
Chapter 15

Integrating
Component-Based
Scientific Computing
Software

Steven G. Parker, Keming Zhang, Kostadin Damevski, and
Chris R. Johnson

In recent years, component technology has been a successful methodology for large-
scale commercial software development. Component technology combines a set of fre­
quently used functions in a component and makes the implementation transparent to users.
Software application developers typically connect a group of components from a component
repository, connecting them to create a single application.

SCIRun' is a scientific PSE that allows the interactive construction and steering of
large-scale scientific computations [20, 19, 21, 11, 23, 25, 10]. A scientific application is
constructed by connecting computational, modeling, and visualization elements [8]. This
application may contain several computational elements as well as several visualization
elements, all of which work together in orchestrating a solution to a scientific problem.
Geometric inputs and computational parameters may be changed interactively, and the
results of these changes provide immediate feedback to the investigator.

Problem solving environments, such as SCIRun, often employ component technology
to bring a variety of computational tools to an engineer or scientist for solving a computa­
tional problem. In this scenario, the tools should be readily available and simple to combine
to create an application. However, these PSEs typically use a single-component model (such
as Java Beans, Microsoft COM, CORBA, or CCA) or employ one of their own design. As
a result, components designed for one PSE cannot be easily reused in another PSE or in a
stand-alone program. Software developers must buy in to a particular component model and
produce components for one particular system. Users must typically select a single system
or face the challenges of manually managing the data transfer between multiple (usually)
incompatible systems.

' P r o n o u n c e d " s k i - r u n .” S C I R u n d e r iv e s its n a m e f r o m Ihe S c ie n ti f ic C o m p u t i n g a n d I m a g in g (S C I) Ins ti tu te
at the U n iv e rs i t y o f U tah .

271

I l l Chapter 15. Integrating Component-Based Scientific Computing Software

SCIRun2 [27], currently under development, addresses these shortcomings through
a meta-component model, allowing support for disparate component-based systems to be
incorporated into a single environment and managed through a common user-centric visual
interface.

In this chapter, section 15.1 discusses the SCIRun and BioPSE PSEs. Other scientific
computing component models are discussed in section 15.2. The remainder of the chapter
discusses the design of SCIRun2, including a discussion of meta-components, support for
distributed computing, and parallel components. We present conclusions and future work
in section 15.6.

15.1 SCIRun and BioPSE
SCIRun is a scientific PSE that allows the interactive construction and steering of large-
scale scientific computations [20, 19, 21, 11, 23]. A scientific application is constructed by
connecting computational elements (modules) to form a program (network), as shown in
Figure 15.1. The program may contain several computational elements as well as several
visualization elements, all of which work together in orchestrating a solution to a scientific

1

Figure 15.1. The SCIRun PSE, illustrating a 3D finite element simulation o f an
implantable cardiac defibrillator.

274 Chapter 15. Integrating Component-Based Scientific Computing Software

Figure 15.3. Visualization o f the iterative source localization. The voltages o f the
true solution (disks) and the computed solution (spheres) are qualitatively compared at the
electrode positions as the optimization (shown as arrows) converges on a neural source
location. The solution misfit can be qualitatively interpreted by pseudocolored voltages at
each electrode.

rendering modules, which provide interactive feedback to the user. The visualization that
accompanies this network is shown in Figure 15.3. The potentials that were measured at
the electrodes on the scalp are rendered as pseudocolored disks; the potentials originating
from the simulated dipole source are shown as pseudocolored spheres embedded within the
disks. The rainbow colors of the disks and spheres correspond to voltages, with red mapping
to positive potentials, blue mapping to negative potentials, and green mapping to ground.
The difference in the color of the sphere and the color of the disk at any particular electrode
indicates the misfit between the measured and simulated potentials at that site. The dipoles
that are iteratively approaching the true dipole location are shown as gray and blue arrows,
and the outside of the head model has been rendered with wire-frame cylinders.

PowerApps

Historically, one of the major hurdles to SCIRun becoming a tool for the scientist as well as
the engineer has been SCIRun’s dataflow interface. While visual programming is natural
for computer scientists and engineers, who are accustomed to writing software and building
algorithmic pipelines, it can be overly cumbersome for many application scientists. Even
when a dataflow network implements a specific application (such as the forward bioelectric
field simulation network provided with BioPSE and detailed in the BioPSE tutorial), the user
interface (UI) components of the network are presented to the user in separate UI windows,
without any semantic context for their settings. For example, SCIRun provides file browser
user interfaces for reading in data. However, on the dataflow network all the file browsers

Steven G. Parker et al. 275

have the same generic presentation. Historically, there has not been a way to present the
filename entries in their semantic context, for example, to indicate that one entry should
identify the electrodes input file and another should identify the finite element mesh file.

A recent release of BioPSE/SCIRun (in October 2003) addressed this shortcoming
by introducing PowerApps. A PowerApp is a customized interface built atop a data flow
application network. The data flow network controls the execution and synchronization
of the modules that comprise the application, but the generic user interface windows are
replaced with entries that are placed in the context of a single application-specific interface
window.

BioPSE contains a PowerApp cal led BioFEM. BioFEM has been built atop the forward
finite element network and provides a useful example for demonstrating the differences
between the dataflow and PowerApp views of the same functionality. In Figure 15.4, the
dataflow version of the application is shown: the user has separate interface windows for
controlling different aspects of the simulation and visualization. In contrast, the PowerApp
version is shown in Figure 15.5: here, the application has been wrapped up into a single

Figure 15.4. BioPSE dataflow interface to a forward bioelectric field application.
The underlying dataflow network implements the application with modular interconnected
components called modules. Data are passed between the modules as input and output
parameters to the algorithms. While this is a useful interface fo r prototyping, it can be
nonintuitive fo r end users; it is confusing to have a separate user interface window to
control the settings fo r each module. Moreover, the entries in the user interface windows
fa il to provide semantic context fo r their settings. For example, the text-entry field on the
SampleField user interface that is labeled “Maximum number o f samples" is controlling
the number o f electric field streamlines that are produced fo r the visualization.

Chapter 15. ntegrating Component-Based Scientific Computing Software

Figure 15.5. The BioFEM custom interface. Although the application is the
functionality equivalent to the data flow version shown in Figure 15.4, this PowerApp
version provides an easier-to-use custom interface. Everything is contained within a single
window. The user is lead through the steps o f loading and visualizing the data with the
tabs on the right; generic control settings have been replaced with contextually appropriate
labels, and application-specific tooltips (not shown) appear when the user places the cursor
over any user interface element.

interface window, with logically arranged and semantically labeled user interface elements
composed within panels and notetabs.

In addition to bioelectric field problems, the BioPSE system can also be used to inves­
tigate other biomedical applications. For example, we have wrapped the tensor and raster
data processing functionality of the Teem toolkit into the Teem package of BioPSE, and
we have used that increased functionality to develop the BioTensor PowerApp, as seen in
Figure 15.6. BioTensor presents a customized interface to a 140-module data flow network.
With BioTensor the user can visualize diffusion weighted imaging (DWI) datasets to inves­
tigate the anisotropic structure of biological tissues. The application supports the import
of DICOM and Analyze datasets and implements the latest diffusion tensor visualization
techniques, including superquadric glyphs [13] and tensorlines [26] (both shown).

15.2 Components for scientific computing
A number of component models have been developed for a wide range of software applica­
tions. Java Beans[9], a component model from Sun, is a platform-neutral architecture for
the Java application environment. However, it requires a Java Virtual Machine as the inter­
mediate platform and the components must be written in Java. Microsoft has developed the
Component Object Model (COM)[l7], a software architecture that allows applications to

Steven C . Parker et al. 277

Figure 15.6. The BioTensor PowerApp. Just as with BioFEM, we have wrapped
up a complicated data flow network into a custom application. In the left panel, the user is
guided through the stages o f loading the data, coregistering MR1 diffusion weighted images,
and constructing diffusion tensors. On the right panel, the user has controls fo r setting the
visualization options. In the rendering window in the middle, the user can render and
interact with the dataset.

be built from binary software components on the Windows platform. The Object Manage­
ment Group (OMG) developed the common object request broker architecture (CORBA)
[18], which is an open, vendor-independent architecture and infrastructure that computer
applications can use to work together in a distributed environment.

Many problem solving environments, such as SCIRun, employ these component mod­
els or one of their own. As an example, SCIRun provides a dataflow-based component
model. The CCA forum, a group of researchers from several DoE national laboratories and
academic institutions, has defined a standard component architecture [I] for high perfor­
mance parallel computing. The CCA forum has defined a minimal set of standard inter­
faces that a high-performance component framework should provide to implement high-
performance components. This standard promotes interoperability between components
developed by different teams across different institutions. However, CCA has not yet fully
addressed the architecture of parallel components combined with distributed computation.

CCA is discussed in more detail in Chapter 14, but we present an overview here. The
CCA model consists of a framework and an expandable set of components. The framework
is a workbench for building, connecting, and running the components. A component is the
basic unit of an application. A CCA component consists of one or more ports, and a port is a
group of method-call-based interfaces. There are two types of ports: uses port and provides
ports. A provides port (or callee) implements its interfaces and waits for other ports to call
them. A uses port (or caller) issues method calls that can be fulfilled by a type-compatible
provides port on a different component.

278 Chapter 15. Integrating Component-Based Scientific Computing Software

A CCA port is represented by an interface, while interfaces are specified through a
SIDL. A compiler is usually used to compile a SIDL interface description file into specific
language bindings. Generally, component language binding can be provided for many
different languages, such as C/C++, Java, Fortran, or Python. The Babel [14] compiler
group is working on creating this support for different languages within CCA.

SCIRun2 is a new software framework that combines CCA compatibility with con­
nections to other commercial and academic component models. SCIRun2 is based on the
SCIRun [12] infrastructure and the CCA specification. It utilizes parallel-to-parallel re­
mote method invocation to conncct components in a distributed memory environment and
is multithreaded to facilitate shared memory programming. It also has an optional visual-
programming interface.

Although SCIRun2 is designed to be fully compatible with CCA. It aims to combine
CCA compatibility with the strength of other component models. A few of the design goals
of SCIRun2 arc as follows: '

1. SCIRun2 is fully CCA compatible; thus any CCA components can be used in SCIRun2
and CCA components developed from SCIRun2 can also be used in other CCA frame­
works.

2. SCIRun2 accommodates several useful component models. In addition to CCA com­
ponents and SCIRun dataflow modules, CORBA components, Microsoft COM com­
ponents, ITK, and Vtk[24] modules will be supported in SCIRun2.

3. SCIRun2 builds bridges between different component models, so that wc can com­
bine a disparate array of computational tools to create powerful applications with
cooperative components from different sources.

4. SCIRun2 supports distributed computing. Components created on different comput­
ers can work together through a network and build high performance applications.

5. SCIRun2 supports parallel components in a variety of ways for maximum flexibility.
This is not constrained to only CCA components, because SCIRun2 employees a M
process to N process method invocation and data redistribution (MxN) library [3]
that potentially can be used by many component models.

Overall, SCIRun2 provides a broad approach that will allow scientists to combine a
variety of tools for solving a particular computational problem. The overarching design
goal of SCIRun2 is to provide the ability for a computational scientist to use the right tool
for the right job, a goal motivated by the needs of our biomedical and other scientific users.

15.3 Metacomponent model
Systems such as Java Beans, COM, CORBA, CCA, and others successfully employ a
component-based architecture to allow users to rapidly assembly computational tools in a
single environment. However, these systems typically do not interact with one another in
a straightforward manner, and it is difficult to take components developed for one system
and redeploy them in another. Software developers must buy in to a particular model and

Steven G. Parker et al. 279

d .I BCSE ~ ~ ^

Figure 15.7. Components o f different models cooperate in SCIRun2.

produce components for one particular system. Users must typically select a single system
or face the challenges of manually managing the data transfer between multiple (usually) in­
compatible systems. SCIRun2 addresses these shortcomings through the meta-component
model, allowing support for disparate component-based systems to be incorporated into
a single environment and managed through a common user-centric visual interface. Fur­
thermore, many systems that are not traditionally thought of as component models but that
have well-designed, regular structures can be mapped to a component model and manipu­
lated dynamically. SCIRun2 combines support for CCA components, “old-style” SCIRun
data flow components, and we are planning support for CORBA, COM, and VTK. As a
result, SCIRun2 can utilize SCIRun components, CCA components, and other software
components in the same simulation.

The meta component model operates by providing a plug-in architecture for compo­
nent models. Abstract components are manipulated and managed by the SCIRun2 frame­
work, while concrete component models perform the actual work. This facility allows
components implemented with disparate component models to be orchestrated together.

Figure 15.7 demonstrates a simple example of how SCIRun2 handles different com­
ponent models. Two CCA components, Driver and Integrator, and one CORBA component,
Function, are created in the SCIRun2 framework. In this simple example, the driver is con­
nected to both the function and the integrator. Inside SCIRun2, two frameworks are hidden:
the CCA framework and the CORBA object request broker (ORB). The CCA framework
creates the CCA components, driver and integrator. The CORBA framework creates the
CORBA component, function. The two CCA components can be connected in a straight­
forward manner through the CCA component model. However, the components driver and
function cannot be connected directly, because neither CCA nor CORBA allows a connec­
tion from a component of a different model. Instead, a bridge component is created. Bridges
belong to a special internal component model that is used to build a connection between
components of different component models. In this example, a bridge has two ports: one
CCA port and one CORBA port. In this way it can be connected to both CCA component
and CORBA component. The CORBA invocation is converted to request to the CCA port
inside the bridge component.

280 Chapter 15. Integrating Component-Based Scientific Computing Software

Bridge components can be manually or automatically generated. In situations in which
interfaces are easily mapped between one interface and another, automatically generated
bridges can facilitate interoperability in a straightforward way. More complex component
interactions may require manually generated bridge components. Bridge components may
implement heavy-weight transformations between component models and therefore have the
potential to introduce performance bottlenecks. For the few scenarios that require maximum
performance, reimplementation of both components in a common, performance-oriented
component model may be required. However, for rapid prototyping, or for components that
are not performance critical, this is completely acceptable.

To automatically generate a bridge component that translates a given pair of com­
ponents, a generalized translation must be completed between the component models. A
software engineer designs how two particular component models will interact. This task
can require creating methods of data and control translation between the two models and
can be quite difficult in some scenarios. The software engineer expresses the translation
into a compiler plugin, which is used as a specification of the translation process. A plugin
abstractly represents the entire translation between the two component models. It is speci­
fied by an eRuby (embedded Ruby) template document. eRuby templates arc text files that
can be augmented by Ruby [15] scripts. The Ruby scripts are useful for situations where
the translation requires more sophistication than regular text (such as control structures or
additional parsing). This provides us with better flexibility and more power inside the plu­
gin, with the end goal of being able to support the translation of a wider range of component
models.

The only other source of information is the interface of the ports we want to bridge
(usually expressed in an IDL file). The bridge compiler accepts commands that specify a
mapping between incompatible interfaces, where the interfaces between the components
differ in various names or types but not functionality. Using a combination of the plugin
and the interface augmented with mapping commands, the compiler is able to generate the
specific bridge component. This component is automatically connected and ready to broker
the translation between the two components of different models.

Figure 15.8 shows a more complex example that is motivated by the needs of a bio­
logical application. This example works very much like the last: the framework manages
components from several different component models through the meta-model interface.
Components from the same model interact with each other natively and interact with com­
ponents in other models through bridges. Allowing components to communicate with each
other through their native mechanisms ensures that no performance bottlenecks are intro­
duced and that the original semantics are preserved.

15.4 Distributed computing
SCIRun2 provides support for distributed objects based on remote method invocation (RMI).
This support is utilized in the core of the SCIRun framework in addition to distributed
components. This section describes the design of the distributed object subsystem.

A distributed object is a set of interfaces defined by SIDL that can be referenced over
network. The distributed object is similar to the C++ object, it utilizes similar inheritance
rules, and all objects share the same code. However, only methods (interfaces) can be

Steven G. Parker et al. 281

(^Mechanics Simulation) Cell Chemistry^)

r 1 (iteartion/DitfusionN

-Li Vmc 1
I Bridge Bridge i— i /"

____1 _ I Finite Volume
J J Y l T l - , , : f ' “ J I Sohrer

'A
Slice '

^ plane y

Visualization/SCIRurt

Figure 15.8. A more intricate example o f how components o f different models
cooperate in SCIRun2. The application and components shown are from a realistic (albeit
incomplete) scenario.

referenced, and the interfaces must be defined in SIDL. Using the SIDL language, we
implemented a straightforward distributed object system. We extend the SIDL language
and build upon this system for implementing parallel to parallel component connections, as
discussed in the next section.

A distributed object is implemented by a concrete C++ class and referenced by a proxy
class. The proxy class is a machine-generated class that associates the user-made method
calls to a call by the concrete object. The proxy classes are described in a SIDL file, and
a compiler compiles the SIDL file and creates the proxy classes. The proxy classes define
the abstract classes with a set of pure virtual functions. The concrete classes extends those
abstract proxy classes and implement each virtual functions.

There are two types of object proxies: server proxy and client proxy. The server proxy
(or skeleton) is the object proxy created in the same memory address space as the concrete
object. When the concrete object is created, the server proxy starts and works as a server,
waiting for any local or remote methods invocations. The client proxy (or stub) is the proxy
created on a different memory address space. When a method is called through the client
proxy, the client proxy will package the calling arguments into a single message, send the
message to the server proxy, and then wait for the server proxy to invoke the methods and
return the result and argument changes.

We created Data Transmitter, a separate layer, that is used by the generated proxy
code for handling messaging. We also employ the concept of a data transmission point
(DTP), which is similar to the start point and end points used in Nexus [7]. A DTP is a data
structure that contains a object pointer pointing to the context of a concrete class. Each
memory address space has only one Data Transmitter, and each Data Transmitter uses three

282 Chapter 15. Integrating Component-Based Scientific Computing Software

communication ports (sockets): one listening port, one receiving port, and one sending port.
All the DTPs in the same address space share the same Data Transmitter. A Data Transmitter
is identified by its universal resource identifier (URI): IP address + listening port. A DTP
is identified by its memory address together with the Data Transmitter URI, because DTP
addresses are unique in the same memory address space. Optionally, we could use other
type of object identifiers.

The proxy objects package method calls into messages by marshaling objects and then
waiting for a reply. Nonpointer arguments, such as integers, fixed sized arrays and strings
(character arrays), are marshaled by the proxy into a message in the order in which they
arc presented in the method. After the server proxy receives the message, it unmarshals
the arguments in the same order. A array size is marshaled in the beginning of an array
argument, so the proxy knows how to allocate memory for the array. SIDL supports a
special opaque data type that can be used to marshal pointers if the two objects are in the
same address space. Distributed object references are marshaled by packaging the DTP
URI (Data Transmitter URI and object ID). The DTP URI is actually marshaled as a string,
and when it is unmarshaled, a new proxy of the appropriate type is created based on the
DTP URI.

C++ exceptions are handled as special distributed objects. In a remote method in­
vocation, the server proxy tries to catch an exception (also a distributed object) before it
returns. If it catches one, the exception pointer is marshaled to the returned message. Upon
rccciving the message, the client proxy unmarshals the message and obtains the exception.
The exception is then rethrown by the proxy.

15.5 Parallel components
This section introduces the CCA parallel component design and discusses issues of the
implementation. Our design goal is to make the parallelism transparent to the component
users. In most cases, the component users can use a parallel component as the way they use
sequential component without knowing that a component is actually parallel component.

Parallel CCA Component (PCom) is a set of similar components that run in a set of
processes respectively. When the number of process is one, the PCom is equivalent to a
sequential component. We call each component in a PCom a member component. Member
components typically communicate internally with MPI [16] or an equivalent message-
passing library.

PComs communicate with each other through CCA-style RMI ports. We developed
a prototype parallel component infrastructure [5, 2] that facilitates connection of parallel
components in a distributed environment. This model supports two types of methods calls:
independent and collective, and as such our port model supports both independent and
collective ports.

An independent port is created by a single component member, and it contains only
independent interfaces. A collective port is created and owned by all component members
in a PCom, and one or more of its methods are collective. Collective methods require that
all member components participate in the collective calls in the same order.

Steven G. Parker et al. 283

As an example of how paral lel components interact, let pA be a uses port of component
A and pB be a provides port of component B. Both pA and pB have the same port type,
which defines the interface. If pB is a collective port and has the interface

c o l l e c t i v e i n t f o o (i n o u t i n t a r g) ;

then gelPort(“pA”) returns a collective pointer that points to the collective port pB. If pB is
an independent port, getPort(“pA”) returns a pointer that points to an independent port.

Component A can have one or more members, so cach member might obtain a (col­
lective/independent) pointer to a provides port. The component developer can decide what
subset (one, many, or all components) participate in a method call foo(arg). When any
member component register a uses port, all other members can share the same uses port.
But for a collective provides port, each member must call addProvidesPort to register each
member port.

The MxN library takes care of the collective method invocation and data distribution.
We repeat only the essentials here; see [3] for details. If an M-member PCom A obtains a
pointer ptr pointing to an N-member PCom’s B collective port pB, then p tr^foo(args) is a
collcctivc method invocation. The MxN library index PCom members with rank 0, 1 ,
M -l for A and 0, 1_____N-l for B. If M = N , then the z'th member component of A call
foo(args) on the ith component of B. But if M < N, then we “extend” the A’s to 0, 1, 2, . . . ,
M, 0, 1, 2, . . . M, . . . N -l and they call foo(args) on each member component of B like the
M = N case, but only the first M calls request returns. The left panel of Figure 15.9 shows
an example of this case with M = 3 and N = 5. If M > N, we extend component B ’s set to
0, 1, . . . , N, 0, 1 , . . . , N , . . . , M -1 and only the first N member components of B are actually
called; the rest are not called but simply return the result. We rely on collective semantics

M < N M > N

Figure 15.9. M x N method invocation, with the caller on the left and the callee
on the right. In the left scenario, the number o f callers is few er than the number o f callee s,
so some callers make multiple method calls. In the right, the number o f callees is fewer, so
some callees send multiple return values.

284 Chapter 15. Integrating Component-Based Scientific Computing Software

from the components to ensure consistency without requiring global synchronization. The
right panel of Figure 15.9 shows an example of this case with M = 5 and N = 3.

The MxN library also docs most of the work for the data redistribution. A multidi­
mensional array can be defined as a distributed array that associates a distribution scheduler
with the real data. Both callers and callees define the distribution schedule before the remote
method invocation, using a first-stride-last representation for each dimension of the array.
The SIDL compiler creates the scheduler and scheduling is done in the background.

With independent ports and collective ports, we cover the two extremes. Ports that
require communication among a subset of the member components present a greater chal­
lenge. Instead, we utilize a subsetting capability in the MxN system to produce ports that
are associated with a subset of the member components and then utilize them as collective
ports.

SCIRun2 provides the mechanism to start a parallel component on either shared mem­
ory multiprocessors computers or clusters. SCIRun2 consists of a main framework and a set
of parallel component loaders (PCLs). A PCL can be started with ssh on a cluster, where it
gathers and reports its local component repository and registers to the main framework. The
PCL on an N-node cluster is essentially a set of loaders, each running on a node. When the
user requests to create a parallel component, the PCL instantiates a parallel component on
its processes (or nodes) and passes a distributed pointer to the SCIRun2 framework. PCLs
are responsible for creating and destroying components running on their nodes, but they
do not maintain the port connections. The SCIRun2 framework maintains all component
status and port connections.

Supporting threads and MPI together can be difficult. MPI provides a convenient
communication among the processes in a cluster. However, if any process has more than
one thread and the MPI calls are made in those threads, the MPI communication may
break because MPIs distinguish only processes, not threads. The MPI interface allows an
implementation to support threads but does not require it. Most MPI implementations are not
threadsafe. We provide support for both threadsafe and nonthreadsafe MPI implementations
so that users can choose any available MPI.

A straightforward way to support nonthreadsafe MPIs is to globally order the MPI
calls such that no two MPI calls are executed at the same time. We implemented a distributed
lock, which has two interfaces:

P R M I : : l o c k ()

P R M I : : u n l o c k ()

The distributed lock is just like a mutex, but it is collective with respect to all MPI
processes in a cluster. The critical section between PRMI::lock() and PRMI::unlock() can
be obtained by only one set of threads in different MPI processes. The users must call
PRMI::lock() before any MPI calls and call PRMI::unlock() after to release the lock. More
than one MPI calls can be made in the critical section. In this way only one set of threads
(each from a MPI process) can make MPI calls at one time. Additionally, the overhead
of acquiring and releasing this lock is very high because it requires a global synchroniza­
tion. However, in some cases this approach is necessary for supporting the multi-threaded
software framework in an environment where a thread-safe MPI is no available.

It is fairly easier to support threadsafe MPI. Our approach is to create a distinct MPI
communicator for the threads that communicate with each other and restrict that those

Steven G. Parker et al. 285

Figure 15.10. Components o f different models cooperate in SClRunl.

threads can use only that communicator for MPI communication. The special communi­
cators are created by the PCL and can be obtained through a framework service interface.
The threadsafe MPI allows multiple MPI calls executed safely at the same time, and the
designated communicators help to identify the group of threads which initiated the MPI
calls.

An efficient mechanism allows parallel components to efficient coordinate around
error conditions [4].

Figure 15.10 shows a SCIRun2 application that uses bridging to Vtk visualization
components. SCIRun2 is currently under development, but we expect a public release in
the near future.

15.6 Conclusions and future work
We presented the SCIRun, BioPSE, and SCIRun2 problem solving environments for sci­
entific computing. These systems all employ software components to encapsulate com­
putational functionality into a reusable unit. SCIRun and BioPSE are open source, have
biannual public releases, and are used by a number of end users for a variety of different
computational applications.

Additionally, we presented an overview of the new SCIRun2 component framework.
SCIRun2 integrates multiple component models into a single visual problem solving envi­
ronment and builds bridges between components of different component models. In this
way, a number of tools can be combined into a single environment without requiring global
adoption of a common underlying component model. We have also described a paral­
lel component architecture utilizing the common component architecture, combined with
distributed objects and parallel MxN array redistribution that can be used in SCIRun2.

286 Chapter 15. Integrating Component-Based Scientific Computing Software

A prototype of the SCIRun2 framework has been developed, and we are using this
framework for a number of applications in order to demonstrate the SCIRun2 features.
Future applications will rely more on the system and will facilitate joining many powerful
tools, such as the SCI Institutes’ interactive ray-tracing system [22] and the Uintah [61
parallel, multiphysics system. Additional large-scale computational applications are under
construction and are beginning to take advantage of the capabilities of SClRun2. Support
for additional component models, such as Vtk, CORBA, and possibly others, will be added
in the future.

Acknowledgments
The authors gratefully acknowledge support from NIH NCRR, NSF, and the DoE ASCI and
SciDAC programs. The authors would also like to acknowledge contributions from David
Weinstein. SCIRun and BioPSE are available as open source at www.sci.utah.edu.

Bibliography
[1] R. A r m s t r o n g , D. G a n n o n , A . G e ist , K. K e a h e y , S. K o h n , L. M cIn n e s , S . P a r k e r ,

a n d B . S m o l in s k i , Toward a Common Component Architecture fo r High-Performance
Scientific Computing, in Proceedings of the 8th IEEE International Symposium on
High Performance Distributed Computing, 1999.

[2] F. B e r t r a n d , R. B r a m l e y , K . D a m e v sk i, D . B e r n h o l d t , J. Ko h l , J. L a r s o n , a n d
A . S u s s m a n , Data redistribution and remote method invocation in parallel compo­
nent architectures, in Proceedings of The 19th International Parallel and Distributed
Processing Symposium, Denver, CO, 2005.

[3] K. D a m e v sk i a n d S. P a r k e r , Parallel remote method invocation and m-by-n data
redistribution, in Proceedings of the 4th Los Alamos Computer Science institute Sym­
posium, Los Alamos, NM, 2003.

14] K. D a m ev sk i a n d S. P a r k e r , Imprecise exceptions in distributed parallel components,
in Proceedings of the 10th International Euro-Par Conference, vol. 3149 of Lecture
Notes in Computer Science, August/September 2004, Springer-Verlag, Berlin, New
York, pp. 108-116.

[5] K. D a m e v sk i, Parallel component interaction with an interface definition language
compiler. M aster’s thesis. University of Utah, Salt Lake City, UT, 2003.

[6] J. D. d e St. G f.r m a in , J. M cC o r q u o d a i .f., S. G. P a r k e r , a n d C. R. Jo h n s o n , Uintah:
A Massively Parallel Problem Solving Environment, in Proceedings of the Ninth IEEE
International Symposium on High Performance and Distributed Computing, August
2000 .

[7] I. F o s t e r , C. K e s s e l m a n , a n d S. Tu e c k e , The Nexus approach to integrating mul­
tithreading and communication, Journal of Parallel and Distributed Computing, 37
(1996), pp. 70-82.

http://www.sci.utah.edu

Steven C . Parker et al. 287

[8] C. H a n s e n a n d C. Jo h n s o n , e d s ., The Visualization Handbook, Elsevier, Amsterdam,
2005.

[9] JavaB e a n s , h t t p : / / j a v a . s u n . c o m / p r o d u c t s / j a v a b e a n s , 2003 .

[10] C. Jo h n s o n , R. M a c L e o d , S. P a r k e r , a n d D. W e i n s t e i n , Biomedical computing
and visualization software environments, Communications of the ACM, 47 (2004),
pp. 64-71.

[11] C. Jo h n s o n a n d S. P a r k e r , Applications in computational medicine using SCIRun: A
computational steering programming environment, in Supercomputer ‘95, H. Meucr,
ed., Springer-Verlag, Berlin, New York, 1995, pp. 2-19.

[12] C. Jo h n s o n a n d S. P a r k e r , The SCIRun Parallel Scientific Compouting Problem
Solving Enviroment, in Talk presented at the 9th SIAM Conference on Parallel Pro­
cessing for Scientific Computing, 1999.

[13] G. K i n d l m a n n , Superquadric tensor glyphs, in The Joint Eurographics - IEEE TCVG
Symposium on Visualization, May 2004, pp. 147-154.

[14] S. K o h n , G. K u m f e r t , J. P a i n t e r , a n d C. R i b b e n s , Divorcing language dependen­
cies from a scientific software library, in Proceedings of the 10th SIAM Conference
on Parallel Processing, Portsmouth, VA, March 2001, CD-ROM.

[15] T. R. L a n g u a g e , h t t p : / / w w w . r u b y - l a n g . o r g / e n , 2004.

[16] M essag e P a s s i n g In t e r f a c e Fo r u m , MPI: A Message-Passing Interface Standard,
June 1995.

[17] C. O. M o d e l , h t t p : / / w w w . m i c r o s o f t . c o m / c o m / t e c h / c o m . a s p , 200 3 .

[18] OMG, The Common Object Request Broker: Architecture and Specification. Revi­
sion 2.0, June 1995. h t t p : / / www . m p i - f o r u m , o r g / d o c s / m p i - 1 1 - h t m l /
m p i - r e p o r t . h t m l .

[19] S. G. P a r k e r , The SCIRun Problem Solving Environment and Computational Steering
Software System, P h.D . thesis, University of Utah, Salt Lake City, UT, 1999.

[20] S. Pa r k e r , D. B e a z l e y , a n d C. Jo h n s o n , Computational steering software systems
and strategies, IEEE Computational Science and Engineering, 4 (1997), pp. 50-59.

12 11 S. Pa rk er a n d C. Jo h n s o n , SCIRun: A scientific programming environment fo r
computational steering, in Supercomputing ‘95, IEEE Press, Los Alamitos, CA, 1995.

[22] S. P a r k e r , M. P a r k e r , Y. L i v n a t , P. S l o a n , a n d P. S h i r l e y , Interactive ray tracing
for volume visualization, IEEE Transactions on Visualization and Computer Graphics,
5 (1999). . .

[23] S. P a r k e r , D. W e i n s t e i n , a n d C. Jo h n s o n , The SCIRun computational steering soft­
ware system, in Modern Software Tools in Scientific Computing, E. Arge, A. Bruaset,
and H. Langtangen, eds., Birkhauser Press, Basel, 1997, pp. 1—44.

288 Chapter 15. Integrating Component-Based Scientific Computing Software

[24] W. S c h r o e d e r , K. M a r t in , a n d B. L o r e n s e n , The Visualization Toolkit, An Object-
Oriented Approach to 3-D Graphics, 2nd cd., Prentice Hall, Upper Saddle River, NJ,
2003.

[25] D. W e in s t e in , S . P a r k e r , J. S im p s o n , K. Z im m e r m a n , a n d G. Jo n e s ., Visualization
in the scirunproblem-solving environment, in The Visualization Handbook, C. Hansen
and C. Johnson, eds., Elsevier, Amsterdam, 2005, pp. 615-632.

[26] D. W e in s t e in , O. P o t n ia g u in e , a n d L. Z h u k o v , A comparison o f dipolar and
focused inversion fo r EEG source imaging, in Proc. 3rd International Symposium
on Noninvasive Functional Source Imaging (NFSI), Innsbruck, Austria, September
2001, pp. 121-123.

[27] K. Z h a n g , K. D a m e v sk i , V. Ve n k a t a c h a l a p a t h y , a n d S. Pa r k e r , SClRun2: A
CCA framework fo r high performance computing, in Proceedings of The 9th Interna­
tional Workshop on High-Level Parallel Programming Models and Supportive Envi­
ronments, April 2004, Santa Fe, NM.

