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ABSTRACT 

This research focuses on the application of geographic information systems (GIS) 

and spatial analysis methods to urban and regional development studies. GIS-based 

spatial modeling approaches have recently been used in examining regional development 

disparities and urban growth. Through the cases of Guangdong province and the city of 

Dongguan, the study employs a spatial-temporal, multiscale, and multimethodology 

approach in analyzing geographically referenced socioeconomic and remote sensing data.  

A general spatial data analysis framework is set through a study of regional 

development in China’s Guangdong province and urban growth in the city of Dongguan. 

Three intensive spatial statistical analyses are carried out. First, the dissertation 

investigates the spatial dynamics of regional inequality through Markov chains and 

spatial Markov-chain analyses. In so doing, it addresses the effect of self-reinforcing 

agglomeration on regional disparities. Multilevel modeling is further employed to 

evaluate the relative importance of regional development mechanisms in Guangdong. 

Second, a spatial filtering perspective is employed for understanding the spatial effects on 

multiscalar characteristics of regional inequality in Guangdong. Spatial panel and space-

time regression models are integrated to detail the spatial and temporal heterogeneity of 

underlying mechanisms behind regional inequality. Third, drawing upon a set of high-

quality remote sensing data in the city of Dongguan, the dissertation analyzes the spatial-

temporal dynamics and spatial determinants of urban growth in a rapid industrializing
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area. Through the application of landscape metrics, three types of urban growth, 

including infill, spontaneous, and edge expansion, are distinguished, addressing the 

diverse spatial patterns at different stages of urban growth. A spatial logistic approach is 

further developed to model the spatial variations of urban growth determinants within the 

Dongguan city.  

In short, the dissertation finds that regional inequality in the Guangdong province 

is sensitive to spatial scales, dependence, and the core-periphery structure therein. The 

evolution of inequality can hardly be simplified into either convergence or divergence 

trajectories. Furthermore, development mechanisms and urban growth determinants are 

apparently different in space and are sensitive to spatial hierarchies and regimes. Overall, 

through the application of GIS spatial modeling techniques, the dissertation has provided 

more valuable information about spatial effects on China’s urban and regional 

development under economic transition and highlights the importance of taking into 

consideration spatial dimensions in urban and regional development studies. 
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CHAPTER 1 

INTRODUCTION 

Background 

Geographers have long sought to unveil the process that shapes uneven 

geographical development and the reasons behind patterns of regional development that 

often persist for years. In the economic geography literature, regional inequality mainly 

refers to economic disparities among regions, focusing on the question of whether 

regional economic output follows the trajectory of divergence (inequality is persistent 

and the gap between rich and poor is widening) or convergence (the gap between rich and 

poor areas keeps narrowing, and inequality will decline in the long run; Barro & Sala-i-

Martin, 1992; Hirschman, 1958). Spatially uneven development is only one aspect of 

imbalanced development. Concomitant to this uneven economic development are rapid 

changes of landscape in both urban and rural areas (United Nations, 2001).  

From a policy perspective, governments tend to have strong incentives to devise 

policies toward more balanced spatial development, due to the fact that inequitable 

regional development may threaten national unity and social equity. Policies concerning 

urban growth have also become a hot topic given their relevance to environmental 

sustainability, sustainable urbanization, and livability of cities.  

China has been experiencing rapid economic and urban growth over the past 3 

decades. The unprecedented economic growth in the reform period has been driven by 
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multiple transitions, including globalization, decentralization, marketization, and 

urbanization (Li & Wei, 2010; Wei, 2000). At the same time, China’s regional 

development is spatially uneven. Although a number of different development programs, 

such as “Go West,” have been implemented since the early 2000s, the salient coastal-

inland divide has persisted for years (Hao & Wei, 2010; Li & Wei, 2011). In addition to 

inequalities between regions, there have been rising disparities between urban and rural 

areas due to the urban biased development policies (Chen et al., 2010). The 

overconcentration of development resources in cities has also contributed to 

unprecedented urban expansion and massive loss of cropland.  

The research on China’s urban and regional development has been widely 

supported by methodological advances in GIS and spatial modeling. Exploratory spatial 

data analysis (ESDA) and spatial modeling methods have been employed to analyze the 

restless transformation of China’s urban and economic landscapes (Luo & Wei, 2009;Yu 

& Wei, 2008). Nevertheless, partly due to data issues, previous studies of China’s 

regional development and urban growth mainly focus on general spatial patterns of 

regional development, mostly at the provincial level, and urban growth in the largest 

Chinese cities, such as Beijing (Zhao, 2011), Shanghai (Han et al., 2009; Yue et al., 

2014), and Hangzhou (Yue et al., 2010, 2013).  

Recent research on China’s regional inequality has extended to the study of 

intraprovincial inequality by incorporating the developments in GIS and spatial analysis 

and emphasizing the issues of scales and spatial dependence (e.g., Wei & Ye, 2009; Ye & 

Wei, 2005). However, the relationship between spatial dependence and regional 

inequality or convergence/divergence in provincial China appears to be self-evident. The 
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present dissertation aims to quantify to what extent spatial dependence can have an 

impact on regional disparities and convergence in China, and the ways in which 

economic transitions interact with local geographies to yield new forms of uneven 

development. On the other hand, scholars have made substantial efforts on modeling the 

urban growth determinants in China (e.g., Liu et al., 2011; Luo & Wei, 2009). The 

literature documents the limitation of the orthodox logistic regression model when 

addressing the local dimensions of urban development in China (e.g., Luo & Wei, 2009). 

The dissertation thus provides an alternative and computationally less expensive tool to 

model the spatially varying relationship between urban growth and its underlying factors, 

aiming to shed further light on urban development and land use policies in a rapidly 

industrializing area.  

Literature Review and Research Objectives 

The dissertation research draws upon two strands of literature, including 

contextual issues related to regional development and inequality in China and scholarly 

debate over urban development in Chinese cities. 

Regional inequality is a central academic inquiry in the area of economic 

geography. The recent 2 decades have witnessed a resurgence of interdisciplinary interest 

in regional inequality and development, fueled by the theoretical advancements in 

economics and geography (Rey & Janikas, 2005). In general, there are two opposing 

theoretical views about the expected long-run trajectories of regional development. 

Following the neoclassical growth model, Barro and Sara-i-Martin and others claim that 

given the “diminishing return” in the high-income regions, economic endowments tend to 

evolve interregional mobility of capital and labor, leading to the overall decline of the 
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dispersion of per capita income or outputs (Barro & Sara-i-Martin, 1991, 1992). In 

contrast to the neoclassical growth model, new endogenous growth theory predicts 

divergence and sees government policy as necessary to reduce inequality. As Martin and 

Sunley (1998) stated, economies of scale and agglomeration of human capital result in a 

self-reinforcing process of regional development, and thus there will be evident 

divergence among regions. Different from the convergence and divergence assumptions, 

new economic geography theory has proposed a more eclectic view toward the spatial 

structure of regional development (Krugman, 1991, 1995). It formulates an econometric 

model for analyzing how the centripetal forces pull economic activities together and the 

centrifugal forces push it apart. Given the declining transportation and communication 

costs, the NEG model predicts that resource flows agglomerate in the core region and the 

economic situation of the region will depend on interrelations with its neighborhoods. 

Based on the NEG models, economists have called for a “spatial turn” in economic 

growth policies (Martin, 2011).  More significantly, the World Bank’s 2009 Development 

Report, titled Reshaping Economic Geography, drew upon the NEG idea that spatial 

agglomeration of economic activity promotes economic growth, though in the short to 

medium term this may result in rising inequality. Although the NEG model has shared 

some similar thoughts of geographers by addressing the impact of self-reinforcing spatial 

agglomeration on economic growth and regional development, the spatial effect has been 

treated in a very rough manner in the literature. As Rey and Janikas (2005) suggested, 

much more has to be done to apply spatially explicit methods to the studies of regional 

inequality and economic convergence.  

 The literature on regional inequality in China follows mainstream theories of 
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regional development and inequality, but it emphasizes China’s unique political economy 

and economic transitions (Long & Ng, 2001; Wei, 2007). As Wei (2002) argued, both 

convergence and divergence theories have limited ability to explain the evolution of 

regional inequality in China. By employing a multimechanism and multiscale framework, 

recent studies suggest that China’s regional inequality is sensitive to geographical scales, 

and its underlying factors can be better conceptualized into a triple-process transition 

(i.e., decentralization, marketization, and globalization; Wei, 1999, 2000, 2002).  

Methodological advances are of particular importance in recent studies of regional 

development and inequality in China. Scholars are thrilled by new evidence derived from 

exploratory spatial data analysis (ESDA; Wei & Ye, 2009; Yu & Wei, 2003), spatial-

temporal modeling (Li & Wei, 2010), and finer-scale analyses at the intra-provincial level 

(e.g., Liao & Wei, 2012; Wei & Ye, 2009). Through the applications of rigorous spatial 

econometric models such as Geographically Weighted Regression (GWR; Yu, 2006, 

2014) and spatial regressoin models (Yu & Wei, 2008), recent works reveal the 

importance of accounting for spatial dependence in analyzing regional inequality and 

development mechanisms in China. Nevertheless, to what extent spatial dependence can 

have an impact on regional inequality or convergence speed remains unexplored 

thoroughly and quantitatively.  

On the other hand, there is a plethora of literature on urban growth in China (e.g., 

Wei & Ye, 2014). Scholars have debated about the extent, process, and consequences of 

urban expansion and land change in Chinese cities. Researchers have documented the 

extent and spatial forms of urban growth (Yue et al., 2010) and employed GIS and 

remote sensing techniques to explore the underlying drivers of urban land expansion (Luo 
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& Wei, 2009). Specifically, globalization and rapid economic growth have become major 

driving forces of China’s urban growth. As He et al. (2013) stated, land urbanization and 

regional development are mutually reinforcing, and urban land is both the driving force 

and consequence of economic growth.  

Urban land expansion in Chinese cities is also a geographically uneven process 

led by coastal cities. Within coastal areas, there are a variety of spatial forms of urban 

land expansion. Besides spatial patterns or urban forms, some scholars are more 

interested in underlying factors behind urban expansion in China, following a political 

economy perspective. They emphasize the notion of “land-centered development” as a 

consequence of land market forms in China and the decentralization of decision-making 

power from the central government to local states (e.g., Lin, 2009). By contrast, taking 

advantage of the more reliable satellite and aerial photo images, others are concerned 

about the modeling techniques and localized statistics of the spatial determinants behind 

urban growth in Chinese cities (Luo & Wei, 2009). In general, research on urban growth 

has dealt with the largest Chinese cities and regions such as the Yangtze River Delta and 

the Pearl River Delta (Seto & Kaufmann, 2003). The spatial-temporal dynamics and 

driving forces of urban growth in second-tier cities are largely understudied.  

           As mentioned, this study intends to fulfill two primary objectives. The first 

objective is to investigate the role of “space” in shaping regional inequality and 

convergence dynamics in China, and Guangdong in particular. This objective is achieved 

by drawing upon more detailed space-time data collected from China’s Guangdong 

province at the county level, the most disaggregated administrative units in China. 

Specifically, temporally sensitive methods, including Markov chain analysis and 



7 

 
 

stochastic Kernel density, were coupled with ESDA and spatial filtering to derive such 

new and detailed space-time empirics. In addition, multilevel modeling, spatial panel, and 

space-time models were integrated to evaluate the relative importance of development 

mechanisms in Guangdong over space and time.  

Second, the research turns its focus on urban growth in Chinese cities through a 

case study of Dongguan city in Guangdong. A spatially and temporally sensitive 

landscape analysis was conducted to differentiate the three types of urban growth patterns 

including infill, edge-growth, and leapfrog, following a “diffusion-coalescence” model. 

Furthermore, the study developed a novel spatial expansion model to furnish a spatial 

logistic regression analysis of influential factors behind temporal changes in urban land 

use. Lastly, previous studies have investigated Chinese cities’ urban expansion and 

urban-rural migration (Shen et al., 2002), polycentric urban development (Yue et al., 

2010), and suburbanization (Feng et al., 2008), mostly through cases of the largest 

Chinese cities or regions. The study of Dongguan city will add to the literature an 

examination of a unique township-based urban growth pattern in a second-tier city. 

Data and Methodology 

Study area 

The study area includes the 21 municipalities and 81 counties or cities in China’s 

Guangdong province and the city of Dongguan in Guangdong. Guangdong is selected as 

a case for the analysis of regional development and inequalities for the following reasons. 

First, Guangdong’s economic size ranks first in China, accounting for 11% of China’s 

GDP in 2013 (CSB, 2014), and its size is approximately the same as California in the US 

in terms of purchasing power parity. Moreover, the spatial pattern of regional 
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development is characterized by a salient uneven pattern, making Guangdong an ideal 

laboratory to examine theories of regional development and inequality.  

Second, Guangdong’s regional development disparities have been a central issue 

in the agenda of the provincial government since the late 1990s. The provincial 

government in Guangdong has put in tremendous efforts, trying to minimize the spatial 

inequality in regional development (see Chapter 2 for a detailed review of these policies). 

It is argued that Guangdong may move “one step ahead” in China, given the efforts 

toward a more spatially balanced regional development (World Bank, 2011).  

Third, with the rapid increase of city populations, urban growth in Guangdong has 

drawn considerable scholarly attention. The urban growth in Guangdong is considered as 

a typical case of urbanization driven by globalization and industrialization (Lu et al., 

2013). Within Guangdong, Dongguan is considered as a typical case in which 

unprecedented urban growth has given rise to a massive loss of agricultural land (Yeh & 

Li, 1999).  

Data and data sources 

The first set of data are the socioeconomic statistics at the county level in 

Guangdong and GIS spatial data files (shapefiles). Socioeconomic data include the 

following six variables: constant price GDP per capita (GDPPC), per capita fixed asset 

investment (FIXPC), share of non-state-owned enterprises in employment (NSOEPT), 

foreign direct investment per capita (FDIPC), share of urban population in the total 

population (URBAN), and mountain dummy (mountainous area = 1, others = 0). GIS 

shape files refer to boundary files of Guangdong. These data are from two sources: the 

first source is the Guangdong statistical yearbook, which provides county-level 
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socioeconomic data from 1988 to 2012. The second source is the China Data Center, 

where GIS boundary files are stored. The second set of data is collected in the city of 

Dongguan, including detailed classified TM/ETM+ satellite images at particular time 

points (1988, 1993, 1999, and 2006). In addition, transportation network data are 

obtained from the GIS division in the municipality government.  

Analysis methods 

In order to explore the spatial-temporal dynamics of regional inequality in 

Guangdong and urban growth in Guangdong’s Dongguan city during the postreform 

period, statistical and spatial modeling techniques are applied in the study. 

First, three statistical indices, including population-weighted CV (coefficient of 

variation), Gini coefficient, and Theil index, are employed to examine the temporal 

variation of inequalities to minimize potential misinterpretation. Population-weighted CV 

(WCV), taking into account the share of population in a region, is more reliable as 

opposed to traditional CV index (Petrakos et al., 2005). The Gini coefficient and Theil 

indexes are used since they are readily decomposable (Fan & Sun, 2008). The above 

three inequality measures only reveal overall inequality, but have limited ability to detect 

spatial dependence (Yu & Wei, 2003). Moran’s I is employed to analyze spatial 

autocorrelation and spatial relationships among counties in Guangdong. Furthermore, 

from a spatial filtering perspective, we quantify the relationship between spatial 

dependence and the inequality (details about this method are discussed in Chapter 3). 

Second, following Quah (1993, 1996), a distribution dynamics approach, 

including Markov chain analysis and (stochastic) kernel density estimation, is employed 

to quantify the dynamics of regional convergence (whether poor regions tend to grow 
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faster than rich ones). Spatial-temporal dynamics are also analyzed by using spatial 

Markov-chain analysis and comparing actual and spatially filtered data.  

Third, a set of spatial-temporal regression models are furnished for understanding 

the space-time hierarchy and heterogeneity of development mechanisms. The dissertation 

starts with a multilevel model to investigate the spatial-temporal hierarchy of underlying 

factors behind regional development in Guangdong. This is followed by three spatial 

panel regression models (spatial filtering panel, spatial lag, and error panel regression 

models). In addition, space-time and space-time regime models are used to probe the 

spatially and temporally varying development mechanisms in Guangdong.  

Fourth, a landscape metrics-based analysis is carried out to analyze the temporally 

sensitive remote sensing data in Dongguan. In doing so, the three types of urban growth 

(i.e., infill, leapfrog, and edge-expansion) are differentiated. Concentric analysis is also 

employed to understand the unique township based urban growth pattern in Dongguan. 

Moreover, a spatial logistic approach is developed to model the spatial variations of 

temporal changes in land use in the city. 

Organization of the Dissertation 

This dissertation is organized into five chapters. Following this introductory 

chapter, Chapter 2 applies (spatial) Markov-chain approaches to quantify dynamics of 

regional inequality in Guangdong using county level data. Choosing constant-price GDP 

per capita as the indicator of regional development, the chapter analyzes the multiscalar 

patterns of regional inequality and points out the evident effect of spatial agglomeration 

on regional inequality. Multilevel modeling is used to examine the spatial-temporal 

hierarchy of regional development mechanisms.  



11 

 
 

Using a spatial filtering approach, Chapter 3 quantifies the relationship between 

agglomeration and inequality. The chapter also explores the space-time heterogeneity of 

different development mechanisms through the applications and development of a set of 

spatial panel and space-time models.  

Chapter 4 furthers the debate over the urban growth resulting from spatially 

uneven economic growth in Guangdong, using Dongguan as a case. A landscape metrics-

based method is used to quantify the urban growth type and the fragmentation of urban 

land in Dongguan. This is followed by a spatial logistic model to illustrate the spatial 

heterogeneity of growth drivers.  

Chapter 5 summarizes major findings presented in the previous chapters and 

highlights the directions of future studies. 
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CHAPTER 2 

DYNAMICS, SPACE, AND REGIONAL INEQUALITY IN PROVINCIAL CHINA: A 

CASE STUDY OF GUANGDONG PROVINCE 1  

Abstract 

This chapter investigates the regional inequality in one of the most developed 

provinces in China, Guangdong, from 1979 to 2009 and follows the multiscale and 

multimechanism framework. We have found a new round of intensifying inequality in 

Guangdong since the early 2000s, which is attributed to the widening gap between the 

core region of the Pearl River Delta (PRD) and the rest of the province (periphery) and 

between the urban and rural areas. We also apply a distribution dynamics approach and 

spatial Markov chains to identify the spatial-temporal dynamics of regional disparities in 

Guangdong. The results show that there has been a progressive bias towards a poverty 

trap in the province, and the effect of self-reinforcing agglomeration is evident. Using a 

multilevel model, the study further reveals that the regional inequality in Guangdong is 

sensitive to the core-periphery hierarchy of multimechanisms and reveals the relative 

influence of decentralization, marketization, and globalization. We argue that the policies 

towards inequality-reduction in Guangdong have been constrained by the geographical 

barriers and the effect of self-reinforcing agglomeration in the Pearl River Delta (PRD), 

                                                            
1 Reprinted from Applied Geography, 35, Liao, F. H. F., and Wei, Y. H. D., Dynamics, space, and 

regional inequality in provincial China: A case study of Guangdong province, 71-83, Copyright 

(2012), with permission from Elsevier.  
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while marketization has potential to mediate the uneven development driven by the 

spatial concentration of foreign investment. 

Introduction 

Over the past 3 decades, China’s gradual transition towards a market-oriented 

globalizing economy has generated a spectacular economic growth with an annual 

growth rate at 9.9 % (CSB, 2011). However, behind the economic success in China, the 

country also faces serious challenges arising from distinctive regional development 

trajectories, imbalanced growth, and intensifying social injustice (Wei, 2002; World 

Bank, 2005). Since regional inequality may threaten national unity and social stability, it 

has become a burning issue in China, attracting considerable attention from policy 

makers and scholars (e.g., Fan et al., 2011; Fan & Sun, 2008; Wei, 2002). Research has 

revealed an intensifying regional inequality in China and found the significance of 

globalization, institutional reforms, and local agents in regional development (Hao & 

Wei, 2010; Wei, 2002). 

As China is characterized by vastness in size, regional inequalities not only exist 

among provinces or groups of provinces but are even more evident within provinces, 

triggering the research front of China’s regional inequality to “scale down” to a finer-

scale analysis at the intraprovincial level (e.g., Gu et al., 2001; Wei et al., 2011; Wei & 

Fan, 2000;). With the aid of the more rigorous GIS and spatial analysis methods, this 

strand of literature has found rich details of the dynamics, patterns, and mechanisms of 

the uneven economic landscape in Chinese provinces (Wei & Ye, 2009; Wei et al., 2011; 

Yu & Wei, 2008).   

Being China’s leading powerhouse and a pioneer in the reform for the past 3 
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decades, Guangdong province is a representative of regional inequality in provincial 

China (Gu et al., 2001; Lu & Wei, 2007). The development within the province has been 

heavily focused on the core region of the Pearl River Delta (PRD) near Hong Kong while 

the rest of the province (periphery) has lagged far behind (Gu et al., 2001; Lu & Wei, 

2007). The research on the regional inequality in Guangdong, however, has mainly dealt 

with the situation in the 1980s and the 1990s (e.g., Fan, 1995; Gu et al., 2001), while the 

changes in the 2000s have rarely been investigated. 

Notably, in response to problems of economic polarization, since the early 1990s, 

the provincial government of Guangdong has shifted its development strategy from 

stressing the development of the PRD to promoting regional integration between the PRD 

and the periphery, coined as “the Mountain Area Development Program” in the late 

1990s and the “Anti-Poverty Development for Rural Guangdong” in the early 2000s. The 

provincial government also invested heavily in the construction of the intercity highways 

connecting the PRD and the peripheral areas (Lu & Wei, 2007). Specifically, since 2005, 

under the administration of the new governor in Guangdong, the provincial government 

has initiated a “dual-track transformation” policy and built up a number of “industrial 

relocation parks” to foster the upgrading of the PRD and promote more equitable 

development through the relocation of low-end manufacturing from the PRD to the 

peripheral areas (Liao & Chan, 2011; Yang, 2012). The substantial efforts towards 

inequality reduction in Guangdong has also attracted attention from the World Bank, who 

forecasted that Guangdong province has the potential to lead the nation again for a more 

balanced and sustainable development in China (World Bank, 2011). Therefore, a timely 

assessment of the regional inequality in Guangdong also sheds light on the recent efforts 
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working towards reducing inequality in the frontier of the Chinese economy.  

Drawing upon a multiscale and multimechanism framework (Wei, 2002), this 

chapter attempts to update our understanding of the regional inequality in Guangdong. 

Employing the advanced GIS and statistical modeling methods, it particularly addresses 

the space-time complexity of regional inequality and the persistent core-periphery 

structure in Guangdong in the context of intensifying globalization. On the one hand, 

following a distribution dynamics model proposed by Quah (1993a, 1993b, 1996) and the 

spatial Markov chains developed by Rey (2001), we move beyond the traditional 

convergence analyses to recognize the temporal and spatial dimensions of regional 

inequality in Guangdong. On the other hand, the underlying mechanisms of the uneven 

regional development in Guangdong are analyzed based on the triple-process 

conceptualization of China’s transition, namely, globalization, decentralization, and 

marketization (multimechanism); with a spatially explicit multilevel model, the analyses 

reveal the relative importance of such a triple process over space and time. This chapter is 

organized as follows. The next section presents a brief review of the literature and the 

analytical framework. Then, we start with analyzing patterns of regional inequality at 

regional, municipality, and county levels. This is followed by a detailed investigation of 

the distributional dynamics of regional inequality among 82 counties and cities in 

Guangdong with both traditional and spatial Markov chains. In association with Markov 

chains, the spatial-temporal hierarchy of the underlying mechanisms is further analyzed 

in a multilevel model. The chapter concludes with major findings and policy 

implications. 
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Theoretical and Contextual Issues 

Regional inequality is undoubtedly a central topic for economic geographers. The 

longstanding concerns with spatial inequality and the causative process of economic 

growth have generated a variety of schools, such as convergence (the gaps between rich 

and poor keep narrowing, and inequality will decline in the long run), divergence 

(inequality is persistent and the gap between rich and poor is widening), and evolutionary 

(the degree of inequality is contingent upon the development stages of the economy; 

Barro & Sala-I-Martin, 1992; Kuznets, 1955; Smith, 1984). Represented by the 

neoclassical growth model of Solow-Swan, neoclassical economists maintain that 

regional inequality is a temporary phenomenon (Solow, 1956). Similar to the neoclassical 

thought of convergence, inverted-U theory holds that regional inequality is likely to rise 

during the early stages of development and tends to decline when the economy matures 

(Kuznets, 1955; Williamson, 1965). In contrast to the view of convergence, the empirical 

work in the 1960s and 1970s found a lack of convergence and regarded the persistence of 

poverty and inequality as an inevitable consequence of capitalism (Smith, 1984). 

Different from the neoclassical approaches, some scholars also focus on the role of 

government intervention and policies in the evolution of regional inequality. This strand 

of literature is represented by the top-down development and the growth pole policies 

advocated by Hirschman and Perroux in the 1950s and 1960s. 

In the early 1990s, Barro and Sala-i-Martin (1991) put forward two important 

concepts, β-convergence and σ-convergence, to elaborate the regional development 

differentials in the U.S. and Europe. The β-convergence indicates that poorer regions will 

grow faster than richer regions at the initial stage, and the σ-convergence assumes that 
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due to the β-convergence, the overall degree of dispersion tends to decline in the long 

run. However, like the other economic growth and regional inequality theories, the new 

convergence theory based on the notions of β- and σ- convergences has been challenged 

for its overlooking scales, space, and time (e.g., Martin & Sunley, 1998; Petrakos et al., 

2005; Wei & Ye, 2009). Specifically, the new economic geography theory has provided 

strong evidence for the importance of geography in economic and regional development 

(Krugman, 1999). It posits that when the degree of trade openness increases, production 

factors are more likely to flow toward the advanced region where the returns are higher, 

which encourages the formation of a core-periphery economy (Krugman, 1991, 2011). 

Empirically, overwhelming evidence has also been found that the core-periphery 

structure has strong geographical foundations and is hard to change. In many transitional 

and developing economies, such core-periphery structures, such as the dominance of 

Moscow and the Siberian dilemma, are often maintained or even strengthened through 

new spatial division of labor, political struggle, and the integration of the core regions 

into the global economy (Bradshaw & Vartapetov, 2003; Carluer, 2005; Wei & Fang, 

2006). In Asia, the core-periphery structure is still maintained and even intensified, 

although the degree of regional inequality has declined in some nations (Akita, 2003; 

Hill, 2002; Silva, 2005).  

China’s rapid economic growth and tremendous transitions in the past 3 decades 

have provided a good laboratory to deepen our understanding of the evolution of regional 

inequality in a transitional economy under globalization. First, the research on China’s 

regional inequality has reached a consensus that there has been a rising gap between 

coastal and interior provinces, mainly because the coastal provinces have experienced a 
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more rapid growth under globalization and liberalization (Chen & Fleisher, 1996; Hao & 

Wei, 2010; Sakamo & Islam, 2008; Yu & Wei, 2003). Scholars also questioned the 

effectiveness of governmental policies such as the “Go West” program and argue that 

interior provinces are facing more challenges in regional development under 

globalization (Hao & Wei, 2010; Wei & Fang, 2006). Second, since China adopts a 

gradual and experimental approach to the reform, the evolution and magnitude of 

regional inequality are found to be sensitive to structural shocks in reforms such as 

China’s accession into WTO in the early 2000s (Sakamo & Islam, 2008). Third, with 

more rigorous spatial analysis techniques, geographers have demonstrated that space or 

geography does matter in shaping the uneven economic landscape in China. Spatial 

dependence, scale, and hierarchy are all important for a better understanding of the 

complexity of regional inequality in China (Li & Wei, 2010; Ke, 2010; Ying, 2000; Yu & 

Wei, 2003). They have found that the evolution of regional inequality in China is 

sensitive to scales (between provinces and between regions), which cannot be simplified 

into divergence or convergence, and the relative importance of underlying factors are also 

contingent upon the spatial hierarchy of regional inequality. Fourth, although the 

intensification of coastal (core) inland (periphery) inequality in China shares some 

common characteristics with other transitional economies such as Russia (Carluer, 2005), 

the mechanisms underlying the uneven development in China are complicated, which can 

hardly be explained by either market openness or governmental intervention (Wei, 2007). 

Wei (1999, 2002) conceptualized China’s transition into a triple process of globalization, 

marketization, and decentralization, which has provided a more ground-based conceptual 

tool to synthesize the multiple stakeholders including global, state, and local forces in 
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China’s regional development.  

Lastly, in addition to a plethora of literature on the interprovincial inequality, 

given its diversity, dynamics, and scale, provincial China has become a new frontier of 

research on regional inequality in China. Researchers also focus on the inequalities in 

China’s most dynamic economic powerhouses including Jiangsu (e.g., Wei & Fan, 2000), 

Zhejiang (Wei & Ye, 2009; Ye & Wei, 2005) and to a less extent Guangdong (Gu et al., 

2001; Lu & Wei, 2007; Weng, 1998) and Beijing (Yu & Wei, 2008). Similar to the 

coastal-inland divide at the national level, researchers have found rising core-periphery 

inequalities within many Chinese provinces. For example, in Jiangsu, the development is 

centered on the core region of Sunan (South Jiangsu) in the south close to Shanghai and 

the inequality between Subei (North Jiangsu), Suzhong (Central Jiangsu) and Sunan has 

continued to worsen (Wei et al., 2011). Evidence has also been found that the traditional 

north-south divide in Zhejiang has been transformed towards the coastal-inland divide in 

the reform era (Wei & Ye, 2009). The research on regional inequality in provincial China 

also provides rich details for the diverse development models in those thriving regions, 

which are represented by the Wenzhou model in Zhejiang (Ye & Wei, 2005), the PRD 

model in Guangdong (Lin, 1997; Lu & Wei, 2007), and the Sunan model in Jiangsu 

(Wei, 2002).  

The research on Guangdong, a province known for being “one-step ahead” in 

China’s reform (Vogel, 1989), has identified a salient core-periphery economy centered 

on the PRD. However, given different scales of analyses and time spans, the findings 

about the evolution of regional inequality in Guangdong tend to be mixed. Studies 

focusing on the rural industrialization and market reform in the 1980s and 1990s have 
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found a more balanced growth within the PRD, mainly because of the decline of the 

original core city of Guangzhou (Lin, 2001; Weng, 1998). In contrast, others found the 

evidence of the widening gap between the core region of the PRD and the periphery areas 

in the 1980s and 1990s, which was driven by the socialist market reform and the “local 

state corporatism” (Gu et al., 2001). With few exceptions (Fan, 1995), the regional 

inequalities at different spatial scales in Guangdong have rarely been analyzed. More 

importantly, the literature has analyzed the inequality in Guangdong during the 1980s and 

1990s, while its changes in the 2000s have not been updated.  

In order to explore the regional inequality in Guangdong with an emphasis on the 

changes in the 2000s, this chapter draws on a multiscale and multimechanism analytical 

framework proposed by Wei (2002) to address the space-time complexity of regional 

inequality in provincial China and synthesize its multiple driving forces. On the one 

hand, as displayed in Figure 2.1, the regional inequality in China is sensitive to spatial 

scales and can be analyzed at the provincial, regional, and the intraprovincial levels. 

Within a province, the patterns of regional inequality are manifested by the interregional 

inequality (in a province), intermunicipality, and the intercounty inequalities. 

Specifically, the intercounty inequalities are also multifaceted including the interrural 

county, the interurban and urban-rural disparities (the urban areas refer to the urban 

districts [city] and the others are rural counties or equivalent level cities [county-level 

cities]).  

On the other hand, China’s reform can be understood as a triple transitional 

process of decentralization, marketization, and globalization. First, the political economic 

context in China has shifted from idealistic egalitarianism to pragmatist uneven regional  
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Figure 2.1 A typology of multiscalar regional inequalities in China 

Adapted from Wei & Ye, 2009 

development with an emphasis on efficiency and output (Long & Ng, 2001). Local 

governments have been granted more power in revenue collection and local spending 

(decentralization), and they have had more incentives to promote local economic 

development (Wang, 2010). At the same time, the market system is introduced in the 

original socialist planned economy, and the state-owned sector is exerting much less 

control over the economy (marketization; Wei, 2002). Together with marketization and 

decentralization, globalization, manifested by market openness and China’s integration 

into the global economy, has triggered a huge inflow of foreign direct investment (FDI), 
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making China the most popular destination of FDI in developing countries (UNCTAD, 

2011). These three broad processes—a triple process of regional development in China—

also have profound influences on regional inequality (Hao & Wei, 2010; Wei, 2002). 

Coastal localities where local governments have more resources and the investment 

environment is favored by investors have emerged as the biggest winners in the reform. 

At the same time, those traditional industrial bases dominated by state-owned enterprises 

have fallen behind (Wei & Ye, 2009). Based on the multiscale and multimechanism 

framework, we hypothesize that regional inequality in Guangdong is sensitive to scales; 

the core-periphery inequality between the PRD and the periphery is intensified due to the 

triple process of China’s transition from a socialist planned economy to a market-based 

capitalist economy.  

Research Setting and Methods 

Research Setting: Guangdong Province 

 As shown in Table 2.1, many Chinese provinces and in particular Jiangsu and 

Guangdong in the coastal area and Gansu in the inland area have encountered severe 

challenges arising from the intensifying regional inequalities in the postreform period 

(Table 2.1) and Guangdong is also one of the most imbalanced provinces in China.  

Table 2.1 Regional inequalities in selected provinces in China (CV), 1990–2009 

 1990 1995 2000 2005 2009 Total numbers of counties  

Guangdong 0.71 0.70 0.72 0.84 0.82 82 

Zhejiang 0.45 0.54 0.56 0.56 0.51 67 

Jiangsu 0.63 0.75 0.78 0.91 0.92 65 

Henan - 0.62 0.60 0.58 0.56 127 

Gansu - 0.94 1.04 1.11 1.23 86 

Adapted from GSB, 1991-2009, 2010a; ZSB, 2010; JSB, 2010; HSB, 1996-2010; GaSB, 

1996-2010. Notes: the calculation in this table is based on current prices. CV = 

coefficient of variation 
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As shown in Figure 2.2, Guangdong province is located in Southeastern China 

and neighbors Hong Kong. With a population of 95.44 million in 2009, the province 

covers 179,800 square kilometers, occupying 1.9% of China’s territory. Guangdong 

province is one of the most developed provinces in China, and the size of Guangdong’s 

economy measured by GDP surpassed Taiwan in 2007 (GSB, 2008). In 2009, 

Guangdong produced 3,948 billion yuan of GDP, ranking first in China’s 31 provinces 

(CSB, 2010). Its GDP per capita also increased from 410 yuan (65 USD) in 1979 to 

41,166 yuan (6,534 USD) in 2009 with an annual growth rate of 11.2% (GSB, 2010a).  

According to the administrative structure in Guangdong, in 2009, there were 21 

municipalities and 82 county-level spatial units including 21 urban districts (city) and 61 

counties (rural counties and county-level cities) in the province (Figure 2.2). 

Geographically, Guangdong is divided into two distinct regions including the core 

region of the PRD, the peripheral region including the North Guangdong (or mountain 

Figure 2.2 Location of Guangdong and regional divisions 
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area), the East Guangdong, and the West Guangdong (Figure 2.2). 

In general, the economic development in Guangdong follows a core-periphery 

gradient with the PRD being the most developed area (Table 2.2). With the rise of the 

PRD, the peripheral areas have lagged far behind, which intensified the regional 

inequality in the province. The ratio of GDP per capita in the PRD compared to that in 

the rest of Guangdong (periphery) doubled from 2.2:1.0 in 1979 to 4.4:1.0 in 2009 (GSB, 

2010b).  

In this study, the major indicator of the regional development status is the most 

commonly used per capita GDP (GDPPC). The municipality-level (21 municipalities) 

GDPPC data from 1979 to 2009 and county-level GDPPC data from 1988 to 2009 are 

obtained from a report entitled “GDP Data in Guangdong, 1952–2005” and the statistical 

yearbooks of Guangdong (various issues from 1988 to 2010).  Both are published by the 

Guangdong Statistical Bureau.  

In terms of the calculation of GDP per capita, due to the unique hukou (household 

registration) system in China, the population data in coastal provinces tend to be  

Table 2.2 Development indicators of Guangdong Province, 2009 

   

GD 

% of 

China 

 

PRD 

% of 

GD 

 

Periphery 

% of 

GD 

Population (million) 95.4 7.2 47.9 50.2 47.6 49.9 

Land Area (sq. km) 179800 1.9 54733 30.4 125067 69.6 

GDP (billion yuan) 3948.3 11.8 3214.7 81.4 733.6 18.6 

Investment in fixed assets 

(billion yuan) 

1335.3 5.9 960.4 71.9 375.0 28.1 

Exports (US $billion) 359.0 29.9 341.8 95.2 17.2 4.8 

FDI (US $billion) 19.5 21.7 17.5 89.6 2.0 10.4 

Local Fiscal Expenditure 

(billion yuan) 

433.4 7.2 288.2 66.5 145.2 33.5 

Local Fiscal Revenue  

(billion yuan) 

365.0 11.2 252.2 69.1 112.8 30.9 

Adapted from GSB, 2010a. Note: GD = Guangdong. 
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underestimated since the temporal migrant population without hukou is often excluded in 

the population statistics (Chan & Wang, 2008). 

In Guangdong, this problem is more challenging due to the massive inflow of 

migrant workers in specific cities such as Shenzhen and Dongguan. In order to get more 

accurate population data, we used a report entitled “Guangdong’s Development in the 

Reform Era” published by the Guangdong Statistical Bureau in 2010, which released the 

municipality level migrant population from 1979 to 2009. Since the county-level de facto 

population (population including migrants without hukou) is still unavailable, according 

to the municipality-level data, we adjusted the numbers of total population in the county-

level units within specific municipalities, including Shenzhen, Dongguan, Zhongshan, 

Foshan, Zhuhai, and Guangzhou where the total population is more likely to be 

underestimated. Then, we computed the ratios of de jure population (population not 

including migrants without hukou) to de facto population (population including 

temporally migrants) for the other 15 municipalities. We found that the resulting ratios 

ranged from 0.85 to 1.1, indicating that the biases in the total population of the counties 

within these 15 municipalities can be acceptable for the following analyses, given the 

data limitation.  

Besides the data of population and GDP, in order to measure the underlying 

factors of the uneven economic development in Guangdong, a set of county-level 

socioeconomic data were also collected, which included foreign direct investment (FDI), 

local fiscal expenditure, fixed assets investment, and employment data. The GDP data 

were converted into the constant price in 1980 based on the provincial implicit GDP 

deflator. The GIS maps (shape files), referring to boundary files of the Guangdong 
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province down to the county level, were downloaded from the China Data Center 

(http://chinadatacenter.org). 

Methods 

As Fan and Sun (2008) summarized, in comparison with other indexes such as 

CV and Gini coefficient, a major advantage of the entropy indexes such as the Theil 

index (Mean logarithmic deviation) is that they are readily decomposable.2 In this 

research, Theil index is used to investigate the evolution and the sources of regional 

inequality in Guangdong. This study also adopts a distribution dynamics model 

(Fotopoulos, 2008; Quah 1993a, 1993b, 1996) to identify the dynamics of regional 

inequality among counties in Guangdong.  

To begin with, Kernel density estimation is applied to estimate the changes in the 

distributions of relative GDPPC (the ratio of GDPPC in each county compared to the 

mean value in the province). In comparison with the traditional histogram, Kernel density 

                                                            
2  The Theil index is defined as 

  

𝐼(𝑦: 𝑥) = ∑ 𝑦𝑖 log(

N

𝑖=1

𝑦𝑖/𝑥𝑖) 

 

where 𝑥𝑖 is the share of population of county i in the province and 𝑦𝑖 is the share of GDP of 

county i in the province. 𝐼(𝑦: 𝑥) can be decomposed into  

 

𝐼(𝑦: 𝑥) = 𝐼0(𝑦: 𝑥) + ∑ 𝑌𝑔𝐼𝑔

G

𝑔=1

(𝑦: 𝑥) 

    

where the first term on the right 𝐼0(𝑦: 𝑥) measures interregional inequality, and the second term is 

a weighted sum of intraregional inequalities within G groups where 𝐼𝑔(𝑦: 𝑥) measures the 

inequality within the gth  region. 
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estimation can smooth the data but retain the overall structure.3 However, although the 

Kernel density estimation allows characterizing the evolution of the distribution shape, it 

does not offer any information about the movements of the counties within the 

distribution. A possible way to remedy this inadequacy is to track the evolution of each 

county’s position in the distribution shapes and examine the transition probability 

matrices in a Markov-chain like process (Le Gallo, 2004). The specific advantages of the 

Markov-chain method are twofold.  

First, the Markov transition matrix enables us to characterize such spatial-

economic asymmetries and highlights the performance of each region, as well as the 

nature of its mobility (both upward and downward) in detecting the trend of convergence, 

divergence, and polarization (Carluer, 2005; Fingleton, 1997). Second, the Markov-chain 

method is also realistic since it can identify the long-run properties towards some form of 

poverty-trap or convergence club (Fingleton, 1997, pp. 399–400), which cannot be 

deciphered by the β convergence analysis that relies on smooth time-trends 

approximation and suffers from the Galton’s fallacy of regression toward mean 

(Fingleton, 1997; Quah, 1993a, 1993b).  

The basic approach of the Markov chains is to classify different spatial units 

(counties) into various subcategories based on the relative GDPPC and examine their 

transition probabilities for a given period (Quah, 1993a, 1993b, 1996). First, a matrix Ft 

is constructed to store the cross-sectional distribution of county-level relative GDPPC at 

time point t. A set of K different GDPPC classes are defined. Therefore, a transition 

probability matrix M can be established, which has a dimension of K by K, where K is the 

                                                            
3  Similar to Le Gallo (2004), the densities are calculated nonparametrically using a Gaussian 

kernel, and the bandwidth is selected as suggested by Silverman (1986, section 3.4.2). 
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number of subcategories. A typical element of a transition probability matrix m (i, j, t) 

indicates the probability that a county that is in the class i at time t ends up in class j in 

the following period. Formally, the (K, 1) vector Rt indicates the frequency of the 

counties in each class j at time t, following the equation below: 

                                      Rt+1 = M*Rt                                                          (2.1) 

where M is the (K, K) transition probability matrix representing the transitions between 

the two distributions. If transition probabilities are stationary, that is, if the probabilities 

between the two classes are time-invariant, then  

                                                   Rt+P = Mp*Rt                                                          (2.2) 

Under the assumption of time-invariant matrix (t→∞), the properties of this 

Matrix can be further examined to determine the Ergodic distribution (or the long-term 

distribution) of Rt to indicate if the regional system is converging or diverging.  

By adopting the Markov chains, researchers also attempt to incorporate the spatial 

dependence or autocorrelation in determining the transition probability matrices. Quah 

(1996) used spatial conditioning, and Rey (2001) proposed a more explicit spatial 

Markov-chain to examine the magnitude of spatial dependence in the Markov-chain 

framework. The transition matrix is expanded, and the transition probabilities of a region 

are conditioned on the GDPPC class of its spatial lag for the beginning of the year. In 

doing so, we can obtain a spatial transition matrix and expand the traditional K by K 

matrix into K conditional matrices of dimension (K, K). In other words, we categorized 

the spatial lags into the same number of groups as GDPPC. Therefore, a K by K by K 

three-dimensional transitional matrix is constructed. The element of such a matrix, mijt(k), 
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represents the probability that a region in category i at the time point t will converge to 

category j at the next time point if the region’s spatial lag falls in category k at time point 

t (k = 1,……, K; t = 1, ……, T). 

In this study, the GDPPC data are categorized into four groups (rich, developed, 

less developed, and poor) using the quartile method, and the cutoff values are selected so 

that the overall distribution in the entire sample of the relative GDPPC prove to be close 

to being uniform. This discretion based on the gridlines in uniform distribution generally 

follows the previous empirical studies using Markov chains (Quah, 1993a; Sakamoto & 

Islam, 2008), and it also better corresponds to the core-periphery structure in Guangdong 

in line with the geographical notions of core, semicore, semiperiphery, and periphery 

(Wei et al., 2011). The time interval of the Markov-chain transition matrix is 1 year, and 

the spatial lags are defined by the queen contiguity matrix. The Markov chain-based 

analysis was carried out in a software called PySAL (Open Source Python Library for 

Spatial Analytical Functions) developed by the GeoDa center at Arizona State University 

(Rey & Anselin, 2010).  

To further understand the regional inequality in Guangdong, multilevel regression 

modeling is applied to examine the mechanisms behind the uneven regional development. 

As argued by Li and Wei (2010a), most studies of regional inequality neglect the 

hierarchical characteristics in the dataset. A possible consequence of neglecting the 

hierarchical structure is the underestimation of standard errors of regression coefficients, 

resulting in an overestimation of statistical significance (Subramanian et al., 2001). 

Multilevel modeling, however, overcomes the limitation by allowing for residual 

components at each level in a hierarchy (individual, group, subgroups, etc.; Mercado & 
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Páez, 2009). Despite the wide usage of multilevel modeling in the fields of public health, 

demographic, and transportation geography (Li & Wei, 2010b; Mercado & Páez, 2009; 

Subramanian et al., 2001), the application of multilevel modeling in the study of regional 

inequality is still limited (Li & Wei, 2010a). In this research, we coupled the Markov 

chains with the multilevel modeling to test the spatial-temporal hierarchy of development 

mechanisms down to the county level in Guangdong. In doing so, we attempted to better 

understand the relative importance of the triple-process in Guangdong’s regional 

development. The multilevel regression analysis was performed using MLwiN 2.24 

software (Rasbash et al., 2009).  

Our model has three levels. The one-level model is a pooled regression using 

county-level data regardless of the core-periphery and temporal hierarchies. The two-

level model adds the core-periphery continuum as suggested in the Markov chains, which 

allows us to control for the geographical and structural effects within the four groups 

(core, semicore, semiperiphery, and periphery). The three-level model further controls for 

the time points (1988, 1993, 1998, 2003, 2008), which takes the between-year variations 

into account. Such time points were selected based on the data availability.  

              𝑦𝑖𝑗𝑡 =  𝛽0 +  𝛽1 𝑥𝑖𝑗𝑡 + 𝑣0𝑡 + 𝜇0𝑗𝑡 + 𝑒𝑖𝑗𝑡                                           (2.3) 

As shown in equation (2.3), the 𝑦𝑖𝑗𝑡  refers to the dependent variable (GDPPC) in county i 

that belongs to the core-periphery continuum j defined by the Markov chains at year t, 

and 𝑥𝑖𝑗𝑡 is the independent variables in county j at year t; 𝑣0𝑡 is the error term at year t; 

𝜇0𝑗𝑡 is the error term of core-periphery continuum j at year t; 𝑒𝑖𝑗𝑡 is the error term of i 

county in core-periphery continuum j at year t.  
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We selected a number of exploratory variables based on the multimechanism that 

conceptualizes Guangdong’s regional development as an aforementioned triple-process 

of globalization, marketization, and decentralization.  

1. Globalization (FDIPC): Guangdong’s development over the past 3 decades has been 

fueled by the export-oriented economy and inflow of FDI. So the per capita FDI 

(FDIPC) is the most commonly used indicator to measure the extent of 

globalization (Gu et al., 2001).  

2. Marketization (NSOE): Guangdong’s development is also based on the establishment 

of the socialist market system and the retreat of the state owned enterprises (SOE) 

in the economy (Gu et al., 2001). The share of non-SOE in the total employment 

(NSOE) is employed to describe the influence of marketization.  

3.  Decentralization (DECEN): The decentralization process is captured by the ratio of 

local budgetary spending per capita to the provincial government’s budgetary 

spending per capita. It mainly reflects the degree of fiscal decentralization and the 

shift of power from upper level governments to local governments (Hao & Wei, 

2010; Wang, 2010).  

4.  Investment (FIXPC): It has been widely acknowledged that socialist economies are 

traditionally investment driven, and the per capita fixed asset investment (FIXPC) 

is selected to represent whether the development is driven by the investments 

particularly from the central government (Yu & Wei, 2008). 

5. Urban-rural divide (URBAN): China’s regional development policy is also biased 

toward the urban area, which has intensified the urban-rural inequality (Chen et al., 

2010; Long et al., 2011). A dummy variable URBAN is employed to reflect the 
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impact of urban-biased development. If the spatial unit at the county level is an 

urban district, it is coded by 1; otherwise it is a 0.  

6. Topography (MOUNTAIN): In Guangdong, most of the plain area is located in the 

PRD, while mountain counties are mostly located in the periphery. A dummy 

variable (MOUNTAIN) is used to investigate the impact of physical topographical 

conditions on the economic development in Guangdong.  

Findings and Interpretation 

The multiscalar regional inequality in Guangdong 

In this section, a multiscale decomposition analysis is undertaken to portray a 

holistic scenario about the evolution of regional inequality in Guangdong over the past 3 

decades. Figure 2.3 shows that the regional inequality in Guangdong is sensitive to the 

geographical scales. The average numbers of the intercounty inequality, the 

intermunicipality inequality, and the interregional inequality are 0.25, 0.21, and 0.14, 

respectively. The regional inequality is more significant at finer spatial units. Figure 2.3 

also reflects a general trend of rising inequalities at the three geographical scales in 

Guangdong during the study period. Both of the intermunicipality inequality and 

intercounty inequality showed a U-shape pattern since the early 1990s. By contrast, the 

interregional inequality displays a more consistently upward trend despite a slightly 

decrease in the early 1990s. Therefore, the regional inequality has not shown persistent 

divergence or convergence trajectories while these changes are responsible to the 

different stages of reforms. First, a more dramatic rising trend of intermunicipality 

inequality in the 1980s can be observed, which is consistent with Fan’s (1995) study 

using per capita gross value of industrial and agricultural output (PCGVIAO).  



36 

 
 

 
Figure 2.3 Regional inequalities at different scales in Guangdong, 1979–2009 

The rise of regional inequality in this period was driven by the development of Shenzhen 

and Zhuhai, two special economic zones (SEZ) located at the border between Guangdong 

and Hong Kong or Macau (Figure 2.2).  

Second, in the early 1990s, Dengxiaoping’s South China tour in Guangdong had 

stimulated a new round of “Socialist Marketization” reform in the province that was 

ceased after the 1989 Tiananmen incident. Since then, the implementation of open door 

policies and market reform had been expanded to the whole province while the influence 

of the SEZ policies in the 1980s gradually faded, which narrowed the gap between other 

municipalities in the province and the SEZ municipalities. In particular, since the early 

1990s, the municipality of Zhuhai, a SEZ municipality located in the western part of the 

PRD, has been in a backward status.  In comparison with other municipalities in the 

eastern part of the PRD (Figure 2.2), the municipality of Zhuhai is relatively far from 

Hong Kong, which is the motor of the economic development in this area. Its 
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development was also constrained by the heavy burden of debt as a result of unwise 

infrastructure investments such as the airport construction in the early 1990s (Yang, 

2006b).  

Third, since the early 2000s, the regional development in Guangdong has been 

driven by a new round of inflowing FDI after China’s entry into WTO (Yang, 2006a). At 

the same time, the development of a knowledge-based economy in the PRD has also been 

accelerated (Lu & Wei, 2007). Such a transformation has provided more resources in 

favor of the specific municipalities in the PRD and intensified the regional inequality in 

the province. Fourth, there has been a slightly declining inequality since 2006. This is 

greatly attributed to the relative slow-down of economic growth in Shenzhen. In recent 

years, Shenzhen has encountered more challenges in its development due to the limited 

resources such as land (the land area of Shenzhen is one-third of Guangzhou, which is 

another largest municipality in Guangdong and the capital of the province), and its 

economy was more significantly influenced by the global financial crisis (Sina News, 

2006).  

In order to unfold the relationship between multiscalar inequalities in Guangdong, 

we decompose the overall intercounty inequality into the inequality between the PRD and 

the rest of the province (the periphery) and the inequalities within the PRD and the 

peripheral region, which resembles the core-periphery structure in Guangdong (Figures 

2.4 and 2.5).  

As illustrated in Figure 2.4, the contribution of the core-periphery inequality 

between the PRD and the rest of the province increased from 56.81% in 1990 to 66.02% 

in 2009.   
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Figure 2.4 Theil decomposition of overall intercounty inequality in Guangdong (core-

periphery), 1988–2009 

Another important source of regional inequalities in Guangdong is the urban-rural 

divide. Figure 2.5 shows that the urban-rural inequality has consistently accounted for 

over 50% of the overall intercounty inequality in Guangdong. The persistent rural-urban 

disparity is also related to the core-periphery inequality since most of the rural counties in 

Guangdong (46 out of 61, or 75%) are located in the periphery, while nearly half of the 

urban districts are in the PRD.  

In short, the proceeding analysis finds that the uneven economic development in 

Guangdong is sensitive to the time dimension and geographical scales. It is also related to 

changing policies such as the SEZ policies in the 1980s and the early 1990s as well as 

China’s entry into World Trade Organization (WTO) in the early 2000s. However, the 

provincial level inequality-reducing policies initiated since the late 1990s could barely 

achieve their goal, and Guangdong has experienced a new round of economic 

polarization in the 2000s in the context of further globalization. 
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Figure 2.5 Theil decomposition of overall intercounty inequality in Guangdong (urban-

rural), 1988–2009 

Distributional dynamics of regional disparities 

In this section, the dynamics that underline regional inequality or the “long-run” 

properties of convergence or divergence across 82 counties and cities in Guangdong are 

analyzed with a distribution dynamics model and in particular the Kernel density 

estimation and Markov chains (Quah, 1993a, 1993b, 1996).  

As illustrated in Figure 2.6, the shape of the distribution for the county-level 

GDPPC has changed considerably over time. The density plots clearly suggest a skewed 

distribution shape of the relative GDPPC in Guangdong. In comparison with the years of 

1988 and 2000, more counties reported below half of the average GDPPC in 2009, and 

only a small subset of counties transited towards above average. This result may reflect 

that a substantial proportion of counties near the average GDPPC have become relatively 

poorer since the early 2000s.  

Table 2.3 contains the transition probability matrices over the period between  
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Figure 2.6 Kernel densities of relative per capita GDP at the county level, 1988, 2000, 

2009 

1988 and 2009 as well as in the two subperiods—the 1990s (socialist market system 

reform) and the 2000s (China’s accession into WTO).The results of the Markov chains 

analyses more clearly point out the system dynamics in Guangdong’s regional 

development, which are sensitive to the different stages in the course of the reform. In 

general, the transition probabilities along the dialog are high. In other words, if a county 

falls into the specific class (rich, developed, less-developed, and poor), the probability of 

its being in the same group is at least 82.1%. The transition frequency between different 

groups is low, and the highest transition frequency is only 12.6% (Table 2.3). The results 

also show that it is very difficult for a county to leapfrog from poor to rich or from less 

developed to rich and vice versa, indicating the stable structure in Guangdong’s regional 

development and the persistence of core-periphery inequality. 
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Table 2.3 Markov-chain transitional matrices for county-level GDP per capita, 1988–

2009 
 P [<=58.4] L[58.5–79.3] D[79.4–102.5] R[>=102.6] 

1988-2009     

P (422) 0.924 0.076 0.000 0.000 

L (434) 0.108 0.834 0.058 0.000 

D (436) 0.000 0.085 0.878 0.037 

R (430) 0.000 0.000 0.030 0.970 

Ergodic distribution 36.33% 25.44% 17.27% 20.96% 

1988-2000     

P (198) 0.874 0.126 0.000 0.000 

L (283) 0.099 0.841 0.060 0.000 

D (255) 0.000 0.090 0.863 0.047 

R (248) 0.000 0.000 0.040 0.960 

Ergodic distribution 24.28% 30.99% 20.64% 24.08% 

2001-2009     

P (224) 0.969 0.031 0.000 0.000 

L (151) 0.126 0.821 0.053 0.000 

D (181) 0.000 0.077 0.901 0.022 

R (182) 0.000 0.000 0.016 0.984 

Ergodic distribution 60.73% 15.08% 10.33% 13.85% 

Notes: P = poor (periphery); L = less developed (semiperiphery); D = developed 

(semicore); R= rich (core); the numbers in the parentheses are total numbers of 

transitions. 

Changing spatial patterns of development  

and spatial dependence of dynamics 

The analysis of the evolving spatial patterns of regional development and spatial 

Markov chains provides more details for the economic geography of inequality dynamics 

in Guangdong. Figure 2.7 shows that the core-periphery pattern of regional development 

based on the divide between the PRD and the rest of Guangdong is salient: most of the 

counties in the rich category are the counties in the PRD; as the distance to the PRD 

increases, counties are more likely to become poor. In comparison with the map in 1988, 

the 2009 map has shown that the statuses of many counties in the periphery have 

declined. Moreover, the boundary of the richest counties has changed slightly: the 

originally less developed counties in the eastern part of the PRD such as the counties in  
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Figure 2.7 Spatial patterns of regional development in Guangdong, 1988, 2009 
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Huizhou municipality moved upward while the counties in the Zhaoqing and Jiangmen 

municipalities in the western part of the PRD deteriorated into backward statuses (Figures 

2.2 and 2.7). The revealing fact that the eastern PRD located closer to Hong Kong 

develops faster implies that the core-periphery structure of development in Guangdong is 

also attributed to the globalization forces channeled through the external core of Hong 

Kong (Ng & Tuan, 2003; Weng, 1998; Yeung, 2006). With respect to the periphery area, 

our results echo Gu, Shen, Wong, and Zhen’s (2001) study that many counties in the 

originally developed industrial municipalities driven by state-owned sectors in the 

peripheral regions, such as the counties in Shaoguan in the North Guangdong and 

Zhanjiang in the West Guangdong, have declined in the postreform period. In contrast, as 

found in a recent report from the World Bank, a small subset of counties or districts in the 

periphery area, particularly in the Qingyuan municipality neighboring the northern part of 

the PRD (Figures 2.2 and 2.7), have moved upward (World Bank, 2011). The 

development in these specific counties is greatly fueled by their abundant land resource 

and lower cost of labor as well as the recently surging cost of production in the PRD 

(Liao & Chan, 2011; Yang, 2012). We also computed the global Moran’s I to capture the 

overall tendency of geographical concentration of regional development in Guangdong 

(Figure 2.8). Different from the U-shape trajectory of the intercounty inequality measured 

by the Theil index, the resulting global Moran’s I increased from 0.469 in 1988 to 0.551 

in 2009, and all are significant at the 0.01 level. This result implies that when the spatial 

dependence is taken into account, the inequality measured by Moran’s I is less sensitive 

to the fluctuations at specific time points and provides a holistic picture of the increased 

regional inequality in Guangdong.  
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Figure 2.8 Global Moran’s I of county level GDP per capita in Guangdong, 1988–2009 

 

The results of the spatial Markov chain analysis are shown in Table 2.4. They 

provide more details about the possible association between the direction and probability 

of transitions and the neighborhood context. For example, for the richest counties, the 

probability of a downward transition is affected by the economic development of nearby 

counties. As shown in Table 2.3, the richest counties in general have a 3.0% tendency of 

moving downward. However, if a rich county is surrounded by other richest counties, the 

tendency of moving downward drops to 2.3%. Meanwhile, if the neighbors are relatively 

poorer counties, such as the developed counties, the tendency of moving downward 

increases to 5.6% (Table 2.4). This neighborhood effect is also evident for the upward 

transitions of poor counties. The chance of a poor county moving out of the bottom 

averages 7.6% (Table 2.3). However, if its neighbor is poor, it has a lower probability of 

moving upward (6.5%). In contrast, those poor counties surrounded by relatively richer  
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Table 2.4 Spatial Markov-chain transition matrix for county-level GDP per capita in 

Guangdong, 1988–2009 

   2009 

Spatial lag 1988 N P L D R 

P 

P 124 0.935 0.065 0.000 0.000 

L 38 0.237 0.737 0.026 0.000 

D 11 0.000 0.091 0.909 0.000 

R 10 0.000 0.000 0.000 1.000 

L 

P 162 0.914 0.086 0.000 0.000 

L 127 0.142 0.819 0.039 0.000 

D 96 0.000 0.052 0.917 0.031 

R 45 0.000 0.000 0.044 0.956 

D 

P 123 0.919 0.081 0.000 0.000 

L 245 0.078 0.853 0.069 0.000 

D 195 0.000 0.123 0.846 0.031 

R 72 0.000 0.000 0.056 0.944 

R 

P 13 1.000 0.000 0.000 0.000 

L 24 0.042 0.875 0.083 0.000 

D 134 0.000 0.052 0.896 0.052 

R 303 0.000 0.000 0.023 0.977 

Note: P = poor (periphery); L = less developed (semiperiphery); D = developed 

(semicore); R = rich (core); N refers to the numbers of transitions. 

 

counties, such as the less developed counties, are more likely to be richer (8.6%). We 

also find that the transitions in the intermediate groups are also influenced by the 

neighbourhood context. For instance, for a developed county, the probability of moving 

upward towards a rich county is 3.7%. But if its neighbour is a rich county, it has a higher 

chance (5.2%) of becoming a rich economy. At the same time, if a less developed county 

is surrounded by poor counties, the tendency of moving downward doubles from 10.8% 

regardless of its neighbourhood status (Table 2.3) to 23.7% (Table 2.4).  

 

The core-periphery hierarchy of underlying  

mechanisms of regional inequality 

In association with the Markov chains, the underlying mechanisms of the uneven 

regional development are examined in a multilevel model with a consideration of the 
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core-periphery structure of regional development in Guangdong. The multicollinearity 

test based on the one-level model (or pooled regression) shows no variables reported a 

VIF higher than 2.5, indicating the explanatory variables do not suffer from the problem 

of multicollinearity (Yu and Wei, 2003). 

The results of one-level, two-level, and three-level regression models are reported 

in Table 2.5 and discussed as follows. First, based on the results of likelihood ratio tests, 

the one-level model can explain 82.9% of the total variances of the county level GDPPC, 

and there is a significant reduction in deviances from both the one-level model to the 

two-level model (p < 0.001) and from the two-level model to the three-level model (p < 

0.001; Table 2.5). This result indicates that the core-periphery hierarchy of regional 

inequality as suggested by the Markov chains exists and regional inequality is also 

sensitive to different time points. Second, the results differ from Li and Wei (2010a), who 

also used multilevel modeling and found that the FDI is a singular factor that causes 

regional disparities at the provincial level in China. The model shows that local 

governments, foreign investors, and the state collectively affect the local economic 

development in Guangdong. Many development agents in China’s regional development 

are actually operating at the lower levels (city or county) under provinces, and their roles 

are likely masked by the analysis of large spatial entities such as provinces (Wei & Fan, 

2000).  

Third, the influence of marketization is significant in the one-level model but 

insignificant and marginally significant (p = 0.12 and p = 0.06) in the two-level and 

three-level models. In other words, the multilevel modeling avoids exaggerating the 

effect of marketization on the regional inequality in Guangdong. It implies that, among  
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Table 2.5 Results of the multilevel regressions 

  One-level  

(county) 

  

Two-level  

(county & core-

periphery) 

Three-level  

(county & core-

periphery & time) 

  Coefficient P-

value 

Coefficient P-

value 

Coefficient P- 

value 

FDIPC 8.472 0.0253 8.106 0.0053 7.305 0.0113 

DECEN 213.062 0.6687 1678.574 0.0001 1716.451 0.0001 

NSOE 13425.501 0.0001 4548.353 0.1170 5646.382 0.0593 

FIXPC 1.725 0.0001 0.380 0.0001 0.370 0.0001 

URBAN 1640.425 0.1065 1934.463 0.0062 2097.407 0.0027 

MOUNTAIN -655.637 0.4149 -555.074 0.3290 -330.837 0.5569 

-2loglikelihood 8361.751  8110.889  8096.617  

R square  0.829  Likelihood 

ratio test 

<0.001 Likelihood 

ratio test 

<0.001 

 

the triple processes, globalization coupled with decentralization has become the most 

important mechanism that causes regional disparities between counties and between the 

core and the peripheral areas as well as between different time points in Guangdong 

(Table 2.5).  However, our results contradict Gu, Shen, Wong, and Zhen’s (2001) study 

based on the data before the mid-1990s, which suggested that the FDI was an auxiliary 

factor underlying the regional inequality in Guangdong. In fact, as an indicator of 

globalization, FDI has been increasingly important in the economic development in 

Guangdong, especially after China’s accession into the WTO in the early 2000s. Notably, 

FDI has strong policy and geographical preferences and is characterized by path 

dependence (Ng & Tuan, 2003). As shown in Table 2.1, the peripheral area only 

accounted for 10% of the FDI in Guangdong while most of the FDI was concentrated in 

the PRD. The uneven distribution of FDI has become an important, rather than auxiliary, 

factor causing the regional disparities in Guangdong. On the other hand, our findings 

confirm the positive relationship between fiscal decentralization and the uneven 

development in Guangdong. The fiscal decentralization in the reform era has encouraged 
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local governments in Guangdong to actively engage in local economic development (Lin, 

1997). With the changes of fiscal capacity, local governments can finance infrastructure 

development and public goods to promote economic growth and attract investors. This 

process, however, often results in the greater development in the already affluent regions 

and the detriment in the poor areas (Wang, 2010). Fiscal decentralization also reinforces 

the local governments’ reliance on local revenue, which encourages the local 

protectionism and has weakened the capability of the regional-level government to 

redistribute resources for an equity objective. Therefore, fiscal decentralization, despite 

its effectiveness in creating a growth-oriented environment in Guangdong, tends to have 

a negative impact on the equitable development and indirectly aggravates regional 

inequality. Multilevel modeling also deepens our understanding of the impact of 

marketization on the regional inequality in Guangdong. In comparison with globalization 

and decentralization, marketization has no longer been a significant factor accounting for 

the uneven economic development in Guangdong where the socialist market reform was 

initiated earlier than the other provinces in China (Gu et al., 2001). In addition, the 

domestic private enterprises have experienced remarkable growth in Guangdong, and 

their distribution tends to be more balanced in comparison with the overly concentrated 

foreign invested enterprises (Lin & Hu, 2011). Therefore, development of the non-state-

owned sector or domestic private enterprises has potential to mediate the uneven 

development in Guangdong driven by the unevenness of FDI.  

Fourth, the results also show that fixed asset investments have exerted strong 

influences on the regional development in Guangdong, and it is consistently significant in 

the multilevel model (Table 2.5). These results demonstrate that the economic 
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development in Guangdong relies greatly on investments, while the distribution of fixed-

asset investments is imbalanced and focused on the PRD (Table 2.1), exerting significant 

influences on the rising regional disparities. Fifth, the resulting multilevel model 

indicates that the urban-rural variable is marginally significant in the one-level model; 

however, when the core-periphery hierarchy is taken into account, the urban-rural divide 

significantly affects the regional inequality in Guangdong. In this sense, the application 

of multilevel modeling provides a more nuanced understanding that the rural 

industrialization in the PRD is still far from alleviating the overall economic inequality in 

the whole province. Lastly, the topography variable (MOUNTAIN) is insignificant in the 

multilevel model, and its coefficient is negative. Therefore, the economic developments 

in these counties are constrained by their physical and topographical conditions, which 

also intensify the regional inequality in the province. 

Discussion and Conclusion 

The chapter has analyzed the regional inequality in one of China’s most 

developed provinces, Guangdong, in the postreform period and confirms the applicability 

of a multiscale and multimechanism framework in the empirical research on China’s 

regional inequality at the intraprovincial level. We find that regional inequality in 

Guangdong is sensitive to geographical scales and such structural changes in the 

postreform period as China’s accession into the WTO. By emphasizing the distinctive 

distributional dynamics in different stages of economic reform, this study also 

corresponds to the increasing interests of economic geographers in the transformation of 

economic landscape from an evolutionary perspective (Martin & Sunley, 2007).  

Overall, Guangdong has experienced a new round of polarized development since 
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the early 2000s under further globalization, which is greatly attributed to the widening 

gap between the PRD and the periphery as well as the urban and rural areas. It is worth 

noting that only a small subset of counties or cities in the periphery have benefited from 

the spillover from the PRD, while a large number of the counties or cities in the semicore 

and semiperiphery areas have experienced a progressive bias towards a “poverty trap” in 

the 2000s. With global Moran’s I and spatial Markov chains, we have demonstrated the 

significance of spatial dependence and self-reinforcing agglomeration in Guangdong’s 

regional development, which is consistent with the findings in the recent studies of 

regional development in Zhejiang (Ye & Wei, 2005) and Jiangsu (Wei et al., 2011).  

The results of multilevel modeling are capable of better explaining the factors 

underlying the regional inequality in Guangdong over space and time. We have found 

that many development agents such as the local governments, foreign investors, and the 

central state are functioning at the low levels under provinces, which are likely to be 

concealed in the analysis of large spatial aggregates such as provinces and groups of 

provinces (Wei & Fan, 2000). More importantly, in the case of Guangdong, the uneven 

distribution of foreign investment, coupled with decentralization, has become the most 

crucial driving force behind the uneven regional development.  

The above findings thus contribute to the literature and suggest meaningful 

theoretical and policy implications. First, as suggested by the new economic geography 

literature (Krugman, 1991, 2011), the importance of space revealed in these 

intraprovincial studies reiterate the pervasive evidence of agglomeration toward a core-

periphery model operating at local scales. The persistence of core-periphery inequality 

also challenges the neoclassical growth theory, which emphasizes free mobility of capital 
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and celebrates the long-term convergence. As found in this study, given the geographical 

and political preferences of the global capital, the uneven development in Guangdong has 

been intensified in the context of globalization. Second, the results of this study clearly 

point out that the efficacy of inequality-reducing policies in Guangdong has been 

constrained by the geographical barriers and the effect of self-reinforcing agglomeration. 

The recent efforts towards inequality reduction have also not achieved the expected 

effects because these policies such as the construction of “industrial relocation parks” 

were biased towards the specific localities in the periphery, especially the urban districts, 

which had a limited impact on the reduction of overall inequality in Guangdong and 

worsened the urban-rural inequality. Given the results of multilevel modeling, 

institutional reform is needed to strengthen the role of provincial government and foster 

cooperative relationships among local governments so as to minimize the negative impact 

of decentralization on regional disparities. The resulting multilevel model further 

provides a basis for the regional development policy to promote the spontaneous 

development of domestic private enterprises, which are spatially more balanced and 

locally embed and which have the potential to play a role in mediating the polarized 

development in Guangdong that is driven by the overly uneven distribution of the 

globalization force.  

From a methodological perspective, this study underscores the promising aspects 

of employing GIS and spatial analysis techniques such as spatial Markov chains and 

multilevel modeling in understanding regional development processes. Besides spatial 

Markov chains, other techniques such as geovisualization have been developed to 

investigate the dynamics of regional inequality in the U.S. (Rey et al., 2011). Applying 
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these rigorous GIS and spatial analysis methods is of great potential in the future 

research. Recent advances in spatial statistical techniques such as geographically and 

temporally weighted regression (GTWR; Huang & Barry, 2010) and spatial panel models 

(Elhost, 2003) have also tried to incorporate the time dimension in spatial econometric 

models. The applications of these space-time modeling techniques might also generate 

more insights in the triple process of regional development in China and Guangdong. Our 

empirical analysis of Guangdong also demonstrates that the multiscale and 

multimechanism framework is an appropriate ground-based conceptual tool for analyzing 

regional inequality in China and Chinese provinces by addressing its spatial-temporal 

complexity and the underlying triple process (globalization, decentralization, and 

marketization). We believe that this framework is not only relevant to specific coastal 

provinces like Guangdong. Applying this framework to the regional inequalities in inland 

provinces is also of great significance for a more comprehensive understanding of the 

varied patterns, dynamics, and mechanisms of regional inequality in China. Finally, 

besides the economic inequality, other aspects of inequality such as education, health, 

and social inequalities should deserve attention from policy makers and scholars in future 

research.  
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CHAPTER 3  

REGIONAL DEVELOPMENT AND INEQUALITY IN PROVINCIAL CHINA:  

A SPATIAL FILTERING PERSPECTIVE 

Abstract 

Through the case of Guangdong province, this chapter investigates the spatial 

dependence of regional development and inequality in China. Departing from previous 

studies assuming that the relationship between spatial dependence and regional inequality 

is self-evident, we apply a spatial filtering method that eliminates the spatial dependence 

of the data and allows for quantifying the extent to which spatial dependence contributes 

to inequalities at different spatial scales. The results suggest that the multiscalar nature of 

regional inequality is robust regardless of spatial dependence. Findings also reveal that 

the relationship between spatial dependence and the extent of inequality is apparently 

sensitive to spatial scales. In the case of Guangdong, the divide between the Pearl River 

Delta and the rest of the province has been strengthened by the effect of self-reinforcing 

agglomeration. We further investigate spatial effects on the dynamics of regional 

inequality and employ spatial panel and space-time regression models to reveal the space-

time and core-periphery heterogeneities of development mechanisms in Guangdong. 

Introduction 

The past 25 years have witnessed renewed interdisciplinary interests in regional 

inequality and convergence (Barro & Sala-i-Martin, 1991), fueled by recent theoretical 
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advances in new economic geography, endogenous growth and new convergence 

literature (Barro & Sala-I-Martin, 1997; Martin & Sunley, 1998; Scott & Storper, 2003). 

Scholars have also debated over the spatial impacts of globalization, decentralization, and 

economic liberalization, while retesting divergence, convergence, or inverted-U 

hypotheses (Ezcurra & Pascual, 2008; Ezcurra & Rodríguez-Pose, 2013; Lessmann, 

2014). Updated cross-country analysis of regional inequality at the global level have 

found that globalization and trade liberalization may reduce regional inequalities and 

bring wealth to poor regions in developed countries (Ezcurra & Rodríguez-Pose, 2013). 

However, evidence has shown that inequalities in developing countries tend to persist. In 

many Asian countries, there have been new forms of spatially uneven growth (e.g., Akita, 

2003). 

China’s regional development is essentially uneven in space, and regional 

inequality is undoubtedly a burning issue in China since inequality may threaten political 

stability and national unity. Intensive inequality may also cause the rise of social unrest. 

Researchers have found that the evolution of regional inequality in China can hardly be 

simplified into a convergence (the gap between rich and poor keeps narrowing) or 

divergence (the disparity between rich and poor increases over time) trajectory (Li & 

Wei, 2010). The complexity of regional inequality and uneven economic landscape can 

be better understood by a multiscale and multimechanism framework (Wei, 2002). At the 

same time, a triple-process of economic transition (i.e., marketization, decentralization, 

and globalization) is found to be a fundamental cause behind China’s regional inequality 

(Hao & Wei, 2010; Li & Fang, 2013; Wei, 2002;).  

Given its significance, patterns, and scales, more efforts have been made to 
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investigate China’s regional development and inequality within specific coastal provinces 

using finer-scale data. Case studies of Zhejiang, Jiangsu, Greater Beijing, and Guangdong 

have provided more detailed evidence about the space-time complexity of regional 

inequality in China (Wei et al., 2011).  Notably, the works on regional development and 

inequality in provincial China, particularly using more rigorous GIS-spatial modeling 

methods, have allowed for a more detailed analysis of the role of space in understanding 

development disparities and mechanisms (Wei et al., 2011; Ye & Wei, 2005). 

Nevertheless, the relationship between spatial dependence and inequalities has rarely 

been clarified in a quantitative manner. In addition, the work on the triple process of 

transition was focused on the spatial heterogeneity of these mechanisms using GWR 

(Wei & Ye 2004, 2009), a more informative analysis of the temporal heterogeneity and 

core-periphery heterogeneity of these multiple mechanisms in China is needed. 

Drawing upon more recent data in the Guangdong province, the present chapter 

attempts to “revisit” the role of space in the analysis of regional inequality and 

development mechanisms in China. The chapter has two objectives. First, departing from 

the previous studies in which the relationship between spatial dependence and inequality 

appears to be self-evident, the study applies a spatial filtering method to quantitatively 

investigate the relationship between spatial dependence and the scales as well as 

dynamics of regional inequality. The application of spatial filtering thus sheds light on 

the new economic geography theory (Krugman, 2011; Martin, 2013) and has provided 

detailed empirics about how economic transitions and local geographies in Guangdong 

interact to yield new spatial forms of development. Second, by incorporating spatial 

filters in a set of panel regression and space-time modeling frameworks, we further 
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address the space-time and core-periphery heterogeneity of multimechanisms in China’s 

regional development.  

The empirical case of Guangdong was chosen for the following reasons. First, 

Guangdong ranks first among 31 provincial units in China in terms of the size of its 

economy, roughly the same size as the Netherlands in Europe. Guangdong’s rapid 

economic growth has been greatly driven by economic globalization and market reform. 

Second, the province has been known for its evident regional disparities, characterized by 

the divide between the core region of Pearl River Delta (PRD) and the rest of the 

province and spatial agglomeration in the PRD (He & Wang, 2012; Lu & Wei, 2007). 

Therefore, Guangdong is an ideal laboratory to investigate the role of space in shaping 

regional inequality at different scales. Third, the literature on regional development in 

Guangdong has paid more attention to the period of 1978–1990; with few exceptions 

(Liao & Wei, 2012; Lu & Wei, 2007), regional development in Guangdong since the 

early 1990s has rarely been studied.  

This chapter employs the recent developments in spatial analysis methodologies, 

particularly a spatial filtering approach, to investigate regional inequality and 

development in Guangdong using county-level data. We first review the development 

process and patterns of regional development in Guangdong. This is followed by a 

discussion on relevant conceptual issues and details about the spatial filtering method. 

The empirical results consist of the investigation of spatial dependence of regional 

development and its impact on regional inequalities and convergence/divergence 

dynamics. We further incorporate spatial filters in a set of panel and space-time model 

specifications, aiming to achieve a more reliable estimation of multimechanisms over 
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space and time. The conclusion section summarizes the findings and discusses 

methodological and policy implications.  

Research Setting and Conceptual Framework 

Geographically, Guangdong is located in southeastern China and consists of four 

subregions, including the core region of PRD, North Guangdong, West Guangdong, and 

East Guangdong (Figure 2.2). There were 21 municipalities as well as 81 counties and 

cities in Guangdong as of 2012. The province has a land area of 179,612 square 

kilometers (approximately 2% of China’s territory), and a total population of 105.9 

million in 2012. The core region is called the Pearl River Delta or PRD, which is adjacent 

to Hong Kong (Figure 2.2). On par with the Yangtze River Delta (YRD), the PRD is 

known as an economic powerhouse in China, driven by the development of export 

oriented manufacturing and a huge flow of investment from Hong Kong and Taiwan 

(Lin, 2009; Sit & Yang, 1997).  

Regional development in Guangdong has benefited from the reform policy 

launched in 1978 in China. It should be noted that Guangdong’s geographic location is 

distant from the political and economic center of the country to the north (Lin, 2009). In 

the period of state socialism under Mao, Guangdong had never been a favorable 

destination of state capital. Historically, the province has been known for its globally 

ethnic connections with Chinese diaspora in North America, Europe, and South East 

Asia.  As Lin (2009) summarized, the geographical proximity to Hong Kong and kinship 

ties with overseas Chinese investors have allowed Guangdong to move “one step ahead” 

in China’s reform and become a favorable laboratory to experience reforms and opening 

up (gaige kaifang). The leading role of Guangdong in China’s economy can be 
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manifested by its rapid economic growth over the past 3 decades with an annual growth 

rate of 13.3% as compared to 9.2% at the national level (GSB, 2013). In terms of the size 

of the economy, the rank of Guangdong rose from 5 in 1978 to 1 in 1990 among 31 

provincial units in China and has continuously ranked the first since then. This makes 

Guangdong’s economy the same size as the Netherlands in Europe and one-third of the 

economy of California in the US in 2012.  

While Guangdong has achieved a massive economic growth in the reform era, 

regional development in the province is clearly characterized by a spatially uneven 

pattern. The PRD region accounts for 30.5% of the land area in the province, but it has 

dominated the province’s foreign direct investment (FDI) and exports (Table 3.1). In 

2012, the PRD produced 76.6% of Guangdong’s GDP, as compared to 55.5% in 1990. 

The present research draws upon Wei’s (2002) multiscale and multimechanism 

framework of regional development and inequality in China. On the one hand, regional 

inequality in Guangdong is sensitive to a variety of geographical scales. Under provinces, 

regional inequalities can be further analyzed on interregional, intermunicipality, and 

intercounty scales (Liao & Wei, 2012). 

 Table 3.1 Core-periphery structure in Guangdong 

  
Guangdong  

 As percentage of Guangdong 

 Pearl River Delta  Periphery 

1990 2012  1990 2012  1990 2012 

Population (million) 63.5 105.9  30.4 53.3  69.6 46.7 

Land area (sq km2) 179,612 
179,61

2 

 
30.5 30.5 

 
69.5 69.5 

GDP (billion yuan) 155.9 5706.8  55.5 76.6  44.5 23.4 

Investments in fixed assets 

(billion yuan) 
38.1 1930.8 

 
69.3 64.1 

 
30.7 35.9 

Exports (US$ billion) 22.2 574.1  100.0 88.2  0.0 11.8 

FDI (US $billion) 1.5 23.5  84.7 82.8  15.3 17.2 

Adapted from GSB, 2014 
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On the other hand, major drivers of Guangdong’s regional development are 

consistent with China’s triple process of economic process. First, regional development 

in Guangdong has been fueled by the globalization process. Guangdong is among several 

coastal provinces that have benefited considerably from the preferential open door policy. 

For instance, three out of the four designated special economic zones (SEZ) in China 

were located in Guangdong. For years, Guangdong has succeeded in attracting FDI, and 

its exports have accounted for nearly one-third of the total exports in China in the 1990s. 

Second, economic growth in Guangdong is motivated by the decentralization of decision-

making power to the local government. Prefecture- and county-level governments have 

actively participated in local economic development, coined as “local state corporatism” 

(Oi, 1995; Xu & Yeh, 2005). Third, under market reform, the development of private 

enterprises has become another major agent of Guangdong’s regional development (Lin 

& Hu, 2011; Liu & Yang, 2013). The original PRD model is recently modified given the 

rise of domestic Chinese private enterprises and the development of knowledge-based 

economy (Liu & Yang, 2013; Lu & Wei, 2007).  

Based on this multiscale and multimechanism framework, the following sections 

will analyze the spatial dependence of regional development in Guangdong and further 

investigate the spatial effects on multiscalar patterns and distributional dynamics of 

regional inequality. Most of the data used in this study are compiled from the Guangdong 

statistical yearbook, and the GDP data have been adjusted to the constant price in 1990. 

The population data in noncensus years was interpolated using census data in 1990, 1995, 

2000, 2005, and 2010 since population with residence registration tends to exaggerate the 

extent of inequality in China (Chan & Wang, 2008; Li & Gibson, 2013). The 
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interpretation of the findings are aided by years of fieldwork since 2005.  

Methodology: A Spatial Filtering Perspective 

Spatial filtering is a specific technique that is able to remove the spatial 

dependence in the data. In this study, we employ Griffith’s spatial filtering approach to 

eliminate spatial autocorrelation (Getis & Griffith, 2002). The main advantage of these 

filtering procedures is that the studied variables (which are initially spatially correlated) 

are divided into spatial and nonspatial components.  This approach is also preferred 

because it can be easily incorporated in other regression model specifications, such as 

panel data framework (Patuelli et al., 2011), and can also be used to furnish a space-time 

model while controlling for spatial autocorrelation in residuals (Griffith, 2008).  

The selection of spatial filters is based on the computational formula of Moran’s I 

(MI) statistic. This methodology uses eigenvector decomposition techniques, which 

extract the orthogonal and uncorrelated numerical components from a N×N modified 

spatial weight matrix: 

𝑤 = (𝐈 −
𝐼𝐼𝑇

𝑛
) 𝐶(𝐈 −

𝐼𝐼𝑇

𝑛
)                                                           (3.1) 

where 𝐶 is an indentity matrix of dimension n× n binary 0–1 geographic connectivity 

matrix, and 𝐼 is an n×1 vector containing 1s. The eigenvectors of the modified matrix are 

calculated to maximize the sequential MI values. The first computed eigenvector, E1, is 

the one that results in the largest MI value among all eigenvectors of the modified matrix. 

This is followed by the second eigenvector, E2, which is a set of numbers that aimed to 

maximize the MI value while being orthogonal and uncorrelated with E1. The process 

continues until N eigenvectors have been computed. The final set of these eigenvectors 
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includes all possible mutually orthogonal and uncorrelated map patterns (Getis & 

Griffith, 2002; Thayn & Simanis, 2013). When employed as regressors, these 

eigenvectors could be treated as proxies for missing explanatory variables that capture the 

underlying geographical structure (Patuelli et al., 2011). It should be noted that 

employing all N eigenvectors in a regression framework is not desirable due to issues 

related to model parsimony and statistical significance, and is often impossible to add 

other covariates. Therefore, a smaller subset of candidate eigenvectors can be selected 

from the N eigenvectors on the basis of their MI values. In this analysis, we follow the 

spatial filtering method suggested by Chun and Griffith (2013). The spatial weight matrix 

is based on the rook’s contiguity definition (i.e., on border-sharing schemes) and coded 

according to the C-coding scheme, which yields a symmetric matrix W (Tiefelsdorf & 

Griffith, 2007).  

Spatial Dependence of Regional Development  

Before presenting the results of spatial filtering based analysis, this section 

generally applies an exploratory spatial data analysis (ESDA) approach to investigate the 

spatial dependence of regional development in Guangdong. In calculating the Moran’s I, 

the spatial weight matrix is of particular concern (Anselin, 1988) because it represents the 

particular spatial linkage between spatial units. It is appropriate to investigate the 

alternative weighting strategy due to the complexity of spatial interactions. Following Yu 

and Wei (2008) and Li and Fang (2013), five spatial weight metrics are employed to 

reveal the significance of Moran’s I. As shown in Table 3.2, the resulting Moran’s I over 

the study period are all higher than 0 and significant at a level of 0.001, indicating the 

significance of spatial dependence in Guangdong’s regional development.  
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Table 3.2 Z-scores of Moran’s I 

Year Contiguity  

Inverse 

distance 

Inverse distance 

square 

Fixed distance 

band 

Zone of 

indifference 

1988 6.278 4.296 2.550 4.769 4.771 

1990 6.066 4.053 2.370 4.508 4.510 

1995 6.251 4.894 2.913 5.472 5.475 

2000 6.205 4.848 2.913 5.440 5.442 

2001 6.238 4.798 2.871 5.397 5.399 

2002 6.237 4.697 2.804 5.279 5.281 

2003 6.177 4.583 2.741 5.134 5.137 

2004 6.257 4.659 2.817 5.187 5.189 

2005 6.468 4.744 2.834 5.294 5.296 

2006 6.629 4.828 2.855 5.402 5.404 

2007 6.958 4.871 2.848 5.467 5.468 

2008 7.228 4.943 2.888 5.572 5.574 

2009 7.539 5.127 3.004 5.775 5.776 

2010 7.390 4.848 3.110 5.897 5.898 

2011 7.502 4.798 3.115 5.906 5.908 

2012 7.509 4.697 3.129 5.893 5.895 

 

Table 3.3 presents changes of Moran’s I values in Guangdong. The Moran’s I 

indicator, under the border-sharing strategy, rose consistently from 0.44 in 1988 to 0.53 

in 2012, revealing the existence of statistically significant positive spatial autocorrelation 

and a rapid increasing trend of spatial autocorrelation or agglomeration since the early 

1990s. As Yu and Wei (2008) stated, there are two possible scenarios when an upward 

Moran’s I is observed. First, there may be new clusters. Second, more areas become 

similar. In this regard, LISA Moran’s I can supplement the global Moran’s I index in 

detecting the sources of global spatial autocorrelation. As demonstrated in Figure 3.1, 

LISA Maps, both in 1988 and 2012, reflect the agglomeration of development in the 

PRD. So the rise of global Moran’s I is largely driven by the clustering of regional 

development rather than the formation of new clusters out of the PRD. It also implies that 

the spatial dependence should be considered in our analysis.  
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Table 3.3 Moran’s I of actual and spatially filtered GDP per capita, 1988–2012 

 Nonfiltered data Filtered data 

Year Moran’s I z-value p-value Moran’s I z-value p-value 

1988 0.457 6.466 0.000 -0.053 -0.559 0.576 

1990 0.449 6.327 0.000 -0.096 -1.131 0.258 

1995 0.461 6.593 0.000 -0.105 -1.281 0.200 

2000 0.461 6.500 0.000 -0.093 -1.096 0.273 

2001 0.468 6.589 0.000 -0.149 -1.857 0.063 

2002 0.469 6.639 0.000 -0.131 -1.622 0.105 

2003 0.466 6.608 0.000 -0.136 -1.687 0.092 

2004 0.472 6.679 0.000 -0.148 -1.843 0.065 

2005 0.485 6.832 0.000 -0.144 -1.788 0.074 

2006 0.492 6.918 0.000 -0.132 -1.617 0.106 

2007 0.508 7.101 0.000 -0.123 -1.485 0.137 

2008 0.515 7.182 0.000 -0.101 -1.186 0.236 

2009 0.526 7.324 0.000 -0.108 -1.280 0.201 

2010 0.527 7.321 0.000 -0.117 -1.401 0.161 

2011 0.535 7.420 0.000 -0.112 -1.338 0.181 

2012 0.536 7.433 0.000 -0.118 -1.415 0.157 

 
Figure 3.1 Local Moran’s I of GDP per capita in Guangdong, 1988, 2012 
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The present research uses the spatial filtering approach proposed by Griffith. The 

first step in the construction of a spatial filter to be applied to the county-level GDP per 

capita is the eigenvectors of the spatial weight matrix, followed by the choice of a subset 

of “candidate” eigenvectors from which the selection is made. Candidate eigenvectors are 

selected based on their MI values and their correlations with the geo-referenced GDP per 

capita data, using a minimum threshold of 0.5 for the statistic MI/max (MI). Once a set of 

“candidate” eigenvectors has been selected, its statistical significance as explanatory 

variables for Guangdong’s GDP per capita data has to be established.  

The results of spatial filtering show that the spatial correlation between counties 

in Guangdong has been effectively removed (see the columns of filtered data in Table 

3.3). In fact, the significant high positive Moran’s I statistics obtained with actual data are 

not only reduced dramatically, but they also become negative and are statistically 

insignificant. Thus, we have two sample series, one with actual data and the other with  

filtered data. In the rest of the chapter, we examine the multiscalar characteristics and 

distribution dynamics of regional inequality with two sample series; therefore, the only 

differences between them are attributed to spatial effects. 

Scales and Dynamics of Regional Inequality 

This section is devoted to the analysis of regional inequalities at different scales, 

including intercounty, intermunicipality, and interregion scales and the distribution 

dynamics, with a particular focus on spatial effects.  

Regional inequality can be measured by a variety of indexes such as GINI, Theil, 

and Coefficient of Variation (or CV). Starting with Figure 3.2, we estimate regional 

inequalities in Guangdong using a population-weighted coefficient of variation (WCV).  
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Figure 3.2 Multiscale inequalities with/without spatial filters in Guangdong: A) 

Interregional inequalities; B) Intermunicipality inequalities; C) Intercounty inequalities 

Figure 3.2 leads to some interesting findings: first, the regional inequality is 

sensitive to spatial scales (Liao & Wei, 2012). We have also found that regional 

inequality at three scales tended to increase in the early 1990s and then became stable 

until the end of 1990. The inequality rose again in the early 2000s and declined 

afterwards, although the decrease of intercounty inequalities occurred later in the study 

period. In other words, the evolution of regional inequality can hardly be simplified into 

convergence and divergence. Third, Figure 3.2 also shows that at more disaggregated 

geographical scales, there are more intensive disparities. Notably, this finding holds when 

taking into account spatial effects. Fourth, the impact of spatial agglomeration on 

regional inequality is significant, whereas the relationship is contingent upon 

geographical scales.  

Table 3.4 further illustrates that spatial dependence accounts for over 90% of the 

inequality at the regional level, while the influence declines to around 60% at the  
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Table 3.4 Spatial inequality with and without spatial filers 
 Theil GINI 

Year 

Nonfiltered Filtered 

% of spatial 

dependence Nonfiltered Filtered 

% of spatial 

dependence 

Interregional       

1988 0.064 0.000 99.95 0.170 0.004 97.93 

1995 0.087 0.000 99.94 0.199 0.014 92.85 

2000 0.082 0.001 98.52 0.193 0.023 88.28 

2005 0.087 0.001 99.92 0.199 0.006 97.22 

2010 0.070 0.000 99.99 0.178 0.001 99.27 

Intercity       

1988 0.124 0.034 72.88 0.249 0.112 55.19 

1995 0.158 0.056 64.45 0.280 0.151 45.85 

2000 0.138 0.046 66.94 0.269 0.139 48.22 

2005 0.159 0.037 76.62 0.277 0.123 55.47 

2010 0.125 0.027 78.61 0.246 0.107 56.50 

Intercounty       

1988 0.176 0.088 49.99 0.311 0.217 30.24 

1995 0.199 0.098 50.54 0.334 0.228 31.66 

2000 0.184 0.089 51.52 0.326 0.223 31.59 

2005 0.222 0.094 57.82 0.355 0.229 36.05 

2010 0.187 0.070 62.53 0.331 0.205 38.01 

 

municipality level and approximately 40% at the county level. Therefore, by using a 

spatial filtering approach, we have been able to quantify these relationships.  

In order to shed further light on the regional inequalities across counties in 

Guangdong, we apply two methods, including a cross-profile dynamics and stochastic 

Kernel approach, to capture the distribution dynamics of regional inequality and 

intradistribution mobility of spatial units. We start with Figure 3.3 showing cross-profile 

dynamics. The vertical axis is the relative per capita incomes. Two curves in the figure 

point to the situations in 1988 and 2012. The most striking feature of Figure 3.3 is not 

this comparative stability through time. It is the change in choppiness through time in the 

cross-profile plots indicated by local peaks. The curve of 2012 suggests that the relative 

declines are more likely to occur in counties in the periphery region. However, the 

upward mobility of counties in the periphery region is also evident, partly explaining the  



73 

 
 

 
Figure 3.3 Cross profile dynamics (D = PRD, P = Periphery) 

recent decline of regional inequality in Guangdong. Figure 3.3 also shows that a set of 

counties or cities in the PRD including Foshan, Guangzhou, Zhongshan, and Zhuhai have 

moved upward in the distribution, while a number of counties in the periphery area 

converged towards the average at the same time.  

Consistent with the cross-profile dynamics shown in Figure 3.3, many counties 

that are distant to the PRD in the periphery area have been diverging from below (Figure 

3.4). Counties moving upward are those areas geographically closer to the PRD. In 

addition, the spatial effect on the cross-profile dynamics is evident (Figure 3.5). Figure 

3.5 highlights that if spatial effect is removed, the gap between richest and poorest is 

narrowed. There are more counties moving upward in the poor region while more 

counties are declining in the rich region.  

Although the cross-profile dynamics are informative, they do not identify 
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 Figure 3.4 Changing GDP per capita in Guangdong, 1988–2012 

Figure 3.5 Intradistribution mobility in Guangdong, 1988–2012 
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underlying dynamic regularities in the data. We thus turn to the stochastic kernel 

representation of intradistribution dynamics. Similar to a Markov chain, stochastic kernel 

densities are the continuous version of the model of distribution dynamics. Let 𝐹𝑡 denote 

the cross-section distribution of GDP per capita at time t, then the distribution evolves 

according to: 

𝐹𝑡+1 = 𝑀𝐹𝑡                                         (3.2) 

where M denotes the distribution from time t to time t + 1, and tracks where points in 𝐹𝑡 

end up in 𝐹𝑡+1 , and it can also be viewed as a stochastic kernel or transition function that 

describes the (time-invariant) evolution of the cross-section distribution in time. 

Following Hyndman et al. (1996), we employ the stochastic kernel approach and estimate 

the highest density plots using a 5-year transition period. The highest density plot is 

defined as “the smallest region of the sample space containing a given probability” (Maza 

& Villaverde, 2009). Thus, each vertical strip in Figure 3.6 denotes the conditional 

density of a per capita income level in time t. For any point y on the period t axis, looking 

in the direction parallel to the t + 5 time axis traces out a conditional probability density. 

In particular, Figure 3.6 shows the highest density regions for probabilities of 25, 50, 75, 

and 99% (as it passes from a darker to a less darker area). In addition, it illustrates, as a 

bullet, the mode (value of per capita GDP in time t + 5 where the density function takes 

on its maximum value) for each conditional density for each per capita GDP in time t. 

Just as a transition matrix based on Markov-chain approaches, the 45-degree diagonal in 

the graph indicates persistence properties. Therefore, most of the densities are 

concentrated along this diagonal, and the elements in the cross-section distribution 

remain where they started.  
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Figure 3.6 Stochastic kernel density of per capita GDP in Guangdong, 1988–2012:  

A) Actual Data (average=100); B) Filtered Data (average=100) 

 

A) 

B) 
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As evident from Figure 3.6A, a large proportion of the probability mass tends to 

remain agglomerated along the main diagonal over the 5-year horizon, and it is clear that 

the poorest counties have been facing more challenges to move upward. On the other 

hand, we find that some counties well above average decline in the intradistribution 

shape, which is consistent with recent decline in regional inequalities among counties. 

The plot based on spatial filter data reveals an evident spatial effect on regional mobility 

in Guangdong (Figure 3.6B). It mainly suggests that if spatial autocorrelation is 

eliminated, the upward mobility of these most affluent counties is constrained, and the 

gap between the rich and poor tends to shrink. In short, our results indicate that spatial 

effects have been more influential on the mobility of wealthiest counties within the 

distribution of county level GDP per capita. 

Spatial-temporal Models of Multimechanism  

of Regional Inequality  

The above sections compare spatially filtered and actual data to investigate spatial 

effects on regional inequalities and distribution dynamics. To better understand the 

underlying mechanisms, this section employs a set of spatial filter-based panel and space-

time models to investigate the space-time and core-periphery heterogeneity of 

development dynamics.  

Underlying mechanisms of regional inequality 

Following the production function and considering the lack of reliable growth 

rates, we treated the individual year’s per capita GDP as dependent variables (Li & Fang, 

2013; Yu & Wei, 2008). The independent variables selected in this study are broadly 

similar to those used to analyze Zhejiang (Wei & Ye, 2009), Jiangsu (Wei & Kim, 2002) 
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and Guangdong (Liao & Wei, 2012).  They are also based on the conceptualization of 

China’s development as a triple process of marketization, globalization, and 

decentralization.  

1. The foreign direct investment per capita (FDIPC) is selected as a proxy of the 

effect of globalization. It reflects the effect of globalization and is assumed to positively 

contribute to regional development in Guangdong.   

2. The importance of socialist institutions and the infusion of market mechanisms 

can be represented by the share of non-SOE in employment (NSOEPCT).  

3.  The decentralization process is represented by the ratio of local governmental 

expenditure per capita to the provincial government’s budgetary spending per capita 

(GOVPC). It is a proxy of the degree of fiscal decentralization and the shift of power 

from upper level governments to local governments (Hao & Wei, 2010).  

4.  Fixed asset investment per capita (FIXPC) is selected as the primary factor of 

input in regional development. In China, fixed investment is also considered as a key 

instrument in the process of industrialization and economic growth. FIXPC is expected to 

positively contribute to regional development.  

5.  Agglomeration economies such as urbanization economies are widely 

acknowledged as a key driver of economic growth (Jacobs, 1969). As noticed by scholars 

(Chen & Partridge, 2013), China’s regional development policy leans toward the urban 

area, and urbanization has been considered as an engine of regional development. We 

employ the percentage of urban population in the total population (URB) to investigate 

the effect of urbanization on regional development.  

6.  In Guangdong, most of the plain area is located in the PRD, while mountain 
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counties are mostly located in the periphery. A dummy variable (MOUNTAIN) is used to 

represent the impact of physical topographical conditions on the regional development 

(Li & Fang, 2013). In addition, since the early 2000s, the provincial government in 

Guangdong has put in more efforts to promote local economic growth in these 

mountainous counties (Liao & Wei, 2012). Therefore, the variable also denotes the 

impact of these policies on regional development in Guangdong.  

Model specifications 

We build our model based on the production function, which formally expresses 

the output of an economic system (per capita GDP) as the product of basic input factors: 

FDIPC, GOVPC, NSOEPCT, FIXINV, URB, and all the input factors are hypothesized to 

be exogenous input. Therefore, a production function-like regional development 

mechanism model can be specified as 

GDPPC=A*FDIPCβ1*GOVPCβ2*NSOEPCT β3*FIXINV β4*URB β5*Mountain β6     (3.3) 

The exponential form can be transformed into a linear form through logarithm 

transformation, which results in the familiar linear model: 

                       𝑦𝑖𝑡 = 𝛽𝑖𝑡𝑋𝑖𝑡 + 𝜀𝑖𝑡                                                                                      (3.4) 

where  𝑦𝑖𝑡 is the logarithm transformed GDPPC in county i in the year of t, 𝑋𝑖𝑡 is the 

matrix containing the five independent variables in their logarithm transformed forms and 

a constant term, 𝛽𝑖𝑡 is the vector of model coefficients, and 𝜀𝑖𝑡 is the error term. After the 

transformation, all the variables are asymptotically normally distributed. Equation 3.4 is 

an orthodox panel data model. Serial correlation is difficult to assess. Nevertheless, the 
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additional structure in the space-time dataset can be accounted for with a geographically 

and temporally varying random variable, which in part acts as a surrogate for missing 

variables. This random effects intercept also supports inferences beyond the employed 

spatial partitioning and set of points in time. Following Griffith (2008), we further 

incorporate spatial filters in equation 3.2 to construct a spatially structured random effect 

panel data model. Therefore, equation 3.4 becomes 

                       𝑦𝑖𝑡 = 𝛽𝑖𝑡𝑋𝑖𝑡 + 𝑠𝑓𝑖𝑡 + 𝜀𝑖𝑡                                                                          (3.5)                       

where 𝑠𝑓𝑖𝑡 is the linear combination for a county i in time t of the selected spatial filter 

components, assuming that spatial autocorrelation is specific to individual year t. As 

mentioned above, a subset of “candidate” eigenvectors have been selected and treated as 

regressors in equation 3.5. An AIC-based stepwise regression approach is employed to 

further investigate between explanatory variables and county-level GDP per capita data 

in Guangdong.  

Spatial panel regression models 

We first estimate both OLS and spatial filter panel regression models using 

county level socioeconomic data in 1990, 1995, 2000, 2005, and 2010. Table 3.5 reports 

the overall pseudo-R2 and MI of residuals as well as year-specific filters that can account 

for spatial autocorrelation in the data. The spatial filtering panel regression model 

removes all of the residual spatial autocorrelation and further increases pseudo-R2 values. 

We also compare the spatial filter panel data model to the selected benchmark spatial 

panel regression models, including spatial lag panel and spatial error panel (Elhorst, 

2003; Patuelli et al., 2011). A spatial lag and error panel model are expressed as 
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Table 3.5 Spatial filter regression and selected eigenvectors, 1990–2010 

Year 

OLS Spatial filtering  

Pesudo 

R2 

MC for 

residuals 
Selected Eigenvectors 

Pesudo 

R2 

MI for 

residuals 

1990 0.662 0.462 E1, E2, E3, E4, E7, E9, E10, 

E11, E12, E19, E21 

0.910 -0.145 

1995 0.794 0.057 E3, E4, E7, E8, E9, E10, E11, 

E12, E15, E16, E17 

0.958 -0.183 

2000 0.730 0.153 E3, E4, E5, E7, E8, E9, E10, 

E11, E12, E13 

0.959 -0.195 

2005 0.706 0.188 E3, E4, E7, E8, E9, E10, E11, 

E12,E13, E15 

0.962 -0.046 

2010 0.761 0.160 E3, E7, E8, E10, E11, E12, 

E13, E15, E20, E21 

0.958 -0.164 

 

𝑦𝑖𝑡 = 𝛿 ∑ (𝑤𝑖𝑗𝑦𝑖𝑡)
𝑁

𝑗=1
+  𝑥𝑖𝑡𝛽 + 𝑢𝑖 + 𝜀𝑖𝑡            (3.6) 

where 𝛿 is the spatial autoregressive coefficient and 𝑤𝑖𝑗 is an element of spatial weight 

matrix W, describing the spatial arrangements of the units in the sample. 𝑢𝑖 denotes a 

spatial specific effect, and 𝜀𝑖𝑡 is an independently and identically distributed error term.  

The spatial error model is computed as follows: 

𝑦𝑖𝑡 =  𝑥𝑖𝑡𝛽 + 𝑢𝑖 + 𝜑𝑖𝑡                                        (3.7a) 

𝜑𝑖𝑡 = 𝑝 ∑ (𝑤𝑖𝑗𝜑𝑖𝑡)
𝑁

𝑗=1
+  𝜀𝑖𝑡                             (3.7b) 

where 𝜑𝑖𝑡 is  the spatially auto-correlated error term and 𝑝 is the spatial autocorrelation 

coefficient. Table 3.6 presents results based on four model specifications including 

simple pooled OLS regression, spatial filter panel regression (equation 3.5), spatial lag 

panel regression (equation 3.6) and spatial error panel regression (equation 3.7a and 

equation 3.7b). Multicollinearity is not a problem as VIF estimates are all lower than 2.5. 

Based on the results (Table 3.6), four interesting findings emerge. First, measured by  
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Table 3.6 Results of spatial filter mixed effect and spatial panel models 

 pooled OLS spatial filter panel spatial lag panel spatial error panel 

 Coef. Sig. T-value VIF Coef. Sig. T-value Coef. Sig. T-value Coef. Sig. T-value 

FDIPC 0.014   0.876 2.116 0.061 *** 5.313 0.029 ** 2.417 0.063 *** 5.193 

NSOEPT 1.103 *** 7.778 1.758 0.528 *** 5.616 0.039 *** 4.688 0.089 *** 6.565 

GOVPC 0.102 *** 4.010 1.518 0.078 *** 3.479 0.118 *** 4.432 0.095 *** 3.915 

FIXPC 0.147 *** 11.906 2.211 0.061 *** 3.924 0.716 *** 6.491 0.590 *** 5.854 

Urban 0.996 *** 6.568 2.432 0.565 *** 4.423 0.616 *** 5.727 0.770 *** 6.298 

Mountain -0.146 *** -3.710 1.263 -0.077   -1.550 -0.291 *** -4.069 -0.238 *** -4.157 

W*𝑦𝑖𝑡         0.593 *** 15.381    

W*𝜑𝑖𝑡           0.758 *** 20.665 

Constant 6.042 *** 82.409  6.674 *** 85.490 2.399 *** 31.562 6.586 *** 58.888 

BIC 349.347    104.034 155.617 121.774   

Adjust R2  0.772  Log likelihood ratio test <0.001  <0.001  <0.001   
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BIC, the three spatial panel regression model specifications report better fitting statistics 

in comparison with the simple pooled OLS model, which explains 77.2% of the total 

variance of the county-level GDPPC. Results of likelihood ratio tests also identified that 

there is a significant reduction in deviance. Second, consistent with Patuelli’s study 

(2011), the fitting of the spatial-filter random-effect panel model, based on BIC, is 

superior to the spatial-lag and error-model specifications, mostly because its random 

effects term is a surrogate for various model deficiencies. Third, Table 3.6 shows that 

variables representing decentralization, marketization, and globalization are significant 

drivers of regional development in Guangdong (Table 3.6). Nevertheless, in comparison 

with the pooled OLS model, the t values of coefficients for GOVPC and NSOEPT 

decrease. More importantly, FDIPC, reflecting globalization, is significant in explaining 

regional development, and its coefficients are positive in spatial regression models. 

However, the pooled OLS model shows that the coefficient of FDIPC is insignificant. 

The result that the globalization effect has been declining is contrary to the basic nature 

of regional development in Guangdong. Therefore, spatial panel models, while taking 

into consideration spatial autocorrelation, result in more reliable estimation of the 

development mechanisms. In addition, urbanization is a key driver of regional 

development, and physical conditions matter given the fact that the coefficient of 

MOUNTAIN is significantly negative. The results also suggest that the effect of 

provincial government’s policies aiming to reducing the gap between mountainous 

counties and those richest ones in the PRD has been constrained by these geographical 

conditions.   
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Space-time models 

Results of spatial panel models are mainly concerned about the time-invariant 

coefficients. However, as Li and Wei (2010) argued, many factors of regional 

development are characterized by temporal heterogeneity/hierarchy. Following Griffith’s 

space-time model (2008), five time dummies and time-specific terms are added in the 

equation 3.5 to detail the temporal heterogeneity of the underlying factors while taking 

into account spatial autocorrelation. The space-time model is expressed as follows: 

𝑦𝑖𝑡 = 𝛽0,𝑡𝐼𝑖𝑡 +  𝛽1,𝑡𝑥𝑖𝑡 + 𝑠𝑓𝑖𝑡 + 𝜀𝑖𝑡                                             (3.8) 

where  

𝑦𝑖𝑡 denotes the GDPPC of county i in time t; 

𝐼𝑖𝑡 denotes the binary 0/1 indicator variable to time t for county I; 

𝑥𝑖𝑡 denotes the triple process of economic transition, including FDIPC, GOVPC and 

NSOEPT; and 𝛽0𝑡 denotes the regression coefficients for the temporal dummies.  

𝛽1,𝑡 denotes the regression coefficients for covariates of FDIPC, GOVPC, and 

NSOEPT in time t.  Figure 3.7 shows the time-varying coefficients of the three variables 

of FDIPC, GOVPC, and NSOEPT. The simple pool OLS regression reveals a 

conspicuous decrease in the coefficient of FDIPC through the period of 1990–2010. 

However, the spatial lag/error models and spatial filtering models all confirm the fact that 

coefficients of FDI increased especially in the early 2000s right after China’s entry into 

WTO. Spatial filter and spatial lag models reduce standard errors of these coefficients as 

compared to the results of OLS regression. Furthermore, the impact of marketization and 

decentralization on regional development is sensitive to different time points (Figure 3.7).  
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Figure 3.7 Temporally varying coefficients in three spatial panel specifications 
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Consistent with the finding from Li and Wei (2010) and Liao and Wei (2012), the 

influence of market reform has been declining. By contrast, the influence of government 

and public spending increased consistently, indicating the more important role of local 

governments’ expenditure in Guangdong’s development under decentralization.   

The model based on equation 3.7 can be further expanded by taking into account 

the core-periphery structure in Guangdong. We borrow the idea of spatial regime model 

and add two regimes in the model (equation 3.9). Core region refers to the PRD, and the 

periphery region is those counties in the areas out of PRD.  

[
𝑦𝑖𝑡,𝑐

𝑦𝑖𝑡,𝑝
] = [

𝑥𝑡,𝑐 𝑦𝑡,𝑐

𝑥𝑡,𝑝 𝑦𝑡,𝑝
] [

𝛽𝑖𝑡,𝑐

𝛽𝑖𝑡,𝑝
] + 𝑠𝑓𝑖𝑡 + 𝜀𝑖𝑡                      (3.9) 

where 𝛽𝑖𝑡,𝑐/𝑝denotes the specific coefficients of covariates for counties in the 

core/periphery region in time t.  

Figure 3.8 presents spatially and temporally varying coefficients in the core and 

periphery regions. Clearly, the impact of the triple process of economic transition on 

regional development in the core region of the PRD is significantly more intensive than 

their counterparts in the periphery region. These results suggest that regional 

development in the PRD is more intensively driven by the triple process of economic 

transition. We also find that these coefficients differ from each other in their evolution. 

Coefficients of FDIPC, reflecting globalization effect, tend to decline in the PRD region 

recently. As Lu and Wei (2007) described, the original PRD model has been modified 

while other factors, such as the public spending, have become another agent of the 

development. The coefficients reflecting marketization are declining in the PRD while 

being increasing in the periphery. This finding substantiates the previous analysis using a 
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Figure 3.8 Spatially and temporally varying coefficients derived from two-regime spatial filtering mixed effect model
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multilevel model (Liao & Wei, 2012), suggesting that the market reform tends to be less 

influential in the PRD, where socialist market reform has been initiated earlier than the 

periphery. 

Discussion and Conclusion 

Drawing upon Wei (2002)’s multiscale and multimechanism framework, this 

chapter “reinvestigates” the scales, dynamics, and mechanisms of regional inequality in 

provincial China from a spatial filtering perspective. The chapter contributes to the 

literature by examining two issues: 1) the relationship between spatial dependence and 

the scales and dynamics of regional inequality and 2) the spatially and temporally 

variations of underlying factors of regional development and inequality. These 

contributions are made through comparing spatially filtered and actual data and adding 

spatial filters in a set of panel data and space-time modeling frameworks.  

In general, the empirical case of Guangdong confirms the applicability of a 

multiscale and multimechanism framework when analyzing regional disparities in China. 

Specifically, taking into consideration spatial effects as well as space-time heterogeneity 

is valuable to achieve a deeper understanding of the relationship between agglomeration, 

scales, dynamics, and inequality. First, we demonstrate that spatial dependence has 

reinforced regional inequalities at different spatial scales while the multiscalar nature of 

regional inequality is robust regardless of spatial autocorrelation. In the case of 

Guangdong, spatial effects have accounted for more than 90% of the core-periphery 

divide between the core region of the PRD, and the rest of the province and its 

contribution to intermunicipality and intercounty inequalities decline to 60% and 40%, 

respectively. Therefore, the theory of new economic geography is validated (Krugman, 
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1999). Furthermore, geography or spatial effects also matter for the mobility of regions 

within the distribution of county-level GDP per capita. We have found that spatial effects 

have constrained the mobility of poorest counties well below average, while they tend to 

better explain the mobility of wealthiest counties in the GDP per capita distribution. This 

polarization effect has contributed to the emerging “poverty trap” in the periphery region 

distant to the core region of the PRD.  

Another aim of the chapter was to examine the space-time heterogeneity of these 

triple processes of economic transition while taking into account spatial autocorrelation 

and the core-periphery structure in Guangdong. Our models using spatial filters lead to 

better model performance and a substantial reduction of standard errors associated with 

independent variables’ coefficients. The spatially sensitive and temporally varying 

coefficients imply that the influences of globalization, marketization, and decentralization 

are sensitive to different stage of economic development in Guangdong. In addition, the 

triple processes of economic transition have stronger influences on regional development 

in the PRD. They also become increasingly important for the development in the 

periphery in recent years. These results imply that the triple processes of economic 

transition are one of the fundamental causes underlying the core-periphery divide in 

Guangdong, a finding consistent with Hao and Wei (2010)’s research using provincial-

level data and a gap model.  

Given the results in this work, the spatial policy in Guangdong should place 

emphasis on the spatial spillover from the PRD to the periphery region and more efforts 

should be made to foster new clusters of development in the periphery. Development 

policies that emphasize the rebalance between export and domestic oriented development 
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have potential to help reduce regional development in Guangdong in the future, given the 

spatial concentration of the export-oriented development and FDI in the PRD. 

From a methodology perspective, removing the spatial autocorrelation in the 

original data allows for comparisons between spatially filtered data and the actual data. In 

doing so, the spatial effects can be, to some extent, quantified in a highly flexible manner 

(Thayn & Simanis, 2013). More specifically, spatial filters can be added to many 

statistical packages and in different model specifications. Recent research has shown that 

spatial and temporal autocorrelation can be considered simultaneously by using space-

time filters (Griffith, 2008). Future improvements could be focused on two aspects: 1) 

incorporating spatial filters in a geographically and temporally weighted regression 

framework to address the issues related to continuous spatial-temporal heterogeneity and 

2) comparing the effectiveness of spatial filters in different regression models to support 

the application of spatial filtering models in different research domains.  
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CHAPTER 4 

SPATIAL-TEMPORAL DYNAMICS AND SPATIAL DETERMINANTS OF URBAN 

GROWTH IN DONGGUAN, CHINA 4  

Abstract 

This chapter examines spatial and temporal dynamics and spatial variations of 

urban growth patterns in Chinese cities through a case study of Dongguan, a rapidly 

industrializing city characterized by a bottom-up pattern of development based on 

townships. To better understand the spatial-temporal dynamics of urban growth, we 

conducted a series of spatial analyses using temporally sensitive remote sensing data. 

Three growth types including infill, edge-expansion, and leapfrog growth were 

distinguished. Furthermore, we have employed both nonspatial and spatial logistic 

regression models to analyze urban land conversion. The nonspatial logistic regression 

has found the significance of accessibility, neighborhood conditions, and socioeconomic 

factors for urban development. The logistic regression with spatially expanded 

coefficients significantly improves the orthodox logistic regression with better prediction 

accuracy. More importantly, the spatial logistic model reveals the spatially varying 

relationship between urban growth and its underlying factors, particularly the local 

                                                            
4 Springer and Stochastic Environmental Research and Risk Assessment, 28, 2014, 801-816, 

Modeling determinants of urban growth in Dongguan, China: A spatial logistic approach, Liao, F. 

H. F., and Wei, Y. H. D., original copyright notice is given to Stochastic Environmental Research 

and Risk Assessment with kind permission from Springer Science and Business Media.  
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influence of environment protection and urban development policies. The results of the 

spatial logistic model also provide clear clues for assessing environmental risks to take 

the rich local contexts into account.

Introduction 

By 2012, over half of the population (51.3%) in China lived in urban areas (Page 

et al. 2012). This is the first time that more people lived in cities than in rural areas in this 

country. The unprecedented urbanization in China, however, has given rise to the 

enormous loss of agricultural land (Yeh & Li, 1998) and landscape fragmentation (Sui & 

Zeng, 2001). Urban expansion also imposes challenges for environmental sustainability, 

such as water pollution and degeneration of land ecological security (Hu et al., 2005; Su 

et al., 2011). With the advances of spatial analysis, GIS, and remote sensing techniques, 

extensive efforts have been made to analyze the complex spatial patterns of urban 

landscape changes and to understand the underlying factors with spatially explicit models 

(Gao & Li, 2011; Luo & Wei, 2009; Su et al., 2012). Evidence has shown that applying 

spatial analysis and spatially sensitive statistical models to urban expansion not only 

contributes to the understanding of the complex urbanization process (Luo & Wei, 2009), 

but also offers more valuable information for environmental risk assessment, mainly by 

taking into account the spatially nonstationary relationship between urban landscape 

transformation and its neighborhood ecological environment (Gao & Li, 2011).  

A wide range of factors underlying the urban growth in Chinese cities have been 

identified and studied. On the one hand, social scientists attempted to explore the driving 

forces of urban growth from institutional and political economic perspectives (Ding & 

Lichtenberg, 2011; Yang & Wang, 2008). They have found that urban development in 
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China has been shaped by a triple-process transformation of globalization, 

decentralization, and marketization (Wei, 2005). Scholars also argue that the growth of 

Chinese cities is a path-dependent trajectory influenced by the legacy of socialist political 

and planning systems (Lin, 2006; Wei, 2012). On the other hand, GIS scientists and 

landscape ecologists have improved our understanding of urban growth in China through 

landscape ecology methods, GIS modeling, and simulation techniques (Li & Yeh, 2002; 

Yu & Ng, 2007; Yue et al., 2010). Specifically, some GIS specialists have applied 

simulation techniques, represented by multiagent model and cellular automata (CA), to 

predict urban development patterns (Li & Yeh, 2002; Xie et al., 2007). However, most of 

these models deemphasize the socioeconomic factors and institutional and political 

contexts of China’s urban development; the models also tend to focus on the prediction of 

urban growth in the future and technological methods. As argued by Luo and Wei (2009), 

these models have limited ability to explain the mechanisms and the diverse patterns of 

urban development in Chinese cities. 

Through a case study of Dongguan city in South China, the chapter aims to 

achieve three research objectives. First, by applying landscape metrics-based approaches, 

it aims to investigate the spatial-temporal dynamics of urban growth. Second, using the 

spatial expansion method, this chapter provides an efficient and computationally less 

expensive way to model the spatially varying relationship between urban growth and its 

underlying factors (Luo & Wei, 2009; Su et al., 2012). We also argue that revealing the 

spatially nonstationary process of urban growth would provide more nuanced evidence 

for environmental risk assessment. Third, as the recent research on China mainly focuses 

on the largest cities, the case study of Dongguan, a second-tier city, also aims to 
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emphasize the diverse urban growth patterns in a different regional setting. More 

importantly, the analysis of the results, supported by in-depth knowledge of local 

institutions and fieldworks, attempts to highlight that integrating remotely sensing data 

with socioeconomic factors and local institutions (policies) is necessary for a better 

understanding of the complex urbanization process in China.  

In addition, since the late 1990s, in response to challenges arising from 

environmental degradation, the city government in Dongguan has also put more efforts to 

better protect the environment and promote a compact and sustainable urban 

development (Hu et al., 2005; Lin, 2006). This research also intends to assess the efficacy 

of these new urban development policies based on a spatially explicit model and recent 

remote sensing and GIS data. The chapter is organized as follows: after a brief 

introduction of the study area and data, we will introduce a landscape metrics-based 

method to differentiate urban growth type and analyze spatial-temporal dynamics of 

urban growth in Dongguan. This is followed by a discussion of a spatial logistic 

regression model; we then apply both nonspatial and spatial logistic regression methods 

to model urban growth in Dongguan from 1988 to 2006; the last section presents our 

conclusion and discussion.  

Study Area and Data 

Study area 

As shown in Figure 4.1, Dongguan, located between 22’39N to 23’9N and 

113’43E to 114’15E, borders Guangzhou, the capital of Guangdong province, in the 

north, and Shenzhen, China’s largest special economic zone, in the south, and is close to 

Hong Kong. The city covers approximately 2,465 km2 with a population of 8 million at 
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the end of 2010. The city consists of 32 towns and districts, characterized by a river-

distributed plain in the north of the city and by low mountains and hills in the southern 

part (Figure 4.1).  

Before the reform, most towns in Dongguan county were agricultural towns, and 

there was a small city center in the north. Agriculture, especially planting fruit and 

vegetable, and fishing were two important activities in these towns (Yeh & Li, 1999). 

The city is also home to more than a half million compatriots from Hong Kong, Macau, 

and Taiwan. Since the late 1970s, the urban landscape in Dongguan has experienced a 

dramatic transformation mainly driven by the inflow of migrant workers and foreign 

investment from Hong Kong and Taiwan, making this city a typical case of so-called 

exo-urbanization (Sit & Yang, 1997). Rapid growth and urbanization prompted the  

 
 Figure 4.1. Location of Dongguan 
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upgrading of Dongguan county to Dongguan city in 1985 and to a prefecture-level city in 

1988. However, rapid economic development and unprecedented urbanization result in a 

profound change of ecological environment in the city. There have been substantial 

challenges facing the city due to the massive loss of agricultural land and the serious 

impact of environmental pollution (Hu et al., 2005; Yeh & Li, 1998).  

Data and land use sampling 

This research analyzes space-time dynamics and models the spatial variations of 

urban growth in the city of Dongguan. The data used in this research include both land 

use and GIS data. First, land-use data was derived from TM remote sensing imageries in 

1988, 1993, 1999, and 2006 (30m×30m resolution, 2,693×1,864 pixels). The geometric 

correction was done using evenly distributed ground control points. The object-based 

classification software, eCognition, was employed to perform the supervised 

classification. Accuracy assessment based on the ground truth data indicated that the 

classification accuracy was 92.0% for these images.  

As illustrated in Figure 4.2, the TM remote-sensing images were classified into 

six types: built-up area, development zones or construction sites, farmland, orchard, 

forest, and water body. Second, we did fieldwork in Dongguan in the summers during the 

period from 2009 to 2011. Specifically, mainly in the summer of 2011, we interviewed a 

number of urban planners from the municipality-level planning bureau and town-level 

urban planning divisions. These interviews did not only enhance the error verification of 

the classified images but also gained more knowledge about the rural-urban land 

conversion in Dongguan. 

We also collected the most updated and reliable GIS map files of the 
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Figure 4.2 Land use in Dongguan, 1988, 2006 
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transportation network, urban centers, and administrative boundaries from the Bureau of 

Urban Planning of Dongguan in 2011 (Figure 4.3). Since our focus in this research is 

urban growth dynamics and determinants, the urban area is defined as the built-up area in 

both classified images in 1988 and 2006. A spatial overlay operation was performed 

between the two classified images to extract the conversion between nonurban to urban 

land uses. The size of the original data is large (5,019,752 pixels, 2693 rows, 1864 

columns), which cannot be handled by most statistical software packages. In order to 

reduce the size of the data set, a spatial sampling method combining the systematic and 

random sampling was used (Luo and Wei, 2009). The first subset of pixels was obtained 

through the systematic sampling. We sampled the pixels based on the 300 m or10-pixel  

 
Figure 4.3 Spatial distribution of roads, railways, and centers in Dongguan, 2011 
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interval and got 27,503 pixels. And then, all pixels with nonurban-urban land conversion 

(8,776 pixels) were used in the following logistic regressions. We also randomly selected 

another 8,776 pixels from those pixels without urban land conversion in the study period 

(Luo & Wei, 2009). Therefore, the total number of pixels employed in the final logistic 

regression models is 17,552. Such a sample size well represents the population and can 

be handled by such commonly used statistical software packages as STATA 11.0 

(http://www.stata.com/).  

Spatial-temporal Dynamics of Urban Growth  

Changes in landscape characteristics  

The fast economic development in Dongguan has resulted in dramatic urban 

expansion and massive loss of agricultural land in the city. Figure 4.4A shows that the 

urban area increased by 1181% from 67 sq km2 in 1988 to 853 sq km2 in 2006. Farmland 

and orchard land are two dominating sources of newly developed urban areas. Until 

2006, nearly half of the farmland (46.74%) and one third of the orchard land (31.63%) in 

1988 were converted into urban areas. This suggests that the urban land development in 

Dongguan has caused the substantial loss of agricultural land and resulted in more 

challenges for environmental sustainability (Yeh & Li, 1999).  

The mean growth rate also increased greatly (Figure 4.4 B), which were 22.46, 

28.96, 45.98, and 57.82 sq km2/year for the periods of 1988–1993, 1993–1999, 1999–

2003, and 2003–2006, respectively, indicating that the urban growth in Dongguan has 

been accelerated continuously.   

Three landscape indexes were employed to reflect the landscape fragmentation in 

the course of urban expansion in Dongguan (Figure 4.5). 
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                                 (A)                                                                 (B) 

Figure 4.4 Urban area (A) and growth rate (B) in the different periods from 1988 to 2006 

 

 
Figure 4.5 Changes in the landscape indices during the period of 1988–2006 
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The area-weighted mean fractal dimension index (AWMFDI) equals the sum, 

across all patches, of two times the logarithm of patch perimeter divided by the logarithm 

of patch area, multiplied by the patch area divided by total landscape area.  

AWMPFD = ∑ ∑ [(
2 ln(0.25𝑝𝑖𝑗)

𝑙𝑛𝑎𝑖𝑗
) (

𝑎𝑖𝑗

𝑇𝐴
)]

𝑛

𝑗=1

𝑚

𝑖=1

 

The range of AWMPFD is given as 1 ≤  AWMPFD ≤  2 and has no unit of measurement.  

The edge density (ED) index measures the sum of lengths (m) of all edge 

segments in the landscape, divided by the total landscape area (m2) and multiplied by 

10,000.  

ED =
𝐸

𝐴
∗ 10000 

MPS (Mean patch size) measures the average size of urban patch.  

MPS =
𝐴

𝑁
  106 

where A is the total landscape area (m2), and N is the number of patches of the 

corresponding patch-type class.  

Based on the three landscape metrics, the changes of landscape indexes are 

illustrated in Figure 4.5. The numbers of ED and MPS increased consistently, indicating 

that the average size and length of urban patch increased. At the same time, the 

AWMPFD showed an upward trend, highlighting there has been an increasingly 

fragmented landscape in Dongguan.  

Figure 4.6 shows the spatial pattern of urban growth in Dongguan by comparing 

(4.1) 

(4.2) 

(4.3) 
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Figure 4.6 Spatial pattern of urban growth in Dongguan, 1988–2006 

 

urban areas in 1988 and 2006. Four specific areas of growth can be identified: the areas 

near the city center, the areas in the southeastern part near the Guangzhou-Shenzhen 

highway, the areas in the southwest close to the city of Shenzhen (Figure 4.1), and some 

areas in the northeast near the railway station located in Changping township. However, 

besides these four hotspots, the urban growth areas spread over the whole city; the 

urbanization process is more likely driven by the bottom-up rural industrialization or 

township-based economies (Yang & Liao, 2010; Yeh & Li, 1999).  

Concentric analysis is used to distinguish between the monocentric form and 

polycentric form of urban growth. The land-development intensity is computed based on  

the total amount of urban land conversion in concentric ring i with rings at an interval of 
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2 km around the city center (i = 1, 2, 3…).  

𝐼𝑑𝑒𝑣,𝑖 = (
𝑐𝑖

𝑐𝑖 + 𝑎𝑖
)

1

𝑡
100% 

where 𝐼𝑑𝑒𝑣,𝑖 is the development intensity in the concentric rings i (i = 1, 2, …), 𝑐𝑖 is the 

total amount of urban land-use conversion in zone i; 𝑎𝑖 is the total amount of available 

land in zone i; t is the number of years in the study period (Liu et al., 2011).  

Figure 4.7 indicates a conspicuous multicenter pattern of urban growth, 

corresponding to the spatial pattern in Figure 4.6. Although recent years have witnessed 

more urban patches centered on the city center, there have been more localities closer to 

Shenzhen that experienced significant urban expansion (Figure 4.7).  

Notably, this bottom-up and township based urban expansion in Dongguan is 

interestingly in contrast with those in the largest Chinese cities or provincial capitals, 

 
Figure 4.7 Land development intensity and the distance to the city center 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58

Distance to the city center (km)

1988-1993 1993-1999 1999-2006

(4.4) 



107 

 
 

such as Guangzhou, Hangzhou, and Nanjing, where urban development is centered on a 

small number of new centers or the traditional urban core (Luo & Wei, 2009; Wu, 1998; 

Yue et al., 2010).  

Urban growth types 

To better understand the spatial-temporal dynamics of urban growth, the newly 

developed urban patches were classified into three growth types: infill growth, 

spontaneous or leapfrog growth, and edge growth. Equation 4.5 is applied to distinguish 

three growth types, proposed by Xu et al (2007): 

𝑆 =
𝐿𝐶

P
 

where 𝐿𝐶 is the length of the common boundary of a newly developed urban patch and 

the pregrowth urban patches, and P is the perimeter of this newly developed patch. 

Urban-growth type is identified as “infill growth” when S is larger than 0.5. The 

spontaneous or leapfrog growth is defined as S = 0, indicating no common boundary, and 

edge growth when 0 < S < 0.5 (Xu et al, 2007).  

Figure 4.8 shows the results regarding three urban patch growth types. Several 

interesting findings can be summarized. First, in the early stage of urban expansion, the 

leapfrog-type or spontaneous growth occupied nearly 40% of the growth area and urban 

patches. However, the percentage of leapfrog growth declined as urban area expanded. 

Second, the share of edge expansion tends to be stable and accounted for 50%–60% of 

the total new urban area and 20–30% of the new urban patches. Third, infill growth was 

responsible for roughly 20% of the urban growth throughout the study period. The share 

of this type increased from 10% in the period of 1988–1993 to 30% in the period of  

(4.5) 
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Figure 4.8 The proportion of growth area (a) and patch number (b) of the three growth 

types in the different periods 

 

1999–2006.  

Overall, the spatiotemporal dynamics of urban expansion in Dongguan can be 

conceptualized as a “diffusion-coalescence” model (Dietzel et al 2005). In other words, 

the urban growth process could be described as a general temporal oscillation between 

stages of diffusion and coalescence. Leapfrog or spontaneous urban growth patches are 

more likely to dominate in the early stage of urban growth or the phase of diffusion while 

proximate urban growth patches tend to increasingly connect. As depicted in Figure 4.8, 

in the period of 1988–1993, Dongguan has experienced a diffusion phase. It is consistent 

with the earlier urban growth pattern in Dongguan when small-medium size 

manufacturing firms from Hong Kong entered the city. As the growth continued, the 

infill growth type played a more important role, indicating that coalescence has become 

the major characteristic of the changes in urban pattern since the mid-1990s. The 
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enhancement of coalescence in the process of urban growth is also particularly related to 

the development of large-size development zones and scaling up urban development in 

the city, aiming to attract investments from large-size foreign manufacturing firms from 

Taiwan, Europe, and other developed economies (Lin, 2009; Yang, 2009; Yang & Liao, 

2010).  

Spatial Determinants of Urban Growth 

Dependent and explanatory variables 

Logistic regression has been widely used to analyze the determinants of urban 

growth. Applying this model to cities in the Netherlands, Verburg et al. (2004) found that 

accessibility, spatial policies, and neighborhood conditions are major factors accounting 

for land use changes (Verburg et al., 2004). Wu (1998) applied a logistic regression 

model to the land use change in Guangzhou and found that socioeconomic and spatial 

factors have significant impacts on urban development in a transitional economy. Using 

logistic regression, Liu et al. (2011) demonstrated the spatial policies, especially 

polycentric development policy, played an important role in Hangzhou’s urban land 

conversion. In this research, we also employed logistic regression to model the 

probability of urban land conversion from nonurban to urban. The dependent variable is a 

dummy variable with values of 0 (no conversion) and 1 (with conversion). Following Luo 

and Wei (2009), three groups of explanatory variables were used, including the proximity 

to transportation infrastructure, physical land suitability, and socioeconomic factors 

(Table 4.1).  
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Table 4.1 Variables used in urban land conversion models 

Variables Types Descriptions 

Dependent variable 

Change Dummy Land use conversion from nonurban to urban 

Explanatory variable 

Proximity to transportation infrastructure 

Dis2Hwy Continuous  Distance to highway 

Dis2Rail Continuous Distance to railway 

Dis2Road Continuous Distance to roads 

Physical conditions 

DenFarm Continuous Density of farm land 

DenOrchard Continuous Density of orchard land 

DenForest Continuous Density of forest 

DenWater Continuous Density of water land 

Slope Continuous Slope of sampled pixels measured by degree 

Socioeconomic factors 

Dis2CBD Continuous Distance to city center 

Dis2TC Continuous Distance to township center 

DenDevZone Continuous Density of development zones/construction sites 

DenUrban Continuous Density of built-up area 

Proximity to transportation infrastructure 

Transportation is one of the most important mechanisms behind the urban 

development and exerts great influences on urban development. Road construction in the 

city of Dongguan has been strongly intensified in the past 30 years (Yeh and Li 1999). 

Highways have been constructed in the region to connect nearby large cities including 

Hong Kong, Shenzhen, and Guangzhou. In this study, three variables including distance 

to local artery roads (Dis2Road), distance to intercity highways (Dis2Hwy) and distance 

to the Hong Kong-Guangzhou railway (Dis2Rail) were used to denote the accessibility of 

a sample point. To obtain values of proximity variables for each sampled pixel, the 

Euclidean Distance tool in ArcGIS 10.0 was used to generate the distance raster surfaces, 

and then these pixel values were extracted to sample points.   
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Physical conditions 

As land-use land-cover change is also closely related to the neighborhood 

physical land-use conditions (Cheng and Masser 2003; Luo and Wei 2009), we employed 

several neighborhood variables encompassing density of farm land (DenFarm), density of 

water body (DenWater), density of forest (DenForest), and density of orchard land 

(DenOrchard) as the proxy of land-use conditions. They can indicate the availability of 

land or neighbor environmental conditions. The neighborhood was defined as a circle of a 

480-m radius. This discretion was based on the consideration of distance decay effect and 

drew upon the experience of other scholars (Cheng & Masser, 2003; Luo & Wei, 2009; 

Verburg et al., 2004). We calculated the neighbor densities using the zonal statistics tool 

in ArcGIS 10.0. We also extracted slope information (Slope) from a 90m×90m digital 

elevation model (DEM) for all sample points so as to measure the topographical 

suitability for urban development.  

Socioeconomic factors 

Research on urban growth places more emphasis on accessibility and physical 

conditions, which are necessary conditions. Scholars have increasingly recognized 

socioeconomic factors as sufficient drivers underlying urban expansion (Seto & 

Kaufmann, 2003). Our selection of socioeconomic factors was guided by the theoretical 

development in economic geography and urban economics, especially agglomeration, 

network, and institution (policy; Luo & Wei, 2009; Wei & Gu, 2010). We selected four 

variables to represent the influence of socioeconomic factors on urban growth. We 

measured the urban agglomeration effect by the distance to the city center and the 

distance to the subcenters (or the centers of townships; Jacobs, 1969). We selected the 



112 

 
 

density of built-up area and the density of development zones/construction sites in the 

neighborhood to measure the effects of industrial agglomeration economies (Krugman, 

1991) and policies. In particular, in China, the construction of development zones, noted 

as “development zone fever,” is one of the most important policies to promote urban 

expansion (Yang & Wang, 2008). We computed the neighborhood indices, DenDevZone 

and DenUrban, by measuring the densities of urban built-up area and development zone 

land within a distance of 480 m from the central cell. Last, we performed a correlation 

analysis for the explanatory variables. The results show no pair of variables has a 

significant linear correlation, which ensure the afterwards regression analysis would not 

have the problem of multicollinearity.  

Logistic regression and expansion method 

As mentioned above, we applied the logistic regression to model the urban land 

transition. This method is widely employed to examine the determinants of rural-urban 

land conversion in Chinese cities (e.g., Liu et al., 2011; Luo & Wei, 2009; Wu, 1998). 

The logistic regression takes the following form: 

logit (𝑌)  = 𝛽0 + ∑ 𝛽𝑖

𝑛

𝑖=1

𝑥𝑖 

where 𝑥𝑖 are explanatory variables, and logit (Y) is a linear combination function of the 

explanatory variables. Parameters 𝛽𝑖 are the regression coefficients to be estimated. The 

logit (Y) can be transformed back to the probability that (Y  = 1): 

P(𝑌 = 1) =  
exp(𝛽0 + ∑ 𝛽𝑖𝑥𝑖)𝑛

𝑖=1

1 + exp(𝛽0 + ∑ 𝛽𝑖𝑥𝑖)𝑛
𝑖=1

 (4.7) 

(4.6) 
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The above typical logistic model could effectively explain the determinants of 

urban land conversion. However, the potential spatially nonstationary process of urban 

growth still remains unknown. A few methods have been applied to model a spatially 

nonstationary process, which mainly includes multilevel modeling (Duncan & Jones, 

2000) and geographical weighted regression (GWR; Fotheringham et al., 2002).  

The multilevel modeling approach particularly deals with the so-called discrete 

spatial heterogeneity of geographical phenomenon (Anselin, 1988). This approach is 

constrained by the arbitrary discretion of spatial hierarchy. It is more applicable when the 

spatial hierarchy of the data is known. However, in this research, we have limited 

information about the hierarchical structure of the probability of urban land conversion. 

Therefore, a multilevel approach was not applied.  

A second alternative, GWR, focuses on the continuous spatial heterogeneity 

(Fotheringham et al., 2002). It has also been used to model the rural-urban land 

conversion in Chinese cities (Luo & Wei, 2009; Su et al., 2012). For example, Luo and 

Wei (2009) employed a logistic GWR to model land development in the city of Nanjing. 

Su et al. (2012) employed GWR to model the spatially varying relationship between 

urbanization and agricultural landscape patterns. However the method of GWR is less 

applicable in this research for a number of reasons. First, the logistic GWR is 

computationally expensive (Luo & Wei, 2009). The normal process of such a huge 

sample (17,000 observations) has a high computation demand for normal desktop 

computers and made the logistic GWR hard to use in this research. Second, the results of 

the GWR approach are highly sensitive to kernel bandwidth of weight determination. 

Different bandwidths may result in different coefficient surfaces (Su et al., 2012). 
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Adaptive bandwidth was an important improvement, but it made the logistic GWR more 

computationally demanding. Third and more importantly, recent research efforts have 

pointed out that GWR is suggested as a tool that performs well for interpolation and 

prediction (Harris et al., 2011) but may generate spurious coefficient surfaces for 

statistical inferences and policy implications (Páez et al. 2011; Wheeler, 2009; Wheeler 

& Tiefelsdorf, 2005). Given the controversy about whether the GWR approach is 

appropriated for making inference about the spatially nonstationary process (Páez et al., 

2011), we elect to use the spatial expansion method to provide a computationally less 

expensive and more efficient way to explore spatially varying relationships in the context 

of large sample size. 

The spatial expansion method was proposed by Casetti (Casetti, 1972). The 

expansion method is a spatial analytical tool attempting to integrate contextual variations 

(Páez et al., 2010). The model reflects variations over space as an expansion of 

deterministic coefficients. The initial model is based on the original logistic regression: 

logit (𝑌) = C + ∑ 𝛽𝑖

𝑛

𝑖=1

𝑥𝑖 

            However, in the orthodox logistic regression model, the relationship between 

dependent and independent variables is based on an underlying assumption that the 𝛽𝑖 

coefficients are the same for all the observations involved; in other words, the model is 

stable across space (Casetti, 2010; Fan, 1994). This assumption is problematic because of 

spatial heterogeneity (Anselin, 1988). A simple way to model spatially varying 

relationships is to transform the vector 𝛽𝑖 in equation 4.8 into a set of expansion 

coefficients in relation to contextual variations. For example, the parameters of the initial 

 

    (4.8) 
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model can be further developed by means of a polynomial expansion of a suitable degree, 

using the coordinates (𝜇, 𝑣) of each location to take the effect of local context into 

account. Suppose the spatial trend in the relationship between urban land conversion and 

its explanatory variables in the initial model with respect to the coordinates (𝜇𝑘, 𝑣𝑖𝑘)  

take the following forms: 

𝛽𝑖
𝑘 = 𝛾𝑖

0 + 𝛾𝑖
1𝜇𝑘 + 𝛾𝑖

2𝑣𝑘 

where k is the location subindex defined by the 𝜇𝑘 and 𝑣𝑘. The component of the 

location-specific coefficient is a combination of a region-wide (i.e. spatially constant) 

coefficient 𝛾𝑖
0 and other coefficients associated with the coordinates 𝜇𝑘(easting) and 

𝑣𝑘(northing) in a polynomial equation (see equation 4.10). Therefore, the model 

incorporates both spatially constant coefficients and the coefficients that represent a 

spatially varying relationship specific to each location (Roorda et al., 2010). In this 

research, the expansion was based on the employment of the coordinates using a cubic 

trend (Fan, 1994). The spatially varying coefficients were expanded in the following way 

to produce a spatial drift of a cubic function of coordinates (see equation 4.10). 

𝛽𝑖
𝑘 = (𝛾𝑖

0 + 𝛾𝑖
1𝜇𝑘 + 𝛾𝑖

2𝜇𝑘
2 + 𝛾𝑖

3𝜇𝑘
3 + 𝛾𝑖

4𝑣𝑘 + 𝛾5𝜇𝑘𝑣𝑘 + 𝛾6𝜇𝑘
2𝑣𝑘 + 𝛾7𝜇𝑘

3𝑣𝑘 + 𝛾8𝑣𝑘
2 +

𝛾9𝜇𝑘𝑣𝑘
2 + 𝛾10𝜇𝑘

2𝑣𝑘
2 + 𝛾11𝑣𝑘

3 + 𝛾12𝜇𝑘𝑣𝑘
3 + 𝛾14𝜇𝑘

2𝑣𝑘
3+𝛾15𝜇𝑘

3𝑣𝑘
3)           

It is noted that all coordinates have been adjusted to a one unit rectangle (see 

equations 4.11 and 4.12). We took the maximum extent of the coordinates of sample 

points and divided the difference of every coordinate and the minimum coordinate value 

in the corresponding axis by this extent (Páez et al., 2010).  

(4.10) 

(4.9) 
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𝜇𝑖
∗ =

𝜇𝑖−min(𝜇𝑖)

max(𝜇)−min(𝜇)
 

𝑣𝑖
∗ =

𝑣𝑖−min(𝑣𝑖)

max(𝑣)−min(𝑣)
  

Nonspatial logistic regression model 

The results of nonspatial logistic regression model are presented in Table 4.2. 

Variables with low statistical significance coefficients (p > 0.05) have been removed 

from the model to make sure that model efficiency is not sacrificed (Roorda et al. 2010). 

The model is significant at the 0.01 level. The -2 Log likelihood value and the relative 

operating characteristic (ROC) are 19649.71 and 77%. In other words, the logistic 

regression is appropriate to model the determinants of urban growth in Dongguan with a 

moderate level of prediction accuracy. 

 Except for the distance to railway (Dis2Rail), all explanatory variables are 

significant for the urban land conversion, which is consistent with Luo and Wei’s (2009) 

result. Among the proximity variables, the importance of accessibility to the 

transportation network for urban land conversion is evident. Dis2Road (distance to local  

artery roads) and Dis2Hwy (distance to highway) have a negative effect on rural-urban 

land conversion. The finding also confirms that the urban growth in many Chinese cities 

and Dongguan in particular is driven by the road infrastructure development. With 

respect to the physical condition variables, the model reveals that the urban growth in 

Dongguan is associated with the density of agricultural land (farmland and orchard land). 

In contrast, the urban expansion is, in general, constrained by the densities of forest land 

and water bodies. It is also conditioned upon the topographical condition (Slope). This 

result suggests the loss of agricultural land in Dongguan is more challenging than other 

(4.12) 

(4.11) 
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Table 4.2 Results of nonspatial logistic regression 

Explanatory variables Coef. Std. Err. z P>z 

Dis2Roads -0.198 0.0163 -12.17 0.000 

Dis2Hwy -0.076 0.0050 -15.32 0.000 

Dis2Rail - - - - 

DenFarm 0.002 0.0004 5.78 0.000 

DenOrchard 0.002 0.0004 4.20 0.000 

Slope -0.011 0.0011 -10.20 0.000 

DenForest -0.002 0.0004 -4.66 0.000 

DenWater -0.002 0.0004 -4.16 0.000 

Dis2TC -0.129 0.0100 -12.90 0.000 

Dis2CBD 0.015 0.0016 9.67 0.000 

DenUrban 0.002 0.0005 4.32 0.000 

DenDevZones 0.006 0.0006 8.97 0.000 

Constant  -0.457 0.362 -1.26 0.207 

Observations 17552    

-2 log likelyhood 19649.71    

ROC 0.766    
Note: ROC is an indicator of prediction accuracy and it measures the area beneath the curve 

relating the true-positive proportion and the false-positive proportion for a range of cutoff values 

in classifying the probability (Verburg et al, 2004). 

larger Chinese cities such as Nanjing, where the agricultural land is more efficiently 

protected (Luo & Wei, 2009). However, urban development in Dongguan also shares 

some common characteristics with other Chinese cities where urban land development is 

largely restricted by forests, water bodies, or rivers and is influenced by the land 

suitability measured by slope.  

Some interesting findings emerge based on the coefficients of four socioeconomic 

variables. First, the distance to city center (Dis2CBD) has a positive effect on urban land 

conversion, while the distance to township center (Dis2TC) has a stronger negative 

influence on rural-urban land conversion. This finding is contradictory with what Luo 

and Wei (2009) found, which was that the distance to the city center has a negative 

influence on the probability of urban development. This finding is also surprisingly 

contradictory to the study conducted by Li and Yeh (2002) focusing on the urban 
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development in the early 1990s. It suggests that the bottom-up or township-based urban 

development in Dongguan has become more evident since the mid-1990s. In addition, 

consistent with the theory of urban agglomeration economies, the density of built-up 

areas in the neighborhood encourages urban land development and so does the density of 

development zones/construction sites. The density of development zones, in particular, 

has exerted more significant influences on the rural-urban land conversion, indicating that 

the land development in Chinese cities and Dongguan is also influenced by government’s 

institutions and urban development policies.  

Logistic regression model with spatially 

expanded coefficients 

We applied the logistic regression with spatially expanded coefficients to the 

same set of 17,552 sample point data so as to model the spatially nonstationary process of 

urban growth in Dongguan. Table 4.3 presents a comparison between the nonspatial 

logistic model and the model with spatial expansion using three indicators. First, the 

overall goodness of fit of the model assessed by pseudo-R-squared statistics shows that 

the model with spatial expansion improves over the nonspatial logistic regression model. 

A likelihood ratio test can be computed using the deviance. The information gains of the 

spatial versus nonspatial models are determined by the following way: 19649.71 – 

17962.94 = 1686.77. This is the value of the likelihood ratio test and it can be compared 

with the chi-square distribution with 151 – 11 = 141 degrees of freedom (the difference in 

the number of explanatory variables between the spatial and nonspatial models). The 

likelihood test is significant at the p < 0.0001 level. Second, the increase of ROC from 

76.6% to 81.9% suggests the model with spatial expansion has much better prediction  



119 

 
 

Table 4.3 Comparison between nonspatial logistic regression and the logistic regression 

with spatially expanded coefficients 

 Nonspatial Logistic regression Spatial logistic model 

-2*Log likelihood 19649.71 17962.94*** 

Pseudo R square 0.1924 0.2618 

ROC 0.766 0.819 

Moran's I of residuals 0.2112** 0.1234** 
Note: *** Significant at 0.001 level; ** Significant at 0.01 level 

accuracy if compared with the nonspatial model.Third, we also computed Moran’s I 

indexes to estimate the spatial dependence of residuals. The Moran’s I index in the spatial 

model drops from 0.21 in the nonspatial model to 0.12 in the spatial model. In other 

words, the model with spatial expansion has remarkably reduced the spatial dependence 

of residuals and generated less spatially correlated errors (Luo et al., 2008). As shown in 

Table 4.4, in the spatial expansion model, the coefficient of each explanatory variable is 

expanded into a polynomial function of the coordinates (𝜇, 𝑣) and can be evaluated at 

various locations to generate spatially varying coefficients.  For example, the coefficient 

of Dis2Hwy in the nonspatial logistic model is −0.076 while in the spatial model, the 

coefficient is a function of the adjusted coordinates(𝜇, 𝑣), taking the following form:  

𝑑𝐷𝑖𝑠2𝐻𝑤𝑦 = −18.20 ∗ 𝜇 + 47.34 ∗ 𝜇2 + (−30.88) ∗ 𝜇3 + (−12.91) ∗ 𝑣 + 166.06 ∗ 𝑢𝑣 +

(−357.38) ∗ 𝑢2𝑣 + 213.80 ∗ 𝑢3𝑣 + 30.16 ∗ 𝑣2 + (−324.53) ∗ 𝑣2𝑢 + 661.79 ∗ 𝑣2𝑢2 +

(−378.95) ∗ 𝑣2𝑢3 + (−16.90) ∗ 𝑣3 + 178.15 ∗ 𝑣3𝑢 + (−357.48) ∗ 𝑣3𝑢2 + 200.65 ∗ 𝑣3𝑢3 

 

Different from the constant coefficients across space in the orthodox logistic 

model, the values of coefficients derived from the spatial logistic model show significant 

variations. 

(4.13) 
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Table 4.4 Results of spatially expanded coefficients 

 Constant 𝜇 𝜇 2 𝜇 3 𝑣 𝜇𝑣 𝜇 2𝑣 𝜇 3𝑣 𝑣 2 𝑣 2𝜇 𝑣 2𝜇2 

Dis2Hwy - -18.20 47.34 -30.88 -12.91 166.06 -357.38 213.80 30.16 -324.53 661.79 

   p value - 0.000 0.001 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.002 

Dis2Rail -9.09 53.06 -91.87 48.31 52.96 -300.36 503.70 -251.51 -95.62 540.76 -896.25 

   p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Dis2Road 13.44 -50.65 42.62 - -67.24 238.28 -205.90 - 105.74 -376.09 357.19 

   p value 0.000 0.000 0.000 - 0.000 0.000 0.000 - 0.000 0.001 0.000 

Dis2CBD 0.10 - - - -0.31 0.22 - - - - - 

   p value 0.013 - - - 0.001 0.036 - - - - - 

Dis2TC 14.53 -98.45 183.31 -101.82 -73.14 500.26 -927.01 508.31 115.80 -797.25 1471.03 

   p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

DenUrban 0.08 -0.34 0.29 - -0.39 1.13 - -1.02 0.70 -1.87 - 

   p value 0.000 0.000 0.000 - 0.000 0.000 - 0.000 0.000 0.000 - 

DenDevZone - 0.28 -0.25 - -0.13 - -2.70 2.96 0.23 -0.82 7.66 

   p value - 0.000 0.006 - 0.000 - 0.000 0.000 0.000 0.000 0.000 

DenFarm 0.08 -0.29 0.24 
 

-0.59 2.42 -2.56 0.60 1.27 -5.70 7.41 

   p value 0.000 0.000 0.000 
 

0.000 0.000 0.000 0.024 0.000 0.000 0.000 

DenForest -0.01 - - - 0.07 -0.40 0.80 -0.50 - - - 

   p value 0.0120 - - - 0.0030 0.0020 0.0010 0.0000 - - - 

DenOrchard 0.04 - -0.37 0.36 -0.30 - 2.57 -2.56 0.57 - -4.89 

   p value 0.000 - 0.000 0.000 0.000 - 0.000 0.000 0.000 - 0.000 

DenWater 0.07 -0.25 0.19 1.13 1.29 -0.56 -2.96 2.42 -6.37 - 9.68 

   p value 0.001 0.006 0.018 0.019 0.000 0.000 0.000 0.000 0.000 - 0.000 

Slope -0.82 5.58 -9.71 5.02 4.12 -26.93 44.02 -21.34 -5.71 34.01 -48.30 

   p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 4.5 summarizes the spatially varying coefficients for 17,552 sample points. 

All of the twelve explanatory variables have both positive and negative coefficient 

values. This suggests that the constant coefficient estimates in the nonspatial logistic 

regression tend to mask the spatially nonstationary process of urban growth. DenFarm, 

DenOrchard, and DenDevZone report over 80% of positive coefficients, and Dis2Road 

and Den2TC have over 80% negative coefficients. This indicates that influences of these 

variables have fewer spatial variations. In contrast, Dis2Hwy, Dis2Rail, DenForest, 

Dis2CBD, DenUrban, DenWater, and Slope have apparent divisions of positive and 

negative results, suggesting that these variables are characterized by significant spatial 

variations. However, such spatially varying coefficients cannot be identified in the 

orthodox logistic regression.  

The proceeding analysis explains in detail the spatially nonstationary process of 

urban growth. Employing the sample points with coefficient estimates, we generated a set 

of coefficient surfaces to reveal the spatially nonstationary relationship between urban 

land conversion and its underlying factors. An inverse distance weighted (IDW) 

Table 4.5 Summary of spatially varying coefficients 
Variable Mean Std. Dev. Min Max % 

positive 

% 

negative 

Dis2Hwy 0.0047 0.2422 -1.1611 0.7173 59.09 40.91 

Dis2Rail -0.0429 0.1391 -0.7023 0.3513 37.97 62.03 

Dis2Road -0.3512 0.3319 -1.0893 2.0436 8.58 91.42 

DenFarm 0.0040 0.0024 -0.0060 0.0135 93.51 6.49 

DenOrchard 0.0032 0.0030 -0.0052 0.0106 82.65 17.35 

DenForest -0.0044 0.0102 -0.0765 0.0049 30.21 69.79 

DenWater -0.0011 0.0035 -0.0180 0.0139 26.18 73.82 

Slope -0.0081 0.0163 -0.0445 0.0650 23.64 76.36 

Dis2CBD -0.0147 0.0592 -0.1553 0.1024 45.20 54.80 

Dis2TC -0.1066 0.1402 -0.5612 0.8374 17.24 82.76 

DenDevZone 0.0080 0.0078 -0.0137 0.0531 88.38 11.62 

DenUrban 0.0029 0.0042 -0.0099 0.0207 75.11 24.89 
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interpolation was performed to generate coefficient surfaces. IDW assumes that the 

surface is being driven by the local variation, which can be captured through the 

neighborhood.  

Figures 4.9–4.11 present the resulting coefficient surfaces with a cell size of 30 m 

× 30 m. Figure 4.9 illustrates the coefficient surfaces for three variables of accessibility to 

transportation networks. Dis2Hwy has a stronger negative impact on urban development 

in the western part than the eastern part. This finding interestingly echoes the spatial 

distribution of urban land development along the Guangzhou-Shenzhen highway in the 

western part of Dongguan (see Figure 4.9).  

 
Figure 4.9 Coefficient surfaces of proximity to transportation infrastructure 

Notes: Dis2Railway = distance to railway; Dis2Hwy = distance to highways, Dis2Road = 

distance to local roads 
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Figure 4.10 Coefficient surfaces of socioeconomic factors 

Notes: Dis2CBD = distance to city center; Dis2TC = distance to township/sub centers, 

DenUrban= density of urban land; DenDevZone = density of development zones 

 

The highway was constructed in the late 1980s, and it has become a major transportation 

corridor in the whole area. Other highways in the city such as the Dongguan-Shenzhen 

highway in the central and eastern parts have less influence since they were constructed 

later in the 2000s and are located in the mountainous areas. The spatial logistic regression 

model also improves our understanding about the spatially varying influence of distance 

to railway (Dis2Rail), while the variable is not significant in the nonspatial logistic 

model. As demonstrated in Figure 4.9, Dis2Rail has greater negative influence in those 

areas near the railway stations in the Changping township in the western part and the 

Shilong township in the northern part. In comparison with the surfaces of Dis2Hwy and  
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Figure 4.11 Coefficient surfaces of physical conditions 

Notes: DenFarm = density of farm land; DenOrchard = density of orchard land; DenWater 

= density of water land; DenForest = density of forest land 
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Dis2Rail, one can see that the coefficients of Dis2Raod are mostly negative across the 

entire study area. However, it also varies across the city with stronger influences in the 

southern part, which is located in the north of Hong Kong and Shenzhen but further away 

from the city center.   

The local logistic regression model also reflects spatially varying effects of the 

four socioeconomic variables (Figure 4.10). The nonspatial model demonstrates that the 

distance to city center (Dis2CBD) has a positive effect on land development. However, 

this does not hold true for all portions of the city. From a local view, the distance to city 

center has a stronger negative influence in the north of the city center than the south 

(Figure 4.10). In fact, the city master plan of Dongguan, which was implemented in 1999, 

proposed the strategy of building up a modern urban district and a new city center in the 

north of the original downtown. In the early 2000s, three towns including Nancheng, 

Dongcheng, and Wanjiang were transformed into new urban districts in order to provide 

more land for the construction of the new city center. A number of new urban projects 

have been built, including a new city hall, an international convention center, and a 

modern sports stadium, etc. (Lin, 2006). Therefore, the spatial logistic model is able to 

present more nuanced evidence of urban development in relation to specific urban 

planning policies at the local level. In contrast with Dis2CBD, we also find that the 

distance to township center (Dis2TC) has stronger influences across the entire study area, 

especially in the south. This is understandable since the land development in the southern 

part is relatively independent, which is more influenced by the nearby Shenzhen city. In 

short, we find that the roles of city center and subcenters in Dongguan’s urban 

development is inconsistent with Luo and Wei (2009) in Nanjing and Liu et al (2011) in 
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Hangzhou, where the distance to the city center tends to have a strong influence across 

the entire city, but subcenters are more influential at the local level. This further confirms 

the previous observation that township centers have more significant influence on urban 

land development in Dongguan. In addition, the spatial logistic regression model also 

demonstrates the spatial variations of effects for the two variables—the density of urban 

land and the density of development zones. We find that the density of urban area in 1988 

has much stronger influence in the north, while the impact of the density of development 

zones tends to be insensitive to particular areas. This is due to the fact that most urban 

areas in Dongguan in 1988 were concentrated in the north near the city center (Figure 

4.10). Furthermore, different from other cities such as Suzhou in the Yangtze River Delta 

where development zones were constructed by the central and municipality level 

governments (Wei et al., 2009), development zones in Dongguan were mostly built up by 

township and village level governments. As a result, the spatial distribution of 

development zones in Dongguan is more disperse and relatively small in size (Yang, 

2009), giving rise to a less apparent spatially varying influence across the study area.  

For the five variables of physical conditions, the nonspatial logistic regression 

model shows that the density of farm land (DenFarm) and the density of orchard land 

(DenOrchard) have positive influence, while slope, the density of forest (DenForest), and 

the density of water bodies (DenWater) have negative influence. Based on the logistic 

regression with spatial expansion, we see that the impact of the density of farmland 

(DenFarm) is more evident across the entire study area (Figure 4.11). By contrast, slope 

has stronger local influence in the mountain areas, which indicates that the land 

development in the mountain areas is more likely restricted by the topographical 
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condition. More importantly, although the nonspatial logistic model shows that the 

density of forest (DenForest) and the density of water body (DenWater) have negative 

influence on urban growth, this does not hold true for the entire study area. This, in 

particular, provides us with more reliable information for environmental risk assessment. 

In more detail, in the central part and some areas in the south of the city, the density of 

forest has positive influence on urban land conversion (Figure 4.11). It highlights the 

challenges for the protection of forest land in this area, although the orthodox logistic 

model reveals that DenForest has a negative influence. In fact, based on our fieldwork 

and interviews in Dongguan, in recent years, many towns in Dongguan have faced the 

problem of land supply due to the massive loss of agricultural land. Forest land has 

become an important new source of urban land. Another problem facing the urban 

planners in Dongguan is that the existing agricultural land has been more fragmented due 

to the unregulated urban development over the past 3 decades. This is particularly 

relevant for some large-scale development projects such as Songsanhu industrial park in 

the central part of the city and the “ecological industrial park” in the northeastern part. In 

order to provide sufficient land for these projects, many forests that are not as fragmented 

as the existing agricultural land and are more suitable for large-size industrial parks have 

been converted into urban areas.  

Similarly, as indicated in the nonspatial logistic model, urban development is 

constrained by water bodies. However, drawing upon the spatial logistic model, this 

inference is problematic. DenWater only shows a strong negative impact on the urban 

growth in areas near the Dongjian River mainly because the Dongjian River is the source 

of drinking water for Hong Kong and Shenzhen and therefore more strictly protected (Hu 
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et al., 2005). In contrast, for rivers and lakes close to the city center in the north, 

DenWater has strong positive influence, indicating water bodies in these areas are not 

strictly protected. This finding is consistent with Hu et al. (2005) on the spatial pattern of 

water pollution in Dongguan. They found that rivers and lakes in the northeastern part of 

Dongguan have been heavily polluted due to the concentration of polluting industries in 

nearby towns such as Macong and Zhongtang (Yang & Liao, 2010). In summary, some 

challenges of environmental sustainability are more likely masked by the nonspatial 

model, while the spatial logistic model is able to provide a valuable reference for the 

purpose of environment risk assessment, mainly by identifying spatially varying 

relationships between urban land development and neighborhood ecological 

environment.  

Conclusion  

The chapter has investigated the spatial-temporal dynamics of urban growth and 

its underlying factors in the city of Dongguan, China. We have contributed to the 

research on urban development in Chinese cities by analyzing the unique bottom-up 

township-based urban growth pattern in Dongguan. We have found that the city of 

Dongguan has faced substantial challenges of environmental sustainability arising from 

the loss of agricultural land. Recent years have witnessed more governmental efforts 

towards a compact and sustainable urban development (Lin, 2006). However, as 

evidenced in this research, the effect of these policies is very limited.  

Results of landscape metrics and spatial analyses have quantified the spatial-

temporal dynamics of urban growth, which is consistent with a “diffusion-coalesce” 

model. Nevertheless, different from the urban growth patterns in largest Chinese cities, 
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we have identified that leapfrog or spontaneous urban growth was more evident at the 

early stage of urban growth in Dongguan city. This finding highlights a unique 

transforming landscape driven by a bottom-up urbanization in Dongguan.  

We also developed a spatial logistic regression model to explore spatially varying 

relationships between urban development and its underlying factors in Dongguan from 

1988 to 2006. We have confirmed the importance of the spatially nonstationary process 

in determining land use changes. Furthermore, our model incorporates both physical and 

socioeconomic factors in analyzing urban land expansion, guided by theoretical 

development in economic geography and urban economics. The analysis of results is 

further supported by the fieldworks and is associated with the local institutional contexts 

and urban development as well as environment protection policies. This approach, as 

shown in this research, is of particular importance for the research on urban development 

in China where the urban land development is being hosted in a transitional economy and 

thus characterized by instability, diversity, and dynamic spatial variety (Wei, 2012).  

Using the orthodox logistic regression model, we have demonstrated that 

distances to local roads and township centers have the strongest negative effects on rural-

urban land conversion in Dongguan. However, the distance to the city center has a 

positive influence. The case study of Dongguan indicates the bottom-up process of 

development where small towns play a significant role. Our study therefore suggests the 

complexity of urban development in different contexts and the diversity of urban growth 

patterns in Chinese cities.  

The logistic model with spatially expanded coefficients has significantly 

improved the nonspatial logistic regression model with better prediction accuracy and the 
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overall goodness of fit. It also reduced the spatial dependence of residuals. More 

importantly, the spatial logistic model allows the coefficients of explanatory variables to 

vary across space and clearly highlights the impact of underlying factors at the local 

level. On the one hand, we have found that the spatial variation of urban growth in 

Dongguan is highly sensitive to urban development policies and regional setting. The 

distance to the city center has a strong local impact on urban development in the north of 

the city where a new city center is being built. In contrast, the distance to township 

centers is more influential across the entire study area following the path-dependent 

bottom-up urbanization pattern. On the other hand, we also revealed that the spatial 

logistic regression approach not only contributes to the understanding of urban growth 

process but also provides more nuanced evidence for assessing environmental risks 

arising from urban expansion. For example, in the nonspatial logistic model, densities of 

water bodies and forest land have negative influences on rural-urban land conversion. 

However, drawing upon the spatial logistic model, their effects are contingent upon local 

conditions and environment protection policies—in the northwestern and central portions, 

more water bodies and forests have danger of being converted into urban land.   

Finally, from a technical perspective, spatial expansion, if compared with other 

methods such as GWR, provides a computationally less expensive and more efficient 

way to model the spatially varying relationship in the context of large sample size. This is 

particularly relevant to some rapidly industrializing Chinese cities such as Dongguan, 

where urban development is not compact and urban expansion is broader in scope. In 

addition, recent literature has pointed out the limitation of GWR and the problematic 

coefficient surfaces resulting from the routine GWR algorithm (Páez et al., 2011; 
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Wheeler & Tiefelsdorf, 2005). There is a need to further compare GWR and the spatial 

expansion model as well as other spatially varying coefficient models (Waller et al., 

2007), which can help us to learn more about the advantages and disadvantages of 

different spatial statistical methods.   
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CHAPTER 5 

CONCLUSION  

China has experienced rapid economic and urban growth over the past 3 decades, 

attracting considerable scholarly attention. Researchers are keen to understand the 

patterns, processes and mechanisms of China’s regional development and urban land use 

changes (Lin, 2009; Wei, 2007). On the one hand, empirical studies in China have 

enriched theoretical debates over regional inequality and economic convergence (e.g., Li 

& Wei, 2010; Liao & Wei, 2012; Wei, 2007). On the other hand, restless transformations 

in both economic and urban landscapes of China have provided the best laboratory in 

which GIS spatial modeling techniques are found to be applicable (Duque et al., 2013). 

However, due largely to limitations of research methods, development and 

implementation environment, data availability, and the willingness of local governments’ 

collaboration, there is still a lot of room in this research domain.  

First, although the importance of spatial dependence in shaping regional 

development and inequality has been identified (e.g., Wei & Ye, 2009; Yu & Wei, 2008), 

the relationship between spatial dependence and regional inequality appears to be self-

evident. The extent to which they interact to yield uneven regional development remain 

poorly understood.  In addition, the transformation of the economic system and 

globalization has triggered the articulation of states, foreign investors, and local 

 institutions and geographies in China’s regional development (Wei, 2007). Scholars have 



136 

 
 

also identified that the triple process of decentralization, marketization, and globalization 

results in restructuring of the Chinese states (Wei, 2007). Researchers have identified a 

variety of development models in China, represented by the Pearl River Delta (PRD) 

model centered on foreign direct investment (FDI), the Wenzhou model driven by private 

enterprises, and the Sunan model based on the development of Township and Village 

Owned Enterprises (TVEs). Given the massive scale of the region and its tremendous 

diversity, more work is needed on the spatial variations of China’s development 

mechanisms in relation to economic transitions. 

Second, few efforts have been made to investigate the spatial-temporal dynamics 

of urban expansion in second-tier Chinese cities where urban expansion could be more 

conspicuous under a rapid economic growth. Methodologically, previous urban growth 

models, such as cellular automata (CA) or logistics regression model (e.g., Li & Yeh, 

2000; Lin et al., 2011), have limited ability to fully reveal the spatial varying urban 

growth determinants in Chinese cities (Luo & Wei, 2009). The geographically weighted 

regression (GWR) is a major advancement in modeling spatial variations of urban growth 

determinants (Luo & Wei, 2009), but this method has been challenged (Paez et al., 2011), 

and GWR is also computationally expensive when analyzing remote sensing data.  

To this end, this research initiates the task of studying regional development and 

disparities in China’s Guangdong province and urban growth in Dongguan city within a 

GIS and spatial-temporal data analysis framework. A few key conclusions could be 

drawn from the analyses presented in previous chapters.  

First, the application of Markov chains and spatial Markov-chain analysis 

techniques yields several interesting findings. The results reveal that there has been a 
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“poverty trap” in the remote area in Guangdong. Spatial Markov-chain analysis further 

identifies that the persistence of core-periphery divide in Guangdong is greatly driven by 

the self-reinforcing effect of spatial agglomeration in the core region of PRD. The finding 

is different from those in Zhejiang and the Greater Beijing Area where more intensive 

spatial agglomeration is attributed to the emergence of new clusters (Wei & Ye, 2009; Yu 

& Wei, 2008). More importantly, the application of Markov chains and spatial Markov 

chains using county-level data has provided more detailed quantitative evidence about the 

spatial effects on regional convergence. By applying a spatial filtering approach, the 

project also generated interesting empirical findings about the relationship between 

multiscalar patterns of regional inequalities and spatial dependence. It highlights that the 

multiscalar nature of regional inequality is robust regardless of spatial effects. Therefore, 

consistent with the ideas of new economic geography (Krugman, 1995), peculiar 

agglomeration economies do have an impact on the core-periphery divide in Guangdong.  

Second, modeling space-time heterogeneity of the multiple mechanisms helps to 

derive more reliable and in-depth understanding of these mechanisms. Spatial panel 

regression and multilevel modeling result in a substantial reduction of BIC statistics and 

standard errors associated with coefficients. The spatial regime model has revealed that 

the core-periphery divide in Guangdong is mainly caused by the triple processes of 

economic transition, including globalization, marketization, and decentralization. In 

addition, these processes are characterized by spatial and temporal heterogeneities. The 

functioning of these mechanisms has been strengthened in the periphery area, while 

globalization forces are increasingly domesticated in the core region of the PRD. 

Third, the study on urban growth in Dongguan, China from 1988–2006 has used a 
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multimethodology approach integrating GIS, remote sensing, and advanced landscape 

metrics as well as spatial modeling. Results of landscape metrics and spatial analyses 

have uncovered the spatial-temporal dynamics of urban growth, which is consistent with 

a “diffusion-coalesce” model. The bottom-up and multicenter pattern of urban growth in 

Dongguan is also closely related to the political economy of land use in China and driven 

by the decentralization of decision-making power from the upper level governments to 

lower level (township and village levels) governments.  

Global logistics and spatial logistics regression models were set up and compared. 

Spatial variables were chosen as influential factors of urban land expansion. Findings 

demonstrate that spatial logistic regression has a much better goodness-of-fit than the 

global logistic regression model and has better performance in predicting urban land use 

change than the global logistic model. Furthermore, the use of spatial logistic approaches 

based on spatial expansion has verified that the influences of urban growth determinants 

have significant spatial variations. Such variations obviously demonstrate the challenges 

of environmental sustainability facing Dongguan in the course of rapid urban expansion.  

The above findings have both theoretical and policy implications. From a 

theoretical perspective, the case of Guangdong substantiates the debate over the new 

economic geography (NEG) model (Krugman, 2011; Martin, 2013) while analyzing the 

self-reinforcing spatial agglomeration and the core-periphery model in greater detail. 

Specifically, we have incorporated the multiscalar nature of agglomeration and inequality 

in these GIS spatial analyses. In addition, in the case of Guangdong, the globalization 

force has strengthened the core-periphery divide between the PRD and the periphery, 

which is interestingly in contrast to many developed countries in which globalization and 
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investments from outside have reduced regional inequalities (Ezcurra & Rodriguez-Pose, 

2013). Therefore, the integration of western theories and the ground-specific context in 

China is a better approach to analyzing China’s regional development and disparities 

under economic transition. 

From a policy perspective, the dissertation suggests several issues that may 

challenge policy makers in Guangdong. The new strategies for reducing inequality in 

Guangdong may not be able to gain the expected effect due to the self-reinforcing 

agglomeration in the core region. The provincial government needs to recognize the core-

periphery structure in Guangdong while promoting spillover from the PRD to the rest of 

the province. More attention may be paid to the comparative advantages of the periphery 

and the core region. Fostering new clusters in the remote area of Guangdong may help 

boost the development in these areas. A finer scale investigation in Dongguan reveals that 

the uneven regional development and overconcentration of resources have resulted in a 

deteriorating environment and a massive loss of agricultural land. Therefore, the 

provincial and municipality governments also need to coordinate for a sustainable 

development in Guangdong.  

In addition, the dissertation contributes to the GIS spatial analysis methodology 

by incorporating a variety of spatial econometric and exploratory spatial data analysis 

(ESDA) techniques. Specifically, the application of a spatial regime model and spatial 

logistic regression has revealed evident spatial variations of development mechanisms 

and urban growth determinants in the core and periphery regions and within a city. In 

doing so, the dissertation has provided a solid empirical foundation for the cross-

fertilization between exploratory spatial data analysis and economics theories (Ye & Rey, 
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2013). 

The study could be improved through five aspects: (1) the study mainly 

emphasizes the influences of economic transitions on inequalities. Recent literature has 

been more interested in the relationship between sectoral transition and regional 

development disparities (Gardiner et al., 2011).  The research on the spatial impact of 

sectoral transformation in China is promising. (2) In addition to a top-down approach to 

regional development in Guangdong, future work is needed by employing a bottom-up 

perspective and conducting more in-depth case studies of most influential municipalities 

behind Guangdong’s uneven development. For example, in-depth studies of Guangzhou 

and Shenzhen are of great research significance. (3) Scaling-up the findings in 

Guangdong and comparing intraprovincial inequalities in different Chinese provinces is 

promising in future research. For example, regional development in the Greater Beijing 

Area is more policy driven giving the subsidy from the central government (Yu & Wei, 

2008). Future comparative case studies could shed more light on the applicability of a 

multiscale and multimechanism framework in different geographical environments and 

institutional settings. (4) In addition, beyond economic inequality, research on 

inequalities in different forms (e.g., urban-rural inequality) and in different sectors (e.g., 

health and technology) is of particularly importance. (5) Applications of more rigorous 

GIS-spatial modeling approaches, such as spatial-filtering geographically weighted panel 

regression, are also likely to deepen our understanding of spatially varying drivers of 

urban growth in China. A spatial-temporal analysis could be more informative if it used 

some techniques that can trace the structural break and policy shocks in a GIS 

environment (Duque et al., 2013; Guo et al., 2013). 
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