

with respect to data validity schemes employed (Sec. 2.1.3.2). The characterization of a

family of untimed 4-phase early data validity protocols resulted in 131 different circuit

implementations [35, 36]. Similarly, a family consisting of 32 untimed 4-phase late data

validity protocols is reported in this dissertation in Chapter 6.

2.1.3 Bundled Data Protocols

A general 4-stage “bundled data” asynchronous linear pipeline design is shown in

Fig. 2.3. Bundled data represents the data signals as normal Boolean levels, and separate

request and acknowledge wires are required with the data signals to control the flow of data

[1]. Hence, it consists of a datapath similar to a clock design and an asynchronous control



13

Acknowledge

Request

Data

Figure 2.1: 2-Phase protocol.

Acknowledge

Request

Data

Figure 2.2: 4-Phase protocol.

path. The datapath contains acyclic combinational logic (CL) and registers (L). The control

path consists of linear control (LC) blocks, which to ensure the functional correctness of a

bundled data design, the setup and hold time constraints at the registers must be fulfilled.

The setup time constraint is the time before the arrival of the clock signal at any register

that the data must be stable. To fulfill the setup time constraint at the registers, the latency

through the control logic must be greater than the maximum delay of the combinational

logic. Thus, delay elements may be required between LC blocks. Similarly, the hold time

constraint is the time after the arrival of the clock signal at any register that the data must be

stable. To fulfill the hold time constraint at the registers, the reset phase of the protocol must

be longer than the hold time requirements.

2.1.3.1 Handshake Channel Type

The channel on a handshake network generally consists of a request signal and an

acknowledge signal. Different protocols can be derived by analyzing the sequence of

transitions on a request and an acknowledge signal on a handshake channel. Handshake



14

CL CLLi Li+1 Li+2
n n

Ctli Ctli+1 Ctli+2

reqi

acki

reqi+1

acki+1

reqi+2

acki+2

reqi+3

acki+3
delay delay

Figure 2.3: Timed (bundled data) handshake design. Delay sized by RT constraint reqi ↑ 7→
Li+1/d + s ≺ Li+1/clk↑.

channels can be characterized as push or pull channels based on whether the sender or the

receiver initiates the handshake [37]. The side initiating the request is termed active while

the passive side generally responds with an acknowledge signal .

• Push channel - Channel with a sender being active and the receiver being passive.

• Pull channel - Channel with a sender being passive and the receiver being active.

The handshake controllers interfacing between different channels considered in this

dissertation are of a specific type. Any handshake controller interfaces two channels i.e., left

and right channel. Both channels are of the push types with the handshake controller being

the passive entity on the left channel and the active entity on the right channel.

2.1.3.2 Data Validity in Bundled Data Protocols

Data validity information in a protocol describes the specific transitions which initiate

and end any transaction. Thus, it describes the band where the data remains stable and

where it can change. 2-phase protocols have a fixed data validity scheme with the data valid

between the transition on the request and the acknowledge. But 4-phase protocols have

much more flexibility when using the data validity schemes to its benefit. Fig. 2.4 shows the

different schemes which are described below [37]:

• Early data validity - A data word is valid before the rising edge of the request (req)

signal and it has to stay stable until the rising edge of the acknowledge (ack) signal.

• Late data validity - A data word is valid before the falling edge of the request (req)

signal and it has to stay stable until the falling edge of the acknowledge (ack) signal.



15

Acknowledge

Request

Early Data Validity

Extended Early Data Validity

Late Data Validity

Broad Data Validity

Figure 2.4: 4-phase protocol: data validity schemes1[1]

• Broad data validity - A data word is valid before the rising edge of the request (req)

signal and it has to stay stable until the falling edge of the acknowledge (ack) signal.

• Extended early data validity - A data word is valid before the rising edge of the request

(req) signal and it has to stay stable until the falling edge of the request (req) signal.

2.2 Relative Timing
Timing is the fundamental difference between clocked and asynchronous design flows.

The effect of time on a system is to order and sequence events. In this work the relative

timing (RT) concept is extended into a methodology that enables the representation of the

sequencing that timing imposes on circuits [20]. A RT constraint consists of a common

timing reference and a pair of events that are ordered in time for correct circuit operation.

The common reference is called the point-of-divergence (pod), and each ordered event is

called a point-of-convergence (poc). A constraint is represented as pod 7→ poc1+m ≺ poc0,

where poc1 must occur in time before poc0 with a margin of m. Hence, the maximum path

delay from pod to poc1 must be less than the minimum path delay from pod to poc0.

1This figure was originally published by Springer and Kluwer Academic Publishers, 2001, page 117,
“Chapter 7: Advanced 4-phase Bundled-data Protocols and Circuits,” Jens Sparsø and Steve Furber, figure 7.2,
c© Springer and is used with kind permission from Springer Science and Business Media.



16

Fig. 2.5 shows a 3-stage clocked linear pipeline. For this clocked design, the relative

timing constraint with respect to setup time (s) is expressed as Ri/clk↑i 7→ Li+1/d + s ≺

Li+1/clk↑i+1. The early arriving RT constraint path from pod clock generator to poc0

Li+1/d is expressed as a maximum delay constraint from the Li/q output of latch Li to Li+1/d

input of the latch Li+1. The late arriving RT constraint path from pod clock generator

to poc1 Li+1/clk can be expressed as a minimum delay from the clock generator to the

next rising edge of the clock signal at the latch Li+1. Bundled data pipelines (Fig. 2.3)

have similar data timing requirements to clocked design (Fig. 2.5). This is expressed in

the asynchronous pipeline as LCi/lr↑ 7→ Li+1/d+s ≺ Li+1/clk↑. This constraint defines

the pipeline frequency and setup time constraint at the register Li+1 with the requirement

that the maximum delay path from LCi/lr↑ (pod) to Li+1/d (poc0) should be faster than

the minimum delay path from LCi/lr↑ to Li+1/clk↑ (poc1) by setup margin. For one

RT constraint in Fig. 2.3, poc maps to LCi/lr, poc0 to Li+1/d, and poc1 to Li+1/clk. The

path from pod to poc0 is [LCi/lr↑ LCi/clk↑ Li/clk↑ Li/q Li+1/d], and from pod to poc1 is

[LCi/lr↑ LCi/rr↑ LCi+i/lr↑ LCi+1/clk↑ Li+1/clk↑]. The RT constraint holds and the circuit

operates correctly iff the minimum delay from pod to poc1 is a setup time s more than the

maximum delay from pod to poc0.

2.3 Synchronous CAD Tool Flow
The synchronous design methodology and paradigm is ingrained in most of the design

approaches today, thanks to the industry level CAD tools and flows available. A general

CL CLLi Li+1 Li+2
n n

clock network

Figure 2.5: Frequency based (clocked) design. Clock frequency and datapath delay of first
pipeline stage is constrained by Li/clk↑i 7→ Li+1/d + s ≺ Li+1/clk↑i+1.



17

synchronous CAD tool flow (Fig. 2.6) starts with a specification, which is written as a

behavioral description in an hardware description language (HDL). This description is

then synthesized for a certain set of constraints like clock period, clock skew, input delay,

output delay and variation assumptions. The output structural HDL circuit generated is then

validated for timing violations and functionality. Timing information from the synthesis

step is employed for this validation using standard delay format (SDF) back-annotation.

The synthesized circuit is then routed using a physical design tool, after which another

step of validation is performed for timing as well as functionality. The postroute timing

validation also uses the SDF information. Timing path analysis and also estimation for

power consumed by the circuit can be done using parasitic information (SPEF) file and also

the value change dump (VCD) file, which represents the switching activity. If timing is met

and the circuit functions correctly, then the circuit can be checked for placement errors and

its logic verified against the specification before fabricating it. This is just a top level tool

flow description and there can be other tools and steps, such as design for test (DFT) logic,

timing closure, etc. that can be added to this flow.

The benefit of this flow is a fixed methodology, modularity of using tools from different

companies at each step, presence of industry grade CAD tools and also availability of

various algorithms for optimization at each step of the flow. Since the flow is defined, it

becomes simpler for the circuit designers to design circuits. The limitation of this flow

is that it has been restricted for synchronous design, and it cannot be used to generate

systems based on different timing assumptions like asynchronous systems. The problem of

generating multifrequency systems using synchronous CAD tools and flows is addressed

in this dissertation by adding extra steps to generate designs with clocked and unclocked

circuit blocks.

constraints
HDL file

Synchronous
Specification

Behavioral
System

Timing
Driven

Synthesis
Prelayout
Validation

Physical
Design

Postlayout
Validation

DRC
&

LVS

Figure 2.6: Synchronous CAD tool flow.



CHAPTER 3

ASYNCHRONOUS CAD TOOLS AND FLOWS

Multifrequency designs achieve improved power and performance by operating each

circuit in a system at the power and performance point they are optimized for. But to gain

these benefits, the timing models employed in the clocked design style must be leveraged

by general multifrequency designs, thus enabling the reuse of the existing tools, languages,

and flows with all methods of timing for design and architecture optimization as used for

clocked (synchronous) designs. A transformative representation called relative timing (RT)

does just that; it bridges the gap between the incompatible timing used in unclocked design

styles by expressing the timing in a form used by commercial clocked EDA tools. Once

timing compatibility is achieved, existing design languages, cell libraries, and tool flows

become common to all design styles. This enhances productivity, increases the quality, and

reduces the cost of adopting multifrequency design methodologies with their resultant power

and performance advantages.

RT is robust because timing requirements are formally derived and proven correct and

complete. RT is also general because it can be applied to the timing of all design approaches,

including clocked design. A set of RT derived constraints are mapped into the clocked

EDA tools enabling the existing tools and flows to be employed for both global clocked,

multifrequency design, or mixed design modes. However, a number of additional tools are

required to characterize the timing, represent the timing graphs of the sequential circuits as

directed acyclic graphs, protect the sequential designs from logical modification through the

tool flow, map the constraints onto an architecture, and enhance timing driven optimization

and validation.

This chapter gives an insight into the complete tool flow with details regarding the

asynchronous template characterization and constraint generation, as well as, using these

templates with the traditional synchronous CAD tools and flows.



19

3.1 Key Contributions
The primary contribution is to define a methodology to develop asynchronous designs

using synchronous CAD tools and flows. This methodology utilizes the existing tools

for synthesis, verification, and automatic RT constraint generation in conjunction with

synchronous CAD tools and flows to derive asynchronous circuits. Algorithms for automatic

reset addition and generation of cycle cuts are developed, which enable automation, as well

as the application of timing driven optimizations and static timing analysis (STA) algorithms

of the synchronous CAD tools. Approaches and analysis of mapping the RT constraints to

minimum and maximum delays is performed with different ways of achieving timing closure.

The traditional clocked design flow remains unmodified except for the addition of these

key technologies and algorithms deployed to characterize and integrate time incompatible

design elements into the EDA tool flow.

3.2 Background
Timing is the source of the power, performance, noise, and area benefits that asynch-

ronous circuits enjoys. It is also the primary impediment to commercial adoption. At the

circuit and architectural level, self-timed/asynchronous design uses a continuous timing

model, whereas clocked design uses a discrete model. Hence, the most challenging design

to integrate with clocked tool flows are purely asynchronous design blocks. Thus, an

asynchronous design is used as an example application to describe this methodology.

Instead of using examples of the more traditional delay insensitive circuit style, the

bundled data design style shown in Fig. 2.3 is used as an illustrative example. The datapath

of bundled data asynchronous design is specified, synthesized, and validated in the same way

as for clock design when using an ASIC design flow. The key difference is that the clock

is removed and replaced with handshaking protocols to implement performance, timing,

sequencing, and flow control. The handshake protocol selected for the controller, as given

in Fig. 3.1, is a timed burst-mode specification that requires protocol level timing constraints

to function correctly. The protocols consists of inputs lr and ra and outputs la and rr with

c1 and c2 being the synchronization points between the left channel and the right channel.

This design choice is made to better illustrate two primary features of the tool methodology

presented here: (i) the ability to support an arbitrary set of timing constraints; and (ii) to



20

LEFT-CHANNEL = lr.c1.la.c2.lr.la.LEFT-CHANNEL
RIGHT-CHANNEL = c1.rr.c2.ra.rr.ra.RIGHT-CHANNEL
SPEC = (LEFT-CHANNEL | RIGHT-CHANNEL) \{ c1, c2 }

Figure 3.1: CCS specification of pipeline controller.

demonstrate the compatibility with current clocked EDA tools by showing how the method

presented here can rely entirely upon the traditional EDA tools for design, optimization, and

validation.

Timing has previously been measured and reported by value rather than by its effect

on a system. The purpose of time on a system is to order and sequence events. RT models

the sequencing imposed by circuit delays. Two core components are required to represent

RT: (i) a common timing point of reference, called a point-of-divergence (pod); and (ii)

two signal events that become ordered in time, called a point-of-convergence (poc). The

RT equation pod 7→ poc1 ≺ poc0 is the basic representation of how time affects a system.

This equation is a logic expression, and can therefore be employed to define the behavior

of a system independent of any specific time value. RT can also be used to represent both

timing paths and frequencies. RT is used to constrain the logical behavior of a circuit due

to system delays. RT can control delays in a system in order to achieve a desired signal

ordering so as to verify that a system operates correctly in the time domain. When mapped

to a physical design where the absolute values of time are important, the RT equation is

annotated with delay and frequency values as well as with margins of separation between

the poc. RT is completely general and represents time in a way that is natural for designers

to understand. Thus, RT creates a new representation and method of thinking about design,

and it also enables the the effects of time on a system.

3.3 Clock Compatible Multifrequency IC Flow
Extending the application of RT to the entire end-to-end design and synthesis flow is

addressed. The flow and the necessary steps to seamlessly integrate this flow with current

commercial clocked CAD tools are shown in Fig. 3.2

There are four main aspects in a basic design flow where additional steps are added to

the traditional clocked flow: (i) the design and characterization of the RT design elements,



21

.v
specification

behavioral .v

structural .v
RT constraints

RT constr.
.v

.v

.cstr
.v

negative slack

Make async.
Design

Elements

Rel. Timing
Character-

ization

Behavioral
System
Design

Structural
Design &

Simulation

RT Constr.
Mapping &

Delay Values

Timing
Driven

Synthesis
Timing
Closure

Physical
Design

Postlayout
Validation

Complete
Rel. Timing
Validation

Figure 3.2: Simplified relative timing multifrequency design flow.

(ii) mapping of the RT constraints and timing values onto the physical architecture, (iii)

perform timing closure on the timing targets supplied in the previous step, and (iv) perform

complete postlayout validation of the RT constraints. Each of these areas require some

additional CAD to support the algorithms of the corresponding aspects of the flow. Note

that this design flow works well for both ASIC, as well as, full custom design flows, and

is agnostic to the specification and design languages employed. It is also agnostic to the

type of design methodology used. For example, the flow can be applied to delay insensitive

(DI), speed independent (SI), or timed circuits in either the control or datapath or both.

No specific gate primitives are required, and any cell library can be employed, including

libraries with dynamic domino gates.

3.3.1 RT Element Design and Characterization

The first part of the RT flow creates and characterizes circuit element in a way that the

traditional EDA tools can integrate them directly into their timing driven circuit design and

optimization algorithms. Note that the design elements that are characterized may not be

logically modified without changing the RT characterization information. Therefore, each

of these modules are provided as a characterized structural design module. At the end of

the flow, part of the constraint information includes control to protect the structural design

while still allowing the tools to optimize the size of the cells for performance and power

optimization. This portion is the fundamental foundation upon which the rest of the flow

rests.



22

3.3.1.1 Element Design

The first aspect is to specify and design the elements. Fig. 3.3 shows the flow for

designing asynchronous circuit elements. First, the designer must create a formal high-level

specification of the protocol for the sequential block. This typically would be a controller

specified as a Petri-Net, communicating sequential processes (CSP), burst-mode, or calculus

of communicating systems (CCS). A CCS specification of a pipeline controller is provided

in Fig. 3.1.

The next step is to create a design that has been fully mapped to the target cell library. If

a design already exists for that specification, synthesis can be skipped. The controller can be

designed by hand or synthesized from the specification to create hazard free logic equations.

Various sequential circuit synthesis tools can be used for synthesis. These are all tools from

academic institutions as no commercial tools currently exist for general sequential circuit

synthesis. The design is then technology mapped to an implementation library generating

the minimum number of hazards [38]. A valid design for the specification in Fig. 3.1, which

has been technology mapped to the academic Artisan 65nm library, is provided in Fig. 3.4.

This design is expressed in a high level design language such as Verilog using a structural

description, shown in Fig. 3.5.

The protocols and designs that are characterized for RT are often sequential and specified

as mealy state machines. This results in designs using combinational logic with feedback

as can be seen in Fig. 3.4. Such designs need to be reset to the correct starting state. The

next part of the element design consists of designing reset in a way that has the least impact

on power, performance, and area of the design. Other methods of generating reset may be

employed, such as through algorithms in the sequential synthesis tools or as stand alone

applications.

The final circuit after reset addition can be deployed in the system level architecture. The

characterized elements contain a behavioral representation for high-level design simulation.

The structural representation is used for generating the RT constraints and in synthesis

followed by the physical design of the overall system.



23

Define
Design

Spec. Have
Design

No

Yes

Synthesis:
Petrify, 3D,
Minimalist,

manual

Tech Map:
Petrify,
manual

DesignIncludes
reset

No

Yes
Create

causal &
performance

paths

Reset
Generation

Final
Design

Figure 3.3: Design element creation flow.

lc0

lc1 lc2

lc6

lc5

lc3 lc4

y

lr

ra ra
rst

rr

lala

rr

C

ck

Figure 3.4: LC circuit implementation1.

3.3.1.2 Automatic Sequential RT Characterization

This part of the flow is shown in Fig. 3.6 as a flowchart. It takes the design, specification,

and architectural usage information and produces the constraints that are used by the EDA

tools throughout the typical ASIC design flow.

The first step is to generate the RT constraints for the design. A tool called verilog2ccs

translates the verilog module that is used in the design into a formal calculus of commu-

nicating systems (CCS) specification. A formal verification engine based on bisimulation

1This figure is the static combinational gate implementation for the RT controller specification in [39].



24

module pipe ctl (lr, la, rr, ra, ck, rst);
input lr, ra, rst;
output la, rr, ck;
INVX1A12TH lc0 (.A(ra), .Y(ra ));
AOI32X1A12TH lc1 (.A0(lr), .A1(ra ), .A2(y ), .B0(lr), .B1(la), .Y(la ));
INVX1A12TH lc2 (.A(la ), .Y(la));
AOI32X1A12TH lc3 (.A0(ra ), .A1(lr), .A2(y ), .B0(ra ), .B1(rr), .Y(rr ));
NOR2X1A12TH lc4 (.A(rr ), .B(rst), .Y(rr));
c element lc5 (.A(la), .B(rr), .Y(y ));
INVX1A12TH lc6 (.A(la ), .Y(ck));

endmodule // pipe ctl

Figure 3.5: Structural Verilog in 65nm Artisan library.

Design,
specification
+ architec.

info.

Rel. Timing
constraint
generation

Architecture
performance
constraints

Rel. Timing
cycle

cutting

Rel. Timing
constraint

set
generation

Use
custom

.lib

Yes

No

Add .lib
timing
pins

Performance
characterizer

Final
Design

RT constr,
cycle cuts

in .cstr

Figure 3.6: Automated sequential RT characterization flow.

semantics called ARTIST automatically generates all of the RT constraints necessary for the

design to meet the specification [40]. It takes the specification and the formal representation

of the design and the library cells used in the design (e.g., NAND gate shown in Fig. 3.7).

The static library cells are represented as semimodular elements where inputs that disable

the output are failures. RT constraints are generated to enforce a signal ordering that makes

the Fail state unreachable in the design. For instance, in Fig. 3.7 if c ≺ a in state NAND0b0

the timing failure is avoided.

Constraints for the pipeline controller are shown in Fig. 3.8. The constraints on the first

row are required for correct conformance between the implementation and specification.

The constraints on the second row are due to the timed nature of the burst-mode specification.

Additional performance and correctness constraints are added based on the intended



25

agent NAND001 = a.NANDa01 + b.NAND0b1 ;
agent NANDa01 = a.NAND001 + b.NANDab1 ;
agent NAND0b1 = a.NANDab1 + b.NAND001 ;
agent NANDab1 = a.Fail + b.Fail + ’c.NANDab0;
agent NANDab0 = a.NAND0b0 + b.NANDa00 ;
agent NAND0b0 = a.Fail + b.NAND000 + ’c.NAND0b1;
agent NANDa00 = a.NAND000 + b.Fail + ’c.NANDa01;
agent NAND000 = a.NANDa00 + b.NAND0b0 + ’c.NAND001;

Figure 3.7: The semimodular specification of a 2-input NAND gate. Inputs that would
disable an output are not permitted.

la↑ 7→ y ↓ ≺ la↓ rr↑ 7→ y ↓ ≺ rr↓

lr↑ 7→ la↑ ≺ ra↑ lr↑ 7→ rr↑ ≺ lr↓

Figure 3.8: RT constraints for pipeline controller.

architecture of the design, such as the datapath constraint in Fig. 2.3 that applies to pipeline

controller elements.

Reducing the number of constraints improves the run-time performance of the CAD

tools. Further, some constraints cannot be jointly covered in the flows because they are

incompatible with other constraints. Therefore, a subset of the RT constraints are selected to

be employed in the timing driven optimization flow.

Current commercial CAD algorithms require that the timing graphs of a circuit are

represented as a directed acyclic graph (DAG). Most asynchronous modules have combina-

tional feedback loops that must be cut to create a DAG [41]. The selection of the correct

set of constraints determines the ability to create a DAG and the optimizations that can be

applied to gates in the design. The causal path from pod to poc cannot be cut for an RT

constraint to be effective. In general, the full set of RT constraints cannot be used while

modeling the timing graph as a DAG. Many constraint pairs are incompatible because they

consist of a cyclic path and hence, cannot remain uncut. (Such constraint pairs cover a

complete combinational cycle in the circuit.) Cycle cutting therefore plays a critical role in

the characterization flow. It must preserve the chosen constraint paths while removing all

combinational cycles in the design. Cycles exist both inside a sequential block, as well as,

distributed across multiple sequentials due to channel handshaking protocols and system



26

architecture. The interplay between the RT causal paths in the design and the combinational

cycles that exist in a circuit makes the cycle cutting problem challenging. The causal paths

of the subset of RT constraints are passed to a cycle cutting algorithm to produce a timing

DAG. Cycles are cut by disabling timing paths through gates in the cell library with the

set disable timing command.

The set disable timing command used to cut local and architectural cycles for the circuit

in Fig. 3.4 include cutting the paths between the following input and outputs of the gates:

{ la 6→ la ,y 6→ la , ra 6→ la , rr 6→ rr , ra 6→ rr ,y 6→ rr }.

Some RT constraints are necessary to perform quality timing driven optimization of a

design, others are not. Some constraints exist solely to ensure correct sequential behavior

or make hazards unreachable. Many of these are not necessary in the optimization flow

since they have a very loose margin, hence they can be ignored. However, correctness

constraints that have tight margins may be required to be included in the flow to create

functional designs under timing optimizations. RT constraints that are critical to cycle

time optimization must be included. For example, reqi ↑ 7→ Li+1/d + s ≺ Li+1/clk↑ is

necessary when employing bundled data and the 4-cycle handshake protocol of Fig. 2.3.

Additional timing constraints may be added that are not automatically generated from formal

verification but have important performance ramifications. Algorithms that employ timed

separation of events or canopy graphs can be used to determine architectural level timing

constraints [42, 43]. A method of selecting a subset of the constraints that, produce the best

optimization and most efficient runtime for the tools, is employed. The full set of constraints

are maintained for use later in the flow for postlayout validation.

The timing paths derived from the first row of RT constraints in Fig. 3.8 for Fig. 3.4 are:

{ lr→ la → la, lr→ la → la→ y , lr→ rr → rr, lr→ rr → rr→ y , ra→ rr }.

A set of set size only constraints are generated for most of the library cells in a

characterized element to ensure that the CAD tools does not resynthesize their logic.

The characterized elements are evaluated for performance, power, and area from

physical layout. The information includes the formal specification of the element including

concurrency and synchronization, the performance values for the element including cycle

time and forward and backward latencies, the energy consumption of the element, its area,

information regarding the timing constraints, and other constraints on the design such as



27

cycle cutting, sample timing targets, etc. This information is helpful for the designer to

select the best part for a particular application. At this point, the sequential asynchronous

circuit is fully characterized and ready for integration into the clocked tool flows.

3.3.2 Clocked Design Flow Using RT Sequentials

Once the elements have been characterized for RT, the traditional design flow ensues

with some additional steps to integrate the constraints into the flow and to ensure that all

constraints hold in the final design. A high-level behavioral description of the design may

be created as in Fig. 3.2. It is validated using the behavioral equations from the bag of RT

characterized elements. A designer writes traditional Verilog, but rather than expressing

the pipeline stages as always @(posedge clk), an instance to a pipeline controller is

inserted. This design flow is effectively identical to connecting schematics together, where

one is wiring up the handshake ports and data at each pipeline stage. For example, to create

a pipeline stage with an adder with inputs a and b, the code shown in Fig. 3.9 could be

employed, which stores the result in the register of pipeline stage l0 upon receiving a lr

handshake.

3.3.3 Mapping RT Constraints Onto Design Instances

Once the high-level design has been created and validated, synthesis of the design occurs.

This requires the structural version of the RT characterized elements that are included in the

HDL. The rest of the traditional ASIC tool flow requires constraint information from the

characterized circuits. This is provided by mapping the RT characterized circuit constraints

onto instances in the design and placing these constraints in a .cstr constraint file.

Mapping of design constraints onto instances of an architecture requires that circuit

connectivity be evaluated. A RT constraint for a single sequential instance may have several

occurrences in a design. If a control path forks two ways, then at least two independent poc

pairs may be required for the same pod. The result of the constraint mapping is to create a

.sdc file for the entire design consisting of the critical subset of the RT constraints for each

characterized instance in the architecture and their mapping onto pod and poc endpoints

in the design [44]. The critical RT subset employed is selected for power/performance

optimization and circuit correctness.



28

assign sum = a + b;
linear control LC0 (.lr(lr), .la(la), .rr(rr), .ra(ra), .ck(ck0), .rst(rst));
latch32 l0 (.d(sum) .clk(ck0), .q(do));

Figure 3.9: Verilog code snippet for simple adder pipeline stage.

An example for the simple addition pipeline above is shown in Fig. 3.10. The controller

is from Fig. 3.5. The values provide an adder delay target of 600ps. The constraint endpoints

refer to both characterized controller I/O pins, as well as, pins in the cell library.

The timing targets are provided by the user, and can apply as the “clock frequency”

for an entire hierarchical design block. They are expressed as the tcl variables d0 fdel,

d0 fdel margin and d0 bdel in the file, representing the forward delay, setup margin to the

latch, and backward delay for pipelines in the design. The granularity of the timing may be

as coarse or fine as the designer desires. The set size only constraints constrain the AOI

and NOR gates in the pipeline controller to only allow drive strength modifications by the

tool flow algorithms. The set disable timing constraints are used to create a directed acyclic

timing graph of the design as required by the algorithms in the EDA tools. The set max delay

and set min delay constraints drive the timing driven optimization and validation algorithms

in the EDA tool flow for the synthesis and for the place and route engines.

The RT constraint reqi ↑ 7→ Li+1/d + s ≺ Li+1/clk↑ is demonstrated in the Fig. 3.10

SDC file example. The early arriving RT constraint path from pod lr to poc0 l0/d is expressed

as a maximum delay constraint from the a and b inputs to input of the latch. The late arriving

RT constraint path from pod lr to poc1 l0/clk is expressed as a minimum delay from lr to the

clock pin of the latch. The RT constraint holds in the system if the maximum delay signal

path plus the margin arrives before the minimum delay path.

3.3.4 Timing Closure

Timing driven synthesis and optimization of the architecture with traditional clocked

EDA tools is enabled at this point due to the the constraint file. As long as the RT constraints

hold, the circuit functions correctly. However, the timing targets as specified by the user and

the mapping tools may provide aggressive max delay constraints so as to achieve a higher

performance design. This often results in timing failures expressed as negative slack. Timing

closure allows the synthesis tools to iterate on the architecture to converge to a design that



29

set d0 fdel 0.600
set d0 fdel margin [expr $d0 fdel + 0.050]
set d0 bdel 0.060

set size only -all instances [find -hier cell lc1]
set size only -all instances [find -hier cell lc3]
set size only -all instances [find -hier cell lc4]

set disable timing -from A2 -to Y [find -hier cell lc1]
set disable timing -from B1 -to Y [find -hier cell lc1]
set disable timing -from A2 -to Y [find -hier cell lc3]
set disable timing -from B1 -to Y [find -hier cell lc3]

set max delay $d0 fdel -from a -to l0/d
set max delay $d0 fdel -from b -to l0/d
set min delay $d0 fdel margin -from lr -to l0/clk
set max delay $d0 bdel -from lr -to la
#margin 0.050 -from a -to l0/d -from lr -to l0/clk
#margin 0.050 -from b -to l0/d -from lr -to l0/clk

Figure 3.10: An SDC example for simple adder pipeline stage.

meets all of the path based timing requirements. If a negative slack is encountered, the

timing closure tool adds delay to the related targets and then runs a new synthesis. This

occurs until no negative slack exists in the design.

The “#margin” constraints placed in the .cstr file by the constraint mapping flow are

used by the timing closure CAD. These constraints tie the two paths of a RT constraint

together and ensure that the early path plus margin arrives before the late path. If an

early path, expressed as a set max delay constraint, is increased, the late path, expressed

as a set min delay constraint, must also be increased to maintain the required margin of

separation.

Once all of the timing constraints have been met the design is ready for physical design

and further performance evaluation. The optimized design can be simulated and validated

against an architectural specification for performance and behavioral conformance. Iterations

back to any part of the flow, including designing a new asynchronous sequential circuit, can

occur to improve the architecture.

The physical design is created employing similar .sdc constraints used for synthesis.

Additional information and algorithms are employed to improve the physical design quality.



30

For example, force directed placement can be enhanced, as well as, improving the optimiza-

tion of minimum and maximum delay constraints can be improved. The physical design

process may also iterate on timing closure to ensure that the final design meets all timing

constraints.

3.3.5 Final RT Validation

After physical design, the complete set of RT constraints are validated against the design.

This usually requires multiple RT constraint sets with different cycle cutting constraints

to properly evaluate the design. At this point a .vcd activity file is created and power is

evaluated based on postlayout parasitic extraction and node activities. Engineering change

order (ECO) changes based on margins and yield are performed on the physical design,

similar to the prelayout timing optimizations. The physical design is validated for behavioral

and performance correctness and yield robustness, as is done with traditional products.

3.4 Results
The flow described in Fig. 3.2 has been applied to clocked and asynchronous multifre-

quency architectures. All designs reported here are specified behaviorally using Verilog.

Structural pipeline control elements, as in Fig. 3.5, are used in the asynchronous circuits.

ModelSim [45] is used to validate the architectures. The behavioral datapath and register

banks are synthesized and optimized with Design Compiler [5]. The performance and power

of the asynchronous control elements are likewise optimized with Design Compiler based on

RT delay targets. Physical layout and parasitic extraction is performed with SoC Encounter

[46]. Timing and power validation is performed with PrimeTime [5]. A number of custom

tools and scripts are employed to characterize the asynchronous elements and integrate the

RT constraints into the design flow. The design time of asynchronous architectures using

this flow is similar to that of clocked design, assuming that all the asynchronous control

elements have been predesigned and characterized.

A brief overview of all the design examples analyzed for this work is given below.

The detailed analysis and results are described later in the dissertation. The quality of the

results are compared against previous design work which did not have the benefit of the

flow described in this dissertation. Two examples are used: a complete family of 4-phase



31

asynchronous pipeline controllers and a large set of clocked and asynchronous FIFOs

[35, 47]. The referenced projects used the same commercial tools, but without the support of

RT. Due to a number of designs investigated by these comparisons, productivity demanded

that ASIC flows be employed using high-level synthesis and validation. For these projects,

the complete flow of Fig. 3.2 including flows in Fig. 3.3 and 3.6 along with creating the

architectures is completely automated. Even though some steps in the flow can be improved

with better algorithms and can be automated, a good comparison of the results at the element

level is provided.

The FIFO circuits for linear, parallel, square and tree configurations showed an average

improvement of 1.5×–2× in throughput, with less than half the area using this flow. The

regularity and simplicity of the pipeline controllers allowed their performance and power

to be manually optimized with relative ease in the reported paper [35]. After optimization,

the controllers were evaluated using set dont touch constraints. Thus, little improvement

is possible when using the RT flow resulting in the same average performance with 0.93×

smaller area and it consumed 0.90× energy.

These small, homogeneous designs neither demonstrate multifrequency architectures

nor they demonstrate jointly synthesized and placed and routed, clocked and asynchronous

blocks. Applying this flow to large multifrequency implementation validates that the CAD

flow scales, and that power and performance benefits can be derived on large design examples

that contain a variety of datapath logic. It likewise validates the design efficiency scaling to

large designs.

Clocked and asynchronous multirate 64-point FFT architectures with four distinct

frequency domains were designed and compared against each other. The asynchronous

design consists of 229K gates. When compared to a clocked design of the same architecture,

the async design has a 2.4× improvement in energy per point, 2.4× reduction in area, and

2.0× the throughput for an eτ2 of 9.6×. Compared to a ultra low power single frequency

design [48], the multifrequency design provides 6.8× reduction in energy per point and a

32.3× reduction in time to perform 1K samples, resulting in a 7k eτ2 improvement at the

cost of a 2.1× increase in area.

Five different designs of open core protocol (OCP) are evaluated under a uniform

test bench. These included designs with a single global clock, fully asynchronous, and



32

multisynchronous designs. Designs with substantial asynchronous components are by far

the best in terms of area, performance, and energy per transfer. The purely asynchronous

design has 3× the performance and consumes approximately 1/9 the energy of its clocked

counterpart. The GALS design also demonstrated almost 4× the throughput at less than 1/5

the energy per transaction.

This methodology allows the development of good asynchronous circuits. It also allows

the circuit designer to derive energy, performance, and area benefits for designs with

multiple frequencies of operation. The improvement derived from better asynchronous

templates and also the quick selection of the templates based on the characterization results,

helps in developing better circuits. The major benefits though are seen for designs where

asynchronous architectural optimizations result in low costs and overhead in going from

one frequency domain to another. It has been observed that the designs where multiple

frequencies interact and need synchronization are the best candidates for asynchronous

circuits, since there is no overhead in going from one asynchronous circuit block to another

if the handshake protocol followed between the blocks is the same.

3.5 Summary
This chapter describes a transformative flow that enables high productivity and design

quality in the commercialization of asynchronous and alternative design styles. The high

productivity and design quality are achieved by integrating a proven complete set of timing

requirements for the design to state of the art CAD. The flow unlocks the timing algorithms

that exist in commercial CAD. The RT based flow is fully compatible with all design styles

and methodologies. The flow characterizes the timing of sequential blocks which can then be

integrated into an architecture with the timing mapped in a format that enables timing-driven

optimization. The RT flow enables CAD to perform the same energy-delay optimizations

on the asynchronous designs as is performed on the clocked circuits. A power advantage

of 10× can be often derived for the asynchronous designs with respect to its synchronous

counterpart at the same performance. The new flow enables the design and characterization

of sequential circuits using RT in a form that is fully integrated into clocked CAD and tool

flows. The characterized sequentials are then embedded into a design with the RT directives



33

that enable their full CAD tool support. Applying the flow to a number of designs has

demonstrated a significant improvement in energy, area, and performance.



CHAPTER 4

AUTOMATIC RESET ADDITION BASED ON

LATENCY/POWER OPTIMIZATION 1

The behavior of a sequential circuit cannot be determined solely by its primary inputs

(PIs) because sequential logic can behave differently for identical input sequences based

on the starting state. Thus, it is essential to initialize sequential logic to a specific state to

ensure desired behavior.

The state-based behavior of sequential circuits is implemented with state variables. State

variables are created with feedback cycles in the Boolean logic descriptions of sequential

asynchronous finite state machines (AFSM). These feedback cycles are explicitly maintained

in the circuit realization when the design is technology mapped to static logic gates. Other

logic families, such as dynamic logic, can be used to implement AFSMs which would

change the way the state variables are implemented. This work applies to designs mapped

to static logic gate libraries, since they are the most commonly used logic family.

Initialization of a sequential AFSM is implemented with a reset signal that is asserted

upon power up. This is usually a one-time event, but it can also dynamically occur during

operation to reset a sequential circuit back to its starting state. This chapter shows how the

the former case of power-up reset can be addressed.

Reset can have a significant impact on asynchronous logic design in several ways. The

addition of reset signal has a direct influence on the power, performance, and area of a

sequential circuit since it involves either addition of gates or adding extra reset input to

existing gates. Hence, optimizing reset for power and/or performance can improve the

overall design. Second, it is possible to change the hazard properties of an AFSM through

1This chapter is a revised version of the work in VLSI-SoC, 2013 [49]. c© 2013 IEEE. Reprinted with
permission, from Vikas S. Vij, Kenneth S. Stevens, “Automatic Addition of Reset in Asynchronous Sequential
Control Circuits,” in 21st IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC),
Oct., 2013.



35

the addition of reset. On the other hand, if reset is not fully automated, it poses a significant

manual effort in the synthesis and characterization of asynchronous circuits.

The addition of reset to an AFSM can be performed at different stages of a design

flow. Firstly, it can be added in the specification of the design and implemented during

synthesis. Secondly, it can be added at the technology mapping phase of synthesis. Lastly,

the addition of the reset signal can be performed during posttechnology mapping phase.

Reset addition at the posttechnology mapping step in the design methodology is chosen

because it allows the reset logic generation to be independent of the design or synthesis

method used. Thus, the method and algorithms presented here can be employed for circuits

designed by hand, or from synthesis tools such as MEAT, 3D, Petrify, ATACS or Minimalist

[50, 51, 52, 53, 17, 54].

4.1 Key Contributions
This work has resulted in the following contributions:

• An algorithm is designed to generate an asynchronous circuit with reset logic resulting

in an improvement in power, area, and performance as compared to the reset logic

generated by other algorithms. This is primarily achieved with a three-step heuristic

based on logical effort [55] to optimize the circuit either for performance or power.

• A relationship between reset and topological cycles in a circuit is shown when a

design is exclusively implemented with static logic gates.

• The algorithm is agnostic of the asynchronous circuit design style used to generate

the circuit since it works on a technology mapped circuit. Hence, it can be used with

any of the synthesis engines as well as with hand designed circuits.

• It addresses one of the key steps in the AFSM design generation automation flow.

4.2 Background
Two significant holes currently exist in the CAD tools used for synthesis of sequential

asynchronous circuit designs: technology mapping and reset generation. Both of these are

interesting and related problems, as technology mapping can introduce hazards [38], whereas

reset is dependent on the technology mapped circuit. Without automating these holes,

synthesis and characterization of asynchronous circuits necessitates manual intervention.



36

Many tools and algorithms exist for the synthesis of AFSMs. The only one that includes

integrated reset support is Petrify [53]. In Petrify, the addition of reset logic is performed

after synthesis and is not technology mapped, requiring a final manual step to create a circuit.

This manual step is being addressed by a tool named Petreset as an academic project. It

analyzes the synthesis results and the design specification. Through simulation, Petreset

determines which gate modifications can be performed to reset the design. The restriction

of this tool is that it only applies to designs which are synthesized with Petrify; hence, it is

not independent of design methodology. This work has not yet been published.

AFSM synthesis algorithms can theoretically be modified to automatically generate reset

behavior jointly with the synthesis. However, no such work is reported in the literature. I am

also not aware of any published work that presents an independent algorithm to add reset for

AFSMs to posttechnology mapped designs.

4.3 Algorithm
An algorithm is described that automatically synthesizes reset logic for sequential

AFSMs regardless of the specification style or method used to generate the circuit. The

inputs to the algorithm include (a) the sequential circuit technology mapped to single output

static gates, (b) the Boolean behavior of static gates available in the cell library, and (c)

Boolean logic levels for all signals in the reset state. Two additional inputs may optionally

be included: a set of performance critical paths, and a list of primary inputs that remain

undefined upon application of system reset. No design specification information is required.

The algorithm presented here is based on the following observations: (a) State variables

are implemented in a circuit that use static logic gates with topological feedback. (b)

Feedback creates cycles in the circuit. (c) Cycles and undefined inputs are the only sources

of undefined signals in a sequential circuit. (d) Any gate in a cycle can be used to reset the

entire cycle.

This algorithm focuses on identifying combinational cycles in a circuit which needs

to be explicitly reset, and then selecting an optimal location in such cycle to add reset.

The cost of each solution is generated based on heuristics that employ logical effort to

estimate performance and energy costs. The determination of which cycles need to be

reset is performed by simulating the design and determining which nodes remain undefined.



37

Finding a reset configuration is not necessarily simple because circuit cycles may interact

i.e., resetting one cycle, may automatically reset interacting cycles.

The algorithm consists of two main sections. The first section (Sec. 4.3.1) identifies and

resets the cycles and the second one does the same for paths (Sec. 4.3.2). Multiple solutions

are generated by adding reset signal to each gate of a cycle (path) as described in Sec. 4.3.3.

Each generated solution is compared against the others to obtain the least-cost solution using

optimization heuristics based on logical effort (Sec. 4.3.4).

4.3.1 Generate Cycles to Reset when PI’s are Defined

A circuit is represented as a directed graph G where G is the pair (V,E). V is a finite

set of vertices v, representing single output combinational gates, primary inputs (PIs), and

primary outputs (POs) of a circuit. E is a set of edges e mapping V ×V where e is an ordered

pair (vi,v j), where vi is the vertex output and v j is an input to a vertex. P is a set of paths

p where p ∈ P is defined as an ordered sequence of vertices 〈vi, ...,v j〉, where ∀vk ∈ p, no

vertex vk ∈ p is repeated, vk ∈V , and where there is an edge ek ∈ E between each adjacent

vertex in path p. Also, the path p is represented as Vi
p−→ Vj. C is a set of cycles c where

c = pi ∈ P and there exists an edge e j that maps between the first and last element of path

pi.

Each path and cycle has two associated edge sets, internal edges EInt and external edges

EExt . EInt is the set of edges between each vertex in a path or cycle, and EExt is the set of

edges ei : (vi,v j) where v j ∈ p∧ v j 6∈ EInt . Note that external edges include fan-in but not

fan-out connectivity.

Fig. 4.1 shows an example cycle consisting of the path 〈v1,v2,v3,v4,v5,v6〉. The internal

edge set EInt equals {e1,e2,e3,e4,e5,e6} and the external edge set EExt in the example is

{e7,e8,e9,e10,e11,e12,e13}.

Each vertex vi ∈V is assigned a value in the set {0,1,x}, where x is the logic level for

an undefined vertex, while 0 and 1 are defined logic level. The value of each edge ei is

derived from the value of vertex vi where ei : (vi,v j). The convention that a vertex (and its

associated fanout edges) is defined when it has a Boolean value of either 0 or 1, otherwise it

is said to be undefined, and is assigned the value x. Since gates (vertices) are single output,



38

E7
V7

E8
V8

V1
E1

E9
V9

V2
E2 E10

V10

E11
V11

V3

E3

E13
V13 V6

E6
V5

E5 E12 V12V4

E4

Figure 4.1: A cyclic directed graph example.

the state of all nets in the system are defined once all vertices are defined. One required

input to the algorithm is the Boolean logic level for all vertices in the reset state.

Definition 1 An input of a static single output gate is said to have a controlling value if it

uniquely determines the output of the gate independent of other gate inputs.

If an input to a gate does not uniquely determine the output of the gate, it is a noncon-

trolling value. If all inputs are noncontrolling, then a subset of the inputs must be defined to

define the output.

Axiom 1 The output of a static combinational gate is defined if all the gate inputs are

defined.

Lemma 1 For input set I, the output of a single output static combinational gate is uniquely

controlled by input ii ∈ I when all other gate inputs i j ∈ I are assigned to noncontrolling

values and the output remains undefined.

Proof: This holds due to Axiom 1. Since only one gate input is undefined, once that signal

becomes defined all gate inputs are defined and the output must switch to a known value of

0 or 1 based on the combinational function.

Lemma 1 allows any complex static gate to be represented as a simple inverter or buffer

based on the value of input ii if, when all other gate inputs are defined, the output is still

undefined. Fig. 4.2 shows examples of this representation. The NAND gate acts as a simple



39

A
1 Y

A
1 Y

A Y

A Y

Figure 4.2: Gate conversion example for Lemma 1.

inverter when ii is signal A since all other signals are at a high voltage. Similarly the AND

gate can be modeled as a buffer.

Lemma 2 If all edges in EExt of a path (cycle) are set to logic 0 or 1, then the path (cycle)

can be represented as a path (ring) consisting of inverters or buffers.

Proof: Follows Lemma 1.

Theorem 3 If all the edges in EExt for a cycle are defined then all the signals in EInt are

either defined or undefined.

Proof: Assume that the set of external inputs EExt for cycle c are set such that none of

the vertices in c are defined. In this case, all internal edges EInt of the cycle are undefined.

On the other hand assume the case where a single edge ei ∈ EExt is modified such that

ei = (vi,v j) is controlling or the value of vertex v j becomes defined. This results in edge

e j ∈ EInt becoming defined. According to Axiom 1, this results in the vertex (gate) vk

becoming defined where e j = (v j,vk). This continues around the ring until all vertices

(gates) become defined to a Boolean value.

Theorem 4 If the set of vertices in a cycle c0 is a proper subset of the vertices in another

cycle c1, then the cycle c0 contained in the bigger cycle c1 must be reset to reset both the

cycles.

Proof: Assume all edges in both the rings are undefined. Let V0 and V1 be the set of

vertices in cycles c0 and c1, respectively, and let EInt0,EExt0 and EInt1,EExt1 be the internal

and external edges. The smaller ring is the ring where Vi = V0 ∩V1. This results in a

condition where Theorem 3 does not hold for a vertex vk, since ei = (vi,vk) ∈ EInt0 ,EExt1

and e j = (v j,vk) ∈ EInt1,EExt0 are both undefined. Assume c0 is the smaller cycle, and e j



40

is the undefined external input to vertex vk. Assuming that e j is defined, cycle c0 can be

reset, which results in the edge ei becoming defined. This results in all external edges in

EExt1 becoming defined, so that Theorem 3 can hold on the larger cycle. Since c0 is a proper

subset of c1,∃el = (vi,vl) where vl ∈ V1 ∧ vl 6∈ V0, the larger cycle c1 automatically gets

reset due to the smaller cycle.

Theorem 4 allows the number of vertices (gates) that require reset to be smaller than the

number of cycles in a sequential circuits that are undefined without reset. Also note that

sequential circuits may have many cycles that overlap each other in various ways, not just

as proper subsets. Theorem 4 may also be extended to reset interacting cycles that are not

nonproper subsets. However, the code developed here only applies optimization of multiple

cycles according to this theorem, and thus may not generate the solution with the fewest

number of reset vertices (gates). Such an extension is left for related work. Further, due to

Theorem 4, this algorithm generates reset logic for cycles based on the smallest vector set

cardinality first. This ensures that larger concentric cycles automatically get reset by their

smaller cycles getting reset.

4.3.2 Generate Paths to Reset when PIs are Undefined

This section removes the initial condition which requires all the PIs to be defined during

cycle reset generation. This is necessary to ensure that all signals in EExt are defined. The

netlist generated in the previous section is used, since it guarantees all the cycles in the

circuit are defined iff all the PIs are defined. The reset problem now becomes a path based

rather than a cycle based problem.

Lemma 5 For output o and input set I of a single output static combinational gate, if o is

undefined then at least one of the inputs in i ∈ I is undefined.

Proof: Applying transposition to Axiom 1.

Definition 2 An undefined path is a path where ∀ei ∈ EInt , the value of ei is undefined.

Lemma 6 Consider there are no undefined edges in a circuit when all the PIs are defined.

If a PI is marked undefined, and this results in a set of POs of the circuit being undefined,

then there exists at least one undefined path from the PI to each undefined POs.



41

Proof: The input netlist of this section considers that if all the PIs are defined then all the

wires in a circuit including the POs are defined. Hence, if a PI is undefined which results in

a subset of the POs being undefined, then there must be an undefined path from the PI to

each undefined PO.

The path may be represented as a set of inverters, and resetting any vertex results in all

downstream vertices becoming defined. This can be shown using a similar approach as is

done for cycles. Therefore, to reset a path, any vertex in the path may be reset.

4.3.3 Gate Modifications for Reset Insertion

Each gate in a path (cycle) is a potential candidate for reset insertion. Therefore, every

gate is evaluated for the cost and potential of adding reset to that gate. The reset signal must

be inserted as a controlling value to the gate, and the resulting gate must be a member of the

static gate library employed in the design.

Three separate transformation cases are given below which may be employed to insert

a reset signal into a cycle. Out of these three cases only the first two transformation cases

can be applied to paths. Selecting the appropriate case is based on the type of optimization

being performed and the type of gate being modified for reset addition.

• Case 1: If the gate is an inverter (buffer), it gets converted into a NAND or NOR

(AND or OR) gate depending on the required value of the output of the gate after

reset. The asserted reset signal becomes the controlling value for the gate.

• Case 2: This is a generalized condition for case 1 that adds reset to any static single

output gate. The input ei ∈ EInt in the path (cycle) is identified. The behavior of the

gate is represented in a sum-of-products format. If the output of the gate is inverting,

and the desired output is 1, then an active low reset is ANDed with edge (signal) ei.

If the desired output is 0, then an active high reset signal is ORed with the full gate

function. A similar transformation is performed for noninverting gates. The new gate

is used as a possible solution if it is present in the cell library.

• Case 3: If the vertex (gate) vi is an inverter, and the inverter drives an edge (gate)

that is not an element of the path (cycle), this transformation can be employed. This

transformation creates a duplicate inverter v j, disconnects vi from the cycle, and



42

applies the case 1 transformation to the new inverter v j. This case is only applied to

performance optimization of cycles requiring reset as defined in Sec. 4.3.1.

Fig. 4.3 shows a circuit implementation example before reset addition. Fig. 4.4 and 4.5

illustrates the application of these transformations on the circuit shown in Fig. 4.3. The

case 1 example can be seen where the inverters U3 and U7 have been converted into NOR

gates in Fig. 4.4 using an active high reset because the desired output values for these gates

are 0. Case 2 is not directly illustrated because it results in an inferior solution according to

logical effort. However, assume U2 is being evaluated. This is an inverting gate, and the

desired output value of the gate is 1. Active low reset is ANDed with rr ∈ EInt , changing U2

from an AOI21 gate into an AOI31 gate. Since this gate is present in our library, it is a valid

transformation. However, because this solution is of higher cost than a case 1 transformation

on gate U3 in this cycle, it is not used in the final solution. The case 3 transformation is

illustrated with the new gate U11 added to the design in Fig. 4.5 when the performance path

lr
p−→ rr is provided. The new gate although becoming a branching load to the performance

path, adds more area to the design. Since the structure of the circuit is modified, it is possible

that this transformation adds a hazard to the circuit. Hence, in our design flow a formal

verification step is performed to ensure hazard fidelity of the design.

A special condition applies to all of these design cases when the input edge in a cycle

passes through an inverter that is inside a gate. The case 2 transformation is applied as usual.

Additionally, the gate is split into two gates with the inverter becoming an explicit external

gate that is added to the cycle. Case 1 is then applied to the inverter, and case 2 is applied to

the second gate. This is illustrated with the design shown in Fig. 4.6. The inverter bubble

has been split into a separate inverter in Fig. 4.7 with the case 1 transformation applied.

4.3.4 Optimization Heuristics for Selecting the Best Solution

Power and performance optimizations are based on heuristics that use logical effort [55].

Logical effort theory provides a first-order approximation of the sizes (power) of the

gates and the delay for a circuit path (performance). The optimization uses a priority

based approach with delta logical effort having the highest priority and performance/power

optimization having the lowest priority. If a heuristic solution is better than the previous

best solution then no other solution costs are compared.



43

U0 U1

U2 U3

U4

U5
U6 U7

lr

ra
csc0

la

rr

Figure 4.3: Example 1: Circuit implementation before reset.

U0 U1

U2 U3

U4

U5
U6 U7

lr

ra

csc0

la

rrrst

rst

Figure 4.4: Example 1: Circuit implementation with power optimization.



44

U0 U1

U2 U3

U4

U5
U6 U7

U10

U11

lr

ra
csc0

la

rr

rst

rst

Figure 4.5: Example 1: Circuit implementation with performance optimization.

U2

U0 U1

U3
U4

lr

ra rr

la

Figure 4.6: Example 2: Circuit implementation before reset.

U2

U0 U1

U3 U4

U5

lr

ra

rst

rr

la

Figure 4.7: Example 2: Circuit implementation with power/performance optimization.



45

4.3.4.1 Delta Logical Effort

Logical effort often favors simpler gates over more complex gates due to their high

cost. Hence, the first step of optimization looks at the relative increase in logical effort of

modifying any gate which is named as delta logical effort (∆LE) and is calculated as

Cost = ∆LE = New LE - Old LE. (4.1)

4.3.4.2 Relative Load on a Gate

Logical effort can be used to estimate the necessary drive strength (also referred to as

size) of a gate by calculating the gate’s output load. The load estimate is calculated by

computing the sum of the logical effort of a gate and the logical effort of the inputs of all the

successor gates to which the wire goes. This heuristic penalizes the modification of a gate

which drives a big load and thus prefers simpler gates with small output load. The equation

for this heuristic is

Cost = LE of gate + LE load on gate output. (4.2)

4.3.4.3 Performance or Power Optimization

Logical effort theory defines path delay as

Delay of N-stage path = N ∗F1/N +P

where F = G∗B∗H. Here, logical effort G is the product of the logical efforts of the logic

gates along the path, B is the product of the branching effort at each stage along the path,

P is the parasitic delay of the gate, and electrical effort H is the ratio of the capacitance

loading the last stage of a path to the input capacitance of the first stage of the network.

The solution for this step is selected based on the optimization selected by the user. The

heuristics to calculate the cost of the solution for each optimization are described below.

• Performance optimization - All three reset transformation cases are applied for

performance optimization. However, case 3 is only applied on performance critical

paths that are optionally supplied by the user. For the handshake controller examples,

lr
p−→ rr and lr

p−→ la are provided as performance critical paths.



46

The quality of the solution for each cycle is the delay for each input to output path in

the design. The total solution is the sum of the delays of the paths in the design. Hence,

the final solution is selected based on the least overhead cost which is calculated as

Performance cost = ∑
all paths

N ∗F1/N +P. (4.3)

This heuristic assumes electrical effort H to be 1. This can result in suboptimal results

if the fanout load of the circuit output is large.

• Power optimization - Power consumption of a design depends on the total capacitance

of the circuit that needs to be switched. The capacitance is approximated with the

logical effort G of each gate, where a higher logical effort implies a larger input

capacitance. Thus, the total solution for power optimization is calculated as

Power cost = ∑
all paths

i−1

∑
0

Avg. input LE for gate Vi on a path. (4.4)

4.4 Examples
This section describes the application of the reset addition algorithm on two examples.

The first example describes different gate modifications for power and performance optimiza-

tions, while the second example shows the reset addition problem applied to noninverting

gates or gates with inverted inputs.

4.4.1 Example 1

The initial circuit for this example is shown in Fig. 4.3. In this example, lr, ra, U1, U3,

U7 have a logic level 0 while U0, U2, U4, U5, U6 have a logic level 1 at reset state. It

consists of six cycles: 〈U0,U1〉, 〈U2,U3〉, 〈U6,U7〉, 〈U0,U1,U2,U3〉, 〈U0,U1,U6,U7〉, and

〈U0,U1,U6,U7,U2,U3〉.

Cycle 〈U0,U1〉 does not need to be reset because it is defined by signals in the external

signal set EExt = {lr, rr, csc0}. Of the other five cycles, only two need to be reset due to

shared paths in the cycles. By reseting cycle 〈U2,U3〉 and 〈U6,U7〉, the (U2,U3) and (U6,U7)

edges become defined, resetting the remainder of the cycles.



47

Fig. 4.4 shows the result of applying the power optimization heuristic. The case 1

optimization results in the best solution for both 〈U2,U3〉 and 〈U6,U7〉. This optimization

modifies U3 and U7 from inverters to a NOR gates.

Results of performance optimization for the same circuit are shown in Fig. 4.5. The path

from lr
p−→ rr (〈U6,U7,U2,U3〉 and 〈U0,U1,U2,U3〉) and lr

p−→ la (〈U0,U1〉) are defined as

performance paths. Thus, both cycle 2 and cycle 3 are candidates for case 3 optimizations,

and can push the added complexity of the reset gates off the critical path. Gates U3 and U7

are first duplicated to add U10 and U11 in the feedback of both these cycles. These duplicate

gates are then converted to NOR gates that reset the cycles.

This example so far has assumed that the PIs are all defined. Consider the power

optimization case when input lr is initially undefined. The algorithm then starts with the

circuit of Fig. 4.4, marking lr as undefined. This results in the output of U0 and U1 being

undefined resulting in la output being undefined. Applying the optimizations results in the

gate U1 being changed into a NOR gate with reset as shown in Fig. 4.8. If the performance

optimization solution is considered then the path 〈U6,U7,U2,U3〉 is also undefined resulting

in gate U7 being converted into a NOR gate with reset. Note that this results in an inferior

solution since there are two NOR gates performing the same task as shown in Fig. 4.9.

Hence, the application of undefined input solution is the best for power optimization, but

can result in an inferior solution for performance optimization in certain cases.

Petrify is used to apply reset to this sample circuit. Reset is achieved by using generic

AND and OR gates as shown in Fig. 4.10. U10, U11 and U12 are added to initialize cycle 1,

cycle 2, and cycle 3, respectively. Notice that gate U10 is not required, resulting in an

inferior solution in terms of power and performance.

4.4.2 Example 2

The second example circuit is shown in Fig. 4.6. In this example, lr, ra, U1, U4 have a

logic level 0 while U0, U2, U3 have a logic level 1 at reset state. It consists of four cycles

〈U0〉, 〈U4〉, 〈U3,U4〉 and 〈U0,U3,U4〉. Assuming the PIs are defined, only the 〈U4〉 cycle

needs to be reset, because reset values for lr and rr define Gate U3. Fig. 4.7 and Fig. 4.11

show



48

U0 U1

U2 U3

U4

U5
U6 U7

lr

ra

csc0

la

rrrst

rst

rst

Figure 4.8: Example 1: Power optimization with undefined inputs.

U0 U1

U2 U3

U4

U5
U6 U7

U10

U11

lr

ra
csc0

la

rr

rst

rst

rst

rst

Figure 4.9: Example 1: Performance optimization with undefined inputs.



49

U0 U1

U2 U3

U4

U5
U6 U7

U10

U11

U12

lr

ra
csc0

la

rr

rst

rst

Figure 4.10: Example 1: Circuit implementation using Petrify.

U2

U0 U1

U3
U4

U5

lr

ra

rst

rr

la

Figure 4.11: Example 2: Circuit implementation using Petrify.



50

the solution for this algorithm and Petrify, respectively. The optimized circuit generated by

this reset algorithm is the same for both power and performance optimizations since the

reset is not on a critical path. Petrify adds the OR gate U5. This increases the latency on

the ra
p−→ rr resulting in a 10 percent increase in the backward latency and thus a 5 percent

increase in the cycle time.

4.5 Results
The results of adding reset initialization with this algorithm are compared against Petrify.

Benchmark circuits for GCD, PostOffice and PSCSI were employed as well as a set of 128

untimed 4-cycle handshake controllers generated by concurrency reduction [1, 56, 52, 35].

Each design in the controller set is tested as a four deep FIFO. All of these designs are

synthesized and technology mapped with Petrify with and without reset addition. Our

algorithm is applied to these circuits without reset. Petrify adds generic gates for reset

addition, hence for comparison these gates are technology mapped using a script. The

technology mapping is applied to the academic Artisan library for the IBM 65nm process.

This algorithm resulted in functionally correct circuits for all designs to which power

optimization is applied, while application of performance optimization resulted in two

circuits that failed due to hazards that were introduced. Petrify failed to generate a working

circuit for one of the FIFO controllers since it assumed all the inputs to be defined at logic

level 0 upon reset.

Performance, power, and area comparisons are performed by using timing driven

optimization in commercial EDA tools. The flow is structured and automated in a way that

produces results which are as fair as possible. The flow uses Design Compiler for sizing,

SoC Encounter for place and route, and Modelsim and Primetime for performance and

power evaluation using VCD and SPEF files.

The example set ranges in complexity from 4 to 71 gates, and up to 77 cycles. The

maximum runtime for the algorithm is less than 3 seconds for the gcd example, which

contains 11 inputs, 9 outputs, 71 gates, and 22 cycles. Critical paths from lr
p−→ rr and

lr
p−→ la were provided for the 128 FIFO controllers.

Tables 4.1 and 4.2 show the average benefits for both optimizations with respect to

Petrify. Performance optimization results in an improvement of 8 percent, 12 percent and



51

Ta
bl

e
4.

1:
R

es
ul

ts
co

m
pa

ri
so

n
fo

rb
en

ch
m

ar
k

ci
rc

ui
ts

.

Pe
tr

if
y

Po
w

er
O

pt
.

Pe
rf

or
m

an
ce

O
pt

.
Po

w
er

B
en

efi
ts

Pe
rf

or
m

an
ce

B
en

efi
ts

B
en

ch
m

ar
k

A
re

a
E

ne
rg

y/
Si

m
.

A
re

a
E

ne
rg

y/
Si

m
.

A
re

a
E

ne
rg

y/
Si

m
.

A
re

a
E

ne
rg

y/
Si

m
.

A
re

a
E

ne
rg

y/
Si

m
.

C
ir

cu
it

to
ke

n
Ti

m
e

to
ke

n
Ti

m
e

to
ke

n
Ti

m
e

to
ke

n
Ti

m
e

to
ke

n
Ti

m
e

(u
m

2 )
(p

J)
(n

s)
(u

m
2 )

(p
J)

(n
s)

(u
m

2 )
(p

J)
(n

s)
gc

d
29

8.
3

0.
50

30
3.

76
28

7.
2

0.
50

29
7.

56
28

5.
4

0.
46

29
8.

33
1.

04
1.

00
1.

02
1.

05
1.

08
1.

02
po

st
of

fic
e-

rc
v-

se
tu

p
36

.0
0.

02
87

.1
4

27
.4

0.
02

85
.7

0
31

.7
0.

03
84

.9
8

1.
31

1.
20

1.
02

1.
14

0.
89

1.
03

po
st

of
fic

e-
sb

uf
-s

en
d-

ct
l1

32
.0

0.
38

31
7.

85
10

0.
3

0.
30

31
5.

62
10

9.
7

0.
32

31
9.

69
1.

32
1.

28
1.

01
1.

20
1.

19
0.

99
ps

cs
i-

is
en

d
18

5.
2

0.
36

24
4.

45
17

2.
3

0.
35

27
6.

23
19

8.
0

0.
43

25
6.

25
1.

07
1.

03
0.

88
0.

94
0.

84
0.

95
ps

cs
i-

tr
cv

-b
m

11
4.

0
0.

19
14

3.
07

99
.5

0.
15

13
6.

08
98

.6
0.

15
13

5.
37

1.
15

1.
24

1.
05

1.
16

1.
29

1.
06

ps
cs

i-
ts

en
d-

bm
14

0.
6

0.
28

20
2.

83
13

4.
6

0.
25

21
3.

86
13

9.
7

0.
26

20
8.

73
1.

04
1.

11
0.

95
1.

01
1.

10
0.

97
ps

cs
i-

ts
en

d
14

7.
5

0.
24

20
3.

12
14

5.
7

0.
25

19
1.

28
14

5.
7

0.
25

19
1.

28
1.

01
0.

99
1.

06
1.

01
0.

99
1.

06

A
ve

ra
ge

B
en

efi
t

1.
14

1.
12

1.
00

1.
07

1.
05

1.
01



52

Table 4.2: Controller circuit comparison.

Average Case Best Case Worst Case

Optimization Power Performance Power Performance Power Performance

Forward Latency 1.00× 1.08× 2.33× 2.33× 0.63× 0.69×

Backward Latency 1.05× 1.12× 1.47× 1.72× 0.61× 0.71×

Cycle Time 1.03× 1.06× 1.39× 1.69× 0.54× 0.54×

Area 1.21× 1.12× 1.91× 1.66× 0.70× 0.69×

Energy/token 1.24× 1.12× 2.19× 1.84× 0.64× 0.64×

6 percent in forward latency, backward latency and cycle time for the 128 FIFO circuits.

The benchmark circuits show only 1 percent improvement in performance (reported as

simulation time – SimTime). A 12 percent reduction in area and energy/token for the FIFO

controllers is observed, as compared to a 7 percent and 5 percent reduction in area and

energy/token, respectively, for the benchmark circuits.

Power optimization results in no improvement in forward latency, and minor improve-

ments in backward latency and cycle time for FIFO controllers as well no performance

benefit (SimTime) for the benchmark circuits. However, there is a significant improvement

in terms of area and energy. A 21 percent and 24 percent reduction in area and energy/token,

respectively, are seen for the FIFO controllers, while a 14 percent and a 12 percent reduction

is seen for the benchmark circuits.

Detailed results for application of the optimizations and equivalent numbers for 128

pipeline controllers generated by performance optimization, power optimization and Petrify

are shown in Appendix A.

4.6 Summary
Sequential circuits require a reset signal to initialize them to their correct starting state.

An algorithm is developed and implemented in C++ to generate reset logic for asynchronous

finite state machines. The algorithm defines the relationship between reset and topological

cycles in a circuit. The new algorithm also provides heuristics to optimize the reset logic

for power or performance. It requires that the design has been technology mapped to the



53

desired implementation library, and that the library consists of single output static logic

gates. Inputs to the algorithm include the design netlist, the logic level of all circuit nets, and

the behavior of the gates in the technology library. Optional inputs include a set of critical

paths for performance optimization, and a set of inputs that may initially be undefined upon

reset.

The algorithm is applied to a set of 7 large benchmark circuits and a set of 128 pipeline

controllers that are configured into linear FIFOs. The designs range in complexity of up

to 71 gates and 77 cycles. Maximum runtime for the tool is less than 3 seconds. Results

are compared against Petrify. Performance heuristics show just a 1 percent performance

improvement for the benchmark circuits. The FIFO designs show a 6 percent performance

improvement and a 12 percent and 8 percent improvement for backward and forward latency.

Power heuristics show an average improvement of 14 percent and 12 percent in area and

energy per token for the benchmark circuits, and an average area and energy per token

improvement of 21 percent and 24 percent for the FIFO controllers.

The algorithm is agnostic to how the circuit is implemented and technology mapped, so

it can be used with any of the synthesis engines as well as with hand designed circuits. For

the first time reset can now become part of any asynchronous finite state machine design

automation flow.



CHAPTER 5

TIMING PATH DRIVEN CYCLE CUTTING

FOR SEQUENTIAL CIRCUITS 1

Asynchronous architectures and design methodologies are an excellent means of gen-

erating fast, low power circuit topologies. But these circuits have numerous topological

feedback paths because they are sequential. The power and performance of such a design

can be significantly improved by correctly sizing gates and transistors through timing driven

optimization algorithms. For example, bundled data asynchronous controllers are very

sensitive to timing driven optimizations and can easily show factors of improvement of 5×

in energy-delay product between well optimized and poorly optimized circuits.

The algorithms in current application specific integrated circuit (ASIC) computer aided

design (CAD) tools do a good job of sizing gates to optimize the power and performance of

a design. Timing driven optimizations are performed in the synthesis and place and route

portions of the commercial ASIC design flow. However, such algorithms do not support

cyclical timing dependencies and must operate on directed acyclic graphs (DAGs). Thus, as

designed, commercial CAD does not support asynchronous circuits unless the sequential

modules are precharacterized as DAGs and correct timing constraints are provided.

There are, therefore, two approaches to correctly size gates to optimize the power and

delay and validate correct circuit timing for sequential asynchronous controllers. The first

approach is to develop custom timing tools that operate on cyclic circuits. Such an approach

normally unrolls the cycles using Shannon decomposition or other methods to produce time

varying dependencies on the feedbacks to deal with the interdependencies of the cyclic

graphs [58, 42]. These tools, while potentially very accurate, have large run times and are

not directly supported by commercial ASIC CAD tool flows. Thus, a custom tool flow

1Patent No. 8,365,116 has been issued for this work [57].



55

would need to be developed for gate sizing and timing driven place and route using this

method.

The second method is based on tool flows that employ traditional commercial CAD to

optimize and validate power, performance, and timing correctness [41, 59, 31]. These flows

generate timing paths through the sequential circuit that include delay targets necessary

for correctness and for meeting performance requirements. A circuit cannot be properly

optimized or validated if any timing path is cut. So the sequential circuit is preprocessed to

generate the timing arcs2 that must be cut to convert the cyclic timing graph to a DAG. All

the timing paths are preserved while generating these cycle cuts, which are then passed as

constraints to the ASIC CAD tools. This approach is less accurate since it does not allow

optimization of circuits based on cycle time like the first method. Calculating cycle time of

sequential circuits involves cycles, which get cut using this approach.

Cycle cutting that preserves timing paths is a key component in a high-level flow

for characterizing, synthesizing, and validating sequential asynchronous designs using

traditional commercial CAD tools. Part of this flow generates timing constraints that are

required for correct circuit operation [40]. These timing constraints are passed to the

algorithms in this tool that are then employed for timing driven synthesis, place and route,

and postlayout validation of asynchronous designs.

5.1 Key Contributions
• An algorithm for generation of cycle cuts constraints while preserving timing paths in

the circuit timing graph. Concept for identifying paths that must be cut in a design in

order to remove cycles, along with its associated algorithm is also presented. This

enables the use of STA and timing driven sizing and optimization algorithms of

commercial CAD tools on sequential asynchronous circuits.

• Cycle cut constraints generated by the algorithm allows us to control the performance

of each pipeline stage of the circuit and thus automatically generate bundled data

delays. This preserves the correct ordering of signals required for proper functioning

of an asynchronous circuit.

2Timing arc - Timing path from an input to an output of a gate.



56

• The generation of cycle cut constraints is performed automatically, thus enabling

automation of asynchronous circuit design using commercial CAD tools and flows.

5.2 Related Work
Combinational cycles are generally associated with sequential circuit designs like

asynchronous circuits. Cycles can also be present in combinational logic, and some cyclic

combinational circuits have been shown to substantially reduce area [60]. Since CAD in

EDA tools require acyclic timing graphs, the problem of finding cycles and analyzing the

combinational nature of circuits with cycles has been investigated [61]. Algorithms that

generate an equivalent acyclic combinational circuit which reproduces all the combinational

behavior of the original cyclic circuit have been proposed [62, 63, 64]. These approaches

cannot be applied to sequential circuits because they change the sequential behavior when

state-holding feedback of a circuit are removed. In order to support general sequential

circuits built as combinational logic with feedback, the cyclic circuit must be represented as

a DAG without modifying its structure or behavior.

The work most closely related to this work applies cycle cutting to the testing of digital

circuits with feedback [65]. The problem is formulated as a covering problem with the set of

arcs forming the cycle and the cycles present, with the goal being to find the minimal number

of arcs to cut all the cycles. The drawback of this approach is similar to the algorithms

in current commercial CAD tools which also cut cycles. A set of cycle cuts, even if they

are minimal, creates a DAG, but timing driven optimizations cannot be performed because

timing paths are cut.

A novel aspect of this work is the ability to specify paths which must be cut in a sequential

circuit. The must-cut path capability supports a modular system level design style where

external cycles can be specified to be cut in particular manner in local handshake control

modules. I am not aware of any published cycle cutting algorithm that supports embedded

constrained paths in graphs that both cannot be cut and that must be cut.

5.3 Background
Asynchronous design has largely received a cold reception from industry. Part of this

reluctance has been due to the requirement that custom design languages and CAD flows



57

have been necessary to design, optimize, and validate asynchronous modules and systems.

The asynchronous methodology and CAD tool flow described in Chapter 3 supports modern

programming languages like Verilog and ASIC CAD tools. They also support mixed-clocked

and asynchronous design. It exploits the benefits of asynchronous circuits and also uses the

ASIC CAD tool flow which are meant to develop synchronous (clocked) circuits [41]. One

of the key components to enable this is the generation of cycle cut constraints for the cyclic

asynchronous circuits.

This section describes the concept of timing constraint paths and their derivation from

relative timing (RT) constraints. Classification of cycles and the constraints required during

generation of cycle cuts and the benefits of its applicability and generality is described on a

4-deep bundled data pipeline using the circuit realization of the timed burst-mode protocol

shown in Fig. 5.1

5.3.1 Timing Constraint Paths

The flow in this dissertation is based on RT [20]. Each relative timing constraint pod

and poc is mapped onto nodes in the circuit. Paths through the design which topologically

connect a pod to a poc are created (e.g., for lr↑ 7→ la↑ in Fig. 5.1). The full set of paths,

called constraint paths, form the set Φ. A subset of Φ, called Φc, contain the performance

critical constraints. Constraints Φc include bundled data datapath constraints (Fig. 2.3),

which determine pipeline frequency. The set Φn = Φ−Φc thus consists of the constraint

paths which are not performance critical. A subset of Φ, usually Φc, is used for timing

driven synthesis and place and route.

Bundled data pipelines (Fig. 2.3) have similar data timing requirements to clocked design

(Fig. 2.5). Let Φbd = LCi/lr↑ 7→ Ri+1/D+margin ≺ Ri+1/clk↑ be the general bundled

data constraint where Φbd ∈Φc.

Mapping the above constraint to the LC circuit implementation in Fig. 5.1 results in

the constraint paths [lr↑ la ↓ ck↑] for pod to poc0 and [lr↑ rr ↓ rr↑] for pod to poc1.

Guaranteeing that these paths exist uncut by the cycle cutting algorithm is essential for

correct functionality and to correctly size and optimize the design for timing.



58

lc0

lc1 lc2

lc7

lc5

lc6

lc3 lc4

y

y

lr

ra ra
rst

rr

lala

rr

ck

A Y

A Y

A

B
Y

A Y

A Y

C1

C0

B1

B0

A1

A0

Y

A2
A1
A0

B1

B0

Y

A2
A1
A0

B1

B0

Y

Figure 5.1: LC circuit implementation3.

The specific timing constraint paths passed to each sequential block depends on the

architecture and the protocols that are being used. Note that these paths are user inputs to

the algorithm presented in this dissertation.

5.3.2 Classification of Cycles

There are two classes of cycles that exist in an asynchronous design. They are illustrated

in Fig. 5.2:

1. Local cycles: Cycles which are present in a single design module. These cycles can

be found by evaluating the connectivity of the module. Two of the local cycles of this

circuit are lc1–lc2–lc1 and lc3–lc4–lc3.

2. Architectural cycles: Cycles which are present at a higher levels of hierarchy of a

design through multiple design modules. LC0/rr–LC1/lr–LC1/la–LC0/ra–LC0/rr is

an example of an architectural cycle.

The request acknowledge handshake protocol on the channel between two LC blocks

naturally creates architectural cycles. The number of these cycles can grow exponentially

based on the architecture of the circuit. To prevent this, common cut points can be

3This figure is the static combinational gate implementation for the RT controller specification in [39].



59

LC0 LC1 LC2 LC3

R0 R1 R2 R3

lr
la

rr
ra

Din DoutCL CL CL

lc0

lc1 lc2

lc7

lc5

lc6

lc3 lc4

y

y

lr

ra ra
rst

rr

lala

rr

ck

Architectural Cycles
Local Cycles

Figure 5.2: Classification of cycles example.

identified at the architectural level which enables cycle cuts to be generated at the module

characterization level. This enables modules to be seamlessly connected without generating

architectural cycles.

For example, Fig. 5.2 shows some architectural cycles created to the right of the LC0

handshake controller. Similar cycles are present between connected sets of LC blocks. A

common set of paths can be identified, which when guaranteed to be cut, lead to the removal

of most of the architectural cycles. For this example, generating cuts for all the ra→rr paths

for each LC module result in all the architectural cycles on the right of the LC0 module

being removed. Similarly, cutting the lr→la path in LC can get rid of all the architectural

cycles on the left of a linear pipeline.



60

Architectural cycles can be specified to be cut locally in a sequential asynchronous con-

trol module. Localizing constraints this way simplifies the problem of cutting architectural

cycles. Paths for architectural cycle cuts are the dual of the timing paths that cannot be cut.

Architectural cycle cut paths are specified as must-cut path set Θm that the algorithm applies

to a sequential module. These must-cut paths are represented in Θm as A9B, or ra9rr in

our LC example. Must cut paths may not be a subset of any path in the performance critical

paths Φc, so ∀p ∈Θm,q ∈Φc, p 6⊆ q. All architectural cycles of Fig. 5.2 are cut by making

ra9rr in module LC a must-cut path by placing it in set Θm.

5.3.3 Benefits of Correct Cycle Cutting

The LC circuit in Fig. 5.1 is used as an example to show the power, area, and performance

benefits of applying timing driven cycle cutting using the flow in [41]. A 4-deep pipeline

(Fig. 2.3) is implemented in this evaluation with the datapath removed; only the request and

acknowledge control channels are connected.

Three local constraint paths are employed in the cycle cutting algorithm: {lr→rr,

lr→la}= Φc, and {Φc, lr→y }= Φ. One must-cut path is provided: Θm = {ra9rr}. The

two constraint paths in Φc employ max delay constraints. The optimization goal for these

performance critical paths is to generate the fastest circuit (having the smallest max delay)

without negative slack. The lr→y constraint is not performance critical but is necessary

for correct functionality. It employs a min/max pair of constraints set to 1× and 1.7× the

largest of the Φc constraints.

The circuits are then synthesized with Design Compiler (DC) employing optimization

for power and performance to the Artisan 65nm academic library. The designs are then

placed and routed with SoC Encounter to determine layout area and parasitics. The numbers

for forward latency, backward latency, and cycle time are generated by simulating the

postrouted design using standard delay format (SDF) back annotation. The step size of

the sampling inputs and outputs for simulation is 10ps. A test set feeding 50 tokens to the

design and then receiving it is used to generate a value change dump (VCD) file that reports

node activity. The VCD file is used to generate power and simulation time numbers on the

post-APR (automatic place and routed) design.



61

The design is evaluated under the following four scenarios. This demonstrates the

importance of supplying paths from Φc that cannot be cut as well as paths from Θm that

must be cut to create a DAG.

• No constraints: A commercial CAD tool cuts all cycles in the design.

• Local constraints: The local cycles are cut using the timing constraint path driven

algorithms in this dissertation, but the commercial CAD tool creates architectural

cycle cuts. (No must-cut paths are given to the algorithm.)

• Architectural constraints: Only the must-cut constraint path is provided to the

algorithm in this dissertation. The commercial CAD tool creates the local cycle cuts.

• Full constraints: The algorithm is given all four constraints and performs all cycle

cutting.

The max-delay targets for the Φc constraints differed in each scenario due to differences

in the cycle cuts. The smallest max-delay target without negative slack is 130ps for no

constraints, 125ps for architectural constraints, 105ps for local constraints, and 100ps for

the full constraint set.

Table 5.1 shows that there is a substantial circuit quality improvement obtained by

employing the timing path constrained algorithms in this dissertation to cut cycles when

compared to a commercial CAD tool. Improvements for this circuit include 1.3× for cycle

time, 2.5× for area, and 2.7× for energy per token when compared to using the algorithms

in a commercial CAD tool for cycle cutting. The table also points out the importance of

including both performance critical and must-cut constraint paths. If only the architectural

must-cut constraints are included, the results are generally worse than having the commercial

CAD tool perform all cycle cutting. Simply employing the performance critical constraint

paths helps, as this reduces energy by 1.5× over a commercial CAD tool. However, there

still remains a penalty of 1.8× in energy over our algorithm if one allows the commercial

CAD tool to perform architectural cycle cutting.

5.3.4 Generality of Approach

The algorithm and flow applies to any asynchronous module. This is illustrated by

applying this to a well known quasi delay insensitive (QDI) controller. Fig. 5.3 shows the

implementation of a weak-condition half-buffer (WCHB) [66]. This design has been mapped



62

Table 5.1: Comparison of performance metrics using timing path cycle cutting versus the
algorithm in a commercial CAD tool.

No Architectural Local All
Constraints Constraints Constraints Constraints

Forward Latency(ps) 97.5 127.5 85.0 107.5

Backward Latency(ps) 327.5 347.5 305.0 232.5

Cycle Time(ps) 520 540 460 390

Area(um2) 361.788 384.000 236.592 145.740

Power(mW ) 2.296 2.307 1.723 1.013

SimTime(ns) 32.541 34.287 29.342 27.798

Energy/token(pJ) 0.374 0.395 0.253 0.141

Out0

Out1

C2

C1

C3

C4

C5

In0

In1
OutAck

InAck

rst

A

B
Y

A

B
Y

A B
Y

C1

C0

B1

B0

A1

A0

Y

C1

C0

B1

B0

A1

A0

Y

Figure 5.3: WCHB circuit.

to the same cell library and characterization flow described in the previous section. The

constraint paths Φc for this circuit are {In0→Out0, In1→Out1, In0→InAck, In1→InAck}

while the must-cut paths are {OutAck9Out0, OutAck9Out1} = Θm. The cycle cuts

generated by the algorithm are shown graphically in Fig. 5.4 and the explicit constraints

used are shown in Fig. 5.5

Postlayout results for a 4-deep pipeline are generated. Table 5.2 shows that using both

local and architectural constraints clearly results in the best design. This timing optimized



63

Out0

Out1

C2

C1

C3

C4

C5

In0

In1
OutAck

InAck

rst

A

B
Y

A

B
Y

A B
Y

C1

C0

B1

B0

A1

A0

Y

C1

C0

B1

B0

A1

A0

Y

Architectural Cycle Cuts
Local Cycle Cuts

Figure 5.4: WCHB circuit with cycle cuts.

set disable timing -from B1 -to Y [find -hier cell *C1]
set disable timing -from C1 -to Y [find -hier cell *C1]
set disable timing -from B1 -to Y [find -hier cell *C2]
set disable timing -from C1 -to Y [find -hier cell *C2]
##Cuts for must-cut paths
set disable timing -from A1 -to Y [find -hier cell *C1]
set disable timing -from C0 -to Y [find -hier cell *C1]
set disable timing -from A1 -to Y [find -hier cell *C2]
set disable timing -from C0 -to Y [find -hier cell *C2]

Figure 5.5: Cycle cut constraints for WCHB circuit.

implementation has nearly a 2× improvement in forward and backward latency and cycle

time, a 1.4× area advantage, and a 3.2× energy per token advantage.

5.4 Rules for Timing Path Driven Cycle Cutting
A set of rules are defined for creating DAGs from cyclic circuits based on timing paths.

These rules are implemented in the algorithm described in the next section. The rules are

illustrated based on the sequential circuit shown in Fig. 5.1. The same constraint paths and

must-cut paths used in Sec. 5.3.3 are employed here.



64

Table 5.2: Comparison of performance metrics using timing path cycle cutting versus the
algorithm in a commercial CAD tool for WCHB example.

No Architectural Local All
Constraints Constraints Constraints Constraints

Forward Latency(ps) 162.5 160.0 152.5 82.5

Backward Latency(ps) 272.5 270.0 252.5 145.0

Cycle Time(ps) 510 520 460 270

Area(um2) 1269.5 1214.3 1232.7 890.6

Power(mW ) 0.717 0.607 0.646 0.344

SimTime(ns) 53.847 54.344 52.547 34.488

Energy/token(pJ) 0.770 0.659 0.678 0.237

5.4.1 Gate Sizing

To ensure performance and robustness of a design, each gate should have a delay target

as part of a constraint path. See rule 1.

• Rule 1 There must be at least one constraint path passing through a gate for it to be

properly sized.

Delay targets in this flow are expressed as constraint paths derived from Φ. Assume gate

G has no timing paths passing through it. The presence of no timing path through G occurs

if no constraint paths are specified that pass through G, or all paths through G are cut to

remove cycles and produce a DAG. Hence, there are no delay targets for sizing the gate.

A corollary to this rule is that no gate can have all input to output timing arcs cut. If that

is the case, all timing arcs passing through the gate are cut and and the gate would not be

properly sized.

5.4.2 Architectural Cycles are Cut

Must-cut paths are defined as the paths, which when cut, lead to the removal of the

architectural cycles. See rule 2.

• Rule 2 No path may exist from source to destination for any must-cut path in Θm.

Suppose there are n paths from source A to destination B of a must-cut path A9B. If

n−1 paths are cut, then there is only one remaining path from A to B of a must-cut path.



65

Likewise, if there are m must-cut paths, and only m−1 are cut, this leaves one must-cut

path uncut. In either case, there is a path that results in an architectural cycle.

As an example, let us consider the must cut set Θm = {ra9rr} for the circuit of Fig. 5.1.

There are two paths for the ra9rr must-cut path, path 1: [ra lc0 lc3 lc4] and path 2:

[ra lc0 lc1 lc2 lc5 lc3 lc4]. If only path 2 gets cut then there are still architectural cycles to

the right of each handshake controller through path 1.

5.4.3 Timing Arc Fidelity

Each gate must lie on a timing path of a graph represented as a DAG to be properly sized

according to rule 1. See rule 3.

• Rule 3 At least one path from source to destination of every constraint path must

remain uncut.

Consider a timing path A→B which has been cut into two segments at gate G. This

results in uncut segments A→G and G→B. Since timing constraints are expressed with

respect to points A and B, and A→B is cut at G, no such path exists on the DAG and hence

gate G cannot be optimized. If all such paths are cut, no timing paths exist from A to B.

5.4.4 Specifying the Correct Causal Path

The first three rules form the framework to create a DAG at the architectural level where

every gate is sized. However, these are not sufficient to properly characterize and optimize a

sequential circuit at the module level because the presence of cycles in a sequential circuit

results in a plethora of timing paths. Some of these are causal paths that toggle gate outputs;

others may in fact be noncausal paths that do not control signal transitions due to circuit

logic. Therefore, rule 3 is in general too weak a constraint to ensure proper characterization

of actual circuit delays with cycle cutting. A timing path driven cycle cutting algorithm must

cut noncausal paths but retain correct causal paths of each constraint path for the design to

be properly timed and optimized.

For example, constraint path lr↑→ck↑ in Fig. 5.1 contains two paths: [lc3 lc4 lc5 lc1 lc7]

and [lc1 lc7]. The shorter path is the causal path that must be selected for this constraint

path.



66

A heuristic called the greatest common path (GCP) enables the tools to distinguish

between the causal and noncausal paths in a sequential circuit. This heuristic makes use of

the consideration that the shortest (least number of gates) path is usually the causal path in

circuits which are designed to achieve the highest performance. The longer paths (having

more gates in the path) are assumed to be noncausal paths. Noncausal paths are often part of

the state holding logic that operates concurrently with the outputs in a timed asynchronous

circuit.

Definition 3 A GCP is a minimal path from the input to output of a timing constraint. If

the set of vertices of a shorter path is a strict subset of the same for a longer path where the

order of the gates in the longer path is the same as the shorter path, the shorter path is a GCP.

The constraint path lr↑→rr↑ in Fig. 5.1 contains two possible timing paths, path 1:

[lc3 lc4] and path 2: [lc1 lc2 lc5 lc3 lc4]. Path 2 is not a GCP since it contains path 1. Path 2

is by default considered a noncausal path and removed from consideration by our algorithm.

Verification and simulation of the circuit validates that path 2 is not causal because lr↑, and

not y ↓ causes rr↑. Thus, the GCP is causal. See rule 4.

• Rule 4 No timing arc of a GCP can be cut.

If a path exists from source to destination of a constraint path, the constraint path

contains at least one GCP. If the algorithm does not cut arcs in a GCP, then at least one path

is preserved for each constraint path.

Rule 4 now supersedes rule 3, since each constraint path contains at least one GCP. This

rule also allows for multiple disjoint paths that exists on a timing path (Sec. 5.4.5). Thus, it

guarantees that every path that can be used for timing is employed. It allows the removal of

redundant paths in a design and the ability to define which paths are causal in a sequential

circuit.

The GCP heuristic has several advantages in removing noncausal paths. GCP is a

conservative constraint for min-delay paths that always result in sufficient clock margins

for the latch/flop bank of the bundled data pipeline of Fig. 2.3. Assume the longer path for

constraint path lr↑→rr↑ that is not a GCP is the correct causal path. The longer path is cut,

forcing the EDA tools to add delay to the shorter GCP. This results in larger delays added to

the design than are required to meet the min-delay margin for the control path. The larger



67

delay increases latency to the clock signal, and increase the cycle time, by providing extra

margin and robustness to the design.

This heuristic also works well for high performance timed asynchronous circuits. For

example, in burst-mode designs the state variables change concurrently with the outputs,

increasing performance [50]. The state variable feedback signals create local cycles. Since

feedback holds state, changes in these signals generally do not cause a change in the outputs

of a high performance sequential circuit. Therefore, cycles can usually be cut in the state

holding feedback logic. Thus, GCP facilitates cycle cutting of high performance designs by

keeping the performance critical paths Φc uncut, focusing the arc cutting on the noncausal

paths of the state feedback signals. This is the case in the burst-mode circuit of Fig. 5.1,

where the state variable y switches concurrently with the outputs, making the GCPs the

correct causal timing path constraints.

5.4.5 Defining Causal Paths that are Not GCPs

In some asynchronous circuits, the GCP may not be the causal path. This is more com-

mon with untimed asynchronous designs such as speed-independent (SI) implementations.

Such designs reduce the number of relative timing constraints by sequencing state changes

in such a way that output changes are delayed until the state variables have settled. This

results in slow controller response time. For such designs, the causal timing paths must be

defined such that they pass through the feedback logic of the gates. This ensures that these

paths are not cut by rule 3.

The longer non-GCP path can remain uncut by breaking the original timing constraint

into a composition of multiple GCP timing constraints. In Fig. 5.6 the timing paths for

constraint path lr↑→la↑ are path 1: [lc1 lc2], path 2: [lc4 lc5 lc8 lc9 lc1 lc2], and path

3: [lc4 lc5 lc6 lc7 lc8 lc9 lc1 lc2]. Path 1 is the GCP for the three paths, but is not the

causal path for la↑. Note that la starts at logic zero, so lr↑ cannot assert la↑ due to the

NAND gate in lc1 that is disabled by la. Thus, la↑ gets set via the non-GCP path 2. The

causal path first asserts rr↑, then the state variable csc2↑, which then asserts output la↑.

The algorithm can use rule 4 to ensure the path, considered as noncausal, from being cut

by providing three constraint paths: lr↑→rr↑, rr↑→csc2↑, and csc2↑→la↑. These three



68

lc0

lc3

lc4
lc5

lc6 lc7

lc8
lc9 lc1 lc2

lr
ra

rr

la

csc2

csc1

rst

rst

Figure 5.6: L0000 R0044 circuit implementation.

constraint paths replace the lr↑→la↑ constraint path that they cover. This set of constraint

paths define the shortest and longest paths as noncausal paths.

5.5 Algorithm
An algorithmic process is developed which automates the process of generating cycle

cuts for sequential circuits. It obeys the four rules described in Sec. 5.4. This is a simple

vectorless algorithm that deals with the circuit structure, without considering the exact logic

function or delays of the gates.

The algorithm takes as input a structural Verilog description for a cyclic circuit imple-

mentation, a set of timing paths Φt and a set of must-cut paths Θm. It finds all the cycles

present in the circuit module, and based on the timing paths specified, outputs a set of

cycle cut constraints in the SDC format. These constraints can then be passed through the

synthesis and place and route flows to allow the circuits to be automatically power and

performance optimized. The algorithm is divided into four parts, explained below.



69

5.5.1 Adjacency List Creation

The circuit description is parsed and stored as an adjacency list G = (V,E), where V is

the list of vertices and E the edges of the circuit. Each vertex Vi is a tuple {C,N, I,O,P},

where C is the instance name, a vertex number N assigned to this vertex, a list of inputs I and

outputs O and a list of pointers P to an entry Ei in the edges structure. The edge structure

defines connectivity between gates in the design. This is achieved by defining a specific input

pin on a gate instance and pointers to link multiple pins together due to fanout. Each edge Ei

connects the output of vertex Vi with an input of a successor vertex Vi+1. Edge Ei is a tuple

{C,N,M,P}, where C is the successor vertex (Vi+1) instance name, N is the vertex number

of Vi+1 in V , M is the input number on Vi+1, and P points to connected Ei structures on

the output O of vertex Vi. There are also data structures timing path (Φt), constraint path,

mustcut path (Θm), and cycles that store all the A→ B timing paths specified by the user,

the GCPs, the must-cut paths and cycles present in the circuit, respectively.

A vertex Vi is created for each primary input and gate present in a structural Verilog

module. There is an edge structure Ei created for each input pin on every vertex instance.

Fig. 5.7 shows the adjacency list for the LC circuit example of Fig. 5.1.

5.5.2 Finding All the Cycles Present in the Circuit

A brute force algorithm with worst case complexity of O(|V | ∗ (|V |+ |E|)) is imple-

mented to find all the local cycles in a circuit. These structural cycles are independent of the

timing constraints.

A depth first search (DFS) is performed for each vertex Vi in the adjacency list G to find

paths that return to the vertex Vi. If such a path exists then the stack which stores the trace

is recorded as a cycle in the cycles data structure. The LC controller shown in Fig. 5.1 has

eight cycles present as shown below.

Cycle 1 [lc1 lc2 lc1]
Cycle 2 [lc1 lc2 lc5 lc1]
Cycle 3 [lc1 lc2 lc5 lc1]
Cycle 4 [lc3 lc4 lc3]
Cycle 5 [lc3 lc4 lc5 lc3]
Cycle 6 [lc3 lc4 lc5 lc3]
Cycle 7 [lc5 lc6 lc5]
Cycle 8 [lc5 lc6 lc5]



70

lc7

lc6

lc5

lc4

lc3

lc2

lc1

lc0

rst

ra

lr

V

NULL

lc5

lc1

lc3

lc4

lc1

lc2

lc1

lc4

lc0

lc1

lc5

lc3

lc5

NULL

lc5

lc7

lc3

NULL

NULL

lc1

NULL

lc6

lc5

lc5

NULL

lc3

lc3

NULL

NULL

NULL

NULL

NULL

E

Figure 5.7: Adjacency list for LC circuit of Fig 5.1.

Note cycle 2 and cycle 3 have the same set of gate names because the output of gate lc2

goes into two separate inputs of gate lc5. This can be verified from the adjacency list with

gate lc5 appearing twice as successor of gate lc2. Similarly, cycle 5 and cycle 6 and also

cycle 7 and cycle 8 have the same set of gate names but are two separate cycles. They might

require two set disable timing constraints to cut the cycles.

Any circuit can be represented as a directed multigraph if the output of a gate goes

into multiple inputs of any other gate. The brute force approach to find all the cycles in a

multigraph results in an exponential algorithm. But the number of multiple edges going

from a source node to the same destination in a sequential circuit node are limited and rare.

This primarily occurs when using a gate library with very few complex gate functions, such

as the academic Artisan library employed in this work. In a sufficiently rich library, such

connectivity would not exist. Even so, working on a multigraph representation of these



71

circuits at the module level does not lead to many additional cycles and thus the exponential

runtime is avoided.4

The creation of a multigraph can be avoided in complex gates by converting them into

two or more gates with one edge going into each gate. This adds two or more vertices to

the graph and converts it into a simple directed graph. An example for this conversion is to

replace lc1 in Fig. 5.1 into an AND3 gate and an AOI21 gate, with lr input going to both

these gates. Another approach can be to replace the multiple edges from source vertex to

destination vertex with one edge. Hence, while cutting the cycles, all the edges from source

to destination vertex need to be cut. Thus, both these approaches can bound the number of

edges by |V |2 and the number of cycles is polynomial in terms of the number of vertices.

But this directed multigraph can be converted into a directed graph by keeping only one

directed edge between any source and destination vertex. A scan through the adjacency list

is performed to remove all the duplicate edges. This results in the number of edges in the

circuit getting bound by |V |2 and the complexity defined above.

5.5.3 Timing Constraint Paths with Noncausal Path Removal

A DFS is performed to generate all paths between the nodes A and B, which are given as

timing paths specified by the user. The complete list is pruned to the GCPs for noncausal

path removal.

The following paths are returned as possible for timing constraint path lr↑→la↑ for the

LC controller shown in Fig. 5.1. These are pruned to the GCP, removing the second path.

[lc1 lc2]
[lc3 lc4 lc5 lc1 lc2]

The complete set of GCPs for the following two timing constraint paths are shown here:

lr↑ → la↑ [lc1 lc2]
lr↑ → rr↑ [lc3 lc4]

GCPs in the timing paths remain connected throughout the cycle cutting algorithm. Each

path from the list of GCPs is traversed and the inputs of the gates present on these paths are

marked as constrained to prevent them from being cut.

4Analysis of the set of 131 controllers in our test bench reveals that complex gates with more than 3 gate
inputs have at most 2 edges coming into them from the same predecessor.



72

5.5.4 Generating Cycle Cuts

Two algorithms have been implemented to generate cycle cuts:

• V1: This is a polynomial time greedy approach. The solution is created by cutting

maximum occurring edges.

• V2: This is an exponential time approach that searches through the complete list of

solutions possible to find the highest quality solution.

Quality metrics for the tool flow report the status whether all local and architectural

cycles are cut, and if there are any gates without a timing path passing through them. There

is no need to create a minimal set of cuts, what matters is that the “right” set is created.

The base of both the approaches is the same. Up to this point all cycles and constraint

paths have been defined. The problem of generating the cycle cuts is converted into a

covering problem for which a covering table is generated with the cycles as the rows and the

edges as columns. Only the edges present in the cycles which can be cut are considered. All

the edges which are present on a GCP are excluded since they cannot be cut (rule 4).

Edges that have the same source and destination gates are combined into a single column

even though it might generate multiple set disable timing constraints. The subscript used

with edges are to distinguish between an edge forking into different paths. la0, la1, y 0, y 1,

y 2, rr0 and rr1 are the edges lc2− lc1, lc2− lc5, lc5− lc1, lc5− lc3, lc5− lc6, lc4− lc3

and lc4− lc5, respectively.

Fig. 5.8 shows the covering table for the circuit shown in Fig. 5.1. After the generation

of the table, the V1 algorithm selects the edge that cuts the maximum number of cycles.

Each selected edge is removed from future consideration by removing that column. One

or more set disable timing cycle cut constraints are written out, and all rows representing

cycles which get cut by this edge are removed. The algorithm iterates through the table to

find a solution by repeatedly selecting the next maximum occurring edge and updating the

table. The generation of the local cycle cuts end when there are either no more edges (some

cycles are not cut), or there are no more rows (all cycles have been cut) in the table.

There are six edges which can result in cutting two cycles for the covering table of the

circuit of Fig. 5.1. The first is selected, i.e., la1. Cycle 2 and cycle 3 are cut by removing

this edge. This leads to the cycle count for the y 0 edge to become 0, and hence that column



73

la0 la1 rr0 rr1 y 0 y 1 y 2 y
[lc1 lc2 lc1]

√

[lc1 lc2 lc5 lc1]
√ √

[lc1 lc2 lc5 lc1]
√ √

[lc3 lc4 lc3]
√

[lc3 lc4 lc5 lc3]
√ √

[lc3 lc4 lc5 lc3]
√ √

[lc5 lc6 lc5]
√ √

[lc5 lc6 lc5]
√ √

Figure 5.8: Covering table for LC circuit.

is also removed. Continuing this process leads to the cycle cut set shown in Fig. 5.9. It

removes all the cycles with seven cuts, graphically shown in Fig. 5.10.

V2 algorithm again creates the covering table, but goes one step further. It generates the

complete list of solutions. The solution cost is employed to select the best solution. After

generating each new solution, its cost is calculated and compared against the previous best

solution. The solution with the minimum cost is selected as the best solution. The cost

heuristics considers the number of uncut cycles and orphaned gates5 and is calculated as:

Cost = 3 × number of uncut cycles + number of orphaned gates.

This exhaustive search has O(2n) complexity, where n is the number of edges in the

covering table. Thus, the worst case complexity for V2 is 2|V |
2

because n has a complexity

of |V |2, which makes it very slow as compared to the |V |3 complexity for the V1 algorithm,

but the best solution can be found. The search ends when the first solution with zero cost is

found, or when all the solutions have been generated. In the latter case the solution with the

lowest cost is returned.

After generating constraints for all the local cycles, the global architectural cycles are

removed. These cuts are generated from must-cut constraints. A DFS is performed to find

all the must-cut paths in the circuit. This results in the following paths for Fig. 5.1 when the

ra↑9rr↑ path is marked as must-cut.

Path 1 [ra lc0 lc3 lc4]
Path 2 [ra lc0 lc3 lc4]

5Gates having all timing paths passing through them getting cut.



74

set disable timing -from A1 -to Y [find -hier cell *lc5]
set disable timing -from B0 -to Y [find -hier cell *lc5]
set disable timing -from A0 -to Y [find -hier cell *lc5]
set disable timing -from C0 -to Y [find -hier cell *lc5]
set disable timing -from A -to Y [find -hier cell *lc6]
set disable timing -from B1 -to Y [find -hier cell *lc1]
set disable timing -from B1 -to Y [find -hier cell *lc3]

Figure 5.9: Local cycle cut constraints for LC circuit of Fig 5.1.

lc0

lc1 lc2

lc7

lc5

lc6

lc3 lc4

y

y

lr

ra ra
rst

rr

lala

rr

ck

A Y

A Y

A

B
Y

A Y

A Y

C1

C0

B1

B0

A1

A0

Y

A2
A1
A0

B0

B1

Y

A2
A1
A0

B1

B0

Y

Architectural Cycle Cuts
Local Cycle Cuts

Figure 5.10: LC circuit with cycle cuts.

A covering table is constructed where the rows define must-cut paths and columns define

the edges on those paths. Similar to local cycle cutting, edges that are on a timing constraint

path cannot be added to the table. The V1 algorithm, that eagerly selects cuts based on the

number of paths cut, is employed. A set disable timing cycle cut constraint is written out,

and all rows representing must-cut paths by this edge are removed.

The algorithm ends when there are either no more edges (some must-cut paths could not

be cut), or there are no more rows (all must-cut paths have been cut) in the table.

Following is the covering table for the must-cut constraint ra9rr applied to Fig. 5.1.



75

ra ra
[ra lc0 lc3 lc4]

√ √

[ra lc0 lc3 lc4]
√ √

Both paths can be cut by selecting the ra edge. The architectural cycle cuts for the LC

circuit of Fig. 5.1 are graphically shown by dashed line in Fig. 5.10 and the constraints are

shown in Fig. 5.11.

5.5.5 Uncut Cycles

It is possible to leave uncut cycles in the timing graph due to rule 4. When cycles are

uncut, it is not possible to optimize the circuit in a single pass with the given set of timing

constraints. The user must either define a different set of constraints that can do timing

optimization with a single pass, or run multipass optimization on the design. A new set of

timing constraints may be possible by analyzing the GCPs and modifying the timing paths

provided as inputs so as to relax the constraints a bit and thus reduce the number of GCPs

for the circuit. This results in an increase in the number of cycle cut candidates and thus all

the uncut cycles can be cut accordingly. This may also lead to more gates being unsized due

to the reduction in timing paths.

5.6 Results
The results for applying the V1 and V2 algorithms to a large set of handshake controllers

and a few benchmark circuits are reported. The design and evaluation flow described in

Chapter 3 are employed to generate the following results.

5.6.1 Four-cycle Handshake Controllers

This example set consists of the complete family of 131 untimed 4-cycle handshake

controllers with data valid at the rising edge of request (lr). They are generated from

concurrency reduction rules [35, 67]. This creates a rich set of protocols with various

properties, such as half and full data buffered pipelines. The concurrency reduction rules

are applied to the most concurrent protocol (top left corner) to generate the complete set

of untimed (speed independent and delay insensitive) protocols. Results are shown in a

tabular format from the most concurrent controller in the top left corner of the tables to

the least concurrent in the bottom right. Here, the number LXXXX represents increased



76

set disable timing -from A0 -to Y [find -hier cell *lc3]
set disable timing -from B0 -to Y [find -hier cell *lc3]

Figure 5.11: Architectural cycle cut constraints for LC circuit of Fig. 5.1.

concurrency reduction on the downstream (rr, ra) channel. Likewise the RXXXX values

represent orthogonal concurrency reduction on the upstream channel (lr, la). Some of the

handshake controllers did not have an implementation and are marked as ‘–’ in the tables.

Those that deadlock due to too much concurrency reduction are marked with ‘.’.

Some concurrency reduction rules create protocols that implement speed independent

protocols employing output ordering. This forces one output (or state variable) to switch

before another. For these cases, GCPs from a primary input to the primary output, as

employed for the example set, but are not the causal path. Hence, each design is manually

analyzed to find the correct causal path. These paths are specified with several related

constraint paths (Sec. 5.4.5).

The algorithm described in this dissertation is written in C++. The results are run on a

Core i7 processor with 4GB memory. Most sequential control circuits are relatively small

and so this problem is not constrained by run time or memory. The run time for the whole set

of handshake controller circuits is 2.43s and 6.60s for the V1 and V2 algorithm, respectively.

Table 5.3 shows the total number of cycles in these controllers. The amount of

concurrency in a design is directly proportional to the number of state variables required

[67]. As expected, the most concurrent protocols contain the largest number of cycles due

to more state holding feedback signals. The complexity of the circuits and the number of

cycles in the circuits decrease with concurrency reduction.

Two generic constraint paths, lr→rr and lr→la, have been applied to each circuit

module. Both are performance critical constraints in Φc for all designs. The must-cut

constraint path ra9rr is employed. The quality metrics for the algorithm can be directly

derived from rules 1, 2, and 4. The number of uncut cycles, number of must-cut paths, and

gates that do not have a timing path passing through them are reported for each circuit.

Table 5.4 shows the number of cycles left uncut. This shows that 127 of the 131 test

cases are able to remove all cycles employing the given constraint paths. The four circuits

with cycles left uncut have one gate repeated twice in the causal path. This creates a causal



77

Table 5.3: Total number of cycles found.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 18 35 – – 11 24 7 5

R0020 38 – 17 14 11 14 9 13 9 8

R0040 14 23 15 14 44 19 8 5 8 10

R0022 25 50 7 10 19 8 7 3 4 4

R0042 39 13 14 – 16 35 7 10 6 5

R2022 22 30 44 7 12 12 8 6 4 .

R2042 50 20 10 5 7 8 6 4 4 .

R0044 10 7 10 4 5 10 4 6 3 3

R2044 7 9 7 4 6 6 4 2 3 .

R4044 18 7 . 3 . 5 . . . .

R2222 19 7 5 3 5 5 4 4 2 .

R2242 17 9 8 7 6 5 4 3 3 .

R2262 7 7 10 4 5 . . 3 . .

R2244 3 4 4 1 1 1 1 1 1 .

R2264 5 6 5 1 2 . . 1 . .

R4244 5 6 . 1 . 2 . . . .

R4264 4 4 . 1 . . . . . .

cycle with GCPs which cannot be cut. For example, the causal path from lr↑ to rr↑ in the

L1111 R0022 protocol is [lr↑U3↓ la↑U6↓U7↑U2↓U3↑U1↓ rr↑]. The U3↓ transition

first sets the controlling value to one of the inputs of gate U1 to prevent it from switching

rr↑, since the protocol requires the la↑ output to switch before rr. After this it sets the

internal state variable and then switches rr via U3↑. The must-cut path is correctly cut for

all the 131 test cases.

Table 5.5 shows that a number of gates are left unsized. Gates are left unsized for two

reasons: first, there is no timing path through the gate, and second, all input to output timing

arcs get cut. Table 5.5 does not identify the reason a gate is unsized. Further investigation

reveals that the V1 algorithm cuts all input to output timing arcs on 59 gates. This number is



78

Table 5.4: Cycles left uncut for V1 algorithm.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 2 0 – – 0 0 0 0

R0020 0 – 2 0 0 0 0 0 0 0

R0040 0 0 0 0 0 0 0 0 0 0

R0022 0 0 2 0 0 0 0 0 0 0

R0042 0 0 0 – 0 0 0 0 0 0

R2022 0 0 0 0 0 0 0 0 0 .

R2042 0 0 0 0 0 0 0 0 0 .

R0044 0 0 0 0 0 0 0 0 0 0

R2044 0 0 0 0 0 0 0 0 0 .

R4044 0 0 . 0 . 0 . . . .

R2222 0 0 0 0 0 0 0 0 0 .

R2242 0 2 0 0 0 0 0 0 0 .

R2262 0 0 0 0 0 . . 0 . .

R2244 0 0 0 0 0 0 0 0 0 .

R2264 0 0 0 0 0 . . 0 . .

R4244 0 0 . 0 . 0 . . . .

R4264 0 0 . 0 . . . . . .

improved in the V2 algorithm resulting in only five gates having all input to output paths cut.

The remainder of the unsized gates have no timing constraint path passing through them.

These gates are primarily associated with the local state variable logic. Thus, these gates

can be sized by applying constraint paths that are specific to the state logic of each design.

Table 5.6 shows the energy delay product comparing cycle cutting being performed by

the V1 algorithm and a commercial CAD tool. The benefit of the V1 algorithm ranges from

an improvement of 11.87× to 1.66× over a commercial CAD tool. Table 5.7 summarizes

the performance results. It presents a comparison of the performance values employing

cycle cutting done by a commercial CAD tool and by V1 algorithm for latency, cycle time,

area, power, and energy. The average aggregate improvement of forward latency × area ×



79

Table 5.5: Unsized gates for V1 algorithm.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 2 6 – – 2 12 1 4

R0020 6 – 3 5 2 3 4 3 2 2

R0040 4 4 6 5 7 7 3 3 3 6

R0022 8 7 2 4 3 4 4 3 2 3

R0042 11 5 7 – 7 6 4 5 4 4

R2022 9 6 6 6 6 2 3 3 2 .

R2042 10 3 4 3 3 4 4 3 3 .

R0044 5 2 4 2 2 5 2 5 4 3

R2044 3 4 5 4 5 2 2 0 5 .

R4044 8 3 . 1 . 2 . . . .

R2222 6 2 1 1 2 1 2 3 2 .

R2242 6 2 3 3 3 4 2 2 4 .

R2262 4 3 2 2 3 . . 4 . .

R2244 3 4 2 2 1 2 2 0 0 .

R2264 1 2 2 2 2 . . 0 . .

R4244 4 2 . 1 . 1 . . . .

R4264 3 4 . 3 . . . . . .

eτ/token results in a 25.8× improvement over a commercial CAD tool across the protocol

set.

Appendix B shows the detailed comparison for forward latency, backward latency and

cycle time of each template with cycle cutting performed by a commercial CAD tool and our

timing path driven cycle cutting. A comparison of these numbers show that the commercial

CAD tool typically generates a slower circuit except for a few cases where it used big

gates that improved performance but wastes a lot of energy. An example for this is the

L3333 R0040 circuit. The commercial CAD tool generates cuts which enable a 20 percent

faster implementation than that with cuts generated by V1 algorithm. But the area of the

design is 2.32× larger and the energy consumed is 2.75× higher.



80

Table 5.6: eτ ratio of cycle cutting done by the commercial CAD tool and V1 algorithm.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 2.14 4.79 – – 2.72 4.66 7.72 8.92

R0020 6.45 – 2.07 3.01 5.79 6.66 9.25 8.67 6.16 8.36

R0040 8.23 8.58 8.81 2.46 4.09 7.89 7.45 6.86 1.98 2.25

R0022 5.04 5.93 1.68 9.45 10.47 6.70 4.28 9.30 7.53 6.22

R0042 4.20 5.55 8.16 – 11.87 8.06 4.20 3.96 8.79 5.96

R2022 5.32 4.57 4.43 6.19 5.28 4.47 8.22 5.40 9.50 .

R2042 8.35 7.44 9.45 6.39 5.26 4.92 9.56 3.34 3.96 .

R0044 5.13 7.52 6.73 6.16 4.81 5.07 2.96 4.04 3.59 6.66

R2044 7.37 5.02 4.30 3.24 3.26 4.01 3.60 5.28 2.67 .

R4044 7.07 6.27 . 4.11 . 3.53 . . . .

R2222 7.71 4.48 9.08 8.48 5.43 8.47 7.09 9.06 6.62 .

R2242 7.04 1.66 5.06 5.32 4.53 5.87 8.03 4.47 2.46 .

R2262 5.85 6.16 6.07 7.14 4.13 . . 3.76 . .

R2244 7.93 5.80 6.19 4.75 6.24 6.35 5.62 4.14 5.26 .

R2264 5.73 8.69 7.93 4.82 5.53 . . 4.35 . .

R4244 5.72 6.42 . 4.59 . 5.62 . . . .

R4264 6.14 6.10 . 5.28 . . . . . .

Appendix B show the routed core area for circuits with cycle cuts generated by my

algorithm and by commercial CAD tool, respectively. For this set of examples, the

commercial CAD tool always over-sizes the gates, if it performs cycle cutting. Four

of the five cases with area 1.9× times or less than the circuits optimized with timing are

for the circuits with uncut cycles. In these five cases, the commercial CAD tool performed

cycle cuts after the timing driven algorithms are employed.

The same conclusion can be made by comparing the power consumption and simulation

time numbers reported in Appendix B. There are five designs that have faster simulation

time when the commercial CAD tool does cycle cutting, but the performance improvement



81

Table 5.7: Comparison of performance metrics using the algorithm in a commercial
CAD tool versus timing path based cycle cutting (V1) (Commercial CAD tool number/V1
number).

Minimum Value Maximum Value Average

Forward Latency 0.76× 3.56× 1.60×

Backward Latency 0.33× 2.92× 1.55×

Cycle Time 0.77× 2.32× 1.52×

Area 1.46× 4.49× 2.96×

Power 1.00× 6.19× 2.81×

SimTime 0.81× 2.16× 1.42×

Energy/token 1.43× 6.34× 3.84×

eτ/token 1.66× 11.87× 5.88×

comes at the cost of wasting a lot of power and thus the optimization results in poor energy

values.

Energy per token comparison is also shown in Appendix B. The Energy numbers for the

pipeline design are 3.84× larger on an average for the case when the commercial CAD tool

does cycle cutting.

Results of the V1 and V2 algorithms are compared for forward latency, backward latency

and cycle time. The average variation is found to be 0.3 percent. Designs using the V2

algorithm are generally faster except for 7 cases with more than ±10 percent variation.

Similarly in terms of power consumption and simulation time, the results are pretty much

the same except for 6 cases where the variation is more than ±10 percent and ±5 percent,

respectively. Similarly, the average energy variation is around 0 percent, but four of the

previous outlying designs show results with more than ±10 percent variation.

5.6.2 Benchmark Circuits

The analysis of the V1 and V2 algorithms is done on benchmark circuits of varying

complexity. Benchmark designs like GCD and modules of postoffice and PSCSI are

synthesized using Petrify to generate a gate level netlist to which reset is added by hand

[56, 68]. The causal relationship resulting in the outputs switching based on the inputs is



82

analyzed from the state graph. This inspection led to selecting the input to output paths as the

timing constraint paths for the algorithm. Manual analysis of these paths led to selecting the

actual causal paths taken when the inputs change as described in Sec. 5.4.5. The architectural

connectivity of these designs is ignored hence no must-cut paths are specified alongwith

the timing constraint paths. Using this information, the cycle cuts are generated for these

circuits using the V1 and V2 algorithms.

Table 5.8 shows the design complexity of each of these design and a comparison of

generating the cycle cuts using V1 and V2 algorithms. It compares the two algorithms

based on the number of unsized gates and algorithm runtime. A list of the number of causal

path segments present in the designs and also the number of GCPs which they result in are

also shown to give a comparison between the complexity of the designs and the algorithm

performance. Analysis of the pscsi-isend design gives a better picture of the exponential

nature of the exahaustive V2 algorithm. The presence of lots of cut point candidates because

of the lack of GCPs, which is evident with the unsized gates list, results in the exhaustive

search of going through the whole search place for a zero cost solution which is not present,

but it consumes a very long run time.

Table 5.9 gives a comparison for the designs generated by the algorithms with respect

to a commercial CAD tool in terms of area, energy/token, simulation time and eτ . These

numbers give a comparison on the effectiveness of applying the greedy approach (V1) and

the exhaustive approach (V2) to finding the cycle cut points in a circuit. The generation of

these numbers is done as described for the examples in Sec. 5.3.3. The designs generated

using the V1 algorithm cycle cuts at an average are 2/3 the size, with 5 percent performance

improvement at half the energy, thus overall resulting in a 2.08× benefit in terms of eτ . The

benefits for the V2 algorithm are at par with the V1 algorithm with the only difference being

that the designs are lower energy and are slightly smaller.

5.7 Summary
Timing arcs must be cut to represent the timing graphs of sequential circuits as DAGs in

the current state-of-the-art CAD tools. An algorithmic approach is presented for automating

the timing path driven generation of these cycle cuts so that the CAD tools can perform

proper gate sizing for performance, area, and energy optimizations on sequential circuits



83

Table 5.8: Benchmark circuits design comparison (*Number of gates with all the input to
output paths cut).

Number of Gate Unsized Algorithm
Cycles Count Gates Runtime (s)

V1 V2 V1 V2 Paths GCPs

gcd 22 72 34(0*) 34(0*) <0.01 0.01 175 43

postoffice-rcv-setup 1 8 2(0*) 2(0*) <0.01 <0.01 4 4

postoffice-sbuf-send-ctl 12 28 16(1*) 16(0*) <0.01 0.01 120 14

pscsi-isend 325 43 19(2*) 19(0*) 0.17 49710 6122 64

pscsi-trcv-bm 6 26 11(1*) 11(0*) <0.01 <0.01 32 21

pscsi-tsend-bm 10 33 7(2*) 7(0*) 0.02 0.03 377 114

pscsi-tsend 10 35 7(2*) 7(0*) 0.04 0.12 1819 108

without modifying the underlying netlist. Timing is specified as timing constraint paths to

the algorithm. The timing constraint paths are of two forms: those that cannot be cut to

preserve necessary timing paths, and those that must be cut to prevent architectural cycles.

A method is provided for specifying the correct causal timing paths in the sequential circuits

based on constraint path composition. The CAD tool reports on the quality metrics of the

results, consisting of the number of cycles left uncut and the number of gates that do not

have a timing path passing through them. Two versions of the algorithm are presented: a

faster greedy search as well as an exhaustive algorithm that returns a result of the highest

quality.

The CAD tool developed generates cycle cutting constraints in the SDC format. This

timing path driven cycle cutting algorithm is a key component of a CAD flow that enables

asynchronous design to be synthesized, placed and routed, power and performance optimized,

and validated for postlayout timing correctness using commercial CAD tools that are

intended for combinational logic using a clocked timing paradigm.

The algorithms are general to any sequential circuit. The algorithm is demonstrated on

a test bench of 131 4-cycle bundled data asynchronous controllers, one delay insensitive

design and a set of benchmark circuits. Circuits in this example set have as many as 325



84

Ta
bl

e
5.

9:
R

es
ul

ts
co

m
pa

ri
so

n
fo

rb
en

ch
m

ar
k

ci
rc

ui
ts

.

C
om

m
er

ci
al

C
A

D
to

ol
V

1
A

lg
or

ith
m

V
2

A
lg

or
ith

m
V

1
B

en
efi

ts
V

2
B

en
efi

ts
B

en
ch

m
ar

k
A

re
a

E
ne

rg
y/

Si
m

.
A

re
a

E
ne

rg
y/

Si
m

.
A

re
a

E
ne

rg
y/

Si
m

.
A

re
a

E
ne

rg
y/

Si
m

.
A

re
a

E
ne

rg
y/

Si
m

.
C

ir
cu

it
to

ke
n

Ti
m

e
to

ke
n

Ti
m

e
to

ke
n

Ti
m

e
to

ke
n

Ti
m

e
to

ke
n

Ti
m

e
(u

m
2 )

(p
J)

(n
s)

(u
m

2 )
(p

J)
(n

s)
(u

m
2 )

(p
J)

(n
s)

gc
d

64
7.

2
1.

25
31

4.
46

42
8.

6
0.

77
30

2.
74

42
8.

6
0.

77
30

2.
74

1.
51

1.
63

1.
04

1.
51

1.
63

1.
04

po
st

of
fic

e-
rc

v-
se

tu
p

68
.6

0.
05

86
.7

8
54

.9
0.

03
87

.8
6

54
.9

0.
03

87
.8

6
1.

25
1.

25
0.

99
1.

25
1.

35
0.

99
po

st
of

fic
e-

sb
uf

-s
en

d-
ct

l2
24

.6
0.

78
31

6.
81

13
2.

0
0.

36
31

7.
85

12
2.

6
0.

34
32

9.
45

1.
70

2.
17

1.
00

1.
83

2.
31

0.
96

ps
cs

i-
is

en
d

49
5.

5
0.

98
29

6.
47

23
7.

5
0.

46
26

1.
39

26
1.

4
0.

54
27

7.
51

2.
09

2.
13

1.
13

1.
90

1.
82

1.
07

ps
cs

i-
tr

cv
-b

m
30

9.
5

0.
66

14
3.

91
14

9.
2

0.
24

14
1.

17
15

2.
6

0.
25

13
9.

69
2.

07
2.

72
1.

02
2.

03
2.

60
1.

03
ps

cs
i-

ts
en

d-
bm

34
7.

2
0.

79
22

3.
41

20
8.

3
0.

36
21

3.
44

19
7.

2
0.

32
23

4.
11

1.
67

2.
18

1.
05

1.
76

2.
44

0.
95

ps
cs

i-
ts

en
d

30
9.

5
0.

61
21

9.
42

21
0.

0
0.

37
19

8.
36

19
3.

7
0.

30
21

3.
77

1.
47

1.
68

1.
11

1.
60

2.
06

1.
03

A
ve

ra
ge

B
en

efi
t

1.
68

1.
98

1.
05

1.
70

2.
03

1.
01



85

cycles in the implementation. The general run time for each example is very small with

the worst case for a complex benchmark design like pscsi-isend being 0.17s for the greedy

algorithm, and 49710s for the exhaustive algorithm. Results are reported with an identical

set of timing paths on these examples. The number of cycles left uncut, the number of

must-cut paths left uncut and the number of gates left orphaned are reported. It is shown

that leaving any cycle uncut leads to issues in timing optimization as validation, as well as

producing inferior circuits. The circuits generated when cycle cutting is performed by a

commercial CAD tool are on average 2.96× larger, operate 1.42× slower, have a forward

latency 1.60× greater and consume 3.84× more energy. The average aggregate benefit of

this approach is a 25.8× improvement using these metrics.



CHAPTER 6

CHARACTERIZATION OF FAMILY OF

4-PHASE LATE PROTOCOLS

Power, performance, and area trade-offs are necessary considerations during any digital

design. The selection of any good design is generally for a specific set of requirements

of the system based on the cost-benefit analysis through optimum trade-off in these three

parameters. To ease this trade-off selection, prior information about the characteristics for

a slew of circuit choices is required. In case of bundled data systems, there can be huge

differences in the final circuit based on the choice of the handshake controller design used.

Hence, an understanding of protocol functionality and optimizations that can be performed

is necessary to develop optimized systems. As an example, if performance requirements

guides the protocol selection then for a high performance design, a low cycle time protocol

must be selected. Similarly, for a very low performance design a slow, sequential protocol

with less concurrency is preferred. Additional parameters like area and energy are also

important and need to be considered along with performance. The process of selection of

the best available circuit can be simplified if an easy method of characterizing the designs is

present or tables for precharacterized designs are generated for the circuit implementations

in the particular technology library.

This chapter explores the family of 4-phase handshake protocols with data valid at the

falling edge of the request signal, also known as late data validity protocols. It considers

the work in [35, 36, 67] which explains the theory for deriving various protocols based on

concurrency reduction and also describes the characterization results for 4-phase protocols

with data valid at the rising edge of the request, i.e., early data validity protocols. The theory

and the approach for these early data validity protocols is taken as the base and the theory for

the 4-phase late data validity protocols is described. Two sets of designs are generated based

on the way the reset signal gets added to them and compared against each other. Comparison



87

between these designs lead to detailed tables for forward latency, backward latency, cycle

time, buffering depth, area, and energy. These tables assist in easing the trade-off based

selection while using these designs to make a good bundled data system.

6.1 Key Contributions
• Concurrency reduction approaches for a family of untimed 4-phase late data validity

protocols based on [67] and [35, 36].

• Characterization of all the protocols in this family of protocols for energy, performance

and area.

• Design of a hand-optimized controller and its comparison with equivalent circuit

generated by Petrify.

6.2 Background
A family of 4-phase handshake protocols with data valid at the rising edge of a request

signal coming into the circuit block is presented in [67] and [35, 36]. The earlier publication

looks at the theory for concurrency reduction and composition of these protocols in linear

and parallel pipeline structure. The latter publications analyze the circuit implementations

for these protocols. The systematic study presented for the early data validity protocols

resulted in 131 handshake controller designs. Detailed analysis of the effects of concurrency

reduction on circuit parameters like forward latency, backward latency, cycle time, buffering

depth, area and energy is presented.

Analysis of the early data validity protocol family starts by specifying the most con-

current protocol, also known as the max protocol. The calculus of communicating systems

(CCS) specification for this max protocol is shown below.

L = lr↑.gS.rEn↑.aEn↑.rEn↓.aEn↓.pV.la↑.lr↓.la↓.L
R = gV.rr↑.ra↑.pS.rr↓.ra↓.R
S = gS.pS.S V = pV.gV.V

LC = (L | R | S |V )\{gS, pS,gV, pV}
LATCH = rEn↑.open.aEn↑.rEn↓.closed.aEn↓.LATCH

max = (LC | LATCH)\{rEn,aEn} (6.1)



88

Fig. 6.1 shows the minimized state graph representation of the max protocol which

can be represented as a simple STG as shown in Fig. 6.2. These representations help in

visualizing the protocols. A less cluttered shape, shown below, for max was proposed and it

removes the arcs.
o o o o o o o o o

o o o o o
o o o o o o o o o
o o o o o o o o o

•

Concurrency reduction rules with left (L ) and right (R) cuts were then derived and

applied on the max protocol to derive less concurrent designs. This systematic approach

leads to easily characterizing the family of early data validity protocols.

Late data validity protocols, as defined in Sec. 2.1.3.2, are the protocols where the data

is valid from the falling edge of the request signal until the falling edge of the acknowledge

signal. The family of late data validity protocols is derived using the same systematic

approach as described above. Concurrency reduction techniques and rules similar to the

early data validity protocols are then derived for these circuits.

The drawback of bundled data system is the area, performance and power/energy penalty

of the delays that are added between pipeline stages based on the amount of logic in the

datapath. In the case of 4-phase protocols, the delay between two pipeline stages is traversed

through twice. For the early data validity protocols, this results in the operational frequency

of the pipeline stage in being half of that of the amount of logic in the datapath. Various

ways to hide this overhead in the protocols, like acknowledging early any request signal in

parallel with enabling the clock signal at the successor pipeline stage a bit late, reduces the

size of the delay. But, still this penalty is pretty big for datapath with large combinational

circuits. Another approach is to have nonsymmetric delays have a faster reset phase of the

protocol than the set phase.

These drawbacks get addressed by the late data validity protocols. This protocol

theoretically allows the delay element to be half of what is required for the early data validity

protocols, thus reducing its impact on the area of the design as well as the power/energy

consumption. Also, the reset phase of the 4-phase protocol is shortened to falling edge of

the acknowledge signal as compared to early data validity protocols for which the reset

phase consist of the rising and falling edge of the acknowledge signal and the falling edge of



89

•�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

rr↑

ra↑

rr↓

ra↓

lr↑ lr↑ lr↑la↑ la↑ la↑lr↓ lr↓ lr↓la↓ la↓ la↓

? ? ? ? ?

? ? ? ? ?

? ? ? ? ? ? ? ? ?��

� �
?

��

� �
?

��

� �
?

��

� �
?

��

� �
?

��

� �
?

��

� �
?

��

� �
?

��

� �
?- - - - - - - -

- - - -

- - - - - - - -

- - - - - - - -

Figure 6.1: Minimized state graph of max, configured as a shape for early data validity
protocols.

ra- rr+ ra+ rr-

lr+ la+ lr- la-

Figure 6.2: STG for the abstracted max protocol for early data validity protocols.

the request signal. Hence, late data validity protocols can lead to performance similar to the

amount of logic present in a pipeline stage. But this also creates a drawback for these circuits

being slow and not useful when the target design requires very small forward latency. In

light of these motivations, exploring the family of untimed late data validity protocols to gain

a better understanding of its impact on various design parameters is necessary. Results are

presented for these circuits for area, energy and performance. A hand-optimized controller

is also described to show the optimizations that can be achieved.

6.3 Late Data Validity Protocols
The CCS specification for the max protocol for late data validity protocol family is as

shown below. Since the data word is valid between lr↓ and la↓, the synchronization points

in the CCS specifications, i.e., gS and pV , and also the latch enable with its open and close

operation are present between these transitions.

L = lr↑.la↑.lr↓.gS.rEn↑.aEn↑.rEn↓.aEn↓.pV.la↓.L
R = gV.rr↑.ra↑.rr↓.ra↓.pS.R

S = gS.pS.S V = pV.gV.V

LC = (L | R | S |V )\{gS, pS,gV, pV}



90

LATCH = rEn↑.open.aEn↑.rEn↓.closed.aEn↓.LATCH

max = (LC | LATCH)\{rEn,aEn} (6.2)

A minimized state graph and an STG for this max protocol are shown in Fig. 6.3 and

Fig. 6.4, respectively. For simpler representation, the minimized state-graph for the late data

validity protocols can be represented in a less cluttered form as shown below.

o o o o o o o o o
o o o o o
o o o o o
o o o o o

•

6.3.1 Concurrency Reduction on MAX with Cuts

Concurrency reduction approach for any protocol starts by removing states from a

concurrent protocol. The final protocol derived becomes more sequential and can be simpler,

faster, and can consume less power and area. Since max is the most concurrent protocol,

it is used as the base to start reducing the concurrency and derive other protocols in the

late data validity protocol. Various less concurrent protocols can be generated by removing

states from max in a systematic way. The removal of states is shown by replacing the o

with a . if the state is unreachable (cutaway) in a particular protocol. The concurrency

reduction is possible L on the left and R on the right side of the max protocol. Hence, using

the convention of the early protocols, the concurrency reduction rules generate different

protocols based on the left cuts L and right cuts R from the max shape. An overview of

the cut representation is shown for the left and right cuts below.

6.3.1.1 Concurrency Reduction from Right Cuts R

The states removed in a right cut are denoted as Rabcd as shown in Fig. 6.5. Rabcd

denotes the removal from max of a states from the right end of row 1, b from row 2, c from

row 3, and d states from the right end of row 4. The maximal cutaway per row is 4 for all

the rows and is shown by the dashed box in Fig. 6.5. The result of cut R2200 is depicted in

Fig. 6.6. The family of all R cuts is generated by the constraints:

0≤ a,b,c,d ≤ 4

a≥ b ∧ b≥ c ∧ c≥ d (6.3)



91

•�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� �� ��

rr↑

ra↑

rr↓

ra↓

lr↓ lr↓la↓ la↓lr↑ lr↑la↑ la↑

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?��

� �
?

��

� �
?

��

� �
?

��

� �
?

��

� �
?- - - - - - - -

- - - -

- - - -

- - - -

Figure 6.3: Minimized state graph of max, configured as a shape for late data validity
protocols.

ra+ rr- ra- rr+

lr+ la+ lr- la-

Figure 6.4: STG for the abstracted max protocol for late data validity protocols.

o o o o o
o
o
o

o o o o
o o o o
o o o o
o o o o

• R a
b
c
d

Figure 6.5: Right cut R denotation and range for late data validity protocols.

o o o o o
o
o
o

o o
o o
o o o o
o o o o

. .

. .
• R 2

2
0
0

Figure 6.6: The shape resulting from cutaway R2200.

6.3.1.2 Concurrency Reduction from Left Cuts L

Similar to the right cuts, the left cuts are denoted as Labcd. This cut removes from max

a states from the left of row 2, b from row 3, c from row 4, and d from the left of row 1.

Note that the d cut represents the number of states that are removed from the row 1 but for

representation an extra row is added which is simply a duplicate of the row 1 (Fig. 6.7).

Since the initial state has to be present and reachable for liveness, only one state can be

removed from each row resulting in the potential candidates for a left cut now lie in a 1×4



92

o o o o o o o o o
o
o
o
o

o o o o
o o o o
o o o o
o o o o

•

•

L a
b
c
d

Start here

Rpt of row 1
Figure 6.7: Left cut L denotation and range. The top row is duplicated at the bottom of the
shape to more easily show the left cut ordering.

block of states in the dashed boxed of Fig. 6.7. The result of cut L0011 is depicted in

Fig. 6.8. The family of all L cuts is generated by the constraints:

0≤ a,b,c,d ≤ 1

a≤ b ∧ b≤ c ∧ c≤ d (6.4)

6.3.1.3 Untimed Protocol Family

The complete family of protocol shapes is generated by applying concurrency reduction

using left cuts and right cuts to max. Each of these protocols are called untimed since

they can only control the outputs of the circuit i.e., rr and la and have no control over the

incoming inputs i.e., lr and ra. Hence, there are no timed protocol considered since they

require control over the environment. Similar to the early protocol exploration, only untimed

(delay insensitive (DI) and speed independent (SI)) protocols are considered.

L0000◦R4422 representation is used to distinguish between the different protocols based

on the left cut and the right cut used to generate them.

Not all these shapes are valid: for example the shape L1111◦R4400 is not live since

it deletes all the states from row 2 of the shape. Using an obvious cut indexing, shape

Labcd◦Rabcd is live iff Eqn. 6.5 holds. Thus the liveness of a shape can be calculated

directly from its cuts from max.

La+Rb < 5 ∧ Lb+Rc < 5 ∧ Lc+Rd < 5 ∧

La+Ra < 5 ∧ Lb+Rb < 5 ∧ Lc+Rc < 5 ∧ Ld+Rd < 5 (6.5)

The right and left cut constraints in Eqn. 6.3 and 6.4 express all cuts, including the

burst-mode and relative timed protocols. Constraint rule R1 must additionally hold for all

untimed protocols. Delay insensitive protocols must also obey constraint R2.



93

o o o o o o o
o
o

.

.

.

o o o o
o o o o
o o o o
o o o o

•

•

L 0
0
1
1

Figure 6.8: The shape (above the duplicated line) resulting from cutaway L0011.

1. R1: input signals lr and ra must always be accepted

2. R2: output signals may be delayed only by inputs

• The SI family: When rule R1 is added to the cut and liveness constraints of Eqn. 6.3,

6.4 and 6.5 we obtain the speed independent family of cuts. States must be removed in

1×2 pairs by left cuts and 2×1 pairs by right cuts. For example, referring to Fig. 6.3,

one cannot remove just the rightmost state in any row (e.g., cut R1100) or the input

lr↓ is delayed (resulting in a timed design). The state to the left must also be removed

(giving cut R2200). R1 is enforced by the following cut equation.

R : a,b,c,d are even

L : a = b ∧ c = d (6.6)

• The DI family: Adding rules R1 and R2 to our base cut constraints creates the delay

insensitive protocols. This is more restrictive than the SI cuts, requiring states to be

removed in 2×2 blocks. Thus it enables both the outputs to occur concurrently and

removes the “output ordering” in the protocol. For example, referring to Fig. 6.3, if

the rightmost two states are cut in the top row, output la↑ is delayed, producing cut

R2000. To obey R2 and prevent output la↑ being delayed by output rr↑, the right two

states must also be removed in the second row. This produces the DI cut R2200. R1

and R2 are enforced by the following equation on both L and R cuts. There is only

one DI L cut present for this family of protocol and it is L0000.

R,L : a,b,c,d are even ∧ a = b ∧ c = d (6.7)

6.3.1.4 L and R Cut Lattices

The DI definition is a subset of the SI family. Rather than subtracting them out, we

prefer to keep them all and refer to it as the DI/SI family. This results in 3 left cuts and 15



94

right cuts. Composing members of the L and R cuts to create protocol shapes gives 45

possible protocols, where 13 are not live as their cuts violate the liveness constraint Eqn. 6.5.

Similar to the early data validity protocols, this family of protocols also forms symmetric

lattices for both sets of cuts and each cut has a complement. The left and the right lattices

are shown in Fig. 6.9. The lattice of left cuts has three members and is symmetric about an

axis through cuts L0011. Each cut Labcd has a complement given by L(1-d)(1-c)(1-b)(1-a).

The cuts on the axis are self-complementary. The lattice of right cuts has 15 members and is

symmetric about an axis through R2222, R4220, R4400 (which are self-complementary).

Each cut Rabcd has a complement given by R(4-b)(4-a)(4-d)(4-c). Thus, these sets of

protocol lattice look similar to those shown for the early data validity protocols and they

also show the same self-complementary left and right cut sets.

6.4 Results
The complete set of valid late data validity protocols were characterized using the flow

described in Chapter 3. Each protocol is specified in CCS and synthesized and technology

mapped using Petrify ([53]). Reset is added to the technology mapped circuit using the reset

addition algorithm from Chapter 4. The analysis of the circuits is manually done to find the

actual GCPs as done for all the early data validity protocols in Chapter 5. lr→rr and lr→la

timing paths were considered for these controllers as for the early data validity protocols.

Each controller is then mapped to the handshake controller of a 4-deep linear FIFO (first in

first out) structure with the datapath abstracted out and run through the synchronous CAD

tools. Numbers are reported for these circuit implementations for forward latency, backward

latency, cycle time, buffering depth, area, and energy.

Tables 6.1 and 6.2 describe the complexity of the circuit implementations for the late

data validity protocols by detailing the number of gates and cycles present. The largest

circuit for this protocol family consists of 11 gates before the addition of reset for power

or performance optimization as shown in Chapter 4. The number of cycles present in the

circuit ranges from 1 to 15. The max protocol is the most complex among the set of circuit

implementation.

Two sets of designs were generated based on the optimization selected during the reset

addition phase of the tool flow. The forward latency comparison for designs generated



95

L0000

L0011 L1111

R0000 R2000 R2200 R2220 R2222

R4000 R4200 R4220 R4222

R4400 R4420 R4422

R4440 R4442

R4444

Figure 6.9: The symmetric lattices of untimed DI/SI left and right cuts.

using power and performance optimization is shown in Tables 6.3 and 6.4, respectively.

Similarly, backward latency comparison using power and performance optimization is shown

in Tables 6.5 and 6.6, respectively, and cycle time comparison is shown in Tables 6.7 and

6.8, respectively. Overall the trend is towards better performing circuits for the performance

optimization with a few outliers. On analysis it is seen that a few big complex gates like

AOI32 have bigger load to drive resulting in them being slower and hence, leading to

reduction in performance.

Table 6.9 show the buffering depth for each protocol and the reduction in concurrency

leads to fewer tokens which can be present when the pipeline is stalled. Note that the

L0000◦R4444 has a buffering depth of 0 since it is an unpipelined controller. Its definition

says that the right hand side handshake must complete before the la↓ signal is generated.

Behaviorally, this protocol is similar to just a wire connecting lr to rr and la to ra. Hence,

the cycle time of the protocol is very high but due to highly sequential nature, forward

latency and backward latency numbers are very small.

Tables 6.10 and 6.11 show the area comparison between the power and performance

optimization based reset addition. The general trend is that performance optimization

duplicates the logic gate from a latency path to the feedback and thus results in increase

in the area. There are a few outliers in this example set which on further analysis showed

the different sizing for the gates employed by Design Compiler (DC) for different fanout



96

Table 6.1: Number of gates before
adding reset.

LoR L0000 L0011 L1111

R0000 11 8 8

R2000 9 9 7

R4000 9 7 –

R2200 7 8 5

R4200 8 7 –

R2220 9 8 6

R4220 7 6 –

R2222 9 7 7

R4222 5 6 –

R4400 7 3 –

R4420 6 6 –

R4440 7 – –

R4422 4 3 –

R4442 4 – –

R4444 4 – –

Table 6.2: Total number of cycles found.

LoR L0000 L0011 L1111

R0000 15 7 10

R2000 7 7 7

R4000 10 7 –

R2200 3 4 4

R4200 6 4 –

R2220 10 6 7

R4220 4 4 –

R2222 6 3 3

R4222 2 3 –

R4400 4 2 –

R4420 3 3 –

R4440 3 – –

R4422 1 1 –

R4442 1 – –

R4444 1 – –

loads in the circuit. For these outliers, the distribution of the fanout load into two separate

branches resulted in smaller sized gates and consequently, reduction in area.

The same conclusion can be made by comparing the power consumption (Tables 6.12

and 6.13), simulation time (Tables 6.14 and 6.15) and energy numbers (Tables 6.16 and

6.17) for the circuit implementations generated using power and performance optimizations.

The presence of undersized gates for certain cases like L0000◦R0000 for performance

optimization results in longer simulation time but also smaller and low power circuit even

though extra logic gets added. The presence of few extra timing constraint paths over and

above the two timing paths can result in improvements in performance for paths which are

currently not optimized automatically by the CAD tools.



97

Table 6.3: Forward latency
(ps/pipestage) (Power optimization).

LoR L0000 L0011 L1111

R0000 359.50 425.25 433.50

R2000 392.75 349.25 413.50

R4000 264.75 346.25 –

R2200 383.00 310.50 369.75

R4200 349.00 384.00 –

R2220 356.50 342.25 418.25

R4220 290.00 286.00 –

R2222 381.00 329.75 396.50

R4222 332.75 278.75 –

R4400 283.25 331.75 –

R4420 319.75 311.50 –

R4440 309.25 – –

R4422 287.50 253.75 –

R4442 306.00 – –

R4444 264.50 – –

Table 6.4: Forward latency
(ps/pipestage) (Performance optimiza-
tion).

LoR L0000 L0011 L1111

R0000 387.75 376.75 469.25

R2000 392.75 324.75 406.50

R4000 299.25 338.50 –

R2200 370.25 278.25 316.50

R4200 283.50 342.75 –

R2220 399.75 342.25 367.50

R4220 268.00 274.00 –

R2222 334.00 329.75 342.00

R4222 325.00 278.75 –

R4400 255.50 331.75 –

R4420 290.75 311.50 –

R4440 309.25 – –

R4422 289.00 270.75 –

R4442 327.25 – –

R4444 255.50 – –

6.5 Hand-optimized Handshake Controller
Analysis of the results in Sec. 6.4 for the late data validity protocol implementations

resulted in the selection of L0011◦R4220 protocol for hand optimization. L0011◦R4220

protocol is one of the best performing circuits and also has reasonable concurrency reduction

applied to it. The technology mapped implementation for this circuit generated by Petrify is

shown in Fig. 6.10. Analysis of the protocol and the EQN file generated by Petrify were

then manually technology mapped to the implementation shown in Fig. 6.11. The shifting of

the inversion at the inputs of the protocol implementation led to a good gate count reduction

from 8 to 5 for the design.

The data for late data validity protocol gets latched before the la↓, and this latching

operation has to be delayed until lr↓ since the data word is valid only at the falling edge of



98

Table 6.5: Backward latency
(ps/pipestage) (Power optimization).

LoR L0000 L0011 L1111

R0000 372.00 212.75 99.75

R2000 144.75 178.25 162.75

R4000 230.75 216.50 –

R2200 148.00 141.00 136.75

R4200 206.75 194.50 –

R2220 118.00 137.25 148.25

R4220 210.50 173.00 –

R2222 229.50 262.25 313.75

R4222 302.50 258.50 –

R4400 296.50 234.50 –

R4420 269.50 243.75 –

R4440 322.75 – –

R4422 89.75 67.00 –

R4442 128.25 – –

R4444 47.50 – –

Table 6.6: Backward latency (ps/
pipestage) (Performance optimization).

LoR L0000 L0011 L1111

R0000 369.75 254.25 85.50

R2000 144.75 168.75 145.25

R4000 226.75 198.00 –

R2200 131.25 114.00 120.75

R4200 190.25 174.75 –

R2220 123.00 137.25 125.75

R4220 163.25 146.00 –

R2222 208.25 262.25 261.50

R4222 291.50 258.50 –

R4400 270.00 234.50 –

R4420 222.75 243.75 –

R4440 322.75 – –

R4422 79.50 55.75 –

R4442 138.75 – –

R4444 48.00 – –

request signal. This results in a very small duration for the clock signal to be enabled. The

clock signal for the implementation shown in Fig. 6.11 is generated as a pulse, and the pulse

width is controlled by the delay of the path [lr↓U2 U1 U6]. Hence, a min delay constraint

is required to fix this pulse width otherwise the simulations with inertial model of delay

results in no latching of data at the register element.

The hand optimization of this design resulted in a forward latency, backward latency and

cycle time of 267ps, 119.25ps and 430ps, respectively, as compared to 286ps, 173ps, and 483

ps for the initial design generated by Petrify with reset addition for power optimization. The

area and energy numbers for the hand optimized design are 65.160um2 and 0.227pJ/token.

The hand-optimized design is 47 percent smaller, 12 percent faster and consumes 52 percent

less energy as compared to the design generated by Petrify.



99

Table 6.7: Cycle time (ps)
(Power optimization).

LoR L0000 L0011 L1111

R0000 714 572 513

R2000 510 506 585

R4000 493 555 –

R2200 547 477 513

R4200 568 539 –

R2220 609 528 568

R4220 568 483 –

R2222 614 581 652

R4222 646 535 –

R4400 555 568 –

R4420 614 551 –

R4440 675 – –

R4422 662 562 –

R4442 765 – –

R4444 1500 – –

Table 6.8: Cycle time (ps)
(Performance optimization).

LoR L0000 L0011 L1111

R0000 714 555 559

R2000 510 480 576

R4000 477 551 –

R2200 520 428 490

R4200 477 539 –

R2220 614 528 506

R4220 474 436 –

R2222 547 581 635

R4222 646 535 –

R4400 513 568 –

R4420 539 551 –

R4440 675 – –

R4422 650 576 –

R4442 842 – –

R4444 1470 – –

6.6 Summary
The systematic approach of starting with a maximum concurrency protocol and then

reducing the concurrency with a set of left and right cuts is extended to the late data validity

protocols. Rules similar to those generated for early protocols in [67] and [35] are derived

for late data validity protocols.

A complete set of untimed late data validity protocols has been characterized for forward

latency, backward latency, cycle time, area, and energy. The data give an insight on the

effects of concurrency reduction on various design parameters, thus assisting in selection of

the best design for any specification. The reduction in concurrency can result in simpler and

faster handshake controller, thus resulting in high throughput design with fast cycle time.

Also, a large area and energy benefit is gained. The benefits of concurrency reduction are



100

Table 6.9: Buffering depth for circuits.

LoR L0000 L0011 L1111

R0000 4 4 4

R2000 4 4 4

R4000 4 4 –

R2200 4 4 4

R4200 4 4 –

R2220 4 4 4

R4220 4 4 –

R2222 4 4 4

R4222 4 4 –

R4400 4 4 –

R4420 4 4 –

R4440 4 – –

R4422 2 2 –

R4442 2 – –

R4444 0 – –

demonstrated by comparing the Petrify circuit implementation with power optimization for

L0011◦R4220 cut with the max protocol. The max protocol has 48 percent slower cycle

time, 111 percent larger area and consumes 105 percent more energy with respect to the

L0011◦R4220 cut circuit implementation.

The data word is valid at the falling edge for the late protocols, leading to efficient

implementation for design where the datapath delay is large. As compared to early data

validity protocols, the size of the delay elements between pipeline stages can be nearly

halved on the control path, thus resulting in a smaller area and lower energy consumption.

Going twice through the delay element for the set phase of a data transfer can be too

restrictive and can lead to performance penalty, especially for designs requiring very fast

forward latency.



101

Table 6.10: Routed core area (um2)
(Power optimization).

LoR L0000 L0011 L1111

R0000 258.912 216.864 284.592

R2000 200.580 162.000 147.480

R4000 188.580 172.320 –

R2200 148.320 113.184 119.184

R4200 147.480 116.592 –

R2220 193.740 150.900 132.000

R4220 132.864 122.592 –

R2222 136.320 102.864 99.456

R4222 78.876 85.716 –

R4400 102.864 82.296 –

R4420 109.728 82.296 –

R4440 140.592 – –

R4422 69.444 48.000 –

R4442 61.740 – –

R4444 61.740 – –

Table 6.11: Routed core area (um2)
(Performance optimization).

LoR L0000 L0011 L1111

R0000 235.728 155.160 243.432

R2000 200.580 204.900 186.900

R4000 200.580 144.900 –

R2200 128.592 144.900 98.592

R4200 168.900 133.728 –

R2220 208.296 150.900 120.000

R4220 159.480 138.000 –

R2222 153.480 102.864 127.728

R4222 89.172 85.716 –

R4400 113.184 82.296 –

R4420 130.320 82.296 –

R4440 140.592 – –

R4422 72.864 58.284 –

R4442 72.000 – –

R4444 68.580 – –

Based on the results for the concurrency reduction, the L0011◦R4220 cut is identified

as one of the best in terms of performance and concurrency reduction. A hand optimized

circuit is developed and details of the optimization are presented. The results of comparing

the hand optimized circuit with the circuit generated by Petrify are reported. The hand

optimized circuit is 47 percent smaller in area, has 12 percent faster cycle time and consumes

52 percent lower energy as compared to the one generated by Petrify.



102

Table 6.12: Power consumed (mW )
(Power optimization).

LoR L0000 L0011 L1111

R0000 1.310 1.586 1.952

R2000 1.608 1.073 0.857

R4000 1.378 1.127 –

R2200 0.859 0.858 0.738

R4200 0.899 0.715 –

R2220 1.163 0.948 0.767

R4220 0.869 0.929 –

R2222 0.762 0.573 0.542

R4222 0.353 0.479 –

R4400 0.659 0.375 –

R4420 0.700 0.553 –

R4440 0.774 – –

R4422 0.291 0.230 –

R4442 0.220 – –

R4444 0.120 – –

Table 6.13: Power consumed (mW )
(Performance optimization).

LoR L0000 L0011 L1111

R0000 1.222 0.936 1.442

R2000 1.608 1.352 1.189

R4000 1.537 0.967 –

R2200 0.792 1.244 0.695

R4200 1.276 0.891 –

R2220 1.242 0.948 0.893

R4220 1.254 1.179 –

R2222 1.028 0.573 0.744

R4222 0.429 0.479 –

R4400 0.796 0.375 –

R4420 0.913 0.553 –

R4440 0.774 – –

R4422 0.333 0.283 –

R4442 0.236 – –

R4444 0.149 – –



103

Table 6.14: Simulation time (ns)
(Power optimization).

LoR L0000 L0011 L1111

R0000 187.910 151.440 136.760

R2000 135.550 135.140 154.730

R4000 131.500 146.860 –

R2200 144.910 127.310 136.710

R4200 150.400 143.420 –

R2220 161.440 139.650 150.900

R4220 151.490 128.770 –

R2222 162.040 150.850 171.260

R4222 169.190 141.490 –

R4400 149.620 150.320 –

R4420 163.290 145.900 –

R4440 179.330 – –

R4422 174.360 148.730 –

R4442 200.960 – –

R4444 386.980 – –

Table 6.15: Simulation time (ns)
(Performance optimization).

LoR L0000 L0011 L1111

R0000 188.020 147.440 148.610

R2000 135.550 127.650 152.660

R4000 127.290 146.830 –

R2200 137.730 114.440 130.390

R4200 127.200 143.000 –

R2220 162.620 139.650 134.160

R4220 126.920 116.490 –

R2222 144.760 150.850 167.190

R4222 170.170 141.490 –

R4400 138.050 150.320 –

R4420 143.290 145.900 –

R4440 179.330 – –

R4422 171.280 152.600 –

R4442 220.390 – –

R4444 378.260 – –



104

Table 6.16: Energy consumed
(pJ/token) (Power optimization).

LoR L0000 L0011 L1111

R0000 0.962 0.938 1.043

R2000 0.852 0.566 0.518

R4000 0.708 0.647 –

R2200 0.486 0.427 0.394

R4200 0.528 0.401 –

R2220 0.733 0.517 0.452

R4220 0.514 0.468 –

R2222 0.482 0.337 0.363

R4222 0.233 0.265 –

R4400 0.385 0.220 –

R4420 0.446 0.315 –

R4440 0.542 – –

R4422 0.198 0.134 –

R4442 0.173 – –

R4444 0.181 – –

Table 6.17: Energy consumed
(pJ/token) (Performance optimization).

LoR L0000 L0011 L1111

R0000 0.897 0.539 0.837

R2000 0.852 0.674 0.709

R4000 0.764 0.555 –

R2200 0.426 0.556 0.354

R4200 0.634 0.498 –

R2220 0.789 0.517 0.468

R4220 0.622 0.537 –

R2222 0.581 0.337 0.486

R4222 0.285 0.265 –

R4400 0.429 0.220 –

R4420 0.511 0.315 –

R4440 0.542 – –

R4422 0.223 0.169 –

R4442 0.203 – –

R4444 0.221 – –



105

U0 U1

U3

U2

U4
U5

U8

lr

ra

la

rr

rst

rst

Figure 6.10: L0011◦R4220 circuit implementation using Petrify.

U0 U1

U6

U2

U3

lr

ra

la

rr

la

rst

rst

U4 U5lr
la

ra
clk

Figure 6.11: Hand-optimized L0011◦R4220 circuit implementation.



CHAPTER 7

CASE STUDIES

Application of any design flow needs to be validated on designs of varying sizes. Also,

templates for characterization of designs is necessary for the comparison and adoption of

any circuit. This chapter describes the exploration of various circuits and characterization

benchmarks that have been developed.

7.1 Key Contributions
• Application of relative timing (RT) based methodology and flow described in Chapter 3

on a large design.

• Addressing important methodology issues like scan insertion and timing closure.

• Automation of template characterization with some benchmark circuits.

• Application of the methodology on designs with purely asynchronous and mixed

synchronous and asynchronous designs.

7.2 Toy Example
The generation of asynchronous templates requires a few different benchmark circuits

to characterize the circuit implementations. One such benchmark circuit is demonstrated

in this case study with respect to the linear pipeline controller LC shown in Fig. 3.4. This

template is named the toy example based on its simplicity as shown in Fig. 7.1. There are

only two asynchronous templates in this design, the linear controller (LC) and the Fork

Join template (F/J). The logic level implementation of this design consists of a three stage

pipeline which calculates the function x2 +3x.

This example is used initially to describe the two ways constraints can be specified for

a system and their advantages and disadvantages. The controllability of delays and use of

different register elements in conjunction to the design are also shown. The wire-load model

exploration for the Artisan 65nm library is detailed with proposed improvements to it, thus



107

LC0la ra

lr rr
ck

rst

-lr
�la

ck0

R0-din
x s

�
�
�
�x2

�
�
�
�3x

16

F/J0a0

r0

R0 q
r00
a00

r01
a01

R10

32

R10 q

LC10

r10
a10

R11

32

R11 q

LC11

r11
a11

�
�
�
�+

F/J1

r1
a1

R2 -dout

LC2
- rr

� ra

Figure 7.1: Example design: a simple ASIC mathematical pipeline segment computing
dout = x2 +3x.

allowing better estimation of the delays at the Design Compiler (DC) synthesis step. Lastly,

the application of scan insertion to implement testability of the datapath using Tetramax is

shown.

7.2.1 Constraint Specification

The asynchronous designs developed using the methodology described in this disserta-

tion require constraints like set size only, set dont touch, set disable timing to be specified

with respect to the circuit implementation. These constraints prevent the synchronous CAD

tools to modify the asynchronous design structurally and also enable presenting the timing

graph of these circuits as a DAG to the CAD tools for timing driven sizing and optimizations.

The performance targets and method of specifying these constraints have two different

approaches, with their associated advantages and disadvantages. The toy example is used as

the reference to show these approaches. The performance of any pipeline stage in a design

is represented as the cycle time of the handshake channel between their pipeline controllers.

The cycle time of these adjacent controllers can be controlled in different ways based on

the paths that are specified to perform timing on the design. Considering the LC block in

the toy example being the protocol with data valid at rising edge (Fig. 3.4), the different

paths for the setup constraint between LC0 and LC10 are as follows. The max delay path is



108

from lr input to the datapath input of R10 via R0 while the min delay path is from lr input

to the clock pin of R10 via F/J0 and LC10. For the max delay path, there is a clear point

where the path gets divided and hence the constraints from lr→R0/clk and R0→R10/D are

specified. The performance of this pipeline is controlled by the min delay path and there are

two different approaches to specifying the timing paths.

The first approach keeps all the paths local to a template and all the global paths start and

end at the input of the template; while the second approach tries to specify as long a path as

possible such that the number of constraints is reduced. As an example, let us consider the

path from LC0/lr→LC10/lr. This path can either be specified as it is or it can be divided

into 2 segments, i.e., LC0/lr→LC0/rr and LC0/rr→LC10/lr. It can be seen that although

there are more constraints in the second case, it has a clear division between controllers

in term of the paths. Hence, these approaches are named based on the path as lr→lr and

rr→lr.

• lr→lr approach - The advantages of this approach are the reduction in the number of

constraint paths. It is more robust against delay variations since longer paths bring in

the averaging effect for variations; this approach can achieve an overall better design

since there is more margin for the tools to perform sizing gates and adding new ones

for the delays, if required.

• rr→lr approach - The advantages of this approach are the easy computation of the

size of the delay element required. If lr→rr path delay equals the margin for the

min/max variations on the lr→clk path for a controller, then rr→lr can be equal to the

combinational logic delay for the pipeline stage. Secondly, there is a clear separation

between the hierarchy in terms of constraint specification. Thirdly, if constraints are

specified for any controllers then the controller along with the constraints can be

easily inserted in any design. The disadvantage of this approach is the increase in the

number of constraints.

Based on the merits and demerits of the two approaches, the lr→lr approach is selected

to be used for the rest of the work.



109

7.2.2 Delay Controllability in Pipelines with Variable Frequency

of Operation 2

Twelve different versions of our example are synthesized, simulated and evaluated

in order to demonstrate the flexibility and advantages of the methodology described in

the dissertation. The different versions are derived (i) mapping the design to latches or

flops, (ii) using an incomplete set of constraints, (iii) having various frequencies for each

pipeline stage, and (iv) applying time borrowing to the latch design. All designs started

with the same behavioral module of Fig. 7.2 with one exception – the flop based designs

required replacing the latch active high module with a structural flop bank. All designs

are synthesized, physically placed and routed, and simulated using postlayout parasitics to

generate delay and power results.

The reported results used the Artisan library for the IBM 65nm HVT (High threshold)

10sf process using full layout and parasitic extraction. DC is used for synthesis, Modelsim is

used for simulation, and SoC Encounter is used for place, route, and parasitic extraction. The

power and delay numbers used sdf parasitic back annotation into the Modelsim. The power

numbers are generated using parasitic extraction and activity factors from a simulation

run by importing a vcd file from Modelsim into SoC Encounter. The simulations are run

exhaustively executing all input values from zero to 256 while also validating functionality.

Postlayout timing is validated using the full set of constraints, including the DI wire

constraints, using PrimeTime with extracted parasitics.

Two delays are critical in these designs for timing driven synthesis and place and route:

the delay of the combinational logic and the delay of the control logic to ensure proper

storing of the data. Each of these delays can be independently set for each pipeline stage.

For all comparable designs, the combinational logic between flops or latches have the same

target delay. However, the delay element between control logic may be sized differently

based on the efficiency of synthesizing the control logic as described below.

It is ensured that the data word is valid before the rising edge of lr into the control logic

for the LC protocol employed; and latches are operated in normally closed mode in the

2This section has been published in ASYNC, 2009 [41]. c© 2009 IEEE. Reprinted with permission from
Kenneth S. Stevens, Yang Xu, Vikas Vij “Characterization of Asynchronous Templates for Integration into
Clocked CAD Flows,” in 15th IEEE International Symposium on Asynchronous Circuits and Systems, May,
2009.



110

module toy (din, dout, lr, la, rr, ra, rst);
input lr, ra, rst; output la, rr; input [15:0] din; output [31:0] dout;
reg [31:0] R0, R10, R11, R2;
...
assign dout = R2 q;

always @(*) R0 = din;
linear control lc0 (.ck(ck0), .lr(lr), .la(la), .rr(r0), .ra(a0), .rst(rst));
latch active high R0 reg (.d(R0), .clk( ck0), .q(R0 q));
bcast fork bcf0 (.bi(r0),.bo0(r00),.bo1(r01),.ji0(a00),.ji1(a01),.jo(a0));
always @(*) R10 = R0 q * R0 q;
linear control lc10 (.ck(ck10), .lr(r00),.la(a00),.rr(r10),.ra(a10),.rst(rst));
latch active high R10 reg (.d(R10), .clk( ck10), .q(R10 q));
always @(*) R11 = R0 q * 3;
linear control lc11 (.ck(ck11), .lr(r01),.la(a01),.rr(r11),.ra(a11),.rst(rst));
latch active high R11 reg (.d(R11), .clk( ck11), .q(R11 q));
bcast fork bcm0 (.bi(a1),.bo0(a10),.bo1(a11),.ji0(r10),.ji1(r11),.jo(r1));
always @(*) R2 = R10 q + R11 q;
linear control lc2 (.ck(ck2), .lr(r1), .la(a1), .rr(rr), .ra(ra), .rst(rst));
latch active high R2 reg (.d(R2), .clk( ck2), .q(R2 q));

endmodule // toy

Figure 7.2: The synthesized arithmetic Verilog for our toy example.

design. This results in an ability to time borrow based on the delay between la asserting

and deasserting because new data do not need to be propagated forward until la lowers (see

Fig. 3.1 and Fig. 7.3). Note that for efficient operation, a unidirectional delay between rr

and lr in the pipeline is desired, where the rising delay is large and the falling delay is as

small as possible. However, the scripts used result in the clocked CAD tools generating

bidirectional delays. Unfortunately, bidirectional delays result in over a 100 percent delay

overhead for protocols where data word is valid on the rising edge of lr. Efficient designs

must employ different protocols like the ones described in Chapter 6 or unidirectional delays.

However, this protocol works well for our example pipeline because it provides an ample

time borrowing window. For the implemented design (see Fig. 7.1), the 16-bit multipliers of

the second pipeline stage are much larger than the 32-bit adder delay in the final stage. This

allows the stages previous to the adder stage to borrow some of its cycle time.

One of the primary examples of this tool flow is to evaluate the effectiveness of timing

driven synthesis and place and route of the asynchronous templates. This is demonstrated



111

la↓

lr↓

la↑

lr↑


 	

� �
?

x
?

?

?

PPPPPPPPPq

���������)

x

rr↓

ra↑

rr↑

ra↓


 	

� �
?

?

x
?

?

� j

Figure 7.3: Petri net specification of linear control.

by utilizing an incomplete constraint set (ICS) from the template characterization, as well

as the full constraint set (FCS) for each version of the design. The incomplete constraint set

utilizes all of the relative-timing generated constraints, but allows the clocked CAD tools

to utilize their internal cycle cutting algorithms to generate the timing DAGs. Thus, the

incomplete constraint set leaves out the loop breaking constraints in the flow, as shown in

Fig. 7.4.

Table 7.1 shows four designs synthesized to compare the pipeline using flops versus

latches in the datapath. Comparing the flopped pipeline versus a latch pipeline gives the

expected results: the latch design is more energy efficient (12 percent and 18 percent,

respectively, for ICS and FCS) and smaller (≈ 12 percent for both). The full constraint set

(FCS) shows a large improvement in power and performance, and minor area reduction. The

timing optimized design resulted in 35 percent and 40 percent reduction in energy for the

flop and latch designs, respectively. Inspecting the postlayout netlist reveals that the ICS

design substantially oversized many gates. For example, the AOI32 gate in Fig. 3.5 is sized

6× bigger for ICS versions as compared to the FCS versions of the design. This larger gate,

while very energy inefficient, leads to a faster circuit that required larger delay elements for

the flop circuit to operate correctly. This required creating a target control clock period 20

percent slower than the datapath period for the flopped design. Due to the speed-up of the

control logic, the ICS design ran 11 percent slower. However, for the latch design, the same

control target frequency as the FCS version can be used due to time borrowing that occurs.

This results in a design that is 4 percent faster for the ICS as against FCS design.



112

breaking local cycles:
set disable timing -from A3 -to Y [find -hier cell *lc0]
set disable timing -from B2 -to Y [find -hier cell *lc0]
set disable timing -from A3 -to Y [find -hier cell *lc1]
set disable timing -from B2 -to Y [find -hier cell *lc1]

breaking handshake protocol cycles:
set disable timing -from A2 -to Y [find -hier cell *lc0]
set disable timing -from A2 -to Y [find -hier cell *lc1]
set disable timing -from B1 -to Y [find -hier cell *lc1]

Figure 7.4: Loop breaking constraints.

Table 7.1: Example comparing flop and latch based design with identical pipeline frequency.
The ICS column uses an incomplete constraint set. Energy reported in pJ per token, clock
period in nsec.

Flip-Flops Latches
ICS FCS ICS FCS

Run Time (µsec) 1.519 1.358 1.333 1.391
Avg. energy (nJ) 0.762 0.493 0.673 0.406
Avg. sw. energy 0.673 0.158 0.305 0.169
Avg. intrnl energy 0.440 0.308 0.343 0.212
Avg. leakge enrgy 0.031 0.028 0.025 0.025
Area (mm2) 12,724 12,294 11,215 10,770
Datapath clk per. 2.0 2.0 2.0 2.0
Control clk per. 2.5 2.0 2.0 2.0

Table 7.2 shows four new designs where the pipeline stages independently assigned

delays to optimize the power-delay product for each pipeline function. The 16-bit multipliers

are given a target frequency of 2.0ns, and the 32-bit adder a frequency of 1.4ns. This example

shows that even with traditional clocked tools, our flows are able to directly synthesize and

validate multifrequency pipelined designs. As is the case with a single frequency, the full

constraint set results in lower area and power than the unconstrained set, as well as a faster

design (ignoring time borrowing that occurs for the latched ICS version).

The final four designs show how this flow can be used to exploit time borrowing between

pipeline stages in the clocked CAD with the same set of constraints by assigning different



113

Table 7.2: Version with variable pipeline frequencies.

Flip-Flops Latches
ICS FCS ICS FCS

Run Time (µsec) 1.375 1.377 1.056 1.415
Avg. energy (nJ) 0.752 0.492 0.677 0.398
Avg. sw. energy 0.285 0.159 0.308 0.167
Avg. intrnl energy 0.439 0.306 0.349 0.206
Avg. leakge enrgy 0.028 0.027 0.021 0.025
Area (mm2) 12,878 12,258 11,516 10,887
Datapath clk per.
multipliers 2.0 2.0 2.0 2.0
adder 1.4 1.4 1.4 1.4
Control clk per.
multipliers 3.2 2.0 2.0 2.0
adder 1.5 1.4 1.4 1.4

delay values to the control path. The first two versions of the design, shown in Table 7.3,

use a fixed frequency for all datapath pipeline stages. The last two versions use different

frequencies for the multiplier and adder stages. The primary difference between the fixed

and multifrequency designs is that the multifrequency design slightly constrains the worst

case adder path, which results in a very small reduction in overall run-time (1.3 percent)

and energy (1.2 percent). The most significant observation from these designs is the ability

for time borrowing to mitigate variations in the design, whether the source is from poor

frequency or design optimization (as can be seen by the energy difference of 44 percent).

All relative-timing constraints, including the delay insensitive constraints, are used to

validate postlayout timing (using extracted layout parasitics imported as standard delay

file) in Primetime. The timing report validated all the constraints used for timing driven

synthesis and place and route to be correct with positive slack. In latch based pipeline

implementation, the multiplication latch stages can use time borrowing from the next stage.

Tables 7.4 and 7.5 show a brief summary of the timing reports.



114

Table 7.3: Latch based time borrowing versions with and without variable pipeline
frequencies using incomplete and complete timing path constraints.

ICS FCS ICS FCS

Run Time (µsec) 0.922 0.929 0.922 0.917
Avg. energy (nJ) 0.670 0.378 0.670 0.377
Avg. sw. energy 0.309 0.160 0.309 0.158
Avg. intrnl energy 0.343 0.201 0.343 0.203
Avg. leakge enrgy 0.017 0.016 0.017 0.017
Area (mm2) 11,264 10,739 11,258 10,937
Datapath clk per.
multiplier 2.0 2.0 2.0 2.0
adder 2.0 2.0 1.1 1.1
Control clk per.
multiplier 1.2 1.1 1.2 1.1
adder 1.2 1.1 1.1 1.1

Table 7.4: Data check timing report summary on some RT constraints. Listed slacks are all
worst case.

RT Constraints Setup (ns) Slack (ns)
lr↑ 7→ rr↑ ≺ y ↓ 0.05 0.16
lr↑ 7→ la↑ ≺ y ↓ 0.05 0.12
lr↑ 7→ la↑ ≺ ra ↓ 0.00 0.92
lr↑ 7→ rr↑ ≺ lr↓ 0.00 0.80

7.2.3 Wireload Models and its Impact on RT Methodology

The presence of wireload models (WLM) in a library helps in estimating the wire delays

during synthesis [69]. For a wire with a given fanout, the wireload model specifies the

capacitance, resistance, and area of the wire. An understanding of how these models work

for this methodology needs to be investigated. The Artisan 65nm RVT (regular threshold)

library is used to generate these results. The library consists of coarse wireload models with

the base starting at WLM10 and going upto WLM50 with a step size of 10.

This study tries to generate the fastest design for the toy example selecting each wireload

model specified. Any design is said to work if DC does not show any negative slack and

goes through the synchronous CAD flows with design validation using SDF back-annotation.



115

Table 7.5: Timing report summary for constraints between pipeline stages. The latches in
datapath borrow time from the next stages with LSup (library setup time), MxTB (maximum
time borrowing) and TB (real time borrowing) listed. All the numbers are in nanoseconds.

PathType From To Constr. LSup MxTB TB/Slk
DataPath R0 R10 max 1.70 0.20 0.65 0.25
DataPath R10 R2 max 1.08 0.17 0.68 0.20
DataPath R0 R11 max 1.70 0.17 0.68 0.01
DataPath R11 R2 max 1.08 0.20 0.65 0.20
CtrlPath tk0/lr tk10/lr min 1.19 N/A N/A 0.12
CtrlPath tk10/lr tk2/lr min 1.08 N/A N/A 0.13
CtrlPath tk0/lr tk11/lr min 1.19 N/A N/A 0.12
CtrlPath tk11/lr tk2/lr min 1.08 N/A N/A 0.11

The final timing path validation step uses PrimeTime PX to validate the delays of all the

specified min and max timing constraint paths. The maximum negative slack on the control

path and the datapath are found based on the report from PrimeTime with the number of

violating paths.

Table 7.6 shows a detailed comparison of the results of different WLM models. It is

observed that the existing wireload models in the library are too pessimistic; and for a better

estimate for these asynchronous designs which have local timing paths, better models need

to be included. Hence, custom wireload models (WLM2, WLM2p5, and WLM5) are added

for investigating their effects on timing and sizing the circuits during synthesis.

The results generated by this study show a transition point from where the types of

the violating paths switch completely. The no wireload case resulted in all the violations

reported for max delay paths by PrimeTime for place and routed design. While for the

WLM5, all the violating paths are of the min delay type. As observed in Table 7.6 there is a

sweet spot where the transition from max delay violators to min delay violators takes place,

which for this study, is between WLM2 and WLM2p5. Hence, selecting either WLM2

or WLM2p5 can be very helpful for getting better designs and quicker timing closure.

The addition of more pessimism in the estimation of the wireload leads to an increase in

the negative slack of the violating paths. The results also show an improvement in the

performance of the design until the design is simplified to such an extent that the extra



116

Ta
bl

e
7.

6:
R

es
ul

ts
fo

rt
oy

ex
am

pl
e

us
in

g
di

ff
er

en
tw

ir
el

oa
d

m
od

el
s.

N
o

W
L

M
W

L
M

2
W

L
M

2p
5

W
L

M
5

W
L

M
10

W
L

M
20

W
L

M
30

W
L

M
40

D
at

ap
at

h
de

la
y

(p
s)

60
0

62
0

62
8

73
0

90
5

10
60

12
20

12
00

lr
→

lr
m

in
de

la
y

(p
s)

60
0

62
0

62
8

73
0

90
5

10
60

12
20

12
00

lr
→

lr
m

ax
de

la
y

(p
s)

63
0

65
1

65
9

76
7

95
0

11
13

12
81

12
60

lr
→

cl
k

m
in

de
la

y
(p

s)
90

50
50

80
15

0
25

0
35

0
35

0
lr
→

cl
k

m
ax

de
la

y
(p

s)
12

0
18

0
19

5
22

0
35

0
41

0
50

0
55

0
lr
→

y
m

ax
de

la
y

(p
s)

18
0

21
5

22
5

25
5

35
0

41
0

50
0

60
0

Po
st

Pl
ac

e
an

d
R

ou
te

N
um

be
rs

Fo
rw

ar
d

L
at

en
cy

(p
s)

15
90

14
30

13
50

12
30

21
00

24
60

29
30

19
50

B
ac

kw
ar

d
L

at
en

cy
(p

s)
24

20
23

90
21

70
20

20
40

60
51

40
63

30
31

20
C

yc
le

Ti
m

e
(p

s)
17

90
17

40
14

90
14

70
13

30
12

80
13

40
29

80
Si

m
Ti

m
e

(n
s)

34
3

29
7

28
5

28
1

25
5

24
5

25
7

55
9

Po
w

er
(m

W
)

1.
47

1.
92

2.
03

2.
34

2.
81

4.
69

6.
81

3.
02

N
eg

at
iv

e
Sl

ac
k

Pa
th

Ty
pe

m
ax

m
ax

m
in

m
in

m
in

m
in

m
in

m
in

M
ax

N
eg

at
iv

e
Sl

ac
k

on
C

on
tr

ol
pa

th
(p

s)
11

0
2

11
0

23
1

37
4

68
4

75
3

65
9

M
ax

N
eg

at
iv

e
Sl

ac
k

on
D

at
ap

at
h

(p
s)

93
0

0
0

0
0

0
0

N
um

be
ro

fV
io

la
tin

g
Pa

th
s

28
1

3
3

7
5

5
5

A
re

a
of

C
or

e
(u

m
2 )

43
05

.6
4

55
23

.4
8

60
51

.4
6

69
38

.0
4

84
79

.7
8

11
32

4.
02

17
72

7.
60

19
37

4.
98



117

delays added due to wireload model start to dominate. Also, the area of the core without the

pad rings increases with the added pessimism.

7.2.4 Automatic Scan Insertion using Tetramax

Testability of any circuit postfabrication is a critical factor for any methodology and it

needs to be explored for the proposed RT based methodology too. Since the methodology

described in this dissertation adds the pipeline stages manually and the datapath logic is

synthesized as a combinational block, it is necessary to see if the pipeline stages are seen

correctly by the synchronous CAD tools and the register elements are replaced by scan

elements. No change is required on the base Verilog for the toy example except for the

addition of the scan clock, scan enable, scan in, scan out and test mode pins. Also, since

the asynchronous control network is event driven, it would not be activated if all its control

network inputs remain at logic level 0. This results in a simple OR gate with the scan clock

and local clock generated by asynchronous handshake controller being used to select the

clock at each pipeline register bank.

There are no modifications to the scripts for DC synthesis except for the addition of scan

insertion based commands which are the same as in the case of synchronous design. An extra

script for automatic test pattern generation (ATPG) using Tetramax is also developed. This

script reads the scan insertion definition and test setup generated by DC, and it generates

a set of vectors which can automatically test the datapath logic. All three Tetramax scan

modes, i.e., basic scan, fast sequential scan and full sequential scan mode are validated.

The presence of the asynchronous inputs and also the DAG representation of the

asynchronous circuits result in Tetramax recognizing them as combinational blocks and

hence, it generates the test patterns for their validation. The testability of the asynchronous

control network needs to be separate from that of the datapath. Therefore, the asynchronous

control network blocks are marked as black boxes and the primary inputs to them are tied to

their reset logic level, which is low for this implementation. Table 7.7 shows a comparison of

the results of scan insertion for stuck-at-fault testing for the synchronous and asynchronous

toy example implementation. The timing targets for the asynchronous implementation

used the approach described in Chapter 3, while the scan clock with a slower frequency of

operation is selected for the synchronous design. Test coverage of 98.18 percent is achieved



118

Table 7.7: Scan insertion coverage and stuck at fault summary.

Design Asynchronous Synchronous

Fault Class Code #faults #faults
Detected DT 7124 3782
detected by simulation DS (6253) (2970)
detected by implication DI (871) (812)
Possibly detected PT 4 0
atpg untestable-pos detected AP (4)
Undetectable UD 29 5
undetectable-tied UT (16) (5)
undetectable-redundant UR (13)
ATPG untestable AU 58 5
atpg untestable-not detected AN (58) (5)
Not detected ND 21 0
not-observed NO (21)

total faults 7236 3792
test coverage 98.85% 99.87%
fault coverage 98.45% 99.74%
ATPG effectiveness 99.71% 100.00%

for the stuck at fault testing of the datapath of the toy example as compared to 99.87 percent

for the synchronous implementation. The number of test patterns generated are 2.78× more

for the asynchronous case with 50 patterns as against 18 patterns for the synchronous design.

It is observed that in order to be sure of the controllability of the clock input based on the

test mode, DC added an extra logic on the clock path which is gauranteed to be controlled by

the scan mode, instead of the simple OR gate which is added manually in the asynchronous

design before synthesis. All the untestable faults (AU) in the asynchronous design are due to

this extra logic addition and also the asynchronous inputs as per the fault reports generated

by Tetramax.

This study looks at using synchronous CAD tools to do datapath combinational logic

scan testing. The testability of the asynchronous control network and applicability of scan



119

testing approaches suggested by Beest, Roncken and Hazelwindus needs be explored in the

future [70, 71, 72].

7.3 FIFO Design Automation for Template
Characterization

Generation of FIFOs for various configurations is a good benchmark for characterization

of asynchronous handshake controllers as well as templates to steer data. The general set of

templates used for complete characterization involved select fork, select join, and bundled

data handshake controllers. The goal of this case study is to generate a scripted flow to

develop FIFOs of various configuration and of varying depth and datapath widths. The

approach for FIFO characterization must be general enough to feed any set of constraints

for the templates which can be used automatically with the FIFO designs and compare them

against other designs.

There are four types of FIFOs that are examined in this study – linear, parallel, square

and tree. The start point for each FIFO structure is from the work done by Hosuk Han for

his dissertation work [73, 47]. Each of the designs done in [73] were manually generated

and gate sizing information is generated by hand. This is a very tedious process which has

been simplified drastically by automating the whole process with scripts to generate various

FIFO structures with insertion of the constraints, so as to allow rapid comparison of different

designs. It can assist in characterizing both the handshake controllers as well as the data and

control steering blocks like select forks, select joins, etc.

This work is used to generate FIFO designs for conceptualizing the source asynchronous

signaling (SAS) protocols [74]. The methodology presented in this dissertation along with

the automation to rapidly generate comparisons for different FIFOs of varying depth with

and without datapath, allowed the investigation of different SAS designs as has been reported

in [74].

The overall automation process involved specifying an asynchronous handshake con-

troller with all its cycle cut and relative timing constraints. The following performance

paths specified to optimize and time the circuit include: LCi/lr→Ri/clk, Ri/q→Ri+1/d,

LCi/lr→LCi+1/lr, LCi+1/lr→LCi/ra. LCi/ra→LCi/rr and LCi/ra→LCi/la must-cut paths

are used to automatically generate the cycle cut constraints for this design as explained in



120

Chapter 5. Cutting these paths resulted in the removal of the architectural cycles between

the handshake controllers.

All the performance paths specified above have a max delay constraint associated to them,

while the LCi/lr→Ri/clk and the LCi/lr→LCi+1/lr constraints also have an associated min

delay constraint. The goal for each synthesis operation is to achieve no negative slack

for all the paths specified for a design. The delay values for each path are changed equal

to the negative slack reported by DC after each step of its use. Margins are specified for

competing paths. Based on the margin requirements, the min delays for the paths are

increased automatically if the competing max delay path value is also increased. This

approach is the key to achieving a functioning circuit.

The absence of a reference clock in asynchronous designs creates a problem with

respect to balancing the LCi/lr→Ri/clk path for each pipeline stage. If the delays of the

LCi/lr→Ri/clk path for each pipeline stage are not similar, then huge margins need to be

added on the LCi/lr→LCi+1/lr path to compensate for it. To solve this problem, an extra

run of DC is necessary. The constraint path LCi/lr→Ri/clk is local and is unrelated to a

global clock signals. Hence, the first run for achieving no negative slack for the circuit

implementation resulted in very large delay for the LCi/lr→Ri/clk path. This leads to a very

inferior design and it can also result in setup violations. Hence, after the first run, the min

and max delays of LCi/lr→Ri/clk path are reset to a value which is deemed to be adequate

for the controller being used. This value is calculated by characterizing the controller once

by hand. After this, DC is rerun on the circuits to achieve no negative slack. The addition

of this last step resulted in not only improving the overall quality of the designs, but it also

resulted in resolving all the setup violations because of the balancing of the LCi/lr→Ri/clk

path for each pipeline stage.

7.3.1 Linear FIFO

The simplest of the four FIFOs is the linear FIFO. It does not involve any type of

data steering logic and hence is simply used to characterize the handshake controllers for

forward latency (FL), backward latency (BL) and cycle time (CT). This base setup is used

to characterize a 4-deep bundled data pipeline for results shown in the Chapters 4, 5 and



121

6. The presence of the script resulted in automatically generating FIFO of any depth and

datapath width.

Linear FIFO designs of depth 1 to 48 with datapath widths of 0, 8, 32 and 64-bits, are

synthesized, place and route and validated for correct functioning using the methodology

described in Chapter 3 of this dissertation. Fig. 7.5 show the concise results obtained for

linear FIFOs with respect to the datapath widths. A range for the min, max and average

values for various parameters such as forward latency, backward latency, cycle time, area,

power, simulation time and energy are reported. Except for cycle time and simulation time,

all the other parameters are divided by the buffering depth of the FIFO. Thus, the graph

values for each datapath width gives a comparison of per pipeline stage variation of each

parameter when the FIFO depth is changed.

The increase in width of the datapath results in an increased load on the clock pin for the

handshake controllers. Hence, an extra margin of 30ps is added to the control network to

prevent setup violations. This results in an increase in forward latency, cycle time and also

simulation time. Overall the quality of results are pretty consistent for all the linear FIFO

designs. The big variations seen between the average and the max values for the backward

latency are due to the linear FIFO of depth 1, which results in very slow backward latency

numbers. Overall, the addition of extra pipeline stages to the linear FIFO results in a linear

increase in the various parameters considered for design comparisons and the effectiveness

of this methodology.

7.3.2 Parallel FIFO

The parallel FIFO structure consists of a decimator and an expander modules to steer

the request and data to and from a specific channel. A 1-to-n decimator directs the incoming

request to any one of the n outputs. The order of the selection is done by a one-hot shift

register. The decimator shift register switches to a new value on the falling edge of the

incoming request signal from the upstream handshake controller. Similarly, an n-to-1

expander steers the data and incoming request from n input channels to one output channel

based on the one-hot shift register. The expander shift register values are changed on the

falling edge of the incoming acknowledge signal from the downstream handshake controller.



122

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

90
95

100
105
110
115
120
125
130
135
140
145
150

Forward Latency

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

250
260
270
280
290
300
310
320
330
340
350
360

Backward Latency

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

Cycle Time

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

0

50

100

150

200

250

300

350

400

450

500

Area

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

Power
0-

bi
t

8-
bi

ts

32
-b

its

64
-b

its

112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154

Simulation Time

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4
4.2
4.4
4.6
4.8

Energy

Min Max Avg

Figure 7.5: Comparison of results for linear FIFO. All reported numbers are averages with
respect to the buffering depth of FIFO except for cycle time and simulation time.



123

Results are generated for a FIFO of channel widths from 2 to 7 with each channel depth

being from 1 to 7. The representation used for the FIFO is n×m where n is the depth of the

FIFO and m is the width of the FIFO, i.e., either the output channels of the decimator or the

input channels of the expander.

Fig. 7.6 shows a comparison of the results generated for 42 different designs generated

for four different datapath widths. The total forward and the backward latency of the parallel

FIFO is less than that of the linear FIFO because of fewer pipeline stages, but per stage

forward and backward latency numbers are larger because of the presence of decimator and

expander. Similarly, the cycle time reported for this FIFO is also larger than the linear FIFO.

The increase in the datapath width resulted in setup violations at the expander interface

because of the increase in the expander datapath delay. Hence, a larger min delay is added

on the control network to generate a working circuit. This additional min delay results in a

sudden increase in the forward latency, the cycle time and the simulation time for the 32-bit

and 64-bit datapath designs. The decimator and expanders with m≥5 channels require min

delay margins of at least 60ps more than datapath delay to derive a functioning circuit.

The parallel FIFO has only one path active at a time for any token, hence most of

the circuit generally remains idle unless there is valid data to be transferred. This results

in smaller energy numbers for parallel FIFOs as compared to linear FIFOs of the same

buffering depth. The presence of extra logic for decimator and expander results in an area

penalty and also larger cycle time for the parallel FIFO as opposed to linear FIFOs of same

buffering depth.

7.3.3 Tree FIFO

The tree FIFO is similar to a binary tree wherein the data and control information is

steered alternately via a select fork for each data transfer. Hence, incoming data word and

request are steered to the n base nodes, where n = 2depth. The inverse combination from the

n base nodes to the output channel is then done using select join modules to alternately steer

the incoming data and requests to the output channel.

There are 2depth−1 pipeline stages for steering the data forward and the same number

of pipeline stages combine the channels at the output. The total buffering depth for these

FIFOs is 2depth+1− 2, because of the use of a fully buffered protocol for the handshake



124

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

100

110

120

130

140

150

160

170

180

190

200
Forward Latency

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

280

300

320

340

360

380

400

420

440

460

480
Backward Latency

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760

Cycle Time

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750
Area

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

0
5 ·10−2

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

Power

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215

Simulation Time

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Energy

Min Max Avg

Figure 7.6: Comparison of results for parallel FIFO. All reported numbers are averages
with respect to the buffering depth of FIFO except for cycle time and simulation time.



125

controllers. The results of comparison for tree FIFO with depth ranging from 2 to 5 and

datapath widths 0, 8, 32 and 64-bits are reported in Fig. 7.7.

7.3.4 Square FIFO

The square FIFO consists of a different behavior for the data and control steering

templates that are used. The steering for the channels is based on the placement of the

module in the design. Hence, based on the position it can have a behavior of sending two

tokens on one channel and one token on the other or three tokens on one and two on other.

Thus, this FIFO can be used to characterize templates with data steering templates which

are ordered but different from the select fork or the decimator or the expander.

The buffering depth for these FIFO is depth2 and because of the exponential nature of

growth of the buffering depth, there is a limited use of them. Fig. 7.8 shows the results for

square FIFOs with depth 2 to 7 for datapath width of 0, 8, 32 and 64-bits.

7.4 OCP-IP Case Study for Synchronous and Asynchronous
Domain Interfacing 4

The complexity of current integrated circuits have resulted in a system-on-chip (SoC)

revolution. Time-to-market, the need to limit design engineering costs, as well as other

factors have resulted in the need for modularity and design reuse. Various system building

blocks, called intellectual property (IP) blocks, are designed once and then used in multiple

different systems. Such SoC designs contain IP blocks such as memory, general purpose

processors, communication blocks such as busses or network-on-chip (NoC), and other

specific function units and coprocessors.

There are number of technical challenges to creating modular IP blocks that can be

reliably and rapidly interconnected to form SoC designs that span multiple applications and

process technology nodes. The size and diversity of operation of the function blocks result

in many of the IP blocks requiring independent operating frequencies. Traditional clocked

methodologies encourage a single operating frequency for the entire chip. Integration of

4This work has been selected for publication in VLSI Design, 2014 [75]. c© 2014 IEEE. Reprinted with
permission, from Vikas S. Vij, Raghu Prasad Gudla, Kenneth S. Stevens, “Interfacing Synchronous and
Asynchronous Domains for Open Core Protocol,” to appear in 27th International Conference on VLSI Design
(VLSI-Design), Jan., 2014.



126

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its
130

135

140

145

150

155

160

165

170

175

180

Forward Latency

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440

Backward Latency

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

460

480

500

520

540

560

580

600

620

640

660

680
Cycle Time

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

Area

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

5 ·10−2
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

Power

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186

Simulation Time

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4
4.2
4.4
4.6

Energy

Min Max Avg

Figure 7.7: Comparison of results for tree FIFO. All reported numbers are averages with
respect to the buffering depth of FIFO except for cycle time and simulation time.



127

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

120
125
130
135
140
145
150
155
160
165
170
175
180

Forward Latency

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

330

340

350

360

370

380

390

400

410

420

430

Backward Latency

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

510
520
530
540
550
560
570
580
590
600
610
620
630
640

Cycle Time

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

50

100

150

200

250

300

350

400

450

500

550

600

650

Area

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

5 ·10−2
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

Power

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180

Simulation Time

0-
bi

t

8-
bi

ts

32
-b

its

64
-b

its

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4
4.2
4.4
4.6

Energy

Min Max Avg

Figure 7.8: Comparison of results for square FIFO. All reported numbers are averages with
respect to the buffering depth of FIFO except for cycle time and simulation time.



128

many IP blocks into an SoC is efficiently performed by interconnecting the design blocks

with a bus or NoC. Due to design complexity and wire latencies, modern bus and NoC

interfaces result in nondeterministic response delays. This often requires a complex interface

to clocked systems which traditionally require events to occur on specific clock cycles.

Several common bus interface protocols have been created to enhance modularity and

composability of IP blocks. These include protocols such as the advanced microcontroller

bus architecture (AMBA), Wishbone, and open core protocol (OCP). If IP blocks and a

bus (or NoC) have been enhanced to support such a protocol, then the IP blocks can be

directly connected to communicate across the bus (or NoC). Such designs can be directly

reused in any system that supports the protocol. An implementation of a large subset of

the full OCP protocol is done for this dissertation [76]. The implementation is enhanced to

facilitate multiple timing methodologies, simplify buffering, and to reduce the integration

effort required to make an IP block OCP compliant.

Gudla implemented clocked OCP for IP cores and NoC fabric by introducing the

concept of domain interface (DI) [77]. Purely synchronous implementation and synchronous

implementation with asynchronous design is demonstrated and the corresponding numbers

are reported. There are a few drawbacks in the OCP implementation performed in Gudla’s

work. Firstly, there is no mode selection present and the OCP protocol can operate in only

one fixed mode. Secondly, it only covers the synchronous design combinations.

As a case study, this work implements a more general OCP implementation with mode

selection and stall mechanism which allows wider scope of its applications for various

implementations. It can operate in the basic OCP mode, with selections for burst and tag

extensions. The selection of a select word of data bytes has also been enabled which is

missing in [77]. A new state machine based circuit is implemented from scratch to add-in

these features and make it more general. An additional asynchronous OCP implementation

similar to the synchronous one is implemented to enable systems with different timing. This

allowed the timing to be completely general so as to enable a globally asynchronous locally

synchronous (GALS) system implementation, as well as to enable the use of asynchronous

IP blocks in the design. The choice of timing and functionality of each IP block in an

SoC needs to be carefully considered based on its specific power and performance targets.

Without a modular design integration methodology this can lead to increased redesign effort,



129

particularly for clockless asynchronous design or a new GALS architecture. Thus, this

method enables the use of clocked or asynchronous IP blocks, including asynchronous NoC

designs.

The contributions of this case study are as follows:

• The concept of a DI introduced by Gudla ([77]) is enhanced further for clockless

domains, thus enabling interaction of different IPs with GALS, locally asynchronous

globally synchronous (LAGS) and purely asynchronous network interfaces.

• A more general OCP circuit realization is achieved.

• An asynchronous OCP circuit implementation similar to the synchronous OCP is

proposed.

• The modularity across all designs and even network-on-chip (NoC) components is

increased as the OCP master and slave front end blocks can be reused. Also, the design

of specific IP back-ends is simplified thanks to the options of interfaces available.

• This case study demonstrates the applicability of the methodology and tool flow

described in Chapter 3 to asynchronous and synchronous designs simultaneously. The

constraints and design blocks for both clocked and asynchronous designs are specified

together.

7.4.1 Open Core Protocol (OCP) Background

OCP is a nonproprietary, open standard, core-centric protocol addressing IP core system-

level integration requirements [76]. It is defined as a clocked system with unidirectional data

transfer which assists in simplified core implementation, integration and timing analysis.

OCP enables the design of IP cores independent of the other cores, thus enabling the reuse

of IP. The goal of this protocol is to enhance the modularity and composability of the IPs

without requiring redesign.

Fig. 7.9 shows a block diagram of the basic OCP implementation between a master

IP core and a slave IP core communicating across an NoC. The IP cores have an OCP

master/slave component directly integrated into their design.

The basic OCP implementation consists of two channels, a request channel and a

response channel as shown in Fig. 7.10. Any read command issued by the master IP core

results in a transfer on the request channel including the address associated with the read



130

OCP
Master

Master IP Core

OCP
Slave

NoC
OCP

Master
OCP
Slave

Slave IP Core

Request Channel
Response Channel

Figure 7.9: OCP implementation block diagram with native OCP master and slave.

OCP
Master

OCP
Slave

MCmd
SCmdAccept

MAddress

MData

SResp
SData

MRespAccept

Request
Channel

Response
Channel

Figure 7.10: Basic OCP master and slave interface.

command. The slave IP core responds with data on the response channel for the master IP

core. Similarly, write commands are issued across the request channel with the associated

data and address. Various extensions are added in different versions of the OCP protocol

such as the transfer of a burst of data, out-of-order responses, data handshake extensions,

test control extension and a few more.

Some additional details of the OCP handshake protocol are introduced to help understand

how traditional asynchronous handshakes can be mapped onto OCP5. The write command

generated by the master IP core results in the OCP master interface defining a write command

on the MCmd line, along with the Data and the Address information. The OCP slave block

acknowledges the transaction by asserting the SCmdAccept signal on the request channel.

Similarly for the read command, the master IP core sets the MCmd line to a read command

5Refer to the OCP manuals for full protocol information.



131

and asserts the Address. The OCP slave acknowledges this read command with SCmdAccept,

thus completing the handshake with the NoC slave interface. For a normal read, the OCP

master then waits for an acknowledgment on the response channel before initiating a new

command. If out-of-order reads are employed the OCP master does not need to wait for

responses and may immediately send the next command.

The basic handshake protocol for any request on the OCP channel involves an operation

wherein the OCP master sets the MCmd wires on a request which is acknowledged by the

SCmdAccept from the OCP slave. Similarly, there are other optional handshake signals

that are asserted based on which OCP extensions are being employed. For example, if the

write data handshake extension is enabled, an extra SDataAccept handshake signal is used

to indicate an acceptance of Data by the OCP slave. Similarly for the response channel,

there is an optional MRespAccept signal generated by the OCP master for any response

acknowledgment. Thus, flow control is implemented using OCP handshake protocols.

The asynchronous designs replace the clock by embedding request / acknowledgment

handshake signals across the OCP master-slave interfaces. The OCP signals are considered

bundled data signals in relation to the request. The SCmdAccept and MRespAccept signals

can be entirely replaced with the asynchronous acknowledgment signal.

7.4.2 Designs

A subset of the OCP protocol is implemented from the ground up to first develop a base

synchronous implementation. The OCP subset used implemented normal read and write

with extensions for burst mode as well as tags which enable out-of-order responses. Hence,

there are four modes that are possible for this simple OCP implementation which include

normal read/write, burst read/write, normal read/write with out-of-order responses and burst

read/write with out-of-order responses. By default, we have enabled the data byte extension,

which allows the selection of a certain group of 8-bits of datapath width. All these modes

and selections are parameterized and can be changed easily during synthesis of the circuits.

Fig. 7.9 shows a block level implementation showing the communication network

between a master and a slave IP with an OCP master, OCP slave and NoC. This standard

implementation requires the OCP master and slave to integrate the OCP protocol into the IP

and does not offer clear regions for clock domain crossing (CDC). Hence, changes to an IP



132

block can lead to redesign of other design blocks if the CDC is moved into an adjacent block.

To improve modularity, a DI is introduced by Gudla to interface between clock domains

of different frequency [77]. The applicability of the DI is extended in this case study to

cover domain crossing from and to asynchronous (unclocked) domains as well as for purely

asynchronous implementations. This block contains a simplified handshake protocol and

confines domain crossings to this block. It separates OCP design integration into a custom

back-end specific to the IP block, and an OCP master and slave block. This results in full

reuse of a single OCP master and slave block for all IP designs. The DI also provides a good

location for synchronization and buffering, when needed.

Fig. 7.11 shows the explicit partition created by the domain interface. Back-end (BE)

modules interface between the cores or NoCs and the domain interface. This architecture

allows the BE blocks to take care of the interface between the DI and the IP operation

without worrying about domain crossing. Thus, back-end modules can be directly integrated

into the IP core if advantageous. The DI is where frequency domains are synchronized.

Any blocks, including IP cores and NoC, can now be implemented independently and then

interfaced with the DI or any similar interface using a back-end module. The correct domain

crossings and buffering are implemented directly into the DI.

7.4.3 Asynchronous OCP Implementation

The OCP protocol implements a handshake between the OCP master and OCP slave

blocks, which prevents overwriting of the data and allows for flow control. Response

times can arbitrarily vary, e.g., while communicating across a NoC due to traffic and

congestion. Therefore, a stall capability needs to be implemented into the OCP to IP

back-end, so as to enable pausing of the cores to prevent overwriting of data when required

by the OCP interface. The stall operations may require data buffering, which can result

in significant complexity for traditional clocked IP blocks. Alternatively, asynchronous

handshake modules natively allow for arbitrary stalls. Therefore, the design of asynchronous

back-ends are normally much easier to build, are smaller, and consume lower power than

clocked back-ends. Further, certain OCP handshake signals, such as SCmdAccept are

directly implemented with the asynchronous handshake signals. Thus, OCP handshake

signals can be removed from the asynchronous implementation.



133

IP
C

or
e1

Sy
st

em
In

iti
at

or C
or

e1
B

E

D
I

O
C

P
M

as
te

r
O

C
P

Sl
av

e

D
I

N
W

B
E

1
N

oC
N

W
B

E
2

D
I

O
C

P
M

as
te

r
O

C
P

Sl
av

e

D
I

C
or

e2
B

E
IP

C
or

e2

Sy
st

em
Ta

rg
et

B
E

=
B

ac
k-

en
d

R
eq

ue
st

C
ha

nn
el

R
es

po
ns

e
C

ha
nn

el

Fi
gu

re
7.

11
:O

C
P

im
pl

em
en

ta
tio

n
bl

oc
k

di
ag

ra
m

w
ith

do
m

ai
n

in
te

rf
ac

e
(D

I)
an

d
ba

ck
-e

nd
(B

E
)m

od
ul

es
.



134

The initial clocked OCP master, OCP slave, and domain interface designs were converted

into fully asynchronous designs. This resulted in an asynchronous implementation similar to

the synchronous designs. The conversion of the synchronous OCP master and OCP slave to

an asynchronous circuit required finding the point of interaction between the request and the

response channel from the synchronous implementation. Only the OCP master interacts and

stalls the datapath based on the response channel. This stall is performed only during the

read command and during the modes without out-of-order response like the basic (normal)

or the burst mode. In the synchronous circuit, the absence of any data validity information

leads to implementation of the stall mechanism in the datapath. For the asynchronous design,

the data validity information is associated to the asynchronous handshake network. Hence,

the asynchronous control network needs to be stalled instead of the datapath.

The asynchronous circuit consists of two separately developed circuits, the first one

mimics the state machine of the synchronous OCP implementation, and the other one stalls

the asynchronous control network. Fig. 7.12 shows the implementation of the control

network of the asynchronous OCP master state machine, which is designed by direct

conversion of the synchronous state machine. The state register flip-flops are divided into

two latches and each latch is individually controlled by a pipeline controller (LC). On

reset, the LC1 controller is initialized in a state indicating a token it wants to send to LC0,

while LC0 controller is in the receiving state. The change of the state is dependent on any

incoming request (lr1) from its predecessor block. Hence, if a request arrives, the join block

results in a valid token to be sent to LC0 thereby initiating the asynchronous handshake. The

data as well as the state are latched by LC0 and a request is sent to the upstream module as

well as to LC1. The same implementation is also used for the state machine in OCP slave.

Fig. 7.13 shows the realization of the asynchronous OCP master module with the stalling

and steering logic for the asynchronous handshake network, which is implemented using the

select fork and join block. The select fork module does not steer the data; it only steers the

request and the acknowledge handshake signals of the asynchronous control network. The

data word from the output of LC0 is directly sent to the upstream module. For the control

network, the select fork directs the request on both the channels, i.e., rr1 and the FIFO input

channel, or only the upstream channel, i.e., rr1, based on the select input. The select input is

generated by sampling the MCmd bits when rr1 for the state machine design block switches



135

LC0

LC1

Join Fork
lr1
la1

rr1
ra1

Figure 7.12: State machine control network.

FIFO

Select
Fork

Select

Join

State
Machine
Design

LC2

lr1

la1

rr1
ra1

rr2

ra2
lr2
la2

∼MReqLast

size

Figure 7.13: OCP master control network with steering and stalling block.

from logic level 0 to 1, thereby indicating that the OCP master has latched the incoming

data. Both the output channels for the select fork are enabled only for the read command,

while only the upstream channel is enabled for the write command, since no responses are

generated for the write command for this OCP implementation. If the mode of operation

is burst, only a FIFO is included between the select fork and join. For the normal mode

of operation, the FIFO is replaced by just a wire connection since only one read operation

can occur at any given moment. Hence, with the same implementation, both the modes of

operation, where the request and response channels interact, are taken care of. The use of

join enables the stalling of the request channel until a request signal (lr2) for a valid response

arrives.



136

The implementation for the FIFO has the following requirements. Firstly, it should be of

dynamic size and the size required is set based on the MBurstLength signal, which indicates

the size of the burst operation. Secondly, the FIFO needs to stall when MReqLast signal is

generated, thus indicating the last data token of the burst. Thirdly, it should support both

precise and imprecise burst. In the precise mode, the number of data tokens to be transferred

is known at the start of the burst transaction, while in imprecise mode, the end of the burst

transaction is indicated by a token with MBurstLength signal set to 1. Hence, an input for the

size of the burst and the MReqLast signal are required, as shown in Fig. 7.13. This circuit

fails if the dynamic size of the burst is not stored and updated while transferring any read

burst, since the asynchronous handshake network stalling is dependent on it. The stalling

of the request channel is enabled by preventing the last acknowledge to reach the select

fork. This acknowledgment signal is only generated when the last response for that burst

has been received by the response channel. The dependency on the datapath for selecting

the output channel of the Select Fork, and on the operation of the FIFO results in a min

delay constraint on the request signal coming into the Select Fork module as well as on the

module that samples the MCmd data bits. This request signal needs to be slow enough for

the MCmd bits to be resolved before it is sampled at the select fork. This bottleneck affects

the performance of the design making the handshake between OCP master and OCP slave

modules the critical stage, thus resulting in power and performance penalty. Better protocols

with data steering logic templates need to be developed to reduce this min delay overhead.

One of the possible solutions would be to use the late data validity protocols described in

Chapter 6, but it is left for future work.

These independent clocked and asynchronous blocks resulted in various configurations

which can be evaluated for power, performance, area, and flexibility of choosing the IPs as

well as the NoC. This enables using either a synchronous or asynchronous component at

any side of the DI and hence opening up many architectural options.

There are five different implementations which are investigated in this work. First is a

purely synchronous design with a single clock frequency controlling the operation of the IPs

and the NoCs. Second is also a purely synchronous design but with IPs and NoCs operating

at different frequencies. The third design is an unclocked asynchronous design. The fourth

design has IPs which are synchronous, while the OCP implementation and the NoCs are



137

unclocked. The last design has a synchronous OCP implementation with the NoC operating

at a fixed frequency combined with asynchronous IP blocks.

7.4.4 Domain Interface Designs

Different domain interface designs are required to implement corresponding implemen-

tations. Five different domain interface designs corresponding to five different implementa-

tions are presented in this section. The DI for the purely synchronous and asynchronous

design is just combinational. If needed, FIFO buffering can be added at the DI boundaries in

these cases. For the synchronous design, the DI steers the data forward without storing it. In

case of the asynchronous design, the DI also needs to forward the request and acknowledge

the signal with the datapath signals. The complexity of the DI increases for the three other

cases where different timing domains interact.

The domain interface, when CDC occurs, is defined in terms of an OCP request and

response channel (Fig. 7.10). Hence, for every DI implementation, there are two places

where CDC can occur, one for the request channel and the other one for the response

channel. We use sync for synchronous or clocked interface and async for the asynchronous

or unclocked interface. Thus, synchronization uses the naming convention of a timing

domain pair to identify the two synchronized domains.

There are three different cases for the DI design where different timing domains interact.

They are the sync-sync, async-sync and sync-async domain interfaces. The sync-async DI

requires a sync-async request channel synchronization and an async-sync response channel

synchronization. For a async-sync DI, it is the other way round, with the request channel

having a async-sync synchronization and the response channel performing the sync-async

synchronization.

Timing domain crossings, which occur in the DI are now confined to three different

designs: the sync-sync, sync-async and async-sync DI interfaces.

7.4.4.1 The sync-sync Domain Interface FIFO

The core of this interface is a head and tail pointer FIFO that interfaces between two

different clock domains. Fig. 7.14 shows an implementation of this design, which is similar

to other work [78, 79]. The benefit of this design is an easy synchronization and generation



138

Dual Port
SRAM

Gray
Counter

Gray
Counter

wData rData

Full EmptySync Sync

wCLK rCLK
wEnable rEnable

Full Flag Empty Flag

wrptr rdptr

Figure 7.14: sync-sync domain interface FIFO.

of the full and empty statuses before the arrival of the next rising edge of its domain clock

signal. Latency through this FIFO is dependent on the synchronizers, which sample the

empty and full status based on the read (rdptr) and write (wrptr) pointers. Reading and

writing the FIFO can be done at each clock edge of their respective domain until the Empty

or Full flag is set. A two flop synchronizer is used (the sync block in Fig. 7.14); therefore, it

takes approximately two clock cycles after the next write or read to update the Empty or Full

flag status, respectively.

The domain interfaces specify Stall and Valid signals in order to indicate data validity

(Stall and Valid signals are not shown but can be directly derived). Their behavior is similar

to elastic systems [80]. The Stall signal on the write port is derived from the FIFO Full flag

and the write Valid signal. Similarly, the Valid signal on the DI read port is derived from

the FIFO Empty flag and the Stall signal on the read port. The wEnable signal is used to

control the writing in the FIFO and the incrementing of the gray counter. It is derived from

the write port Valid and stall signals. The rEnable signal is similarly derived from the Empty

flag and the read port Stall signal.

7.4.4.2 The async-sync Domain Interface FIFO

The FIFO for the async-sync FIFO is shown in Fig. 7.15. The read port in this design is

identical to that of the sync-sync FIFO. The write domain interface Valid signal is directly



139

Dual Port
SRAM

Gray
Counter

Gray
Counter

wData rData

Full EmptySync
SR Latch

QS
QbR

wEnable rCLK
wCLK rEnable

Full Flag Empty Flag

wrptr rdptr

lr

la

Figure 7.15: async-sync domain interface FIFO.

mapped to the asynchronous request signal (lr), and the Stall signal is directly mapped to

the acknowledge (la) signal. (The Valid and Stall signals are not shown but can be directly

derived.) The FIFO write port has been modified to generate the write clock wCLK from the

write port Valid (lr) signal, and to directly generate the Stall (la) handshake signal.

The FIFO Full flag is causally generated from the assertion of the lr signal. A relative

timing constraint is required to ensure proper operation. The Full flag update time is the sum

of the delay to shift the gray counter, which updates the write pointer wrptr and propagates

its value through the full flag logic.

No synchronization is required from the clocked to the asynchronous port. Write

operations to the FIFO are deferred while the FIFO is full by blocking the assertion of the

wCLK signal with the SR latch. If the FIFO is full and a pending data request exists, the lr

signal does not propagate to the write clock signal wCLK so long as the full flag is asserted.

As soon as the data word is read from a memory slot, the read pointer rdptr updates its value.

This results in the Full Flag becoming unasserted. The SR latch is then released, allowing

the lr signal to generate the write clock signal wCLK and acknowledge a data write on la.



140

7.4.4.3 The sync-async Domain Interface FIFO

The sync-async FIFO is similar to the asyc-sync FIFO as shown in Fig. 7.16. The design

uses a SR latch on the read port to generate the domain interface Valid signal. There is no

synchronization that is needed to generate the read port Valid signal. Thus, asynchronous

implementation has half of the synchronization delay overhead compared to clocked designs.

7.4.5 Results

Fig. 7.11 shows the top level implementation for the test structure used to test the various

designs explained in this chapter. The IP cores are abstracted out from the test setup. The

test simulation directly drives signals into the IP back-end as though an IP were designed and

directly connected. The NoC used in the evaluation performed here is simply a point-to-point

connection. It is implemented as a wired connection between NW BE1 and NW BE2. This

is done to provide better area and power comparisons of the OCP blocks themselves by not

adding in extra IP logic. All blocks are placed in close proximity for this evaluation. The

IPs were considered to be on the same domain, i.e., either clocked at the same frequency,

or unclocked asynchronous IP. For all the designs with multiple domains, the leftmost and

rightmost DI in Fig. 7.11 were the domain crossing blocks.

Dual Port
SRAM

Gray
Counter

Gray
Counter

wData rData

Full EmptySync
SR Latch

QS
QbR

wCLK

rCLK
wEnable

rEnable

Full Flag Empty Flag

wrptr rdptr

rr

ra

Figure 7.16: sync-async domain interface FIFO.



141

There are five different cases implemented, which include: a clocked system with

a single clock domain (sync), clocked circuit with a different clock frequency used for

the NoC (sync-sync-sync), asynchronous unclocked circuit (async), and mixed clocked

and asynchronous designs async-sync-async and sync-async-sync (a GALS architecture).

For each individual case, the operation of the design is validated for four OCP design

modes: normal read/write, burst read/write, read/write with out-of-order response and burst

read/write with out-of-order response.

The reported results use the Artisan RVT (regular threshold) library for the IBM 65nm

10sf process using full layout and parasitic extraction. The toolflow used is the same as

the one described in Chapter 3 with the only difference being the presence of both a clock

signal and the asynchronous constraints related to the asynchronous designs. DC is used

for synthesis, Modelsim is used for simulation, and SoC Encounter is used for place, route,

and parasitic extraction. The power and delay numbers used standard delay format (SDF)

parasitic back annotation into the Modelsim. The power numbers were generated using

parasitic extraction and activity factors from a simulation run by importing a value change

dump (VCD) file from Modelsim into SoC Encounter. The simulation runs a set of read and

write commands to validate the functioning of the design. Postlayout timing is validated

using PrimeTime with extracted parasitics.

The operating frequency of all the designs with a single clock domain, i.e., sync, async-

sync-async and sync-async-sync is 667MHz. For the multiply clock domain design, i.e.,

sync-sync-sync, the operating frequency of the OCP and NoC domain is 570MHz, while

each IP back-end operated at 667MHz. For the asynchronous blocks, the constraints for the

handshake controllers were specified based on the amount of logic in each pipeline stage as

described in [41]. The simulation testbench performs 22 transactions consisting of 12 writes

and 10 reads.

Tables 7.8 and 7.9 show the results for designs with and without CDC in the domain

interfaces. Performance is based on the simulation time for the testbench. Energy numbers

represent the average energy consumed per transaction.

Designs which did not include extended capability, did not have those features compiled

into the logic. It can be seen that the addition of extra logic for the burst, tag or both burst

and tag, results in an increase in the area and power consumed by each design as against the



142

Table 7.8: Energy, performance and area comparison for design with no domain crossing.

Area Simulation Energy/trans. Area Performance Energy

(um2) Time (ns) (pJ) Benefit Benefit Benefit

sync Design

Normal 15,822.0 309.75 94.43 1.00× 1.00× 1.00×

Burst 17,422.8 210.75 74.84 1.00× 1.00× 1.00×

Normal + Tag 16,432.8 144.75 52.40 1.00× 1.00× 1.00×

Burst + Tag 18,337.8 144.75 58.06 1.00× 1.00× 1.00×

async Design

Normal 11,572.2 100.65 10.63 1.37× 3.08× 8.88×

Burst 14,218.8 81.36 13.09 1.23× 2.59× 5.72×

Normal + Tag 11,955.0 53.56 11.04 1.37× 2.70× 4.74×

Burst + Tag 13,518.0 52.62 12.49 1.36× 2.75× 4.65×

base design without any extensions. Respective areas and power in Table 7.9 are over 3×

larger than those in Table 7.8. The overhead of domain crossing is also increased due to the

addition of extra buffering using FIFO structures. These DI FIFOs are all eight words deep.

Table 7.8 allows us to compare purely clocked and asynchronous designs. Designs

that only use asynchronous components, are substantially better than those which use only

clocked components in terms of area, performance and power. Results in the table are all

relative to the purely clocked design. The pure asynchronous design shows up to a 8.9×

improvement in power, 3.1× improvement in performance, and 1.4× improvement in area

over the purely clocked design.

Table 7.9 compares designs with clock domain crossings. The bulk of the OCP

logic lies in the network domain, since the CDC boundaries are in the far left and right

domain interfaces. Therefore, these result are largely dominated by the network clocking

methodology. The GALS design, the sync-async-sync design, is far superior to the multisyn-

chronous clocked design and the LAGS (async-sync-async – locally asynchronous globally

synchronous) design. One of the primary benefits of asynchronous design is that it does

not require synchronization when signals move into an asynchronous domain. Also, since



143

Table 7.9: Energy, performance and area comparison for design with domain crossing.

Area Simulation Energy/trans. Area Performance Energy

(um2) Time (ns) (pJ) Benefit Benefit Benefit

sync-sync-sync Design

Normal 59,419.8 401.25 414.02 1.00× 1.00× 1.00×

Burst 63,574.8 242.25 275.28 1.00× 1.00× 1.00×

Normal + Tag 61,737.6 138.75 160.19 1.00× 1.00× 1.00×

Burst + Tag 66,683.4 138.75 182.27 1.00× 1.00× 1.00×

sync-async-sync Design

Normal 50,866.2 102.75 75.19 1.17× 3.91× 5.51×

Burst 55,956.0 98.25 79.05 1.14× 2.47× 3.48×

Normal + Tag 53,438.4 78.75 71.59 1.16× 1.76× 2.24×

Burst + Tag 57,557.4 78.75 81.97 1.16× 1.76× 2.22×

async-sync-async Design

Normal 51,586.8 332.70 226.84 1.15× 1.21× 1.83×

Burst 55,584.0 235.58 186.32 1.14× 1.03× 1.48×

Normal + Tag 54,436.8 178.58 144.49 1.13× 0.78× 1.11×

Burst + Tag 58,363.8 178.59 155.96 1.14× 0.78× 1.17×

the pipeline implementation is elastic and stalls can be easily handled and resolved, the

asynchronous design works better than the synchronous design where elasticity is added.

There is a large overhead in terms of area, energy and performance for adding elasticity in

synchronous circuits. This results in designs with asynchronous domains, such as the GALS

or LAGS designs, providing better results when compared to synchronous multifrequency

designs.

The performance penalty for the synchronous system presented in this work is due to the

necessity to synchronize when moving into a new clock domain. However, it is also partly

due to the implementation of elasticity and its stall mechanism. Hence, analysis of better

stall protocols might make the results better for designs that are partly or fully synchronous,

but that is left for future work.



144

7.5 Asynchronous 64-point FFT Example 7

Application of the multifrequency approach on large designs for validation of the power

and performance benefit comparisons with respect to an equivalent synchronous design

needs to be performed. An FFT architecture with concurrent data stream computation is

selected. Asynchronous and synchronous implementations for a 16-point and a 64-point FFT

circuit were designed and compared for energy, performance and area. Both versions are

structurally similar. The asynchronous circuit is developed using the multifrequency CAD

tools and flows (Chapter 3), which is similar to any synchronous CAD tools and flows. The

asynchronous design shows a benefit of 2.4×, 2.4× and 3.2× in terms of area, energy and

performance, respectively, over its synchronous counterpart. The circuit is further compared

with other published designs and shows 0.4×, 4.8× and 32.4× benefit with respect to area,

energy and performance.

7.5.1 FFT Architecture

The FFT is an algorithm that requires global dependencies, but it can be derived

in a multirate form that allows a hierarchical representation as shown in Eqn. 7.1 [82].

This multirate architecture exploits performance from concurrency by allowing parallel

computations to occur at reduced frequencies. The equation represents N2 FFTs using N1

values as the inner summation, which are scaled and then used to produce N1 FFTs of N2

values. This representation has the advantage that it takes a high frequency stream and

decimates it so that each of the internal FFTs operate at a lower decimated data stream

frequency. It allows the architecture to simultaneously have lower energy and higher

performance.

Xm1(m2) =
N2−1

∑
n2=0

[
W m1n2

N

N1−1

∑
n1=0

xn2(n1)W
m1n1
N1

]
W m2n2

N2
(7.1)

7This section has been published in DATE, 2013 [81]. c© 2013 IEEE. Reprinted with permission,
from William Lee, Vikas S. Vij, Anthony R. Thatcher, Kenneth S. Stevens, “Design of Low Energy, High
Performance Synchronous and Asynchronous 64-Point FFT,” in Proceedings of the Conference on Design,
Automation and Test in Europe, Mar., 2013.



145

The general architecture derived from Eqn. 7.1 is shown in Fig. 7.17. There are three

architectural control structures: a decimator, expander, and crossbar block. Each of the Ni

blocks can be a hierarchical instance of the design where i is the size of the FFT performed

in that block. The values of N1×N2 equals N1 or N2 at the higher level in the hierarchy.

The decimator block down-samples the input stream [83]. For a sampled signal x(n),

the output of the M-fold decimator is given by y(Mn). The sampling of the N2 decimator is

arranged in a regular repeating fashion where the first sample is steered to the first output

stream, the second to the second stream, and so on. The Mth sample is steered back to the

first stream. This effectively produces M parallel streams operating at 1/M the frequency of

the input.

The expander block is the dual of the decimator block. They take M low-frequency

streams and up-sample by combining them into a stream that has an M-fold higher frequency.

In the FFT architecture, the expander operates on a stream of data x0(m2), . . . ,xN−1(m2)

reproducing a stream at the original frequency and in the correct functional order for the

algorithm.

Product blocks multiply a stream of results coming from the N1 point FFT units by a

set of constant values. Both constants and results are complex numbers, requiring four

multiplications and two additions per sample. The constants are calculated by W m1n2
N , where

m1 = 0, . . . ,N1−1 and n2 = 0, . . . ,N2−1.

The crossbar switch maps results from the product block to the N2 FFT units. The N2

FFT units take a transform of time displaced Fourier transform samples. Each N1-point FFT

provides one data sample to each of the N2-point FFT units. The first row of the N2 FFT

units takes the first sample from each of the N1 rows, the second row similarly takes the

second sample, and so on. This is implemented by performing an N2 up-sampling followed

by a N1 down-sampling. Another solution is to steer the data to N2 N1-way decimators,

followed by N1 N2-way expanders. Decimator sequencing here is different than that of the

top level block because it steers the first N2 samples to each row before moving onto the

next row.



146

f f
N2

f
N2

to f
N1

f f
N1

x(n) -s -x0(n1) - -
?

↓N2 N1-pt. FFT

N1 Constants

������@
@
@

?

-s -x1(n1) - -
?

↓N2 N1-pt. FFT

N1 Constants

������@
@
@

- -xN2−1(n1) - -
?

↓N2 N1-pt. FFT

N1 Constants

������@
@
@

ppp ppp ppp ppp ppp
z−1

z−1

z−1
x0(0)

x1(0)

xN2−1(0)

x0(1)

e j 2π

N x1(1)

e j2π(N1−1)
N xN2−1(1)

x0(N1−1)

e j 2π(N1−1)
N x1(N1−1)

e j2π(N2−1)(N1−1)
N xN2−1(N1−1)p p p

p p p
p p p

N2-pt. FFT

N2-pt. FFT

N2-pt. FFT

��

��

��

↑N1

↑N1

↑N1

�X(m)
6s

6

ppp ppp
z+1

z+1

z+1

Figure 7.17: Multirate FFT architecture.

7.5.2 FFT Design

Multifrequency asynchronous and clocked 64-point FFT designs are implemented from

the architecture block diagram shown in Fig. 7.17. Both designs are hierarchically decom-

posed at the top level such that N1 = 16 and N2 = 4. The 16-point FFT implementations are

also hierarchically decomposed with N1 = N2 = 4. The terminal hierarchical nodes in the

design are the 4-point FFT block since it can be implemented with simple add and subtract

operations due to the value of the constant data values. There are four frequency domains in

this design. The frequency of the incoming data is f , which gets decimated to derive f /4,

f /16 and f /64 frequencies.

The datapath for all the designs are specified behaviorally with the control being the only

differentiating point. The asynchronous design is implemented as a bundled data pipeline

(Fig. 2.3). The LC block, that controls timing and sequencing, is a 4-phase handshake

protocol similar to that in Fig. 3.4. This cell generates a local clock signal to control the

pipeline stage based on the handshake with the adjacent handshake controllers.

These designs operate on fixed-point data. The input and output are 32 bits wide, with

the upper 16 bits representing the real value and the lower 16 representing the imaginary

value. The fields use two’s complement representation of signed numbers that are decimal

values less than or equal to plus or minus 1. The first four bits are used for the whole part of

the number and the rest 12 bits for the fractional part.



147

7.5.2.1 Asynchronous Design

The first step in an RT asynchronous design is to create and characterize the handshake

elements. This design uses four circuit elements: a linear pipeline controller (LC) (Fig. 3.4),

a 2-input fork/join element, the decimator and expander. The LC circuit interfaces two

pipeline stages by controlling the protocol between the stages and storing one data word

(Fig. 2.3). The fork (Fig. 7.18) broadcasts a request from a sender to two receivers. The

ack from the two receivers is synchronized with a C-element before being passed on to the

sender [84]. The join element contains the same logic and is the dual of the fork. Requests

from two senders are first synchronized before being sent to a receiver, while the ack signal

from the receiver is broadcasted to both the senders.

Fig. 7.19 and Fig. 7.20 show the design of the four-way synchronous and asynchronous

decimator, respectively. The asynchronous decimator consists of a ring connected shift

register with one bit asserted to steer the requests to four different pipelines based on the

value in the shift register. The req and the ack signals are active high. Since only one

acknowledgment is active at a time, the four ack signals are passed through an OR gate.

Values in the shift register get updated when the input request goes low. The circuit is

characterized for its timing constraints. As long as the shift register can change in one half

cycle time (before the next req occurs), this logic operates correctly. Note that this block

adds a 2-input AND gate delay on the request path and a 4-input OR gate delay on the

acknowledge path. This is the only overhead of the decimator, and it adds approximately 8

gate delays to the cycle time of the architecture, allowing it to operate at approximately a

16 gate delay cycle time. This resulted in a frequency that is close to 1.3 GHz, which is a

sufficiently fast performance target.

The design of the synchronous and asynchronous expander in Fig. 7.21 and Fig. 7.22 is

similar to the decimator. The asynchronous expander includes an Ni-bit ring connected shift

register and some combinational gates to select the data and control signals to be driven to

the output channel.

Once these blocks were designed, the top level asynchronous architecture is built by

simply composing the pipeline control and datapaths together. A hierarchical structural

design style is employed, which is almost identical to drawing and connecting block level

schematics for the design. In this method a functionally correct design is hierarchically



148

�
�C

rb r0s
r1

ab
a0

a1
Figure 7.18: Fork/Join template.

Shi f tReg

R0enR0

R1enR1

R2enR2

R3enR3

R4

R5

R6

R7

Din

D1

D2

D3

D4

clk clk/4

Figure 7.19: Synchronous decimator.

Shi f tReg

ri r1

r2

r3

r4

Din D1
D2
D3
D4

a1
a2
a3
a4

ai

Figure 7.20: Asynchronous decimator.

designed and validated for performance and correctness. First, a simple 4-point FFT is built,

which is used to build a 16-point FFT, and then these components were integrated into the

64-point FFT. The dataflow graph of a 4-point FFT is shown in Fig. 7.23. The pipelined

asynchronous control logic for that design is shown in Fig. 7.24. The design of the pipeline

is almost as simple as drawing a schematic on a paper, where the butterfly network and first

set of adders are between stages LC1 and LC2, the second butterfly network and adders

are between stages LC2 and LC3, and the last network convolution is between stages LC3

and LC4. Fig. 7.25 shows a code snippet from the design to give a flavor of the RTL. Some

liberty is taken in the syntax to compress the example. This shows a pipeline stage at the

input of the design that feeds into the next stage of 16-point FFTs. Each pipeline stage and

structural block are similarly designed.



149

Shi f tReg

Dout

R0

R1

R2

R3

R4

D1

D2

D3

D4

clk/4

clk

Figure 7.21: Synchronous expander.

Shi f tReg

Dout

D1
D2
D3
D4

ro

r1
r2
r3
r4

aoa1

a2

a3

a4

clk

Figure 7.22: Asynchronous expander.

Performance and functionality optimizations in an asynchronous design are somewhat

independent operations. A design that is functionally correct can be created relatively

quickly. However, some effort is needed to balance the cycle times and pipelining to

optimize performance, particularly for multifrequency designs. This is very different from

clocked design, where performance and pipelining are essential for correct functionality,

and part of the initial specification.

A primary aspect of optimizing performance of an asynchronous architecture is to

calculate the critical paths and focus on those. Experimenting with the power-performance

tradeoffs allowed us to quickly identify the critical paths in the asynchronous design. Due

to the multirate architecture, it is not the complex multipliers or adders that operate at 1/4,

1/16, or 1/64 of the input frequency. Rather, the top level decimators and expanders limit

the operating frequency of the design. We, therefore, focused on designing high throughput

decimators and expanders.



150

Re{x[0]} + + Re{X[0]}

Im{x[0]} + + Im{X[0]}

Re{x[1]} + - Re{X[1]}

Im{x[1]} + - Im{X[1]}

Re{x[2]} - + Re{X[2]}

Im{x[2]} - + Im{X[2]}

Re{x[3]} - - Re{X[3]}

Im{x[3]} - - Im{X[3]}

Figure 7.23: Data flow graph of 4-point FFT calculation.

The performance optimizations are illustrated with the 4-point FFT pipeline, shown in

Fig. 7.23 and 7.24. From a correctness perspective, the data through the expander could

pass straight through the expander through the butterfly network to the adders. However,

this would create too long a cycle time at the decimators. Increased performance is obtained

by adding pipeline stages before and after the decimators and expanders since they are the

critical paths in the design.

The next power-performance optimization of the asynchronous 4-point FFT design is to

determine the frequency target for the smallest area and lowest power adder in the given

technology. A 16-bit ripple carry adder needed about 860ps in this technology, so that

became the performance target of the 4-point FFT design. This is less than the time available

for the computation (3ns in the top level 64-point block and 12ns in the 16-point blocks at

1.3 GHz operating frequency). However, slowing the operation down beyond 860ps simply

adds more area, energy, and latency to the control path.

An additional performance critical aspect of a design is due to pipeline synchronizations.

Adding or removing pipeline stages in an asynchronous design can be employed to remove

forward and backward stalls in an architecture. This has been referred to as “slack matching”

in the asynchronous literature [66]. Therefore, a version of the performance critical four-way



151

LC
0

LC
1 3

LC
1 2

LC
1 1

LC
1 0

LC
2 3

LC
2 2

LC
2 1

LC
2 0

LC
3 3

LC
3 2

LC
3 1

LC
3 0

LC
4 3

LC
4 2

LC
4 1

LC
4 0

LC
5

D
ec

4
E

xp
4

f3f2f1f0

j3j2j1j0

f7f6f5f4

j7j6j5j4

f1
1

f1
0

f9f8

j1
1

j1
0j9j8

lr la
rr ra

de
la

y
de

la
y

Fo
rk

Jo
in

Fo
rk

Jo
in

Fo
rk

Jo
in

Fi
gu

re
7.

24
:4

-p
oi

nt
FF

T
de

si
gn

.



152

module FFT 64 (ri, ai, DI, ro, ao, DO, rst);
input [‘WORD SIZE-1:0] DI; ...

// input pipeline
linear control LC0 (.lr(ri), .la(ai), .rr(p0r), .ra(p0a), .ck(ck0), .rst(rst));
latch P0 (.d(DI), .clk(ck0), .q(P0D0));

// 1-to-4 Decimator
decimator 4 D4 0 (.DI(P0D0), .D1(P0DT1), .D2(P0DT2), .D3(P0DT3), .D4(P0DT4),

.ri(p0r), .ai(p0a), .rst(rst), .r1(p0rt1), .r2(p0rt2), .r3(p0rt3), .r4(p0rt4),

.a1(p0at1), .a2(p0at2), .a3(p0at3), .a4(p0at4));

// The FFT 16 modules.
FFT 16 F16 0 (.ri(p0rt1), .ai(p0at1), .ro(p1rt1), .ao(p1at1),

.DI(P0DT1), .DO(P1DT1), .rst(rst));
FFT 16 F16 1 (.ri(p0rt2), .ai(p0at2), .ro(p1rt2), .ao(p1at2),

.DI(P0DT2), .DO(P1DT2), .rst(rst));
FFT 16 F16 2 (.ri(p0rt3), .ai(p0at3), .ro(p1rt3), .ao(p1at3),

.DI(P0DT3), .DO(P1DT3), .rst(rst));
FFT 16 F16 3 (.ri(p0rt4), .ai(p0at4), .ro(p1rt4), .ao(p1at4),

.DI(P0DT4), .DO(P1DT4), .rst(rst));

linear control LC2 0 (.lr (p1rt1), .la (p1at1), .rr (p2rt1), .ra (p2at1), .ck(ck1 0), .rst(rst));
latch P2 0 (.d(P1DT1), .clk(ck1 0), .q(P2DT1));

// Constant Block and Complex Multiplier.
CB64 1 CB 1 (.update(p1at2), .DO(CDT2), .en(endt2), .rst(rst));
comp mult CM 1 (.A(P1DT2), .B(CDT2), .P(CP2), .en(endt2));

Figure 7.25: Verilog code snippet for FFT 64.

decimator is designed as a 2×2 pipelined decimator to increase throughput and reduce

sensitivity to backward stalls. Likewise, the crossbar and 16-way expander in the 64-point

design of Fig. 7.26 have been pipelined.

The asynchronous design is built using “natural” pipelining for each block with pipeline

performance targets based on the top level architecture. For example, pipeline stages

exist between the adders of the design, whereas they can be removed from a performance

perspective. A few modifications to the original pipeline structure have been made to

improve area in the “async-opt” design.



153

LC0

LC2

LC2

LC2

LC2

LC4

FFT 16

FFT 16

FFT 16

FFT 16

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

FFT 4

Crossbar
4x16

Dec
4

Exp
16

lrla
rrra

delay

Figure 7.26: 64-point FFT design.

7.5.2.2 Synchronous Design

The synchronous FFT used for comparison has the same architecture as shown in

Fig. 7.17. It consists of clocked decimator and expander (Fig. 7.19 and 7.21). The 4-point

synchronous FFT design is a 6-deep pipeline.

Fig. 7.19 shows the clocked four-way decimator. The design consists of a high frequency

register bank and a low frequency register bank, a clock divider, and a shift register to track

the relationship between the two clocks. The shift register must be properly initialized in

relation to the global state of the circuit based on data arrival to ensure proper data steering.

The data word is incrementally latched into the high frequency register bank. At the low

frequency clock, the data word is then shifted into the low frequency register bank, where

it is sampled at a 1/N2 frequency. The expander in Fig. 7.21 is the dual of the decimator.



154

The parallel data stored into a low frequency register are streamed and stored in the output

register based on the higher frequency clock. The channel selection is dependent on the shift

register and requires proper initialization similar to the decimator.

7.5.3 Results

These circuits use the Artisan academic library in IBM’s 65nm 10sf process. The circuits

were designed in behavioral Verilog, synthesized using DC, and place and routed using SoC

Encounter. Circuits were simulated for timing and functional correctness using Modelsim

with postlayout parasitics backannotated. Testing is performed using predefined input

vectors which included 1024 random numbers. Both 64-point FFT circuits have less than

±0.3 percent variation as compared to MATLAB FFT computation. Various performance

parameters including forward latency, cycle time, and throughput were also generated from

the simulation along with VCD file. The simulation VCD file along with the parasitics

of the place and routed design is used to calculate the power numbers for each design by

PrimeTime PX.

Tables 7.10 and 7.11 summarize these multirate designs against several other designs.

These 16-point implementations are compared against a design that is similar in architecture

[85]. The 64-point benchmark is a low power Texas Instruments design [48]. Performance

is measured as the time to completely process 1024 samples.

The simplicity of making architectural and performance modifications to the asynch-

ronous design allowed us to quickly explore a simple area improvement to our asynchronous

architecture. The 64-point architecture contains four 16-point FFTs. Each of these contain

three complex multipliers operating at 1/16 the top level frequency. At this frequency, the

multipliers could be shared, removing eight complex multipliers from the design (Async-opt),

resulting in an overall 18 percent area reduction. This modification has a minor positive affect

on performance and negative affect on latency and energy per point. Other modifications

that reduce area at little or no energy and performance cost can also be explored along with

other optimizations based on target versus required frequencies. Asynchronous designs are

particularly amenable to such architectural explorations.



155

Ta
bl

e
7.

10
:T

he
16

-p
oi

nt
FF

T
co

m
pa

ri
so

n
re

su
lt

(*
co

ns
ta

nt
fie

ld
sc

al
ed

to
65

nm
te

ch
no

lo
gy

).

D
es

ig
n

Te
ch

.
Po

in
ts

–
W

or
d

C
lo

ck
1K

-p
oi

nt
E

xe
c.

Po
w

er
E

ne
rg

y/
po

in
t

A
re

a
E

xe
c.

Ti
m

e
E

ne
rg

y
A

re
a

nm
Sa

m
pl

es
bi

ts
M

H
z

Ti
m

e
µ

s
m

W
pJ

K
ga

te
s

B
en

efi
t

B
en

efi
t

B
en

efi
t

T
hi

s
D

es
ig

n
(A

sy
nc

)
65

16
-1

02
4

16
1,

27
4

0.
83

30
.9

25
.0

5
54

8.
32

3.
93

2.
73

T
hi

s
D

es
ig

n
(c

lo
ck

)
65

16
-1

02
4

16
58

8
1.

73
24

.7
41

.8
3

71
3.

98
2.

35
2.

07
G

ua
n

[8
5]

13
0

16
-1

02
4

16
65

3∗
6.

91
∗

14
.6
∗

98
.3

3∗
14

7
1.

00
1.

00
1.

00

Ta
bl

e
7.

11
:T

he
64

-p
oi

nt
FF

T
co

m
pa

ri
so

n
re

su
lt

(*
co

ns
ta

nt
fie

ld
sc

al
ed

to
65

nm
te

ch
no

lo
gy

,+
no

m
in

al
pr

oc
es

s
vo

lta
ge

).

D
es

ig
n

Te
ch

.
Po

in
ts

–
W

or
d

C
lo

ck
1K

-p
oi

nt
E

xe
c.

Po
w

er
E

ne
rg

y/
po

in
t

A
re

a
E

xe
c.

Ti
m

e
E

ne
rg

y
A

re
a

nm
Sa

m
pl

es
bi

ts
M

H
z

Ti
m

e
µ

s
m

W
pJ

µ
m

2
B

en
efi

t
B

en
efi

t
B

en
efi

t
T

hi
s

D
es

ig
n

(A
sy

nc
-o

pt
)

65
64

-1
02

4
16

1,
35

7
0.

87
69

.4
59

.2
3

39
5

32
.2

4
4.

51
0.

47
T

hi
s

D
es

ig
n

(A
sy

nc
)

65
64

-1
02

4
16

1,
31

6
0.

87
65

.5
55

.6
5

47
9

32
.3

9
4.

80
0.

39
T

hi
s

D
es

ig
n

(C
lo

ck
)

65
64

-1
02

4
16

66
7

2.
76

50
.2

13
5.

30
1,

16
0

10
.2

1
1.

97
0.

16
B

ai
re

dd
y

[4
8]

90
64

-4
09

6
–

51
4∗

28
.1

8∗
9.

7∗
26

6.
95
∗

18
6∗

1.
00

1.
00

1.
00

C
ho

ng
(1

.1
V

)(
A

sy
nc

)[
86

]
35

0
12

8-
12

8
16

–
1,

63
3.

64
∗

–
4.

45
∗

45
∗

0.
02

59
.9

8
4.

12
C

ho
ng

(3
.5

V
)(

A
sy

nc
)[

86
]

35
0

12
8-

12
8

16
–

51
3.

43
∗

–
45

.0
6∗

45
∗

0.
05

5.
92

4.
12

B
aa

s
(3

.3
V

)[
87

]
60

0
10

24
-1

02
4

20
1,

47
0∗

3.
53
∗

11
.7
∗

40
.3

1∗
67

9∗
7.

98
6.

62
0.

27
B

aa
s

(5
V

)[
87

]
60

0
10

24
-1

02
4

20
2,

22
8∗

2.
33
∗

40
.7
∗

92
.5

5∗
67

9∗
12

.1
0

2.
88

0.
27



156

For comparison, results in these tables are optimistically scaled to an equivalent for

65nm technology node by using theoretical constant-field scaling assuming the scaling factor

κ = 1.43 per node (let s = 1/κ = 0.7) [88]. This results in delays in the tables multiplied

by s, s2, and s6 for the 90nm, 130nm, and 600nm nodes, respectively. Energy values are

scaled by s3, s6, and s18. Area reduces by s2 per generation.

The biggest advantage of this multifrequency architecture against the other architectures

comes in the form of throughput. These designs can sustain a rate of 1 data point per clock

cycle, at a relatively constant frequency regardless of the point size. The asynchronous

design also provides a substantial reduction in latency. From an idle start, the asynchronous

16-point and 64-point designs can complete processing 1024 samples over 8× and 32×

faster, respectively, than the benchmark designs. Multifrequency design also shines in energy

per sample. The asynchronous designs consume approximately 1/4 the energy per sample

as that of the competitors. This 16-point pipelined design is less than half the size of this

comparable clocked hierarchical pipelined design. When comparing this design against the

low power 64-point design from Texas Instruments, the clocked design and area optimized

asynchronous designs consume 6× and 2× the area, respectively. This points out very

different design targets and architecture styles. Their architecture shares the computation

units for area efficiency at a cost of higher energy and much lower performance.

The Async-opt design is significantly better than the clocked design of the same

architecture. The 64-point design shows an improvement of 2.28× the energy per data point

and 3.16× the performance while costing only 1/3 the area.

Accurately comparing FFT designs with different point sizes, technology nodes, and

architectures is challenging. Table 7.12, therefore, provides a design comparison based on

three metrics - Benefit product [87] and eτ2 using Baireddy as the reference, and Normalized

FFTs per energy [86]. Benefit product is the product of the area, energy, and execution

time. Baas and Chong employ voltage scaling to quadratically reduce energy. Energy times

square of the execution time (eτ2) provides a reference that is independent of voltage scaling.

The normalized FFTs per energy metric largely disregards performance. Those results are

normalized to the 350nm node to produce the same values as reported in [86].



157

Table 7.12: Design comparisons (+ The nominal process voltage).

Design eτ2 Normalized FFTs Benefit
Advantage per Energy [86] Prod. [87]

This Design (Async-opt) 4,683.38 17.35 68.54
This Design (Async) 5,031.00 18.47 60.37
This Design (Clock) 205.60 7.60 3.23
Baireddy [48] 1.00 – 1.00
Chong (Async-1.1V) 0.02 8.33 4.26
Chong (Async-3.5V)+ 0.02 17.01 1.34
Baas (3.3V) [87] 421.98 8.44 14.48
Baas (5V)+[87] 421.98 3.31 9.56

7.5.4 Timing Closure Approaches for Asynchronous Circuits

A design consists of timing constraints that need to be met for functionality and

correctness. In case of synchronous designs, these are represented as setup and hold

time constraints. The optimization process that modifies the design so as to meet the

constraint requirements is called timing closure. For the flow described in Chapter 3, the

timing information of any design is represented as min and max delay constraints. Each

correctness and functionality relative timing (RT) constraint gets mapped to a min and a

max timing path. The timing path sometimes have to be divided into small path segments in

the presence of overlap between multiple paths. These path segments are specified to the

CAD tools as set min delay/set max delay timing constraints.

The validation of all the paths, such that no negative slack paths are present, becomes

critical for proper functioning of any circuit. The absence of a reference clock in an

asynchronous circuit, results in nonapplicability of the synchronous timing closure ap-

proaches because of the need for the constraints to be validated with respect to another

path. For example, the RT constraint for a bundled data pipeline, as shown in Fig. 2.3,

is reqi ↑ 7→ Li+1/d + setup ≺ Li+1/clk↑. It consists of a max path from reqi to Li+1/d

via Li/clk and a competing min path from reqi to Li+1/clk via reqi+1 with a setup margin

between them. The max path is specified in the tools by dividing it into two segments from

reqi to Li/clk and Li+1/d to Li+1/q, since clk to d path of any register is cut by the tools to



158

avoid cycles. Similarly, the min path is divided into two segments reqi to reqi+1 and reqi+1

to Li+1/clk.

The presence of these competing paths results in a different set of problems which are

not seen for synchronous designs. Due to the ordering that must be maintained at the point

of convergence of any RT constraint, any modification to the delay of one path needs to

be matched with similar modifications on another competing path. This is explained by

an example. If the max delay path for the datapath of a bundled data pipeline needs to be

slowed down, then the corresponding min delay constraint on the control path also needs

to be increased such that the setup margin between the two paths is maintained. Dividing

the paths into small segments results in an extra step for complete path validation which

needs to be performed at a later stage. The current validation framework addresses this by

simulating the circuit using SDF backannotation.

Consider the design synthesis step with all the constraints specified for an asynchronous

circuit. If the circuit meets timing, then no violating paths with negative slack are reported,

else the violating timing paths reported. Consider any bundled data design with a control

network comprised of handshake controllers and datapath: if violating paths are reported by

the synthesis tool then achieving timing closure on these paths can be approached in two

ways. The first approach relaxes the timing constraint on the violating paths based on the

negative slack reported and it resynthesizes the circuit with the new relaxed constraints. A

similar approach is taken for synthesizing any synchronous circuit too by increasing the

clock cycle period to accommodate a slow path. For timing path driven synthesis with

lots of min and max paths, increasing the max delays for the violating max paths requires

an increase in the competing min paths delays. But, for designs with a lot of competing

paths, this approach leads to an inferior circuit, and hence requires a different method if

performance is critical. The second approach divides the timing closure problem into two

steps. The first step involves only setting the datapath timing constraints and achieving

timing closure. This enables the circuit designer to know the operating frequency of each

pipeline stage in a circuit. In the second step, the constraints corresponding to the control

path are also specified with the constraints of the first step. It is observed that DC stops

optimizing the design if any one violating path cannot be resolved. This results in violations

on the paths, which were earlier reported as having a positive slack. Hence, various paths



159

from the datapath can be reported as having negative slack, and consequently, shown as

violating paths. Such datapath violations are ignored and only the control path related

violaters are modified, like in the first step, to achieve the timing closure.

Both of these approaches have advantages and disadvantages, which need to be analyzed

to select the best approach for timing closure. The first approach, of using all the constraints

together, results in faster convergence for timing closure, since the convergence is not

divided into two steps. But, the control over the performance of the circuit is reduced. The

second approach though, gives more control over performance of the design, can lead to

large gates and results in a power hungry circuit. Reduction of this overhead, before the

second step by increasing the datapath max delays by some approximate margin, can lead to

achieving an overall better circuit. Also, the two step approach leads to dividing the set of

constraints into two sets, which is very tedious.

The 64-point FFT design, described earlier, is selected as a start point, and both the

timing closure approaches were applied. Individual designs generated for each timing closure

approach were placed and routed and validated for correct functioning. Table 7.13 reports

the result for each design by performing only timing closure on them. No optimization

to resolve the design bottlenecks is performed. The latency and cycle time results for the

second approach (datapath first) are larger due to the addition of 10 percent margin to all

the datapath delays after the first step. The analysis of the designs show that the bottleneck

for the second approach is at the interfaces, that are the decimator and expander, while

the bottleneck for the first approach is at the complex multipliers. This results in similar

simulation times for both the circuits. It is observed that the addition of the extra margin

resulted in the improvement of the overall design, thus resulting in better energy numbers.

The approaches given above present an overview of the problems related to achieving

timing closure for the methodology presented in this dissertation. Two unique solutions

are presented to provide an algorithmic approach to solving the timing closure problem for

bundled-data asynchronous circuits. The benefit of this systematic approach is the amount

of time saved in addition to giving direction to achieve a working circuit. Before these

approaches were derived, the 64-point FFT design timing closure problem took weeks to

arrive at a solution, which has been reduced to days.



160

Table 7.13: Comparison of Timing Closure Approaches on 64-point FFT.

Forward Backward Cycle Area SimTime Power Energy/point
Latency (ns) Latency (ns) Time (ns) (um2) (ns) (mW ) (pJ)

All Constraints 68080 32390 606 527071.8 876.08 104.5 89.40

Datapath First 78850 35560 653 524556.0 956.96 95.3 89.04

7.6 Summary
Design of any circuit needs different modules, which need to be characterized for energy,

performance and area. Templates for rapid characterization of the handshake circuits, and of

the data and control steering blocks are described and their results reported for one specific

handshake controller. Similar extensions can be done for any design, and numbers generated

for better understanding of the design and its interaction with other design modules. These

template characterization examples can also be used to implement new methodology steps,

like addition of scan test to the datapath of the bundled data circuit using Tetramax, and also

for analyzing the effects, like delay generation and min and max violations, for wire-load

model evaluation.

Multirate asynchronous designs can lead to huge benefits in terms of energy, performance

and area. This is validated by applying the multifrequency flows on 16-point and 64-point

FFT circuits. Case studies presented in this chapter demonstrate that the flow can be

efficiently applied to a large asynchronous design. The relative cost of development of

an asynchronous circuit with the new flow is similar to its synchronous counterpart for

development of these multirate designs. The FFT circuit operates at 1.4GHz and consumes

59.2pJ of energy per data point. A 2.4×, 2.4× and 3.2× benefit in terms of area, energy and

throughput, respectively, over its synchronous counterpart is achieved. Also, a 0.48×, 4.5×

and 32.20× benefit over a low power 64-point FFT design by Texas Instruments [48], as

well as a 2.77×, 8.01× and 8.32× benefit over a similar 16-point FFT architecture [85] are

reported, respectively, for area, energy and throughput.

The benefits and the overall application of this flow to mixed synchronous and asynch-

ronous designs are shown to work on an OCP with different clocked and unclocked domains.

Five different designs were evaluated under a uniform testbench. These included designs

with a single global clock, fully asynchronous, and multifrequency designs. Designs with



161

substantial asynchronous components are by far the best in terms of area, performance,

and energy per transfer. The purely asynchronous design has 3× the performance and it

consumes approximately 1/9 the energy of the clocked design. The GALS design also

demonstrated almost 4× the throughput at less than 1/5 the energy per transaction. Much of

the performance is due to the decreased area and performance penalty for synchronization,

as well as the lower latency for asynchronous designs.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions
A multifrequency methodology for generating purely asynchronous designs, as well

as, designs with asynchronous and synchronous blocks using synchronous computer aided

design (CAD) tools and flows using a unifying timing representation called relative timing

(RT) are presented in this dissertation. The methodology is divided into two parts: the

first part addresses the characterization of asynchronous design templates and describes

the generation of constraints required to enable the use of synchronous CAD tools and

flows on these designs. The second part uses the constraints to generate a working

asynchronous/multifrequency circuit using the synchronous CAD tools. Custom algorithms

required to enable the asynchronous template characterization with its automation are also

presented.

The existing design flow for asynchronous circuits consists of good synthesis algorithms,

but addition of reset to these circuits is an important manual step that needs to be automated.

This work contibutes an algorithm to add a reset signal based on power/performance

optimization. The theory of finding reset addition candidates based on the topology of the

circuit, with and without the inputs of the circuit being defined is derived. Details about

optimizations based on logical effort to reduce the impact of reset addition in terms of power

and performance penalty for any design is also presented. The benefits of this algorithm are

justified by a 21 percent and 24 percent reduction in area and energy/token, respectively,

for the asynchronous FIFO controllers as compared to reset addition done by Petrify. A 14

percent and a 12 percent average reduction in area and energy/token is seen for the three

asynchronous benchmark circuits.

The key to deriving the maximum benefits from the synchronous CAD tools and flows

is to use their timing driven optimization and sizing algorithms. Because the asynchronous



163

circuits are cyclic and sequential circuits, they have to be represented as directed acyclic

graphs (DAGs) to apply these algorithms. This work presents an algorithm that automatically

generates the cycle cut constraints to represent the timing graphs of asynchronous circuits

as DAGs. The algorithm preserves the timing paths from being cut, thus enabling the use

of static timing analysis (STA), timing driven optimization and sizing algorithms of the

synchronous CAD tools to optimize asynchronous circuits. This algorithm preserves the

timing paths, thus guaranteeing the applicability of the RT constraints to derive a functioning

circuit. It also allows full control over the delays required to generate the best asynchronous

circuits. The circuits generated by using this cycle cutting algorithm are 1/3 the size,

consume 1/3 the energy and are 50 percent faster that those derived by the synchronous

CAD tools.

The characterization of asynchronous circuits and the constraint generation is applied

to derive a set of asynchronous templates. A family of 4-phase handshake protocols with

data valid at the falling edge of request, also known as late data validity protocols are

characterized for area, latency and energy. The tabulated results for the late data validity

protocols enable the quick selection of the best asynchronous handshake protocols for any

application.

General templates for steering data and control information were identified and circuit

structures were implemented to characterize them. A simple toy example and four different

FIFO structures were generated and automated for characterizing these templates. Detailed

comparison of results for area, latency and energy of these designs is presented. These

automated flows for characterization and benchmarking new circuit templates assists in

quick development and comparison of new designs, thus facilitating in the design, analysis

and optimization required for deriving better circuits.

The application of the novel RT based methodology to large and complex designs is

shown in a few case studies. A 225k gate 64-point FFT circuit is designed and compared

to a synchronous equivalent. The benefit of asynchronous designs for multifrequency

applications is demonstrated with the asynchronous FFT circuit showing a benefit of 2.4×,

2.4× and 3.2× in terms of area, energy and throughput, respectively, over its synchronous

counterpart.



164

The applicability of this methodology on design combination of both synchronous

and asynchronous circuits is explored. A subset of the open core protocol (OCP) is

implemented and the domain interface (DI) circuit concept is extended to circuits consisting

of asynchronous circuit blocks. Detailed circuit implementations of the DI for asynchronous

to synchronous domain crossing and vice versa are developed, and these designs are

compared against the purely synchronous, asynchronous, and synchronous design with

two different asynchronous clock domains. The purely asynchronous design has 3× the

performance and approximately 1/9 the energy of the clocked design. The GALS design

also demonstrated almost 4× the throughput at less than 1/5 the energy per transaction.

The utility and impact of this research work can be summed up as follows: This

methodology enables the industry to transition from purely synchronous design approaches

to asynchronous designs by exploring various asynchronous circuit design styles. It also

allows the circuit designers to choose the best circuit solution for any specification. Thus,

this work not only allows designers to create better designs, but it also opens up a host of

optimization and algorithmic approaches that can be explored.

8.2 Future Work
The work presented in this dissertation addresses the overall methodology issues and

analyzes its applicability to different circuit examples. The adoption of this research

work can be enhanced by addressing certain automation steps, thus resulting in improved

productivity. The proposed future work includes the following:

• The constraints used in the tool flow are generated by ARTIST tool and are mapped

onto the circuit [40]. The presence of the timing paths and the application of the

constraint on these paths is currently validated by hand after the synthesis. The same

manual validation approach is followed after the physical place and route step to

ascertain the validity of the constraints. Automation of this manual step facilitates in

confirming the mapping of the constraints in the design. It also assists in confirming

whether all the timing paths exist uncut in the design or not. This verification step

results in increased productivity of the functional and timing correctness validation of

the design after each step.



165

• The current implementation maps the RT constraints to the set min delay and

set max delay timing constraints by hand based on the architecture of the overall

system. The mapping of the constraints to timing paths differ based on the system level

design. Hence, an automation tool, that can extract the connectivity between modules

at the system level is required to map the local template level and intertemplate level

constraints onto the system.

• The requirements of causal timing paths in the cycle cutting and the automatic reset

generation algorithm can change the results of the output circuit and constraints

considerably. Methods to automate the generation of causal path using a specific set

of RT constraints need to be investigated.

• A subset of RT constraints is used at the initial steps of the flow and this subset

derivation is based on intuition. Better algorithms to automatically generate the

required RT constraints at each step of the flow need to be explored.

• The constraints for a system can be specified in various ways and the merits and

demerits of the different approaches need to be explored with respect to different

design styles.



APPENDIX A

RESULTS FOR CHAPTER 4

Table A.1: Forward latency (ps/pipestage) for circuits with lr→la and lr→rr constraints
(Performance optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 462.50 87.50 – 102.50 367.50 357.50 352.50

R0020 257.50 – 357.50 87.50 252.50 92.50 152.50 430.00 515.00 337.50

R0040 240.00 97.50 242.50 175.00 327.50 165.00 205.00 285.00 337.50 435.00

R0022 102.50 297.50 260.00 87.50 435.00 177.50 172.50 300.00 255.00 280.00

R0042 132.50 247.50 167.50 – 285.00 112.50 177.50 332.50 285.00 332.50

R2022 90.00 105.00 325.00 120.00 152.50 90.00 147.50 282.50 – .

R2042 82.50 205.00 175.00 – 167.50 117.50 95.00 235.00 230.00 .

R0044 85.00 155.00 192.50 125.00 315.00 92.50 167.50 335.00 282.50 285.00

R2044 140.00 160.00 150.00 – 217.50 127.50 150.00 257.50 232.50 .

R4044 75.00 125.00 . 125.00 . 115.00 . . . .

R2222 257.50 207.50 190.00 182.50 197.50 252.50 220.00 257.50 – .

R2242 192.50 217.50 275.00 225.00 305.00 230.00 212.50 295.00 385.00 .

R2262 137.50 222.50 285.00 160.00 250.00 . . 332.50 . .

R2244 142.50 107.50 127.50 80.00 132.50 85.00 85.00 220.00 182.50 .

R2264 105.00 100.00 167.50 92.50 162.50 . . 247.50 . .

R4244 95.00 105.00 . 102.50 . 90.00 . . . .

R4264 125.00 105.00 . 47.50 . . . . . .



167

Table A.2: Backward latency (ps/pipestage) for circuits with lr→la and lr→rr constraints
(Performance optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 120.00 485.00 – 247.50 – 170.00 120.00 135.00

R0020 245.00 – 152.50 485.00 212.50 162.50 157.50 207.50 187.50 107.50

R0040 237.50 410.00 210.00 215.00 292.50 192.50 210.00 137.50 187.50 182.50

R0022 177.50 117.50 157.50 485.00 225.00 170.00 205.00 87.50 112.50 120.00

R0042 345.00 285.00 195.00 – 267.50 237.50 217.50 170.00 137.50 157.50

R2022 182.50 92.50 142.50 172.50 137.50 137.50 100.00 140.00 – .

R2042 267.50 277.50 210.00 – 162.50 185.00 145.00 147.50 120.00 .

R0044 437.50 342.50 220.00 300.00 220.00 362.50 260.00 200.00 260.00 247.50

R2044 330.00 345.00 297.50 – 290.00 310.00 270.00 285.00 247.50 .

R4044 515.00 307.50 . 317.50 . 325.00 . . . .

R2222 470.00 355.00 307.50 297.50 292.50 292.50 250.00 292.50 – .

R2242 330.00 360.00 322.50 280.00 367.50 307.50 260.00 247.50 305.00 .

R2262 355.00 412.50 430.00 300.00 372.50 . . 342.50 . .

R2244 135.00 120.00 115.00 97.50 92.50 97.50 70.00 75.00 55.00 .

R2264 137.50 145.00 142.50 142.50 105.00 . . 120.00 . .

R4244 127.50 147.50 . 112.50 . 117.50 . . . .

R4264 142.50 137.50 . 97.50 . . . . . .



168

Table A.3: Cycle time (ps) for circuits with lr→la and lr→rr constraints (Performance
optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 600 688 – 609 – 568 568 572

R0020 600 – 609 688 483 600 477 773 765 487

R0040 517 657 463 480 625 503 431 449 600 635

R0022 483 572 528 688 824 454 454 517 471 513

R0042 641 539 449 – 577 614 474 539 528 563

R2022 609 581 701 463 477 524 477 513 .

R2042 539 563 428 – 423 477 403 493 443 .

R0044 524 543 463 477 568 609 496 600 590 586

R2044 543 543 543 – 524 503 496 625 517 .

R4044 641 528 . 513 . 531 . . . .

R2222 694 551 496 474 483 563 510 539 .

R2242 543 577 551 503 635 543 480 572 663 .

R2262 524 586 657 474 614 . . 714 . .

R2244 557 464 524 461 471 565 464 615 522 .

R2264 540 517 646 615 541 . . 750 . .

R4244 513 496 . 470 . 582 . . . .

R4264 546 481 . 467 . . . . . .



169

Table A.4: Routed core area (um2) for circuits with lr→la and lr→rr constraints (Perfor-
mance optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 200.58 324.91 – 326.59 – 335.16 178.32 176.58

R0020 343.73 – 276.05 324.91 218.59 246.89 191.16 200.58 218.59 162.00

R0040 234.86 274.32 211.75 218.59 246.02 272.59 183.48 204.00 185.16 137.18

R0022 288.88 293.16 200.58 324.91 273.46 213.48 190.32 179.16 130.32 121.73

R0042 327.43 221.18 195.48 – 190.32 307.78 182.58 229.75 150.90 116.59

R2022 246.02 328.36 206.58 204.90 261.43 216.00 165.48 187.74 – .

R2042 232.34 224.57 195.48 – 183.48 191.16 155.16 132.86 114.00 .

R0044 193.74 138.86 162.90 140.59 222.05 162.00 161.16 163.74 106.32 147.48

R2044 161.16 192.00 133.73 – 144.00 160.32 120.00 95.18 100.32 .

R4044 162.90 119.18 . 129.46 . 155.16 . . . .

R2222 280.30 149.16 144.00 110.59 154.32 173.16 150.90 123.46 – .

R2242 331.72 173.16 152.58 178.32 132.86 156.90 119.18 106.32 82.30 .

R2262 172.32 170.58 156.00 137.18 129.46 . . 150.90 . .

R2244 106.32 151.74 115.73 89.17 115.73 96.00 76.28 80.57 62.57 .

R2264 165.48 160.32 102.86 102.86 56.59 . . 78.88 . .

R4244 151.74 120.86 . 98.59 . 82.30 . . . .

R4264 92.59 99.46 . 82.30 . . . . . .



170

Table A.5: Power consumed (mW ) for circuits with lr→la and lr→rr constraints (Perfor-
mance optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 1.19 1.74 – 2.01 – 2.08 1.19 1.08

R0020 2.07 – 1.75 1.74 1.62 1.43 1.50 0.97 1.07 1.22

R0040 1.68 1.62 1.69 1.57 1.51 2.13 1.41 1.68 1.17 0.78

R0022 2.26 1.84 1.32 1.74 1.22 1.60 1.41 1.21 0.95 0.77

R0042 1.84 1.43 1.43 – 1.21 1.95 1.33 1.57 0.95 0.68

R2022 1.43 2.14 1.03 1.71 2.05 1.52 1.22 1.29 – .

R2042 1.36 1.40 1.55 – 1.53 1.40 1.28 0.95 0.86 .

R0044 1.29 0.96 1.20 0.96 1.43 0.97 1.14 0.92 0.58 0.91

R2044 1.14 1.42 0.97 – 0.98 1.19 0.91 0.51 0.65 .

R4044 0.83 0.85 . 0.88 . 1.13 . . . .

R2222 1.45 0.96 0.99 0.87 1.23 1.22 0.99 0.83 – .

R2242 2.22 1.02 1.06 1.17 0.80 0.99 0.86 0.69 0.49 .

R2262 1.25 0.90 0.87 0.90 0.76 . . 0.82 . .

R2244 0.68 1.21 0.73 0.65 0.95 0.55 0.53 0.41 0.35 .

R2264 1.11 1.02 0.51 0.54 0.29 . . 0.30 . .

R4244 1.16 0.89 . 0.69 . 0.37 . . . .

R4264 0.61 0.75 . 0.62 . . . . . .



171

Table A.6: Simulation time (Post-APR with SDF back-annotation) (ns) for circuits with
lr→la and lr→rr constraints (Performance optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 158.72 180.59 – 160.85 – 150.68 149.38 150.89

R0020 155.93 – 169.91 180.59 128.04 157.95 126.25 201.18 200.25 129.66

R0040 136.92 172.12 122.91 127.99 164.30 133.55 114.86 120.77 157.46 172.11

R0022 127.45 150.93 139.56 180.59 215.48 121.47 120.66 136.65 125.25 136.06

R0042 168.88 142.56 119.81 – 152.40 162.50 125.22 142.91 139.65 149.02

R2022 159.53 152.70 183.42 123.53 128.70 138.54 125.91 136.08 – .

R2042 140.47 149.02 118.56 – 112.92 126.96 119.37 131.29 118.01 .

R0044 138.09 143.73 122.96 126.32 149.97 160.19 131.28 158.98 155.45 154.19

R2044 142.38 142.98 142.43 – 138.11 130.28 131.21 163.26 136.64 .

R4044 167.89 140.04 . 135.44 . 139.91 . . . .

R2222 181.43 146.24 131.65 125.99 128.08 148.64 134.78 142.38 – .

R2242 143.96 152.63 145.25 133.26 167.55 142.96 127.62 151.73 174.50 .

R2262 138.89 154.69 173.29 126.44 161.73 . . 189.36 . .

R2244 145.96 122.37 137.49 124.44 124.25 148.25 122.43 161.57 137.71 .

R2264 141.23 136.62 168.51 160.65 141.97 . . 195.86 . .

R4244 135.84 130.01 . 123.63 . 152.33 . . . .

R4264 143.09 126.18 . 124.04 . . . . . .



172

Table A.7: Energy consumed (pJ/token) for circuits with lr→la and lr→rr constraints
(Performance optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 0.74 1.23 – 1.26 – 1.22 0.70 0.64

R0020 1.26 – 1.16 1.23 0.81 0.88 0.74 0.76 0.84 0.62

R0040 0.90 1.09 0.81 0.79 0.97 1.11 0.63 0.79 0.72 0.52

R0022 1.13 1.09 0.72 1.23 1.03 0.76 0.66 0.64 0.46 0.41

R0042 1.21 0.80 0.67 – 0.72 1.24 0.65 0.88 0.52 0.40

R2022 0.89 1.28 0.74 0.83 1.03 0.83 0.60 0.69 – .

R2042 0.75 0.82 0.72 – 0.67 0.69 0.59 0.49 0.39 .

R0044 0.70 0.54 0.58 0.47 0.84 0.61 0.59 0.57 0.35 0.55

R2044 0.63 0.79 0.54 – 0.53 0.61 0.47 0.32 0.35 .

R4044 0.55 0.46 . 0.47 . 0.62 . . . .

R2222 1.03 0.55 0.51 0.43 0.61 0.71 0.52 0.46 – .

R2242 1.25 0.61 0.60 0.61 0.52 0.55 0.43 0.41 0.33 .

R2262 0.68 0.54 0.59 0.44 0.48 . . 0.61 . .

R2244 0.39 0.58 0.39 0.32 0.46 0.32 0.25 0.26 0.19 .

R2264 0.61 0.55 0.34 0.34 0.16 . . 0.23 . .

R4244 0.61 0.45 . 0.33 . 0.22 . . . .

R4264 0.34 0.37 . 0.30 . . . . . .



173

Table A.8: Forward latency (ps/pipestage) for circuits with lr→la and lr→rr constraints
(Power optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 442.50 90.00 – 135.00 – 412.50 375.00 337.50

R0020 317.50 – 407.50 90.00 247.50 90.00 195.00 430.00 515.00 375.00

R0040 270.00 102.50 255.00 177.50 342.50 190.00 242.50 297.50 367.50 465.00

R0022 107.50 310.00 260.00 90.00 415.00 205.00 197.50 325.00 277.50 357.50

R0042 125.00 252.50 235.00 – 285.00 112.50 205.00 315.00 285.00 332.50

R2022 82.50 122.50 347.50 145.00 210.00 62.50 185.00 275.00 317.50 .

R2042 85.00 212.50 195.00 – 190.00 157.50 150.00 255.00 250.00 .

R0044 85.00 155.00 217.50 125.00 315.00 117.50 187.50 332.50 282.50 352.50

R2044 162.50 185.00 167.50 – 217.50 137.50 175.00 275.00 232.50 .

R4044 87.50 125.00 . 125.00 . 140.00 . . . .

R2222 252.50 230.00 207.50 182.50 207.50 260.00 235.00 267.50 – .

R2242 227.50 235.00 300.00 225.00 305.00 230.00 220.00 320.00 385.00 .

R2262 150.00 222.50 285.00 170.00 250.00 . . 332.50 . .

R2244 142.50 107.50 145.00 90.00 145.00 102.50 95.00 230.00 197.50 .

R2264 137.50 140.00 167.50 100.00 157.50 . . 250.00 . .

R4244 87.50 112.50 . 107.50 . 75.00 . . . .

R4264 125.00 105.00 . 62.50 . . . . . .



174

Table A.9: Backward latency (ps/pipestage) for circuits with lr→la and lr→rr constraints
(Power optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 125.00 482.50 – 285.00 – 195.00 132.50 137.50

R0020 245.00 – 142.50 482.50 185.00 170.00 180.00 207.50 187.50 135.00

R0040 235.00 427.50 207.50 220.00 317.50 212.50 197.50 160.00 190.00 207.50

R0022 190.00 137.50 182.50 482.50 222.50 202.50 212.50 107.50 145.00 140.00

R0042 340.00 305.00 220.00 – 267.50 235.00 230.00 195.00 137.50 162.50

R2022 187.50 127.50 130.00 225.00 135.00 140.00 127.50 147.50 112.50 .

R2042 235.00 302.50 230.00 – 200.00 202.50 182.50 172.50 145.00 .

R0044 437.50 342.50 240.00 300.00 220.00 385.00 282.50 207.50 260.00 300.00

R2044 355.00 377.50 322.50 – 290.00 342.50 285.00 302.50 247.50 .

R4044 517.50 307.50 . 340.00 . 375.00 . . . .

R2222 485.00 420.00 340.00 295.00 317.50 287.50 295.00 280.00 – .

R2242 325.00 395.00 350.00 280.00 367.50 307.50 275.00 270.00 305.00 .

R2262 340.00 412.50 430.00 282.50 372.50 . . 342.50 . .

R2244 135.00 120.00 132.50 105.00 95.00 110.00 77.50 90.00 65.00 .

R2264 152.50 170.00 142.50 140.00 102.50 . . 122.50 . .

R4244 127.50 165.00 . 120.00 . 115.00 . . . .

R4264 142.50 137.50 . 107.50 . . . . . .



175

Table A.10: Cycle time (ps) for circuits with lr→la and lr→rr constraints (Power
optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 572 694 – 714 – 657 590 528

R0020 600 – 590 694 468 600 496 773 765 539

R0040 513 663 471 513 681 547 477 520 635 694

R0022 493 577 528 694 797 510 483 547 474 535

R0042 609 577 490 – 577 721 477 572 528 547

R2022 604 663 714 503 555 531 463 520 563 .

R2042 471 563 433 – 457 506 433 568 493 .

R0044 524 543 487 477 568 646 528 619 590 675

R2044 531 595 563 – 524 551 500 646 517 .

R4044 641 528 . 500 . 568 . . . .

R2222 701 595 528 480 503 551 503 539 – .

R2242 551 630 600 503 635 543 490 614 663 .

R2262 460 586 657 513 614 . . 714 . .

R2244 557 464 569 480 500 548 477 665 565 .

R2264 591 628 646 592 531 . . 773 . .

R4244 531 618 . 484 . 543 . . . .

R4264 546 481 . 497 . . . . . .



176

Table A.11: Routed core area (um2) for circuits with lr→la and lr→rr constraints (Power
optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 216.00 284.59 – 291.48 – 376.32 149.16 116.59

R0020 282.91 – 265.75 284.59 179.16 214.34 164.58 200.58 218.59 167.16

R0040 226.30 263.16 198.90 198.90 230.62 275.18 168.00 150.90 169.74 133.73

R0022 233.14 327.43 149.16 284.59 250.34 168.00 190.32 148.32 124.32 101.18

R0042 319.79 192.90 180.90 – 190.32 295.76 166.32 176.58 150.90 109.73

R2022 220.32 320.63 194.58 187.74 200.58 308.62 135.46 254.59 114.86 .

R2042 186.00 219.46 160.32 – 140.59 198.90 138.00 120.00 121.73 .

R0044 193.74 138.86 141.46 140.59 222.05 171.48 126.86 172.32 106.32 96.00

R2044 158.58 198.90 132.00 – 144.00 157.74 114.86 78.88 100.32 .

R4044 196.32 119.18 . 133.73 . 137.18 . . . .

R2222 253.73 183.48 143.18 113.18 137.18 108.86 137.18 120.00 – .

R2242 216.00 152.58 120.00 178.32 132.86 156.90 100.32 109.73 82.30 .

R2262 153.48 170.58 156.00 130.32 129.46 . . 150.90 . .

R2244 106.32 151.74 102.00 85.72 127.73 82.30 74.59 69.44 48.00 .

R2264 148.32 140.59 102.86 90.86 61.74 . . 61.74 . .

R4244 136.32 134.59 . 90.86 . 82.30 . . . .

R4264 92.59 99.46 . 72.00 . . . . . .



177

Table A.12: Power consumed (mW ) for circuits with lr→la and lr→rr constraints (Power
optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 1.36 1.46 – 1.45 – 2.11 0.87 0.75

R0020 1.68 – 1.49 1.46 1.28 1.28 1.09 0.97 1.07 1.11

R0040 1.74 1.35 1.62 1.42 1.21 1.89 1.14 0.98 1.01 0.69

R0022 1.67 2.09 1.02 1.46 1.12 1.07 1.21 0.86 0.87 0.49

R0042 1.89 1.12 1.22 – 1.21 1.54 1.09 1.08 0.95 0.59

R2022 1.25 1.85 0.98 1.37 1.36 2.10 0.99 1.81 0.65 .

R2042 1.35 1.21 1.22 – 1.03 1.40 1.13 0.77 0.91 .

R0044 1.29 0.96 0.92 0.96 1.43 0.85 0.79 0.96 0.58 0.50

R2044 1.13 1.27 0.88 – 0.98 1.03 0.72 0.35 0.65 .

R4044 1.06 0.85 . 0.99 . 0.96 . . . .

R2222 1.28 1.06 0.93 0.85 1.00 0.72 0.84 0.81 – .

R2242 1.38 0.72 0.79 1.17 0.80 0.99 0.67 0.70 0.49 .

R2262 1.24 0.90 0.87 0.88 0.76 . . 0.82 . .

R2244 0.68 1.21 0.60 0.62 0.94 0.49 0.52 0.29 0.23 .

R2264 0.88 0.80 0.51 0.48 0.30 . . 0.22 . .

R4244 0.96 0.75 . 0.60 . 0.47 . . . .

R4264 0.61 0.75 . 0.51 . . . . . .



178

Table A.13: Simulation time (Post-APR with SDF back-annotation) (ns) for circuits with
lr→la and lr→rr constraints (Power optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 150.99 182.62 – 187.29 – 173.31 155.57 139.86

R0020 158.14 – 156.21 182.62 124.21 158.16 131.68 201.18 200.25 143.08

R0040 135.51 174.34 125.26 136.16 178.39 144.63 126.46 138.43 167.27 181.68

R0022 130.02 151.99 139.81 182.62 209.28 130.01 128.20 144.91 126.11 141.73

R0042 160.17 152.28 130.02 – 152.40 190.79 129.75 150.73 139.65 145.20

R2022 158.97 174.19 187.58 133.09 146.75 140.35 122.95 138.08 149.47 .

R2042 124.58 145.98 115.07 – 121.94 134.88 115.09 150.75 131.36 .

R0044 138.09 143.73 128.67 126.32 149.97 169.14 137.23 163.30 155.45 177.66

R2044 139.67 156.08 147.85 – 138.11 145.06 134.62 169.19 136.64 .

R4044 166.91 140.04 . 131.62 . 149.64 . . . .

R2222 184.47 157.03 139.37 127.53 133.22 145.86 133.28 143.18 – .

R2242 145.86 166.20 157.85 133.26 167.55 142.96 129.42 163.29 174.50 .

R2262 121.59 154.69 173.29 136.91 161.73 . . 189.36 . .

R2244 145.96 122.37 149.03 126.25 131.70 143.96 125.74 174.36 148.73 .

R2264 154.36 163.56 168.51 154.55 139.65 . . 200.97 . .

R4244 140.40 162.68 . 127.21 . 142.36 . . . .

R4264 143.09 126.18 . 131.70 . . . . . .



179

Table A.14: Energy consumed (pJ/token) for circuits with lr→la and lr→rr constraints
(Power optimization).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 0.80 1.04 – 1.06 – 1.43 0.53 0.41

R0020 1.04 – 0.91 1.04 0.62 0.79 0.56 0.76 0.84 0.62

R0040 0.92 0.92 0.80 0.76 0.84 1.07 0.56 0.53 0.66 0.49

R0022 0.85 1.24 0.56 1.04 0.92 0.55 0.61 0.49 0.43 0.27

R0042 1.18 0.67 0.62 – 0.72 1.15 0.55 0.64 0.52 0.34

R2022 0.78 1.26 0.72 0.71 0.78 1.15 0.48 0.98 0.38 .

R2042 0.66 0.69 0.55 – 0.49 0.74 0.51 0.45 0.47 .

R0044 0.70 0.54 0.46 0.47 0.84 0.56 0.42 0.61 0.35 0.35

R2044 0.62 0.78 0.51 – 0.53 0.59 0.38 0.23 0.35 .

R4044 0.69 0.46 . 0.51 . 0.56 . . . .

R2222 0.92 0.65 0.51 0.42 0.52 0.41 0.44 0.46 – .

R2242 0.79 0.47 0.49 0.61 0.52 0.55 0.34 0.45 0.33 .

R2262 0.59 0.54 0.59 0.47 0.48 . . 0.61 . .

R2244 0.39 0.58 0.35 0.30 0.48 0.28 0.26 0.20 0.13 .

R2264 0.53 0.51 0.34 0.29 0.17 . . 0.17 . .

R4244 0.53 0.47 . 0.30 . 0.26 . . . .

R4264 0.34 0.37 . 0.26 . . . . . .



180

Table A.15: Forward latency (ps/pipestage) for circuits with lr→la and lr→rr constraints
(Petrify).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 470.00 87.50 – 105.00 – 457.50 362.50 392.50

R0020 295.00 – 345.00 87.50 250.00 92.50 175.00 1002.50 462.50 412.50

R0040 255.00 102.50 255.00 195.00 340.00 195.00 230.00 292.50 355.00 432.50

R0022 100.00 315.00 230.00 87.50 457.50 207.50 170.00 335.00 295.00 252.50

R0042 115.00 235.00 247.50 – 250.00 120.00 170.00 355.00 275.00 320.00

R2022 87.50 132.50 357.50 112.50 185.00 62.50 172.50 257.50 295.00 .

R2042 90.00 227.50 197.50 – 220.00 152.50 125.00 307.50 235.00 .

R0044 85.00 140.00 210.00 130.00 352.50 92.50 175.00 290.00 260.00 367.50

R2044 140.00 145.00 135.00 – 200.00 160.00 110.00 307.50 270.00 .

R4044 102.50 147.50 . 112.50 . 115.00 . . . .

R2222 295.00 190.00 222.50 172.50 235.00 277.50 267.50 292.50 – .

R2242 200.00 210.00 272.50 222.50 245.00 212.50 230.00 292.50 297.50 .

R2262 177.50 212.50 272.50 187.50 225.00 . . 322.50 . .

R2244 140.00 92.50 122.50 110.00 127.50 120.00 105.00 270.00 177.50 .

R2264 137.50 177.50 187.50 110.00 137.50 . . 285.00 . .

R4244 60.00 127.50 . 130.00 . 80.00 . . . .

R4264 90.00 82.50 . 85.00 . . . . . .



181

Table A.16: Backward latency (ps/pipestage) for circuits with lr→la and lr→rr con-
straints (Petrify).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 147.50 465.00 – 310.00 – 162.50 150.00 177.50

R0020 250.00 – 127.50 465.00 175.00 210.00 232.50 267.50 240.00 147.50

R0040 260.00 437.50 227.50 235.00 337.50 210.00 195.00 150.00 217.50 197.50

R0022 175.00 112.50 170.00 465.00 287.50 195.00 245.00 120.00 182.50 85.00

R0042 330.00 307.50 227.50 – 210.00 247.50 257.50 165.00 132.50 147.50

R2022 222.50 127.50 137.50 230.00 150.00 170.00 137.50 117.50 140.00 .

R2042 335.00 367.50 240.00 – 225.00 187.50 225.00 202.50 155.00 .

R0044 407.50 310.00 260.00 330.00 247.50 397.50 267.50 177.50 240.00 342.50

R2044 400.00 407.50 352.50 – 270.00 387.50 255.00 342.50 280.00 .

R4044 517.50 337.50 . 342.50 . 345.00 . . . .

R2222 525.00 347.50 370.00 282.50 365.00 315.00 322.50 332.50 – .

R2242 420.00 345.00 337.50 232.50 282.50 275.00 295.00 242.50 235.00 .

R2262 367.50 407.50 442.50 320.00 347.50 . . 342.50 . .

R2244 145.00 127.50 112.50 130.00 107.50 132.50 110.00 110.00 52.50 .

R2264 180.00 250.00 160.00 160.00 135.00 . . 140.00 . .

R4244 272.50 167.50 . 140.00 . 122.50 . . . .

R4264 140.00 137.50 . 132.50 . . . . . .



182

Table A.17: Cycle time (ps) for circuits with lr→la and lr→rr constraints (Petrify).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 641 675 – 735 – 625 568 619

R0020 663 – 641 675 451 669 563 824 773 595

R0040 517 663 503 539 688 535 480 443 652 641

R0022 517 619 590 675 903 555 490 563 517 446

R0042 595 563 555 614 490 604 483 581 524 520

R2022 551 728 806 555 568 535 496 503 524 .

R2042 547 604 490 – 487 520 513 600 449 .

R0044 572 528 513 506 586 652 493 513 320 728

R2044 600 590 595 – 483 625 474 714 590 .

R4044 652 535 . 487 . 513 . . . .

R2222 773 539 568 449 559 559 563 595 – .

R2242 652 539 604 513 477 510 517 563 520 .

R2262 531 586 657 535 551 . . 646 . .

R2244 576 490 518 552 505 698 559 781 519 .

R2264 649 872 707 664 573 . . 872 . .

R4244 663 580 . 543 . 550 . . . .

R4264 506 486 . 529 . . . . . .



183

Table A.18: Routed core area (um2) for circuits with lr→la and lr→rr constraints (Petrify).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 246.02 326.59 – 291.48 – 380.64 159.48 162.90

R0020 342.05 – 261.43 326.59 219.46 246.89 203.16 244.30 252.00 171.48

R0040 256.32 282.02 278.57 222.05 282.91 340.28 233.14 187.74 202.32 177.48

R0022 272.59 407.14 186.90 326.59 295.76 204.00 198.00 178.32 147.48 144.00

R0042 425.18 367.75 256.32 251.14 260.57 267.48 210.89 256.32 185.16 164.58

R2022 263.16 361.79 234.00 224.57 253.73 272.59 166.32 178.32 219.46 .

R2042 238.32 249.48 202.32 – 224.57 202.32 169.74 185.16 149.16 .

R0044 222.91 171.48 200.58 120.00 224.57 200.58 136.32 217.73 148.32 138.86

R2044 161.16 181.74 146.58 – 195.48 168.00 167.16 95.18 126.86 .

R4044 237.46 162.00 . 151.74 . 177.48 . . . .

R2222 278.57 171.48 136.32 113.18 141.46 120.00 126.86 142.32 – .

R2242 360.02 162.90 201.48 178.32 175.74 159.48 121.73 102.86 113.18 .

R2262 257.18 201.48 171.48 155.16 130.32 . . 150.00 . .

R2244 114.00 159.48 132.86 100.32 103.73 108.86 91.73 85.72 84.02 .

R2264 220.32 216.00 130.32 115.73 83.16 . . 84.89 . .

R4244 294.92 157.74 . 117.46 . 89.17 . . . .

R4264 110.59 103.73 . 85.72 . . . . . .



184

Table A.19: Power consumed (mW ) for circuits with lr→la and lr→rr constraints (Petrify).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 1.41 1.81 – 1.42 – 2.37 0.99 1.02

R0020 1.82 – 1.42 1.81 1.72 1.35 1.21 1.03 1.23 1.02

R0040 1.94 1.60 2.32 1.29 1.58 2.44 1.58 1.44 1.14 1.04

R0022 1.84 2.44 1.13 1.81 1.07 1.31 1.33 1.05 1.04 1.01

R0042 2.60 2.52 1.53 1.26 1.84 1.65 1.38 1.69 1.17 1.08

R2022 1.41 1.79 1.04 1.37 1.50 1.94 1.09 1.20 1.48 .

R2042 1.38 1.42 1.32 – 1.59 1.26 1.08 1.16 1.11 .

R0044 1.46 1.20 1.24 0.78 1.25 1.11 1.03 1.46 0.78 0.72

R2044 0.87 1.07 0.78 – 1.32 0.99 1.12 0.42 0.83 .

R4044 1.15 1.19 . 1.17 . 1.24 . . . .

R2222 1.31 1.14 0.81 0.95 0.97 0.78 0.83 0.87 – .

R2242 2.07 1.07 1.27 1.25 1.41 1.02 0.82 0.71 0.75 .

R2262 1.83 1.30 1.01 0.84 0.80 . . 0.92 . .

R2244 0.72 1.35 0.84 0.68 0.79 0.57 0.58 0.35 0.44 .

R2264 1.16 0.81 0.72 0.65 0.50 . . 0.31 . .

R4244 1.52 0.95 . 0.72 . 0.42 . . . .

R4264 0.92 0.82 . 0.59 . . . . . .



185

Table A.20: Simulation time (Post-APR with SDF back-annotation) (ns) for circuits with
lr→la and lr→rr constraints (Petrify).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 169.47 178.13 – 192.21 – 165.07 150.17 162.52

R0020 169.53 – 168.45 178.13 119.88 176.39 148.37 213.41 202.58 157.25

R0040 136.73 173.20 133.15 142.87 179.66 141.97 127.71 123.34 171.55 169.30

R0022 135.85 162.71 155.24 178.13 236.73 147.10 129.39 148.78 136.89 118.87

R0042 160.38 148.64 146.14 162.53 129.57 159.17 130.88 153.45 138.85 137.75

R2022 145.11 190.81 211.34 146.80 149.96 141.44 131.40 133.42 139.18 .

R2042 144.03 159.06 129.61 – 129.45 138.13 137.40 158.10 119.82 .

R0044 150.32 139.84 135.53 131.89 154.71 170.89 130.04 136.61 86.30 192.51

R2044 157.69 154.64 156.39 – 127.84 164.58 125.43 185.89 155.14 .

R4044 170.54 141.14 . 127.99 . 133.52 . . . .

R2222 202.20 143.14 149.89 119.34 144.31 148.22 148.68 162.41 – .

R2242 172.22 142.40 159.76 136.27 127.00 134.77 136.32 149.68 135.16 .

R2262 140.80 153.84 172.96 142.07 143.28 . . 170.70 . .

R2244 150.55 128.42 135.95 144.70 132.90 181.93 146.50 203.86 137.18 .

R2264 168.90 226.18 184.14 172.96 149.78 . . 227.11 . .

R4244 173.18 151.52 . 142.35 . 141.59 . . . .

R4264 133.78 128.64 . 138.48 . . . . . .



186

Table A.21: Energy consumed (pJ/token) for circuits with lr→la and lr→rr constraints
(Petrify).

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 0.93 1.26 – 1.07 – 1.53 0.58 0.65

R0020 1.21 – 0.93 1.26 0.80 0.93 0.70 0.86 0.97 0.62

R0040 1.04 1.09 1.21 0.72 1.11 1.35 0.79 0.70 0.76 0.69

R0022 0.98 1.55 0.69 1.26 0.99 0.75 0.67 0.61 0.56 0.47

R0042 1.63 1.46 0.88 0.80 0.93 1.02 0.71 1.02 0.64 0.58

R2022 0.80 1.33 0.86 0.79 0.88 1.07 0.56 0.63 0.81 .

R2042 0.78 0.88 0.67 – 0.81 0.68 0.58 0.71 0.52 .

R0044 0.86 0.66 0.65 0.40 0.76 0.74 0.52 0.78 0.26 0.54

R2044 0.54 0.65 0.48 – 0.66 0.64 0.55 0.31 0.50 .

R4044 0.77 0.66 . 0.59 . 0.64 . . . .

R2222 1.04 0.64 0.48 0.44 0.55 0.45 0.48 0.55 – .

R2242 1.39 0.59 0.79 0.67 0.70 0.54 0.44 0.41 0.40 .

R2262 1.01 0.78 0.68 0.46 0.45 . . 0.61 . .

R2244 0.43 0.68 0.45 0.38 0.41 0.40 0.33 0.28 0.24 .

R2264 0.77 0.71 0.52 0.44 0.29 . . 0.28 . .

R4244 1.03 0.56 . 0.40 . 0.23 . . . .

R4264 0.48 0.41 . 0.32 . . . . . .



APPENDIX B

RESULTS FOR CHAPTER 5

Table B.1: Forward latency (ps) for circuits with cycle cuts generated by my algorithm.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 540 1910 – – 920 840 630 510

R0020 1090 – 710 1410 750 730 700 770 750 560

R0040 890 2120 1020 1190 1610 950 770 640 1090 990

R0022 880 460 1160 890 850 860 880 470 620 540

R0042 1460 1260 840 – 1070 1150 940 820 730 650

R2022 910 520 620 610 590 780 580 490 510 .

R2042 1170 1580 890 790 800 870 700 640 610 .

R0044 1580 1350 900 1100 1170 1480 1060 720 940 1110

R2044 1510 1420 1290 1140 1100 1170 1120 1060 1080 .

R4044 2120 1460 . 1350 . 1390 . . . .

R2222 1720 1340 1030 1050 1160 880 910 900 580 .

R2242 1130 1680 1320 880 1170 930 850 880 770 .

R2262 1030 1490 1350 1130 1320 . . 1160 . .

R2244 560 420 390 400 370 410 350 350 260 .

R2264 590 700 590 500 420 . . 460 . .

R4244 510 610 . 480 . 440 . . . .

R4264 480 470 . 520 . . . . . .



188

Table B.2: Forward latency (ps) for circuits with cycle cuts generated by commercial CAD
tool.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 860 2690 – – 1440 860 1440 1130

R0020 1450 – 860 2250 1430 1570 1660 1550 1220 1400

R0040 2130 3400 2120 1900 2160 2330 1080 1120 1470 840

R0022 1180 600 1050 1870 3030 1440 880 1180 1090 1070

R0042 1980 1610 1810 – 2370 2200 1040 940 1200 770

R2022 1850 1150 1010 790 480 1300 1420 880 1050 .

R2042 2130 3330 1870 1600 1570 1240 1660 710 1080 .

R0044 2500 2310 1250 1770 1780 1620 1100 890 980 2190

R2044 2310 1360 1370 1320 1060 1790 1260 1470 820 .

R4044 3180 2290 . 1980 . 2100 . . . .

R2222 3400 1310 1410 2460 1540 1620 1710 1740 560 .

R2242 2090 1900 1600 1760 1000 1520 1630 1330 1060 .

R2262 1580 2320 2360 1540 1290 . . 1030 . .

R2244 1200 530 440 610 820 590 550 480 360 .

R2264 860 1310 980 810 500 . . 580 . .

R4244 710 1020 . 770 . 500 . . . .

R4264 840 920 . 880 . . . . . .



189

Table B.3: Backward latency (ps) for circuits with cycle cuts generated by my algorithm.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 1900 540 – – 90 1880 1450 1300

R0020 1400 – 2540 670 1030 340 730 1480 1380 1650

R0040 1080 200 1240 510 1760 740 950 1130 1790 1810

R0022 400 1600 1780 940 1540 760 920 1190 980 1410

R0042 540 1060 920 – 1070 590 790 1400 1250 1240

R2022 330 580 1320 720 1000 360 820 1010 1170 .

R2042 880 1140 940 710 800 630 680 870 880 .

R0044 420 560 950 530 910 430 750 1170 1010 1270

R2044 850 730 820 860 870 570 720 940 900 .

R4044 280 600 . 570 . 500 . . . .

R2222 860 680 630 580 590 330 590 800 790 .

R2242 780 910 1090 490 900 260 490 1050 950 .

R2262 420 650 760 500 700 . . 1040 . .

R2244 630 400 540 310 620 360 410 750 660 .

R2264 620 480 600 320 500 . . 830 . .

R4244 360 490 . 440 . 220 . . . .

R4264 300 310 . 310 . . . . . .



190

Table B.4: Backward latency (ps) for circuits with cycle cuts generated by commercial
CAD tool.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 2750 560 – – 30 2540 2680 2240

R0020 2800 – 4090 500 1680 390 2100 2530 2860 3220

R0040 2150 260 2880 390 2420 1130 1480 1680 3000 1600

R0022 430 2800 1660 2290 3510 1290 1180 2530 1590 2170

R0042 960 1430 1850 – 2530 1010 1130 1510 2200 1520

R2022 340 950 2210 970 1520 340 1940 1830 2550 .

R2042 1630 2150 2290 1460 1440 910 1800 950 1440 .

R0044 650 670 1170 810 1390 450 880 1310 1120 2340

R2044 1310 710 1160 1140 820 900 910 1320 700 .

R4044 360 700 . 900 . 820 . . . .

R2222 1750 620 1000 1290 910 340 1250 1400 740 .

R2242 1600 1060 1230 790 790 230 1130 1430 1170 .

R2262 400 1030 1710 740 760 . . 980 . .

R2244 1250 670 590 650 1130 440 820 990 910 .

R2264 1440 1400 1150 640 540 . . 1040 . .

R4244 360 840 . 660 . 190 . . . .

R4264 630 690 . 710 . . . . . .



191

Table B.5: Cycle time (ps) for circuits with cycle cuts generated by my algorithm.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 710 710 – – 21140 760 620 540

R0020 780 – 980 730 530 710 520 680 650 660

R0040 570 800 660 600 920 620 510 520 910 870

R0022 600 750 810 540 730 500 510 510 480 600

R0042 650 650 530 – 650 690 520 640 590 580

R2022 660 780 770 470 700 700 520 560 570 .

R2042 750 760 540 440 460 530 450 490 470 .

R0044 570 560 540 480 600 670 540 560 580 710

R2044 690 620 600 600 600 530 540 580 610 .

R4044 680 620 . 560 . 630 . . . .

R2222 850 610 510 510 540 500 510 530 450 .

R2242 630 800 770 520 660 550 460 630 580 .

R2262 480 680 630 540 620 . . 700 . .

R2244 660 460 530 510 560 590 530 630 550 .

R2264 690 690 650 560 520 . . 730 . .

R4244 510 600 . 520 . 570 . . . .

R4264 460 450 . 630 . . . . . .



192

Table B.6: Cycle time (ps)for circuits with cycle cuts generated by commercial CAD tool.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 1040 930 – – 21720 930 1170 970

R0020 1190 – 1420 950 920 1160 1040 1250 1150 1300

R0040 1190 1280 1370 630 1310 1200 780 830 1190 710

R0022 640 1260 830 1170 1690 790 630 1060 770 920

R0042 900 830 1060 – 1450 1170 620 770 980 710

R2022 870 1110 1260 650 1050 1000 990 970 1150 .

R2042 1440 1450 1170 860 830 650 990 520 710 .

R0044 870 890 710 770 850 780 590 660 580 1300

R2044 1070 590 720 730 580 800 670 770 470 .

R4044 1070 890 . 820 . 910 . . . .

R2222 1560 610 730 1120 770 780 900 940 470 .

R2242 1160 890 870 920 640 790 840 870 710 .

R2262 720 1140 1200 820 670 . . 650 . .

R2244 1300 710 570 700 1050 680 800 810 710 .

R2264 1270 1480 1120 820 610 . . 880 . .

R4244 670 1010 . 820 . 560 . . . .

R4264 800 890 . 970 . . . . . .



193

Table B.7: Routed core area (um2) for circuits with cycle cuts generated by my algorithm.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 442.4 286.4 – – 155.2 265.8 170.6 128.6

R0020 258.9 – 351.5 235.7 166.3 282.9 152.6 145.7 162.9 153.5

R0040 180.0 238.3 192.0 200.6 348.0 214.3 152.6 142.3 175.7 198.9

R0022 231.5 286.4 272.6 137.2 256.3 170.6 179.2 114.9 104.6 113.2

R0042 285.4 180.0 162.9 – 202.3 262.3 179.2 168.9 121.7 114.9

R2022 210.9 245.2 247.8 147.5 233.1 266.6 160.3 137.2 123.5 .

R2042 269.1 178.3 135.5 149.2 188.6 146.6 111.5 125.2 111.5 .

R0044 173.2 145.7 149.2 118.3 145.7 156.0 134.6 145.7 118.3 104.6

R2044 138.9 150.9 142.3 147.5 156.0 156.0 132.0 87.4 114.9 .

R4044 186.9 142.3 . 135.5 . 139.7 . . . .

R2222 248.6 142.3 125.2 111.5 111.5 108.0 111.5 111.5 80.6 .

R2242 183.5 304.3 131.2 142.3 118.3 138.9 94.3 94.3 94.3 .

R2262 152.6 147.5 135.5 111.5 111.5 . . 114.9 . .

R2244 124.3 120.9 84.0 94.3 102.9 94.3 73.7 70.3 56.6 .

R2264 133.7 118.3 97.7 94.3 90.9 . . 70.3 . .

R4244 128.6 121.7 . 97.7 . 80.6 . . . .

R4264 101.2 104.6 . 94.3 . . . . . .



194

Table B.8: Routed core area (um2) for circuits with cycle cuts generated by commercial
CAD tool.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 643.8 744.1 – – 420.0 795.4 469.8 464.6

R0020 790.3 – 643.0 637.8 406.4 629.2 542.6 529.7 399.5 416.6

R0040 560.6 882.9 636.0 622.3 559.8 704.6 538.4 340.3 481.8 461.2

R0022 829.0 870.9 512.6 519.5 771.5 518.6 404.6 365.1 375.5 324.1

R0042 817.7 608.6 546.9 – 744.1 771.5 404.6 482.7 474.0 450.0

R2022 673.8 701.2 570.0 483.5 622.3 560.6 451.8 458.6 423.5 .

R2042 852.0 553.7 519.5 415.8 390.0 484.4 422.6 262.3 248.6 .

R0044 457.7 531.5 560.6 330.9 395.1 499.7 245.2 463.8 304.3 293.2

R2044 437.2 525.4 389.2 312.1 380.6 396.0 255.5 214.3 313.7 .

R4044 612.0 486.9 . 330.9 . 327.4 . . . .

R2222 783.4 469.8 526.3 344.6 384.0 474.9 348.9 406.4 361.8 .

R2242 564.1 488.6 430.4 378.9 432.9 454.4 335.2 231.5 183.5 .

R2262 424.3 397.7 384.0 366.9 350.6 . . 310.3 . .

R2244 375.5 314.6 313.7 246.0 307.8 400.3 230.6 166.3 145.7 .

R2264 327.4 368.6 368.6 246.0 311.1 . . 162.0 . .

R4244 478.3 396.0 . 256.3 . 272.6 . . . .

R4264 282.9 282.9 . 251.1 . . . . . .



195

Table B.9: Power consumed (mW ) for circuits with cycle cuts generated by my algorithm.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 2.441 1.098 – – 0.795 1.004 0.668 0.641

R0020 0.891 – 2.011 1.115 0.739 0.855 0.838 0.573 0.650 0.544

R0040 0.918 0.815 0.900 1.328 0.781 1.041 0.760 0.652 1.412 0.617

R0022 1.094 1.255 1.485 0.775 0.918 0.830 0.755 0.541 0.589 0.463

R0042 1.506 0.780 0.840 – 0.794 0.906 0.766 0.778 0.511 0.536

R2022 0.989 1.056 0.993 0.796 0.944 0.895 0.692 0.863 0.565 .

R2042 1.066 0.691 0.775 0.885 0.841 0.741 0.713 0.704 0.611 .

R0044 0.864 0.706 0.718 0.508 0.692 0.626 0.548 0.684 0.499 0.427

R2044 0.513 0.596 0.645 0.685 0.637 0.968 0.545 0.354 0.496 .

R4044 0.724 0.619 . 0.723 . 0.782 . . . .

R2222 0.886 0.638 0.576 0.600 0.536 0.610 0.586 0.594 0.383 .

R2242 0.861 1.392 0.478 0.791 0.520 0.654 0.566 0.454 0.490 .

R2262 0.862 0.529 0.732 0.473 0.499 . . 0.426 . .

R2244 0.528 0.663 0.349 0.502 0.467 0.441 0.382 0.259 0.211 .

R2264 0.586 0.494 0.445 0.465 0.361 . . 0.224 . .

R4244 0.684 0.583 . 0.496 . 0.298 . . . .

R4264 0.602 0.637 . 0.412 . . . . . .



196

Table B.10: Power consumed (mW ) for circuits with cycle cuts generated by commercial
CAD tool.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 2.566 3.222 – – 1.591 3.245 1.575 1.936

R0020 2.554 – 2.016 2.076 1.605 2.245 2.089 1.632 1.350 1.264

R0040 1.952 2.871 1.984 2.904 1.651 2.447 2.744 1.921 1.577 2.010

R0022 4.843 2.844 2.401 1.717 1.918 2.376 2.214 1.300 1.917 1.308

R0042 3.349 2.770 1.938 – 2.123 2.733 2.333 2.207 1.726 2.169

R2022 3.070 2.400 1.729 2.891 2.432 2.063 1.701 1.703 1.452 .

R2042 2.531 1.510 1.717 1.696 1.506 2.586 1.576 2.099 1.147 .

R0044 2.046 2.269 2.960 1.377 1.716 2.350 1.406 2.067 1.762 0.911

R2044 1.724 3.298 1.978 1.558 2.216 1.814 1.341 1.112 2.118 .

R4044 2.263 2.006 . 1.479 . 1.393 . . . .

R2222 2.085 2.893 2.746 1.196 1.591 2.321 1.456 1.861 2.372 .

R2242 1.935 1.889 1.928 1.528 2.618 1.978 1.511 1.127 0.826 .

R2262 2.543 1.238 1.306 1.587 1.875 . . 1.836 . .

R2244 1.186 1.792 1.885 1.314 0.916 2.269 1.006 0.682 0.700 .

R2264 1.067 0.997 1.290 1.122 1.557 . . 0.693 . .

R4244 2.528 1.451 . 0.998 . 1.708 . . . .

R4264 1.355 1.136 . 0.961 . . . . . .



197

Table B.11: Simulation time (Post-APR with SDF back-annotation) (ns) for circuits with
cycle cuts generated by my algorithm.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 42.99 43.35 – – 37.45 47.05 39.49 35.25

R0020 46.25 – 56.90 44.19 33.94 43.65 33.50 42.00 40.28 41.38

R0040 36.70 47.30 40.50 36.10 54.50 38.20 33.30 34.50 51.65 52.77

R0022 36.95 45.80 49.04 34.70 44.80 32.20 33.75 33.90 32.69 38.65

R0042 39.79 41.08 34.00 – 39.25 41.89 33.69 39.95 38.10 37.54

R2022 39.40 44.94 46.54 31.05 43.45 43.34 33.80 35.09 36.89 .

R2042 44.45 45.90 34.70 30.00 31.04 34.33 30.04 31.80 31.30 .

R0044 35.80 35.59 34.75 31.80 37.89 41.20 34.74 35.45 37.80 43.95

R2044 41.59 39.10 37.50 37.45 37.90 34.85 34.83 37.63 38.34 .

R4044 41.25 37.99 . 36.30 . 39.64 . . . .

R2222 48.39 38.75 33.94 33.44 35.43 33.73 34.04 35.15 30.75 .

R2242 38.70 48.05 46.55 33.70 41.80 34.84 31.35 39.90 37.80 .

R2262 31.19 41.00 39.50 34.22 39.70 . . 43.05 . .

R2244 40.50 30.94 34.40 32.90 35.89 37.54 34.60 40.20 36.09 .

R2264 41.90 41.34 41.19 35.74 33.45 . . 45.25 . .

R4244 32.55 38.10 . 33.80 . 35.70 . . . .

R4264 30.85 30.20 . 36.14 . . . . . .



198

Table B.12: Simulation time (Post-APR with SDF back-annotation) (ns) for circuits with
cycle cuts generated by commercial CAD tool.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 59.59 54.05 – – 49.60 55.40 68.60 58.00

R0020 68.16 – 80.95 54.94 52.14 67.71 62.12 69.64 67.53 75.54

R0040 68.05 71.99 77.99 38.75 74.14 66.30 44.95 50.30 70.10 44.62

R0022 39.40 71.34 49.65 68.34 96.94 47.70 39.89 63.17 47.15 55.53

R0042 54.24 50.25 60.10 – 78.09 65.98 39.00 46.40 59.63 45.15

R2022 51.20 63.50 72.35 38.24 59.39 58.90 59.39 55.39 67.64 .

R2042 81.30 81.90 68.34 51.14 50.55 39.50 58.99 33.54 43.62 .

R0044 50.90 52.43 43.15 45.04 51.79 47.80 36.55 40.20 38.35 74.85

R2044 58.83 37.29 43.85 43.89 36.74 49.50 41.10 47.74 31.05 .

R4044 59.34 51.18 . 49.83 . 54.35 . . . .

R2222 86.30 38.24 45.15 64.88 45.45 48.20 55.04 57.25 31.54 .

R2242 65.89 52.95 51.70 52.50 38.84 47.09 51.68 52.05 45.00 .

R2262 41.25 64.22 70.53 48.00 40.33 . . 40.50 . .

R2244 72.67 42.95 36.64 43.49 60.84 40.19 49.10 49.14 44.50 .

R2264 71.68 83.10 65.45 48.64 36.65 . . 52.89 . .

R4244 38.30 58.40 . 48.90 . 35.65 . . . .

R4264 48.30 52.15 . 53.09 . . . . . .



199

Table B.13: Energy consumed (pJ/token) for circuits with cycle cuts generated by my
algorithm.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 2.098 0.952 – – 0.595 0.945 0.528 0.452

R0020 0.824 – 2.288 0.985 0.502 0.746 0.561 0.482 0.524 0.450

R0040 0.674 0.771 0.729 0.959 0.852 0.796 0.506 0.450 1.459 0.652

R0022 0.808 1.149 1.457 0.538 0.822 0.534 0.510 0.367 0.385 0.358

R0042 1.198 0.641 0.571 – 0.623 0.759 0.516 0.622 0.389 0.402

R2022 0.779 0.949 0.924 0.494 0.820 0.776 0.468 0.605 0.417 .

R2042 0.947 0.634 0.538 0.531 0.522 0.509 0.428 0.448 0.382 .

R0044 0.619 0.503 0.499 0.323 0.524 0.516 0.380 0.485 0.377 0.375

R2044 0.427 0.466 0.484 0.513 0.483 0.675 0.380 0.267 0.380 .

R4044 0.598 0.470 . 0.525 . 0.620 . . . .

R2222 0.857 0.494 0.391 0.402 0.380 0.412 0.399 0.417 0.236 .

R2242 0.667 1.338 0.445 0.533 0.435 0.456 0.355 0.362 0.370 .

R2262 0.538 0.433 0.578 0.324 0.396 . . 0.367 . .

R2244 0.428 0.410 0.240 0.330 0.335 0.331 0.265 0.208 0.153 .

R2264 0.491 0.409 0.367 0.332 0.242 . . 0.203 . .

R4244 0.445 0.444 . 0.335 . 0.213 . . . .

R4264 0.371 0.384 . 0.298 . . . . . .



200

Table B.14: Energy consumed (pJ/token) for circuits with cycle cuts generated by
commercial CAD tool.

LoR L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333

R0000 – – 3.058 3.483 – – 1.578 3.595 2.161 2.245

R0020 3.481 – 3.264 2.282 1.674 3.040 2.595 2.273 1.823 1.910

R0040 2.657 4.133 3.095 2.250 2.448 3.245 2.466 1.933 2.210 1.794

R0022 3.817 4.058 2.384 2.346 3.719 2.266 1.767 1.642 1.808 1.453

R0042 3.632 2.784 2.329 – 3.316 3.606 1.819 2.048 2.058 1.958

R2022 3.144 3.047 2.502 2.211 2.889 2.430 2.020 1.886 1.964 .

R2042 4.116 2.473 2.346 1.735 1.523 2.043 1.859 1.408 1.001 .

R0044 2.082 2.379 2.554 1.240 1.778 2.247 1.028 1.661 1.352 1.363

R2044 2.028 2.460 1.735 1.368 1.628 1.795 1.102 1.062 1.315 .

R4044 2.686 2.053 . 1.474 . 1.514 . . . .

R2222 3.599 2.213 2.479 1.552 1.446 2.237 1.602 2.131 1.496 .

R2242 2.551 2.000 1.994 1.604 2.034 1.863 1.562 1.173 0.744 .

R2262 2.098 1.591 1.842 1.523 1.512 . . 1.487 . .

R2244 1.724 1.540 1.381 1.143 1.114 1.824 0.987 0.670 0.623 .

R2264 1.529 1.657 1.688 1.092 1.141 . . 0.733 . .

R4244 1.936 1.694 . 0.976 . 1.218 . . . .

R4264 1.309 1.185 . 1.021 . . . . . .



REFERENCES

[1] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design – A Systems
Perspective. Kluwer Academic Publishers, 2001.

[2] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Reducing
Power in High-Performance Microprocessors,” in 35th Design Automation Conference
(DAC’98), June 1998, pp. 732–737.

[3] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and R. L. Allmon,
“High-Performance Microprocessor Design,” IEEE Journal of Solid-State Circuits,
vol. 33, no. 5, pp. 676–686, May 1998.

[4] K. Stevens, S. Rotem, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol, C. Dike, and
M. Roncken, “An Asynchronous Instruction Length Decoder,” IEEE Journal of Solid
State Circuits, vol. 36, no. 2, pp. 217–228, Feb. 2001.

[5] Synopsys Inc., Available at - http://www.synopsys.com.

[6] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asynchronous Design
Using Commercial HDL Synthesis Tools,” in 6th IEEE International Symposium on
Advanced Research in Asynchronous Circuits and Systems, Apr 2000, pp. 114–125.

[7] P. A. Beerel, G. D. Dimou, and A. M. Lines, “Proteus: An ASIC Flow for GHz
Asynchronous Designs,” IEEE Design & Test of Computers, vol. 28, no. 5, pp. 36–51,
2011.

[8] D. H. Linder and J. C. Harden, “Phased Logic: Supporting the Synchronous Design
Paradigm with Delay–Insensitive Circuitry,” Computers, IEEE Transactions on, vol. 45,
no. 9, pp. 1031–1044, Sep 1996.

[9] CHAINworks, Silistix, Available at - http://www.silistix.com/.

[10] J. Bainbridge and S. Furber, “Chain: A Delay-Insensitive Chip Area Interconnect,”
IEEE Micro, vol. 22, no. 5, pp. 16–23, 2002.

[11] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou,
“Handshake Protocols for De-synchronization,” in 10th IEEE International Symposium
on Asynchronous Circuits and Systems, Apr 2004, pp. 149–158.

[12] J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou, “From Syn-
chronous to Asynchronous: An Automatic Approach,” in Proceedings of the Confer-
ence on Design, Automation and Test in Europe, vol. 2. IEEE, 2004.

[13] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “A concurrent model for
de-synchronization,” in Proc. Intl. Workshop on Logic Synthesis, 2003, pp. 294–301.



202

[14] N. Andrikos, L. Lavagno, D. Pandini, and C. P. Sotiriou, “A Fully-Automated
Desynchronization Flow for Synchronous Circuits,” in ACM/IEEE Design Automation
Conference, June 2007, pp. 982–985.

[15] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “Desynchronization:
Synthesis of Asynchronous Circuits From Synchronous Specifications,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10,
pp. 1904–1921, Oct 2006.

[16] Y. Zhao, “Application of Synchronous Synthesis Tools for High-level Asynchronous
Design,” Master’s thesis, The University of Utah, 2004.

[17] C. J. Myers and T. H. Meng, “Synthesis of Timed Asynchronous Circuits,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 1, no. 2, pp. 106–119,
1993.

[18] A. Smirnov and A. Taubin, “Synthesizing Asynchronous Micropipelines with Design
Compiler,” SNUG 2006 (Synopsys Users Group Conference, Boston, MA, 2006) User
Papers, 2006, Available at - http://asynceda.com/publications/snug06.pdf.

[19] B. R. Quinton, M. R. Greenstreet, and S. J. Wilton, “Asynchronous IC Interconnect
Network Design and Implementation Using a Standard ASIC Flow,” in International
Conference on Compulter Design: VLSI in Computers and Processors. IEEE, Oct
2005, pp. 267–274.

[20] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative Timing,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 1, no. 11, pp. 129–140, feb 2003.

[21] S. B. Furber, J. D. Garside, and D. A. Gilbert, “AMULET3: A High-Performance
Self-Timed ARM Microprocessor,” in International Conference on Computer Design
(ICCD), 1998, pp. 247–252.

[22] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C. Paver, “AMULET2e:
An Asynchronous Embedded Controller,” Proceedings of the IEEE, vol. 87, no. 2, pp.
243–256, 1999.

[23] J. Woods, P. Day, S. Furber, J. Garside, N. Paver, and S. Temple, “AMULET1: An
Asynchronous ARM Microprocessor,” IEEE Transactions on Computers, pp. 385–398,
1997.

[24] S. Hauck, “Asynchronous Design Methodologies: An Overview,” Proceedings of the
IEEE, vol. 83, no. 1, pp. 69–93, 1995.

[25] A. Davis and S. M. Nowick, “An Introduction to Asynchronous Circuit Design,” The
University of Utah Technical Report, UUCS-97-013, 1997.

[26] C. J. Myers, Asynchronous Circuit Design. Wiley, 2004.

[27] S. H. Unger, Asynchronous Sequential Switching Circuit. Krieger Publishing Co., Inc.,
1983.



203

[28] A. J. Martin, “The Limitations to Delay-Insensitivity in Asynchronous Circuits,” in
Advanced Research in VLSI: Proceedings of the Sixth MIT Conference, W. Dally,
Editor. MIT Press, 1990, pp. 263–278.

[29] A. J. Martin, “Programming in VLSI: From Communicating Processes to Delay-
Insensitive Circuits,” in Developments in Concurrency and Communication, UT Year
of Programming Series, C.A.R. Hoare, Editor. Addison-Wesley, 1990, pp. 1–64.

[30] C. J. Myers, W. Belluomini, K. Killpack, E. Peskin, and H. Zheng, “Timed Circuits: A
New Paradigm for High-Speed Design,” in Proceedings of the 2001 Asia and South
Pacific Design Automation Conference. ACM, 2001, pp. 335–340.

[31] A. Taubin, J. Cortadella, L. Lavagno, A. Kondratyev, and A. Peeters, “Design
Automation of Real-Life Asynchronous Devices and Systems,” Foundations and
Trends in Electronic Design Automation, vol. 2, no. 1, pp. 1–133, 2007.

[32] I. E. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32, no. 6, pp.
720–738, 1989.

[33] G. Birtwistle and K. S. Stevens, “A Design Space and its Patterns: Modelling 2phase
Asynchronous Pipelines,” Howard Barringer Festschrift, 2013.

[34] J. You, “Design and Optimization of Asynchronous Network-on-chip,” Ph.D. disserta-
tion, The University of Utah, 2011.

[35] S. Nagasai, K. S. Stevens, and G. Birtwistle, “Concurrency Reduction of Untimed
Latch Protocols – Theory and Practice,” in 16th IEEE International Symposium on
Asynchronous Circuits and Systems, May 2010, pp. 26–37.

[36] S. N. Varanasi, “Performance Analysis of Four-Phase Untimed Asynchronous Hand-
shake Protocols,” Master’s thesis, The University of Utah, May 2009.

[37] A. M. G. Peeters, “Single-Rail Handshake Circuits,” Ph.D. dissertation, Eindhoven
University of Technology, 1996.

[38] S. M. Burns, “General Conditions for the Decomposition of State Holding Elements,”
in 2nd IEEE International Symposium on Advanced Research in Asynchronous Circuits
and Systems, March 1996, pp. 48–57.

[39] J. Cortadella, M. Kishinevsky, S. M. Burns, and K. Stevens, “Synthesis of Asynch-
ronous Control Circuits with Automatically Generated Relative Timing Assumptions,”
in Proc. International Conf. Computer-Aided Design (ICCAD), November 1999, pp.
324–331.

[40] Y. Xu and K. S. Stevens, “Automatic Synthesis of Computation Interference Constraints
for Relative Timing,” in 26th International Conference on Computer Design. IEEE,
Oct. 2009, pp. 16–22.

[41] K. S. Stevens, Y. Xu, and V. Vij, “Characterization of Asynchronous Templates for
Integration into Clocked CAD Flows,” in 15th IEEE International Symposium on
Asynchronous Circuits and Systems. IEEE, May 2009, pp. 151–161.



204

[42] H. Hulgaard, “Timing Analysis and Verification of Timed Asynchronous Circuits,”
Ph.D. dissertation, University of Washington, 1995.

[43] G. Gill and M. Singh, “Bottleneck Analysis and Alleviation in Pipelined Systems: A
Fast Hierarchical Approach,” in 15th IEEE International Symposium on Asynchronous
Circuits and Systems, 2009, pp. 195–205.

[44] E. Quist and P. Beerel, “Automated Path Specification for Static Timing Analysis
of Relative Timing Designs,” in International Workshop on Timing Issues in the
Specification and Synthesis of Digital Systems (TAU Workshop). ACM, March 2010.

[45] Mentor Graphics, Available at - http://www.mentor.com.

[46] Cadence Design Systems Inc., Available at - http://www.cadence.com.

[47] H. Han and K. S. Stevens, “Clocked and Asynchronous FIFO Characterization and
Comparison,” in 17th IFIP International Conference on Very Large Scale Integration
(VLSI-SoC). IEEE, 2009, pp. 101–108.

[48] V. Baireddy, H. Khasnis, and R. Mundhada, “A 64-4096 point FFT/IFFT/Windowing
Processor for MultiStandard ADSL/VDSL Applications,” in IEEE International
Symposium on Signals, Systems and Electronics, ISSSE’07, 2007, pp. 403–405.

[49] V. S. Vij and K. S. Stevens, “Automatic Addition of Reset in Asynchronous Sequential
Control Circuits,” in To be published in 21st IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC), 2013.

[50] W. S. Coates, A. L. Davis, and K. S. Stevens, “Automatic Synthesis of Fast Compact
Self-Timed Control Circuits,” in IFIP Working Conference on Design Methodologies,
April 1993, pp. 193–208.

[51] K. Y. Yun and D. L. Dill, “Automatic Synthesis of Extended Burst-Mode Circuits: Part
I (Specification and Hazard-Free Implementation),” IEEE Transactions on Computer-
Aided Design, vol. 18, no. 2, pp. 101–117, Feb 1999.

[52] K. Y. Yun and D. L. Dill, “Automatic Synthesis of Extended Burst-Mode Circuits: Part
II (Automatic Synthesis),” IEEE Transactions on Computer-Aided Design, vol. 18,
no. 2, pp. 118–132, Feb 1999.

[53] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, “Petrify:
A Tool for Manipulating Concurrent Specifications and Synthesis of Asynchronous
Controllers,” IEICE Transactions on Information and Systems, vol. E80-D, no. 3, pp.
315–325, 1997.

[54] R. M. Fuhrer and S. M. Nowick, Sequential Optimization of Asynchronous and
Synchronous Fininte State Machines: Algorithms and Tools. Kluwer Academic, 2001.

[55] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS Circuits.
Morgan Kaufmann, 1999.



205

[56] K. S. Stevens, S. V. Robison, and A. Davis, “The Post Office – Communication
Support for Distributed Ensemble Architectures,” in Proceedings of 6th International
Conference on Distributed Computing Systems, May 1986, pp. 160 – 166.

[57] K. S. Stevens and V. Vij, “Cycle cutting with timing path analysis,” Jan 2013, US
Patent 8,365,116.

[58] H. Hulgaard and S. M. Burns, “Bounded Delay Timing Analysis of a Class of CSP
Programs with Choice,” in 1st IEEE International Symposium on Advanced Research
in Asynchronous Circuits and Systems, November 1994, pp. 2–11.

[59] A. Smirnov, “Asynchronous Micropipeline Synthesis System,” Ph.D. dissertation,
Boston University, 2009.

[60] M. D. Riedel and J. Bruck, “The Synthesis of Cyclic Combinational Circuits,” in
Design Automation Conference. ACM/IEEE, 2003, pp. 163–168.

[61] S. Malik, “Analysis of Cyclic Combinational Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 7, pp. 950–956,
1994.

[62] S. A. Edwards, “Making Cyclic Circuits Acyclic,” in Proceedings of the 40th
Conference on Design Automation. ACM, 2003, pp. 159–162.

[63] O. Neiroukh, S. A. Edwards, and X. Song, “Transforming Cyclic Circuits Into Acyclic
Equivalents,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 10, pp. 1775–1787, 2008.

[64] T. R. Shiple, V. Singhal, R. K. Brayton, and A. L. Sangiouanni-Vincentelli, “Analysis
of Combinational Cycles in Sequential Circuits,” in IEEE International Symposium on
Circuits and Systems (ISCAS), vol. 4, 1996.

[65] V. V. Filippovich, “Transforming a Cyclic Directed Graph Into an Acyclic Graph,”
Cybernetics and Systems Analysis, vol. 9, no. 2, pp. 348–351, March 1973.

[66] A. M. Lines, “Pipelined Asynchronous Circuits,” Master’s thesis, California Institute
of Technology, Pasadena, CA, 1998.

[67] G. Birtwistle and K. S. Stevens, “The Family of 4-phase Latch Protocols,” in 14th
IEEE International Symposium on Asynchronous Circuits and Systems, April 2008, pp.
71–82.

[68] K. Y. Yun and D. L. Dill, “A High-Performance Asynchronous SCSI Controller,”
in IEEE International Conference on Computer Design: VLSI in Computers and
Processors. IEEE, 1995, pp. 44–49.

[69] S. Golson, “Resistance is Futile! Building Better Wireload Models,” in SNUG 1999
(Synopsys Users Group Conference, San Jose, CA, 2002) User Papers, 1999, Available
at - http://ns1.stevegolson.name/pdf/golson snug99.pdf.

[70] F. J. te Beest, “Full Scan Testing of Handshake Circuits,” Ph.D. dissertation, University
of Twente, 2003.



206

[71] M. Roncken, “Partial Scan Test for Asynchronous Circuits Illustrated on a DCC
Error Corrector,” in 1st IEEE International Symposium on Advanced Research in
Asynchronous Circuits and Systems. IEEE, 1994, pp. 247–256.

[72] P. J. Hazewindus, “Testing Delay-Insensitive Circuits,” Ph.D. dissertation, California
Institute of Technology, 1992.

[73] H. Han, “The Characterization and Evaluation of Clocked and Unclocked First-In-
First-Out,” Master’s thesis, The University of Utah, 2008.

[74] S. Das, V. Vij, and K. S. Stevens, “SAS: Source Asynchronous Signaling Protocol
for Asynchronous Handshake Communication Free From Wire Delay Overhead,” in
19th IEEE International Symposium on Asynchronous Circuits and Systems, 2013, pp.
107–114.

[75] V. S. Vij, R. P. Gudla, and K. S. Stevens, “Interfacing Synchronous and Asynchronous
Domains for Open Core Protocol,” in To be published in 27th International Conference
on VLSI Design (VLSI-Design), 2014.

[76] Open Core Protocol Specification Ver.3, Open Core Protocol, Available at -
http://www.ocpip.org/.

[77] R. P. Gudla, “Design and Implementation of Clocked Open Core Protocol Interfaces
for Intellectual Property Cores and On-chip Network Fabric,” Master’s thesis, The
University of Utah, 2011.

[78] C. E. Cummings, “Synthesis and Scripting Techniques for Designing Multi-
Asynchronous Clock Designs,” in SNUG 2001 (Synopsys Users Group Confer-
ence, San Jose, CA, 2001) User Papers, 2001, Available at - http://www.sunburst-
design.com/papers/CummingsSNUG2001SJ AsyncClk.pdf.

[79] C. E. Cummings, “Simulation and Synthesis Techniques for Asynchronous
FIFO Design,” in SNUG 2002 (Synopsys Users Group Conference, San
Jose, CA, 2002) User Papers, 2002, Available at - http://www.sunburst-
design.com/papers/CummingsSNUG2002SJ FIFO2.pdf.

[80] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of Synchronous Elastic
Architectures,” in Proceedings of the Digital Automation Conference (DAC06). IEEE,
July 2006, pp. 657–662.

[81] W. Lee, V. S. Vij, A. R. Thatcher, and K. S. Stevens, “Design of Low Energy, High
Performance Synchronous and Asynchronous 64-Point FFT,” in Proceedings of the
Conference on Design, Automation and Test in Europe, 2013, pp. 242–247.

[82] B. W. Suter and K. S. Stevens, “Low Power, High Performance FFT Design,” in
Proceedings of IMACS World Congress on Scientific Computation, Modeling, and
Applied Mathematics, no. 1, 1997, pp. 99–104.

[83] B. W. Suter, Multirate and Wavelet Signal Processing. Academic Press, 1997.

[84] R. Miller, Switching Theory. Wiley, 1965, vol. 1.



207

[85] X. Guan, Y. Fei, and H. Lin, “Hierarchical Design of an Application-Specific
Instruction Set Processor for High-Throughput and Scalable FFT Processing,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 3, pp.
551–563, March 2012.

[86] K.-S. Chong, B.-H. Gwee, and J. S. Chang, “Energy-Efficient Synchronous-Logic
and Asynchronous-Logic FFT/IFFT Processors,” IEEE Journal of Solid-State Circuits,
vol. 42, no. 9, pp. 2034–2045, 2007.

[87] B. M. Baas, “A Low-Power, High-Performance, 1024-Point FFT Processor,” IEEE
Journal of Solid-State Circuits, vol. 34, no. 3, pp. 380–387, 1999.

[88] A. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High-Performance Micropro-
cessor Circuits. Wiley-IEEE Press, 2000.


	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	Acknowledgements
	CHAPTERS
	=10000=10000=0Introduction
	-22pt
	Related Work
	Motivation
	Contributions of this Work
	Overview of this Dissertation

	=10000=10000=0Background
	-22pt
	Asynchronous Circuit Basics
	Asynchronous Circuit Classification
	2-Phase and 4-Phase Signaling Protocol
	2-Phase Protocol
	4-Phase Protocol

	Bundled Data Protocols
	Handshake Channel Type
	Data Validity in Bundled Data Protocols


	Relative Timing
	Synchronous CAD Tool Flow

	=10000=10000=0Asynchronous CAD tools and flows
	-22pt
	Key Contributions
	Background
	Clock Compatible Multifrequency IC Flow
	RT Element Design and Characterization
	Element Design
	Automatic Sequential RT Characterization

	Clocked Design Flow Using RT Sequentials
	Mapping RT Constraints Onto Design Instances
	Timing Closure
	Final RT Validation

	Results
	Summary

	=10000=10000=0Automatic Reset Addition based on Power/Performance Optimization
	-22pt
	Key Contributions
	Background
	Algorithm
	Generate Cycles to Reset when PI's are Defined
	Generate Paths to Reset when PIs are Undefined
	Gate Modifications for Reset Insertion
	Optimization Heuristics for Selecting the Best Solution
	Delta Logical Effort
	Relative Load on a Gate
	Performance or Power Optimization


	Examples
	Example 1
	Example 2

	Results
	Summary

	=10000=10000=0Timing Path Driven Cycle Cutting for Sequential Circuits
	-22pt
	Key Contributions
	Related Work
	Background
	Timing Constraint Paths
	Classification of Cycles
	Benefits of Correct Cycle Cutting
	Generality of Approach

	Rules for Timing Path Driven Cycle Cutting
	Gate Sizing
	Architectural Cycles are Cut
	Timing Arc Fidelity
	Specifying the Correct Causal Path
	Defining Causal Paths that are Not GCPs

	Algorithm
	Adjacency List Creation
	Finding All the Cycles Present in the Circuit
	Timing Constraint Paths with Noncausal Path Removal
	Generating Cycle Cuts
	Uncut Cycles

	Results
	Four-cycle Handshake Controllers
	Benchmark Circuits

	Summary

	=10000=10000=0Characterization of Family of 4-Phase Late Protocols
	-22pt
	Key Contributions
	Background
	Late Data Validity Protocols
	Concurrency Reduction on MAX with Cuts
	Concurrency Reduction from Right Cuts 
	Concurrency Reduction from Left Cuts 
	Untimed Protocol Family
	 and  Cut Lattices


	Results
	Hand-optimized Handshake Controller
	Summary

	=10000=10000=0Case Studies
	-22pt
	Key Contributions
	Toy Example
	Constraint Specification
	Delay Controllability in Pipelines with Variable Frequency of Operation
	Wireload Models and its Impact on RT Methodology
	Automatic Scan Insertion using Tetramax

	FIFO Design Automation for Template Characterization
	Linear FIFO
	Parallel FIFO
	Tree FIFO
	Square FIFO

	OCP-IP Case Study for Synchronous and Asynchronous Domain Interfacing
	Open Core Protocol (OCP) Background
	Designs
	Asynchronous OCP Implementation
	Domain Interface Designs
	The sync-sync Domain Interface FIFO
	The async-sync Domain Interface FIFO
	The sync-async Domain Interface FIFO

	Results

	Asynchronous 64-point FFT Example
	FFT Architecture
	FFT Design
	Asynchronous Design
	Synchronous Design

	Results
	Timing Closure Approaches for Asynchronous Circuits

	Summary

	=10000=10000=0Conclusions and Future Work
	-22pt
	Conclusions
	Future Work

	APPENDICES

	=10000=10000=0Results for Chapter 4
	-22pt
	=10000=10000=0Results for Chapter 5
	-22pt

	REFERENCES








