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ABSTRACT 

 

Long-term prey population histories are fundamental to reconstructing spatial and 

temporal variation in human diet, hunting technology, capture strategies, and a host of 

other prehistoric hunting behaviors. Typically, such reconstructions have involved the use 

of taxonomic relative abundance indexes from bone counts as measures of population 

history, but such measures are subject to many complicating quantitative and taphonomic 

issues. 

Fortunately, animal populations maintain a record of population history in the 

form of genetic diversity.  By assessing temporal variation in the genetic diversity of 

populations, zooarchaeologists have access to this history.  This dissertation describes 

research that was designed to use the genetic record of population history to develop 

long-term histories of two prey species and to compare these genetic diversity-derived 

histories with those drawn from relative abundance measures. 

Taxonomic relative abundance measures from California’s San Miguel Island 

suggest that Guadalupe fur seals maintained a large and stable population through the late 

Holocene, whereas the archaeological record of Tule elk in California’s San Francisco 

Bay area suggests a late Holocene population bottleneck.   To evaluate the genetic 

diversity implications of these two contexts, I obtained ancient DNA sequences from 39 

Guadalupe fur seal specimens from four archaeological sites on San Miguel Island and 

from 24 Tule elk specimens from the San Francisco Bay area’s Emeryville Shellmound. 
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In both cases trends in genetic diversity support inferences made from relative 

abundance data.  Guadalupe fur seal sequences, aggregated into three late Holocene 

temporal periods, show considerable genetic diversity within each period and no 

differentiation between periods suggesting a large and stable population.  Tule elk 

sequences were divided into two groups that span a hypothesized population bottleneck.  

Analysis of these aggregations shows considerable diversity among pre-bottleneck 

sequences but no diversity in post-bottleneck sequences.  This result is surprising for 

Guadalupe fur seals whose life history characteristics suggest that their populations are 

rather susceptible to hunting pressure.  One plausible reason for long-term stability of 

Guadalupe fur seal populations in the face of what was likely significant hunting pressure 

is the presence of population refugia from which migration sustained genetically diverse 

populations.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

TABLE OF CONTENTS 

 

ABSTRACT ....................................................................................................................... iii 
 

LIST OF TABLES ............................................................................................................ vii 
 

LIST OF FIGURES ......................................................................................................... viii 

 

ACKNOWLEDGEMENTS ............................................................................................... ix 
 

Chapters 

 

1. INTRODUCTION .......................................................................................................... 1 
 

1.1 Organization of Dissertation ............................................................................. 2 
1.2 Discussion ......................................................................................................... 5 
1.3 References Cited ............................................................................................... 7 

 

2. THE MOLECULAR GENETICS OF PREY CHOICE: USING ANCIENT DNA TO 

INFER PREHISTORIC POPULATION HISTORIES .............................................. 9 
 

2.1 Inferring Demographic History: Taxonomic Relative Abundance ................. 12 
2.2 Inferring Demographic History: The Population Size – Genetic Diversity 

Relationship ....................................................................................................... 14 
2.3 Assessing Genetic Diversity with Ancient DNA ............................................ 18 
2.4 Conclusion ...................................................................................................... 21 
2.5 References Cited ............................................................................................. 24 

 

3. ANCIENT DNA EVIDENCE FOR LATE HOLOCENE POPULATION STABILITY 

OF GUADALUPE FUR SEALS, SAN MIGUEL ISLAND, CALIFORNIA ........ 32 
 

3.1 Introduction ..................................................................................................... 32 

3.2 Late Holocene Guadalupe Fur Seal Population History ................................. 36 
3.3 Materials and Methods .................................................................................... 41 

3.4 Ancient DNA Results ..................................................................................... 46 
3.5 Late Holocene Climate Change on San Miguel Island ................................... 50 
3.6 Summary and Discussion ................................................................................ 52 
3.7 References Cited ............................................................................................. 56 

 

4. A LATE HOLOCENE POPULATION BOTTLENECK IN CALIFORNIA TULE 



 

vi 

ELK (CERVUS ELAPHUS NANNODES): PROVISIONAL SUPPORT FROM 

ANCIENT DNA ...................................................................................................... 75 
 

4.1 Introduction ..................................................................................................... 75 

4.2 Tule Elk Demographic History ....................................................................... 78 
4.3 Genetic Variation and Population Bottlenecks ............................................... 82 
4.4 A Prehistoric Bottleneck in San Francisco Bay Tule Elk: Hypotheses and 

Methods.............................................................................................................. 83 
4.5 The Tule Elk Sample from Emeryville ........................................................... 86 

4.6 Ancient Tule Elk DNA: Extraction, Amplification, Sequencing, and Statistical 

Analysis.............................................................................................................. 88 
4.7 Ancient DNA Results ..................................................................................... 94 
4.8 Climate Change and the Tule Elk Population Decline ................................... 97 

4.9 Conclusion .................................................................................................... 102 
4.10 References Cited ......................................................................................... 107 



 

vii 

 

 

 

 

 

LIST OF TABLES 

 

Tables 

3.1.  Common Santa Barbara Channel Islands region marine mammals.......................... 63 
 

3.2.  Number of identified marine mammal specimens from late Holocene San Miguel 

Island assemblages. ............................................................................................... 64 
 

3.3.  Relative abundance index values for late Holocene San Miguel Island marine 

mammal assemblages............................................................................................ 65 

 

3.4.  AMS radiocarbon dates and stable isotope values for San Miguel Island Guadalupe 

fur seal specimens. ................................................................................................ 66 

 

3.5.  Sequenced San Miguel Island Guadalupe fur seal specimens. ................................. 68 

 

3.6.  Genetic diversity summary statistics of all San Miguel Island Guadalupe fur seal 

sequences. ............................................................................................................. 70 

 

3.7.  Genetic diversity summary statistics of confirmed San Miguel Island Guadalupe fur 

seal sequences. ...................................................................................................... 71 
 

4.1.  Tule elk specimens from the Emeryville Shellmound with partial mitochondrial D-

loop sequences. ................................................................................................... 119 

 

4.2.  Summary of genetic diversity in Tule elk from the Emeryville Shellmound. ........ 120 

 

4.3.  Stable isotope values, atomic C:N, collagen yield and temporal range for pre- and 

post-bottleneck Tule elk from the Emeryville Shellmound. ............................... 121 
 

4.4.  Mean δ13C, δ15N and δ18O values for pre- and post-bottleneck periods and selected 

age at death categories for the Emeryville Shellmound tule elk. ........................ 123 



 

viii 

 

 

 

 

 

LIST OF FIGURES 

 

Figures 

 

2.1.  The relationship between genetic diversity and population size where Ĥ is the 

equilibrium heterozygosity for 2N genes in a population with a mutation rate u = 

5.25 X 10-7. .......................................................................................................... 31 

 

3.1.  Map showing location of San Miguel Island. ........................................................... 72 

 

3.2.  Distribution of nucleotide diversity (π) between temporal periods. ......................... 73 

 

3.3.  Distribution of theta (θ) between temporal periods. ................................................. 74 
 

4.1.  Map of San Francisco Bay area showing location of the Emeryville Shellmound and 

other shellmound sites......................................................................................... 124 

 

4.2.  Distribution of the Elk Index (Σ [NISP Elk]/ Σ NISP [Terrestrial Mammals]) across 

18 dated components from sites distributed across the San Francisco Bay 

shoreline (total NISP = 9,229). (Does not include potentially intrusive rodents and 

lagomorphs). ....................................................................................................... 125 
 

4.3.  Distribution of the Elk Index (Σ [NISP Elk]/ Σ NISP [Terrestrial Mammals]) across 

a tight cluster of sites located in the Coyote Hills area of the southeast bay (total 

NISP = 2,168). (Does not include potentially intrusive rodents and lagomorphs).

............................................................................................................................. 126 
 

4.4.  Distribution of the Elk Index (Σ [NISP Elk]/ Σ NISP [Terrestrial Mammals]) across 

the occupational history of the Emeryville Shellmound (total NISP = 6,032). 

(Does not include potentially intrusive rodents and lagomorphs). ..................... 127 
 



 

ix 

 

 

 

 

 

ACKNOWLEDGEMENTS 

A project of this scope does not simply just happen in isolation.  A whole raft of 

individuals have figured significantly in getting to this document.  First, I thank my 

primary advisors, Jack Broughton and Dennis O’Rourke.  Without their guidance and 

unwavering patience none of the ideas summarized in the pages that follow would have 

gained traction.  Similarly, I thank Alan Rogers, Rick Paine, and Doug Kennett for 

providing much appreciated advice and comments to help me clarify my thoughts. 

Ancient DNA research is not easy and a host of people have been instrumental in 

leading me through the ins and outs of labwork.  Geoff Hayes and Shawn Carlyle first 

introduced me to the trials and tribulations of an ancient DNA lab and countless lab 

mates have provided much needed commiseration.  Particularly I thank Jacquel 

Arismendi, Sylvia Smith, and Justin Tackney. 

Research of this scope happens not only in the lab and library, but at home as 

well.  Mostly in the form of intellectual distraction pondering some problem or another.  

The brunt of this distraction has been borne principally by Lisa Beck, forever my oak, but 

also by Ava and Gavin Beck.  Thank you for understanding and tolerating my 

occasionally protracted mental absence. 

Finally, I thank the Wenner-Gren Foundation who provided me with a 

Dissertation Fieldwork Grant to conduct the San Miguel Island Guadalupe fur seal 

project. 



 

 

 

 

 

 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

A fundamental question for zooarchaeologists interested in making inferences 

about prehistoric hunting behavior is: how many animals were there?  To understand 

spatial and temporal variation in diet, hunting technology, prey capture tactics, and a host 

of other prehistoric hunting behaviors, researchers need to have at least a good general 

sense of the long-term population histories of prey animals.  Although simple in concept, 

answering this fundamental question is not exactly straightforward.  One particularly 

productive approach has been the use of taxonomic relative abundance indexes as proxy 

measures of population history.  Temporal variation in various taxonomic relative 

abundance measures has successfully been used to document long-term change in 

hunting behavior in a number of contexts, most notably along the coast of California 

(Broughton 1994, 1997, 1999, 2004; Broughton et al. 2010), in the Great Basin of 

western North America (Byers and Broughton 2004; Janetski 1997; Ugan 2005), and in 

the American Southwest (Broughton et al. 2010; Cannon 2000, 2003), among others. 

While providing a rather successful research strategy for making inferences about 

long-term prey population histories, taxonomic relative abundance measures are subject 

to a host of potentially complicating variables that are common to archaeology.  Animal 

remains are unlikely introduced into archaeological contexts in direct proportion to their 

abundance on the surrounding landscape.  Carcass processing and transport from kill site 
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to campsite oftentimes resulted in incomplete skeletal representation at locations where 

animal remains were ultimately deposited.  Butchery and meal preparation at camp 

similarly modified what was deposited.  While in the ground, taphonomic processes like 

density mediated attrition further altered what would eventually be available for 

archaeological research.  Site excavation strategies are rarely able to completely recover 

an assemblage and the typically highly fragmented nature of most faunal assemblages can 

complicate species-specific taxonomic identification.  Given the host of common 

archaeological complications that can bias estimates of prey population history it is 

worthwhile to explore the possibility for independent measures. 

Fortunately, animal populations maintain a record of population history written 

into their genome in the form of genetic diversity.  By assessing temporal variation in the 

genetic diversity of populations, zooarchaeologists have access to this history.  The 

chapters that follow describe a research program that was designed to use the genetic 

record of population history to develop long-term histories of two prehistorically 

important prey species, Guadalupe fur seals (Arctocephalus townsendi) and tule elk 

(Cervus elaphus nannodes), and to compare these genetic diversity-derived histories with 

those drawn from taxonomic relative abundance measures.  To gain access to these 

genetic records, established protocols for the extraction, amplification, and sequencing of 

ancient DNA were used. 

 1.1 Organization of Dissertation 

Chapter 2 was previously published in the journal California Archaeology (Beck 

2009) and summarizes the theoretical framework for using genetic diversity to assess 

population history.  This discussion is presented in the context of current archaeological 
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concern along coastal California with the specific role played by marine mammals in 

prehistoric subsistence economies.  Inferences about the relevance of marine mammals to 

prehistoric foragers have generally been made by making appeals to taxonomic relative 

abundance indexes, and this chapter provides a critical review of the theoretical 

underpinnings of those indexes as well as their potential limitations.  Next, the 

relationship between genetic diversity and population size is detailed.  In short, current 

population genetics theory suggests that large populations are characterized by a large 

degree of genetic diversity while small populations exhibit much more limited genetic 

diversity.  This relationship has been subject to empirical evaluation many times over and 

this chapter summarizes three such tests.  The mathematically derived and empirically 

verified relationship between genetic diversity and population size provides the key 

archaeological implication: diachronic change in genetic diversity at certain loci reflects 

diachronic change in population size and by assessing temporal changes in genetic 

diversity from well-dated faunal assemblages, zooarchaeologists can infer long-term 

population histories.  With this key implication established, Chapter 2 closes by 

summarizing a published case study where ancient DNA methods were used to assess the 

well-documented near-extirpation of northern elephant seals (Mirounga angustirostris) 

by early 20th century market hunters (Weber et al. 2000). 

Chapter 3 provides the first of two case studies that use ancient DNA to evaluate 

late Holocene population histories of two prehistorically important prey species in 

divergent archaeological contexts.  Variation in the archaeological abundance of marine 

mammal remains and the relative roles that human hunting and climate change may have 

played in structuring that variation has been debated among eastern Pacific archaeologists 
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for decades.  Marine mammal assemblages from California’s northern Channel Islands 

have figured prominently in this debate and this chapter explores the late Holocene 

population history of Guadalupe fur seals (Arctocephalus townsendi), one of the most 

frequently recovered marine mammals from Channel Islands archaeological sites.  

Several taxonomic relative abundance measures estimated from faunal assemblages 

recovered from four sites on San Miguel Island, the northernmost of the Channel Islands, 

suggests relative population stability throughout the late Holocene.  This pattern stands in 

contrast to much of the regional archaeological record that suggests an increase in marine 

mammal use, reaching a crescendo at approximately 1500 B.P.  In an effort to reconcile 

these conflicting patterns, the research summarized in this chapter examined temporal 

patterns of genetic diversity observed from ancient DNA sequences obtained from 39 

Guadalupe fur seal specimens.  Twenty-eight of these ancient sequences were fully 

replicated and confirmed, the remaining 11 sequences were considered provisional.  

Genetic diversity statistics estimated from these specimens exhibit considerable diversity 

across temporal periods.  This long-term stability in genetic diversity suggests that 

Guadalupe fur seal populations from San Miguel Island were fairly substantial and 

remained stable for much of the late Holocene. 

Chapter 4 was also previously published (Broughton et al. 2013) and summarizes 

a case study designed to evaluate a hypothesized prehistoric population bottleneck in 

California tule elk (Cervus elaphus nannodes) from the San Francisco Bay area.  

California’s early explorers often made note of the apparent high densities of large game, 

observations that are often taken as benchmarks for the region’s pristine ecological 

condition.  Zooarchaeological analysis of several measures of prey encounter rates that 
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use taxonomic relative abundance, however, implicate significant variation during the 

late Holocene.  Indeed, such relative taxonomic abundance measures suggest a case of 

resource depression in San Francisco Bay Area tule elk.  The study described in this 

chapter again takes advantage of the relationship between genetic diversity and 

population size to investigate this hypothesized instance of resource depression.  Fifty-

three individual tule elk specimens were selected for analysis from faunal assemblages 

recovered during excavations of the Emeryville Shellmound located along the eastern 

margin of California’s San Francisco Bay.  From these individuals, we obtained 24 high 

quality DNA sequences that included 132 base pairs of nonpriming mitochondrial control 

region sequence.  Thirteen of these sequences were fully replicated and confirmed while 

the remaining eleven are considered provisional.  Genetic diversity statistics estimated for 

these sequences implicate a population bottleneck at about 1600 B.P. with considerable 

diversity among sequences that predate the bottleneck and an absence of diversity among 

post-bottleneck sequences.  In addition to DNA sequences, stable isotope analysis of the 

elk bones provided a climate record of the late Holocene study period and yielded no 

evidence that climate change played a role in the inferred elk population decline. 

1.2 Discussion 

Estimation of prey population histories is an important but complex 

zooarchaeologial research goal and the investigations summarized in this dissertation 

were designed to explore the potential for ancient DNA studies to achieve this objective.  

In both case studies detailed in the chapters that follow, genetic diversity estimated from 

temporally aggregated prehistoric populations corroborates population history inferences 

drawn from zooarchaeological taxonomic relative abundance measures.  Importantly, 
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these studies suggest that ancient DNA is an effective analytical tool for developing or 

independently evaluating prey population histories.  Laboratory methods for extracting, 

amplifying, and obtaining DNA sequences from archaeological specimens, coupled with 

application of well-established theory from population genetics do present archeological 

researchers with a powerful research tool.  Finally, ancient DNA study design provides a 

robust set of long-term biological and environmental data that can effectively inform 

important questions in conservation biology and historical ecology.  Application of this 

research tool to archaeological specimens has great potential to transcend traditional 

disciplinary boundaries and can provide opportunities for archaeological researchers to 

contribute significantly to important research outside of that commonly pursued by 

archaeologists. 

  



7 

 

1.3 References Cited 

Beck, R. K. 

2009 The molecular genetics of prey choice: using ancient DNA to infer 

prehistoric population histories. California Archaeology 1(2):253-268. 

 

Broughton, J. M. 

1994 Declines in mammalian foraging efficiency during the late Holocene, San 

Francisco Bay, California. Journal of Anthropological Archaeology 13(4):371-

401. 

 

1997 Widening diet breadth, declining foraging efficiency, and prehistoric 

harvest pressure: ichthyofaunal evidence from the Emeryville Shellmound, 

California. Antiquity 71:845-862. 

 

1999 Resource Depression and Intensification During the Late Holocene, San 

Francisco Bay: Evidence from the Emeryville Shellmound Vertebrate Fauna. 

University of California Antropological Records 32. University of California 

Press, Berkeley. 

 

2004 Prehistoric Human Impacts on California Birds: Evidence from the 

Emeryville Shellmound Avifauna. Ornithological Monographs 56. The American 

Ornithologists' Union. 

 

Broughton, J. M., R. K. Beck, J. B. Coltrain, D. H. O'Rourke and A. R. Rogers 

2013 A late Holocene population bottleneck in California tule elk (Cervus 

elaphus nannodes): provisional support from ancient DNA. Journal of 

Archaeological Method and Theory 20:295-524. 

 

Broughton, J. M., M. D. Cannon and E. J. Bartelink 

2010 Evolutionary ecology, resource depression, and niche construction theory: 

applications to central California hunter-gatherers and Mimbres-Mogollon 

agriculturalists. Journal of Archaeological Method and Theory 17:371-421. 

 

Byers, D. A. and J. M. Broughton 

2004 Holocene environmental change, artiodactyl abundances, and human 

hunting strategies in the Great Basin. American Antiquity 69:235-256. 

 

Cannon, M. D. 

2000 Large mammal relative abundance in Pithouse and Pueblo period 

archaeofaunas from southwest New Mexico: resource depression among the 

Mimbres Mogollon? Journal of Anthropological Archaeology 19(3):317-347. 

 

2003 A model of central place forager prey choice and an application to faunal 

remains from Mimbres valley, New Mexico. Journal of Anthropological 

Archaeology 22(1):1-25. 



8 

 

Janetski, J. C. 

1997 Fremont hunting and resource intensification in the Eastern Great Basin. 

Journal of Archaeological Science 24:1075-1088. 

 

Ugan, A. 

2005 Climate, bone density, and resource depression: what is driving variation 

in large and small game in Fremont archaeofaunas? Journal of Anthropological 

Archaeology 24:227-251. 

 

Weber, D. S., B. S. Stewart, J. C. Garza and N. Lehman 

2000 An empirical genetic assessment of the severity of the northern elephant 

seal population bottleneck. Current Biology 10:1287-1290.



 

 

 

 

 

 

 

CHAPTER 2 

 

 

THE MOLECULAR GENETICS OF PREY CHOICE: 

USING ANCIENT DNA TO INFER PREHISTORIC 

POPULATION HISTORIES1 

 

Zooarchaeologists interested in the complex relationships between prehistoric 

hunters and their chosen prey frequently work to infer detailed prey population histories. 

The chain of inference necessary to proceed from an observed faunal assemblage to an 

estimate of population history is, however, routinely affected by a suite of complicating 

variables. Accordingly, the development of methods to produce such histories has proven 

to be challenging. Nonetheless, methods to infer temporal trends in prey population 

histories are increasingly in demand as evinced by a number of current debates in 

California archaeology. 

The archaeological record of late Holocene California suggests considerable use 

of relatively high-cost resources and a general decline in overall foraging efficiency when 

efficiency is measured by changes in the relative abundance of high return and low return 

resources. Increasing reliance on acorns that are expensive to process (Basgall 1987), 

                                                 

1 Reprinted with permission of Maney Publishing. R. Kelly Beck (2009) The 

Molecular Genetics of Prey Choice: Using Ancient DNA to Infer Prehistoric Population 

Histories. California Archaeology 2(1):57-87.  Used with kind permission from Maney 

Publishing.  http://www.maneypublishing.com/journals/cal and 

http://www.ingentaconnect.com/content/maney/cal  
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increased use of small fishes in the northern Sacramento Valley (Broughton 1994a), and 

occupation of high elevation sites in the White Mountains of eastern California (Bettinger 

1991; Broughton and Grayson 1993) have all been suggested as examples of declining 

foraging efficiency and resource intensification. The zooarchaeological implications of 

resource intensification have been explored most completely by Broughton (1994b, 1997, 

1999, 2002, 2004a) using a large faunal assemblage recovered from the Emeryville 

Shellmound found on the eastern margin of the San Francisco Bay. Evidence in support 

of the expected temporal declines in foraging efficiency associated with resource 

intensification come from examination of patterns in age composition, damage 

morphology and bone processing, and body part representation; however, the best 

evidence for resource intensification comes from inferences suggesting declines in prey 

encounter rates drawn from taxonomic relative abundance indexes. 

Second, archaeologists interested in subsistence change in California have 

inferred a marked increase in foraging efficiency during the Middle Holocene when 

efficiency is measured as an increase in the relative abundance of large versus small 

game. This apparent increase in foraging efficiency occurs at a time of inferred 

population growth and seems to contradict simple expectations of the prey choice model 

from optimal foraging theory that expect, all other things equal, decreasing foraging 

efficiency in contexts with increasing forager population size. Recently, two opposing 

explanations for this Middle Holocene foraging pattern have been proposed. The first is 

termed Prestige Hunting and is predicated on the apparent divergent fitness related goals 

of men and women (Hildebrandt and McGuire 2002, 2003; McGuire and Hildebrandt 

2005). The second reconsiders the simple foraging efficiency expectation of the prey 
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choice model in the context of inferred increases in overall large game abundance 

resulting from Middle Holocene climate change (Broughton and Bayham 2003; Byers 

and Broughton 2004). 

Finally, California archaeologists continue to examine the effects of prehistoric 

foraging practices on the distribution and population dynamics of targeted prey species 

(Rick and Erlandson 2009). The effect of prehistoric hunting on prey population 

dynamics has been perhaps best explored among coastal California’s marine mammals. 

In an influential set of papers, Hildebrandt and Jones (1992; Jones and Hildebrandt 1995; 

Jones et al. 2004) suggest that prehistoric hunting pressure dramatically affected marine 

mammal populations in two critical ways. First, they argue that hunting pressure forced 

large bodied, migratory marine mammals from onshore haul-outs and rookeries to more 

distant off shore locations. Subsequently, the increased cost to prehistoric foragers 

associated with pursuit of these animals encouraged hunting of smaller bodied, resident 

marine mammals drastically affecting their populations. Additional research suggests that 

the patterns inferred by Hildebrandt and Jones exhibit considerable spatial and temporal 

variability (Lyman 1989, 1995, 2003). Moreover, changes in sea surface temperature 

have been suggested as key to understanding prehistoric marine mammal hunting patterns 

(Arnold 1992; Colten 1995; Colten and Arnold 1998). Porcasi et al. (2000), using a well 

dated marine mammal assemblage from the southern Santa Barbara Channel Islands, 

evaluate these hypotheses and do not find clear, unambiguous support for the falsification 

of any one model. Patterns of marine mammal use on the California coast appear to be 

the result of a number of complex processes. Understanding the role of prehistoric 

foragers in structuring ecosystems is vital to conservation biology and recognition of the 
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potential for zooarchaeological data to inform such issues is emerging (Broughton 2004b; 

Kay and Simmons 2002; Lauwerier and Plug 2004; Lyman 1996, 2006; Lyman and 

Cannon 2004; Murray 2008; Steadman 1995). 

The nexus of variables that influence relationships between prehistoric hunters 

and their prey makes the development of explanatory models a daunting proposal. For 

more than two decades California archaeologists have made significant progress in 

understanding these relationships by using simple foraging models that explore 

interactions between a few select variables. The three research themes outlined here all 

make extensive use of such models from Human Behavioral Ecology and each 

unambiguously point to the need for detailed prey population histories. Fortunately, a 

record of population history is maintained within the genome of each prey animal and 

researchers are now poised to access this information using established ancient DNA 

laboratory methods coupled with powerful theory from population genetics. This article 

explores the potential for molecular zooarchaeology to develop critical population 

histories for prehistoric prey taxa. 

2.1 Inferring Demographic History: Taxonomic Relative 

Abundance 

A central issue to archaeologists exploring prehistoric subsistence systems is the 

rubric of decisions surrounding the selection of specific prey items from the suite of 

available resources. A nexus of variables including available extraction technology, prey 

demographic and behavioral characteristics, and prey abundance and distribution across 

space and through time all conspire to affect prey choice decisions. To gain a full 

understanding of those decisions, researchers must estimate prehistoric prey abundance. 
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Taxonomic relative abundance measures have a long history in zooarchaeological 

scholarship as a useful method for summarizing and comparing faunal assemblages. 

Beginning in earnest during the early 1980s, taxonomic relative abundance indexes have 

increasingly been used to develop inferences about diachronic changes in prehistoric prey 

population size. The rationale for using taxonomic relative abundance as a proxy measure 

of prey population size is grounded in the prey choice model of optimal foraging theory 

(Stephens and Krebs 1986) and was first outlined by Bayham (1979, 1982). 

The prey choice model was developed to address the following question: which 

prey items, given a suite of available resources, is a forager expected to pursue when 

encountered? According to the model, individual prey items are only pursued when 

encountered if the return for attacking the item does not fall below the average return for 

all available resources. The prey choice model assumes all potential prey items are 

randomly distributed, are encountered sequentially, and that time spent searching for prey 

is mutually exclusive from time spent processing acquired prey. In practice, all potential 

prey items are ranked by post-encounter profitability with the general expectation that the 

highest ranking items will always be taken when encountered and lower ranking items 

taken or ignored depending on the expected rate of encounter with higher ranked items. 

The key implication of this model for taxonomic relative abundance indexes as proxy 

measures for prey population size is that prey items are not taken based upon their 

abundance in any given foraging context, but are taken or not depending on the expected 

rate of encounter with higher profitability prey. It follows that an index measuring the 

abundance of a high ranking prey item relative to a lower ranking prey item is an estimate 

of the encounter rate with the higher ranking item. If encounter rate is a function of 
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population size, then changes in encounter rates with high ranking prey indicates changes 

in the population size of that taxon. This rationale has been employed by a number of 

scholars in a myriad of contexts to develop inferences regarding foraging efficiency 

(Bayham 1979, 1982; Broughton 1994a, 1994b, 1997; Cannon 2003; Janetski 1997; 

Nagaoka 2002b) and resource depression (Butler 2000, 2004; Cannon 2000; Nagaoka 

2002a; Ugan 2005). 

In spite of its many successes, taxonomic relative abundance measures are subject 

to a number of biasing agents common to archaeological and paleontological research. 

Even in the best of recovery contexts, any archaeological faunal assemblage is an 

incomplete reflection of the original burial assemblage that is only a subset of the actual 

animal population. Some elements survive burial while others are destroyed through bone 

density mediated attrition (Lyman 1984, 1994). Excavation methods affect which bones 

are actually discovered during recovery (Cannon 1999). Moreover, not all recovered 

bones can be taxonomically identified (Driver 1991; Gobalet 2001). Finally, recent 

research has questioned the methods and assumptions commonly employed to estimate 

prey rank in applications of the prey choice model (Bird et al. 2009). Careful 

zooarchaeological analysis can and oftentimes does minimize the effects of these biasing 

agents; nonetheless, independent means of estimating prey population size histories are 

clearly warranted. 

2.2 Inferring Demographic History: The Population Size – Genetic 

Diversity Relationship 

Genetic diversity in natural populations is affected by a variety of genetic and 

demographic processes (Amos and Harwood 1998). Diversity increases in populations 
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through mutation and the in-migration of individuals from other populations. Diversity is 

lost through natural selection, random genetic drift, and out-migration of individuals from 

a population. The social structure of a population may affect diversity, and a host of 

additional factors structure patterns of genetic variation. When a locus is selectively 

neutral, that is, it does not affect the phenotype of an individual, then patterns of change 

are best understood within the framework of Kimura’s neutral theory (Kimura 1983). 

Hartl and Clark (1997:316) argue that the neutral theory, “models the fate of mutations 

that are so nearly selectively neutral in their effects that their fate is determined largely 

through random genetic drift.” In practice, the neutral theory makes strong predictions 

about the relationship between genetic diversity and the size of a population. 

At selectively neutral loci, genetic variation is primarily conditioned by two 

factors: mutation and genetic drift. Variation is introduced into a population by mutation 

and is removed by genetic drift. For any given population size, an equilibrium is reached 

between the subtractive forces of genetic drift and the additive forces of mutation. This 

theoretically derived relationship is described by: 

  𝐻̂ =
4𝑁𝑢

1+4𝑁𝑢
 2.1 

where 2N is the number of genes in a population and u is the mutation rate given as the 

number of substitutions per site per generation (Gillespie 1998:28). (Note that referring to 

the number of genes in a population by the term 2N is standard population genetics 

notation and in the above equation 2Nu + 2Nu = 4Nu.) If genetic mutation rates remain 

relatively constant across generations, then the equilibrium heterozygosity derived from 

theory is a product of population size. For example, assuming a mutation rate of 5.25 X 

10-7 substitutions/site/generation that was estimated from extant southern elephant seal 
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(Mirounga leona) populations (Slade et al. 1998), a population of 2N = 50000 genes has 

an expected equilibrium heterozygosity of 𝐻̂ = .0499. A population of 2N = 5000 has an 

expected equilibrium heterozygosity of 𝐻̂ = .0052, and a population of 2N = 500 gives 

an equilibrium heterozygosity of 𝐻̂ = .0005. As the size of a population decreases, so too 

does the expected genetic diversity within that population. This relationship showing the 

decline in expected genetic diversity with declining population size is shown in Figure 

2.1. 

The theoretically derived relationship between population size and genetic 

diversity has been subject to a number of empirical tests. Among the earliest of these tests 

was an evaluation conducted by Nei and Graur (1984). They accumulated published data 

from 77 species that had estimated heterozygosities of 20 or more protein loci and for 

which either a reliable population size was known or could be easily estimated. These 

data yielded a highly significant correlation (Nei and Graur 1984:82) and provided 

substantial support for the hypothesized relationship between genetic diversity and 

population size. This result is even more surprising given that the measures of 

heterozygosity used by Nei and Graur were derived from allozyme loci and it seems 

intuitively unlikely that these loci that code for enzyme variants are genuinely selectively 

neutral. 

Frankham (1996) provides a second empirical evaluation of the expected 

relationship between heterozygosity and population size. In this paper, Frankham 

develops a series of hypotheses which should be true if the genetic variation-population 

size model is correct. Again, data are taken from previously published sources and come 

from 387 populations of 24 species including such disparate organisms as meadow sage 
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(Salvia pratensis), the common fruit fly (Drosophila melanogaster), and bighorn sheep 

(Ovis canadensis) (Frankham 1996:1503). The data marshaled by Frankham are 

consistent with several related hypotheses and yield support for the relationship between 

diversity and population size. These data, for example, find that measures of genetic 

diversity are reduced in small, insular populations relative to large populations of the 

same taxon. Further, Frankham’s data find that populations which live in small, 

constrained habitats have less diversity than populations with larger ranges. 

A third empirical test of the relationship between diversity and population size 

modeled by neutral theory comes from Montgomery et al. (2000). These researchers 

sought to test the expected relationship by experimentally manipulating the sizes of 

several Drosophila melanogaster populations. Twenty-three populations with sizes of 25, 

50, 100, 250, and 500 individuals were raised for 50 generations. Genetic diversity was 

examined at seven allozyme loci, chromosome II inversions, and morphological 

mutations. These data showed that diversity was lost at a greater rate in smaller 

populations than in larger populations. 

Kimura’s neutral theory suggests a strong relationship between genetic diversity 

and population size that has been empirically verified by several researchers. It follows 

that diachronic change in genetic diversity at selectively neutral loci reflects diachronic 

change in the size of a population. By assessing temporal changes in genetic diversity 

from well dated faunal assemblages, zooarchaeologists can begin to infer prehistoric prey 

population histories independent of the complications of taxonomic relative abundance 

indexes. 
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2.3 Assessing Genetic Diversity with Ancient DNA 

The northern elephant seal (Mirounga angustirostris) currently ranges throughout 

the North Pacific, from Baja, Mexico, northward to the Gulf of Alaska and Aleutian 

Islands. Northern elephant seals were hunted extensively for their oil during the middle of 

the 19th century. Indeed, at one point it was believed that this species of seal had been 

hunted to extinction. Hoelzel et al. (1993:443) recount a report from a late 19th century 

hunting party which encountered a small group of eight seals on Guadalupe Island off the 

central Baja coast, and proceeded to kill seven of the animals. At the turn of the century a 

single population of about 20 seals was found on Guadalupe Island. Legislative control of 

northern elephant seal hunting by both Mexican and the United States governments in the 

early 1920s allowed this species to expand in numbers and recent estimates suggest that 

more than 150,000 animals exist (The Marine Mammal Center 2002 

[http://www.tmmc.org]). 

The northern elephant seal was the first animal of concern for conservationists 

that was studied with molecular methods to determine the genetic effects of such a 

severe, historically documented population bottleneck. In the early 1970s, Bonnell and 

Selander (1974) examined protein variation in blood samples of 159 seals from five 

different rookeries. These researchers conducted starch-gel electrophoresis analysis of 21 

proteins presumptively encoded by 24 gene loci (Bonnell and Selander 1974:908) and 

found no variation. These results were compared with allozyme diversity for southern 

elephant seals (Mirounga leonine) and with comparable data from 22 additional 

vertebrate taxa (Bonnell and Selander 1974:908). Southern elephant seals were subject to 

considerable 19th century hunting but not to the degree of its northern counterpart and 
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historical records do not suggest the population crisis evident for northern elephant seals. 

This is reflected by southern elephant seal protein diversity.  In one study cited by 

Bonnell and Selander, five polymorphisms among 18 proteins in 42 individuals were 

found. The 22 additional vertebrate taxa were selected to provide a general vertebrate 

comparison and exhibited between 10 to 20 % polymorphic loci. These comparisons 

suggest that northern elephant seals are severely depauperate with respect to protein 

diversity when compared with a closely related taxa and also when compared with a 

general vertebrate sample. 

Significant advances during the 1980s and early 1990s in molecular genetics 

methods (i.e., PCR) allowed researchers access to genetic information at the level of 

individual DNA molecules. With such technical advances in hand, researchers began to 

directly assay DNA variability in a number of animals such as the northern elephant seal. 

Rus Hoelzel and colleagues (Hoelzel et al. 1993) examined post-bottleneck genetic 

diversity of the northern elephant seal with both DNA and allozyme data from blood 

samples of 67 seals from two locations. These researchers evaluated allozyme diversity 

for 41 polymorphic protein loci and DNA variation from sequences of both the 

mitochondrial control region and the mitochondrial 16S RNA gene. Again, no allozyme 

diversity was observed. Sequences of the control region showed three polymorphic sites 

and two distinct haplotypes. Mean pairwise differences among the 16S RNA gene 

sequences showed markedly decreased diversity for northern elephant seals when 

compared with pairwise differences of the same gene from several southern elephant 

seals.  

These studies by Bonnell and Selander and by Hoelzel and colleagues were able 
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to demonstrate a reduction in genetic diversity resulting from a historically documented 

population bottleneck by comparing the diversity of modern, living animals from a taxon 

that experienced a bottleneck with taxa that had not. These studies were not, however, 

able to directly assess the severity of the northern elephant seal bottleneck event because 

they did not compare pre-bottleneck genetic diversity with post-bottleneck diversity of 

the affected population. A direct assessment of the effects of a population bottleneck can 

only be obtained with diversity data that both predates and postdates the bottleneck event. 

This is the utility of ancient DNA. 

In the late 1990s, a research group (Weber et al. 2000) undertook efforts to 

estimate pre-bottleneck genetic diversity of northern elephant seals by assessing genetic 

diversity with ancient DNA. Diana Weber and colleagues examined genetic diversity in 

these seals by sequencing a 300 base pair segment of the mitochondrial control region. 

These researchers were able to genotype this segment from 11 bones and from 111 tissue 

samples. Bone samples ranged in age from ~1000 B.P. to 30 B.P. and were obtained from 

California’s San Miguel Island and San Nicolas Island; and from Guadalupe Island, 

Mexico. Specific dates for these bone samples were not provided. Tissue samples were 

taken from museum skins collected by C. H. Townsend in 1892 and blood samples were 

taken from seals living on the Channel Islands of southern California. These bone 

specimens, tissue, and blood samples cover pre-bottleneck, circa-bottleneck, and post-

bottleneck periods. Weber and colleagues found only two distinct mitochondrial control 

region haplotypes in post-bottleneck specimens, supporting the observations made by 

Hoelzel et al. (1993). Circa-bottleneck samples likewise only exhibited two haplotypes. 

In contrast, the five bones from pre-bottleneck contexts exhibited four distinct 
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mitochondrial control region haplotypes. Of five pre-bottleneck specimens, four 

exhibited distinct mitochondrial DNA haplotypes. Even with a very small pre-bottleneck 

sample, using ancient DNA, these researchers were able to demonstrate a substantial loss 

of genetic diversity across a historically documented population bottleneck event. The 

dramatic decline in northern elephant seal population size as a result of 19th century 

hunting is clearly written in the genetic diversity of seals examined by Weber. 

The northern elephant seal, hunted nearly to extinction during the late 19th 

century and with an amazing 20th century rebound, provides an example of conservation 

genetics at work and demonstrates the utility of ancient DNA to addressing issues of 

changing population size. Despite the impressive return in numbers of the northern 

elephant seal, this species maintains excessively low levels of genetic diversity. 

Importantly, the research summarized here clearly demonstrates the potential utility of 

ancient DNA techniques to examining diachronic population history. 

2.4 Conclusion 

Some of the earliest problem oriented research to use ancient DNA focused on 

anthropological issues (e.g., Hagelberg and Clegg 1993) and it continues to play a 

significant role in biological anthropology. Still, ancient DNA research has not figured 

prominently in zooarchaeology despite its clear potential to address relevant issues. Only 

recently have the possibilities of molecular zooarchaeology begun to be explored (e.g., 

Barnes et al. 1998; Barnes et al. 2006; Cannon and Yang 2006; Matisoo-Smith and Allen 

2001; Matisoo-Smith and Robins 2004; Moss et al. 2006; Nicholls et al. 2003; Speller et 

al. 2005; Yang et al. 2004; Yang et al. 2005). Here, I have outlined a number of current 

issues in California prehistory that might be well served by a molecular zooarchaeology 
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approach. Research questions that require detailed prey population histories are 

particularly well suited to this methodology that more directly estimates prey population 

size and is not affected by common zooarchaeological taphonomy issues. 

It is important to note that the molecular methods for estimating prehistoric prey 

population size outlined here provide a measure of changing population size only and do 

not explain why such changes occur. Research in the biological sciences using ancient 

DNA has documented declines in genetic diversity for many species for which historic 

records suggest substantial population declines (see Leonard 2008: Table 1); but with 

respect to efforts to infer population size changes in the absence of such historic 

documentation, this method remains largely underutilized. Still, the utility of this 

approach to documenting changes in population sizes is well documented (see Leonard 

2008). 

In applying this ancient DNA approach to estimating prey population size, several 

sampling issues need to be carefully considered. Faunal assemblages need to be well 

characterized with confident taxonomic and ancillary (e.g., specimen side and age) data. 

These data are important to avoid selecting two specimens from the same individual for 

molecular assay. Moreover, the number of individuals sampled needs to be sufficiently 

large so as to allow confidence in inferences of population size change or stasis. As with 

all statistical sample size questions, in ancient DNA research there is no magic sample 

size number. The size of an adequate sample will depend largely on the amount of 

variation initially present in a population, the expected degree of change, and the 

distribution of variation in each population. Finally, to facilitate meaningful aggregation 

of specimens into temporally defined populations, assemblages must come from well 
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dated contexts or dates from individual specimens must be obtained. 

Population genetic theory provides a detailed description of the relationship 

between population size and genetic diversity that has been supported through a number 

of independent empirical studies. Current ancient DNA laboratory methods provide an 

instrument for directly examining diachronic trends in genetic diversity. Together, these 

tools provide a powerful mechanism for evaluating prehistoric prey population histories 

independent of many problems common to traditional archaeological research. The 

emerging field of molecular zooarchaeology holds the promise to contribute significantly 

to our collective understanding of the prehistory of California. 
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Figure 2.1.  The relationship between genetic diversity and population size where Ĥ is the 

equilibrium heterozygosity for 2N genes in a population with a mutation rate u = 5.25 X 

10-7. 



 

 

 

 

 

 

 

CHAPTER 3 

 

 

ANCIENT DNA EVIDENCE FOR LATE HOLOCENE 

POPULATION STABILITY OF GUADALUPE FUR 

SEALS, SAN MIGUEL ISLAND, CALIFORNIA 

3.1 Introduction 

Holocene variation in the archaeological abundance of marine mammal remains 

and the relative roles that human hunting and climatic change may have played in 

structuring that variation has been debated among eastern Pacific archaeologists for 

decades.  Far reaching implications for related changes in human behavior and lifeways 

have also been derived from patterns in pinniped abundances including the development 

of ocean-going watercraft technology and the emergence of social and economic 

complexity (Ames 1994; Butler and Campbell 2004; Colten and Arnold 1998; 

Hildebrandt and Jones 1992, 2002; Jones and Hildebrandt 1995; Moss and Losey 2011; 

Rick 2007). While some analysts have focused on the relative importance of pinnipeds 

and other marine mammals relative to other major subsistence resource classes (e.g., 

terrestrial mammals, fish, plant resources, shellfish), others have focused on temporal 

trends among different marine mammal taxa. 

In an initial exploration, for example, Hildebrandt and Jones (1992, 2002; Jones 

and Hildebrandt 1995; Jones et al. 2004) examined temporal patterns in several marine 

mammal faunal assemblages that indicated a temporal shift from the use of relatively 
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easy to obtain large-sized, migratory taxa that breed in terrestrial contexts during initial 

occupations to more costly aquatic breeders during the later Holocene.  These scholars 

suggest that the marine mammal hunting pattern described effected a prehistoric “tragedy 

of the commons” involving overexploitation of the high-ranking migratory breeders with 

concomitant use of more costly and smaller-sized resident marine mammal resources. 

Lyman (1995, 2003) questions the empirical support and universal effects of such 

hunting and suggests instead considerable spatial and temporal variation in observed 

patterns.   

Concerning variation in the overall importance of marine mammals, relative to 

other resource classes, Colten and Arnold (1998) suggest that observed variation in 

marine mammal representation from archaeological assemblages reflects climate-driven 

variation in general marine productivity.  Examining a detailed climate record for coastal 

southern California and employing the relationship between climate and marine 

productivity, these researchers infer a diachronic population history for marine mammals 

that is compared with available faunal assemblages from Channel Island archaeological 

sites and find that marine mammal abundance varies little over the long-term but does 

decrease significantly during a period of warmer ocean temperatures between about 800 – 

650 B.P.  Though finding congruence between their inferred marine mammal population 

history and observed variation in archaeological faunal assemblages, recent fine-scale 

paleoclimate research (Kennett and Kennett 2000; Kennett and Ingram 1995) has brought 

to question the climate record initially used by Colten and Arnold. 

Marine mammal assemblages from California’s northern Channel Islands have 

figured prominently in this debate.  Available evidence summarized for the northern 
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Channel Islands in general by Kennett (2005) and for San Miguel Island specifically by 

Rick (2007) suggests that marine mammals—especially Guadalupe fur seals 

(Arctocephalus townsendi)—were consistently harvested during most of the early and 

middle Holocene but their abundance relative to all other faunal resources peaked during 

the late Holocene at roughly 1,500 years ago.  A number of alternative explanations for 

the observed pattern on San Miguel Island have been offered and Kennett (2005:222-223) 

cogently summarizes these arguments.  First, early and Middle Holocene climate 

conditions may have prohibited the establishment of island rookeries.  Second, extensive 

evidence for early and Middle Holocene marine mammal use may have been largely 

restricted to the western end of San Miguel Island, where these animals are primarily 

found today, and these sites might have been inundated during post-Pleistocene sea level 

changes.  Third, late Pleistocene and early Holocene aboriginal marine mammal use may 

have limited later populations to offshore rocks and smaller islands where the cost of 

pursuit may have outweighed the potential benefits.  Finally, early occupation of the 

islands may have simply been focused on areas far removed from extant marine mammal 

population centers with high associated transport costs.  Clearly, these potential 

explanations need not be mutually exclusive and each may have contributed to the 

observed patterns of marine mammal use on San Miguel Island.  Equally clear is the need 

for detailed population histories to begin to sort-out the relative contributions of each 

factor on observed archaeological patterns. 

Zooarchaeological methods to estimate prey population histories often employ 

one or more measures of taxonomic relative abundance (Bayham 1979; Broughton 

1994a, b, 1999, 2004; Broughton et al. 2010; Butler 2000; Butler and Campbell 2004; 
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Byers and Broughton 2004; Byers, et al. 2005; Cannon 2000, 2003; Ugan 2005).  Such 

measures are, however, subject to many of the biases common to archaeological research 

such as: incomplete archaeological recovery of specimens, post-depositional taphonomic 

processes, and unidentified or misidentified specimens.   

Given the significance of accurate long-term population histories to 

zooarchaeological inferences, it is important to explore methods that facilitate 

independent evaluation of archaeological patterns identified using relative abundance 

measures.  Fortunately, a record of population history is maintained by an organism’s 

genome.  Genetic diversity in natural populations is affected by a host of variables 

including migration, geographic population structure, selective mating, and natural 

selection, among countless others.  At selectively neutral loci that are invisible, or nearly 

so, to the effects of selection, genetic diversity is influenced most extensively by 

population size and genetic mutation rate.  This relationship forms the backbone of 

Kimura’s neutral theory of molecular evolution (Kimura 1983) and has been subject to 

extensive empirical tests (Frankham 1996; Montgomery et al. 2000; Nei and Graur 1984).  

In effect, we should expect to see greater genetic diversity in large populations and less 

diversity in small populations.  It follows that diachronic change in genetic diversity at 

selectively neutral loci reflects diachronic change in the size of a population. By 

assessing temporal changes in genetic diversity from well dated faunal assemblages, 

zooarchaeologists can infer prehistoric prey population histories independent of the 

complications of taxonomic relative abundance indexes (Beck 2009; Broughton et al. 

2013; de Bruyn et al. 2011). 

Here, we take advantage of the well-supported relationship between genetic 
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diversity and population size to estimate diachronic change in the late Holocene 

population history of the most abundant and important marine mammal resource 

recovered from archaeological sites on San Miguel Island— Guadalupe fur seal 

(Arctocephalus townsendi).  Temporal patterns of genetic diversity observed from ancient 

DNA sequences obtained from 39 total fur seal DNA sequences and 28 fully replicated 

and confirmed sequences indicate considerable genetic variation that is consistent 

throughout the late Holocene.  This long-term stability in genetic diversity suggests that 

Guadalupe fur seal populations from San Miguel Island were fairly substantial and 

remained stable for much of the late Holocene. 

3.2 Late Holocene Guadalupe Fur Seal Population History 

Guadalupe fur seals are the most abundant of seven (non-cetacean) marine 

mammals commonly identified at archaeological sites in the northern Channel Islands 

region (Table 3.1).  Historically, the geographic range of Guadalupe fur seals extended 

from the Revillagigedo Islands, Mexico northward to the San Francisco Bay area of 

California (Belcher and Lee 2002).  It is likely, however, that their prehistoric range was 

considerably greater as specimens have been identified by Etnier (2002) at the Ozette site 

in northern Washington.  Although many pinniped species are seasonally migratory, 

Guadalupe fur seals show strong site fidelity and are year-round residents at landings 

(Peterson et al. 1968).  Guadalupe fur seals eat a variety of bony fish and squid are also a 

common component of their diets.  Foraging trips are made to open ocean and can be just 

a few days to weeks in duration (Gallo-Reynoso et al. 2008).  Such foraging trips can 

take an individual to feeding grounds immediately adjacent to landings or can range as 

far as 2,000 – 3,000 kilometers (Gallo-Reynoso et al. 2008). 
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Guadalupe fur seals are sexually dimorphic with males averaging 160 – 170kg 

and females 40 – 50 kg, and are polygynous with a single territorial male maintaining a 

harem of roughly 6 females (Belcher and Lee 2002).  Wickens and York (1997:258) note 

that the birthing season for all fur seal species is during the summer months, typically 

between May and early August.  Observations made by Peterson et al. (1968), however, 

place Guadalupe fur seal pupping during the months of May, June, and July.  Females 

typically give birth to a single pup that is nursed for roughly 9 – 11 months.  Guadalupe 

fur seal females mate shortly postpartum and give birth to a new pup during the next 

birthing season. 

Many species of marine mammals were heavily impacted by fur trade hunting in 

the 19th and early 20th centuries including Guadalupe fur seals.  Numbers were so 

severely diminished that no sightings of this species were reported from 1892 until 1926 

when a population of no more than 50 individuals was found (Belcher and Lee 2002:4).  

Hubbs (1956) reports that one of the two fishermen who found this small population in 

1926 returned in 1928 and killed most of the herd.  As expected, the near extinction of 

Guadalupe fur seals dramatically affected genetic diversity.  To assess the genetic 

consequences of historic hunting, Weber and colleagues (Weber et al. 2004) compiled 

mtDNA control region sequences for 32 modern seals to compare with 26 homologous 

sequences obtained from archaeologically recovered Guadalupe fur seals from 

California’s Point Mugu shellmound and from San Nicolas Island.  Their analysis 

demonstrated a considerable loss of genetic diversity in Guadalupe fur seals across the 

historically documented population bottleneck caused by 19th century fur sealing.  

Comparisons between pre-bottleneck and post-bottleneck populations indicated 



38 

 

significant losses in number of unique haplotypes (pre-bottleneck = 25; post-bottleneck = 

7) as well as substantial reductions in the proportion of variable sites (ppre = 0.282; ppost = 

0.057), haplotype diversity (hpre = 0.997±0.012; hpost = 0.798±0.038), and nucleotide 

diversity (πpre = 0.055±0.004; πpost = 0.025±0.003) (Weber et al. 2004:151). 

The regional prehistoric demographic history of Guadalupe fur seals can be 

estimated from available zooarchaeological relative abundance data.  The rationale for 

using such data to reconstruct population histories is drawn from the prey choice model 

(Stephens and Krebs 1986) and has been used extensively by zooarchaeologists (Bayham 

1979, 1982; Broughton 1994a, b, 1997; Cannon 2003; Janetski 1997; Nagaoka 2002).  In 

short, the relative frequency of a highly ranked prey item in an assemblage is expected to 

more-or-less track the rate at which a forager encounters that prey item, and encounter 

rate is expected to be a proxy measure for overall abundance and regional population 

size.  Because Guadalupe fur seals are a large, highly valued prey item, they are expected 

to have been pursued whenever encountered and their frequency in an archaeological 

assemblage should thus closely track population size.  As such, Guadalupe fur seal 

relative abundance histories from late Holocene Channel Island archaeological sites 

should provide an ordinal index of their regional demographic history. 

Archaeological investigations on California’s San Miguel Island have identified 

nearly 700 sites that reflect use of the island from the terminal Pleistocene, through the 

Holocene to historic times (Kennett 2005; Rick 2007).  In this study, we use Guadalupe 

fur seal assemblages recovered through archaeological excavation at four sites on 

California’s San Miguel Island (Figure 3.1): CA-SMI-1, CA-SMI-525, CA-SMI-528, and 

CA-SMI-602.  Marine mammal taxonomic abundance data from these sites are first used 
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to establish a local Guadalupe fur seal population history and then this history is more 

fully assessed using several of these specimens through genetic analysis of ancient DNA. 

Site CA-SMI-1 is an inland village site located on an elongated knoll overlooking 

Cuyler Harbor on the northeastern coast of the island (Erlandson 1991).  Available 

radiocarbon dates suggest that this is a multicomponent site with occupation during the 

middle Holocene and the middle-late Holocene transition (Kennett 1998, 2005; Rick 

2007).  Site CA-SMI-525 is a dense shell midden located on the western edge of San 

Miguel Island (Rick 2007).  Radiocarbon dating at this site indicates that this is a 

multicomponent site with occupation during the early and later late Holocene (Kennett 

1998).  Site CA-SMI-528 is a large shell midden located along the crest of an eroding 

dune immediately northeast of the Point Bennett pinniped rookery on the southeastern 

margin of the island (Rick 2007; Walker et al. 2000).  Radiocarbon dates from this site 

suggest both middle and late Holocene occupation (Kennett 1998).  Site CA-SMI-602 is a 

large shell midden with a residential structure that is likely part of a larger village 

complex (Kennett 2005; Rick 2007; Walker et al. 2000).  This site is located in the midst 

of the Point Bennett pinniped rookery found on the southeastern margin of the island.  

The radiocarbon record from this site suggests a single late Holocene occupation that 

extended to early historic times.   

The marine mammal assemblages from these four sites include 331 specimens 

identifiable to or below the family level that could be assigned to one of three broad 

temporal periods (Table 3.2).  These periods are: 1) early (6770 – 1800 cal B.P.), 2) 

middle (1800 – 1200 cal B.P.), and 3) late (1000 – 400 cal B.P.). Although the earliest of 

these periods extends back well into the Middle Holocene, the specimens considered here 
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are late Holocene in age and are from contexts that date to no more than about 4000 cal 

B.P. Specimens were then characterized as either a migratory breeder or a resident 

breeder following Hildebrandt and Jones (1992).  To estimate the population history of 

Guadalupe fur seals from these assemblages, three separate relative abundance indexes 

were derived.  The first, Guadalupe fur seal (GFS) index considers the relative abundance 

of Guadalupe fur seals to all identifiable marine mammals.  Guadalupe fur seals are 

characterized as a migratory breeder by Hildebrandt and Jones (1992) and the next, the 

migratory breeder (MB) index, calculates the relative abundance of migratory breeders 

relevant to all migratory and resident breeders.  The last, the Guadalupe fur seal as 

migratory breeder (GFSMB) index considers only the relative abundance of Guadalupe 

fur seals relevant to migratory breeders only. 

Temporal variation in any of these indexes is expected to reflect variation in a 

prehistoric forager’s encounter rate with Guadalupe fur seals, and by inference provide a 

proxy measure of their overall abundance.  Relative abundance indexes for each temporal 

period at each San Miguel Island site are given in (Table 3.3).  Using Cochran’s Chi-

square test of linear trends, no significant linear trends are evident in the relative 

abundance of Guadalupe fur seals relative to all other marine mammals (X2
trend = 1.03, p 

= 0.31) , migratory relative to resident breeders (X2
trend = 0.01, p = 0.95), or Guadalupe 

fur seals relative to other migratory breeders (X2
trend = 0.86, p = 0.35).   

Taxonomic relative abundance measures designed to track temporal changes in 

Guadalupe fur seal population size from sites CA-SMI-1, CA-SMI-525, CA-SMI-528, 

and CA-SMI-602 do not find any appreciable variation across these three broad temporal 

periods and suggest that population size remained fairly constant across the late Holocene 
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on San Miguel Island. So while marine mammal resources may have varied in their 

importance relative to other resource classes, the available data do not suggest any 

temporal trends in the relative abundance among different marine mammal taxa. Insofar 

as these zooarchaeological relative abundance measures accurately reflect the late 

Holocene Guadalupe fur seal demographic history, it follows that genetic diversity data 

derived from samples of these materials should also show temporal stability. 

3.3 Materials and Methods 

3.3.1 Guadalupe Fur Seal Assemblages 

 Sixty-seven individual specimens from marine mammal assemblages recovered 

from CA-SMI-1, CA-SMI-525, CA-SMI-528, and CA-SMI-602 were selected for genetic 

analysis.  Individual specimens were identified by grouping each site’s Guadalupe fur 

seal assemblage by excavation unit and then by level/stratum and estimating the 

Minimum Number of Individuals (MNI) represented by each subdivided assemblage.  

MNI estimates were made by considering the specific elements represented and the side, 

sex, and ontogenetic age of each element. 

3.3.2 DNA Extraction, Amplification, and Sequencing 

Approximately 0.2 g – 0.7 g of bone was removed from each specimen and the 

surfaces of samples were decontaminated by soaking in 10% bleach for 10 – 15 minutes 

followed by thorough rinsing with ddH2O.  Samples were then digested in 5 ml 

proteinase K buffer (0.5 M EDTA [pH 8.0], 250 μg / ml proteinase K) overnight at 56°C.  

Next, 0.5 ml of the digestion supernatant was added to 1.5 ml Dehybernation Solution A 

(MP Biomedicals) and 0.4 ml Ancient DNA GLASSMILK (MP Biomedicals) and 

incubated for 3 hours at room temperature.  DNA was then extracted and cleaned using a 
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GENECLEAN for Ancient DNA kit (MP Biomedicals) following the manufacturers 

protocol. 

Two microliters of extract was used as template in a 25 μl PCR reaction with 2 U 

AmpliTaq Gold (Applied Biosystems), 1X GeneAmp PCR Gold Buffer (Applied 

Biosystems), 2X BSA, 2 mM MgCl, 200 μM each dNTP, and 0.2 μM each PCR primer.  

Primers targeted a 201 bp fragment on the 3’ end of the 1107 bp mitochodiral D-loop 

(GFS-L87: 5’ – CGTCGTGCATTAGTGGTTTG – 3’ and GFS-R287: 5’ – 

CGGAGCGAGAAGAGGTACAC – 3’) and included 161 bp of nonpriming sequence.  

Primers for this project were designed using Primer3 and a Guadalupe fur seal sequence 

available on the NCBI GenBank database (GenBank # NC_008420; REGION: 

15465..16571).  An initial denaturation and enzyme activation for 5 minutes at 95°C was 

followed by 45 cycles of 95°C (45 seconds), 55°C (45 seconds), and 72°C (45 seconds) 

with a final extension at 72°C for 5 minutes.  PCR products were then visualized on 

SYBR Safe DNA Gel Stain (Life Technologies) stained 2-3% agarose gel with an 

appropriate size standard.  PCR products without evidence for contamination were 

cleaned with an UltraClean PCR Clean-Up Kit (Mo Bio) per manufacturer’s protocol and 

then submitted for direct bidirectional sequencing to the University of Utah Core 

Sequencing Facility. 

3.3.3 Contamination Control and Sequence Authentication 

Contamination of PCR reactions by exogenous DNA templates is one of the most 

serious problems confronting aDNA researchers (Gilbert et al. 2005; Gilbert et al. 2006; 

Kaestle and Horsburgh 2002; O'Rourke et al. 2000; Paabo et al. 2004; Willerslev and 

Cooper 2005; Yang and Watt 2005).  The aDNA laboratory in the Department of 
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Anthropology at the University of Utah maintains a series of protocols designed to 

minimize the potential for contamination in aDNA research.  Wherever possible, each 

laboratory process (i.e., extraction, PCR set-up, post-PCR electrophoresis, etc.) is 

conducted in physically separated spaces that are cleaned before and after each use with a 

bleach solution and 70% ethanol.  Equipment, tubes, and most reagents are UV cross-

linked prior to use and extensive use is made of sterile, positive pressure, bench-top 

enclosures with HEPA-filtered air supplies and integrated UV cross-linkers during 

extraction and PCR set-up.  To monitor for potential contamination, including the 

possibility of cross-contamination of reactions, multiple negative controls are included at 

every step.  These negative controls are processed in exactly the same manner as are 

those tubes that contain DNA template and are carried through the entire amplification 

process. 

In addition to PCR contamination, aDNA sequences can be compromised by a 

number of complications including postmortem DNA damage (Gilbert et al. 2005; 

Gilbert et al. 2003; Hofreiter et al. 2001; Paabo et al. 2004; Willerslev and Cooper 2005) 

and nuclear insertions (Bensasson et al. 2001; Martin 2003; Mourier et al. 2001; 

Willerslev and Cooper 2005).  Accordingly, we used a rigorous DNA sequence 

authentication protocol appropriate to the risk of this project generating faulty sequences 

(Gilbert et al. 2005).  This authentication protocol guarded against cross-over 

contamination between samples, and limited the possibility of including compromised 

sequences in subsequent analysis. 

To ensure that sequences included in our analysis were indeed from Guadalupe 

fur seals and not another closely related marine mammal, raw nucleotide sequences were 
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evaluated using the National Center for Biotechnology Information (NCBI) Basic Local 

Alignment Search Tool (BLAST).  BLAST finds regions of sequence similarity by 

comparing nucleotide sequences to sequence databases and then computes the statistical 

significance of matches.  Only those raw sequences that were most closely similar to 

Arctocephalus in the BLAST search were further considered. 

Replication of all successfully sequenced specimens was attempted from 

independent amplifications conducted at different times and checked for 

complementarity.  Specimens for which two or more independent sequence replicates 

were identical, or those for which three or more independent replicates could be used to 

infer a consensus sequence are considered “confirmed” sequences (n = 28).  Successful 

replication of sequences was not possible for a number of specimens.  These specimens 

for which no identical replications or for which no consensus sequence could be inferred 

are considered “provisional” sequences (n = 11). 

3.3.4 Statistical Assessment of Genetic Diversity 

 To infer diachronic change in in the late Holocene population history of 

Guadalupe fur seals from San Miguel Island, we estimated several common population 

genetic parameters from these DNA sequences using DnaSP Version 5.10.01 (Librado 

and Rozas 2009) including the number of unique haplotypes, the number of polymorphic 

(segregating) sites (S), nucleotide diversity (π), and theta (per site) from S (θS).  A 

haplotype is a unique combination of genetic markers present in a chromosome (Hartl 

and Clark 1997:57).  For the haploid mitochondrial DNA sequences reported here, a 

haplotype is defined as a unique DNA sequence.  The number of segregating sites (S) is 

simply a count of the number of nucleotide positions in a collection of aligned DNA 
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sequences at which one or more nucleotide substitutions can be found and is conceptually 

similar to many ecological measures of richness.  Nucleotide diversity (π), also referred 

to as mean pairwise difference, is the average number of segregating sites between every 

possible pair of sequences in a collection of aligned DNA sequences.  Theta (per site) 

from S (θS) is a description of the number of segregating sites in a collection of aligned 

DNA sequences that is normalized by both the length and number of sequences included 

in the analysis. 

 Nucleotide diversity can be affected by natural selection, as well as by changes in 

population size and structure.  Accordingly, several population genetic statistics have 

been developed to measure these effects.  Tajima’s D provides an estimate of the effect of 

natural selection at loci, like mitochondrial loci, that are argued to be selectively neutral 

and was estimated for the sequences reported here in DnaSP as well.  Significant positive 

departures from zero suggest that the locus in question has been subject to natural 

selection while significant negative departures from zero suggest that the population from 

which a collection of sequences was obtained has been growing or has experienced 

directional selection. 

3.3.5 Radiocarbon Dating and Stable Isotopes 

 To better assign temporal affiliation for specimens from which we were able to 

obtain DNA sequences, we also acquired accelerator mass spectrometry (AMS) 

radiocarbon dates. Stable carbon and nitrogen isotope values were also derived from 

these specimens to allow an assessment of change in foraging ecology and marine 

environments. Bone collagen was prepared for AMS radiocarbon dating at either the 

Archaeological Stable Isotope Laboratory at the University of Utah and sent to National 
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Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS) at the Woods Hole 

Oceanographic Institution for AMS dating, or was prepared at the Human Paleoecology 

and Isotope Geochemistry Lab at Penn State University and sent to the Keck Carbon 

Cycle AMS Facility (KCCAMS) at University of California, Irvine for AMS dating. 

(Specimen AT72 was too small for AMS radiocarbon dating).  Radiocarbon ages were 

calibrated in CALIB 7.1 using the Marine 13 curve and applying a marine reservoir 

correction (ΔR) of 261 ± 21 years. AMS radiocarbon dates and stable isotope values are 

provided in Table 3.4. 

 Median calibrated radiocarbon ages obtained from these specimens range from 

6650 cal B.P. to 540 cal B.P. and provide extensive coverage of the late Holocene. 

Indeed, aside from two specimens—one dating to 6650 and another to 3820— the 

collection spans the last 3000 years. To facilitate comparisons with the zooarchaeological 

relative abundance data and evaluate the evidence for diachronic variation in Guadalupe 

fur seal populations, specimens were assigned to one of three temporal periods: 1) early 

(6770 – 1800 cal B.P.), 2) middle (1800 – 1200 cal B.P.), and 3) late (1000 – 400 cal 

B.P.).   The single specimen AMS dated to 6650 (AT13) was placed in the earliest time 

period, to which it most closely approaches, but falls outside the range of this period. 

Omitting the specimen from the analysis has no impact either way on the trends. 

3.4 Ancient DNA Results 

 We have obtained high quality DNA sequences from 39 Guadalupe fur seal 

specimens, of which 28 have been fully replicated and are considered confirmed 

sequences.  The remaining 11 have not been fully replicated and are considered 

provisional sequences (Table 3.5).  All of these sequences are from specimens that date to 
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the late Holocene and all but two fall within the last 3000 years.  Genetic diversity 

summary statistics for the complete collection of 39 sequences, as well as for each 

temporally defined analytic population, are presented in Table 3.6.    

For the collection of sequences as a whole, we identified 38 polymorphic sites 

that collectively define 30 distinct haplotypes (Haplotype 1 – Haplotype 30).  All 38 

segregating sites are transitions that are nearly equally divided between purine-purine 

mutations (n = 21) and pyrimidine-pyrimidine mutations (n = 18).  These haplotypes are 

not represented evenly across the San Miguel Island temporal sequence considered here.  

Early period sequences include eight haplotypes, middle period sequences include 18 

haplotypes, and late period sequences include eight haplotypes.   

 Temporal stability in population size is reflected by statistics that estimate 

genotypic diversity.  The number of polymorphic sites is not distributed evenly across all 

time periods (Searly = 22; Smiddle = 34; Slate = 23), but these differences do not affect other 

measures of genotypic diversity.  Nucleotide diversity (π) is the average number of 

differences between all pairs of sequences in the sample of sequences (Hartl and Clark 

1997) and does not vary significantly between temporal periods (πearly = 0.050 ± 0.007; 

πmiddle = 0.048 ± 0.004; πlate = 0.050 ± 0.006; Figure 3.2).  Moreover, nucleotide diversity 

for each temporal period is comparable to that of the collection as a whole (π = 0.047 ± 

0.003).  Theta (θ) is a common population genetic parameter that provides a direct 

estimate of population size and/or mutation rate (θ = 4Nµ; where 2N is the number of 

genes in a population and µ is mutation rate; (Hartl and Clark 1997).  Again, this measure 

of genetic diversity is constant across all time periods (θearly = 0.053 ± 0.025; θmiddle = 

0.058 ± 0.021; θlate = 0.055 ± 0.026; Figure 3.3) and each time period is indistinguishable 
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from the collection as a whole (θ = 0.056 ± 0.018).  The absence of clear temporal trends 

in any of these measures of genotypic diversity suggests long-term population size 

stability. 

 Finally, we evaluate long-term stability of the Guadalupe fur seal populations 

represented by the DNA sequences reported here by estimating Tajima’s D for each 

period.  Tajima’s D is a statistic that was developed to assess whether a locus of interest 

is selectively neutral or has experienced some form of natural selection.  This statistic is 

sensitive to a number of demographic processes and can be used to evaluate whether a 

population has experienced recent population growth or decline (Hartl and Clark 1997; 

Rogers et al. 1996).  Negative values of Tajima’s D suggest recent population growth 

whereas values that are close to zero suggest population stability.  All three temporal 

periods have negative values for Tajima’s D; however, none of these statistics depart 

significantly from zero (Dearly = -0.277, p > 0.10; Dmiddle = -0.606, p > 0.10; Dlate = -0.472, 

p > 0.10).  Tajima’s D for the collection of sequences as a whole is also negative but 

similarly does not deviate significantly from zero (D = -0.574, p > 0.10).  Collectively, 

these statistics suggest that these populations remained relatively stable throughout the 

time periods assessed. 

 Considering only those sequences that have been fully replicated and confirmed 

similarly suggests late Holocene population stability in San Miguel Island Guadalupe fur 

seal populations (Table 3.7).  For confirmed sequences, 35 polymorphic sites define 22 

distinct hapolotypes.  Similar to the distribution of haplotypes for all sequences, 

confirmed sequences haplotypes are not evenly distributed and the greatest number of 

unique sequences are found among middle period specimens.   
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 Estimates of genotypic diversity from confirmed sequences similarly show little 

variation. Nucleotide diversity estimate distributions for each time period almost 

completely overlap (πearly = 0.050 ± 0.010; πmiddle = 0.050 ± 0.006; πlate = 0.050 ± 0.006), 

as do the distributions of each temporal period’s estimate of Theta (θearly = 0.051 ± 0.027; 

θmiddle = 0.057 ± 0.023; θlate = 0.055 ± 0.026).  Last, estimates of long-term population 

stability from confirmed sequences using Tajima’s D also indicate no substantial changes 

throughout the late Holocene. 

 Although summary genetic diversity statistics all indicate that Guadalupe fur seal 

populations on San Miguel Island were stable during the late Holocene, a close look at 

the number of segregating sites (S) and Tajima’s D both raise an important question about 

the power of the DNA sequence data described here to detect population growth.  

Notably, the number of segregating sites (S) is greatest during the time period 

surrounding 1500 B.P.  Similarly, Tajima’s D deviates from zero the most—albeit non-

significant deviation—during this same period.  Together, these observations may be 

indicative of population growth.  To determine how well 39 mitochondrial DNA 

sequences of 161 bp can detect population growth, we conducted an extensive simulation 

study using SIMCOAL 2.1.  For these simulations we consider four different population 

scenarios.  The first, derived from our observed San Miguel Island Guadalupe fur seal 

genetic diversity estimates, simulates a population of 2N = 50,000.  This baseline was 

then compared with simulated populations of 2N = 75,000, 2N = 100,000, and 2N = 

500,000.  For each population size scenario, SIMCOAL 2.1 was used to generate 100 sets 

of simulated DNA sequence data, each set containing 39 sequences of 161 bp.  For each 

simulation we assumed a substitution rate of 5.25 X 10-7.  In this way, a total of 400 
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simulated DNA sequence data sets was generated.  For each set of simulated data we 

estimated π and θS.  We then compared each population growth scenario to the baseline 

scenario to determine how frequently population growth was detected. 

 As expected, the ability to detect population growth from 39 DNA sequences of 

161 bp improved as the magnitude of change increased.  Population growth was detected 

by significant differences in π in 20% of simulated sequence pairs when population size 

was increased from 2N = 50,000 to 2N = 75,000.  Growth was detected by π in 29% of 

pairs when population was increased to 2N = 100,000; and in 96% of pairs when 

population was increased to 2N = 500,000.  Similarly, population growth was detected by 

significant differences in θS in 32% of sequence pairs when population size was increased 

to 2N = 75,000; in 49% of pairs when population was increased to 2N = 100,000; and in 

100% of sequence pairs when population size was increased to 2N = 500,000. 

 The simulation studies described here suggest that common genetic diversity 

summary statistics like π and θS are only moderately effective at detecting population 

growth in small samples of short DNA sequences and serve to highlight an important 

limitation of the data marshalled during the San Miguel Island Guadalupe fur seal 

research described here.  In spite of these limitations, however, our data do not show 

significant variation through time and are consistent with locally derived taxonomic 

relative abundance indexes that suggest late Holocene population stability. 

3.5 Late Holocene Climate Change on San Miguel Island  

Holocene paleoclimate reconstructions for the Santa Barbara Channel Island 

region have been well established and suggest considerable centennial- and millennial-

scale variation across this time period (Cole and Lui 1994; Heusser and Sirocko 1997; 
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Kennett and Ingram 1995; Pisias 1978).  The Santa Barbara basin sits at the boundary of 

two major ocean current systems and is an area of intense interest for ocean scientists.  

As a result, numerous regional climate records have been established.  Kennett and 

Ingram (1995) present one of the most detailed of these records derived from Hole 893A; 

a 200 meter core drilled as part of the Ocean Drilling Program and located northeast of 

San Miguel Island.  This core provides a detailed climate record of the last 20,000 years 

inferred from oxygen isotope analysis of Globigerina bulloides and Neogloboquadrina 

pachyderma, foraminiferal plankton that, respectively, occupy near surface and deep-

water habitats.  Kennett and Kennett (2000) summarize the recent 3,000 years of that 

record, as well as additional proxy climate data, and discuss its archaeological 

implications for coastal Southern California. 

Kennett and Kennett (2000:383) suggest three major climate periods from these 

data reflected in temporal variation in sea surface temperature (SST).  From the period of 

approximately 3000 B.P. to 1500 B.P. water temperatures were relatively warm and 

stable followed by a period of the coldest and most unstable temperatures of the 

Holocene between 1500 B.P. and 650 B.P.  Following 650 B.P., water temperatures were 

again relatively warm and stable, generally similar to current SST.  Marine productivity, 

as reflected by periods of increased upwelling and inferred from oxygen isotope ratios of 

surface dwelling and deep-water dwelling foraminiferal plankton shows a similar, though 

not identical pattern of late Holocene variation (Kennett and Kennett 2000:384-385).  

The period between 1000 B.P. and 400 B.P. experienced the greatest degree of upwelling 

with warmer temperatures and less upwelling between 3000 B.P. and 1500 B.P., and then 

again after 400 B.P. 
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Research on the effects of short-term variation in SST suggests that such events 

can significantly affect overall marine productivity.  Warmer SST and reduced upwelling 

associated with El Nino/Southern Oscillation (ENSO) events substantially influence 

nearshore fisheries and marine mammal mortality.  During ENSO events, interrupted 

upwelling reduces food available to lactating marine mammals (DeLong and Melin 2000) 

and thereby hindering their capacity to adequately feed offspring.  High mortality among 

marine mammal pups during periods of late Holocene climate instability may have 

affected their overall abundance, and could have reduced marine mammal encounter rates 

for late Holocene human hunters.  This is unlikely to be the case here, however, as no 

appreciable changes in genetic diversity were detected and Guadalupe fur seal 

populations appear to have been stable through the late Holocene. 

3.6 Summary and Discussion 

In the Channel Islands region of southern California much available 

zooarchaeological evidence indicates a peak in marine mammal use by prehistoric 

foragers about 1,500 years ago, though considerable spatial and temporal variability is 

found regardless of whether comparisons are made between migratory and resident 

breeders or whether comparisons are made between marine mammal assemblages relative 

to other terrestrial or marine resource types. To begin to differentiate between the various 

explanations that have been posited for such variation in marine mammal assemblages, 

detailed high-resolution histories of population change are necessary.  Genetic diversity 

statistics estimated from 39 total Guadalupe fur seal DNA sequences and 28 fully 

replicated and confirmed sequences indicate considerable genetic variation, however, no 

evidence suggests the degree of this variation changes throughout the late Holocene.  
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This long-term stability in genetic diversity suggests that Guadalupe fur seal populations 

from San Miguel Island were fairly substantial and remained stable across this time 

period. 

Apparent temporal and spatial variability in the archaeological evidence for late 

Holocene marine mammal use along North America’s Pacific coast has led Lyman 

(2003) to argue that marine mammals in this region were structured as a 

metapopulation—a, “set of geographically isolated and/or local populations of a species” 

(Brown and Lomolino 1998:70).  Metapopulation models suggest that, with sufficient 

migration between local populations, genetic diversity of the metapopulation as a whole 

should withstand population size reductions and disturbance of local populations (Frank 

and Wissel 1998).  Indeed, the potential for between-group migration of individuals to 

mitigate a loss of genetic diversity in the face of apparent population size reduction has 

been suggested for the closely related northern fur seal (Pinsky et al. 2010).  These 

researchers conducted a rigorous Bayesian analysis of northern fur seal mitochondrial 

control region sequences from specimens that predate early 20th century market hunting 

of the species and from modern northern fur seal sequences.  These pre-sealing and 

modern sequences collectively do not show a decline in genetic diversity through time 

and suggest that, “a high dispersal rate combined with the maintenance of a large refuge 

during the extreme disturbance experienced by this species provided genetic 

resilience…” (Pinsky et al. 2010:2425).  The apparent long-term stability in genetic 

diversity of Guadalupe fur seals on San Miguel Island similarly suggests that these 

animals maintained a refuge of high abundance and that there was significant dispersal 

between local colonies. 
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Estimating long-term population histories for key prey species is a central concern 

for zooarchaeological researchers.  Robust histories can facilitate strong inferences about 

prehistoric hunting behavioral variation and also facilitate more defensible arguments 

about the technological and social changes accompanying such variation.  Importantly, 

both taxonomic relative abundance measures and diachronic trends in genetic diversity of 

Guadalupe fur seals show no clear temporal trends and collectively suggest long-term 

population stability.  Moreover, the congruence of these two independent data sources 

attests to the utility of taxonomic relative abundance as a proxy measure for prey 

population history.  

A similar result has been recently obtained in comparing tule elk 

zooarchaeological abundance data with ancient DNA evidence for late Holocene 

population trends (Broughton et al. 2013). In that case, however, both the relative 

abundance data and ancient DNA-derived genetic diversity suggest substantial late 

Holocene declines in the San Francisco Bay tule elk populations. Thus, in the first two 

cases that have paired zooarchaeological abundance and genetic diversity data, the two 

independent indices of past population size have been in agreement.  The trends in both 

cases also have far reaching implications for understanding the related aspects of human 

behavior and lifeways.    

Although continuity and long-term sustainability in pinniped hunting practices 

have been documented in several settings (Etnier 2007; Lyman 2003), the archaeological 

record of long-term marine mammal hunting along much of the eastern Pacific Coast 

indicates considerable spatial and temporal variability and both human and climatic 

impacts on larger migratory pinnipeds have been suggested to underlie this variability. In 
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these settings, such as in greater northern Channel Islands region, the declining 

availability of pinniped resources has been cited as a causal mechanism for both the 

adoption of open-ocean sea craft and in the development of economic and social 

complexity (Arnold 1992).  For the adoption of robust ocean-going vessels, the 

suggestion has been that onshore hunting pressure reduced the numbers of available 

marine mammals and caused those that remained to seek refuge at more distant and more 

difficult to access offshore locations.  The emergence of social and economic complexity 

is argued to have been at least partially facilitated by competition for depleted resource 

stocks.  Arguments for technological change and the emergence of social complexity thus 

both appeal to inferences about regional reductions in the abundance of marine mammals.  

The taxonomic relative abundance and genetic data summarized here suggests, however, 

that neither can be attributed to long-term variation in the population size of Guadalupe 

fur seals as caused by either human hunting pressure or climate change.  Further genetic 

analyses with Guadalupe fur seals from other contexts in the region, and with other 

pinniped taxa, should help clarify the degree to which the pattern documented here is a 

more general one.  
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Table 3.1.  Common Santa Barbara Channel Islands region marine mammals. 

    Breeding classification Adult male body size Adult female body size 

Guadalupe fur seal Arctocephalus townsendi Migratory 160 – 170 kg  40 – 50 kg 

Northern fur seal Callorhinus ursinus Migratory 175 – 275 kg 30 – 50 kg 

Harbor seal Phoca vitulina Resident 140 kg 140 kg 

Northern elephant seal Mirounga angustirostris Migratory 2,000 kg 600 kg 

California sea lion Zalophus californianus Migratory 390 kg 110 kg 

Steller sea lion Eumetopias jubatus Migratory 1120 kg 350 kg 

Sea otter Enydra lutris Resident 40 – 45 kg 16 – 27 kg 
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Table 3.2.  Number of identified marine mammal specimens from late Holocene San Miguel Island assemblages. 

  CA-SMI-1 
CA-SMI-

525 

CA-SMI-

525 

CA-SMI-

525 

CA-SMI-

528 

CA-SMI-

528 

CA-SMI-

528 

CA-SMI-

602 
 

    Early Early Middle Late Early Middle Late Late Total 

Migratory Breeders          

 Guadalupe fur seal 2 26 36 1 5 67 1 26 164 

 Northern fur seal — — 7 — — 12 — 12 31 

 Northern elephant seal — — — — 1 — — 4 5 

 Stellar sea lion — — 1 — 1 12 — — 14 

 California sea lion — 2 1 — 6 6 — 8 23 

 Otaridae — 5 6 — — 12 — 3 26 

Resident Breeders          

 Sea otter 1 7 5 — 4 24 — 14 55 

 Harbor seal — 2 4 — — 4 — 3 13 

Total 3 42 60 1 17 137 1 70 331 
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Table 3.3.  Relative abundance index values for late Holocene San Miguel Island marine mammal assemblages. 

 GFS Index MB Index GFSMB Index 

 Early Middle Late Early Middle Late Early Middle Late 

CA-SMI-1 0.67 — — 0.67 — — 1.00 — — 

CA-SMI-525 0.62 0.60 — 0.79 0.85 — 0.79 0.71 — 

CA-SMI-528 0.29 0.49 0.37 0.76 0.80 — 0.38 0.61 — 

CA-SMI-602 — — — — — 0.76 — — 0.49 
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Table 3.4.  AMS radiocarbon dates and stable isotope values for San Miguel Island Guadalupe fur seal specimens. 

Sample 

Name 

Lab No. Sample Provenience fraction 

Modern 

fMod 

Error 

14C 

Age 

(BP) 

Age 

Error 

cal 14C Age 

B.P. (2 

sigma) 

d13C ‰ 

(Collagen 

v. PDB) 

d15N 

‰ 

(v. 

Air) 

Atomic 

C:N 

AT04 ACRF 2534 CA-SMI-1, Unit 360:18-24cm 0.599 0.0022 4120 30 3690-3930 -13.1 22.7 3.3 

AT05 ACRF 2535 CA-SMI-1, Unit 583:12-18cm 0.6148 0.0023 3910 30 3450-3660 -13.9 23.2 3.2 

AT13 ACRF 2536 CA-SMI-1, Unit 824:12-18cm 0.447 0.0019 6470 35 6540-6770 -13.5 20.1 3.4 

AT15 ACRF 2537 CA-SMI-525,Unit 1-B:195cm 0.7102 0.0031 2750 35 2030-2290 -12.7 18.7 3.2 

AT16 ACRF 2538 CA-SMI-525, Unit 1-D:110-120cm 0.7626 0.0029 2180 30 1360-1560 -13.0 18.7 3.2 

AT17 UCIAMS 119367 CA-SMI-525, Unit 1-D:110-120cm 0.7543 0.0014 2265 15 1500-1670 -13.5 18.7 3.2 

AT18 UCIAMS 119368 CA-SMI-525, Unit 1-D:140-150cm 0.7440 0.0011 2375 15 1600-1790 -12.8 18.6 3.2 

AT19 UCIAMS 119369 CA-SMI-525, Unit 1-D:165-170cm 0.7273 0.0016 2560 20 1820-1990 -13.5 17.2 3.2 

AT22 UCIAMS 119370 CA-SMI-525, Unit 2:0-20cm 0.8211 0.0015 1585 15 790-930 -12.7 19.4 3.2 

AT24 ACRF 2539 CA-SMI-525, Unit Profile D 0.7603 0.0022 2200 25 1390-1580 -12.7 18.5 3.2 

AT26 UCIAMS 119371 CA-SMI-525, Unit Profile D:18-19cm 0.7326 0.0013 2500 15 1760-1930 -13.0 18.2 3.2 

AT29 ACRF 2540 CA-SMI-525, Unit Profile D:20-40cm 0.7299 0.002 2530 20 1800-1970 -12.9 19.1 3.2 

AT30 UCIAMS 119372 CA-SMI-525, Unit Profile D:20-40cm 0.7553 0.0014 2255 15 1480-1650 -12.8 18.5 3.1 

AT31 UCIAMS 119373 CA-SMI-525, Unit Profile D:40-60 (70)cm 0.7311 0.0012 2515 15 1780-1940 -13.7 18.3 3.2 

AT34 UCIAMS 119374 CA-SMI-525, Unit Profile D:40-60 (70)cm 0.7434 0.0012 2380 15 1610-1800 -13.6 18.4 3.1 

AT38 UCIAMS 119375 CA-SMI-528, Unit 1:10-20cm 0.7744 0.0013 2055 15 1280-1400 -13.0 18.7 3.1 

AT39 ACRF 2541 CA-SMI-528, Unit 1:10-20cm 0.7796 0.0025 2000 25 1230-1360 -13.5 18.4 3.2 

AT40 UCIAMS 119376 CA-SMI-528, Unit 1:10-20cm 0.7718 0.0015 2080 20 1280-1440 -13.6 20.7 3.1 

AT41 UCIAMS 119377 CA-SMI-528, Unit 1:20-30cm 0.7702 0.0014 2095 15 1300-1470 -13.7 19.1 3.1 

AT42 UCIAMS 119378 CA-SMI-528, Unit 1:20-30cm 0.7770 0.0013 2025 15 1260-1370 -12.8 18.4 3.1 

AT45 ACRF 2542 CA-SMI-528, Unit 1:30-40cm 0.7673 0.0032 2130 35 1320-1520 -12.7 18.8 3.3 

AT47 ACRF 2543 CA-SMI-528, Unit 1:40-50cm 0.7678 0.0021 2120 20 1320-1500 -13.2 18.5 3.2 

AT48 UCIAMS 119379 CA-SMI-528, Unit 1:50-60cm 0.7637 0.0013 2165 15 1370-1530 -12.8 18.5 3.1 

AT49 UCIAMS 119380 CA-SMI-528, Unit 2:10-20cm 0.7734 0.0014 2065 15 1280-1410 -13.1 18.1 3.1 

AT50 UCIAMS 119381 CA-SMI-528, Unit 2:10-20cm 0.7766 0.0014 2030 15 1260-1370 -13.9 19.0 3.1 
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Table 3.4 (cont.). 

Sample 

Name 

Lab No. Sample Provenience fraction 

Modern 

fMod 

Error 

14C 

Age 

(BP) 

Age 

Error 

cal 14C Age 

B.P. (2 

sigma) 

d13C ‰ 

(Collagen 

v. PDB) 

d15N 

‰ 

(v. 

Air) 

Atomic 

C:N 

AT52 ACRF 2544 CA-SMI-528, Unit 2:20-30cm 0.7718 0.0021 2080 20 1280-1440 -12.5 18.6 3.2 

AT53 UCIAMS 119382 CA-SMI-528, Unit 2:20-30cm 0.7681 0.0013 2120 15 1320-1500 -13.5 22.3 3.1 

AT54 UCIAMS 119383 CA-SMI-528, Unit 2:20-30cm 0.8604 0.0017 1210 20 500-620 -13.6 18.4 3.1 

AT55 UCIAMS 119384 CA-SMI-528, Unit 2:20-30cm 0.7738 0.0017 2060 20 1270-1410 -13.2 18.2 3.1 

AT56 UCIAMS 119385 CA-SMI-528, Unit 2:30-40cm 0.7725 0.0013 2075 15 1280-1420 -12.8 18.7 3.2 

AT57 UCIAMS 119386 CA-SMI-528, Unit 2:30-40cm 0.7666 0.0016 2135 20 1340-1510 -13.6 22.6 3.2 

AT61 ACRF 2545 CA-SMI-528, Unit 2:50-60cm 0.7682 0.0021 2120 20 1320-1500 -12.8 18.7 3.2 

AT62 UCIAMS 119387 CA-SMI-528, Unit 2:50-60cm 0.7624 0.0013 2180 15 1380-1540 -13.5 20.5 3.2 

AT66 UCIAMS 119388 CA-SMI-602, Unit 3:0-50cm 0.8626 0.0016 1185 15 480-600 -13.3 19.4 3.2 

AT67 ACRF 2546 CA-SMI-602, Unit 5:0-10cm 0.8641 0.0023 1170 20 470-570 -13.2 19.2 3.2 

AT70 UCIAMS 119389 CA-SMI-602, Unit 5:10-20cm 0.8603 0.0019 1210 20 500-620 -14.2 23.3 3.2 

AT71 UCIAMS 119390 CA-SMI-602, Unit 5:20-30cm 0.8597 0.0015 1215 15 500-620 -13.4 18.7 3.2 

AT78 UCIAMS 119391 CA-SMI-602, Unit 5:40-50cm 0.8615 0.0019 1200 20 490-610 -13.8 18.2 3.2 
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Table 3.5.  Sequenced San Miguel Island Guadalupe fur seal specimens. 

Specimen no. Sample Provenience Element Age Sex Authentication Status Haplotype 

AT04 CA-SMI-1, Unit 360:18-24cm L Humerus Immature  Confirmed Hap. 2 

AT05 CA-SMI-1, Unit 583:12-18cm L Femur Pup  Confirmed Hap. 3 

AT13 CA-SMI-1, Unit 824:12-18cm R Proximal Mandible   Provisional Hap. 1 

AT15 CA-SMI-525, Unit 1-B:195cm Humerus  F Provisional Hap. 4 

AT16 CA-SMI-525, Unit 1-D:110-120cm Humerus Adult F Confirmed Hap. 10 

AT17 CA-SMI-525, Unit 1-D:110-120cm Humerus Immature F Confirmed Hap. 11 

AT18 CA-SMI-525, Unit 1-D:140-150cm Mandible Adult F Confirmed Hap. 10 

AT19 CA-SMI-525, Unit 1-D:165-170cm Femur Adult F Confirmed Hap. 5 

AT22 CA-SMI-525, Unit 2:0-20cm L Mandible Adult/Imm. M Confirmed Hap. 7 

AT24 CA-SMI-525, Profile D Femur Immature F Provisional Hap. 13 

AT26 CA-SMI-525, Profile D:18-19cm L Mandible Adult F Confirmed Hap. 8 

AT29 CA-SMI-525, Profile D:20-40cm L Femur Adult F Provisional Hap. 6 

AT30 CA-SMI-525, Unit Profile D:20-40cm L Femur Adult F Provisional Hap. 12 

AT31 CA-SMI-525, Unit Profile D:40-60 (70)cm R Distal Femur Immature  Confirmed Hap. 7 

AT34 CA-SMI-525, Unit Profile D:40-60 (70)cm R Femur Pup  Confirmed Hap. 9 

AT38 CA-SMI-528, Unit 1:10-20cm L Mandible Adult F Provisional Hap. 10 

AT39 CA-SMI-528, Unit 1:10-20cm L Mandible Immature F Confirmed Hap. 21 

AT40 CA-SMI-528, Unit 1:10-20cm L Mandible Pup  Confirmed Hap. 20 

AT41 CA-SMI-528, Unit 1:20-30cm L Femur Immature  Provisional Hap. 8 

AT42 CA-SMI-528, Unit 1:20-30cm L Femur Immature  Confirmed Hap. 25 

AT45 CA-SMI-528, Unit 1:30-40cm L Femur Immature  Confirmed Hap. 17 

AT47 CA-SMI-528, Unit 1,40-50cm L Mandible Adult F Confirmed Hap. 18 

AT48 CA-SMI-528, Unit 1:50-60cm L Mandible Adult F Provisional Hap. 15 

AT49 CA-SMI-528, Unit 2:10-20cm L Humerus Imm./Adult F Confirmed Hap. 23 

AT50 CA-SMI-528, Unit 2:10-20cm L Humerus Immature  Provisional Hap. 24 

AT52 CA-SMI-528, Unit 2:20-30cm L Humerus Immature  Confirmed Hap. 21 
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Table 3.5 (cont.). 

Specimen no. Sample Provenience Element Age Sex Authentication Status Haplotype 

AT53 CA-SMI-528, Unit 2:20-30cm L Humerus Immature  Confirmed Hap. 16 

AT54 CA-SMI-528, Unit 2:20-30cm L Humerus Immature  Confirmed Hap. 27 

AT55 CA-SMI-528, Unit 2:20-30cm L Humerus Juvenile  Confirmed Hap. 21 

AT56 CA-SMI-528, Unit 2:30-40cm R Mandible Adult F Provisional Hap. 22 

AT57 CA-SMI-528, Unit 2:30-40cm R Mandible Immature F Confirmed Hap. 16 

AT61 CA-SMI-528, Unit 2:50-60cm R Humerus Adult F Confirmed Hap. 19 

AT62 CA-SMI-528, Unit 2:50-60cm R Humerus Immature  Provisional Hap. 14 

AT66 CA-SMI-602, Unit 3:0-50cm L Femur Pup  Confirmed Hap. 30 

AT67 CA-SMI-602, Unit 5:0-10cm L Humerus Adult/Imm. F Confirmed Hap. 2 

AT70 CA-SMI-602, Unit 5:10-20cm L Femur Pup  Confirmed Hap. 28 

AT71 CA-SMI-602, Unit 5:20-30cm L Mandible Adult F Confirmed Hap. 10 

AT72 CA-SMI-602, Unit 5:20-30cm L Mandible Adult F Confirmed Hap. 26 

AT78 CA-SMI-602, Unit 5:40-50cm L Humerus Immature   Confirmed Hap. 29 
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Table 3.6.  Genetic diversity summary statistics of all San Miguel Island Guadalupe fur 

seal sequences. 

  n 

No. of 

polymorphic 

sites, S 

No. of 

haplotypes, 

h 

Nucleotide 

diversity, π 

(S.D.) 

Theta (per 

site) from S, 

θS (S.D.) 

Tajima's D 

All Sequences 39 38 30 0.047 (0.003) 0.056 (0.018)  -0.574, p > 0.10 

Early 8 22 8 0.050 (0.007) 0.053 (0.025)  -0.277, p > 0.10 

Middle 23 34 18 0.048 (0.004) 0.058 (0.021)  -0.606, p > 0.10 

Late 8 23 8 0.050 (0.006) 0.055 (0.026)  -0.472, p > 0.10 
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Table 3.7.  Genetic diversity summary statistics of confirmed San Miguel Island 

Guadalupe fur seal sequences. 

  n 

No. of 

polymorphic 

sites, S 

No. of 

haplotypes, 

h 

Nucleotide 

diversity, π 

(S.D.) 

Theta (per 

site) from S, 

θS (S.D.) 

Tajima's D 

All Sequences 28 35 22 0.049 (0.004) 0.056 (0.020)  -0.482, p > 0.10 

Early 5 17 5 0.050 (0.010) 0.051 (0.027)  -0.144, p > 0.10 

Middle 15 30 11 0.050 (0.006) 0.057 (0.023)  -0.525, p > 0.10 

Late 8 23 8 0.050 (0.006) 0.055 (0.026)  -0.472, p > 0.10 
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Figure 3.1.  Map showing location of San Miguel Island. 
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Figure 3.2.  Distribution of nucleotide diversity (π) between temporal periods. 
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Figure 3.3.  Distribution of theta (θ) between temporal periods. 

 



 

 

 

 

 

 

 

CHAPTER 4 

 

 

A LATE HOLOCENE POPULATION BOTTLENECK 

IN CALIFORNIA TULE ELK (CERVUS ELAPHUS 

NANNODES): PROVISIONAL SUPPORT  

FROM ANCIENT DNA2 

4.1 Introduction 

The extremely high densities of large game in California during the early historic 

period (early 1800s) astonished explorers, and their accounts of ungulate densities are 

routinely taken as benchmarks for the state’s original or pristine zoological condition. 

Interpretations of California’s indigenous peoples also have been deeply conditioned by 

these descriptions and the apparent abundance of the natural food supply. The indigenous 

harvesting strategies that some suggest may have promoted these faunal abundances have 

also been proposed as models for the management of wilderness areas and national parks 

today (e.g., Anderson 2005; Blackburn and Anderson 1993; but see also Berkes 2004, 

Berkes et al. 1995 for complexities on the role of traditional ecological knowledge in 

resource conservation). Many of these perceptions have been challenged recently by 

                                                 

2 Springer/Journal of Archaeological Method and Theory, 20, 2013, 495-524, A 

Late Holocene Population Bottleneck in California Tule Elk (Cervus elaphus nannodes): 

Provisional Support from Ancient DNA, Jack M. Broughton, R. Kelly Beck, Joan B. 

Coltrain, Dennis H. O’Rourke, and Alan R. Rogers; with kind permission from Springer 

Science and Business Media. 
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research grounded in behavioral ecology. That work suggests that times were anything 

but easy in many native California contexts and that resource stress brought on by late 

Holocene prey depressions and/or severe climatic disruptions provided the primary 

catalyst for a host of other changes in human behavior and lifeways. These include 

changes in technology and settlement patterns; increasing territoriality, violence, and 

warfare; increasing mortality, morbidity, and reduced adult stature; and perhaps even 

changes involving gender-differentiated reproductive effort, work organization, and 

fertility (e.g., Bartelink 2006; Broughton et al. 2010; Raab and Jones 2004). Importantly, 

there could be justification from this perspective to reverse the logic underlying proposals 

to implement indigenous harvesting strategies in wilderness management contexts. One 

suggestion is that insofar as native hunting had maintained low densities of ungulates in 

North American landscapes for millennia, “natural” environments should be managed to 

that end today (Kay 1994, 2002, 2007). 

A secure documentation of either stability of ungulate populations or significant 

declines through time would thus be directly relevant to these far-reaching issues. The 

primary lines of evidence that have been used to this end so far include standard 

zooarchaeological data such as trends in the relative frequencies of identified animal 

bones from dated archaeological sites (e.g., prey abundance indices).  For instance, the 

relative frequencies of elk (Cervus elaphus) bones decline over the last 2,000 years 

compared to smaller terrestrial mammalian prey in San Francisco Bay area sites; signals 

of harvest pressure in the age structure of exploited artiodactyl populations have been 

documented as well (Broughton 1999, 2002). Similar patterns have also been 

documented from a wide range of other economically attractive species of marine 
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invertebrates, fishes, birds, and mammals (e.g., Braje 2010; Braje et al. 2007; Broughton 

et al. 2007, 2010; Erlandson and Rick 2010; Grayson 2001; Hildebrandt and Jones 1992, 

2002; Porcasi et al. 2000; Rick 2011). These analyses suggest that historic period reports 

of large game abundances may stem from earlier —16th and 17th century—European 

disease-based declines in aboriginal human populations and subsequent protohistoric 

period large game rebounds (e.g., Broughton 2002; Broughton et al. 2010).  

Still, these archaeological measures provide only indices of past prey-encounter 

rates and the relationship between the latter and actual population sizes is clearly 

complex. We have no theory to guide us in estimating what a decline from say 75% elk 

bones in one sample to 5% in another means in terms of the underlying elk population 

size. It is quite possible, for example, that ever diminishing numbers of elk bones through 

time may not be reflecting broad-scale population declines, but rather more localized 

movements of elk herds away from areas with densely settled human populations. 

Taphonomic and quantification issues are, of course, always at play in analyses that 

attempt to estimate trends in prey population sizes from archaeofaunal data (see Lyman 

1994, 2008).  More refined tests capable of measuring population-level trends in 

prehistoric prey population sizes thus seem warranted—and since genetic diversity varies 

sensitively with population size (see review in de Bruyn et al. 2011), tracking trends in 

genetic diversity from archaeological faunal remains can provide a means of doing just 

that. In this paper, we develop and conduct such a test based on trends in genetic diversity 

derived from the mitochondrial DNA preserved in a late Holocene sample of tule elk 

(Cervus elaphus nannodes) from the Emeryville Shellmound, a large residential locality 

located on the eastern shore of San Francisco Bay. In addition to providing a novel 
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independent test of the tule elk depression question in central California, our study has 

methodological implications for documenting the extent and more specific causes of 

resource depression that have been increasingly suggested from zooarchaeologial 

analyses the world over. These data will also be useful in guiding management strategies 

that rely increasingly on modern analyses of genetic diversity. For tule elk, considerable 

genetic analysis of extant populations has been recently conducted, but these studies have 

been hampered by the lack of historical genetic data from which to compare and assess 

current patterns. The analysis may thus contribute to the applied zooarchaeology that 

Lyman (e.g., 1988, 1994, 1996, 2011; Lyman and Cannon 2004) has promoted for 

decades. 

4.2 Tule Elk Demographic History 

Three native subspecies of elk have long been recognized to occur in California 

based on morphological differences: tule elk, Roosevelt elk (C. e. roosevelti) and Rocky 

Mountain elk (C. e. nelsoni). Subspecific status for each has more recently been 

supported by genetic analyses (e.g., Polziehn et al. 2000; Polziehn and Strobeck 2002; 

Merideth et al. 2007). In California, the distribution of Roosevelt elk is confined to the 

thickly forested regions of the northwest, while Rocky Mountain elk occur in limited 

numbers within a narrow swath of the extreme northeastern part of the state. Tule elk 

were far more widespread, occupying much of California’s extensive lower elevation oak 

woodland and perennial grassland habitats including the vast Central Valley, the San 

Francisco Bay area, and adjacent coastal hills and valleys. With their large size, 

impressive antlers, graceful stature, and extremely high densities, tule elk commanded the 

attention of 18th and 19th century explorers and settlers. Some herds were reported to 
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contain over 3,000 head (Preston 1998:279).  While population estimates are necessarily 

quite crude, McCullough and colleagues (1969; McCullough et al. 1996) suggest as many 

as half a million animals lived in California prior to major Euro-American settlement. 

The 1849 Gold Rush brought “a virtual tidal wave of human immigration” to 

California and an onslaught of unrestricted market hunting directly ensued (McCullough 

et al. 1996:375).  By 1875, only 25 years later, the entire population of tule elk had 

crashed to as few as a single pair of animals. With the help of private land owners and 

full protection granted in 1873, the population grew slowly to 28 individuals by 1895. 

Modest growth during the 20th century brought the population to 500 animals by 1971. 

Numerous relocation and conservation efforts since 1974 have raised the current total to 

about 3,800 individuals distributed across 22 disjunct herds scattered across their historic-

period range (California Fish and Game 2011; Williams et al. 2004). Conservation 

management plans for tule elk have increasingly been informed by genetic analyses that 

have revealed, among other patterns, extremely low levels of genetic diversity in current 

herds that is consistent with, and interpreted as, a direct result of the 19th and 20th 

century population bottleneck (e.g., Cronin et al. 2009; Meredith et al. 2007; Williams et 

al. 2004). However, the question remains “how low is low” (Williams et al. 2004:118) 

since no pre-19th century genetic diversity baselines are currently available for tule elk. 

The potential impact of earlier pre-Columbian hunting-based bottlenecks on current 

levels of genetic diversity has also not been entertained in these studies, but, as noted 

above, has been recently suggested from analyses of zooarchaeological data.  

Specifically, a prehistoric population bottleneck in tule elk has been proposed on 

the basis of patterns in the relative abundances of their bones derived from dated 
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archaeological faunas. Reconstructing population trends from archaeological abundance 

data is founded on logic from foraging theory models, especially the prey model (see 

Stephens and Krebs 1986). As has been discussed in detail elsewhere, the model predicts 

that the relative frequency with which prehistoric foragers selected high- and low-ranked 

prey within a resource patch can provide an index of the encounter rate of high-ranked 

prey.  Hence, decreasing frequencies of high-ranked prey species should be a measure of 

declines in the encounter rate and at least the local density of the species in the 

surrounding environment over the time the fauna accumulated (Bayham 1979, 1982; 

Broughton et al. 2011).  

Empirical data demonstrate that for many classes of animal prey that are singly 

handled by human consumers, postencounter return rates (i.e., prey ranks) are closely 

scaled to prey body mass (see Broughton et al. 2011 for a recent review).  Recent 

research on modern hunter-gatherers further underscores the overriding significance that 

hunters attach to prey size. Many hunters ignore small game, even when pursuing them 

would increase their overall caloric returns (e.g., Hawkes 1991; Hawkes et al. 1991). 

Clearly, smaller-sized prey move into and out of the set of targeted prey for human 

hunters, but large prey are invariably included. 

Since the prey model predicts that the highest-ranked prey types should be 

attacked whenever they are encountered, large-sized species should be the most 

susceptible to hunting-based depressions. This feature is exacerbated by the fact that 

large species also tend to exhibit delayed sexual maturity, slower growth rates, longer 

lifespans, and lower intrinsic rates of increase (e.g., Winterhalder and Lu 1997). As long 

as assumptions of the prey model are met, declining relative abundances based on 
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abundance indices of those taxa should signal reductions in their encounter rates. Such 

data do not reveal, however, the specific cause or causes for those reductions. Climatic 

deteriorations, local movement of animals out of contexts heavily populated by human 

predators, or hunting-based regional population-level declines may all be at work.  

The most detailed data sets bearing on late Holocene trends in archaeological elk 

remains are derived from the San Francisco Bay area (Figure 4.1). Figures 4.2 – 4.4 show 

the changing abundances of elk specimens compared to all other terrestrial vertebrates 

across: a), 18 dated components from sites distributed across the San Francisco Bay 

shoreline; b), a tight cluster of sites located in the Coyote Hills area of the southeast bay; 

and c), the occupational history of the Emeryville Shellmound (data from Broughton 

1994, 1999). To maintain consistency with previously published literature in this context, 

uncalibrated radiocarbon years before present is the timescale used throughout. Using 

Cochran’s Chi-square test of linear trends that takes the underlying sample sizes into 

account (Cannon 2001), each case exhibits significant linear declines in the relative 

abundance of elk compared to other terrestrial mammals (San Francisco Bay region, 

X2
trend = 75.67, P < .001; Coyote Hills, X2

trend = 102.63, P < .001; Emeryville X2
trend = 

484.8, P < .001). In each context, substantial declines are evident between about 1600 

and 1200 B.P. These patterns may suggest that San Francisco Bay area tule elk 

experienced a substantial prehistoric population bottleneck over this time. Alternatively, 

the diminishing numbers of elk may not be reflecting broad population declines, but the 

movement of elk herds out of the densely settled bayshore context. Although these 

apparent linear declines do not appear to correlate with existing reconstructions of 

paleoenvironmental change (e.g., Broughton 1999; Ingram et al. 1996; Malamud-Roam et 
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al. 2007; McGann 2008; Goman et al. 2008), we examine that possibility in more detail 

below based on analyses of the stable isotope chemistry of a sample of Emeryville elk 

bones.  

In this context, we emphasize that the relatively high, possibly even rising, 

frequencies of elk at the beginning of the San Francisco Bay sequence between 2500 and 

2000 B.P. (see especially Figure 4.4) is consistent with the hypothesis developed 

elsewhere (Broughton and Bayham 2003; Byers and Broughton 2004; Broughton et al. 

2008) that substantial expansions of artiodactyl populations occurred as climate 

ameliorated at the beginning of the late Holocene, between roughly 4,500 and 2,500 B.P. 

(e.g., Anderson and Smith 1994; Benson et al. 2002). Thus, prior to the proposed late 

Holocene anthropogenic depressions, elk populations may have in fact been on the rise in 

this setting. Since genetic diversity can also reflect increases in population size, such 

analyses may eventually inform on the nature (e.g., growing, stationary) of the 

hypothetical pre-bottleneck elk population. 

4.3 Genetic Variation and Population Bottlenecks 

Genetic variation within a population can be measured in a variety of ways and 

tends to be high in large populations and low in small ones: population declines or 

bottlenecks are thus signaled by declines in genetic variation (e.g., Beck 2009; de Bruyn 

et al. 2011; Frankham 1996; Glenn et al. 1999; Hadly et al. 1998; Hoelzel et al. 2002; 

Rogers 1995). There are many examples showing that genetic variation responds to 

experimental manipulations of population size (Frankham 1996; Montgomery et al. 2000) 

and historical changes in population size have also produced the expected changes in 

genetic variation in a number of vertebrate taxa (e.g., Glenn et al. 1999; Hoelzel et al. 
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2002; Larson et al. 2002; Leonard 2008; Weber et al. 2004).  Some of these studies have 

focused attention on the genetic effect of historically documented over-hunting on several 

taxa such as in elephant seals (Hoelzel et al. 2002), fur seals (Weber et al. 2004), sea 

otters (Larson et al. 2002), and whooping cranes (Glenn et al. 1999) among others. 

Finally, the relationship between genetic variation and population size, coupled with 

established ancient DNA methods has been used successfully to reconstruct prehistoric 

population trends in Hawaiian geese (Paxinos et al. 2002), brown bears (Barnes et al. 

2002; Calvignac et al. 2008; Leonard et al. 2000), cave bears (Bon et al. 2011; Hofreiter 

et al. 2002), steppe bison (Shapiro et al. 2004), grey wolves (Pilot et al. 2010), musk ox 

(Campos et al. 2010), southern elephant seals (de Bruyn et al. 2011), and caribou (Kuhn 

et al. (2010); we use it here to monitor changes in the size of the San Francisco Bay elk 

population across the late Holocene. 

4.4 A Prehistoric Bottleneck in San Francisco Bay Tule Elk: 

Hypotheses and Methods 

There are a variety of conceivable research designs that could be implemented to 

test the general hypothesis that prehistoric hunters caused a population bottleneck in 

California tule elk. Diachronic trends in genetic variation derived from multiple 

geographic contexts across the state spanning the past 10,000 years into the historic 

period would, of course, be ideal. Unfortunately, elk remains are typically uncommon in 

California archaeological deposits, except for the San Francisco Bay area (see Broughton 

1994, 1999; Hildebrandt and Jones 1992).  Even here, the vast majority of elk specimens 

are derived from a single site: the Emeryville Shellmound. That site thus provides the 

most substantial, well-documented archaeological elk sequence that exists in California. 
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Fortunately, the site spans the period over which the hypothesized bottleneck occurred—

indeed, that hypothesis is based in part on the pattern of elk abundances derived from 

Emeryville (Figure 4.4). 

Focusing on a single archaeological context also has decided advantages in the 

extraction and amplification of ancient DNA. Subtle differences in depositional and 

taphonomic context affect PCR (Polmerase chain reaction; see below) optimization 

processes. Slight variation in sediment chemistry, pH, and moisture, for example, all 

affect the efficiency of any PCR amplification protocol.  Successful and consistent 

amplification of ancient DNA requires considerable effort to find the most effective ratios 

of PCR reaction reagents and these optimized protocols change from one archaeological 

context to another.  For all these reasons, we have chosen to focus initially on elk 

specimens recovered from the Emeryville Shellmound. Future, more comprehensive tests 

will involve specimens from other sites. Our focus on this locality does, however, have a 

variety of implications for our research design that relate to the high mobility of elk.  

These are addressed in the following more specific hypotheses that pertain to temporal 

patterns in elk genetic variation derived from the Emeryville locality.   

Hypothesis A is that the tule elk inhabiting the San Francisco Bay area and 

represented at Emeryville were not isolated from the larger population of tule elk that 

occupied other regions of California (i.e., the Central Valley, southern Coast Range).  

The decline in elk numbers at Emeryville represents a microcosm for a subspecies-wide 

population decline. This hypothesis predicts a decline through time in genetic variation of 

the Emeryville elk. 

Hypothesis B is that the elk remains recovered from the Emeryville Shellmound 
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were derived from a San Francisco Bay area subpopulation of tule elk that was 

effectively isolated from the larger population in other regions due to population 

fragmentation. The decline in elk numbers registered at Emeryville reflects a reduction in 

the population size of elk in this region and this reduction was not offset by immigration 

from the outside.  This hypothesis also predicts a decline in genetic variation for the 

Emeryville elk.   

Hypothesis C is that Tule elk are highly mobile on a large scale.  Even if the elk 

population declines around Emeryville, that population will continue to receive some 

immigrants from the larger surrounding region. If the larger region experienced no 

population decline, then the genetic variation will not decline in the Emeryville elk.   

Hypothesis D is that the San Francisco Bay area tule elk population did not 

decline.  The elk merely moved away from the densely populated bayshore context near 

Emeryville to other regions where they were more difficult to harvest. This hypothesis 

also predicts no decline in genetic variation.   

A significant decline in genetic variation through time at Emeryville would thus 

imply a population decline either for the entire tule elk population (Hypothesis A), or for 

an isolated San Francisco Bay area population (Hypothesis B). The formation of isolated 

subpopulations would, of course, imply population fragmentation or the extirpation of elk 

in the intervening areas. Distinguishing between Hypothesis A and B would, however, 

require additional genetic patterns derived from elk obtained from localities outside the 

San Francisco Bay area. Conversely, a failure to document a decline in genetic variation 

across the Emeryville sequence would suggest that the diminishing archaeological 

abundance of elk was caused by highly localized population declines or merely by 
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behavioral adjustments of the animals and no declines at all. A decline or lack of decline 

in genetic variation from the Emeryville elk would thus provide a test of the main essence 

of the general elk bottleneck hypothesis. 

Finally, we can define still another hypothesis, Hypothesis E. The tule elk 

population of the San Francisco Bay area was divided into several smaller herds, which 

were largely isolated.  Reduction in the size of each herd would have two effects: it 

would reduce variation within each herd and increase variation between them.   

This last hypothesis (E) seems least plausible given the high mobility of elk and is 

one that would require data from several Bay area sites; we do not test it here. Further 

hypotheses could also be developed that involve the analysis of genetic variation from 

protohistoric and/or historic-period elk samples insofar as sufficient samples from these 

contexts could be gathered.  

Genetic diversity might also change for other reasons: a change in the mutation 

rate, or the sweep to fixation of a favored allele.  The first factor changes diversity only 

slowly and is therefore not a problem here.  The possibility of a selective sweep, on the 

other hand, is real. Fortunately, such sweeps are rare (see above), and we would be 

unlikely to observe one during the two millennia represented at Emeryville. 

4.5 The Tule Elk Sample from Emeryville 

The Emeryville Shellmound was the largest of almost 500 shellmounds that lined 

the San Francisco Bay shoreline (Figure 4.1). The mound measured roughly 100 x 300 m 

and extended to a depth of 10 m. During the early 20th century the mound was excavated 

on three occasions (by Max Uhle, Nels Nelson, and Egbert Schenck), each time in a 

different location. In these projects, most of the sediments were excavated 
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stratigraphically and sieved with coarse-mesh screens; collectively, ten primary strata 

were revealed during this work. Fourteen radiocarbon dates have now been derived from 

charcoal and bone collagen materials distributed from the top to the bottom of the mound 

and bracket the deposition of the site between 2600 and 700 radiocarbon years B.P. There 

are no chrono-stratigraphic inconsistencies in the dates; namely, within each excavation 

the oldest dates are from the lowest strata, whereas the youngest dates are from the 

highest ones. Following Broughton (1999), this series of dates was used to establish the 

time span of deposition for the ten primary strata; on average, each stratum took about 

200 years to accumulate. These excavations produced a total sample of 808 elk bones, 

among over 24,000 identified vertebrate specimens (Broughton 1999, 2004; see Wake 

2003 for a summary of additional elk materials recovered from a final excavation in 

1999).  Formal subspecies level taxonomic identifications were not attempted for these 

specimens, although the small size of the elements is consistent with tule elk, the only 

subspecies known to have occupied the San Francisco Bay area during the Holocene. 

Since we do not wish to use the bones from the same individual animals in our 

calculations of genetic diversity, we took great care in identifying from the total sample 

of the Emeryville elk bones (NISP = 808), those specimens that must have been derived 

from different elk. Specifically, we used the major well-defined strata from the three 

different projects as aggregation units prior to calculating minimum numbers of 

individuals (MNI). Within each aggregation unit, our determinations took into account 

the ontogenetic age, size, and side of the represented elements (see Lyman 2008 for 

discussion); a total elk MNI of 53 was established with this approach.  Based on their 

stratigraphic placement and associated dating, the specimens were then assigned 
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radiocarbon date ranges and midpoint values. Based on the evident decline in elk 

numbers in San Francisco Bay archaeological contexts as early as 1600 B.P., we then 

assigned specimens to hypothetical pre-bottleneck (i.e., pre ~1600 B.P.) and post-

bottleneck (post ~1600 B.P.) groups. These analyses resulted in elk MNI values of 33 and 

20 from the pre-bottleneck and post-bottleneck periods, respectively. From this sample, 

we selected 43 individuals for DNA analysis. We acknowledge that any number of cutoff 

dates between 1600 and 1200 B.P. would be reasonable here to split the samples into pre- 

and post-bottleneck periods— our decision to use 1600 B.P. was to ensure adequate 

samples falling in the post-bottleneck period as elk specimens are generally uncommon in 

deposits dating after 1200 B.P. at Emeryville. Future analyses with larger samples could 

allow for different comparisons (e.g., pre- and post-1500 B.P., pre- and post-1400 B.P., 

etc.) to identify more precisely the timing of changes in genetic diversity. 

To provide a barometer of terrestrial climate change across the period these 

samples were deposited, the carbon, oxygen, and nitrogen isotopic composition was 

analyzed from a subset (n = 16) of these specimens that produced ancient DNA 

sequences. These specimens were selected to obtain a balanced representation in both the 

pre- and post-bottleneck time periods. 

4.6 Ancient Tule Elk DNA: Extraction, Amplification, 

Sequencing, and Statistical Analysis 

4.6.1 DNA Extraction 

Between 0.2 and 0.67 grams of bone were removed from each specimen and 

surface decontaminated by soaking in 10% bleach for 10 minutes and thoroughly rinsing 

with sterile water.  The bone fragments were then dried overnight at room temperature 



89

 

and mechanically powdered with a stainless steel mortar and pestle.  The powdered bone 

was incubated overnight at 56° C with constant agitation in 5 ml of digestion buffer 

consisting of 0.5M EDTA, pH 8.0 and 250 µg/ml proteinase K.  Digested bone powder 

was centrifuged for 5 minutes and 500 µl of the supernatant was added to 1.5 ml 

Dehybernation Solution A (MP Biomedicals) and 400 µl Ancient DNA Glassmilk (MP 

Biomedicals), then incubated 3 hours at room temperature with constant agitation.  DNA 

was then extracted using a GENECLEAN® for Ancient DNA Kit (MP Biomedicals) 

following the manufacturer’s instructions.  Between 4 and 7 specimens were extracted at 

a time and a negative extraction control was included in each extraction batch. 

4.6.2 PCR Amplification and Sequencing 

PCR primers were designed with Primer 3 (Rozen and Shaletsky 2000) from the 

Cervus elaphus nannodes TULE457 mitochondrial D-loop complete sequence (GenBank 

Accession No. AF016976.1). Primers Cen_L676 (5’ – AAATCGCCCACTCCTTGTAA 

– 3’) and Cen_R847 (5’ – GTCCCGCTACAATTCATGCT – 3’) were selected to target 

a 172 base pair (bp) fragment of the mitochondrial D-loop including 132 bp of 

nonpriming sequence. A BLAST search of the NCBI nucleotide database with each 

primer was performed to ensure that these primers would preferentially amplify all sub-

species of North American elk DNA and not potentially contaminating human DNA. 

There is a point mutation common to North American elk sequences at a single position 

on the forward primer (Cen_L676) and another single point mutation on the reverse 

primer (Cen_R847).  In both cases these mutations are singular and are not found on the 

first or final position and are unlikely to have biased our results. 

PCR amplification was performed in 25 µl reaction volumes containing 2.0 – 5.0 
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µl ancient DNA extract, 0.5 µM of each primer, 200 µM dNTPs, 2.0 mM MgCl, 2X 

BSA, 1X GeneAmp® PCR Gold Buffer (Applied Biosystems), and 2U AmpliTaq Gold® 

DNA Polymerase (Applied Biosystems).  A negative PCR control was included in each 

amplification batch by substituting 2.0 – 5.0 µl water in the place of ancient DNA extract.  

After an initial polymerase activation step (95°C, 5 min.), 45 cycles of amplification 

(95°C, 45 s; 45°C, 45 s; 72°C, 45 s) was followed by a final extension step (72°C, 5 min.) 

in an Applied Biosystems Veriti® thermal cycler.  Seven microliters of the final PCR 

product were loaded onto a 3% agarose gel stained with SYBR® Green (Applied 

Biosystems) and an appropriate size standard.  The remaining PCR product of 

successfully amplified ancient DNA extracts was cleaned with an UltraClean PCR Clean-

up Kit (MO BIO) following the manufacturer’s instructions and was submitted for 

bidirectional sequencing at the University of Utah Health Sciences Center Core 

Sequencing Facility. 

4.6.3 DNA Sequence Authentication and Contamination Controls 

Contamination of PCR reactions by exogenous DNA templates is one of the most 

serious problems confronting ancient DNA research (Gilbert et al. 2005a; Gilbert et al. 

2006; Kaestle and Horsburgh 2002; O’Rourke et al. 2000; Pääbo et al. 2004; Willerslev 

and Cooper 2005; Yang and Watt 2005).  The ancient DNA laboratory in the Department 

of Anthropology at the University of Utah maintains a series of protocols designed to 

minimize the potential for contamination in ancient DNA research.  DNA extractions and 

PCR set-up is conducted in a dedicated ancient DNA clean room with positive pressure 

HEPA-filtered ventilation and integrated UV lights.  Inside the clean room, individual 

bench-top enclosures are used and surfaces are cleaned with a bleach solution before and 
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after each use.  Equipment, tubes, and most reagents are UV cross-linked prior to use.  To 

monitor for potential contamination, including the possibility of cross-contamination of 

reactions, multiple negative controls are included at every step.  These negative controls 

are processed in exactly the same manner as are those tubes that contain DNA template 

and are carried through the entire amplification process. 

In addition to PCR contamination, ancient DNA sequences can be compromised 

by a number of complications including postmortem DNA damage (Gilbert et al. 2005b; 

Gilbert et al. 2003; Hofreiter et al. 2001a; Hofreiter et al. 2001b; Pääbo et al. 2004; 

Willerslev and Cooper 2005) and nuclear insertions (Bensasson et al. 2001; Martin 2003; 

Mourier et al. 2001; Willerslev and Cooper 2005).  We used a rigorous DNA sequence 

authentication protocol appropriate to the risk of this project generating faulty sequences 

(e.g., Gilbert et al. 2005b).  To ensure that sequences made taxonomic sense, each 

acquired sequence fragment was used to search the NCBI nucleotide database using the 

BLAST search tool.  The local alignments generated by this search were then used to 

guide manual trimming of low-quality bases from raw sequence files.  Quality trimmed 

forward and reverse sequences were then aligned to the Cervus elaphus nannodes 

TULE457 mitochondrial D-loop complete sequence (GenBank Accession No. 

AF016976.1) and combined to generate the sequences used in subsequent analysis. 

To further allow an evaluation of possible postmortem degradation (see Hofreiter 

et al. 2001b; Willerslev and Cooper 2005), we acquired two or three replicated sequences 

for 15 specimens (Table 4.1). Replicate sequences were obtained from independent PCR 

amplifications of existing DNA extractions following the amplification and sequencing 

protocols outlined above.  These sequence replicates were then used to classify each tule 
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elk sequence as either confirmed or provisional.  Confirmed sequences are those where 

we observed two or more identical sequences or where three independently replicated 

sequences for a given specimen could be used to infer a consensus sequence.  Provisional 

sequences are those for which we have not yet been able to obtain replicate sequences 

from independent PCR amplifications or for specimens for which we have only been able 

to acquire two independent sequences that differ from one another. 

4.6.4 Statistical Assessment of Genetic Diversity 

We estimated a number of population genetic parameters from these DNA 

sequences using DnaSP Version 5.10.01 (Librado and Rozas 2009) including: the number 

of haplotypes, haplotype diversity, the number of polymorphic (segregating) sites (S), 

nucleotide diversity (π), and theta (per site) from S.  We also used DnaSP to estimate 

Tajima’s D and Fu’s Fs.  A haplotype is a unique combination of genetic markers present 

in a chromosome (Hartl and Clark 1997:57) and here each unique DNA sequence is 

defined as a distinct haplotype.  Haplotypes are distinct from haplogroups, the discussion 

of which is common in much of the anthropological genetics literature.  Haplogroups are 

groups of similar genetic markers that share a common ancestor and can be used to 

describe genetically related populations such as mitochondrial haplogroups A, B, C, D, 

and X found in native human populations throughout the Americas.  Description of 

haplotype variation within a population is a useful measure of genetic diversity, whereas 

definition and description of haplogroups facilitate population affinity studies.  Haplotype 

diversity is a measure of the distribution of unique sequences (i.e., haplotypes) in a 

population and is conceptually similar to ecological diversity (evenness) measurements of 

heterogeneity that are familiar to many archaeologists.  We expect that both the number 
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of haplotypes and the distribution of haplotypes across samples will be substantially 

reduced after ~1600 B.P., the hypothesized time of substantial population decline. We 

also expect to see a reduction in genotypic diversity in elk populations after 1600 B.P., if 

the bottleneck hypothesis is correct.  Where gene diversity statistics like number of 

distinct haplotypes and haplotype diversity examine patterns of change in whole 

sequences, nucleotide diversity statistics examine patterns of change from individual 

nucleotide substitutions in DNA sequences.  The number of segregating sites (S) is 

simply a count of the number of individual nucleotide positions in a collection of aligned 

DNA sequences that contain a substitution.  The number of segregating sites (S) is 

conceptually similar to many estimates of ecological richness (e.g., numbers of taxa).  

Nucleotide diversity (π), also called mean pairwise difference, is the average number of 

polymorphic nucleotide sites between each pair of sequences in a collection of aligned 

DNA sequences.  Theta (per site) from S (θS) is an expression of the number of 

segregating sites (S) that is normalized by both the length and number of DNA sequences 

in a sample. 

Estimates of nucleotide diversity can be affected by natural selection, and changes 

in population size and structure, among other factors, and several statistical indices have 

been devised to measure these effects.  Tajima’s D and Fu’s Fs provide estimates of the 

effect of natural selection at loci that are argued to be selectively neutral.  At selectively 

neutral loci, in populations of constant size, estimates of theta from π and from S are 

expected to be roughly equal and the ratio between estimates of theta from pi and 

estimates of theta from S is approximately zero.  Significant positive departures from zero 

suggest that natural selection is affecting variation at a given locus, while significant 
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negative departures suggest that a population has been growing or has experienced 

directional selection (e.g., genetic hitchhiking, selective sweeps, etc).  We estimate 

Tajima’s D and Fu’s Fs in an effort to better contextualize the diversity statistics that we 

obtain for pre-bottleneck and post-bottleneck sequences. 

4.7 Ancient DNA Results 

We have performed DNA extractions on 43 specimens to date and from this 

sample have obtained 24 (56%) high quality sequences that include 132 base pairs (bp) of 

nonpriming sequence from the mitochondrial control region (Table 4.1).  Thirteen of 

these sequences have been replicated and confirmed; the remaining 11 have not yet been 

confirmed and are considered provisional.  These 24 tule elk sequences are from 

specimens that span the entire Emeryville temporal sequence with 17 falling within the 

hypothesized pre-bottleneck period (pre-1600 B.P.) and 7 falling in the post-bottleneck 

period (post-1600 B.P.). Genetic diversity summary statistics for the complete collection 

of 24 confirmed and provisional sequences, as well as for hypothesized pre-bottleneck 

and post-bottleneck populations, are presented in Table 4.2.   

From these 24 DNA sequences, we found 12 polymorphic sites that collectively 

define 8 distinct haplotypes (Haplotype A – Haplotype H). All 13 replicated and 

confirmed sequences are Haplotype A and all 12 segregating sites are transitions that are 

nearly equally distributed between purine-purine mutations (n = 5) and pyrimidine-

pyrimidine mutations (n = 7). The replicated sequences are nearly equally divided 

between the pre- and post-bottleneck groups. We emphasize that all 13 sequences that 

have been replicated and confirmed are identical and thus no temporal trend in genetic 

diversity is apparent with this authenticated subset of the sample.  Considering the entire 
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data set, however, patterns of genetic diversity between the pre-bottleneck and post-

bottleneck DNA sequences are striking. Eight unique DNA haplotypes are represented in 

this Emeryville sample and all of them are found in the pre-bottleneck collection.  

Among the post-bottleneck specimens, however, there is only a single haplotype 

(Haplotype A), and this sequence is also found in the pre-bottleneck sample.  This 

apparent reduction in genetic diversity is statistically significant (X2 = 17.00, df = 7, P = 

0.017) and is reflected by measures of haplotype diversity that estimate the probability 

that any two randomly chosen sequences represent different haplotypes (Nei 1987). 

While post-bottleneck specimens are identical and show no diversity, pre-bottleneck 

sequences, in contrast, are considerably more diverse (H = 0.669 ± 0.129) and are more 

diverse than the Emeryville elk sequence collection as a whole (H = 0.507 ± 0.125). We 

note here that the 7 post-bottleneck individuals were distributed across nearly a 1000 year 

time period, derived from four distinct stratigraphic units and thus could not be sampling 

a single closely related family unit.  

The possible loss of genetic diversity between pre-bottleneck and post-bottleneck 

tule elk sequences from the Emeryville Shellmound also resulted in a significant loss of 

genotypic diversity (Table 4.2).  All 12 polymorphic sites from the 24 sequences reported 

here are found among the pre-bottleneck specimens.  By contrast, the seven DNA 

sequences from post-bottleneck specimens are monomorphic and show no variation.  

Still, genetic variation in natural populations is influenced by a host of factors, so we 

estimated several additional indices of polymorphism.  Nucleotide diversity (π) is the 

average number of differences between all pairs of sequences in the population sample 

(Hartl and Clark 1997).  Post-bottleneck sequences exhibit no variation while nucleotide 
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diversity for pre-bottleneck sequences (π = 0.011 ± 0.003) is greater than the same 

statistic for the collection as a whole (π = 0.008 ± 0.003).  Theta (θ) is a well-known 

population genetic parameter that provides a direct molecular estimate of population size 

and/or mutation rate (θ = 4Nu; where 2N = the number of genes in a population and u = 

mutation rate; Hartl and Clark 1997).  Here, we estimate theta from the number of 

segregating sites (θS; Watterson 1975).  Again, post-bottleneck sequences exhibit no 

variation, while pre-bottleneck sequences are more diverse (θS = 0.027 ± 0.012), though 

less dramatically, than the Emeryville tule elk sequences as a whole (θS = 0.024 ± 0.010) 

when theta (per site) is estimated. 

We also estimate the long-term stability of the tule elk population from our DNA 

sequence data (Table 4.2).  Tajima’s D is a statistic developed to determine whether a 

locus is selectively neutral (Tajima 1989) and is sensitive to a number of demographic 

processes and can be used to evaluate whether a population has recently experienced 

population growth or decline (Hartl and Clark 1997; Rogers et al. 1996).  Negative values 

of Tajima’s D are suggestive of previous population growth and, most notably, pre-

bottleneck sequences are negative and deviate significantly from zero (D = -2.151, P < 

0.05).  Like Tajima’s D, Fu’s Fs was developed to evaluate whether a locus is selectively 

neutral, similarly, it is sensitive to a number of demographic processes and can too be 

used to evaluate recent trends in population history (Fu 1997).  The DNA sequences from 

pre-bottleneck specimens also suggest that this population was growing (Fs = -3.731).  

Further work to replicate and confirm the 11 provisional sequences reported here 

will help to verify that the novel haplotypes, all derived from the earlier pre-bottleneck 

sample, reflect genetic variation and are not simply mis-incorporations that are the 
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product of postmortem DNA damage. The latter seems less likely, however, given the 

excellent collagen preservation in these materials (see below), their relatively young 

absolute age and narrow age range (2600 to 700 B.P.), and the fact that extensive post-

mortem damage of this sort has only been documented with much older material—

mammoth, cave bear, bison, and Neandertal sequences ~ 25,000-65,000 years in age 

(e.g., Gilbert et al. 2005b; Grigorenko et al. 2009; Hofreiter et al. 2001b). 

4.8 Climate Change and the Tule Elk Population Decline 

4.8.1 Tule Elk and San Francisco Bay Paleoenvironments 

While our general hypothesis suggests that tule elk experienced a population 

bottleneck due to human hunting pressure, late Holocene climate change could also have 

a played a role. Indeed, to what degree ungulate herds are structured from the top down, 

by predation, or from the bottom up, by range conditions and resource limits, is an issue 

of general interest in ecology and wildlife management (Estes 1996; Kay 1998; Testa 

2004) and one that is directly relevant to our analysis here.  

Empirical research on modern tule elk populations in California indicates that elk 

are sensitive to variation in climate, especially effective precipitation. Although the 

relationship between climatic variables and tule elk reproduction and survivorship is 

clearly complex, hot and dry climates, or droughts, appear to have substantial negative 

effects on elk herds (Howell et al. 2002; McCullough 1969; McCullough et al. 1996) 

independent of hunting pressure. If the apparent population decline in tule elk 

documented from both archaeological relative abundance and genetic diversity data was 

driven by climate-based reductions in range quality, than paleoclimatic data should 

indicate enhanced drought conditions in the San Francisco Bay area during the post-
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bottleneck period. Insofar as the Emeryville relative abundance and genetic data reflect a 

pan tule elk population decline, climate data from across their California range should 

also document droughted conditions during the post-bottleneck period. However, since 

our analysis is focused on tule elk from Emeryville, we focus on climatic reconstructions 

for San Francisco Bay area.  

Over the last several decades a wealth of late Holocene paleoenvironmental 

information has been generated from San Francisco Bay proxy records, especially those 

derived from marsh and estuarine sediments (e.g., Ingram et al. 1996; McGann 2008; 

Malamud-Roam et al. 2007; Malamud-Roam and Ingram 2004; Goman et al. 2008). 

Much of this work has been geared towards understanding variation in regional moisture 

history as reflected by variation in San Francisco Bay salinity levels. Since San Francisco 

Bay receives runoff from the vast Sacramento–San Joaquin watershed that covers 40% of 

the state of California and variation in freshwater inflow influences salinity levels of the 

estuary, periods during the past characterized by enhanced salinity reflect more arid 

conditions over the regional watershed.  

Reconstructions of San Francisco Bay salinity have been derived from analyses of 

diatom and foraminiferal taxonomic composition, δ18O, δ 13C, and trace element ratios 

derived from various estuarine sediments, and Bay vegetation pollen assemblages to 

reveal late Holocene trends in salinity and regional moisture history. Those data suggest 

that the time period represented by the Emeryville elk record (i.e., 2600 to 700 B.P.) was 

generally cool and moist compared to the middle Holocene and that relatively low 

amplitude shifts between warm and dry, and cool and moist conditions also occurred over 

this interval. Most noteworthy, many of these records suggest increasing regional aridity 
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between about 1300 and 700 B.P., an interval that corresponds with both the Medieval 

Warm Period (or Medieval Climatic Anomaly; MCA) documented from a variety of 

records across western North America (e.g., Graham et al. 2007), and the hypothesized 

elk population decline. San Francisco Bay area microclimate is, however, known to differ 

from prevailing regional or interior conditions. For example, hotter temperatures in the 

Central Valley (~150 km to the east) are often associated with an increased draw of fog 

cover and lower temperatures within the San Francisco Bay region (Gilliam 2002; Patton 

1956). Indeed, several late Holocene paleoclimatic records that reflect local variations in 

effective precipitation, have been read to suggest the MCA in the San Francisco Bay may 

have been characterized by relatively cool and moist conditions (Adam 1975; Starratt 

2008). Clearly, more refined records that reflect variation in local climate and terrestrial 

ecosystems will be required to evaluate the potential role that climate change may have 

played in the tule elk population decline and we provide the foundation and a preliminary 

test of an approach to do this here based on the stable carbon, oxygen, and nitrogen 

isotope chemistry of the tule elk specimens analyzed for ancient DNA.  

4.8.2 An Isotope-Based Paleoclimatic Reconstruction 

Several stress factors can affect plant δ13C in addition to vegetation type, altering 

photosynthetic rates and/or stomatal conductance.  The most pronounced of these is 

aridity.  Plant stable carbon isotope values are negatively correlated with water 

availability given the inverse relationship between transpiration and stomatal 

conductance (see Ehlringer and Monson 1993 and Farquhar et al. 1989 for reviews).  

Although the effects of aridity on intraspecific δ13C is limited by the range of conditions 

under which a particular species can grow, increases in water use efficiency produce 
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enrichment in plant δ13C as marked as 2‰, more than an order of magnitude greater than 

analytical uncertainty. Such increases in C3 lowland plant δ13C values in particular are 

typically indicative of increasing aridity.  

Nitrogen isotope signatures increase with each step up the food web and in 

temperate and semi-arid ecosystems, plant δ15N commonly ranges from 3-6% (Coltrain 

and Leavitt 2002; Evans and Ehleringer 1994; Pate 1994), while desert ecosystems can 

produce plant values >12% (Schwarcz et al. 1999).  Enrichment in plant δ15N appears to 

co-vary with soil aridity based on the understanding that isotopically light or depleted 

ammonia gas, formed in soils by microbial action, is volatized in droughted settings 

enriching soil δ15N values available for plant uptake. Enrichment is passed up the food 

web, initially documented in the nitrogen isotope chemistry of herbivores as primary 

consumers.  Analysis of a single geographically constrained herbivore population 

effectively holds trophic level constant. Thus, significant variability in elk δ15N should 

reflect variation in moisture driven soil δ15N values and provide an indicator of climatic 

variability, tracking drought conditions severe enough to drive elk into decline (but see 

also Ugan and Coltrain 2011). Given the distance between Emeryville and the open coast, 

nitrogen values should not likely be influenced by sea spray (see Heaton 1987; Sealey et 

al. 1987).  

Analysis of oxygen isotope values in vertebrate bone can be used to reconstruct 

trends in the temperature of precipitation and thus imbibed water with enriched δ18O 

values reflecting warmer water sources (Levin et al. 2006; Sponheimer and Lee-Thorp 

1999). Droughted conditions or increases in temperature should thus be reflected by 

enriched δ18O values in the Emeryville tule elk bone. 
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 Sixteen tule elk were analyzed for bone apatite δ13C and δ18O isotope signatures; 

we report collagen δ13C and δ15N values on 15 samples (Table 4.3). Methods followed 

Coltrain et al. (2007). Collagen yields were adequate to produce reliable stable carbon 

isotope values. Atomic C:N ratios were within the 2.9-3.6 range indicative of well-

preserved archaeological bone collagen (Ambrose 1990). These isotope data are in 

keeping with expected values for elk foraging in a temperate, C3 lowland setting.  Given 

the +5 ‰ offset between herbivore diets and bone collagen, our sample of tule elk 

foraged virtually entirely on C3 vegetation, with a mean carbon isotope value of 

approximately -25 ‰.  

Mean collagen δ13C and δ15N values for 9 elk from the pre-bottleneck sample are 

-20.7 ± 0.5 ‰ and 5.3 ± 0.4 ‰, respectively (Table 4.4).  Mean bone apatite δ13C is -11.5 

± 1.2 ‰. Seven elk from the post-bottleneck sample show mean collagen δ13C and δ15N 

values of – 20.7 ± 0.5 ‰ and 5.9 ± 0.5 ‰, respectively, and a mean bone apatite δ13C 

value of – 11.7 ± 1.0 ‰.  The mean δ18O value for samples from the pre-bottleneck 

sample is -5.2 ± 0.6 ‰, whereas those from the post-bottleneck group is -5.0 ± 0.3 ‰.  

Thus, mean carbon isotope values are virtually identical in pre- and post-bottleneck 

samples and apatite is within the range of analytical uncertainty.  Mean δ18Oapt values are 

also similar between groups.  In sum, only δ15N mean values suggest climatic change 

over the pre- to post-bottleneck transition. However, the study included two subadults (sp 

55, 58) whose bone chemistry may have been biased by preweaning enrichment in δ15N 

(Table 4.3). Both high δ15N subadults are in the post-bottleneck population and their δ15N 

values are outside the range of other samples. Not surprisingly the mean for post- versus 

pre-bottleneck δ15N is significantly different (P = 0.02, t = 2.67, df =11) and nitrogen is 
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the only isotope for which between-group mean differences are significant.  When these 

subadults are removed from the post-bottleneck population, the difference between 

groups is not significant (P = 0.1, t = 1.85, df = 9).  We do not advocate removing these 

data from the study but note that the significant difference between pre- and post-

bottleneck δ15N is a function of enrichment apparent in two subadult individuals that may 

have still been nursing or were recent weanlings at the time of death. (Elk calves typically 

wean by 4 to 6 months of age [McCullough1969]). Thus, it is not clear that enrichment in 

post-bottleneck δ15N can be attributed to increasing aridity.   

The study also includes three late-term fetal or neonate samples (sp 35, 36, 38) 

whose collagen and apatite δ13C values fall outside the range of other individuals and 

whose mean δ18O value is nearly a per mil more negative (Table 4.3). When fetal/neonate 

isotope values (δ13Ccoll = -21.5 ± 0.2 ‰, δ13Capt = -13.7 ± 0.5 ‰ [Table 4.4]) are deleted, 

the relationship between pre- and post-bottleneck isotope mean values is essentially 

unchanged, although absolute means with the exception of nitrogen are depleted by 0.1-

0.4 ‰.  Slight adjustments to carbon and oxygen values do not affect the outcome of the 

study but correct for depletion coincident with fetal/neonate carbon and oxygen isotope 

chemistry, which indicates the importance of maternally derived lipids as an energy 

source. 

4.9 Conclusion 

Population genetic statistics estimated from 24 ancient tule elk DNA sequences 

are consistent with a hypothesized late Holocene (1600-1200 B.P.) population bottleneck 

inferred previously from patterns in traditional zooarchaeological indices. Statistical 

estimates of haplotype diversity and estimates of genotypic diversity all implicate a 
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reduction in genetic diversity across the hypothesized tule elk population bottleneck. We 

caution, however, that only 12 of the 24 sequences have been replicated and confirmed 

and there is no variation in the sequences from this authenticated sample. In addition, no 

meaningful temporal trends were apparent in the stable carbon, nitrogen, and oxygen 

values derived from the Emeryville elk specimens. As these values should reflect local 

change in the San Francisco Bay terrestrial environments, the available data would be 

inconsistent with a climate-based cause for a population decline, should one be confirmed 

with additional analysis. Planned analyses of both ancient DNA and isotope chemistry 

with additional samples including high resolution dating of the bone samples are clearly 

required to provide a more robust evaluation of variation in the late Holocene elk 

population.  

Insofar as the trends documented here can be replicated with larger samples, the 

evidence of the decline in genetic diversity would be consistent with two of our specific 

hypotheses relating to the magnitude of the decline in elk: Hypothesis A, a population 

decline in the entire population of California tule elk and Hypothesis B, a population 

decline in a San Francisco Bay subpopulation of tule elk that was effectively isolated 

from the larger population in other regions. Although the latter directly implies a 

population bottleneck for only an isolated San Francisco Bay elk herd, the very formation 

of such isolated subpopulations implicates population fragmentation or the extirpation of 

elk in the intervening areas. As noted above, choosing between these two hypotheses will 

require additional genetic data derived from elk obtained from localities outside the San 

Francisco Bay area and such work is now planned.  

Whatever the case, a secure documentation of declining genetic diversity in 
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California tule elk would corroborate previous archaeofaunal work in this setting that has 

suggested substantial late Holocene depressions from a wide range of large-sized 

vertebrate prey types, including tule elk. Further, such evidence would bolster the broader 

argument that declining foraging efficiencies and resource intensification was the driving 

force behind many of the changes evident in human behavior and biology across the late 

Holocene in central California (e.g., Bartelink 2006; Broughton et al. 2010; Raab and 

Jones 2004). 

 Since our general hypothesis for elk population declines was derived originally 

from standard zooarchaeological measures of resource depression derived from foraging 

theory, the confirmation of it based on independent ancient DNA analyses would clearly 

have theoretical and methodological implications. Most notably, such a test would 

confirm in this context that body-size based abundance indices and the prey model logic 

and assumptions upon which they are based are appropriate and allow accurate 

reconstructions of trends in past prey encounter rates.  Although due consideration 

attending to quantification, sampling, and taphonomic issues germane to the application 

of abundance indices continue to be warranted of course, independent genetics-based 

support would give us greater confidence that abundance indices reflect trends in prey 

encounters.  

 We also emphasize that the general congruence we provisionally obtained here 

between abundance indices and genetic diversity data need not apply in other contexts 

and other taxa. As we noted above, depending on the life history and behavioral 

characteristics of the prey taxa harvested and factors related to the context of human 

foragers involved, meaningful prey declines resulting from behavioral or microhabitat 
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depression may be indicated by abundance indices but may not be reflecting population-

level demographic trends and would thus be genetically undetectable. In other words, the 

genetic barometer may be insensitive to changes in prey populations that had significant 

effects on foraging efficiency and diet breadth of past human consumers. Both standard 

zooarchaeological measures of the latter and those based on ancient DNA thus clearly 

can play important roles in increasing the precision of our understanding of the 

relationship between past peoples and animal populations.  

Finally, our analysis may have implications for both the phylogenetic significance 

and modern management of tule elk. Insofar as we can replicate several of our novel tule 

elk haplotypes, we would have information allowing a more detailed evaluation of the 

phylogenetic significance of tule elk relative to the other North American and Asian 

subspecies. This issue has not been fully resolved due to the virtual lack of modern 

genetic diversity in tule elk from which to conduct phylogenetic analyses. This low extant 

genetic diversity is commonly attributed to the historic period population bottleneck but 

may well have deeper roots.   

Importantly, because genetic diversity is associated with the accumulation of 

deleterious alleles and increased risk of extinction, patterns of current and historical 

genetic diversity are now routinely used to inform specific management strategies for 

declining or threatened animal populations (Frankam et al. 2002)—such is the case with 

California tule elk. Drawing on microsatellite DNA variation from modern elk derived 

from several of the separate managed herds, current work has focused on predicting the 

persistence of genetic variation under different management and relocation strategies 

(Meredith et al. 2007; Williams et al. 2004).  This work has documented, as noted above, 
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very low levels of genetic variation in tule elk—more so than any other elk subspecies—

and is viewed as consistent with, and invariably attributed to, the historic period 

population crash. Quantitative analyses providing estimates of future variation based on a 

range of management scenarios involving various relocation plans are based, however, on 

“surrogates for historical levels of variation in tule elk,” which in this case is assumed to 

be similar to levels of genetic variation documented for Rocky Mountain elk. Williams et 

al. (2004:116), for example, note that:  

We do not know the levels of genetic variation in pristine tule elk herds and 

acknowledge that the validity of our interpretation depends on the appropriateness 

of variation in Rocky Mountain elk for historical, pre-bottleneck levels in tule elk. 

We think that our assumption that variation in the large, pristine, tule herds 

approached that of Rocky Mountain elk is reasonable…  

 

Our analysis suggests that the demographic and genetic history of tule elk that 

forms the basis for specific management policies and practices for the modern herds may 

be in need of revision. It now seems likely that tule elk not only experienced a relatively 

brief (~100 year), but severe, historic period bottleneck but possibly a substantial 

protracted (~1000 years) late Holocene one as well. Further work with tule elk ancient 

DNA will help clarify the late prehistoric population dynamics of this iconic mammal of 

the California landscape. 

  



107

 

4.10 References Cited 

Adam, D. P.  

1975 A late Holocene pollen record from Pearson’s Pond, Weeks Creek 

Landslide, San Francisco Peninsula, California. United States Geological Survey 

Journal of Research 3:721-731. 

 

Ambrose, S. H.  

1990 Preparation and characterization of bone and tooth collagen for isotopic 

analysis. Journal of Archaeological Science 17:431-451. 

 

Anderson, M. K.  

2005 Tending the Wild: Native American Knowledge and the Management of 

California’s Natural Resources. Berkeley: University of California Press. 

 

Anderson, R. S. and Smith, S. J.  

1994 Paleoclimatic interpretations of meadow sediment and pollen 

stratigraphies from California. Geology 22:723-726. 

 

Barnes, I. P., Matheus, B., Shapiro, B., Jensen, D., and Cooper, A.  

2002 Dynamics of Pleistocene population extinctions in Beringian brown bears. 

Science 295:2267-2270.  

 

Bartelink, E. J.  

2006 Resource Intensification in Pre-contact Central California: A 

Bioarchaeological Perspective on Diet and Health Patterns Among Hunter-

Gatherers from the Lower Sacramento Valley and San Francisco Bay. Ph.D. 

dissertation, Department of Anthropology, Texas A&M University, College 

Station, TX.  

 

Bayham, F. E.  

1979 Factors influencing the archaic pattern of animal utilization. Kiva 44:219-

235. 

 

Bayham, F. E.  

1982 A Diachronic Analysis of Prehistoric Animal Exploitation at Ventana 

Cave. Ph.D. dissertation, Department of Anthropology, Arizona State University, 

Tempe, Arizona. University Microfilms, Ann Arbor. 

 

Beck, R. Kelly.  

2009 The molecular genetics of prey choice: using ancient DNA to infer 

prehistoric population histories. California Archaeology 1:253-268. 

 

Bensasson, D., Zhang, D.-X., Hartl, D. L. and Hewitt, G. M.  

2001 Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in 

Ecology and Evolution 16(6):314-321. 



108

 

Benson, L., Kashgarian, M., Rye, R., Lund, S., Paillet, F., Smoot, J., Kester, C., Mensing, 

S., Meko, D., and Lindstrom, S.  

2002 Holocene multidecadal and multicentennial droughts affecting northern 

California and Nevada. Quaternary Science Reviews 21:659-682. 

 

Berkes, F.  

2004 Rethinking community-based conservation. Conservation Biology 18:621-

630. 

 

Berkes, F., Folke, C., and Gadgil, M. 

1995 Traditional ecological knowledge, biodiversity, resilience and 

sustainability. In Biodiversity Conservation (pp. 281-299). C. A. Perrings et al. 

(Eds.). Netherlands: Kluwer Academic Publishers 

 

Blackburn, T.C., and Anderson, M. K. (Eds.)  

1993 Before the Wilderness: Environmental Management by Native 

Californians.  Menlo Park, CA: Ballena Press. 

 

Bon, C., Berthonaud, V., Fosse, P., Gély, B., Maksud, F., Vitalis, R., Philippe, M., van 

der Plicht, J., and Elalouf, J.-M. 

2011 Low regional diversity of late cave bears mitochondrial DNA at the time 

of Chauvet Aurignacian paintings. Journal of Archaeological Science 38:1886-

1895. 

 

Braje, T. J.  

2010 Modern Oceans, Ancient Sites: Archaeology and Marine Conservation on 

San Miguel Island, California. Salt Lake City: University of Utah Press.  

 

Braje, T. J., Kennett, D. J., Erlandson, J. M., and Culleton, B. J.  

2007 Human impacts on nearshore shellfish taxa: a 7000 year record from Santa 

Rosa Island, California. American Antiquity 41:117-128. 

 

Broughton, J. M.  

1994 Declines in mammalian foraging efficiency during the late Holocene, San 

Francisco Bay, California.  Journal of Anthropological Archaeology 13:371-401. 

 

1999 Resource depression and intensification during the Late Holocene, San 

Francisco Bay: evidence from the Emeryville Shellmound vertebrate fauna. 

University of California Anthropological Records 32. Berkeley: University of 

California Press. 

 

2002 Prey spatial structure and behavior affect archaeological tests of optimal 

foraging models: examples from the Emeryville Shellmound vertebrate fauna. 

World Archaeology 34:60-83. 

 

2004 Prehistoric human impacts on California birds: evidence from the 



109

 

Emeryville Shellmound avifauna. Ornithological Monographs 56.  

 

Broughton, J. M., and Bayham, F. E.  

2003 Showing off, foraging models, and the ascendance of large game hunting 

in the California Middle Archaic. American Antiquity 68:783-789. 

 

Broughton, J.M., Byers, D., Bryson, R., Eckerle, W., and Madsen, D.  

2008 Did climatic seasonality control late Quaternary artiodactyl densities in 

western North America? Quaternary Science Reviews 37:1916-1937. 

 

Broughton, J.M., Cannon, M., and Bartelink, E. 

2010 Evolutionary ecology, resource depression, and niche construction theory: 

applications to central California hunter-gatherers and Mimbres-Mogollon  

 agriculturalists. Journal of Archaeological Method and Theory 17:371-421. 

 

Broughton, J. M., Cannon, M. D., Bayham, F. E., and Byers, D.  

2011 Prey body size and ranking in zooarchaeology: theory, empirical evidence 

and applications from the northern Great Basin. American Antiquity 76:403-428. 

 

Broughton, J.M., Mullins, D., and Ekker, T.  

2007 Avian resource depression or intertaxonomic variation in bone density? A 

test with San Francisco Bay avifaunas. Journal of Archaeological Science 34:374-

391. 

 

Byers, D.A., and Broughton, J. M.  

2004 Holocene environmental change, artiodactyl abundances, and human  

 hunting strategies in the Great Basin. American Antiquity 69:235-255. 

 

California Fish and Game.  

2011 http://www.dfg.ca.gov/wildlife/hunting/elk/tule/about/distribution.html 

#footer.  Accessed 10 September 2011. 

 

Calvignac, S., Hughes, S., Tougard, C., Michaux, J., Thevenot, M., Philippe, M., 

Hamdine, W., and Hänni, C.  

2008 Ancient DNA evidence for the loss of a highly divergent brown bear clade 

during historical times. Molecular Ecology 17:1962-1970. 

 

Campos, P., Willerslev, E., Sher, A., Ludovic, O., Axelsson, E., Tikhonov, A., 

Greenwood, A. D., Kahlke, R.-D.,  Kosintsev, P., Krakhamalnaya, T., Kuznetsova, T., 

Lemey, P., rt, M. T. P.MacPhee, R., Norris, C. A., Shepherd, K., Suchard, M. A., Zazula, 

G. D., Shapiro, B., and Gilbert, M. T. P.  

2010 Ancient DNA analyses exclude humans as the driving force behind late 

Pleistocene musk ox (Ovibos moschatus) population dynamics. Proceedings of 

the National Academy of Sciences 107:5675-5680. 

 

Cannon, M. D.  



110

 

2001 Archaeofaunal relative abundance, sample size, and statistical methods. 

Journal of Archaeological Science 28:185-195. 

 

Coltrain, J. B., Janetski, J., and Carlyle, S. 

2007 The stable and radio-isotope chemistry of western Basketmaker burials: 

implications for early Puebloan diets and origins. American Antiquity 72:301-321. 

 

Coltrain, J. B. and Leavitt, S. W.  

2002 Climate and diet in Fremont prehistory: economic variability and 

abandonment of maize agriculture in the Great Salt Lake Basin. American 

Antiquity 67:453-485. 

 

Cronin, M. A., Renecker, L. A. and Patton, J. C.  

2009 Genetic variation in domestic and wild elk (Cervus elaphus). Journal of 

Animal Science 87:829-834.  

 

de Bruyn, M., A. R. Hoelzel, G. R. Carvalho and M. Hofreiter  

2011 Faunal histories from Holocene ancient DNA. Trends in Ecology and 

Evolution 26(8):405-413. 

 

Ehleringer, J.R. and Monson, R.K.  

1993 Evolutionary and ecological aspects of photosynthetic pathway variation. 

Annual Review of Ecology and Systematics 24:411-439. 

 

Erlandson, J. M. and Rick, T. C.  

2010 Archaeology meets marine ecology: the antiquity of maritime cultures and 

human impacts on marine fisheries and ecosystems. Annual Reviews of Marine 

Science 2:165-185. 

 

Estes, J. A.  

1996 Predators and ecosystem management. Wildlife Society Bulletin 24:390-

396. 

 

Evans, R. D. and Ehleringer, J.R.  

1994 Water and nitrogen dynamics in an arid woodland. Oecologia 99:233-242. 

 

Farquhar, G. D., Ehleringer, J. R. and Hubick, K. T.  

1989 Carbon isotope discrimination and photosynthesis. Annual  Review of 

Plant Physiology and Molecular Biology 40:503-537. 

 

Frankham, R.  

1995 Effective population size/adult population size ratios in wildlife: a review. 

Genetics Research 66:95-107. 

 

1996 Relationship of genetic variation to population size in wildlife. 

Conservation Biology 10:1500-1508. 



111

 

Frankham, R., Ballou, J. D., Briscoe, D. A., and McInnes, K. H.  

2002 Introduction to Conservation Genetics. NewYork: Cambridge University 

Press.  

 

Fu, Y.-X.  

1997 Statistical tests of neutrality of mutations against population growth, 

hitchhiking and background selection. Genetics 147:915-925. 

 

Gilbert, M. T. P., Bandelt, H.-J., Hofreiter, M., and Barnes, I. 

2005a Assessing ancient DNA studies. Trends in Ecology and Evolution 

20(10):541-544. 

 

Gilbert, M. T. P., Hansen, A. J., Willerlev, E., Turner-Walker, G. and Collins, M.   

2006 Insights into the process behind the contamination of degraded human 

teeth and bone samples with exogenous sources of DNA.  International Journal 

of Osteoarchaeology 16:156-164. 

 

Gilbert, M. T. P., Shapiro, B., Drummond, A. J. and Cooper, A.   

2005b Post-mortem DNA damage hotspots in Bison (Bison bison) provide 

evidence for both damage and mutational hotspots in human mitochondrial DNA. 

Journal of Archaeological Science 32:1053-1060. 

 

Gilbert, M. T. P., Willerlev, E., Hansen, A. J., Barnes, I. Rudbeck, L., Lynnerup, N. and 

Cooper, A.  

2003 Distribution patterns of postmortem damage in human mitochondrial 

DNA. American Journal of Human Genetics 72:32-47. 

 

Gilliam, H.  

2002 Weather of the San Francisco Bay Region. Berkeley: University of 

California Press. 

 

Glenn, T.C., Stephan, W., and Braun, M.J.  

1999 Effects of a population bottleneck on whooping crane mitochondrial DNA 

variation. Conservation Biology 13:1097-1107. 

 

Gomon, M., Malamud-Roam F., and Ingram, B.L.  

2008 Holocene environmental history and evolution of a tidal salt marsh in San 

Francisco Bay, California. Journal of Coastal Research 24:1126-1137. 

 

Graham, N. E., Hughes, M. K., Ammann, C. M., Cobb, K. M., Hoerling, M. P., Kennett, 

D. J., Kennett, J. P., Rein, B., Stott, L., Wigand, P. E., and Xu, T.   

2007 Tropical Pacific — mid-latitude teleconnections in medieval times. 

Climatic Change 83:241-285 

 

Grayson, D. K.  

2001 The archaeological record of human impacts on animal populations. 



112

 

Journal of World Prehistory 15:1-68. 

 

Grigorenko, A.P., Borinskaya, S.A., Yankovsky, N.K., and Rogaev, E.I   

2009 Achievements and peculiarities in studies of ancient DNA and DNA from 

complicated forensic specimens. Acta Naturae 1:58-69. 

 

Hadley, E. A., Kohn, M. H., Leonard, J. A., and Wayne, R. K.  

1998 A genetic record of population isolation in pocket gophers during 

Holocene climate change. Proceedings of the National Academy of Sciences 

95:6893-6896. 

 

Hartl, D. L. and Clark, A. G.  

1997 Principles of Population Genetics, 3rd ed. Sunderland, MA: Sinauer 

Associates, Inc. 

 

Hawkes, K.  

1991 Showing off: tests of a hypothesis about men’s hunting goals. Ethology 

and Sociobiology 12:29-54. 

 

Hawkes, K., O'Connell, J. F., and Blurton Jones, N. G.  

1991 Hunting income patterns among the Hadza: big game, common goods, 

foraging goals and the evolution of the human diet. Philosophical Transactions: 

Biological Sciences 334:243-250. 

 

Heaton, T.H.E.  

1987 The 15N/14N ratios of plants in South Africa and Namibia: relationship to 

climate and coastal/saline environments. Oecologia 74:236-246. 

 

Hildebrandt, W. R. and Jones, T. L.  

1992 Evolution of marine mammal hunting: a view from the California and 

Oregon coasts. Journal of Anthropological Archaeology 11:360-401. 

 

2002 Depletion of prehistoric pinniped populations along the California and  

 Oregon coasts: were humans the cause? In Wilderness and Political Ecology: 

Aboriginal Influences and the Original State of Nature (pp. 72-110). C. E. Kay 

and Simmons, R. T. (Eds.). Salt Lake City: University of Utah Press. 

 

Hoelzel, A. R., Fleischer, R. C., Campagna, C., LeBoeuf, B. J., and Alvord, G.  

2002 Impact of a population bottleneck on symmetry and genetic diversity in 

the northern elephant seal.  Journal of Evolutionary Biology 15:567-575. 

 

Hofreiter, M., Capelli, C., Krings, M., Waits, L., Conards, N., Münzel, S., Rabeder, G., 

Nagel, D., Paunovic, M., Jambresić, G., Meyer, S., Weiss, G., and Pääbo, S.  

2002 Ancient DNA analyses reveal high mitochondrial DNA sequence diversity 

and parallel morphological evolution of late Pleistocene cave bears. Molecular 

Biology and Evolution 19:1244-1250. 



113

 

Hofreiter, M. Jaenicke, V., Serre, S., von Haeseler, A., and Pääbo, S. 

2001b DNA sequences from multiple amplifications reveal artifacts induced by 

cytosine deamination in ancient DNA. Nucleic Acids Research 29:4793-4799. 

 

Hofreiter, M., Serre, D., Poinar, H., Kuch, M. and Pääbo, S.   

2001a Ancient DNA. Nature Reviews Genetics 2:353-359. 

 

Howell, J. A., Brooks, G. C., Semenoff-Irving, M., and Greene, C.  

2002 Population dynamics of tule elk at Point Reyes National Seashore, 

California. Journal of Wildlife Management 66:478-490. 

 

Ingram, B. L., Ingle, J. C., and Conrad, M. E.  

1996 Stable isotope record of late Holocene salinity and river discharge in San 

Francisco Bay, California. Earth and Planetary Science Letters 141:237-247. 

 

Kaestle, F. A., and K. A. Horsburgh  

2002 Ancient DNA in anthropology: methods, applications, and ethics. 

Yearbook of Physical Anthropology 45:92-130. 

 

Kay, C. E.  

1994 Aboriginal overkill: the role of Native Americans in structuring western 

ecosystems. Human Nature 5:359-396. 

 

1998 Are ecosystems structured from the top-down or bottom-up? A new look 

at an old debate. Wildlife Society Bulletin 26:484-498. 

 

2002 False gods, ecological myths, and biological reality. In Wilderness and 

Political Ecology: Aboriginal Influences and the Original State of Nature (pp. 

238-261). C. E. Kay and Simmons, R. T. (Eds.).  Salt Lake City: University of 

Utah Press. 

 

2007 Were native people keystone predators? A continuous-time analysis of 

wildlife observations made by Lewis and Clark in 1804-1806. The Canadian 

Field Naturalist 121:1-16. 

 

Kuhn, T. S., McFarlane, K. A., Groves, P., Mooers, A. Ø, and Shapiro, B.  

2010 Modern and ancient DNA reveal recent partial replacement of caribou in 

the southwest Yukon. Molecular Ecology 19:312-323.  

 

Larson, S., Jameson, R., Etnier, M., Fleming, M., and Bentzen, P.   

2002 Loss of genetic diversity in sea otters (Enhydra lutris) associated with fur 

trade of the 18th and 19th centuries. Molecular Ecology 11:1899-1903. 

 

Leonard, J. A.  

2008 Ancient DNA applications for wildlife conservation. Molecular Ecology 

17:4186-4196. 



114

 

Leonard, J. A., Wayne, R. K. and Cooper, A.  

2000 Population genetics of Ice Age brown bears. Proceedings of the National 

Academy of Sciences 97:1651-1654. 

 

Levin, N.E., Cerling, T.E., Passy, B.H., Harris, J.M., and Ehleringer, J.R.   

2006 A stable isotope aridity index for terrestrial environments. Proceedings of 

the National Academy of Sciences 103:11201-11205. 

 

Librado, P. and Rozas, J.  

2009 DnaSP v5: a software for comprehensive analysis of DNA polymorphism 

data. Bioinformatics 25:1451-1452. 

 

Lyman, R. L.  

1988 Significance for wildlife management of the late Quaternary biogeography 

of mountain goats (Oreamnos americanus) in the Pacific Northwest U.S.A. Arctic 

and Alpine Research 20:13–23. 

 

1994 The Olympic mountain goat controversy: a different perspective. 

Conservation Biology 8:898–901. 

 

1994 Vertebrate Taphonomy. Cambridge, UK: Cambridge University Press. 

 

1996 Applied zooarchaeology: the relevance of faunal analysis to wildlife 

management. World Archaeology 28:110–125. 

 

2008 Quantitative Paleozoology. Cambridge, UK: Cambridge University Press. 

 

2011 Paleozoological data suggest Euroamerican settlement did not displace 

ursids and North American elk from lowlands to highlands. Environmental 

Management 47:899–906. 

 

Lyman, R. L., and Cannon, K. P. (Eds.).  

2004  Zooarchaeology and Conservation Biology. Salt Lake City: University of 

Utah Press. 

 

Malamud-Roam, F., Dettinger, M., Ingram, B.L., Hughes, M. K. and Florsheim, J. L. 

2007 Holocene climates and connections between the San Francisco Bay 

estuary and its watershed: a review. San Francisco Estuary and Watershed 

Science 5 (1). 

 

Malamud-Roam, F., and Ingram, B.P. 

2004 Late Holocene d13C and pollen records of paleosalinity from tidal 

marshes in the San Francisco Bay estuary, California. Quaternary Research 

62:134-145. 

 

Martin, W.  



115

 

2003 Gene transfer from organelles to the nucleus: frequent and in big chunks. 

Proceedings of the National Academy of Sciences 100:8612-8614. 

 

McCullough, D. R.  

1969 The Tule Elk: Its History, Behavior, and Ecology. Berkeley: University of 

California Publications in Zoology 88. 

 

McCullough, D. R., Fischer, J. K., and Ballou, J. D.   

1996 From bottleneck to metapopulation: recovery of the tule elk in California. 

In Metapopulations and Wildlife Conservation (pp. 375-403). D. R. McCullough 

(Ed.).  Covelo, CA: Island Press. 

 

McGann, M.  

2008 High-resolution foraminiferal, isotopic, and trace element records from 

Holocene estuarine deposits of San Francisco Bay, California. Journal of Coastal 

Research 24:1092-1109. 

 

Meredith, E. P., Rodzen, J. A., Banks, J. D., Schaefer, R., Ernest, H. B., Famula, T. R., 

and May, B. P.  

2007 Microsatellite analysis of three subspecies of elk (Cervus elaphus) in 

California. Journal of Mammalogy 88:801-808. 

 

Montgomery, M., Woodworth, L., Nurthen, R., Gilligan, D., Briscoe, D., and Frankham, 

R. 

2000 Relationship between population size and loss of genetic diversity: 

comparisons of experimental results with theoretical predictions. Conservation 

Genetics 1:33-43. 

 

Mourier, T., Hansen, A. J., Willerslev, E. and Arctander, P.  

2001 The Human Genome Project reveals a continuous transfer of large 

mitochondrial fragments to the nucleus. Molecular Biology and Evolution 

18(9):1833-1837. 

 

Nei, M.  

1987 Molecular Evolutionary Genetics. New York: Columbia University Press. 

 

O’Rourke, D. H., Hayes, M. G., and Carlyle, S. W.  

2000 Ancient DNA studies in physical anthropology. Annual Review of 

Anthropology 29:217-242. 

 

Pääbo, S., Poinar, H., Serre, D., Jaenicke-Despres, V., Hebler, J., Rohland, N., Kuch, M., 

Krause, J., Vigilant, L. and Hofreiter, M.  

2004 Genetic analyses from ancient DNA. Annual Review of Genetics 38:645-

679. 

 

Pate, F.D.  



116

 

1994 Bone chemistry and paleodiet. Journal of Archaeological Method and 

Theory 1:161-209. 

 

Patton, C. P.  

1956 Climatology of summer fogs in the San Francisco Bay area. University of 

California Publications in Geography 10:113-200. 

 

Paxinos, E. E., James, H.L., Olson, S.L., Ballou, J.D., Leonard, J.A., and Fleischer, R.C. 

2002 Prehistoric decline of genetic diversity in the nene. Science 296:1827. 

 

Pilot, M., Branicki, W., Jędrzejewski, W., Goszczyński, J., Jędrzejewska, Dykyy, I., 

Shkvyrya, M., and Tsinjarska, E.  

2010 Phylogeographic history of grey wolves in Europe. BMC Evolutionary 

Biology 10:104. 

 

Polziehn, R. O., Hamr, J., Mallory, F. F., and Strobeck, C.  

1998 Phylogenetic status of North American wapiti (Cervus elaphus) 

subspecies. Canadian Journal of Zoology 76:998-1010.  

 

2000 Microsatellite analysis of North American wapiti (Cervus elaphus) 

populations. Molecular Ecology 9:1561-1576. 

 

Polziehn, R. O., and Strobeck, C.  

2002 A phylogentic comparison of red deer and wapiti using mitochondrial 

DNA.  Molecular Phylogenetics and Evolution 22:342-356. 

 

Porcasi, J. F., Jones, T. L., and Rabb, M. L.  

2000 Trans-Holocene marine mammal exploitation on San Clemente Island, 

California: a tragedy of the commons revisited. Journal of Anthropological 

Archaeology 19:200-220. 

 

Preston, W.  

1998 Serpent in the garden: environmental change in colonial California. In 

Contested Eden: California Before the Gold Rush (pp. 260-298). R. A. Gutierrez 

and R. J. Orsi (Eds.).  Berkeley: University of California Press.  

 

Raab, L.M., and Jones, T.L.  

2004 Prehistoric California: Archaeology and the Myth of Paradise. Salt Lake 

City: University of Utah Press. 

 

Rick, T.C.  

2011 Weathering the storm: coastal subsistence and ecological resilience on late 

Holocene Santa Rosa  Island, California. Quaternary International 239:135-146. 

 

Rogers, A. R. 

1995 Genetic evidence for a Pleistocene population explosion. Evolution 



117

 

49:608-615. 

 

Rogers, A. R., Fraley, A. E., Bamshad, M. J., Watkins, W. S., and Jorde, L. B.  

1996 Mitochondrial mismatch analysis is insensitive to the mutational process. 

Molecular Biology and Evolution 13:895-902. 

 

Rozen, S., and Shaletsky, H. J.   

2000 Primer3 on the WWW for general users and for biologist programmers. In 

Bioinformatics Methods and Protocols: Methods in Molecular Biology (pp. 365-

386). S. Krawetz and S. Misener (Eds.). Totowa, New Jersey: Humana Press. 

 

Schwarcz, H. P., Dupras, T. L., and Fairgrieve, S. I.  

1999 15N enrichment in the Sahara: in search of a global relationship.  Journal 

of Archaeological Science 26:629-636. 

 

Sealey, J.C., van der Merwe, N.J., Lee-Thorp, J.A., and Lanham, J.L.  

1987 Nitrogen isotopic ecology in Southern Africa: implications for 

environmental and dietary tracing. Geochimica et Cosmochimica 51:2707-2717. 

 

Shapiro, B., Drummond, A. J., Rambaut, A., Wilson, M. C., Matheus, P. E., Sher, A. V., 

Pybus, O. G., Gilbert, M. T. P., Barnes, I., Binladen, J., E. Willerslev, Hansen, A. J., 

Baryshnikov, G. F., Burns, J. A., Davydov, S., Driver, J. C., Froese, D. G., Harington, C. 

R., Keddie, G., Kostintsev, P., Kunz, M. L., Martin, L. D., Stephenson, R. O., Storer, J., 

Tedford, R., Zimov, S., and Cooper, A.  

2004 Rise and fall of Beringian steppe bison. Science 306:1561-1565. 

 

Sponheimer, M., and Lee-Thorp, J.A.   

1999 Oxygen isotopes in enamel carbonate and their ecological significance.  

 Journal of Archaeological Science 26:723-728. 

 

Stephens, D. W., and Krebs, J. R.  

1986 Foraging Theory. Princeton, NJ: Princeton University Press.  

 

Starratt, S. W.  

2008 The tangled web: records of the Medieval Climate Anomaly (A.D. 900-

1350) from northern San Francisco Bay marshes. Geological Society of America 

Abstracts with Programs 40:227. 

 

Tajima, F.  

1989 Statistical method for testing the neutral mutation hypothesis by DNA 

polymorphism. Genetics 123:585-595. 

 

Testa, J. W.  

2004 Population dynamics and life history trade-offs of moose (Alces alces) in 

south-central Alaska.  Ecology 85:1439-1452. 

 



118

 

Ugan, A., and Coltrain, J.B.  

2011 Variation in stable nitrogen values in black-tailed jackrabbits (Lepus 

californicus) in relation to small-scale differences in climate, soil and topography. 

Journal of Archaeological Science 38:1417-1429. 

 

Wake, T.A.   

2003 Mammal Remains from the Emeryville Shellmound (CA-ALA-309) and 

CA-ALA-310.  Unpublished manuscript. University of California, Los Angeles: 

Cotsen Institute.  

 

Watterson, G.  

1975 On the number of segregating sites in genetical models without 

recombination. Theoretical Population Biology 7:256-276. 

 

Weber, D., Stewart, B., and Lehman, N.   

2004 Genetic consequences of a severe population bottleneck in the Guadalupe 

fur seal (Arctocephalus townsendi). Journal of Heredity 95:144-153. 

 

Willerslev, E., and A. Cooper  

2005 Ancient DNA. Proceedings of the Royal Society of London, Series B 

272:3-16. 

 

Williams, C. L., Lundrigan, B., and Rhodes, O. E.  

2004 Microsatellite DNA variation in tule elk. Journal of Wildlife Management 

68:109-119. 

 

Winterhalder, B. and Lu, F.  

1997 A forager-resource population ecology model and implications for 

indigenous conservation. Conservation Biology 11:1354-1364. 

 

Yang, D. Y. and K. Watt  

2005 Contamination controls when preparing archaeological remains for ancient 

DNA analysis. Journal of Archaeological Science 32:331-336. 



 

 

Table 4.1.  Tule elk specimens from the Emeryville Shellmound with partial mitochondrial D-loop sequences.  

Specimen 

     no. 

Independent 

PCRs 

Haplotypea Periodb Provenience Element Ontogenetic Age 14C Years B.P. 

(approx.) 

30 3 A Post-B. Uhle, Stratum 1 Tibia shaft Adult 720-910 

59 3 A Post-B. Uhle, Stratum 2 L humerus shaft Young adult - adult 910-1100 

29 3 A Post-B. Uhle, Stratum 4 L distal humerus Adult 1290-1480 

38 3 A Post-B. Uhle, Stratum 4 L prox. radius Neonate 1290-1480 

58 3 A Post-B. Uhle, Stratum 4 L distal tibia Younger subadult 1290-1480 

41 3 A Post-B. Uhle, Stratum 5 L ulna shaft Younger subadult 1480-1670 

55 3 A Post-B. Uhle, Stratum 5 R scapula Subadult 1480-1670 

35 3 A Pre-B. Uhle, Stratum 7 Thor. vertebrae Neonate 1860-2050 

36 1 pA Pre-B. Trenchc, Level 1 L distal tibia Neonate 1860-2050 

47 1 pB Pre-B. Trench, Level 1 R distal tibia Older subadult 1860-2050 

50 1 pC Pre-B. Trench, Level 1 R distal tibia Younger subadult 1860-2050 

09 3 A Pre-B. Uhle, Stratum 8 L prox. radius Adult 2050-2240 

28 1 pD Pre-B. Trench, Level 2 R distal femur Adult 2050-2240 

46 3 A Pre-B. Trench, Level 2 R prox. femur Younger subadult 2050-2240 

32 2 pA Pre-B. Trench, Level 3 L prox. ulna Adult 2240-2430 

49 1 pA Pre-B. Uhle, Stratum 9 R distal tibia Younger subadult 2240-2430 

07 1 pE Pre-B. Trench, Level 4 L prox. humerus Subadult 2430-2620 

14 2 pF Pre-B. Nelson, Stratum 11 R prox. femur Younger subadult 2430-2620 

33 1 pG Pre-B. Nelson, Stratum 11 R prox. femur Subadult 2430-2620 

42 3 A Pre-B. Nelson, Stratum 11 R rib Neonate 2430-2620 

51 3 A Pre-B. Trench, Level 4 R ilium Neonate 2430-2620 

53 2 A Pre-B. Trench, Level 4 L distal humerus Younger subadult 2430-2620 

54 1 pH Pre-B. Uhle, Stratum 10 L prox. femur Younger subadult 2430-2620 

61 1 pA Pre-B. Uhle, Stratum 10 R scapula Younger subadult 2430-2620 
aThe subscript “p” indicates a nonreplicated or "provisional" sequence.   bPost-B. = Post-bottleneck; Pre-B. = Pre-bottleneck.  c The "Trench" provenience units 

are from the 1924 Schecnk excavation. 
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Table 4.2.  Summary of genetic diversity in Tule elk from the Emeryville Shellmound.  

 Sample n 

No. of 

polymorphic 

sites, S 

No. of 

haplotypes, h 

Haplotype 

diversity, H (S.D.) 

Nucleotide 

diversity, π (S.D.) 

Theta (per site) 

from S, θS (S.D.) 

Tajima's 

D 
Fu's Fs 

All Sequences 24 12 8 0.507 (0.125) 0.008 (0.003) 0.024 (0.010) -2.282 -4.179 

Pre-bottleneck 17 12 8 0.669 (0.129) 0.011 (0.003) 0.027 (0.012) -2.151 -3.731 

Post-bottleneck 7 0 1 0.000 0.000 0.000 * * 

*an estimate could not be made by DnaSp because there are no polymorphic sites in these sequences    
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Table 4.3.  Stable isotope values, atomic C:N, collagen yield and temporal range for pre- and post-bottleneck Tule elk from the 

Emeryville Shellmound.  

Specimen 

no. 

Cat. no.  Age at death 13C 

‰PDB 

collagen

15N 

‰AIR 

collagen

Collagen 

Wt% C 

Collagen 

Wt% N 

C:N 

ratio 

Atomic 

C:N 

Wt % 

collagen 
13C‰PDB 

apatite

18O‰PDB 

apatite

14C yrs 

B.P. 

(approx.) 

Post-Bottleneck            

30 H16147 adult -20.3 5.3 44.8 15.3 2.9 3.4 13.9 -11.1 -4.8 720-910 

29 H12-

1440 

adult -19.9 5.8 42.9 15 2.9 3.3 13.1 -11.8 -4.5 910-

1100 

59 HA5884 young 

adult/adult 

-20.8 5.6 42.5 15.3 2.8 3.2 11.6 -10.5 -4.8 910-

1100 

38 H12-

1375 

neonate -21.4 5.6 40.8 14.7 2.8 3.2 15.2 -13.4 -5.4 1290-

1480 

58 HA8983 younger 

subadult 

-20.8 6.3 40.3 14.6 2.8 3.2 9.6 -10.9 -5.1 1290-

1480 

41 HA1012 younger 

subadult 

-21.3 5.8 40.1 14.4 2.8 3.3 8.9 -11.6 -5.4 1480-

1670 

55 HA9564 subadult -20.4 6.8 42.8 15.4 2.8 3.2 12.8 -12.5 -4.8 1480-

1670 
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Table 4.3 (cont.).  

Specimen 

no. 

Cat. no.  Age at death 13C 

‰PDB 

collagen

15N 

‰AIR 

collagen

Collagen 

Wt% C 

Collagen 

Wt% N 

C:N 

ratio 

Atomic 

C:N 

Wt % 

collagen 
13C‰PDB 

apatite

18O‰PDB 

apatite

14C yrs 

B.P. 

(approx.) 

Pre-Bottleneck            

35 HA10976 neonate        -13 -6.3 1860-

2050 

36 H7707 neonate -21.7 4.9 39.2 14 2.8 3.3 12.3 -14.1 -6 1860-

2050 

47 HA9564 older  -20.6 5.7 38.7 14 2.8 3.2 6.5 -11.9 -4.8 1860-

2050 subadult 

9 HA1826 adult -20 4.9 25.6 9.2 2.8 3.2 4.7 -10.4 -4.6 2050-

2240 

21 H33501 adult -20.7 5.3 41.2 14.6 2.8 3.3 6.9 -11.9 -4.5 2240-

2430 

7 H7304 subadult -20.6 5.4 39.2 14.8 2.6 3.1 7.7 -11.6 -5.4 2430-

2620 

14 H1-9843 younger 

subadult 

-20.9 5.1 41.2 14.7 2.8 3.3 3 -11.2 -5.1 2430-

2620 

11 H1-9842 adult -20.7 5.8 37.7 14.5 2.6 3 3 -10.2 -4.7 2430-

2620 

33 H1-9843 subadult -20.8 5.1 39.3 14.4 2.7 3.2 3.6 -10.9 -5 2430-

2620 
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Table 4.4.  Mean δ13C, δ15N and δ18O values for pre- and post-bottleneck periods and selected age at death categories for the 

Emeryville Shellmound tule elk.  

Sample Age at death category n 13C‰ Coll 15N‰ Coll 13C‰ Apt 18O‰ Apt

Post-Bottleneck  All  7 -20.7 ± 0.5 5.9 ± 0.5 -11.7 ± 1.0 -5.0 ± 0.3 

Pre-Bottleneck All  9 -20.7 ± 0.5 5.3 ± 0.4 -11.7 ± 1.2 -5.2 ± 0.6 

Combined  All  16 -20.7 ± 0.5 5.6 ± 0.5 -11.7 ± 1.1 -5.1 ± 0.5 

 Neonates only: Sp 35, 36, 38 3 -21.5 ± 0.2 5.3 ± 0.5 -13.5 ± 0.5 -5.9 ± 0.5 

Post-Bottleneck Neonates deleted 6 -20.6 ± 0.5 5.9 ± 0.5 -11.4 ± 0.7 -4.9 ± 0.3 

Pre-Bottleneck Neonates deleted 7 -20.6 ± 0.3 5.3 ± 0.4 -11.2 ± 0.7 -4.9 ± 0.3 

Combined  Neonates deleted 13 -20.6 ± 0.4 5.6 ± 0.5 -11.3 ± 0.7 -4.9 ± 0.3 

 Nursing (?)aSA only: Sp 55, 58 2 -20.6 ± 0.3 6.6 ± 0.4 -11.7 ± 1.1 -4.9 ± 0.2 

Post-Bottleneck Nursing (?) SA deleted 5  5.6 ± 0.2   

Pre-Bottleneck Nursing (?) SA deleted 9  5.3 ± 0.4   

Combined Nursing (?) SA deleted 14  5.4 ± 0.3   
aSA =subadult      
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Figure 4.1.  Map of San Francisco Bay area showing location of the Emeryville 

Shellmound and other shellmound sites. 
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Figure 4.2.  Distribution of the Elk Index (Σ [NISP Elk]/ Σ NISP [Terrestrial Mammals]) 

across 18 dated components from sites distributed across the San Francisco Bay shoreline 

(total NISP = 9,229). (Does not include potentially intrusive rodents and lagomorphs).  
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Figure 4.3.  Distribution of the Elk Index (Σ [NISP Elk]/ Σ NISP [Terrestrial Mammals]) 

across a tight cluster of sites located in the Coyote Hills area of the southeast bay (total 

NISP = 2,168). (Does not include potentially intrusive rodents and lagomorphs).  
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Figure 4.4.  Distribution of the Elk Index (Σ [NISP Elk]/ Σ NISP [Terrestrial Mammals]) 

across the occupational history of the Emeryville Shellmound (total NISP = 6,032). 

(Does not include potentially intrusive rodents and lagomorphs).  
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