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Abstract— In order to continue to produce cir-

cuits of increasing speeds, designers must consider ag-

gressive circuit design styles such as self-resetting or

delayed-reset domino circuits used in IBM’s gigahertz

processor (GUTS) and asynchronous circuits used in

Intel’s RAPPID instruction length decoder. These

new timed circuit styles, however, cannot be efficiently

and accurately analyzed using traditional static tim-

ing analysis methods. This lack of efficient analysis

tools is one of the reasons for the lack of mainstream

acceptance of these design styles. This paper discusses

several industrial timed circuits and gives an overview

of our timed circuit design methodology.

I. Introduction

To achieve high performance, designers must consider
aggressive timed circuit design styles. Timed circuits are
defined to be any circuits that are optimized using explicit
timing information. One example is the self-resetting and
delayed-reset domino circuits used in IBM’s gigahertz re-
search microprocessor. Much of the improvement in speed
in this processor can be attributed to these aggressive
circuit styles [7]. Designers are also considering asyn-
chronous circuits due to their potential for higher perfor-
mance and lower power as demonstrated by Intel’s RAP-
PID instruction length decoder [12]. This design was 3
times faster while using only half the power of the compa-
rable synchronous design. These new circuit styles, how-
ever, cannot be efficiently and accurately analyzed using
traditional static timing analysis methods. This lack of
efficient analysis tools is one of the reasons for the lack of
mainstream acceptance of these design styles.

It is impossible to reference the substantial amount of
work that has been done in asynchronous design and tim-
ing verification in this short paper. An annotated bibli-
ography can be found in our forthcoming book [9]. The
goal of this paper is to describe several industrial timed
circuit designs, and to give a overview of our timed circuit
design methodology.

∗This research is supported by NSF CAREER award MIP-
9625014, SRC contracts 97-DJ-487 and 99-TJ-694, and a grant from
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II. Design Motivations

This section describes three industrial designs which
have guided the development of our timed circuit design
methodology. The first is the Intel RAPPID chip which is
a fully asynchronous instruction length decoder which is
3 times faster while using only half the power of the com-
parable synchronous design. RAPPID’s speed is derived
from a highly timed asynchronous design. The second
design is IBM’s gigahertz processor, GUTS. This was the
first CMOS processor to run over 1 GHz using 1997 pro-
cess technology. Its speed is derived from a highly timed
synchronous design. Finally, Sonic Innovation’s digital
hearing aid provided a different sort of guide to our de-
sign methodology as its objective is low power and small
area. We designed a key component, a multiplier. Our
early analysis shows that our 24-bit design uses 1

7
the area

and only 1

3
the power of a synchronous array.

A. Intel’s RAPPID

Instructions in the x86 architecture can be from 1 to
15 bytes long depending on a large number of factors. In
order to allow concurrent execution of x86 instructions,
it is necessary to rapidly determine the positions of each
instruction in a cache line. This was at the time a critical
bottleneck in the x86 architecture. The length of instruc-
tions is determined using the following rules:

• Opcode can be 1 or 2 bytes.

• Opcode determines presence of the ModR/M byte.

• ModR/M determines presence of the SIB byte.

• ModR/M and SIB set length of displacement field.

• Opcode determines length of immediate field.

• Instructions may be preceded by upto 15 prefix bytes.

• A prefix may change the length of an instruction.

• The maximum instruction length is 15 bytes.

For real applications, it turns out that there are only a
few common instruction lengths. As shown in Figure 1,
75 percent of instructions are 3 bytes or less in length.
Nearly all instructions are 7 bytes or less. It is also the
case that prefix bytes are extremely rare. This presents



an opportunity for an asynchronous design to optimize for
the common case by optimizing for instructions of length
7 or less with no prefix bytes. Other less efficient methods
are then used for longer instructions [6] and instructions
with prefix bytes [4].
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Fig. 1. Histogram for proportion of x86 instruction lengths and
cumulative length statistics.

The RAPPID microarchitecture is shown in Figure 2.
The RAPPID decoder reads in a 16 byte cache line, and
it decodes each byte as if it is the first byte of a new in-
struction. The decode logic is implemented using large
unbalanced trees of combinational logic that have been
optimized for common instructions. Each byte specula-
tively determines the length of an instruction beginning
with this byte. It does this by looking at possibly up to
three additional downstream bytes. The actual first byte
of the current instruction is marked with a tag. This byte
uses the length that it determined to decide which byte is
the first byte of the next instruction. It then signals that
byte while notifying all bytes in between to squash their
length calculations and forwards the bytes of the current
instruction to an output buffer. In order to improve per-
formance, four rows of tag units and output buffers are
used in a round-robin fashion. In the case of a branch, the
tag is forwarded to a branch unit that determines where
to inject the tag back into the new cache line [5].

The key to achieving high performance is the tag unit,
which must be able to rapidly tag instructions. The timed
circuit for one tag unit is shown in Figure 3. Assuming
that the instruction is ready (i.e., InstRdy is high indicat-
ing one Lengthi is high and all bytes of the instruction are
available) and the crossbar is ready (i.e., XBRdy is high),
then when a tag arrives (i.e., one of TagInj is high), the
first byte of the next instruction can be tagged within two
gate delays (i.e., TagOuti is set to high). In other words,
a synchronization signal can be created every two gate de-
lays. It is difficult to imagine distributing a clock which
has a period of only two gate delays. The tag unit in the
chip is capable of tagging up to 4.5 instructions/ns.

This circuit, however, requires timing assumptions for
correct operation. In typical asynchronous communica-
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Fig. 2. RAPPID Microarchitecture.
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Fig. 3. The tag unit circuit.

tion, a request is transmitted followed by an acknowledge
being received to indicate that the circuit can reset. In
this case, there is no explicit acknowledgment, but rather
acknowledgement comes by way of a timing assumption.
Once a tag arrives (i.e., TagArrived is high), if the instruc-
tion and crossbar are ready, the course is set to begin to
reset TagArrived. The result is that the signal produced
on TagOuti is a pulse. Let us consider now the affect of
receiving a pulse on a TagIn signal. If either the instruc-
tion or crossbar are not ready, then TagArrived gets set
by the pulse in effect latching the pulse. TagArrived will
not get reset by the disappearance of the pulse but rather
the arrival of a state in which both the instruction and
crossbar are ready.

For this circuit to operate correctly, there are two crit-
ical timing assumptions. First, the pulse created must
be long enough to be latched by the next tag unit. This
can be satisfied by adding delay to the AND gate used
to reset TagArrived. An arbitrary amount of delay, how-
ever, cannot be added since the pulse must not also be so
long that another pulse could come before the circuit has
reset. Therefore, we have a two-sided timing constraint.
Our tool ATACS is designed to synthesize and analyze cir-
cuits with such types of constraints. ATACS was used to
synthesize and analyze the tag circuit from RAPPID [12].



B. IBM’s GUTS Microprocessor

The next timed circuit design is IBM’s gigahertz re-
search microprocessor, GUTS. The key achieving such
high performance was the use of aggressive circuit styles,
namely, self-resetting and delayed-reset domino. While
in this case, the design is synchronous, there are numer-
ous local timing assumptions that must be satisfied for
correct operation. These timing assumptions again pose
two-sided timing constraints which are difficult to analyze
using traditional static timing methods.

An example of a simple delayed reset domino circuit is
shown in Figure 4. This circuit implements the function
out2 = (a or b) and c. The signals clk1 and clk2 are
delayed versions of the global clock. If either a or b go
high, then out1 goes high. If c is also high, then out2 goes
high. Some short time after out2 goes high, clk1 goes low
causing out1 to reset to a low value. The timing of clk2 to
go low and precharge out2 is set such that out2 has time
to be used by the next gate. In other words, out1 and
out2 are pulses.

out2

clk1 clk2

a b

c

out1

Fig. 4. A simple delayed-reset domino circuit that implements
out2 = (a or b) and c.

There are several timing assumptions required by this
circuit. First, the pulldown stack must be hazard-free. A
glitch by one of these circuits could cause the next gate to
erroneously believe that it received a pulse. Second, the
pulldown stack must stay on long enough to discharge the
output node. This means the pulse must have a minimum
width. Third, all inputs to the gate must turn off before
the precharge phase begins. This means the pulse has a
maximum width. Therefore, there is again a two-sided
timing constraint.

The GUTS design also employs self-resetting logic such
as the PLA controller shown in Figure 5. This circuit
waits for a sufficient number of dual-rail inputs to indi-
cate the arrival of valid data. It then sets the propagate
control line high. At the same time, the signal is trans-
mitted through a series of buffers which when fed back
have the affect of resetting the propagate control signal.
This creates a pulse on the propagate control signal. This

type of circuit is called self-resetting because the setting
of the signal puts into motion a series of events that leads
to the resetting of the signal. The correctness of this cir-
cuit also depends on the satisfaction of a two-sided timing
constraint. ATACS was used to verify the PLA controller
and several other circuits from the GUTS processor [2].
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Fig. 5. PLA controller

C. Sonic Innovation’s Hearing Aid

The last design example is a self-timed iterative multi-
plier that we are designing for a digital hearing aid appli-
cation [8]. The goal of this design is quite different from
the other two in that the design must have low power con-
sumption and use a small chip area. We determined that
an iterative multiplier using radix 4 Booth encoding met
our delay constraints, and it has the best area and power.
In a low power design, such as a hearing aid, it is not
desirable to distribute a high-speed clock due to its power
consumption and the interference it has with the analog
circuitry. So a synchronous iterative multiplier in this
application is not attractive. Therefore, we designed a
self-timed multiplier in which iterations are controlled by
a locally generated clock. While the rest of the design is
fairly conventional and designed using standard cells, the
clock generation circuit must be very carefully designed
to meet the needed timing constraints. Again, the ATACS

tool is ideally suited to the task. Although the multiplier
is self-timed, it can be easily embedded in a synchronous
system as long as the clock rate is long enough that the
multiply has time to complete. The area of an N -bit mul-
tiplier is O(N) as opposed to O(N2) for the synchronous
array multiplier used in the original hearing aid. For a
24-bit word, the self-timed multiplier is 1

7
the size of the

synchronous array. While the power grows polynomially
for both designs, the self-timed design has a much lower
coefficient than the array. The power consumed by the
self-timed multiplier with a 24-bit word size is 1

3
that of

the synchronous array.



III. Timed Circuit Design Methodology

We describe our timed circuit design methodology us-
ing a simple example. In a small town in Southern Utah,
there’s a little winery with a wine shop nearby. Being a
small town in a community who thinks prohibition still ex-
ists, there is only one wine patron. The shop has a single
small shelf capable of holding only a single bottle of wine.
The winery and shop communicate a bottle of wine over
a channel. A channel is simply a point-to-point means of
communication between two concurrently operating pro-
cesses. One process uses that channel to send data to the
other process. The channel level block diagram for our
example is shown in Figure 6.

Winery Shop
WineryShop

Patron
ShopPatron

Fig. 6. Channel block diagram for wine shop.

The behavior of the winery, shop, and patron can be
represented in VHDL as shown in Figure 7. This code
uses two new packages: nondeterminism and channel.
The nondeterminism package defines some functions to
generate random delays and random selections for simu-
lation. The channel package includes a definition of the
channel data type and operations on it such as send and
receive.

For this example, we have defined two channels for com-
munication. The WineryShop channel is used for deliver-
ing bottles of wine to the shop and the ShopPatron chan-
nel is used for selling bottles of wine to the patron. Both
channels are initialized using the init channel function.
The behavior of the winery begins by randomly selecting
whether to produce chardonnay or merlot. Next, it sends
this bottle of wine to the shop with the procedure call
send. This procedure has two parameters: a channel to
communicate on and the data to be transmitted. The last
step is that the winery waits for some random time be-
tween 5 and 10 minutes until it is ready to make another
bottle of wine, and it then repeats forever. The behavior
of the shop begins by receiving a bottle of wine from the
winery with the procedure call receive. This procedure
also has two parameters: a channel to communicate on
and a location where the data is to be copied upon recep-
tion. After receiving the wine, the shop sends it to the
patron over the ShopPatron channel. The behavior of the
patron begins by receiving a bottle of wine which it then
identifies (probably with a small sip). It then waits for
the shop to send another bottle of wine.

A channel communication is implemented using a hand-
shake protocol on two or more signal wires. Our example
uses a dual-rail protocol (i.e., two wires) to encode the type
of wine being transmitted and a third wire to acknowledge
communication (see Figure 8).

The behavior of the winery, shop, and patron can be
represented in VHDL at the handshake level as shown

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;

use ieee.std logic unsigned.all;

use work.nondeterminism.all;

use work.channel.all;

entity wine example is

end wine example;

architecture behavior of wine example is

type wine list is (chardonnay, merlot);

signal wine drunk:wine list;

signal WineryShop:channel:=init channel;

signal ShopPatron:channel:=init channel;

signal bottle,shelf,bag:std logic;

begin

winery:process

begin

bottle <= selection(2);

send(WineryShop,bottle);

wait for delay(5,10);

end process winery;

shop:process

begin

receive(WineryShop,shelf);

send(ShopPatron,shelf);

end process shop;

patron:process

begin

receive(ShopPatron,bag);

wine drunk <= wine list’val(conv integer(bag));

end process patron;

end behavior;

Fig. 7. Channel level model for the wine shop.
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Fig. 8. Handshaking block diagram for wine shop.

in Figure 9. The model uses the handshake package in-
stead of the channel package. This package includes the
definitions of the procedures: guard, guard or, guard and,
assign, and vassign. All signals of type channel are re-
placed with signals of type std logic. The first of these
new signals are bottle1 and bottle0 which are used to de-
liver a new bottle of chardonnay or merlot, respectively.
The next signal, ack wine, is used to indicate acknowledg-
ment of the wine delivery to the shop. The ShopPatron
channel is implemented with the signals shelf1, shelf0, and
ack patron.

Consider the behavior of the shop at the handshake
level. In this protocol, the first thing the shop does is
wait until ack patron is ’0’ using the guard procedure. The
procedure guard(s, v) takes a signal, s, and a value, v and
waits until s = v. The next step in the protocol is to wait



library ieee;

use ieee.std logic 1164.all;

use work.nondeterminism.all;

use work.handshake.all;

entity wine example is

end wine example;

architecture hse of wine example is

signal bottle1,bottle0:std logic;

signal ack wine:std logic:=’0’;

signal shelf1,shelf0:std logic:=’0’;

signal ack patron:std logic;

begin

winery dualrail:process

begin

z:=selection(2);

if (z=1) then assign(bottle0,’1’,5,inf);

else assign(bottle1,’1’,5,inf);

end if;

guard(ack wine,’1’);

vassign(bottle0,’0’,5,7,bottle1,’0’,5,7);

guard(ack wine,’0’);

end process;

shopPA dualrail:process

begin

guard(ack patron,’0’);

guard or(bottle0,’1’,bottle1,’1’);

if bottle0 = ’1’ then assign(shelf0,’1’,1,2);

elsif bottle1 = ’1’ then assign(shelf1,’1’,1,2);

end if;

assign(ack wine,’1’,1,2);

guard(ack patron,’1’);

vassign(shelf0,’0’,1,2,shelf1,’0’,1,2);

guard and(bottle0,’0’,bottle1,’0’);

assign(ack wine,’0’,1,2);

end process;

patron dualrail:process

begin

guard or(shelf0,’1’,shelf1,’1’);

assign(ack patron,’1’,2,3);

guard and(shelf0,’0’,shelf1,’0’);

assign(ack patron,’0’,2,3);

end process;

end hse;

Fig. 9. Handshaking level model for the wine shop.

until either bottle0 or bottle1 goes high using the guard or
procedure. The procedure guard or(s1, v1, s2, v2, . . . )
takes a set of signals and values and stalls a process until
some signal si has taken value vi. After bottle0 or bottle1
goes high, the protocol next sets shelf0 or shelf1 high using
the assign procedure. The procedure assign(s, v, l, u)
takes a signal, s, a value, v, a lower bound of delay, l,
and an upper bound of delay, u. After the appropriate
shelf signal goes high, ack wine is set high and the shop
waits for ack patron to go high. Next, the shop resets
the shelf signal. At this point, only one of the two shelf
signals is high, so the vacuous assign (vassign) procedure
is used since one assignment does nothing. After the shelf
signals are reset, the shop waits until both bottle signals
are low using the guard and procedure. The procedure
guard and(s1,v1,s2,v2,. . . ) takes a set of signals and a
set of values, and it stalls a process until each signal si

has taken value vi. Finally, the shop protocol assigns
ack wine to ’0’ and loops back to the beginning. A speed-
independent circuit for the shop is shown in Figure 10(a).
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ack_patron
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ack_wine

bottle1 shelf1

ack_wine

bottle1

shelf 0 bottle 0

(a) (b)

Fig. 10. (a) Speed-independent and (b) timed circuit.

Consider now the timing information that is known
about the winery, shop, and the patron. First, the winery
can produce a new bottle of wine every 5 minutes, but
it make take an infinite amount of time when the wine
making machine is broken. It resets its handshakes after
5 to 7 time units. The patron lives close to the shop so
it can accept a new bottle of wine in 2 to 3 minutes af-
ter being called, and it resets after 2 to 3 minutes. The
shop always responds within 1 to 2 minutes. Using this
delay information, the circuit can be optimized as shown
in Figure 10(b).

IV. POSET Timing

In order to synthesize and verify timed circuits, it is
necessary to efficiently find all reachable timed states.
Approaches based on regions or discrete time rapidly ex-
plode. Zones can do better, but explode for highly con-
current systems. We developed POSET timing which per-
forms analysis on partially ordered sets of events rather
than linear sequences [11, 10, 3, 1]. This eliminates false
causality, and it can be orders of magnitude more efficient.
The runtimes for the verification of various sizes of a stari
circuit, a self-timed FIFO, are shown in Figure 11. It has
been shown that a region based tool, timed COSPAN, runs
out of 1 GByte of memory for 3 stages.

POSET timing still suffers from state explosion for
modest size designs. Therefore, we are developing tech-
niques that use the hierarchical information to decom-
pose the design into components for individual analysis.
We have formally proven that the result of these synthe-
sis or verification runs produce correct but conservative
results [13]. Our preliminary analysis shows that auto-
matic abstraction can be substantially more efficient in
both memory and time. Results for the verification of
a timed FIFO designed at SUN are shown in Figure 12.
While traditional methods can only verify 4 stages, we
can easily verify 100 stages in about 20 minutes.
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Fig. 11. POSET timing results for stari example.
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V. Conclusions

This paper describes the importance of timed circuits
through several industrial-scale examples which have been
designed or verified using ATACS. This paper has also
given an overview of our timed circuit design method-
ology. Much more work though is needed to make timed
circuit design practical. First, we need to develop auto-
matic translation techniques from the channel level model
to the handshaking level model. We need to continue to
develop our automatic abstraction techniques for synthe-
sis and verification. Even with good abstraction, we still
need ever more efficient POSET techniques for verifica-
tion when components are large. Since for verification the

entire state space is not necessary, we are developing par-
tial order techniques which when combined with POSET
timing can efficiently yield a result. Finally, more design
examples are needed to test the timed circuit methodol-
ogy.
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