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In recent years, component technology has been a successful methodology for large- 
scale commercial software development. Component technology combines a set of fre­
quently used functions in a component and makes the implementation transparent to users. 
Software application developers typically connect a group of components from a component 
repository, connecting them to create a single application.

SCIRun' is a scientific PSE that allows the interactive construction and steering of 
large-scale scientific computations [20, 19, 21, 11, 23, 25, 10]. A scientific application is 
constructed by connecting computational, modeling, and visualization elements [8]. This 
application may contain several computational elements as well as several visualization 
elements, all of which work together in orchestrating a solution to a scientific problem. 
Geometric inputs and computational parameters may be changed interactively, and the 
results of these changes provide immediate feedback to the investigator.

Problem solving environments, such as SCIRun, often employ component technology 
to bring a variety of computational tools to an engineer or scientist for solving a computa­
tional problem. In this scenario, the tools should be readily available and simple to combine 
to create an application. However, these PSEs typically use a single-component model (such 
as Java Beans, Microsoft COM, CORBA, or CCA) or employ one of their own design. As 
a result, components designed for one PSE cannot be easily reused in another PSE or in a 
stand-alone program. Software developers must buy in to a particular component model and 
produce components for one particular system. Users must typically select a single system 
or face the challenges of manually managing the data transfer between multiple (usually) 
incompatible systems.
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SCIRun2 [27], currently under development, addresses these shortcomings through 
a meta-component model, allowing support for disparate component-based systems to be 
incorporated into a single environment and managed through a common user-centric visual 
interface.

In this chapter, section 15.1 discusses the SCIRun and BioPSE PSEs. Other scientific 
computing component models are discussed in section 15.2. The remainder of the chapter 
discusses the design of SCIRun2, including a discussion of meta-components, support for 
distributed computing, and parallel components. We present conclusions and future work 
in section 15.6.

15.1 SCIRun and BioPSE
SCIRun is a scientific PSE that allows the interactive construction and steering of large- 
scale scientific computations [20, 19, 21, 11, 23]. A scientific application is constructed by 
connecting computational elements (modules) to form a program (network), as shown in 
Figure 15.1. The program may contain several computational elements as well as several 
visualization elements, all of which work together in orchestrating a solution to a scientific

1

Figure 15.1. The SCIRun PSE, illustrating a 3D finite element simulation o f an 
implantable cardiac defibrillator.
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Figure 15.3. Visualization o f the iterative source localization. The voltages o f the 
true solution (disks) and the computed solution (spheres) are qualitatively compared at the 
electrode positions as the optimization (shown as arrows) converges on a neural source 
location. The solution misfit can be qualitatively interpreted by pseudocolored voltages at 
each electrode.

rendering modules, which provide interactive feedback to the user. The visualization that 
accompanies this network is shown in Figure 15.3. The potentials that were measured at 
the electrodes on the scalp are rendered as pseudocolored disks; the potentials originating 
from the simulated dipole source are shown as pseudocolored spheres embedded within the 
disks. The rainbow colors of the disks and spheres correspond to voltages, with red mapping 
to positive potentials, blue mapping to negative potentials, and green mapping to ground. 
The difference in the color of the sphere and the color of the disk at any particular electrode 
indicates the misfit between the measured and simulated potentials at that site. The dipoles 
that are iteratively approaching the true dipole location are shown as gray and blue arrows, 
and the outside of the head model has been rendered with wire-frame cylinders.

PowerApps

Historically, one of the major hurdles to SCIRun becoming a tool for the scientist as well as 
the engineer has been SCIRun’s dataflow interface. While visual programming is natural 
for computer scientists and engineers, who are accustomed to writing software and building 
algorithmic pipelines, it can be overly cumbersome for many application scientists. Even 
when a dataflow network implements a specific application (such as the forward bioelectric 
field simulation network provided with BioPSE and detailed in the BioPSE tutorial), the user 
interface (UI) components of the network are presented to the user in separate UI windows, 
without any semantic context for their settings. For example, SCIRun provides file browser 
user interfaces for reading in data. However, on the dataflow network all the file browsers
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have the same generic presentation. Historically, there has not been a way to present the 
filename entries in their semantic context, for example, to indicate that one entry should 
identify the electrodes input file and another should identify the finite element mesh file.

A recent release of BioPSE/SCIRun (in October 2003) addressed this shortcoming 
by introducing PowerApps. A PowerApp is a customized interface built atop a data flow 
application network. The data flow network controls the execution and synchronization 
of the modules that comprise the application, but the generic user interface windows are 
replaced with entries that are placed in the context of a single application-specific interface 
window.

BioPSE contains a PowerApp cal led BioFEM. BioFEM has been built atop the forward 
finite element network and provides a useful example for demonstrating the differences 
between the dataflow and PowerApp views of the same functionality. In Figure 15.4, the 
dataflow version of the application is shown: the user has separate interface windows for 
controlling different aspects of the simulation and visualization. In contrast, the PowerApp 
version is shown in Figure 15.5: here, the application has been wrapped up into a single

Figure 15.4. BioPSE dataflow interface to a forward bioelectric field application. 
The underlying dataflow network implements the application with modular interconnected 
components called modules. Data are passed between the modules as input and output 
parameters to the algorithms. While this is a useful interface fo r  prototyping, it can be 
nonintuitive fo r  end users; it is confusing to have a separate user interface window to 
control the settings fo r  each module. Moreover, the entries in the user interface windows 
fa il to provide semantic context fo r  their settings. For example, the text-entry field on the 
SampleField user interface that is labeled “Maximum number o f samples" is controlling 
the number o f electric field streamlines that are produced fo r  the visualization.
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Figure 15.5. The BioFEM custom interface. Although the application is the 
functionality equivalent to the data flow version shown in Figure 15.4, this PowerApp 
version provides an easier-to-use custom interface. Everything is contained within a single 
window. The user is lead through the steps o f  loading and visualizing the data with the 
tabs on the right; generic control settings have been replaced with contextually appropriate 
labels, and application-specific tooltips (not shown) appear when the user places the cursor 
over any user interface element.

interface window, with logically arranged and semantically labeled user interface elements 
composed within panels and notetabs.

In addition to bioelectric field problems, the BioPSE system can also be used to inves­
tigate other biomedical applications. For example, we have wrapped the tensor and raster 
data processing functionality of the Teem toolkit into the Teem package of BioPSE, and 
we have used that increased functionality to develop the BioTensor PowerApp, as seen in 
Figure 15.6. BioTensor presents a customized interface to a 140-module data flow network. 
With BioTensor the user can visualize diffusion weighted imaging (DWI) datasets to inves­
tigate the anisotropic structure of biological tissues. The application supports the import 
of DICOM and Analyze datasets and implements the latest diffusion tensor visualization 
techniques, including superquadric glyphs [13] and tensorlines [26] (both shown).

15.2 Components for scientific computing
A number of component models have been developed for a wide range of software applica­
tions. Java Beans[9], a component model from Sun, is a platform-neutral architecture for 
the Java application environment. However, it requires a Java Virtual Machine as the inter­
mediate platform and the components must be written in Java. Microsoft has developed the 
Component Object Model (COM )[l7], a software architecture that allows applications to
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Figure 15.6. The BioTensor PowerApp. Just as with BioFEM, we have wrapped 
up a complicated data flow network into a custom application. In the left panel, the user is 
guided through the stages o f loading the data, coregistering MR1 diffusion weighted images, 
and constructing diffusion tensors. On the right panel, the user has controls fo r  setting the 
visualization options. In the rendering window in the middle, the user can render and 
interact with the dataset.

be built from binary software components on the Windows platform. The Object Manage­
ment Group (OMG) developed the common object request broker architecture (CORBA)
[18], which is an open, vendor-independent architecture and infrastructure that computer 
applications can use to work together in a distributed environment.

Many problem solving environments, such as SCIRun, employ these component mod­
els or one of their own. As an example, SCIRun provides a dataflow-based component 
model. The CCA forum, a group of researchers from several DoE national laboratories and 
academic institutions, has defined a standard component architecture [I] for high perfor­
mance parallel computing. The CCA forum has defined a minimal set of standard inter­
faces that a high-performance component framework should provide to implement high- 
performance components. This standard promotes interoperability between components 
developed by different teams across different institutions. However, CCA has not yet fully 
addressed the architecture of parallel components combined with distributed computation.

CCA is discussed in more detail in Chapter 14, but we present an overview here. The 
CCA model consists of a framework and an expandable set of components. The framework 
is a workbench for building, connecting, and running the components. A component is the 
basic unit of an application. A CCA component consists of one or more ports, and a port is a 
group of method-call-based interfaces. There are two types of ports: uses port and provides 
ports. A provides port (or callee) implements its interfaces and waits for other ports to call 
them. A uses port (or caller) issues method calls that can be fulfilled by a type-compatible 
provides port on a different component.
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A CCA port is represented by an interface, while interfaces are specified through a 
SIDL. A compiler is usually used to compile a SIDL interface description file into specific 
language bindings. Generally, component language binding can be provided for many 
different languages, such as C/C++, Java, Fortran, or Python. The Babel [14] compiler 
group is working on creating this support for different languages within CCA.

SCIRun2 is a new software framework that combines CCA compatibility with con­
nections to other commercial and academic component models. SCIRun2 is based on the 
SCIRun [12] infrastructure and the CCA specification. It utilizes parallel-to-parallel re­
mote method invocation to conncct components in a distributed memory environment and 
is multithreaded to facilitate shared memory programming. It also has an optional visual- 
programming interface.

Although SCIRun2 is designed to be fully compatible with CCA. It aims to combine 
CCA compatibility with the strength of other component models. A few of the design goals 
of SCIRun2 arc as follows: '

1. SCIRun2 is fully CCA compatible; thus any CCA components can be used in SCIRun2 
and CCA components developed from SCIRun2 can also be used in other CCA frame­
works.

2. SCIRun2 accommodates several useful component models. In addition to CCA com­
ponents and SCIRun dataflow modules, CORBA components, Microsoft COM com­
ponents, ITK, and Vtk[24] modules will be supported in SCIRun2.

3. SCIRun2 builds bridges between different component models, so that wc can com­
bine a disparate array of computational tools to create powerful applications with 
cooperative components from different sources.

4. SCIRun2 supports distributed computing. Components created on different comput­
ers can work together through a network and build high performance applications.

5. SCIRun2 supports parallel components in a variety of ways for maximum flexibility. 
This is not constrained to only CCA components, because SCIRun2 employees a M 
process to N  process method invocation and data redistribution (MxN) library [3] 
that potentially can be used by many component models.

Overall, SCIRun2 provides a broad approach that will allow scientists to combine a 
variety of tools for solving a particular computational problem. The overarching design 
goal of SCIRun2 is to provide the ability for a computational scientist to use the right tool 
for the right job, a goal motivated by the needs of our biomedical and other scientific users.

15.3 Metacomponent model
Systems such as Java Beans, COM, CORBA, CCA, and others successfully employ a 
component-based architecture to allow users to rapidly assembly computational tools in a 
single environment. However, these systems typically do not interact with one another in 
a straightforward manner, and it is difficult to take components developed for one system 
and redeploy them in another. Software developers must buy in to a particular model and
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Figure 15.7. Components o f  different models cooperate in SCIRun2.

produce components for one particular system. Users must typically select a single system 
or face the challenges of manually managing the data transfer between multiple (usually) in­
compatible systems. SCIRun2 addresses these shortcomings through the meta-component 
model, allowing support for disparate component-based systems to be incorporated into 
a single environment and managed through a common user-centric visual interface. Fur­
thermore, many systems that are not traditionally thought of as component models but that 
have well-designed, regular structures can be mapped to a component model and manipu­
lated dynamically. SCIRun2 combines support for CCA components, “old-style” SCIRun 
data flow components, and we are planning support for CORBA, COM, and VTK. As a 
result, SCIRun2 can utilize SCIRun components, CCA components, and other software 
components in the same simulation.

The meta component model operates by providing a plug-in architecture for compo­
nent models. Abstract components are manipulated and managed by the SCIRun2 frame­
work, while concrete component models perform the actual work. This facility allows 
components implemented with disparate component models to be orchestrated together.

Figure 15.7 demonstrates a simple example of how SCIRun2 handles different com­
ponent models. Two CCA components, Driver and Integrator, and one CORBA component, 
Function, are created in the SCIRun2 framework. In this simple example, the driver is con­
nected to both the function and the integrator. Inside SCIRun2, two frameworks are hidden: 
the CCA framework and the CORBA object request broker (ORB). The CCA framework 
creates the CCA components, driver and integrator. The CORBA framework creates the 
CORBA component, function. The two CCA components can be connected in a straight­
forward manner through the CCA component model. However, the components driver and 
function cannot be connected directly, because neither CCA nor CORBA allows a connec­
tion from a component of a different model. Instead, a bridge component is created. Bridges 
belong to a special internal component model that is used to build a connection between 
components of different component models. In this example, a bridge has two ports: one 
CCA port and one CORBA port. In this way it can be connected to both CCA component 
and CORBA component. The CORBA invocation is converted to request to the CCA port 
inside the bridge component.
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Bridge components can be manually or automatically generated. In situations in which 
interfaces are easily mapped between one interface and another, automatically generated 
bridges can facilitate interoperability in a straightforward way. More complex component 
interactions may require manually generated bridge components. Bridge components may 
implement heavy-weight transformations between component models and therefore have the 
potential to introduce performance bottlenecks. For the few scenarios that require maximum 
performance, reimplementation of both components in a common, performance-oriented 
component model may be required. However, for rapid prototyping, or for components that 
are not performance critical, this is completely acceptable.

To automatically generate a bridge component that translates a given pair of com­
ponents, a generalized translation must be completed between the component models. A 
software engineer designs how two particular component models will interact. This task 
can require creating methods of data and control translation between the two models and 
can be quite difficult in some scenarios. The software engineer expresses the translation 
into a compiler plugin, which is used as a specification of the translation process. A plugin 
abstractly represents the entire translation between the two component models. It is speci­
fied by an eRuby (embedded Ruby) template document. eRuby templates arc text files that 
can be augmented by Ruby [15] scripts. The Ruby scripts are useful for situations where 
the translation requires more sophistication than regular text (such as control structures or 
additional parsing). This provides us with better flexibility and more power inside the plu­
gin, with the end goal of being able to support the translation of a wider range of component 
models.

The only other source of information is the interface of the ports we want to bridge 
(usually expressed in an IDL file). The bridge compiler accepts commands that specify a 
mapping between incompatible interfaces, where the interfaces between the components 
differ in various names or types but not functionality. Using a combination of the plugin 
and the interface augmented with mapping commands, the compiler is able to generate the 
specific bridge component. This component is automatically connected and ready to broker 
the translation between the two components of different models.

Figure 15.8 shows a more complex example that is motivated by the needs of a bio­
logical application. This example works very much like the last: the framework manages 
components from several different component models through the meta-model interface. 
Components from the same model interact with each other natively and interact with com­
ponents in other models through bridges. Allowing components to communicate with each 
other through their native mechanisms ensures that no performance bottlenecks are intro­
duced and that the original semantics are preserved.

15.4 Distributed computing
SCIRun2 provides support for distributed objects based on remote method invocation (RMI). 
This support is utilized in the core of the SCIRun framework in addition to distributed 
components. This section describes the design of the distributed object subsystem.

A distributed object is a set of interfaces defined by SIDL that can be referenced over 
network. The distributed object is similar to the C++ object, it utilizes similar inheritance 
rules, and all objects share the same code. However, only methods (interfaces) can be
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Figure 15.8. A more intricate example o f  how components o f  different models 
cooperate in SCIRun2. The application and components shown are from a realistic (albeit 
incomplete) scenario.

referenced, and the interfaces must be defined in SIDL. Using the SIDL language, we 
implemented a straightforward distributed object system. We extend the SIDL language 
and build upon this system for implementing parallel to parallel component connections, as 
discussed in the next section.

A distributed object is implemented by a concrete C++ class and referenced by a proxy 
class. The proxy class is a machine-generated class that associates the user-made method 
calls to a call by the concrete object. The proxy classes are described in a SIDL file, and 
a compiler compiles the SIDL file and creates the proxy classes. The proxy classes define 
the abstract classes with a set of pure virtual functions. The concrete classes extends those 
abstract proxy classes and implement each virtual functions.

There are two types of object proxies: server proxy and client proxy. The server proxy 
(or skeleton) is the object proxy created in the same memory address space as the concrete 
object. When the concrete object is created, the server proxy starts and works as a server, 
waiting for any local or remote methods invocations. The client proxy (or stub) is the proxy 
created on a different memory address space. When a method is called through the client 
proxy, the client proxy will package the calling arguments into a single message, send the 
message to the server proxy, and then wait for the server proxy to invoke the methods and 
return the result and argument changes.

We created Data Transmitter, a separate layer, that is used by the generated proxy 
code for handling messaging. We also employ the concept of a data transmission point 
(DTP), which is similar to the start point and end points used in Nexus [7]. A DTP is a data 
structure that contains a object pointer pointing to the context of a concrete class. Each 
memory address space has only one Data Transmitter, and each Data Transmitter uses three
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communication ports (sockets): one listening port, one receiving port, and one sending port. 
All the DTPs in the same address space share the same Data Transmitter. A Data Transmitter 
is identified by its universal resource identifier (URI): IP address + listening port. A DTP 
is identified by its memory address together with the Data Transmitter URI, because DTP 
addresses are unique in the same memory address space. Optionally, we could use other 
type of object identifiers.

The proxy objects package method calls into messages by marshaling objects and then 
waiting for a reply. Nonpointer arguments, such as integers, fixed sized arrays and strings 
(character arrays), are marshaled by the proxy into a message in the order in which they 
arc presented in the method. After the server proxy receives the message, it unmarshals 
the arguments in the same order. A array size is marshaled in the beginning of an array 
argument, so the proxy knows how to allocate memory for the array. SIDL supports a 
special opaque data type that can be used to marshal pointers if the two objects are in the 
same address space. Distributed object references are marshaled by packaging the DTP 
URI (Data Transmitter URI and object ID). The DTP URI is actually marshaled as a string, 
and when it is unmarshaled, a new proxy of the appropriate type is created based on the 
DTP URI.

C++ exceptions are handled as special distributed objects. In a remote method in­
vocation, the server proxy tries to catch an exception (also a distributed object) before it 
returns. If it catches one, the exception pointer is marshaled to the returned message. Upon 
rccciving the message, the client proxy unmarshals the message and obtains the exception. 
The exception is then rethrown by the proxy.

15.5 Parallel components
This section introduces the CCA parallel component design and discusses issues of the 
implementation. Our design goal is to make the parallelism transparent to the component 
users. In most cases, the component users can use a parallel component as the way they use 
sequential component without knowing that a component is actually parallel component.

Parallel CCA Component (PCom) is a set of similar components that run in a set of 
processes respectively. When the number of process is one, the PCom is equivalent to a 
sequential component. We call each component in a PCom a member component. Member 
components typically communicate internally with MPI [16] or an equivalent message- 
passing library.

PComs communicate with each other through CCA-style RMI ports. We developed 
a prototype parallel component infrastructure [5, 2] that facilitates connection of parallel 
components in a distributed environment. This model supports two types of methods calls: 
independent and collective, and as such our port model supports both independent and 
collective ports.

An independent port is created by a single component member, and it contains only 
independent interfaces. A collective port is created and owned by all component members 
in a PCom, and one or more of its methods are collective. Collective methods require that 
all member components participate in the collective calls in the same order.
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As an example of how paral lel components interact, let pA be a uses port of component 
A and pB be a provides port of component B. Both pA and pB have the same port type, 
which defines the interface. If pB is a collective port and has the interface

c o l l e c t i v e  i n t  f o o ( i n o u t  i n t  a r g ) ;

then gelPort(“pA”) returns a collective pointer that points to the collective port pB. If pB is 
an independent port, getPort(“pA”) returns a pointer that points to an independent port.

Component A can have one or more members, so cach member might obtain a (col­
lective/independent) pointer to a provides port. The component developer can decide what 
subset (one, many, or all components) participate in a method call foo(arg). When any 
member component register a uses port, all other members can share the same uses port. 
But for a collective provides port, each member must call addProvidesPort to register each 
member port.

The MxN library takes care of the collective method invocation and data distribution. 
We repeat only the essentials here; see [3] for details. If an M-member PCom A obtains a 
pointer ptr pointing to an N-member PCom’s B collective port pB, then p tr^foo(args) is a 
collcctivc method invocation. The MxN library index PCom members with rank 0, 1 . . . . ,
M -l for A and 0, 1_____N-l for B. If M  = N , then the z'th member component of A call
foo(args) on the ith component of B. But if M < N, then we “extend” the A’s to 0, 1, 2, . . . ,  
M, 0, 1, 2, . . .  M, . . .  N -l and they call foo(args) on each member component of B like the 
M =  N case, but only the first M calls request returns. The left panel of Figure 15.9 shows 
an example of this case with M =  3 and N =  5. If M > N, we extend component B ’s set to 
0, 1, . . . ,  N, 0, 1 , . . . ,  N , . . . ,  M -1 and only the first N member components of B are actually 
called; the rest are not called but simply return the result. We rely on collective semantics

M < N M > N

Figure 15.9. M x N  method invocation, with the caller on the left and the callee 
on the right. In the left scenario, the number o f callers is few er than the number o f callee s, 
so some callers make multiple method calls. In the right, the number o f callees is fewer, so 
some callees send multiple return values.
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from the components to ensure consistency without requiring global synchronization. The 
right panel of Figure 15.9 shows an example of this case with M =  5 and N =  3.

The MxN library also docs most of the work for the data redistribution. A multidi­
mensional array can be defined as a distributed array that associates a distribution scheduler 
with the real data. Both callers and callees define the distribution schedule before the remote 
method invocation, using a first-stride-last representation for each dimension of the array. 
The SIDL compiler creates the scheduler and scheduling is done in the background.

With independent ports and collective ports, we cover the two extremes. Ports that 
require communication among a subset of the member components present a greater chal­
lenge. Instead, we utilize a subsetting capability in the MxN system to produce ports that 
are associated with a subset of the member components and then utilize them as collective 
ports.

SCIRun2 provides the mechanism to start a parallel component on either shared mem­
ory multiprocessors computers or clusters. SCIRun2 consists of a main framework and a set 
of parallel component loaders (PCLs). A PCL can be started with ssh on a cluster, where it 
gathers and reports its local component repository and registers to the main framework. The 
PCL on an N-node cluster is essentially a set of loaders, each running on a node. When the 
user requests to create a parallel component, the PCL instantiates a parallel component on 
its processes (or nodes) and passes a distributed pointer to the SCIRun2 framework. PCLs 
are responsible for creating and destroying components running on their nodes, but they 
do not maintain the port connections. The SCIRun2 framework maintains all component 
status and port connections.

Supporting threads and MPI together can be difficult. MPI provides a convenient 
communication among the processes in a cluster. However, if any process has more than 
one thread and the MPI calls are made in those threads, the MPI communication may 
break because MPIs distinguish only processes, not threads. The MPI interface allows an 
implementation to support threads but does not require it. Most MPI implementations are not 
threadsafe. We provide support for both threadsafe and nonthreadsafe MPI implementations 
so that users can choose any available MPI.

A straightforward way to support nonthreadsafe MPIs is to globally order the MPI 
calls such that no two MPI calls are executed at the same time. We implemented a distributed 
lock, which has two interfaces:

P R M I : : l o c k ()

P R M I : : u n l o c k ()

The distributed lock is just like a mutex, but it is collective with respect to all MPI 
processes in a cluster. The critical section between PRMI::lock() and PRMI::unlock() can 
be obtained by only one set of threads in different MPI processes. The users must call 
PRMI::lock() before any MPI calls and call PRMI::unlock() after to release the lock. More 
than one MPI calls can be made in the critical section. In this way only one set of threads 
(each from a MPI process) can make MPI calls at one time. Additionally, the overhead 
of acquiring and releasing this lock is very high because it requires a global synchroniza­
tion. However, in some cases this approach is necessary for supporting the multi-threaded 
software framework in an environment where a thread-safe MPI is no available.

It is fairly easier to support threadsafe MPI. Our approach is to create a distinct MPI 
communicator for the threads that communicate with each other and restrict that those
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Figure 15.10. Components o f different models cooperate in SClRunl.

threads can use only that communicator for MPI communication. The special communi­
cators are created by the PCL and can be obtained through a framework service interface. 
The threadsafe MPI allows multiple MPI calls executed safely at the same time, and the 
designated communicators help to identify the group of threads which initiated the MPI 
calls.

An efficient mechanism allows parallel components to efficient coordinate around 
error conditions [4].

Figure 15.10 shows a SCIRun2 application that uses bridging to Vtk visualization 
components. SCIRun2 is currently under development, but we expect a public release in 
the near future.

15.6 Conclusions and future work
We presented the SCIRun, BioPSE, and SCIRun2 problem solving environments for sci­
entific computing. These systems all employ software components to encapsulate com­
putational functionality into a reusable unit. SCIRun and BioPSE are open source, have 
biannual public releases, and are used by a number of end users for a variety of different 
computational applications.

Additionally, we presented an overview of the new SCIRun2 component framework. 
SCIRun2 integrates multiple component models into a single visual problem solving envi­
ronment and builds bridges between components of different component models. In this 
way, a number of tools can be combined into a single environment without requiring global 
adoption of a common underlying component model. We have also described a paral­
lel component architecture utilizing the common component architecture, combined with 
distributed objects and parallel MxN array redistribution that can be used in SCIRun2.



286 Chapter 15. Integrating Component-Based Scientific Computing Software

A prototype of the SCIRun2 framework has been developed, and we are using this 
framework for a number of applications in order to demonstrate the SCIRun2 features. 
Future applications will rely more on the system and will facilitate joining many powerful 
tools, such as the SCI Institutes’ interactive ray-tracing system [22] and the Uintah [61 
parallel, multiphysics system. Additional large-scale computational applications are under 
construction and are beginning to take advantage of the capabilities of SClRun2. Support 
for additional component models, such as Vtk, CORBA, and possibly others, will be added 
in the future.
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