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ABSTRACT

A database of cirrus particle size distributions (PSDs), with concomitant 

meteorological variables, has been constructed using data collected with the Two­

dimensional Stereo (2D-S) probe. Parametric functions are fit to each measured PSD. 

Full statistical descriptions are given for unimodal fit parameters. Three statistical tests 

were developed in order to determine the utility of bimodal fits and the efficacy of 

unimodal fits, and an investigation into the relationship between the parameterized PSDs 

and several meteorological variables was made.

Next, a parameterization of a “universal” cirrus PSD is given. This 

parameterization constitutes an improvement on earlier works due both to the size of the 

dataset and to updated instrumentation. Despite earlier works that predicted a gamma- 

distribution tail to the universal ice PSD, it is shown here that the tail is best described by 

an inverse gamma distribution. A method for predicting any PSD given the universal 

shape and two independent remote sensing measurements is demonstrated.

The constructed PSD database is then used to address a straightforward question: 

how similar are the statistics of PSD datasets collected using the recently developed 2D-S 

probe to cirrus PSD datasets collected using older Particle Measuring Systems (PMS) 2D 

Cloud (2DC) and 2D Precipitation (2DP) probes? It is seen, given the same cloud field 

and given the same assumptions concerning ice crystal cross-sectional area, density, and 

radar cross section, that the parameterized 2D-S and the parameterized 2DC predict



similar distributions of inferred shortwave extinction coefficient, ice water content, and 

94 GHz radar reflectivity. However, the parameterized 2DC predicts a statistically 

significant higher number of total ice crystals and a larger ratio of small ice crystals to 

large ice crystals.

Finally, the beginnings of two works in their early stages are presented. First, the 

probability structure of the parameterized PSDs is considered in light of application to the 

Bayesian inference of cirrus microphysical properties from remote sensing 

measurements. Then, the collection of measured PSDs, along with a forward model for 

radar reflectivity, is used to investigate uncertainty in computations of radar reflectivity 

from modeled moments of cirrus cloud PSDs.
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CHAPTER 1

INTRODUCTION

It has been understood for decades that any realistic consideration of the 

sensitivity of the Earth’s climate state must include a physically reasonable treatment 

within climate models of the effects of clouds (e.g., Wetherald and Manabe, 1988;

Tiedke, 1993; Stephens, 2005; Heymsfield et al., 2013). Clouds play a critical role in the 

hydrological cycle, interacting with the dynamics of the atmosphere through the transport 

of water and of radiative and latent heating; they are important components in many of 

the chemical processes that take place in the atmosphere (Wayne, 1991), and the 

feedbacks due to clouds have far-reaching consequences that are poorly understood. 

Perhaps the most profound climatic impact of clouds, affecting all the roles they play 

within the climate system, is their modulation of incoming solar radiation and of outgoing 

terrestrial radiation.

Attempting more fully to discern the climatic ramifications of clouds has proved a 

perplexing task, for while answers to some of the questions about their complex roles 

have come over time, the matter of their proper representation in climate models remains 

a significant challenge. At one point, a group of authors referred to the representation of 

clouds within global climate models (GCMs) as “a problem that refuses to die” (Randall 

et al., 2003), but significant progress has been made in the time since (Li et al., 2012).

The problem is complicated by a scantness of data relating to cloud microphysical



properties—particularly relating to the particle size distributions (PSDs) upon which their 

radiative interactions rely (Jensen et al., 2009)—and of the relationships between cloud 

microphysics and atmospheric state and dynamic variables. The work described in this 

dissertation will ultimately help to address these complications. In order to provide 

context, this introduction will first visit some general principles regarding the role of 

clouds within the Earth’s climate system. Thence the discussion will concenter on 

specific problems addressed within this dissertation.

Clouds in Nature

In various parts of the sky (or in the same part of the sky at various times), a great 

variety in different shapes, sizes, and heights of clouds can be observed—all of which 

may be broadly classified into either of two categories (or into a combination of the two 

categories): cumuliform (convective) or stratiform (layered). Clouds may be further 

classified by the heights of their bases (Fig. 1.1) and by the phase of water found in them 

(liquid, ice, or mixed). As an example, two images of the Great Lakes area from two 

consecutive days (15 May 2008 and 16 May 2008) produced using data from the 

Moderate-Resolution Imaging Spectroradiometer (MODIS) are shown in Fig. 1.2. The 

15th is relatively clear, but clouds associated with an incoming, upper-level trough can be 

seen on the 16th.

All of this variety is related to the fact that clouds occupy a continuum of 

temporal and spatial scales. Individual cloud elements may range from hundreds of 

meters to hundreds of kilometers in size and may last from minutes to days. Within 

cloud elements, the fundamental physical processes responsible for their formation and 

decay occur on scales of the size of the cloud itself down to the microscopic and can

2
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Fig. 1.1: “Schematische Darstellung der Wolkenstockwerke” (Schematic Diagram 
of Cloud Layer). Source: http://commons.wikipedia.org

http://commons.wikipedia.org
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Level 1 B Radiances 

15 May 2008 , 1610 UTC

MQD021 KM.A2008136.1615.005.2008137024540.hdf

Level 1 B Radiances 

16 May 2008 , 1655 UTC

MQD021 KM.A2008137.1700.005.2008138023140.hdf

(a) (b)
Fig. 1.2: Terra MODIS images of clouds over the Great Lakes: (a) 15 May 2008, 

and (b) 16 May 2008. Data for figure provided by NASA.



occur on time scales smaller than the life of the cloud (Wayne, 1991).

Perhaps the simplest statistic relevant to global cloud systems is average global 

cloud coverage. This statistic has been estimated a number of times, and each estimate is 

perforce different due to the use of different instruments during different time periods.

For one example, Mace et al. (2009) estimated average global cloud coverage (using 

~2 km CloudSat footprints) of 76% during 2006 with an associated annual cycle of 

monthly means approximately 3% in magnitude. Also, using 22 years (1979-2001) of 

National Oceanic and Atmospheric (NOAA) High Resolution Infrared Radiometer 

Sounder (HIRS) data, Wylie et al. (2005) estimated fairly steady global cloud coverage of 

about 75%. However, a reprocessing of the HIRS datasets from 1995 to 2009 by Menzel 

et al. (2010) suggests downgrading that estimate to about 80% over ocean and about 55% 

over land (for a total average coverage of about 73%). Stubenrauch et al. (2010), using a 

6-year global climatology collected using the Atmospheric InfraRed Sounder (AIRS) 

instrument aboard the NASA Aqua satellite, estimated global cloud coverage between 

66% and 74%—the coverage estimate depending on how partial cloudiness is treated 

within individual AIRS footprints. This particular study illustrates the fact that cloud 

coverage estimates depend on instrument-specific factors (such as viewing angle, 

footprint size, and satellite orbital parameters) and on decisions made regarding the 

processing of data and the use of ancillary information.

For a further example illustrative of these last effects, consider only the Tropics— 

specifically, 20°S-20°N latitude. Jacobowitz et al. (2003) estimated, using nearly 20 

years of Advanced Very High Resolution Radiometer (AVHRR) measurements merged 

to form the Pathfinder Atmosphere (PATMOS) dataset, fairly steady average cloud cover

5



at around 50% (with an apparent seasonal cycle). For comparison, they note that a 

similar estimate based on the International Satellite Cloud Climatology Project (ISCCP) 

(Rossow and Schiffer, 1999) dataset from 1985 to 1993 had a mean value of 63% for the 

Tropics with a definite downward trend. However, with regards to this downward trend, 

Evan et al. (2007) suggest that difficulties in the ISCCP record (such as relate to satellite 

viewing problems) may mean that the observed trend cannot be taken at face value (see 

also Amato et al., 2007).

Challenges in reconciling something as seemingly basic as estimates of global 

average cloud cover from different orbiting measurement systems would seem to indicate 

that more specific observations related to the climatology and to the climatological 

effects of clouds encounter similar challenges. However, a number of the basic patterns 

of cloud systems are well established. The global picture of cloudiness is typified by 

climatological patterns that vary more or less by latitude (e.g., Bony et al., 2006). A 

time-averaged view shows large-scale cloud systems determined mainly by dynamical 

features such as synoptic-scale disturbances in the midlatitudes, areas of deep convection 

in the Tropics, and large-scale subsidence in the subtropics (Fig. 1.3). It is the statistics 

of these dynamical features and of their associated cloud patterns that are most important 

to climate studies (McKague and Evans, 2002). In their largest spatial scales, then, and 

especially for climatologic time scales, dominant cloud patterns and properties take on 

different basic, defining characteristics within different climate regimes. These climate 

regimes may be approximately identified with three geographical divisions: the Tropics, 

the midlatitudes, and the polar areas.

In their broadest, average sense, Tropical cloud patterns stem from the!dominant

6
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Fig. 1.3: A composite image of typical global cloud conditions from space. 
(Courtesy of NASA Goddard Space Flight Center).



Hadley circulation (Larson et al., 1999). General rising motion near the equator results in 

high, convective clouds and in cirrus that are associated either directly or indirectly with 

detrained water vapor or particles from convective towers, while regions of subsidence 

are marked by vast areas of boundary-layer trade cumulus clouds (Bony et al., 2006), 

often with overlying cirrus (Schwartz and Mace, 2010).

Large-scale dynamics are the main drivers of cloudiness in the higher latitudes 

(Cotton, 1990). Cloud systems are often generated in conjunction with synoptic-scale 

baroclinic instabilities, the particular forms and distributions of cloudiness depending 

upon particulars of the dynamical situation (e.g., Norris and Iacobellis, 2005). Clouds in 

polar areas possess a number of unique features. Here, synoptic-scale systems also 

generate much of the cloudiness, but in many cases boundary layer stratiform clouds are 

found where warmer, moister air is entrained from lower latitudes over cold surfaces 

(Curry et al., 1996). Unique types of polar boundary layer clouds include stable, mixed- 

phase clouds (often with light ice crystal precipitation) and “clear-sky” ice precipitation 

in stable winter skies, wintertime ice clouds formed over cracks in the ice, spring and fall 

mixed-phase clouds, and multilayered summertime stratiform clouds (Curry et al., 1996).

The ubiquity of cloud systems both leads to and stems from the numerous roles 

they play within the climate system. For instance, as noted, clouds play a major role in 

Earth’s radiative energy balance: they are, in general, absorbers and radiators of 

longwave terrestrial radiation (resulting in “greenhouse” warming) and reflectors of 

shortwave solar radiation (resulting in cooling). Measured at the top of the atmosphere 

(TOA), these two effects compete with one another, and in areas of tropical deep 

convection, they nearly cancel one another (Kiehl and Ramanathan, 1990; Kiehl, 1994;

8
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Hartmann et al., 2001; Potter and Cess, 2004; Allan, 2011).

A basic, global description of the modulation of solar and terrestrial radiation 

streams that focuses on the TOA is cloud radiative effect (CRE), expressed as (Hartmann, 

1994)

That is, the change in net radiation at the TOA due to cloudiness ( AR) is the difference 

between the change in absorbed shortwave solar radiation ( A S a b s )  and the change in 

upwelling longwave terrestrial radiation (F t o a ) .  In the global average, if AR is 

negative, then the Earth experiences a net loss of radiative energy at the TOA and must 

cool; the opposite is true if AR is positive. Using data from the Clouds and Earth’s 

Radiant Energy System (CERES) program (Wielicki et al., 1996; Loeb et al., 2007), 

Allan (2011) investigated mean CRE at the TOA during the years 2001-2007. That 

study found the strongest shortwave cloud effects over the maritime continent, over 

oceanic storm tracks, over large maritime stratocumulus decks, and over the Inter- 

Tropical Convergence Zone (ITCZ). It also found the strongest longwave cloud effects 

over the maritime continent (nominally cancelling, as previously discussed, the 

corresponding shortwave effect) and over equatorial South America and Africa.

On its own, however, CRE at the TOA is probably too simple a description of 

cloud radiative effects. Longwave heating and shortwave cooling effects at the surface 

and on an atmospheric column are distributed, depending greatly on such factors as the 

vertical distribution of cloud and of associated water vapor fields (Paltridge, 1980; 

Stephens, 2005; Mace et al., 2009), and these effects are important to the coupling of the



hydrological cycle with the planetary energy budget (Allan, 2011).

The NASA Surface Radiation Budget (SRB) dataset (Stackhouse et al., 2011) 

applies radiative transfer models to reanalysis data from the Goddard Earth Observing 

System Data Assimilation System (GEOS DAS; Bloom et al., 2005) and to ISCCP 

satellite cloud observations in order to characterize the planet’s long- and shortwave 

radiation budgets from the surface to the TOA. SRB radiative flux estimates are 

constrained using surface and satellite measurements. Allan (2011) used this data product 

to sample clear sky fluxes and then to estimate CRE in the atmosphere, at the surface 

(these two abilities being advantages of this approach), and at the TOA [which produced 

similar results to TOA CRE as using CERES satellite data from 2001 to 2007—see Figs.

3 and 4 in Allan (2011)]. Using this dataset in a global average over several years, the 

strongest shortwave cloud radiative effects were found to be approximately -50 Wm-2 

over the large, maritime stratocumulus cloud decks and over midlatitude storm tracks.

The global, average cloud radiative effect was found to be one of cooling. Global, multi­

annual values for CRE were found to be approximately -21 Wm-2 at the TOA, -20 Wm-2 

at the surface, and -1 Wm-2 within the atmosphere.

Looking at zonal means [see Fig. 5 in Allan (2011)], Tropical clouds cool the 

surface and heat the atmosphere, thus helping to establish radiative-convective 

equilibrium (Manabe and Strickler, 1964). Net CRE within the atmosphere is positive in 

the Tropics and negative everywhere else. At higher latitudes, longwave emission from 

cloud base to the surface results in cooling the atmosphere and in heating the surface. At 

most latitudes, net surface CRE is negative, polar latitudes being the exception. Though 

the analysis of Allan (2011) was not extended to the radiative effects of particular types

10



of cloud systems, it was pointed out therein that it certainly could be.

Considering individual cloud systems, it is found that they are organized on the 

synoptic and mesoscales, where large-scale weather patterns to a great extent control 

their types, arrangements, and lifetimes (Stephens, 2005). A preliminary work by Jakob 

and Tselioudis (2003) used cluster analysis (e.g., Anderberg, 1973) on the ISSCP cloud 

top pressure-cloud optical depth data product in order to categorize cloud regimes in the 

Tropical Western Pacific region via the clustering of bivariate histograms of estimated 

cloud layer top pressure and cloud optical depth. Building on that earlier study, Rossow 

et al. (2005) performed a statistically rigorous cluster analysis on the same ISCCP dataset 

(spanning the years 1983-2004) throughout the entire Tropics within 2.5° boxes (which 

they state to be at the upper end of the mesoscale). In so doing, they categorized 

observed clouds into six distinct “weather states” throughout the whole Tropics. These 

weather states span cloud regimes from deep convective to low-level marine stratus and 

are associated with distinct tropical atmospheric dynamic states (Jakob and Tselioudis, 

2003).

More recently, Tselioudis et al. (2013) extended the procedure of Rossow et al. 

(2005) by using the global ISCCP cloud top pressure-optical depth data from July 1983 to 

June 2009 in order to identify weather states at all latitudes. The same rigorous K-means 

clustering approach was applied to joint histograms of cloud top pressure and optical 

depth, and 11 distinct weather states were found, some of which coincided with states 

found in the earlier tropical study (Rossow et al., 2005). A 12th, clear-sky state was 

added which had only a 1.9% relative frequency of occurrence. Concurrent CloudSat 

radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

11



(CALIPSO) lidar data (these satellites will be described in more detail later) were used to 

investigate the statistics of the vertical structures of the identified weather states, the 

results of which indicated that the weather states were not only distinct but more or less 

correct in their respective classifications. To summarize briefly the natures of the 

weather states identified in Tselioudis et al. (2013), States 1 and 2 are convective regimes 

(State 1 is more characteristic of tropical convective systems and State 2 of midlatitude 

convective systems). State 3 is comprised more of cumulus congestus, convective anvil 

clouds, and disordered convective systems. States 4 and 5 are dominated by midlevel 

clouds. States 9 through 11 are dominated by marine stratocumulus and stratus decks, 

and State 6 is dominated by cirrus. State 7 is dubbed the “fair weather” state.

The centroids of the clusters given by Tselioudis et al. (2013) are not to be taken 

as strict guidelines within the individual weather systems on locations of cloud tops, on 

cloud optical depths, or on the occurrence of the cloud types defined in Rossow and 

Schiffer (1999), but should rather be thought of as “representing distinctive mesoscale 

distributions or mixtures of cloud types.” [Indeed, difficulties in the ISCCP classification 

of individual cloud scenes have been identified—see, e.g., Mace and Wrenn (2013).] Use 

of such weather states makes a better method for tracking trends in clouds than does 

looking at the occurrence of specific cloud types and of their coverages, and because the 

states are distinctive, they can be tracked through time and space and can be used to 

composite other, cloud-related atmospheric variables (Tselioudis et al., 2013). To 

demonstrate the study of atmospheric dynamics and of CRE in conjunction with the 

defined weather states, Tselioudis et al. (2013) used them to composite both large-scale 

500 mb vertical velocities from the European Centre for Medium-Range Weather

12



Forecasts (ECMWF) Interim Re-Analysis (ERA) and CRE computed from the ISSCP 

flux data (see their Figs. 5 and 7). Also, to demonstrate the study of the long-term 

variability of the weather states, they plotted anomalies in the relative frequencies of 

occurrence of the states over the study period (see their Fig. 6). Their particular results 

are of less interest here than is their demonstration of the various analysis capabilities.

Cloud Feedbacks

CRE is the result of a complex set of coupled processes. Where and how clouds 

form is largely a result of large-scale atmospheric motions. Clouds affect the distribution 

of atmospheric radiative and latent heating and since, on interannual time scales, 

atmospheric radiative and convective processes are often considered to be in approximate 

balance (Manabe and Strickler, 1964), changes in the distribution of cloudiness and of its 

interaction with the water vapor field affect changes in hydrological processes. By 

operating on latent and radiative heating distributions and on the hydrological cycle, 

cloudiness then feeds back on the large-scale circulation (Stephens, 2005). A 

consideration of the climatic effects of cloudiness thus must involve more than just the 

radiative properties of clouds: it must also attempt to account for as many of the 

significant feedback avenues between clouds and the other elements of the climate 

system as possible.

Feedbacks are often described mathematically in terms of the sensitivity of the 

globally averaged surface temperature to any one of a number of climatologic forcings. 

For example, as in Stephens (2005), if in equilibrium the net radiation budget at the TOA 

is near zero, then it may be stated that

13



AR = d R Ae + — AT = 0. (1.2)
de dt

14

Two components of AR are considered in the expression above: one due solely 

to a change in some controlling action (such as an increase in atmospheric carbon dioxide 

levels) Ae and another due to the total change in AR due to the resulting adjustment of 

surface temperature. Feedbacks between surface temperature and some set of climate 

factors— {xj, many of them related to clouds—find expression within the total derivative 

dR— . If an (incomplete) application of the chain rule 
d T

dR dR v , dRdx.
I T = < 1 3 )

is used and if the radiative effect of the control action is approximated by

AQ = Ae, (1.4)
d£

then by algebraic manipulation the expression for the total resulting surface temperature 

change may be written as

KAQAT  = (1.5)

Here
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is called the closed-loop gain, and the set

are called feedback factors. According to this approach, feedback relationships between 

various aspects of the global cloud field and temperature (often surface temperature) can 

be expressed via these feedback factors, though there are other ways to formulate them 

(e.g., Paltridge, 1980). However, the isolation of any of the open loop or feedback effects 

of clouds (or, in other words, of any of the partial derivative terms in Eq. 1.7) from 

observations alone is a statistical impossibility, so model-based studies must be used in 

order to discern these effects (Stephens, 2005).

This view of cloud feedbacks is evidently borrowed from the field of control 

engineering (a subdiscipline of electrical engineering). Specifically, it is an expression of 

a linear feedback network (Belanger, 1995). A simple feedback network is shown in Fig 

1.4a, and the input, forward, and feedback filters are represented mathematically by their 

Laplace transforms [C(s), H(s), and F(s), respectively]. It is important to recognize that 

within this representation is the implicit assumption that all of these filters are both linear 

and time-invariant. The time-invariant assumption requires the feedback factors and the 

closed-loop gain both not to be functions of time, which assumption probably would not 

bear close examination. Figure 1.4b shows Eq. 1.5 in this linear feedback 

configuration—note that the filter response functions are constant and that they are just 

the derivative terms from Eq. 1.7. Beside the linear and time-invariant assumptions 

already mentioned, two other critical assumptions are also implicit in Fig. 1.4b: 1) that 

the impulse responses of the several filters are memory-less (implied by the use of
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(a) (b)

Fig. 1.4: Liner feedback network theory applied to cloud feedbacks. A general 
linear feedback network (a), and Eq. (1.5) diagrammed as a linear feedback

network (b).



constant-value transfer functions) and 2) that the feedbacks are both independent and 

parallel to one another (seen in the fact that the derivatives of xt above are not expanded 

to include interrelationships among the several x ’s, or also in the placement of the 

feedback factors f  within the diagram). Use of this theory therefore involves a number of 

pitfalls, perhaps the most dangerous being that a linear, memory-less explanation is used 

for a system that is grossly nonlinear and that has a long memory.

Furthermore, there is a “system identification” problem (Stephens, 2005): a 

thorough description of the system, including all relevant inputs and outputs, is required 

but is not accounted for in this representation. An easily seen manifestation of this 

problem is the independent, parallel treatment of feedbacks that in reality bear nonlinear 

relationships with one another (Bony et al., 2006). Ultimately, though, the relationship 

between globally averaged surface temperature and a set of cloud processes that occur 

and interact on several temporal and spatial scales is certainly not unique. Thus, 

according to linear feedback control theory, the system as defined in Fig. 1.4 is not 

“observable” (Belanger, 1995), or, in other words, the state of the system cannot be 

determined from measurements of average surface temperature but must instead be 

determined via a multivariate analysis (Aires and Rossow, 2003).

It is therefore difficult to imagine this construction of cloud feedbacks to be truly 

useful either as a way to predict how a climate model will respond given a disturbance or 

as a way to diagnose, based upon the response of modeled global cloud systems, the 

efficacy of climate models given a disturbance. Aires and Rossow (2003) show that it is 

not and state that the results of an analysis couched in linear feedback theory can be 

highly misleading and amount at best to a “schematic” representation of feedbacks in an

17



equilibrium climate. As an alternative to using model runs to estimate constant, 

univariate feedback factors, they lay out a method for estimating the multivariable time- 

and state-dependent sensitivities (basically, as a Jacobian of the partial derivatives from 

Eq. 1.3) of a nonlinear, dynamical climate system.

Essentially, the method of Aires and Rossow (2003) applies a nonlinear 

regression technique (their technique of choice being neural network analysis) to estimate 

state-dependent system sensitivities by making use of as many observations of a climate 

system—in as many of its different states and through as many of its possible state 

transitions—as can be made. They demonstrate the efficacy of their method using a low- 

order Lorenz atmospheric model (Lorenz, 1984) whose sensitivities can be computed 

analytically.

Though it would require the manipulation of immense amounts of data, this 

method would provide a more realistic and therefore a more useful framework for 

performing intercomparisons of the cloud-related behaviors of either GCMs or of cloud 

resolving models (CRMs) “by comparing the sensitivities of the variables of the 

[systems] and their state dependence” (Aires and Rossow, 2003). It would also provide a 

more realistic framework for evaluating the behavior of models, especially of CRMs, in 

light of actual cloud data or also a framework for using cloud data to examine the physics 

underlying sensitivities diagnosed from models (Aires and Rossow, 2003). For the latter 

two purposes, there needs to exist a massive database of reliable measurements of 

climatologically relevant cloud micro- and macrophysical observations. In implementing 

such a framework, use of the full SRB dataset could be helpful in constraining feedback 

processes [as pointed out by Allan (2011)]. However, that dataset’s characterization of
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clouds derives from ISCCP measurements and is limited in its details of cloud 

microphysical information, and, as already pointed out, ISCCP classifications of specific 

cloud scenes are problematic. Considering the former purpose, model intercomparisons 

for the evaluation of cloud predictions increase in utility as the accuracy of the methods 

for modeling clouds increases. For this to occur, it will be seen in the next section that, 

again, there needs to exist a massive database of reliable measurements of 

climatologically relevant cloud micro- and macrophysical observations.

Cloud Modeling

Many cloud-related processes and effects occur at scales smaller than the 

resolution of numeric models and must therefore be parameterized in terms of modeled 

quantities that are resolved. A parameterization expresses the statistical knowledge of the 

influence of an unresolved quantity on those that are resolved while expressing the 

unresolved quantity as a function of the resolved quantities (Hack, 1992). A 

parameterization is thus perforce only an approximation to the actual statistical 

relationship, utilizing various “idealizations and closure assumptions”; and due to 

computational costs, it is often the case that only the bulk properties of clouds are 

parameterized (Randall et al., 2003). What is sought for in a model is a simple 

parameterization scheme that describes the most important processes—for instance, cloud 

roles in the water cycle and in radiation (Ryan, 2000) as well as the evolution of cloud 

systems. Often, the desired quantities include cloud fraction and water content, spatial 

distribution of water content, precipitation, liquid and water vapor advection, and cloud 

microphysical properties (such as effective radius). Furthermore, different types of 

clouds can require different parameterization philosophies. For example,
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parameterization of broad, stable stratiform layers is often performed as a function of 

relative humidity, with bulk parameterization of condensed water (Randall et al., 2003). 

Convective clouds are more complicated to parameterize as they must be tied to 

convective processes, fluxes of water vapor, and interactions with and creation of other 

types of clouds such as cirrus anvils and stratus layers (Randall et al., 2003).

Furthermore, they do not exist in broad layers, so their partial coverage must somehow be 

taken into account. There are a number of different approaches to the parameterization of 

realistic cloud fields.

One of the most basic techniques in use is diagnostic parameterization, wherein 

cloud bulk properties within a grid cell are diagnosed (specified) from the resolved flow. 

Bulk properties thus diagnosed can include model grid-box cloud fraction and water 

content as well as the mixing ratios of both cloud water and precipitating water. This is 

often performed in terms of large-scale variables such as relative humidity and lapse rate, 

with convection, cloudiness, and precipitation being triggered according to semi- 

empirical relationships (Bony and Emmanuel, 2001).

Prognostic parameterization is a second technique. In this approach, the rates of 

change of quantities such as cloud water mixing ratio and grid-box cloud fraction, rather 

than the quantities themselves, are diagnosed. These quantities thereby become 

themselves prognostic (predicted) variables at each model grid point. A classic example 

of the prognostic parameterization of the two quantities just mentioned is found in Tiedke 

(1993). In skeletal form, the equations given there are

sources -  sinks (1.8)



d t cloud coverage ] = advection + sources -  sinks (19)
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Statistical parameterizations constitute a third approach, built upon the first two.

In a statistical scheme, the variability of certain conserved quantities is expressed via a 

joint probability density function (pdf) whose moments must be specified (Xu and 

Randall, 1996). Desired model quantities, such as cloud fraction, are then derived from 

the joint pdf. Consider as an example a parameterization of convective cloudiness 

proposed by Bony and Emanuel (2001). Based on results from Xu and Randall (1996) 

that indicated the distribution of conservative cloud variables to be skewed according to 

domain size, cloud regime, and altitude, Bony and Emanuel (2001) describe the 

variability of total water content with a normalized lognormal distribution. This 

distribution allows for varying amounts of skew, given an upper limit and a specification 

of the distribution’s moments. Large-scale saturation values, along with water produced 

by convection within the model grid-box [as computed by a convective model (Emanuel 

and Zivkovic-Rothman, 1999)], are used to solve a set of simultaneous equations for the 

normalized distribution’s various parameters. From these, the distribution’s moments can 

be computed, and from the moments, the parameterized cloud fractions and average 

water content can then be computed. Of course, one of the factors determining the 

efficacy of a statistical approach is an accurate statistical knowledge, from 

comprehensive observations, of the conserved variables for which pdfs are assumed.

A modern parameterization scheme will likely use elements of all three of these 

different parameterization types. For example, Wilson et al. (2008) present a scheme for 

a prognostic grid-box volume cloud fraction and condensate parameterization for the



United Kingdom Met Office’s Unified Model. Condensate and cloud fractions are 

parameterized for liquid, ice, and total cloud (from which may be derived the 

corresponding quantities for mixed-phase cloud). As an example, the equations for the 

rates of change of gridbox-mean liquid condensate and liquid cloud fraction from Wilson 

et al. (2008) are repeated here:

22

dt dt 

d q cl

+
advection

dt
+ ^c,

radiation
dt

+
dt

dt
+

dqc

boundary layer
dt

+ dqa
orographic drag

dt
+

microphysics

dt

(1.10)

adiabatic expansion

dC dC,
dt dt 

dC

+ ■
dC,

advection
dt

+dC

dt
+

radiation

dC,

dt
+dC,

boundary layer
dt

convection

dC

dt

+
orographic drag

dt

microphysics

dC,+
dt

(111)

adiabatic expansion

Briefly, the components of these two equations express total changes in the quantities of 

interest due to semi-Lagrangian advection from neighboring model grid boxes to the 

effects of short- and longwave radiation, to convective processes, to cloud and 

precipitation microphysics, to boundary layer processes, to orographic drag, to erosion of 

clouds from entrainment, and to pressure changes from large-scale ascent within the grid- 

box. Wilson et al. (2008) lay out an intricate and detailed parameterization scheme. It is 

not purposed here to explain it in detail, but instead to illustrate some issues that are 

relevant to the theme of this introductory chapter. Therefore, a few of the underlying 

principles of the scheme used by Wilson et al. (2008) will be briefly discussed.

First, though Wilson et al. (2008) formulate a prognostic parameterization, it is



built upon an underlying pdf of water [as is, they point out, the scheme of Tiedke (1993)]. 

Within a grid-box, condensed and total water variables are described both by their mean 

values and by pdfs describing variations from their respective means. Predicting 

variables based on physical processes and allowing the water pdf to be governed by the 

physical processes, as opposed to specifying a fixed water pdf, makes it possible to 

account for different processes’ dominating in different regions of the grid-box (Wilson 

et al., 2008). Depending on what physical process is being parameterized (see Eqs. 1.10 

and 1.11), the water pdfs are explicitly, semi-explicitly, or only implicitly referenced.

The ways in which they are used may be examined by looking at certain aspects of the 

shortwave radiation, convection, and cloud erosion terms (Wilson et al., 2008).

Warming and evaporation due to shortwave radiation are treated by Wilson et al. 

(2008) as a “homogenous forcing.” The result is that temperature and total condensed 

water change uniformly throughout the model grid-box, and the underlying water pdf 

(assumed to have a “tophat-like” shape) is unaffected.

Convection results in changes in cloud fraction (liquid, ice, and total) due to 

detrainment from convective plumes via a process dubbed by Wilson et al. (2008) as 

“injection forcing.” A distinct water pdf is assumed for each of the clear and cloudy 

portions of a grid-box. The new fraction of cloudy air is computed, which computation 

implicitly results in a single, adjusted water pdf for the grid-box.

The erosion term is basically the opposite of convective injection and accounts for 

the entrainment of dry air into cloudy air. Wilson et al. (2008) model this process as 

resulting in “a slow reduction in width of the background [water] pdf.” Relative change 

in pdf width is explicitly parameterized using various modeled and empirical parameters,
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and from this comes d q  
dt

j  dC and ——
dt

(the lack of subscripts indicating that similar
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expressions are used for liquid, ice, and total cloud).

Assumptions made in a parameterization can both lead to and reflect uncertainties 

in cloud processes. Within the presently discussed parameterization, we see that 

fundamental assumptions are made relating to the shape and evolution of the grid-box 

water pdf. As an example of accompanying uncertainty, Wilson et al. (2008) 

acknowledge that assuming the grid-box water vapor distribution to be uniform for ice 

processes can have a significant effect on ice-related variables. More assumptions can be 

seen in their large-scale precipitation scheme, which affects changes in liquid, ice, and 

total cloud fractions (including transitions from one type of cloud to another) via 

parameterization of several microphysical processes. These processes include 

homogenous and heterogenous ice nucleation; ice particle sedimentation; vapor 

deposition and sublimation; riming; condensation, melting, and evaporation; and 

precipitation particle growth by accretion and collision/coalescence. Many of these 

processes are assumed not to change cloud volume fraction within a grid-box. Also, 

affecting the modeling of mixed phase cloud, changes in ice cloud fraction are assumed 

to be randomly overlapped with coincident liquid cloud.

Furthermore, in any parameterization, critical uncertainties are introduced through 

assumptions about ice crystal microphysics. For instance, Wilson et al. (2008) use ice 

crystal fall speed as a component in computing their large-scale precipitation processes. 

Parameterizations of ice crystal terminal velocity carry with them significant 

uncertainties (see, e.g., Mitchell, 1996; Heymsfield et al., 2013). In any case, whenever 

radiative transfer is to be parameterized, some assumptions concerning cloud PSDs, and



in the case of ice clouds concerning ice particle habit, must be made (see, e.g., Ryan, 

2000).

As an example of this last point, consider a bulk property parameterization 

scheme proposed by Ryan (2000) for ice clouds, designed to unify the diagnosis of bulk 

variables, radiation, and precipitation processes. Within a grid cell, a set of coupled 

differential equations serve as prognostic equations for the bulk cloud quantities of 

temperature, water vapor mixing ratio, and cloud and precipitation water mixing ratios. 

The particle size distributions of nonprecipitating particles are based on an empirical 

power law fit to data collected by Heymsfield (1977) and processed by Platt (1997), and 

the size distribution of precipitating particles is described by the Marshall-Palmer 

distribution (Marshall and Palmer, 1948). The various parameters of these two size 

distributions are treated as functions of temperature and of cloud type (dry cirrus, frontal 

cirrus, or midlevel clouds), the functional relationships thereof being based upon in situ 

observations. The actual numbers of particles in each particle regime are then diagnosed, 

and from this diagnosis and from the bulk parameters extinction efficiency and particle 

effective diameter are computed as the main radiative parameters. However, historical 

datasets [including those used by Ryan (2000)] of cloud ice particle size distributions are 

rife with uncertainties (Lawson, 2011). Here again, then, we return to a recurring theme: 

the efficacy of parameterization schemes, such as those of Ryan (2000) and Wilson et al. 

(2008), depends heavily on obtaining a massive database of reliable measurements of 

climatologically relevant cloud micro- and macrophysical observations. These 

observations must be capable of addressing matters such as ice particle sedimentation 

velocity and ice particle radiative properties, and they must be able to tie cloud
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microphysics to atmospheric processes.

At this point, it is well to consider a more exhaustive, computationally expensive 

approach to cloud parameterization called multiscale modeling—or 

“superparameterization”—described by Randall et al. (2003). The basic idea is to embed 

a cloud-resolving model (CRM) within the grid-boxes of a coarse-resolution GCM. This 

concept comes with a number of advantages (Randall et al., 2003). To begin with, many 

processes that must be parameterized conventionally within a GCM grid-box, such as 

deep convection, cloud overlap, and distributions of fractional cloudiness and of 

precipitation, can be explicitly resolved by a CRM. Some of the processes operating on 

various temporal and spatial scales, such as large-scale dynamics, cloud dynamics, and 

radiative transfer, can then be explicitly coupled. Furthermore, with their high resolution 

and their ability to couple scales together, CRMs can be used for the testing and 

development of conventional parameterizations.

Superparameterization is not a panacea, though. CRMs cannot resolve 

everything, and so a number of things must still be parameterized within them by 

conventional means, notably details of cloud microphysics and of radiative transfer. This 

approach also comes at a very high computational cost since the CRM must be run within 

every grid-box at time steps that are able to resolve changes in the governing cloud 

microphysics. For this cause, two-dimensional CRMs that do not span the entirety of a 

GCM grid cell are typically used along with periodic boundary conditions. Of course, 

and to return to a now oft-repeated point, in order for CRMs to be used in the 

development of conventional parameterizations, they must be validated with data to 

ensure that they are realistic (see, e.g., Khairoutdinov and Kogan, 1999; Polkinghorne et
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al., 2010; Negri et al., 2014).

Many of the intricacies involved with the modeling of clouds begin to be clear. 

Parameterizations of the processes that tie the various scales occupied by clouds together, 

such as turbulence, detrainment, convection, radiative and dynamic interactions, and 

mesoscale organization (Randall et al., 2003), need to be accurate themselves and to be 

properly interconnected with one another. Furthermore, in order to compute CRE in a 

model, the radiative effects derived from the microphysical properties of modeled clouds 

must be well characterized; for as seen, computing radiative transfer within a modeled 

cloud as a function of the cloud’s bulk quantities requires beginning with correct 

assumptions about cloud microphysical properties and of the interactions of radiation 

with the cloud on this scale. In truth, the solidity and completeness of any such set of 

assumptions currently in use could be reasonably questioned, and this is particularly true 

for cirrus, for boundary layer clouds, and for convective clouds (e.g., Randall et al.,

2003). Though it is a matter of broad agreement that one of the keys to improving 

numeric models of the Earth’s climate is the proper formulation therein of all processes 

related to the atmospheric hydrological cycle (especially the interactions between 

aerosols, clouds, and precipitation), beyond this agreement may be found a varied array 

of proposed parameterization schemes meant to deal with the issue.

Differences in parameterization schemes among models lead as a matter of course 

to differences in model outputs, manifesting themselves as differences in such outcomes 

as cloud type frequency, seasonal variation of cloud cover, cloud water content, and, 

ultimately, predicted global sensitivity to such forcings as increased carbon dioxide (Li et 

al., 2012). It therefore comes as no surprise that different numeric models give
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inconsistent values for cloud feedback factors, even when the feedback factors are 

computed in a consistent manner from model to model (Soden and Held, 2006).

The Particular Problem of Cirrus Clouds

The documented spread in estimated cloud feedback factors (Eq. 1.7) between 

GCMs is mostly due to inconsistencies (born of uncertainties) between models in their 

treatments of marine boundary layer clouds (Bony and Dufresne, 2005; Zelinka and 

Hartmann, 2010). There is, however, a particular problem with the modeling of ice- 

phase (cirrus) clouds. To begin with, substantial disagreement exists between model 

simulations on the amount of global ice cloud (Li et al., 2005; Li et al., 2007; Waliser et 

al., 2009; Li et al., 2012). Using model output from the Coupled Model Intercomparison 

Project Phase 3 (CMIP3), Waliser et al. (2009) demonstrated differences as high as a 

factor of 20 between model simulations of globally averaged, annual mean values of 

cloud ice water path. Even after removing two outlier models from the dataset, the 

differences are still about a factor of 6 (see their Fig. 3). In contrast, model simulations 

of global averages of cloud fraction, average precipitable water, and average precipitation 

fared very well (relatively speaking) in their intercomparison. When geographical 

distributions of average ice water path were considered, intermodel differences of up to 

two orders of magnitude were found (see their Fig. 3). An updated study (Li et al., 2012) 

using model output from the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

found significant improvements in cloud ice simulations from those in CMIP3—both in 

the fidelity of the various models one to another and to satellite observations of cloud ice 

that were not available at time of the Waliser et al. (2009) study. However, Li et al. 

(2012) yet found factors of 2 to 10 differences in annual mean maps of cloud ice water
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path among the models and the satellite observations. Both studies note that, in order for 

the sets of models to simulate correct TOA energy flux balances while nonetheless 

demonstrating such large inconsistencies in simulated cloud ice, they must suffer from 

other, compensating errors in order to meet the TOA energy budget constraints imposed 

on them by the CERES dataset. Furthermore, Waliser et al. (2011), in a prelimary study, 

showed that the generally poor treatment of precipitating ice in models results in biases in 

the radiation balance in precipitating regions. The certain result is to cause errors in 

modeled column heating rates, and therefore, in modeled atmospheric circulation 

(Waliser et al., 2011). This result being the case for precipitating ice, it is surely also the 

case for cloud ice. As it was put in that last paper concerning the satisfactory simulation 

of TOA energy flux balances, it must be that the models are “getting the right answers for 

the wrong reasons.” The particular problem of cirrus is therefore threefold.

First, if model estimates of feedback factors vary widely due to uncertainties in 

boundary layer clouds, why do models not seem to “care” about how well ice clouds are 

simulated, even when the difference between simulations is as high as a factor of 6? If 

models, in order to fit measured TOA energy balance constraints, effectively tune their 

own cirrus parameterizations (Li et al., 2012) and thereby alter other of their modeled 

processes (Waliser et al. 2011), then large amounts of ice cloud data are needed in order 

to diagnose the effects of these shortcomings (Aires and Rossow, 2003).

Second, better model parameterizations of processes involving ice clouds are 

evidently needed. From the discussion above, it can be seen that reliable measurements 

of cirrus cloud microphysics (such as accurate information on cloud PSDs and on ice 

particle fall speeds), in relation to the physical processes that control them, are needed.
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Furthermore, even if cirrus processes are both well understood and well modeled, the 

problem of computing radiative transfer in them is intricate and incompletely 

characterized (see, e.g., Kristjansson et al., 2000). Computations are dependent on 

particle sizes, shapes, and orientations, and also upon the complicated geometries of 

cloud fields that contain multiple types of clouds at multiple levels and with multiple 

horizontal and vertical extents. Therefore, the needed measurements must also allow for 

better characterization of radiative transfer within cirrus clouds.

Third, understanding of cloud physical and dynamic processes is most meager for 

cirrus clouds (Jakob, 2002) due to several challenges that include (Del Genio, 2002): 1) 

the occurrence of cirrus over a wide range of optical depths and over a wide range of 

altitudes, 2) the dependence upon geographical location of elements of the dynamic 

processes involved in cirrus formation and maintenance, and 3) the difficulty in 

observing cirrus (either directly or indirectly). As Jakob (2002) puts it: “If cirrus 

occurrence and microphysical and radiative effects were well understood, a 

parameterization could be designed. However, ice clouds are probably the poorest 

observed in the entire spectrum of clouds.”

To sum up, and to reiterate, addressing the particular problem of cirrus clouds 

requires the designing of programs specifically designed to produce a massive database 

of reliable measurements of climatologically relevant cloud micro- and macrophysical 

observations. These observations must be capable of addressing microphysical matters 

such as ice particle sedimentation velocity and ice particle radiative properties, they must 

be able to tie cloud microphysics to atmospheric processes, and they must represent the 

wide variety of cirrus clouds that occur within different climate regimes and weather
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systems. In the next section, some important platforms for the observation of cirrus will 

be described.

Cirrus In Situ Measurement Campaigns

A number of intensive campaigns designed to observe various sorts of cirrus 

events have been mounted, featuring in situ measurements made by aircraft in 

conjunction with data taken by various remote sensors. Examples of such campaigns 

include the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area 

Experiment (CRYSTAL-FACE) in 2002; the Middle Latitude Cirrus Experiment 

(MidCiX) in 2004; the CALIPSO-CloudSat Validation Experiment (CC-VEx); the 

NASA African Monsoon Multidisciplinary Analyses (NAMMA) campaigns in 2006; the 

Tropical Composition, Cloud, and Climate Coupling (TC4) campaign in 2007; the Small 

Particles in Cirrus (SPartICus) campaign in 2010; and the Midlatitude Airborne Cirrus 

Properties Experiment (MACPEx) in 2011. Uses of ice particle in situ data, taken from a 

wide variety of such campaigns, abound in the literature and are diverse in their scope 

and objectives. A few examples will help provide context for this work.

A small cross section of the various kinds of ice microphysical studies includes 

Heymsfield et al. (2004), who used data from CRYSTAL-FACE and from the 

Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Intensive 

Observation Period (IOP) of 2000 to study effective ice particle densities (i.e., the 

densities of spheres with crystal-equivalent masses and diameters equal to their 

respective crystal maximum dimensions), and Schmitt and Heymsfield (2005), who used 

data from CRYSTAL-FACE and from the First ISCCP Research Experiment Phase II 

(FIRE II) in 1991 as part of a study to model the total surface area of populations of ice
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crystals based on their projected areas. A number of microphysical studies have focused 

on ice nucleation; e.g., Prenni et al. (2007) used data from CRYSTAL-FACE and 

Heymsfield et al. (2009) used data from seven field programs [CRYSTAL-FACE, three 

NASA Tropical Rain Measuring Mission (TRMM) campaigns in 1998-1999, the Fourth 

NASA Convection and Moisture Experiment (CAMEX-4) in 2001, the Aerosol and 

Chemical Transport in Tropical Convection Experiment (ACTIVE) in 2005-2006, and 

the NASA African Monsoon Multidisciplinary Analyses (NAMMA) in 2006] to study ice 

nucleation in cumulus updrafts, pertinent to the formation of cirrus anvils. Heymsfield et 

al. (2006) looked at the interconnection between ice cloud microphysical and radiative 

properties by studying relationships between particle effective radius, shortwave 

extinction, and ice water content using measurements taken during CRYSTAL-FACE 

and MidCiX. Other examples of studies of ice radiative properties include Heymsfield et 

al. (2006), who used data from CRYSTAL-FACE to study the effective radii of ice PSDs, 

and Schmitt et al. (2006), who used data from the ARM IOP as part of a study to model 

the asymmetry parameter of clouds comprised of hollow, bullet-rosette type ice crystals.

Those sorts of studies focus on investigating specific processes that drive cloud 

formation, maintenance, and radiative effects, as well as on exploring ways wherein such 

may be modeled. In the work given here, it is purposed to present and apply a 

climatology of cirrus cloud mode particle size distributions derived from in situ cloud 

particle probe data taken during three flight campaigns: the NASA Tropical 

Composition, Cloud, and Climate Coupling (TC4) and Midlatitude Airborne Cirrus 

Properties Experiment (MACPEx) campaigns (held in 2007 and in 2011, respectively) 

and the DOE ARM Small Particles in Cirrus (SPartlCus) campaign (held in 2010). This

32



effort and its results will be presented in Chapters 2 through 4 of this dissertation.

Cirrus Observing Platforms

However, while these campaigns yield valuable information about the makeup of 

cirrus clouds in various parts of the world, they have not yielded a set of statistics that is 

either temporally or spatially significant in a global sense (Mace et al., 2006a). To 

complement these periodic campaigns, then, a number of observing platforms have been 

devised to provide long-term observations of clouds. Two notable examples are the 

ARM program sites (Stokes and Schwartz, 1994; Ackerman and Stokes, 2003) and the 

satellite formation known as the Afternoon Constellation (or A-Train) (Stephens et al., 

2002; Waliser et al., 2009; Li et al., 2012).

The ARM program, launched in 1989 by the U.S. Department of Energy, 

occupies sites at a handful of strategic locations around the globe (see Fig. 1.5) aimed at 

providing a multitude of long-term observations from several representative climate 

regimes. Each site is heavily instrumented in order to provide a large variety of 

measurements, both remote and in situ, relevant to the study of clouds, aerosols, 

atmospheric state and radiation, and surface properties. Measurements are made mainly 

using ground-based instruments, occasionally in conjunction with data taken from air- or 

ship-borne instruments. Several data products exist that are the result of merging many 

of the in situ measurements, remote sensing measurements, and physical retrievals 

performed using various combinations of these measurements. One example is the 

“column physical characterization” (CPC), described in Mace et al. (2006b), which 

combines soundings, microwave brightness temperatures, millimeter Doppler radar 

moments, and derived cloud microphysical and radiative properties from the ARM
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Southern Great Plains (SGP) site into a smooth data product with 5-minute temporal 

resolution and 90-meter vertical resolution.

The A-Train is a constellation (Raymond et al., 2002) of satellites in sun- 

synchronous orbit, crossing the equator at 1:30 p.m. local time (see Fig. 1.6). The 

members of the constellation currently active are the NASA CloudSat, Aqua, and Aura 

satellites; the Japan Aerospace Exploration Agency (JAXA) GCOM-W1 satellite; and the 

joint NASA/Centre National D’Etudes Spatiales (CNES) Cloud-Aerosol Lidar and 

Infrared Pathfinder Satellite Observations (CALIPSO) satellite. The instrumentation 

aboard these satellites is designed to provide remote measurements of atmospheric 

chemistry and of atmospheric cloud, aerosol, and radiation fields. Three particular 

instruments of note for the study of clouds are the Cloud Profiling Radar (CPR) aboard 

CloudSat, the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard 

CALIPSO, and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard 

Aqua (King et al., 1992). Synergy occurs when data from these three instruments are 

combined to produce retrievals of cirrus cloud properties. As they fly within minutes of 

one another, it is assumed that the different instruments “see” virtually the same air mass. 

However, each of these three instruments has a unique vertical and horizontal resolution 

(e.g., Mace et al., 2009) as well as a unique integration time, so each instrument does not 

see the same volume of air, nor is the frequency of reported data the same for each 

instrument. Thus, in order for the data from these three instruments to be aligned so that 

use may be made of this synergy, care must be taken to account for their differing spatial 

and temporal resolutions as well as for factors such as uncertainty in the nadir direction 

of each instrument.
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The Afternoon Constellation consists of seven U.S. and international Earth Science satellites 
that fly within approximately ten minutes of each other to enable concurrent science.

The joint measurements provide an unprecedented sensor system for Earth Observations.

Fig. 1.6: The A-Train (Courtesy of NASA Goddard Space Flight Center).



To address this problem, the Radar-Lidar Geometrical Profile (GEOPROF) 

product has been developed (Mace et al., 2009), the purpose whereof is, through 

probabilistic means, to properly overlap all CALIOP measurements with concurrent CPR 

measurements. An example GEOPROF combination from a section of an A-Train orbit 

north of Papua New Guinea on July 1, 2006, is shown in Fig. 1.7. The three-panel image 

shows CPR reflectivity and CALIOP backscatter in the top two panels, wherein can be 

seen a complementary view of the cross section of a large cloud field. The synergy 

between the two instruments is demonstrated in the third panel, which shows a cloud 

mask derived by combining the GEOPROF-ovelapped reflectivity and backscatter.

These data sets, like those from the ARM program, have the potential of 

providing long time-series of cloud observations. There are far fewer instruments aboard 

the A-Train satellites than are had at the various ARM sites, and such measurements as 

are had in common between the two observing platforms have coarser resolution when 

made from space. However, ARM measurements are limited to a handful of fixed 

locations, whereas A-Train measurements span the globe. Thus, in a handful of ways, the 

data-streams coming from the two platforms are complementary. Cirrus cloud property 

retrieval algorithms that make use of data taken by instruments involved with either 

program abound, but if measurements from these two different sources could be 

combined with the knowledge gained from the in situ observations provided by flight 

campaigns, then the relative strengths of each approach could be exploited in order to 

provide an improved, long-term description of cirrus cloud properties over much of the 

globe. As a prelude to such a large effort, Chapter 5 of this dissertation will address the 

beginning of an application of in situ observations of cirrus clouds to inform retrievals of
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cirrus properties from remote sensing measurements generally.

Comparison of Modeled Cirrus Clouds with Remote Observations

Significant efforts are already underway to use the A-Train data for comparison 

purposes with model outputs (see, e.g., Waliser et al., 2009; Waliser et al., 2011; and Li 

et al., 2012). One technique that has become popular to this end is the forward modeling 

of remote sensing observables from GCM and CRM output for comparison with actual 

remote sensing observations. The third use made of in situ data here is for a beginning of 

the investigation of remote sensing forward models and the correct comparison of 

modeled observables to actual observations. This work is in its early stages and will be 

presented in Chapter 5 along with the remote sensing retrieval work (which is also in a 

relatively early stage). The proceeding chapters of this dissertation represent papers in 

various stages of preparation for submission for publication.
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CHAPTER 2

DATA AND CIRRUS MICROPHYSICAL 

ANALYSIS METHOD

Background

The purpose of this and of the following two chapters is to present, examine, and 

apply a climatology of cirrus cloud mode particle size distributions derived from in situ 

cloud particle probe data taken during three flight campaigns: the NASA Tropical 

Composition, Cloud, and Climate Coupling (TC4) and Midlatitude Airborne Cirrus 

Properties Experiment (MACPEx) campaigns (held in 2007 and in 2011, respectively) 

and the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM)

Small Particles in Cirrus (SPartICus) campaign (held in 2010). These three campaigns 

were chosen due to their use of the two-dimensional stereo (2D-S) probe (Lawson et al., 

2006b). First, though, a look at some previous work using ice particle in situ data will be 

taken in order to provide some context for this work described in this chapter.

For studies designed to inspect the nucleation and life cycle of ice clouds, it has 

been posited that orographic wave clouds constitute a sort of “natural laboratory” (e.g., 

Heymsfield and Miloshevich, 1993, 1995) because air parcels can be followed as their 

water and ice microphysics and thermodynamics evolve during the parcel’s pass from 

clear air, through the cloud, and back out into clear air.

Furthermore, in principle, as long as the cloud lasts, this principle of following air



parcels can be repeated. Heymsfield and Miloshevich (1995) used microphysical 

measurements taken in orographic wave clouds during the Wave90 experiment in 1990 to 

study ice nucleation processes, and then looked at cirrus resulting from large-scale uplift 

in the First ISCCP Regional Experiment Phase II (FIRE II) in 1991 in order to apply the 

results from the Wave90 study to more general cirrus. They posited three general zones 

to exist in cirrus clouds: a highly supersaturated zone near cloud top where ice crystals 

are produced, a yet-supersaturated zone beneath where PSDs broaden due to growth, and 

a sublimation zone where crystals fall through subsaturated air. They also proposed a 

negative feedback between particle number concentration and relative humidity, viz., that 

relative to areas with lower number concentrations, areas with higher number 

concentrations may be expected to coincide with lower ice supersaturations due to the 

excess vapor’s being used for particle production.

However, in a study utilizing data from 133 penetrations through 17 wave clouds 

at various levels within the clouds, Baker and Lawson (2006a) observed that wave clouds 

often contain features not so easily explained by the simple model thereof given by 

Heymsfield and Miloshevich (1995), and so not all wave clouds are the ideal “natural 

laboratory.” In broad consistency with the conceptual model of Heymsfield and 

Miloshevich (1995), though, Baker and Lawson (2006a) found increased concentrations 

of larger particles in lower cloud levels and a maximum total number concentration 

higher in the clouds than the ice water content maximum. Furthermore, as Lawson et al. 

(2006a) similarly found in a more general study of cirrus, various rosette shapes figured 

most importantly in the mass, while number concentration was determined mainly by 

small, quasi-spherical particles (droxtals). Though they found only a weak relationship
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between total number concentration and temperature, they did find that, on average, 

number concentrations were higher and mass lower in regions where temperature was 

less than -37°C (see their Table 3). Given favorable humidity conditions, one might 

expect homogenous nucleation to become appreciable at around this temperature (Sassen 

and Dodd, 1988; Heymsfield and Miloshevich, 1993). Maximum water content, Baker 

and Lawson (2006a) stated, is not completely attributable to temperature: they 

hypothesize that relative humidity over ice (RHi) and vertical velocity must also be 

accounted for, which measurements they did not have. They found that warmer cloud 

regions tended to have larger particles, which they attributed to riming and to 

aggregation.

Heymsfield and Miloshevich (1995) and Lawson et al. (2006a) both point out 

that, in contrast to the relative ease of studying wave cloud formation, observations of 

cirrus formation are much more difficult to make: when particles are observed, they are 

often not observed where they were nucleated, and furthermore, they may have been 

subjected to secondary ice processes, dynamical processes, fallout, and size sorting. 

Lawson et al. (2006a) used data from 104 flight legs to investigate 22 midlatitude cirrus 

clouds, using, as did Baker and Lawson (2006a), particle images from the Stratton Park 

Engineering Company (SPEC) Cloud Particle Imager (CPI) and from the Particle 

Measuring Systems (PMS) Forward Scattering Spectrometer Probe (FSSP) and 2DC 

probe (Knollenberg, 1981). They found temperature and cloud thickness to be important 

factors in determining ice particle characteristics, but they lacked measurements of RHi 

and surmised that the fact that particles characteristic of the three zones mentioned earlier 

can be found at all locations within a cirrus cloud may be due to variability in RHi within
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the cloud. Thus, they posit, the model of cirrus zones proposed by Heymsfield and 

Miloshevich (1995) is probably true in a statistical sense, using temperature as a proxy 

for location within cloud, over a large sample of cirrus. Furthermore, in a wide-ranging 

study (in temperature, in altitude, and in geographical location), Heymsfield et al. (2013) 

used 85 000 ice cloud PSD measurements from 10 different in situ field programs: 

CRYSTAL-FACE, FIRE-II, the ARM IOP, TC4, the NASA Pre-Aura Validation 

Experiment (PreAVE) of 2004, the European Commission Integrated Project (IP) 

Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower 

Stratosphere (SCOUT) tropical aircraft program of 2005, the NASA African Monsoon 

Multidisciplinary Analyses (NAMMA) field program of 2006, the Aircraft Icing 

Research Alliance (AIRA) and World Meteorological Organization (WMO) Alliance 

Icing Research Study II (AIRS-2) of 2003-2004, the Canadian CloudSat/CALIPSO 

Validation Programme (C3VP) of 2006-2007, and the ARM Mixed-Phase Arctic Cloud 

Experiment (MPACE) of 2004. For many of the measured PSDs, concurrent 

measurements of condensed water mass were available. They found that, in the average, 

ice particle concentrations decrease with temperature while ice water contents (IWCs), 

PSD widths, and maximum particle dimensions increase with temperature.

The Lagrangian spiral technique (Lo and Passarelli, 1982) is one way to observe 

microphysical processes in widespread and fairly steady-state cirrus: an aircraft is 

allowed to descend at a constant bank angle and at a low rate of descent, advecting with 

the horizontal wind, in order to measure the evolution of cloud and precipitation 

microphysics in the reference frame wherein they evolve. Using this technique, some 

similar conclusions to those already sketched out have been drawn. For example, Field
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(2000) used Particle Measuring Systems (PMS) 2D Cloud (2DC) and 2D Precipitation 

(2DP) particle probes to investigate bimodality in ice PSDs in frontal clouds around the 

United Kingdom in five Lagrangian spiral flights through frontal clouds in 1998 and

1999. Their study pointed toward a universality of high concentrations of the smallest ice 

crystals and a second mode (as a shoulder) in the PSDs that progressively separated itself 

from the smaller mode with depth from cloud top, only to have the larger mode disappear 

as cloud base was neared. It was suggested in that paper that the large mode of PSDs 

evolved with depth in the cloud via aggregational growth, only to have the larger 

particles disappear due to particle break-up and melting at warmer temperatures. Field 

and Heymsfield (2003) used PSDs measured in spiral flights with the PMS probes as well 

as with the SPEC high-volume precipitation spectrometer (HVPS), covering several cases 

of synoptically and convectively generated cirrus in both the midlatitudes and the 

Tropics, during the First ISCCP Regional Experiment Phase I (FIRE I) in 1986, the 

Atmospheric Radiation Measurement (ARM) Intensive Observation Period (IOP) in

2000, and the Kwajalein Experiment (KWAJEX) and Large Scale Biosphere-Atmosphere 

Experiment (LBA) [both Tropical Rainfall Measuring Mission (TRMM) field campaigns] 

in 1999. They concluded that the evolution of the particle size distribution was governed 

not only by aggregation at larger particle sizes, but also at smaller particle sizes by 

depositional growth and by the breakup of larger particles. As further confirmation of 

these hypotheses, Westbrook et al. (2007) used Doppler radar measurements of several 

fairly steady-state cirrus cases over the Chilbolton Observatory in England and came to 

the similar conclusion that in the cold, well-developed cirrus clouds they examined, 

crystal formation and depositional growth appeared to be an important factor in the
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average mass of particles near cloud top, that aggregational growth appeared to be the 

dominant growth process through the depth of the clouds, and that evaporative processes 

leading to smaller particles occurred around cloud base.

Data from a number of spiral descents have furthermore been used to develop 

microphysical parameterizations for cirrus clouds. Heymsfield et al. (2002) used data 

from the SPEC CPI and HVPS as well as from the PMS 2DC to look at spiral flights 

from the TRMM Texas-Florida Underflights (TEFLUN-A and -B), LBA, and KWAJEX 

campaigns. They developed parameterizations for cirrus PSDs in terms of parametric 

gamma and exponential distributions, based on temperature, and explored relationships 

between their fit PSD parameters. As with the other studies that have already been 

mentioned, they determined that PSDs broadened with depth in cloud, probably due to 

size sorting and to aggregation. Heymsfield (2003 a) and Heymsfield (2003b) used the 

same parametric fitting approach on ice PSD observations made in Lagrangian spirals 

and with balloon-borne replicators, made during the ARM IOP, KWAJEX, FIRE I, and 

FIRE II. The parameterized PSDs were used to study the variation of ice particle size 

spectra through the depths of clouds, as well as median mass diameters and sedimentation 

velocities of ice particle size spectra and the relationships of these properties one to 

another. These sorts of studies can provide microphysical parameterizations of the 

properties and evolution of ice particle size spectra through the depths of cirrus clouds.

The purpose of this work is the beginning of a global climatology of cirrus cloud 

PSDs and associated meteorological variables that can be easily added upon as well as a 

framework for constructing and analyzing it. This dataset forms a statistical set, not a 

microphysical set; i.e., Lagrangian spirals are not had wherewith to study PSD evolution,
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nor is (in most cases) information on where in a cloud a sample was taken. However, as 

hinted at in the literature review above, we are able to draw broader, statistically based 

conclusions about cirrus cloud microphysics based on the wide-ranging datasets we do 

have. This chapter proceeds with an exposition and discussion of the data used 

throughout this dissertation. The fitting of measured PSDs with parametric functions, the 

statistics of the fit parameters, and the occurrence of bimodality within cirrus PSDs are 

then discussed. The final section of this chapter describes an inspection of the properties 

of cirrus PSDs as they relate to meteorological variables.

Data

For this study, PSD data from the two-dimensional stereo (2D-S) probe (Lawson 

et al., 2006b) are used. The 2D-S probe images ice crystal cross-sections via two 

orthogonal lasers that illuminate two corresponding linear arrays of 128 photodiodes. 

Particle size distributions, as well as distributions of cross-sectional area and estimated 

mass, are reported every second in bins ranging in size from 5 ^m up to about 3 

millimeters. This instrument features a larger sample volume and improvements in 

resolution and time response in comparison with older particle imaging probes as well as 

shattered-particle rejection in the data product based on particle interarrival time (Field et 

al., 2006; Lawson et al, 2006b; Baker et al., 2009; Jensen et al., 2009).

To be sure, the uncertainty in 2D-S measurements for the smallest ice crystals is 

unknown (Jensen et al., 2009; Lawson, 2011), and at larger particle sizes, instruments 

such as the 2DP or the HVPS probably provide more reliable data (Baker et al., 2009). 

Furthermore, in a nod to the bigger microphysical picture, Wiscombe (2005) wrote about 

“fantasy drop distributions”: distributions that fit only one class of particles (such as
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cloud particles) and drop off too quickly to join up with other classes of particles (such as 

drizzle particles). Acknowledging that these are shortcomings pertinent to a broader 

analysis, the data are used here toward an inspection of cirrus cloud PSDs. To ensure that 

this is so, the data are filtered such that only averaged samples (explained below) taken 

above 6 km, at temperatures colder than -20°C, and with 2D-S estimated ice water 

contents (Baker and Lawson, 2006b) below 1 gm-3 are used in this analysis.

Ancillary measurements used in this study include temperature, water vapor 

mixing ratio, and bulk ice water content. Temperature was measured during MACPEx 

and TC4 using the NASA Ames Meteorological Measurement System (MMS). During 

SPartICus, temperature was measured using a Rosemount temperature transmitter.

Water vapor mixing ratio measurements from the Diode Laser Hygrometer (DLH) 

(Weinstock et al., 1994; Diskin et al., 2002) were used for SPartICus and for TC4. 

However, only a partial DLH dataset exists for MACPEx, and so for this campaign data 

from the Harvard Water Vapor (HWV) probe (Weinstock et al., 2009) are used instead. 

For the relatively small portion of time during MACPEx where measurements from the 

HWV and the DLH overlap, the relationship between the two instruments was 

investigated. The left panel of Fig. 2.1 shows the scatter between RHi derived from the 

HWV and from the DLH, along with a one-to-one line (red) and a curve resulting from a 

quartic fit between the datasets (gold). The right panel shows the result of predicting the 

DLH-derived RHi from the HWV-derived RHi. The scatter is not removed, but the 

nonlinear bias is alleviated. The RMS error in the fit is 5.18% (the percent referring to 

RHi), and the mean DLH-derived RHi is 100.9%—two orders of magnitude higher than 

the RMS error. The regression terms were then applied to the entire HWV dataset for
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MACPEx.

Vertical velocity was measured using the MMS system during TC4 and MACPEx 

and using the Aventech Research Inc. Aircraft-Integrated Meteorological Measurement 

System (AIMMS-20) during SPartICus. However, these measurements are not taken at 

face value. Straight, level flight legs are identified from flight navigational data by an 

automated process that makes use of numerical derivatives of filtered values of aircraft 

altitude and heading. The average vertical velocity for each flight leg is subtracted from 

the data to obtain the vertical turbulence for that flight leg. Only values from straight, 

level flight legs are used (Comstock et al., 2012).

Bulk ice water content measurements are available for MACPEx from the Closed- 

path tunable diode Laser Hygrometer (CLH) probe (Davis et al., 2007). The basic idea 

behind the operation of the CLH is that all condensed water that enters the probe is 

evaporated so that a measurement of total water vapor can be made. The condensed part 

of total water measured by the CLH is estimated using concurrent PSDs measured by the 

National Center for Atmospheric Research (NCAR) Video Image Particle Sampler 

(VIPS) probe: an estimate of condensed water mass is made from the measured PSDs and 

then subtracted from the measured total water mass.

Param etric  Functional Fitting of Binned PSD Data

A number of different parametric distributions have been used for fitting ice 

PSDs, including exponential and gamma distributions (e.g., Heymsfield et al., 2002), 

modified gamma distributions (e.g., Delanoe et al., 2005), and lognormal distributions 

(e.g., Tian et al., 2010). While Tian et al. (2010) found that the lognormal distribution 

worked best for unimodal PSD fits, only a handful of hours of TC4 data from tropical,
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convectively generated cirrus were used in that study, and, as stated in the conclusions of 

that paper, a more expansive study would be required to determine whether that particular 

conclusion were universally true. Furthermore, the data used in that study was taken 

using a 2D Cloud Imaging Probe (CIP) and a Precipitation Imaging Probe (PIP), which 

when compared with measurements from the 2D-S were only deemed reliable down to 

100 im . Additionally, Tian et al. (2010) found that while the lognormal distribution 

parameters are more naturally linked to physical properties of cirrus PSDs than are those 

of the gamma distribution, use of the gamma distribution allows for PSD description 

using only two parameters, as opposed to three for the lognormal distribution (this point 

will be elaborated upon later in this paper). In this study, a variant of the gamma 

distribution is used, though at least part of the fundamental qualitative conclusions of this 

paper would likely remain the same regardless of what parametric description of the 

PSDs were used.

The PSDs measured by the 2D-S probe were fit with both unimodal and bimodal 

parametric gamma distributions. The unimodal distribution is

where D is particle maximum dimension, D0 is the scale parameter of the distribution, a  

is the shape parameter of the distribution, and N0 is the intercept parameter, i.e., the 

location where the plotted PSD intercepts the ordinate. The bimodal distribution is 

simply a mixture of two unimodal distributions:
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The unimodal fits were performed via the method of moments. Both the method of 

moments and an expectation maximization algorithm (Moon, 1996) were used for the 

bimodal fits, the more accurate of those two fits [as determined by whether fit provided 

the smaller binned Anderson-Darling test statistic (Demortier, 1995)] being kept as the 

bimodal solution (see Appendices A and B for descriptions of the fitting algorithms, and 

see Appendix C for descriptions of statistical tests, including the binned Anderson- 

Darling test).

To determine whether a PSD was satisfactorily fit with the unimodal distribution 

or if  the bimodal distribution were preferable, three different statistical tests were 

implemented: a maximum likelihood ratio test (Wilks, 2006); a one-sample Anderson- 

Darling test, adapted for use with binned data (Demortier, 1995); and a goodness-of-fit 

test based on sample moments, adapted from Gurland and Dahiya (1972). For all three 

tests, the total number of samples for each PSD was obtained by expressing total number 

concentrations in number of particles per liter.

The likelihood ratio test speaks to whether enough additional information about 

the PSD is given by a bimodal fit to warrant its use or whether the extra bimodal 

parameters are “nuisance parameters.” Put differently, this test is based on numbers of 

particles in size bins—but not on the total number concentration (except for the fact that 

higher numbers of total samples cause a statistical test to reject smaller imperfections). If 

the smallest size bins dominate the total number concentration but the bimodal fit is not

significantly more likely (given the distribution of samples among the size bins) than the



unimodal fit, then the test considers the extra information afforded by the bimodal fit to 

be unnecessary and the unimodal fit is chosen instead.

The binned, one-sample Anderson-Darling test compares the empirical 

cumulative distribution function (accumulated particle number density) of a measured 

PSD with the parametric cumulative distribution function of a unimodal fit. The size of 

this test statistic is a measure of the deviation of the analytical distribution from the 

measured distribution and is tested at the 1% significance level. This test speaks to the 

ability of the unimodal fit to recreate the shape of the empirical PSD.

The third goodness-of-fit test compares the first four noncentral sample moments 

to the corresponding noncentral population moments suggested by the unimodal fit. In 

this case, the test statistic’s sampling distribution is the generalized chi-squared 

distribution (Jones, 1983) and is tested at the 1% significance level. This test speaks to 

the ability of the unimodal fit to reproduce the sample moments of the empirical PSD.

The caution with all of these tests is that higher numbers of samples increase the 

chance that smaller imperfections in the unimodal fit will cause it to be rejected. This is 

due to the fact that for each statistical test, and for a given binned PSD shape and 

corresponding fit, the respective test statistic increases with sample size (i.e., with total 

measured number concentration). Therefore, other things being equal, an increasing 

sample size means that the null hypothesis is increasingly likely to be rejected. For the 

maximum likelihood ratio test, this means that the bimodal fit is more apt to be deemed 

sufficiently likely to be used in favor of the unimodal fit. For the other two tests, this 

means that the unimodal fit is more apt to be rejected as nonefficacious.

Before the fits were performed, though, the measured PSDs were both truncated
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and temporally averaged in order to mitigate counting uncertainties. Though Field et al. 

(2005) used Poisson counting statistics to estimate counting errors within measured PSD 

bins, it is here assumed that the length of the eventual temporal average is sufficient to 

reduce appreciably the need for such error characterization (see, e.g., Gayet et al., 2002). 

To determine how many of the smallest size bins to truncate and for how many seconds 

to average in order to make the previous assumption valid, two simple exercises were 

performed using the MACPEx dataset. In the first exercise, 15-second temporal averages 

were performed along with truncating zero through three of the smallest size bins, and 

only the unimodal fits (according to the maximum likelihood ratio test) were kept.

Figure 2.2 shows comparisons of distributions of measured and computed (from the fits) 

total particle concentrations. The difference in the number of samples of computed total 

particle concentrations between zero bins and one bin truncated is an order of magnitude 

higher than that between one bin and two bins truncated. This is due to frequent, 

extraordinarily high numbers of particles recorded in the smallest size bin that at times 

cause a PSD to be flagged as bimodal by the maximum likelihood ratio test. As this 

effect lessens greatly after truncating only one bin, and as the computed and measured 

total particle concentrations are otherwise better matched using a single-bin truncation, 

the smallest size bin is ignored for all PSD fits (making the smallest size bin used 15-25 

^m). Then, IWC was estimated from the fit distributions using the mass-dimensional

relationship m(D ) = 0.0065D225 (m denotes mass, D denotes particle maximum

dimension, and all units are cgs) given in Heymsfield (2003 a) for midlatitude cirrus. The 

distribution of IWC computed thus is shown in Fig. 2.3, along with distributions of IWC 

estimated directly from the 2D-S data using mass-projected area relationships (Baker and
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Lawson, 2006b) and estimated from the CLH. The fits to the 2D-S data do a fair job, 

qualitatively, of reproducing ice water content measurements made by the CLH.

For the second exercise, temporal averages from 1 to 20 seconds were performed, 

truncating the first size bin and again keeping only the unimodal fits. The means and 

standard deviations of the resulting sets of fit parameters, each normalized by its 

maximum value, are shown as functions of length of temporal average in Fig. 2.4. The 

balance to strike in picking a temporal-average length is to acceptably smooth out 

Poisson counting uncertainties without losing physical information to an overlong 

average. Qualitatively, the statistics of the fit parameters begin to steady at around 15 

seconds, so a 15-second temporal average was chosen. Using the data filters, temporal 

average, and bin truncation thus far described results in 12 387 PSD fits from MACPEx 

and SPartICus and 4 562 from TC4. The MACPEx and SPartICus datasets are considered 

representative of midlatitude cirrus, and the TC4 dataset is considered representative of 

tropical cirrus.

Figures 2.5 and 2.6 show examples of PSD fits. Figure 2.5 shows an A-Train 

overpass of a SPartICus flight on 3 February 2010: the top panel shows CloudSat 

reflectivity, masked by the CloudSat 2B-Geoprof-Lidar cloud mask (Mace et al., 2007; 

Marchand et al., 2008), with the path of the SPEC aircraft overlaid, and the lower panel 

shows the corresponding PSDs measured by the 2D-S probe aboard the aircraft. Three 

points along the flight path are labeled (a), (b), and (c). The measured and fit PSDs from 

these points are shown in the corresponding panels of Fig. 2.6, along with estimates of 

IWC (provided as part of the 2D-S data product), total number concentration (the zeroth 

moment of the truncated, binned PSDs), and effective radius (very simply, one-half the
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ratio of the third to the second moments of the truncated PSDs). In panel (c), the 

unimodal fit (shown in red) was deemed sufficient by the maximum likelihood ratio test. 

In panels (a) and (b), the PSDs were determined to be bimodal (by the maximum 

likelihood ratio test), which fits are shown by green curves [in panel (a), the unimodal fit 

is obscured by the large mode of the bimodal fit]. Noting the position within the cloud of 

the aircraft and the corresponding, measured PSDs, the aforementioned zones are fairly 

easily discerned within this cirrus cloud: near cloud base, radar reflectivity and effective 

radius are larger (before tapering off at cloud base), and PSDs contain (mostly) a small 

mode and a secondary mode of larger, precipitating particles. As the aircraft climbs in 

the cloud, size sorting and aggregation become less important, and cloud particles are 

increasingly concentrated in a single mode with smaller effective radius, lower IWC, and 

higher total number concentration.

Bimodality and the Statistics of Param eterized PSDs

As mentioned before, older cloud probes show high concentrations of very small 

particles all the time and, hence, very frequent PSD bimodality. Zhao et al. (2011), based 

on a remote sensing study that inspected the consistency of constantly high 

concentrations of small particles with radar and lidar measurements, maintained that 

while bimodality in cirrus PSDs does exist, it does not seem always to be present, nor do 

the numbers of very small particles seem always to be as high as older datasets suggest. 

However, whether bimodality is deemed to exist in a given PSD must depend on how 

bimodality is evaluated. For instance, the frequency of bimodality determined by any 

particular statistical test might be different from that determined by a qualitative 

evaluation—made, say, by eye— of each PSD. Indeed, the frequency of bimodality as
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determined by statistical test depends very much on what test is used. Bimodality, as 

determined by the maximum likelihood ratio test, occurs ~7% of the time in the 

midlatitude cirrus and ~3% of the time in tropical cirrus. According to the binned 

Anderson-Darling test, the unimodal fit is deemed insufficient ~60% of the time in the 

midlatitudes and ~57% of the time in the Tropics. Using the generalized chi-squared test 

of moments, the unimodal fit is deemed insufficient ~67% of the time in the midlatitudes 

and ~53% of the time in the Tropics. Though different numerically, these results 

qualitatively support the conclusion of Zhao et al. (2011). The reader may wonder, 

though, why such different results are produced by the different statistical tests. This is 

because each test, as explained before, examines a different aspect of a PSDs parametric 

fit. Thus, beyond the qualitative conclusion just made, which statistical test is therefore 

minded will depend upon what question is being asked of the data.

The likelihood ratio test turns out to be the most forgiving to the unimodal fits, as 

seen in the previous paragraph. Rather than simply reject a unimodal fit based on its 

shape or on its ability to reproduce sample moments, this test directly compares bimodal 

and unimodal fits via their relative likelihood. Thus, if  the unimodal fit fails to capture 

the sample moments or PSD shape sufficiently well (based on the other two tests) but still 

is “likely enough” when compared with the bimodal fit, the likelihood ratio test accepts 

the unimodal fit. (How this scenario is possible will be seen shortly.)

However, if bimodality is to be judged strictly on the basis of the reproduction of 

sample PSD moments, the generalized chi-squared test was designed to select the 

combination of unimodal and bimodal PSD fits to best produce this overall effect— even 

for the zeroth moment, which is not incorporated into the test. The unimodal fits produce
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zeroth moments with a high degree of scatter and a weak relationship with the zeroth 

moments computed directly from the binned data. However, this scatter is greatly 

alleviated and a biased relationship emerges if, instead of computing the zeroth moment, 

a “truncated” zeroth moment is computed: total number concentration is computed from 

the fits with integration beginning at 15 ^m. (Formulae for computing the truncated 

zeroth moments are given in Appendix D.) Figure 2.7 shows scatter plots of the zeroth 

through the fourth parameterized versus sample noncentral moments for the midlatitude 

PSDs, where the zeroth moments computed from fits are truncated, as just described. 

Figure 2.8 shows the same, but for the Tropics. Apparently, this test commits to a 

tradeoff: a PSD flagged thereby as more properly unimodal or bimodal does not 

necessarily result in a unimodal or bimodal parametric fit that gives the best reproduction 

of each of the zeroth through the fourth sample moments, but in a parametric fit that 

attempts to give overall the best reproduction of the zeroth through the fourth sample 

moments. It should be noted, though, that above the second moment, picking a unimodal 

or bimodal fit based on the generalized chi-squared test results in an increasing low bias 

in a substantial fraction of the computed parametric moments with respect to their 

corresponding sample moments. There are then two relevant observations to make from 

Figs. 2.7 and 2.8.

First, as it turns out, not all of the sample moments of the measured PSDs are of 

equal certainty because the 2D-S instrument does not make simple counts of particles, but 

rather measures the occulted area of particles passing through its sample volume. Figure 

2.9 shows an example of the images produced by the 2D-S. The zeroth moment is 

perhaps the least certain of the sample moments due to remaining uncertainties regarding
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particle shattering (mitigated though it is by recent technological and software advances) 

as well as to uncertainties in the image processing techniques that infer counts and sizes 

of particles from occulted instrument pixels. It is for this cause that the selection of either 

a unimodal or a bimodal parametric PSD based on the generalized chi-squared test causes 

a growing degradation of reproduced sample moments as the order of the moment 

increases. Specifically, the expectation-maximization algorithm (which produces a 

bimodal fit chosen more often than the method of moments fit) is couched in the 

maximum likelihood estimation method, and it therefore does an admirable job of 

capturing the shape of bimodality in the measured PSDs (recall Fig. 2.6). Matching what 

is likely the least certain moment, though, does not ensure that higher-order moments 

(which are closer to what the 2D-S directly measures) are always well matched. Thus, a 

bimodal fit may be deemed not sufficiently more likely than a unimodal fit by the 

maximum likelihood test while the unimodal fit is rejected by either of the other tests. As 

instrument technology and image processing capabilities continue to improve, it is 

expected that this discrepancy will be alleviated.

The second observation to make from Figs. 2.7 and 2.8 is that the unimodal fits 

provide the best overall statistical replication of the first through the fourth PSD sample 

moments. This is hardly a surprise, given that the first, third, and fifth sample moments 

are used to make the unimodal fits (see Appendix A); however, ample reproduction of 

sample moments does not necessarily mean that the unimodal parametric fits have 

captured the shape of the measured PSDs— only their sample moments. It is true, 

though, that nearly all the time the second mode is deemed a nuisance by the maximum 

likelihood ratio test, and for remote sensing applications, fidelity in reproducing the first
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through the fourth moments, but not necessarily the zeroth moment, is of key importance. 

Therefore, for an application such as the remote sensing of cirrus bulk properties, the 

whole dataset may be satisfactorily described as unimodal. In this case, apart from using 

a truncated zeroth moment as described above, a functional relationship to compute the 

expected zeroth moment of a PSD given a higher-order moment [such as given in Field et 

al. (2005)] can be useful. Figure 2.10 shows the zeroth sample moment of the measured 

PSDs as a function of the first sample moment, both for the midlatitudes (Fig. 2.10a) and 

for the Tropics (Fig. 2.10b). The functional relationships (in cgs units) are, respectively,

M 0 = 463.86MJ19 , (2.3)

M 0 = 63.80M0'96, (2.4)

where M0 is the zeroth sample moment and M 1 is the first sample moment. Though a 

single power law has been fit to the midlatitude data, Fig. 2.10(a) clearly shows a 

bimodal relationship between the two moments. Both of these modes exist in both the 

SPartlCus and the MACPEx datasets, and neither mode corresponds to the subset of 

bimodal or unimodal fits determined by either the binned Anderson-Darling or 

generalized chi-squared tests (not shown). Using an expectation-maximization routine to 

decompose the two modes in Fig. 2.10(a) and inspect the meteorological variables 

concomitant with each mode remains an unfinished work.

The probability density functions (pdfs) of the gamma distribution parameters 

resulting from fitting the entire dataset as unimodal are shown in Fig. 2.11. Given that

the shape parameter must belong to the set {a  a  > - l}  (in order for the zeroth moment
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Fig. 2.11: M arginal distributions for unimodally fit PSD param eters.



of the parametric PSD to exist), it is clear that its marginal distribution cannot be normal, 

and while the marginal distribution of the log-scale parameter can be reasonably modeled 

as normal (there are, however, two distinct modes in the marginal distribution of the

tropical log-scale parameter), the marginal distribution of log10 [ N 0 ] is noticeably

skewed. The pdf of log10 [ N 0 ] is parameterized as a log-normal distribution that has

been reversed and shifted (Oppenheim et al., 1997):
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Pr (X = lO§10 [^0  ]) = p  (x ) :
(4 -  x )V 2 k g 1

-exp
(!n [ 4 -  x ] -  ^ )

2g 2
(2.5)

with a mathematical support of x e (-^ ,4 ). The estimators for the parameters (from the 

method of moments and where the operator E [ ...] returns the expected value of its 

argument and where the operator v a r ( . )  returns the variance of its argument) are

[ l  = 21n{4  -  E [ log10 (N 0 )]} -  ^ ln f var[ log10 (N 0 )] + { 4 -  E [ log10 (N 0 )]} ] , (2.6)

a  = „ ln [ loBio ) ] + { 4 -  E [ log,„ )]} -  2 \n |4  -  E [ log,„ (N0)]}. (2.7)var

The pdf of the log-scale parameter is modeled as normal, with an alternate 

parameterization of log10 [ D0 ] in the Tropics as a mixture of two normal distributions

(whose parameters are estimated according to the expectation-maximization algorithm):

2

1
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Pr (x = log1Q [ D0 ]) = - _ =  exp
2a2

1 -n+ , exp
yj2na.

(x -  Vi)
2a2

(2.8)

The pdf of the shape parameter is modeled as a log-normal distribution, shifted one place 

to the left:

Pr ( x = a )  =
( x + l)V 2 n a l

-exp
(ln x + 1J — ^ ) 

2ct2
(2.9)

with a mathematical support of x e (-1, ̂ ). The estimators for the parameters are

/d= 2ln|^E(« ) + 1 ]--2 ln{var(« ) + [ e (« ) + 1] j ,  and (2.10)

l

a  = y  ln {var (« ) + [ E (« ) + 1j } -  2ln  ̂  E (« ) + 1 j. (211)

The estimated pdfs, for each parameter and for each region, are given in Table 2.1.

The covariance and correlation matrices computed from the distributions of 

unimodal PSD parameters are given in Table 2.2. Note that the covariance matrices are 

not diagonal, as is often assumed in remote sensing retrievals of cirrus PSDs. Note also 

the high degree of correlation between log10[Ay and the shape parameter. This 

correlation suggests a parameterization of log10[^o] based on the parameter a  or vice 

versa, and it is for this reason that fitting PSDs with unimodal gamma distributions 

requires only two free distribution parameters, as mentioned in the previous section.
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Param eters for distributions of unimodal fit param eters (see Eqs. 2.5-2.11).

Table 2.1

MIDLATITUDES TROPICS

lo§io [ N 0 ]
/! = 1.4047 /! = 1.3617
G = 0.7263 G = 0.5821

i°§io [ A  ]
l  = -2.4842 fl = -2.3191
a  = 0.3690 G = 0.3792

a
jl = 1.2637 jl = 0.9936
G = 0.8204 G = 0.8184

tropical, bimodal log10 [ D0 ] n = 0.6751
l!l = -2.5345 jl2 = -1.8715

a l = 0.2247 g 2 = 0.2020

Table 2.2

Covariance and correlation matrices for unimodal fit param eters. The general form 
of the m atrix is given in the top box. In the lower left columns are given covariance 
matrices for the m idlatitude and tropical sets of unimodal fits. The right columns 

are the same, except tha t correlation matrices are shown.

General Form  of Covariance/Correlation M atrices
r 2

gi
i ° 
b" Qlogi0 N0 ,logi0 Do gilo
ID"

R = Qlogi0 N0 ,logi0 Do
q 2

logio Do Qlogi0 D0,a
Ql°gi0 No,a eQ°gilo

b"

qQ

M IDLATITUDES

19.55 0.59 -20.62 
0.59 0.14 -0.99 

-20.62 -0.99 23.56 —

1.00 0.36 -0.96 
0.36 1.00 -0.55 
0.96 -0.55 1.00

TROPICS

8.62 0.46 -9.99 
0.46 0.14 -0.95 
9.99 -0.95 13.59 —

1.00 0.42 -0.92 
0.42 1.00 -0.68 

0.68 1.000.92 — i



The PSD parameter pdfs resulting from those fits flagged as bimodal by the 

generalized chi-squared test are shown in Fig. 2.12. It is seen that these lend themselves 

even less to simple approximations as normal distributions: while the pdfs for the large­

mode parameters show structure similar to that of the corresponding unimodal 

parameters, the number and shape parameters for the small mode show distinct 

bimodality in their pdfs. The corresponding covariance and correlation matrices are 

demonstrated in Tables 2.3 and 2.4. For both the midlatitudes and for the Tropics, there 

is again a high degree of correlation between log10[Ay and the shape parameter for each 

mode. It is also worth noting that the variances— and hence the uncertainties— of 

log10[Ay and of a  for each mode are remarkably larger than those of their unimodal 

counterparts.

Relationships of Particle Size Distributions 
with M eteorological Variables

Comparisons between the distributions of measured temperature and RHi for the 

different datasets are shown in Figs. 2.13 and 2.14. In Fig. 2.13, SPartlCus is compared 

with MACPEx, and in Fig. 2.14, the midlatitude datasets are compared with TC4. Unlike 

for SPartlCus, the pdf of measured temperatures during MACPEx is bimodal. This is 

probably due to MACPEx being the smaller dataset and having sampled a more sparse set 

of altitudes. The differences in distributions of RHi between those two datasets is 

marked: the RHi’s measured during SPartlCus belong to a relatively broad distribution 

with a fairly high average (~118%), while the distribution of RHi’s measured during 

MACPEx is much narrower and has a much lower mean (~101%). Because SPartlCus is 

a significantly larger dataset than MACPEx, it dominates the distributions of midlatitude
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Table 2.3

Form  of covariance and correlation matrices for bimodal fit PSD param eters.

G eneral Form  of Covariance M atrices for Bimodal Fits

S--

Q 12 Q 1,2 Q 1,3 Q 1,4 Q 1,5 Q 1,6

Q 1,2 Q 22 Q 2,3 Q 2,4 Q 2,5 Q 2,6

„
Q

Q 2,3 Q 32 Q 3,4 Q 3,5 Q 3,6

1 4 Q 2 ,4 Q 3,4 Q 42 Q 4,5 Q 4 ,6

Q 1,5 Q 2,5 Q 3,5 Q 4,5 Q 5 Q 5,6

Q
6 Q 2 ,6 Q 3,6 Q 4 ,6 Q 5,6 Q 2

Param eter Subscript (see m atrix) Param eter Name (Eq. 2.2)
1

l o § i o  [ # 0 1  ]

lo§!0 [ D01 ]
a

lO § 1 0 [ # 0 2  ]
log10 [ D02 ]

a

2

3

4

5

6



Table 2.4

Covariance and correlation matrices for bimodal fit PSD parameters. (Bimodality determined by the 
generalized chi-squared test.) In the left column are given covariance and correlation matrices for the 

midlatitudes, and in the right column the same are given for the Tropics.

MIDLATITUDES TROPICS
Covariancc Matrices

65.61 3.24 -65.27 -33.61 -0.30 31.52 51.26 2.01 -46.31 -11.45 -0.11 11.33
3.24 0.22 -3.49 -2.45 -0.03 2.23 2.01 0.12 -1.98 -0.77 -0.01 0.73

-65.27 -3.49 66.42 37.79 0.33 -35.03 -46.31 -1.98 42.68 12.69 0.17 -12.46
-33.61 -2.45 37.79 55.14 1.35 -49.00 -11.45 -0.77 12.69 24.21 1.00 -24.22
-0.30 -0.03 0.33 1.35 0.12 -1.51 -0.11 -0.01 0.17 1.00 0.11 -1.23
31.52 2.23 -35.03 -49.00 -1.51 46.88 11.33 0.73 -12.46 -24.22 -1.23 25.39

Correlation Matrices

1.00 0.85 -0.99 -0.56 -0.11 0.57 1.00 0.80 -0.99 -0.32 -0.05 0.31
0.85 1.00 -0.91 -0.70 -0.16 0.69 0.80 1.00 -0.87 -0.45 -0.13 0.42

-0.99 -0.91 1.00 0.62 0.12 -0.63 -0.99 -0.87 1.00 0.39 0.08 -0.38
-0.56 -0.70 0.62 1.00 0.52 -0.98 -0.32 -0.45 0.39 1.00 0.60 -0.98
-0.11 -0.16 0.12 0.52 1.00 -0.63 -0.05 -0.13 0.08 0.60 1.00 -0.72
0.57 0.69 -0.63 -0.98 -0.63 1.00 0.31 0.42 -0.38 -0.98 -0.72 1.00

"jo\
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Fig. 2.13: Comparisons of tem perature and RHi between SPartlC us and MACPEx. 

(a) Distributions of m easured tem perature for M ACPEx and for SPartlC us. (b)
Same as (a), but for m easured RHi.
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Fig. 2.14: As in Fig. 2.13, but the comparisons here are between the m idlatitude 

data (MACPEx and SPartICus) and the tropical data (TC4).



temperatures and RHis in Fig. 2.14. Comparing Figs. 2.13 and 2.14, though, one can see 

that the distributions of RHi for MACPEx and for TC4 are more alike than are those for 

MACPEx and for SPartICus: they have approximately the same width, and while the 

average RHi for MACPEx is in between that for TC4 and for SPartICus, it is closer to the 

average for TC4 (~94%). This is no doubt due to the fact that MACPEx, due to its 

occurrence in April, focused more on convective cirrus (which form a major share of 

tropical cirrus) than did SPartICus, which occurred evenly from January into June.

Figure 2.15 shows distributions of temperature, RHi, total particle concentration, 

and IWC based upon modality as determined by a variant of the binned Anderson- 

Darling test. Specifically, as all that is being tested is deviation from the empirical 

cumulative distribution function, each PSD is assumed to have 100 samples so as to put 

them on equal footing for purposes of statistical testing (for higher numbers of samples, 

slighter imperfections will be rejected). This test was chosen for this purpose due to its 

preference for adhering to the shape of the measured PSD and resulted in the rejection of 

about 91% of the unimodal fits in the midlatitudes and about 85% of the unimodal fits in 

the Tropics. Looking at the figure, for both the midlatitudes and for the Tropics, 

bimodality tends to occur at warmer temperatures than does unimodality. The difference 

between the medians of the temperature distributions is statistically significant, as 

determined by a Mann-Whitney U-test. This result is consistent with the findings of 

Zhao et al. (2011). In both geographical areas as well, total number concentrations are 

quite a bit lower for those PSDs flagged as bimodal. This is in accord with earlier 

published findings that higher numbers of particles, on average, should be expected to 

occur in colder, higher parts of clouds where homogenous nucleation is more likely to be
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taking place and that in warmer, lower parts of clouds, where aggregation is a dominant 

force in shaping PSDs, aggregation tends to scavenge out smaller particles. No 

explanation is attempted here for the pdfs of IWC and RHi as they seem to be scrambled 

(in comparison to the pdfs for the other two quantities) by as-yet unidentified cloud 

processes. Figure 2.15 should buttress the argument in Lawson et al. (2006a) that the 

findings of Heymsfield and Miloshevich (1995) hold in the average.

Two-dimensional histograms of the unimodal fit parameters log10[N0] and 

log10[D0] versus temperature are shown in Fig. 2.16. There are fairly weak relationships 

between the two parameters and temperature in the midlatitudes, but not in the Tropics. 

Heymsfield (2002) found relationships between temperature and the scale parameter 

within individual clouds (see Fig. 12 therein), but in an overall, statistical sense, the 

relationship is less distinct, as would be expected from combining the relationships from 

each cloud in Fig. 12 of Heymsfield (2002). No relationship is found between these 

parameters, RHi, and vertical velocity turbulence (not shown), though it is possible that 

the 15-second temporal average has filtered information out of the RHi and vertical 

velocity measurements.

One difficulty pointed out by Field et al. (2005) with parametric distributions such 

as the gamma distribution is that the parameters vary over many orders of magnitude and 

do not, on their own, have any physical meaning. (These are two reasons given in that 

paper for choosing the normalization approach to PSDs, and the former is a major 

purpose for using the logarithms of N0 and D0 here.) Functional combinations of the fit 

parameters, however, do have physical meaning. For instance, for a  > 0 , a parametric 

distribution’s mode is located at
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nmax (D0 ,a ) = D0a ■ (2-12)

Histograms of temperature versus mode location, with the marginal probability density of 

finding a mode at any temperature conditioned upon temperature, are shown in Fig. 2.17. 

Unimodal or bimodal parametric distributions were chosen for each temperature based 

upon the generalized chi-squared test. There is a faint signature: at the coldest 

temperatures, there tends to be only one small mode, but as temperature increases, the 

chances of finding a larger mode further away from the nearly ever-present small mode 

increase (until the warmest temperatures are reached, at which point the signal fades 

away). Recall that Field (2000) found that only a small mode tended to exist around 

cloud top, with a larger mode that moved further from the small mode with descent 

through the cloud until the lower reaches of the cloud were obtained, where the processes 

of particle breakup and sublimation became dominant. Information on where in the cloud 

samples were taken (with respect to top and base) is not had for most of this data, but the 

findings of Field (2000) and others are confirmed here by using temperature as a rough 

proxy for location within cloud.

According to the hypothesis of Baker and Lawson (2006a), ice water content is 

likely a function of RHi and of vertical velocity in some part of the cloud layer as well as 

of temperature. Two-dimensional histograms of IWC versus temperature are given in 

Fig. 2.18, both for the midlatitudes and for the Tropics. A definite positive correlation 

between the two variables is seen in the midlatitude data but is much weaker in the 

tropical cirrus. This observation also is in accord with Heymsfield et al. (2013). In either 

case, the spread indicates that IWC must also be a function of other parameters. In 

making similar histograms of IWC versus both RHi and vertical velocity turbulence, no
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Fig. 2.17: Two-dimensional histograms of fit PSD mode conditioned on tem perature 
for (a) the midlatitudes and for (b) the Tropics.
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relationships were found, although this finding does not preclude there being such 

relationships. Because ice crystals develop on time scales on the order of tens of 

minutes, where they are measured is typically separated spatially and temporally from 

where they are nucleated and from where most of their growth has occurred. Therefore, 

the relationships posited by Baker and Lawson (2006a) would require examination of the 

properties of the entire layer being studied. This more in-depth probing is not possible 

with the datasets used in this study.

Figure 2.19 shows two-dimensional histograms of total number concentration (the 

measured zeroth mode of the PSD) versus both temperature and RHi, for both the 

midlatitudes and for the Tropics. No relationship between number concentration and RHi 

is seen in the Tropics, though there is seen a weak relationship in the Tropics between 

number concentration and temperature. There is a definite relationship between number 

concentration and temperature in the midlatitudes, whereby, on average, particle number 

concentration decreases with increasing temperature. If temperature is again considered a 

rough proxy for location within the cloud layer, this finding is in accord with the 

previously stated concept of the top zone in cirrus, formed from the results of Lagrangian 

spiral flights and passes through orographic wave clouds: number concentration is 

generally highest near cloud top where much of the production of ice crystals is posited 

to form via homogenous ice nucleation. It is also consistent with the findings of 

Heymsfield et al. (2013). A weak relationship is seen between number concentration and 

RHi in the midlatitudes, but it is the opposite of the relationship expected from the 

negative feedback proposed by Heymsfield and Miloshevich (1995): number 

concentration increases with increasing supersaturation, rather than vice versa. This is
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not to contradict the observed negative feedback (for, as noted above, the ice crystals 

used in this study are typically measured away from their nucleation sites), but to point 

out that it does not show up in a broad, statistical sense. Instead, it would appear that 

perhaps high supersaturations more often coincide with regions of high number 

concentration, consistent with the homogenous freezing of large numbers of small, super­

cooled water droplets (Lawson et al., 2006a). In neither region is a relationship found 

between number concentration and vertical velocity turbulence.

Considering that relationships found in the midlatitudes are often seen much more 

weakly or not at all in the Tropics, it is noted that there are approximately a factor of 

three more measurements from the midlatitudes than there are from the Tropics. It could 

simply be that not enough tropical measurements using the updated instruments and 

processing techniques have been made. In fact, it could be hypothesized that a necessary 

(but not sufficient) condition for an appropriate sample size would be for the measured 

temperature pdfs shown in Fig. 2.14 to become clearly normal, or at least smooth.

Sum m ary and Caveat 

A database of cirrus particle size distributions, with concomitant meteorological 

variables, has been constructed using data collected during the TC4, MACPEx, and 

SPartICus flight campaigns. These campaigns were chosen due to their use of up-to-date 

instrumentation as well as due to the measures taken to mitigate ice particle shattering 

artifacts. Particle size distribution data were averaged for 15 seconds, and it was 

determined that the 2D-S’ first size bin (5 ym -15 ym) is not certain enough to use. 

Parametric PSDs, both unimodal and bimodal, were fit to each measured PSD, and the 

fitting procedures developed are demonstrated in Appendices A and B. Functional
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descriptions (with full covariance matrices) are given for the unimodal fit parameters. 

These may be used in modeling or remote sensing applications that call for fully 

described statistics of ice PSDs. It was determined that, at least for certain purposes, the 

unimodal fits to the measured PSDs are sufficient. Furthermore, due to a high correlation 

between the two, it was determined that the N0 parameter can be eliminated by expressing 

it as a function of the a  parameter (or vice versa).

Three statistical tests were developed in order to determine the utility of bimodal 

fits and the efficacy of unimodal fits: a maximum likelihood ratio test, a modified 

Anderson-Darling test, and a generalized chi-squared test of moments. While it was 

found that, from 50% to 60% of time, the Anderson-Darling and generalized chi-squared 

tests deemed the unimodal fits to be insufficient, the bimodal fits were deemed 

sufficiently more descriptive of measured PSDs so as not to be nuisances only less than 

10% of the time. This inconsistency is attributed to lingering uncertainties in the actual 

shape of ice PSDs, particularly at the smallest ice crystal sizes.

Properties of the PSDs, including bimodality and various bulk quantities, were 

examined in relation to meteorological variables such as temperature and RHi. It was 

found that PSDs identified by the modified Anderson-Darling test as being better served 

by bimodal representations tend to occur at higher temperatures and with lower total 

number concentrations than those PSDs that the same test indicates to be unimodal, 

similar to the findings of Zhao et al. (2011). This finding stands in support of the 

hypothesis given in Lawson et al. (2006a) that the model of distinct ice growth and 

particle size zones given in Heymsfield and Miloshevich (1995) holds in the average for 

cirrus.
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Furthermore, a negative correlation was found between temperature and ice 

particle total number concentration, i.e., that NT tends to be higher at colder temperatures. 

A positive correlation was found between temperature and ice water content and a faint, 

positive correlation in the midlatitudes between NT and RHi. However, being a study of 

averages over many clouds rather than a study of individual clouds, what is likely being 

seen is that areas of high number concentration are tending to occur in highly 

supersaturated regions where large numbers of small, super-cooled liquid droplets have 

undergone homogenous freezing (Lawson et al., 2006a).

Here a word of caution is warranted concerning shattered particle removal from 

the 2D-S data. The removal processing is based upon modeling particle interarrival times 

according to a Poisson process (Lawson, 2011), and one basic assumption of a Poisson 

process, as it applies here, is that each particle interarrival time within the optical probe is 

independent of all other particle interarrival times. Such an assumption’s holding for any 

physical system would require the system’s being in a steady, uniform state—which is 

never truly the case and certainly not so for a cloud. It is sometimes the case in the 

treatment of cloud and precipitation processes that cloud particles are considered to be 

independently positioned through the volume of the cloud (Kostinski and Shaw, 2001). 

However, a number of studies have examined the tendency of cloud particles to cluster 

nonuniformly in space (Khain et al., 2007). Hobbs and Rangno (1985) found in situ 

evidence of ice particle clustering both in cumuliform and stratiform clouds. Kostinski 

and Shaw (2001) found clustering of liquid cloud droplets even in the center of a 

nominally homogenous cloud core and also determined the “statistics of droplet spacing” 

to exhibit super-Poissonian variance at increasing length scales. Pinsky and Khain
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(2003) also found clustering of liquid cloud droplets on scales the order of a centimeter. 

All of these studies pointed to the clustering of cloud particles as a result of the 

interaction of the particles with turbulent eddies: “this mechanism of the preferential 

concentration acts at all scales of turbulence, increasing toward smaller scales” (Khain et 

al., 2007).

Thus, the danger with particle removal based on particle interarrival times is that 

since clouds evolve under the influence of turbulent eddies, the assumption of 

independent particle interarrival times is not strictly correct and therefore some real, 

small particles can be expected to have been incorrectly removed from the processed 

dataset.

That being said, though the shattered particle removal algorithm is imperfect and 

will be subjected to further testing, the results presented here indicate behaviors in ice 

crystal concentrations within different regions of cloud that are expected from physical 

reasoning (as discussed in the first section of this chapter) and that are not always 

discernible from older datasets where shattering mitigation processing is not possible 

(Lawson, 2011).

As a first effort, a small experiment is here performed on the sensitivity of the 

results presented in this chapter to the shatter-correction algorithm. Very simply, the 

concentrations in size bins up to 55 ym were doubled for the entire MACPEx 2D-S 

dataset (the first size bin still being truncated). This altered 2D-S dataset constitutes the 

test set. The rationale for doubling the concentrations in these particular size bins is this: 

Lawson (2011) reported reductions in small particles due to anti shattering processing as 

great as 90%—mainly at sizes smaller than 50 ym— and a subsequent error in the
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processing due to imperfections in the application of image processing algorithms of 10% 

is assumed. Then, the occurrence of PSD bimodality within the test set, as well as 

shortwave extinction coefficients computed from the test set, were examined. Extinction 

coefficients were computed as outlined in Appendix D, using a dimensional-cross-

sectional area relationship of A( D ) = 0.2285D188 (from Mitchell, 1996; units are cgs).

As a substantial fraction of the total number concentration of ice crystals in a PSD 

is often found at sizes of 55 ^m  or smaller (see, e.g., Fig. 2.6), it is freely assumed here 

that computations of NT are highly sensitive to the shattering algorithm. The occurrence 

of PSD bimodality changed significantly from the control set to the test set. Effecting the 

particle concentration doubling resulted in an apparent increase of PSD bimodality within 

the MACPEx dataset from 5.5% to 10.4% (as diagnosed by the maximum likelihood ratio 

test), from 68.8% to 78.7% (as diagnosed by the binned Anderson-Darling test), and 

from 59.6% to 71.4% (as diagnosed by the generalized chi-squared test). Increasing the 

numbers of small particles also had an effect on computations of shortwave extinction 

coefficient, as shown in Fig. 2.20: on average, computed extinction values increased by 

about 0.02 km-1, and the mean relative increase in extinction coefficient was 9%. It is 

therefore concluded that the results presented here are sensitive to both the use of as well 

as the accuracy of the shattered particle removal-processing algorithm.
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Fig. 2.20: Extinction coefficient computed from the test dataset scattered versus 
extinction coefficient computed from the control dataset.



CHAPTER 3

PARAMETERIZATION OF A NORMALIZED, UNIVERSAL

CIRRUS PSD

Background

Westbrook et al. (2004a) and Westbrook et al. (2004b), through a set of modeling 

studies and comparisons with data taken during FIRE I (Field and Heymsfield, 2003), 

concluded that ice PSDs whose dominant mechanism for evolution is aggregation via 

differential sedimentation asymptotically approach a “universal particle size distribution” 

when individual PSDs are normalized by two physical quantities directly related to two 

distribution moments. The idea of underlying universality due to aggregation has been 

around for some time (see, e.g., Meakin, 1992), and much work has been applied to the 

scaling of raindrop size distributions (see, e.g., Testud et al., 2001; and Lee et al., 2004). 

Delanoe et al. (2005) applied the raindrop-scaling framework of Testud et al. (2001) to 

ice particle systems by converting ice PSDs to equivalent melted diameter drop 

distributions (assuming an effective density-dimensional relationship) for a large 

database of cirrus in situ measurements. Tinel et al. (2005) applied the use of 

normalized, equivalent melted-diameter distributions to the retrieval of ice cloud 

properties. Using power laws to relate moments of ice PSDs, Field et al. (2005) also 

scaled ice PSDs to get at a universal size distribution, but they made no assumption about 

mass-dimensional relationships, normalizing with moments of the PSDs expressed as



functions of particle maximum dimension. They point out, however, that for their results 

to be used, the application of some mass-dimensional assumptions is unavoidable.

One of the attractions of the normalized ice PSD is therefore that, theoretically, 

normalization allows for the characterization of any PSD using the universal shape along 

with two of the PSDs moments. Some authors have suggested that the universal shape, 

along with any two measurements related to any two of a PSDs moments, are sufficient 

characterization to reconstruct such observables as radar reflectivity (e.g., Field et al., 

2005). Despite the fact that PSD normalization is sometimes seemingly given as a 

panacea for reducing the degrees of freedom in problems related to ice cloud property 

retrievals and modeling, the natural variability in ice PSDs remains. This is clearly seen 

in Fig. 11 of Field et al. (2005), where the variation around the mean universal shape 

spans orders of magnitude. To begin with, the hypothesized universal shape is only an 

asymptotic limit, and even at that, the theory behind it accounts only for aggregational 

growth, ignoring other growth/depletion processes (secondary though they may be) such 

as fragmentation, deposition and sublimation, and turbulent and advective disturbances. 

Even greater uncertainty is introduced when, inevitably, highly uncertain mass­

dimensional relationships (e.g., Mitchell, 1996) are introduced, as in Delanoe et al.

(2005). Two moments, it turns out, are not enough to characterize a PSD without 

avoiding the natural variability inherent in any treatment of ice PSDs

In this chapter, the climatology of cirrus PSDs described in Chapter 2 is 

normalized after the manner described in Field et al. (2005; hereinafter referred to as 

F05). A parameterization of cirrus cloud PSDs based on this normalization and on the 

up-to-date cirrus PSD climatology described in Chapter 2 is then given. The advantages
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over earlier such parameterizations include 1) that the datasets used here are much larger 

in both their temporal and spatial coverage and 2) that the more modern two-dimensional 

stereo (2D-S) probe is used along with advanced shattered particle removal techniques. It 

will be shown in Chapter 3 that the 2D-S is expected to record a significantly lower 

number of small ice crystals than the older Particle Measuring Systems (PMS) 2DC 

probe in identical cloud situations. This chapter proceeds with a brief note regarding the 

data used and then outlines the normalization process. A method for performing the 

aforementioned parameterization is then given, and then the performance of the 

parameterization is demonstrated along with a method for using it in conjunction with a 

pair of remote sensing observations.

Data

A particular description of the data used in this entire study is given in Chapter 2. 

Here it is recalled that the unimodal fits did an excellent job of reproducing the first 

through the fifth sample moments of the measured PSDs. The zeroth moment—total 

particle number concentration—is best computed by using unimodal fits where the 

generalized chi-squared fit (see Chapter 2 and Appendix C) indicates that the unimodal 

fit is sufficient and by using bimodal fits otherwise. Therefore, for computational 

convenience, all quantities derived from measured 2D-S PSDs—total number 

concentration, extinction coefficient, etc.— are computed using the parametric fits (with 

one exception, where total number concentration were computed directly from the binned 

2D-S data). Formulae for computing several physical quantities using the parametric fits 

to the measured PSDs are given in Appendix D.
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Normalization of Particle Size Distributions

A PSD is normalized by the scaling of its independent variable and of its abscissa. 

We begin with PSDs as functions of particle maximum dimension, and following F05, 

normalize the independent variable by
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m 2

and the abscissa by

N  =— 3 , (3.2)
M 33 V '

where M n is the nth sample moment of the PSD expressed as a function of particle 

maximum dimension. The PSD may then be expressed as

n( D ) = N  * F (3.3)

In Eq. 3.3, F(x) is (ideally) the universal, normalized PSD and may be fit with any 

of a number of parametric functions. By using numerically computed moments, Eqs.

3.1-3.3 are used to normalize each of the measured PSDs from the combined dataset 

described in Chapter 2. Each normalized PSD is then grouped into normalized maximum 

length bins of Ax = 0.10.

Figure 3.1 shows two-dimensional histograms for the normalized PSDs from each 

dataset and from all three datasets together with their mean, normalized PSDs overlaid 

(cf. Fig. 11b of F05). The mean, normalized PSD for all three datasets is shown again
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in Fig. 3.2 (solid black curve; the other curves will be explained later). This serves as the 

empirical universal, normalized PSD Fu(x). Comparison of F05’s Fig. 11b with Fig. 3.2 

shows general similarity in Fu(x), though the shoulder in Fig. 3.2 is more distinct and is 

closer to a normalized particle size of unity. Given that a great deal more data are used 

here than in F05 and that the data were collected with a newer instrument, some 

differences are not unexpected.

In order to check the normalization procedure, it is recognized that total number 

concentration should be preserved thereby. For all three datasets, the binned, empirical 

F(x) for each measured PSD was used along with corresponding values of N* and D* 

derived from each PSD in order to compute total number concentration (Nr). These are 

scattered against Nr computed directly from the binned, nonnormalized PSDs and shown 

in panel (a) of Fig. 3.3. The agreement is sound and the normalization procedure is 

validated. In panel (b) of Fig. 3.3, ice water content (IWC) computed from the binned and 

normalized PSDs against IWC computed from the unimodal fits to the measured PSDs 

(as described in Chapter 2). The agreement is good, but not quite so good as for Nr in 

panel (a). The procedure for computing IWC from unimodal PSD fits is described in 

Appendix D, and the dimensional/density relationship used is that given in Delanoe et al. 

(2005):

p( D ) = 0.0056D_L1 (cgs units). (34)

Param eterization of the Universal, Normalized PSD

Westbrook et al. (2004b) predict an exponential tail for the normalized PSD. In 

F05, Fu(x) is fit with a mixture of an exponential distribution and a gamma distribution in
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ice w ater content using the binned, normalized PSDs along with the true values of 
N  and D from each PSD vs. the true  values of IW C computed directly from the 

m easured PSDs via the unimodal fits described in C hapter 2.



order to describe an observed exponential behavior at small normalized particle sizes, a 

shoulder around x ~ 0.5, and then an approximately exponential drop-off at larger 

normalized particle sizes (see Fig. 11b in F05). Upon normalizing the 2D-S data, 

however, it was found that the gamma distribution’s tail dropped off too quickly to 

capture the behavior of Fu(x) at large values of x. Therefore, we here perform two fits to 

Fu(x): a bimodal mixture of two gamma distributions
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and a trimodal mixture of two gamma distributions and a shifted, inverse gamma 

distribution (Johnson et al., 1994)

F x IP2 = ( p[ , ) ]  = f 2 (x | p i) + N - (x - 1 .55)

H  (x -1 .55)

x

exp ft-
(3.6)

Where H(x) is the Heaviside step function. The inverse gamma distribution, which is 

simply the distribution of the inverse of a gamma-distributed random variable, was found 

to capture the tail of the normalized 2D-S data very well. These two parametric functions 

are fit to the empirical Fu(x) by nonlinear regression via the method of maximum 

likelihood. Due to its accuracy, this fitting method proved highly useful and will 

therefore be described, as it will no doubt prove helpful in the future.

First, a remark on a possible simplification to the fitting problem is useful. Let mk

X
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denote the noncentral moments of Fu(x). By the consistency rule given in F05, it should 

be that m2 = m3 = 1, which requirement would allow for elimination of two parameters 

[N1 and N2 in F 2(x), most easily]. In the course of performing the bimodal fit to Eq. 3.5, 

however, it was found that eliminating those two parameters did not provide enough 

degrees of freedom for a successful fit. Evidently, the averaged data do not conform well 

enough with theory for the enforcement of the consistency rule.

Now, let it be recalled that regressions are designed to use a predictor variable in 

order to fit the mean of a set of measured data (Wilks, 2006). In this case, the predictor 

variable is x = D(M2/M3), and the mean of the predicted data F u(x) is to be set to a 

parametric function: either the bimodal function F2(x) in Eq. 3.5 or the trimodal function 

F 3(x) in Eq. 3.6. Consider the data in each Ax = 0.10 bin to be described by a gamma 

probability distribution:

where are the samples of the normalized PSDs in the ith xt bin, and ^  and A. are the 

scale and shape parameters, respectively, of the distribution of normalized PSD samples

\
(3.7)

in the ith bin. Assuming the samples are independent, then, the likelihood function of the 

samples within an xi bin is

(3.8)

where K  is the number of samples in the ith xt bin. Expanding this likelihood function



over all x, bins (and for a total of N  normalized size bins) gives
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,

(3.9)

Rather than use this likelihood function to estimate all of the (k,^t) pairs directly, 

they are parameterized using the nonlinear function Fu(x) such that

(3.10)

Let var, denote the sample variance within an x, bin. Then

var.
= _ , \ , and

F (  x .Vu .
(3.11)

1

X. = . (3.12)
1 var

With these substitutions, the likelihood function of the parameter vector (either p t or p2) 

becomes

i  (p I y ) = n  ”,

F.(x )2

n y„

var
F (  x .)u V i '

F  (x )2u V 1 /
var

r F (x. )2u V i '
var

exp F (x )u \ 1 )
var (3.13)A
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and the log-likelihood function is

(in [ ]  + in [p u (x )] - in[var.])

F (x .)y^_A_jj_ -  in 
s v var

r F (  x. )2

var

(3.14)

Maximum likelihood estimation has become a workhorse for parameter 

estimation. One reason is that under proper conditions (Huber, 2002), the asymptotic 

sampling distribution of maximum likelihood estimators is multivariate normal (Kotz et 

al., 2000; Wilks, 2006). An attempt was made to transform the fitting problem here so 

that the sampling distribution of the fit parameters could be estimated, and though this 

particular attempt proved unsuccessful, the parameter transformation did aid in the 

numerical inversion of the likelihood function. Specifically, the mathematical supports 

of the parameters being estimated are (N1,D1,N2,D2 ,N3 ,a 3 ,fi3) e (0,TO) and (a i,a2) e 

(-1 ,TO). That their mathematical supports might encompass the entire real line, thus 

eliminating the need for a constrained inversion (Zhdanov, 2002) of Eq. 3.14, the 

parameters are transformed as shown in Table 3.1. Equations 3.5 and 3.6 therefore 

change to

F 2 [ X IP* ] =
X

~~d!e 1

X
d

p(ai)-1
exp (n1 — e d x ) +

,(a2 )—1exp(̂ 2 (3.15)

exp (n2 — e d2 x ).
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Table 3.1

Variable transform ations for the functions F2 (x) and F?(x).

P aram eter Transform ation Inverse Transform ation

N ni = ln [ N i ] N i = exP (ni )

A di = ln [ Di ] D  = exp (d )

a a1 = ln [ a  + 1] a 1 = exp (a1) -1

N 2 n2 = ln [ N 2 ] N 2 = eXP ( n 2 )

D2 d2 = ln [ D2 ] D 2 = eXP(d 2 )

a 2 a 2 = ln [«2 + l ] J5 II e x —

N 3 n3 = ln [ N 3 ] N 3 = exp (n3 )

a 3 a3 = ln [ a 3 ] a 3 = exp( a3 )

P3 b3 = ln [ A  ] p 3 = exp( b3)
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b3exp(a3)
| p2 = (p*r ,«3,a3,b3)] = F2(x I p*) + e" e—(— y (x — 1.55)-expa3—1 x

exp
/  b3 ^ —e 3

v x —1.55

r  (e°3)
1 ’ (3.16)

H  (x —1.55).

This nonlinear regression is highly sensitive to the first guess given it. To cope 

with this sensitivity, 929 280 first guesses were used in fitting F2(x). This number of first 

guesses was arrived at simply by dividing the possible solution space for the vector pi 

into fine divisions in each of its six dimensions. Then, each possible combination within 

the divided solution space was used as a first guess for the transformed vector p1*. This 

suffices as a very large number of first guesses, so that the global maximum of the 

likelihood function can be found. Out of all the resulting solutions, that with the smallest 

mean squared error (with respect to the averaged, normalized PSD) was chosen. In 

fitting F3(xi), the fit of F 2(x), along with a method of moments fit of the shifted inverse 

gamma distribution to the residual for the third mode was used. The fit parameters are 

shown in Table 3.2.

To demonstrate that the inverse-gamma behavior of the tail of Fu(x) is not an 

artifact of having used only the 2D-S to measure PSDs, the 2D-S dataset from TC4 was 

combined with measurements taken using the Precipitation Imaging Probe (PIP), which 

probes image particles as large as 6.2 mm. Thus, the PSD measurements were extended 

to cover the size range 15 jam to 6200 jam. The normalization described above was then 

performed for the combined dataset, and F u(x) for the combined dataset is shown in Fig. 

3.4. It is seen that the addition of the PIP increases Fu(x) for values of x greater than 2. 

Since the difficulty with the gamma distribution is that it drops off too fast to catch the
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Table 3.2

Values for fit param eters of the normalized PSD. Values for the bimodal form are 
given on the top, and values for the trim odal form are given on the bottom.

____________________ General Bimodal Form ____________________

p1 = (9,455,0.2386,-1.0,0.4235,0.1526,3.8612)r 

____________________ General Trimodal Form___________________

p 2 =(9,455,0.2386,-1.0,0.4235,0.1526,3.8612,0.0023,6.9673,6.6952)J
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Mean Normalized Distributions

x
Mean Normalized Distributions

x
Fig. 3.4: Comparisons of mean, normalized PSDs with and w ithout precipitation 

probe data included. (a) The mean, normalized PSD from all three datasets 
combined (black curve), overlaid with mean, normalized PSD from TC4 derived 

from the combination of the 2D-S and PIP probes (solid gray curve). (b) The mean, 
normalized PSD from TC4 (black curve), overlaid with mean, normalized PSD from 

TC4 derived from the combination of the 2D-S and PIP probes (solid gray curve).



tail of F u(x), it is easily surmised that the addition of the precipitation probe data only 

reinforces the inverse-gamma behavior of the universal distribution’s tail.

It is really the mean of all the possible normalized PSDs that is expressed by 

F u(x). For a specific realization of a PSD, then, some uncertainty is introduced by 

assuming that Fu(x) is its underlying, normalized form. Figure 3.3, however, shows good 

agreement with measurements when estimating NT and IWC based on Fu(x) and known 

values for N* and D*. What this really demonstrates is that so long as N* and D* are 

known certainly, and so long as the PSD to be reconstructed belongs to the set of PSDs 

used to make F u(x), then using the average Fu(x) is satisfactory, but not perfect (as seen in 

the case of IWC). It is not shown, but it is expected, that imperfections would also crop 

up in computations of extinction coefficient and radar reflectivity and that these 

imperfections are manifestations of the natural variability of real PSDs about their 

normalized mean F u(x). Therefore, when using F u(x) and N* and D*, error in 

reconstructed PSD moments will stem from the error in the parameterization of F u(x), 

i.e., from what other realizations of the parameter vectors p1 and p2 are possible for a 

given, measured PSD. This error, however, will not be explored in this work.

Perform ance of Param eterization and Use with 
Remote Sensing Observations

In Delanoe et al. (2005), a parameterization scheme based on radar reflectivity 

was proposed for N*. Appendix E contains equations for parameterizing the N* used 

here, based on radar reflectivity, assuming either a bimodal or a trimodal universal 

distribution. Figure 3.5 shows the results of computing PSD bulk and radiative quantities 

using the true D* and the parameterized N*, assuming either a bimodal or a trimodal
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universal distribution, in comparison to the same quantities computed directly from the 

2D-S data (as described in Chapter 2). Recomputed reflectivities match by design since 

N* is computed to match the reflectivity. Parameterized number concentrations are 

closer, in the average (a), to the data using the trimodal rather than the bimodal 

parameterization, and distributions of parameterized values for both extinction coefficient 

and IWC are closer in mean, standard deviation (o), and skewness (Y to the 2D-S data 

when the trimodal parameterization is used. Having pinned down each PSD using only 

Fu(x) and (approximately, through simulated radar reflectivity) one moment of the PSD, 

the increasing deviation of measured and parameterized quantities—beginning at IWC 

and moving down to NT—is an indication of the natural PSD variability mentioned in the 

introduction.

In Delanoe et al. (2005), complete parameterization of a PSD is achieved by using 

the universal shape along with N* parameterized by radar reflectivity and D* 

parameterized by temperature. A similar parameterization scheme is implemented here.

Parameterization of D* (Eq. 3.1) by temperature is demonstrated in Fig. 3.6, such

that

D* = 9.29 exp (0.99T), (3.17)

where T is in °C. Figure 3.7 shows the results of computing PSD quantities using F3(x) 

with the true D* and the reflectivity-parameterized N* (blue, labeled “semipram”), the 

temperature-parameterized D * and the reflectivity-parameterized N * (red, labeled 

“pram”), and directly from the 2D-S data (black). The effects of the complete 

parameterization are to greatly increase the skewnesses, spreads, and means of the 

recomputed PSD quantities.
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Rather than parameterize D* by temperature, here is devised a method for 

parameterizing both N* and D* simultaneously by two remote sensing measurements (two 

modeled moments of the PSD could also be used in a similar fashion). Suppose, for 

instance, that both radar reflectivity and extinction coefficient measurements were had. 

The forward models for extinction and reflectivity measurements, based on F3(x), are 

given in Appendix E. If we consider the vector of log-parameters

m = ( n, d ) = ( ln N* J ,ln D* J ) (3.18)

and the vector of log-measurements

y = (In [ct] , ln [ Z ]) , (3.19)

then we seek to invert the equation

y = G (m ), (3.20)

where G is the forward model operator— or, in other words, the set of equations that turns 

m into y . Figure 3.8 shows marginal pdfs of quantities computed directly from 2D-S 

data (black) as well as computed using parameterized values (using the 

reflectivity/temperature method) for both D* and N*, via F 3(x) (red) and parameterized 

values for both D* and N* [using synthetic extinction and radar reflectivity 

measurements), via F 3(x) blue, labeled “LSE pram”]. The distributions of computed 

quantities, using the LSE (least-squared error) parameterization, are much closer to the 

distributions of quantities computed directly from the 2D-S in mean, standard deviation,
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and skewness than are the distributions of quantities computed using the 

reflectivity/temperature parameterization.

Sum m ary

A parameterization of a “universal” particle size distribution (PSD), based on 

F05’s normalization of individual PSDs by their second and third noncentral moments, is 

given. This parameterization constitutes an improvement on earlier, similar works in that 

a large database of PSDs is used that was collected with new instrumentation and 

processed for shattered particle mitigation.

By means of this parameterization, all the measured PSDs are boiled down to one 

shape. However, the natural variability of ice PSDs remains unavoidable, as seen by the 

orders-of-magnitude spread in Fig. 3.1. Figures 3.5, 3.7, and 3.8 demonstrate that 

knowledge of one or two moments (either from a remote measurement or from a model) 

are not enough to pin down a PSD precisely enough to reproduce all of its moments, even 

when the moments are known with surety (Fig. 3.5). However, two moments and a 

universal shape provide a significant improvement over the parameterization scheme of 

Delanoe et al. (2005), which uses only a radar reflectivity measurement and a 

temperature to parameterize the normalizing and scaling factors of a universal PSD: the 

temperature parameterization of D* adds significant bias to the distributions of 

reconstructed, PSD-based quantities. It is therefore concluded that, where possible, two 

independent remote sensing measurements— or two modeled PSD moments—in 

conjunction with the trimodal, universal PSD presented here, constitute a preferable 

mechanism for parameterizing cirrus PSDs.

Finally, despite earlier works (e.g., Westbrook et al., 2004a,b), which predict a
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gamma-distribution tail to the universal, normalized ice PSD, it was found here that the 

tail is best described by an inverse gamma distribution. Investigating the reason for this 

is beyond the scope of this work, but, as pointed out earlier in this paper, there are 

mechanisms at play in a cloud for PSD evolution other than aggregation, and the 

15-second temporal averages used to construct the measured PSDs in this study may also 

play a role in transforming the shape of the universal PSD’s tail.
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CHAPTER 4

COMPARISON OF THE 2D-S TO OLDER DATASETS 

Background

The shattering of ice particles on probe tips and inlets and on aircraft wings 

(Korolev et al., 2011) has rendered many historical cirrus microphysical datasets suspect 

[see, e.g., McFarquhar et al. (2007) and Jensen et al. (2009)] due to the possibility of such 

shattering’s leading to artificially inflated measurements of small ice particle 

concentrations. The important role that would be played in cloud microphysical and 

radiative properties, if  the smallest ice particles were indeed always present in such large 

numbers as they have been measured, has been noted in a number of studies. For 

instance, Heymsfield et al. (2002) reported that small particles dominated total particle 

concentrations at all times in their analysis of data from multiple Tropical Rainfall 

Measuring Mission (TRMM) field campaigns. The same phenomenon was noted in 

midlatitude cirrus in Field (2000). Lawson et al. (2006a), using data from midlatitude 

cirrus clouds, also reported large numbers of small particles, such that particle 

concentrations ranged from ~ .2 cm-3-1 cm-3. They reported that particles smaller than 

50 jim were responsible for 99% of the total number concentration, 69% of the 

extinction, and 40% of the IWC in their midlatitude dataset. In looking at several 

representative cirrus cases sampled during the INterhemispheric differences in Cirrus 

properties from Anthropogenic emissions (INCA) campaign of 2000-2002, Gayet et al.



(2002) found average ice particle concentrations as high as 10 cm-1 and estimated that 

particles having maximum dimensions smaller than 15.8 jam resulted in about 38% of 

measured shortwave extinction. Gayet et al. (2004) and Gayet et al. (2006), in 

considering INCA midlatitude cirrus data taken from both the Northern and Southern 

Hemispheres during March and April, 2000, estimated that particles smaller than 20 am  

accounted for about 35% of observed extinction.

The use of particle interarrival times within an optical probe (Cooper, 1978; Field 

et al., 2003; Field et al., 2006) has become a tool for the removal of shattered ice particles 

from PSD samples [see Baker et al. (2009) for a simple explanation of this technique with 

respect to raindrops]. Interarrival time statistics were used to mitigate the effects of 

shattering on several of the ice particle probes during the NASA TC4 field campaign, and 

lower particle number concentrations were reported by Lawson et al. (2010) using that 

dataset than had been previously reported by Lawson et al. (2006a). However, as 

indicated in Korolev et al. (2011) and in Jensen et al. (2009), interarrival time statistics 

alone are not enough to deal with the shattering problem: probes designed with modified 

probe tips and without inlet shrouds should be used, and they must be placed away from 

leading aircraft wing edges in order to minimize the entering of shattered ice crystals into 

the instruments’ sample volumes because small particles generated by shattering on 

aircraft parts will likely not disperse enough to be filtered out by shatter-recognition 

algorithms (Jensen et al., 2009).

In this chapter, an indirect comparison is made between a climatology of 2D-S- 

measured cirrus PSDs, described in Chapter 2, and a large collection of older datasets, 

collected from the early 1990s through the early 2000s (with older Particle Measurement
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Systems (PMS) 2DC and 2DP probes) and used in Delanoe et al. (2005; hereinafter 

referred to as D05), via the normalization scheme detailed in D05. The question to be 

addressed is whether the older datasets differ statistically from datasets collected with 

newer and more advanced probes and processing techniques. The comparison is made by 

applying a cirrus PSD statistical model, developed in D05 using the older datasets, to the 

newer 2D-S data, thereby effectively simulating 2DC measurements. The statistical 

model of D05 takes PSD moments as inputs and produces a parameterized 2DC PSD. 

Therefore, the requisite moments from the 2D-S data are calculated and applied to the 

D05 model in order to give a parameterized view of what the 2DC would have measured 

had it been collecting data next to the 2D-S. First, the normalization and 

parameterization scheme used by D05 will be discussed, and the effects of not using a 

precipitation probe in this study will then be examined. Finally, the results of the 

comparison are demonstrated.

Normalization and Param eterization

Though modified probe tips were not consistently used on the 2D-S during the 

three field campaigns heretofore mentioned, all of the data are corrected for shattering 

artifacts via particle interarrival time analysis. See Chapter 2 for other details concerning 

the 2D-S dataset used here. As in Chapter 3, save in one instance, all quantities used here 

that are derived from 2D-S PSDs are computed using parametric fits to the PSDs (see 

Appendix D).

Variations on the basic normalization procedure for a PSD may be found in a 

number of places, including in Chapter 2 and in D05. Here, following D05, a PSD 

nD(D), whose independent variable is ice particle maximum dimension, may be
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transformed to a distribution nDe(De), whose independent variable is equivalent melted 

diameter. To do so, the dimensional/density relationship given in Chapter 3 (which 

relationship was borrowed from D05) is used. This density-dimensional relationship 

stems from relationships published by Locatelli and Hobbs (1974) and Brown and 

Francis (1995) for aggregate particles. Setting masses equal as in D05 results in the 

independent variable transformation
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D =

1
( r \ b m  ̂3

D, (41)
a D m

m

P\ r w j

where pw is the density of water. This transformation ensures that both total number 

concentration (NT) and ice water content (IWC) can be obtained by using the PSD in 

either form:

(D )dD = I (DN T = \ ‘ »D (D )dD = [n D .  (D, ) dD, ( « )

e

i w c = n  r  a° b" nD ( d  y1 0 = n  ( d - y D - ■ <4 i )

Since the number of particles is not changed by the transformation and since the 

transformation is based on mass-equivalent spheres, these results are to be expected. 

However, the mass-equivalent spherical transformation will cause computations of other 

physical quantities using the two different versions of the size distribution to differ one 

from the other. For example, a distribution of spheres will evidently not produce the 

same shortwave extinction coefficient as the real distribution; i.e., using an area­



dimensional relationship A(D) = oaD m for the nonspherical distribution to arrive at the 

extinction coefficient (see Appendix F),
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(  A 2
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2 /

This problem is noted in D05 in conjunction with the definition given therein of effective 

radius.

Similarly, radar reflectivity computed under the assumption of spherical particles 

is also incorrect. This is demonstrated in Fig. 4.1, which contrasts forward-modeled 

radar reflectivities, computed from 2D-S data taken during MACPEx, SPartICus, and 

TC4, using two different 94 GHz radar forward models. For the first model, Mie theory 

was applied to the PSDs expressed in terms of equivalent mass spheres using the Bohren 

and Huffman Mie (BHMIE) algorithm (Bohren and Huffman, 1983) and 1.784 -  

i(0.00228) for the refractive index of ice (Liu and Illingworth, 1997). The second, more 

realistic model uses PSDs expressed in terms of particle maximum dimension and a set of 

power-law fits to T-matrix computations of backscatter cross section (Matrosov, 2007; 

Matrosov et al., 2012; Hammonds, 2013; Posselt and Mace, 2013) to compute 

reflectivity, assuming an air/ice dielectric mixing model and that all particles are prolate 

spheroids with aspect ratios of 0.7 (Korolev and Isaac, 2003; Westbrook et al., 2004a; 

Westbrook et al., 2004b; Hogan et al., 2012). A bias of about 2.2 dBZ is clearly seen 

between the two models, which is comparable to the measurement error of many radars. 

Thus, the effective radar reflectivity is more properly modeled using appropriate 

dimensional-backscatter cross-section power laws suited to the natural PSDs (see
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Fig. 4.1: C ontrast of forward-m odeled 94 GHz rad a r reflectivity using the spherical 
assumption versus using an oblate spheroid with mixed perm ittivity assumption.
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Appendix F for details):
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where the units of A are mm, the units of Ze are mm6 m-3, and all other units are cgs.

With these caveats, then, and following D05, the transformed PSDs have their 

independent variable scaled by mass-mean diameter

D  = JT ( D. )

" f  d >d, (D )
(4.6)

and their ordinates scaled by
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so that
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D

x = ■
D m J

(4.8)

In Eq. 4.8, F(x) is, ideally, the universal, normalized PSD (see Chapter 3). Via 

numerically computed moments, Eqs. 4.6-4.8 are used to normalize the measured, mass- 

equivalent spherical PSDs.

The measured 2D-S PSDs from TC , SPartICus, and MACPEx were normalized

3bz +bm
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according to the procedure described in section 4.1 of D05. Two-dimensional histograms 

of the results, as well as for all three datasets combined, are shown in Fig. 4.2, and from 

these follow the overall, normalized 2D-S PSD that is to be compared to the simulated 

2DC. First, the bin centers and bin widths of the 2D-S were transformed via Eq. 4.1. 

Then, each measured PSD was transformed by scaling from D-space to Dg-space, 

attempting to keep NT and IWC computed using the original and the transformed PSDs 

the same (see Appendix F). After their transformation, all of the PSDs from the three 

datasets were normalized and were then grouped into normalized diameter bins of 

Ax. = 0.10. In D05, data taken with the 2DC cloud particle and 2DP precipitation probes

were combined to give PSDs ranging from 25 ^m to 6400 ^m. Here, no precipitation 

probe data are used. How, then, does not including precipitation probe data affect the 

comparison here with D05? The answer to this question will be postponed until later in 

the chapter so as to be given in context of the comparison of D05 with the 2D-S alone.

The two-dimensional histograms shown in Fig. 4.2 are overlaid with their mean 

normalized PSDs (cf. Figs. 1 and 2 in D05; here the color map is truncated at 75% of the 

highest number of samples in a bin so as to increase contrast). The mean, normalized 

PSD for the three datasets is repeated in Fig. 4.3 as the set of solid curves (cf. Fig. 3 of 

D05). This serves as the empirical universal, normalized PSD F~2DS (x) derived from the

2D-S using the methodology of D05, which distribution and the quantities derived from it 

serve as the data that represent the more modern 2D-S with shattering artifacts removed 

using particle interarrival time filtering. The subscript ~2DS is used hereafter to 

represent quantities derived using F~2 DS (x ).

As a check of D05’s normalization procedure, the individual normalized and
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transformed PSDs from all three datasets [resulting from the application of Eqs. 4.6-4.8 

to each measured and transformed nDe(De)] were used along with their corresponding 

values of No* and D m in order to compute values of NT and IWC. These computations are 

scattered against the same quantities, computed directly from the untransformed PSDs 

(using the binned data to compute NT and applying the density-dimensional relationship 

in Eq. 3.4 to the unimodal PSD fits to compute IWC), as shown in Fig. 4.4. There is a 

bias in NT that is quantified on the figure, but the agreement is sound, and the 

normalization procedure of the 2D-S data is thus far validated.

Right off the bat, there are some important qualitative observations that can be 

made from examining the overlaid mean curves in Fig. 4.2 and F~2DS (x) (solid curves) in

Fig. 4.3. First, in comparison with Fig. 3 of D05, the concentrations of particles at the 

smallest scaled diameters are, on average, about an order of magnitude or more lower 

with data from the 2D-S than they are using data from the older instruments used in D05. 

From this observation it is surmised that while there continue to be relatively high 

numbers of small ice particles, the number has decreased in the newer datasets due to the 

exclusion of shattered ice crystals. It can also be seen in Fig. 4.3 that the shoulder in the 

normalized PSDs in the vicinity of x ~ 1.0 exists in the newer data as it does in the data 

used in D05. It is worth noting, though, that the shoulder exists in the one tropical dataset 

used here (TC4, see Fig. 4.2), whereas it is absent or much less noticeable in the tropical 

datasets used in D05.

Three parametric fits for F(x) derived from normalized 2DC and 2DP data are 

given in D05, two of which are repeated here and shown in Fig. 4.3: the gam m a-i form 

(F1) and the modified gamma form (FajS). Formulae for computing bulk and radiative
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quantities using these parametric forms are given in Appendix F.

(4.9)

(4.10)

Fortuitously, D05’s modified gamma fits the 2D-S data better than it does the older data 

at the smallest normalized sizes (cf. Fig. 2 in D05). Notice that neither of D05’s 

parametric shapes correctly catches the shoulder in the newer data, though the modified 

gamma was formulated to (better) catch a corresponding shoulder in the older data.

Since Fap = F(-13) (Eq. 4.10) and F1  = F3 (Eq. 4.9) were formulated to approximate 

PSDs given by a combined 2DC and 2DP database given two noncentral PSD moments 

that could be either predicted by a model or otherwise observed, we make the assumption 

that if  we take the same two moments derived from a 2D-S PSD and apply them to Eqs.

4.9 and 4.10 (as in Eq. 4.8), then we have effectively simulated the transformed PSD that 

a combined 2DC and 2DP would have observed had they been present with the 2D-S.

The subscript ~2DC is used hereafter to represent quantities that simulate 2DC-2DP data 

in this way.

A comparison of PSD properties computed directly from the 2D-S with PSD 

properties computed using the true N0* and D m (derived directly from the binned 2D-S 

data) applied to Eqs. 4.9 and 4.10 was made. This constitutes a comparison of the 2D-S



with a parameterized 2DC-2DP dataset. The extinction coefficient, IWC, and 94 GHz 

radar reflectivity compare well between the data and both parametric shapes (not shown). 

IWC matches by design (under the normalization scheme of D05, IWC is independent of 

normalized PSD shape). Computed and parameterized radar reflectivities have a slightly 

skewed and slightly non-one-to-one relationship (this is an important consideration in the 

parameterization of N0* by Z given in D05— see Appendix F.) As for total number 

concentration, it is the least certain computation (see Fig. 4.5), but the gamma-w shape is 

entirely wrong in attempting to reproduce this quantity, so this shape is not used 

hereafter, and F 0.t(x) = F - 1 3)(x) is the shape used to simulate the 2DC-2DP.

Figure 4.6 shows the mean relative error and the standard deviation of the relative 

error (cf. Fig. 5 of D05) between the 2D-S-derived and parameterized (via Fa^x)) 2DC- 

derived quantities mentioned in the previous paragraph as well as between the effective 

radius (as defined in D05). The mean relative error in total number concentration is 

rather large at ~51%, and the mean relative error in radar reflectivity Z, at ~23%, is larger 

than that shown in Fig. 5 of D05 (less than 5% there) but, at about 2 dB, is within the 

error of most radars. This may well be due to the overestimation of F(x) by Fat(x) 

between normalized sizes of about 1.2 and 2 (see Fig. 4.3b). (Both here and in D05, 

Fa/(x) falls off much more rapidly than F(x) above a normalized diameter of two. 

However, it is deduced from Figs. 2 and 5 in D05 that this roll-off is not responsible for 

the large mean relative error in Z shown in Fig. 4.6.)

The mean relative error in effective radius shown in Fig. 4.6 is approximately 

-9% , whereas it is apparently nil in Fig. 5 of D05. Effective radius is defined in D05 as 

the ratio of the third to the second moments of the spherical-equivalent PSDs and is
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log10[NT] (# L-1)

2D-S
Fig. 4.5: Total num ber concentration computed using the param eterized universal 

PSDs from D05 (gam m a-u in black, modified gamma in gray) along with true  values 
of N 0 and Dm (from the 2D-S data) scattered vs. total num ber concentration 

computed directly from untransform ed 2D-S data.
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Error in ~2DC (using true Dm and N0 from 2D-S)
25

-5

-1 0 1----------- 1-----------------------1-----------------------1-----------------------1-----------------------1-----------
(Num. Conc.)/10 Ext. Eff. Radius IWC Z

Mean Relative Error and Standard Deviation of Relative Error 
Fig. 4.6: M ean relative e rro r (gray) and standard  deviation of the relative e rro r 

(black) between total num ber concentration (divided by 10), effective radius, IW C, 
and Z as computed directly from the 2D-S and as computed from the modified- 

gamma universal PSD shape and the true  N 0 and Dm computed from the 2D-S data.



therefore a weighted mean of the PSD. The negative sign on the relative error indicates 

that, on average, Fa£x) is underestimating the effective radius of the PSDs measured by 

the 2D-S, whereas, for the older datasets used in D05, the effective radius is spot-on in 

the average. Therefore, there is a significant difference between the new 2D-S datasets 

and the older 2DC datasets used in D05 in the ratio of large particles to small particles, 

even when precipitation probe data is not combined with the 2D-S.

Im pact of Not Using Precipitation Probe Data

To more formally investigate the impact of not combining precipitation probe 

data with the 2D-S data, data from the Precipitation Imaging Probe (PIP) were combined 

with data from the 2D-S using the TC4 dataset. This campaign was chosen due to its 

tending to occur at warmer temperatures, in a more convective environment, and at lower 

relative humidities (Chapter 2): so if large particles are going to matter, they should 

matter for TC4. Figure 4.7 shows, similar to Fig. 4.3, the normalized size distribution for 

the 2D-S alone, the 2D-S combined with the PIP, and Fa£x). The combined data do not 

show the average, normalized PSD between zero and one digging as low as for the 2D-S 

alone, but it does show similar numbers of particles at the very smallest normalized sizes, 

and the shoulder is in the same location. Beginning at about x = 1.2, the 2D-S-PIP 

normalized distribution is higher than the 2D-S-alone normalized distribution, and it 

continues out to about x = 10, whereas the 2D-S-alone distribution ends shy of x = 5. In 

either case, the modified gamma distribution misses what is greater than about x = 2.

This roll-off, along with the fact that the mean normalized and transformed 2D-S/PIP

combination appears to be more similar to Fx 2 DS (x ) than it does to F a>y8(x), would seem to

indicate that a parameterization of F(x) based off the 2D-S alone is comparable to the
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Fig. 4.7: D ata from TC alone. The mean, normalized PSD from the 2D-S (black 
curve) is overlaid with the mean, normalized PSD obtained from combining the 2D­

S with the PIP (gray curve) and the modified gamma param eterization from D05 
(dashed curve). Panel (b) is a zoom-in on a portion of panel (a).



2DC/2DP-based F 0.t(x ) parameterization.

In support of this assertion, Fig. 4.8 shows the penalty in radar reflectivity, 

computed directly from data using the Hammonds/Matrosov/Posselt/Mace approach 

described earlier, incurred by using only the 2D-S instead of the combination of the 2D-S 

and of the PIP (which penalty is in the neighborhood of 1 dB). The true N0* and Dm 

computed from each of the 2D-S PSDs alone and from the combined PSDs from TC4 

were used, along with Fat(x), to compute total number concentration, extinction 

coefficient, IWC, and 94 GHz effective radar reflectivity. This amounts to two different 

simulations ~2DC: one including the PIP and one not. The results are shown in Fig. 4.9. 

The distributions are very similar, with the exception of the reflectivity distributions, 

whose means are separated by less than 1 dBZ. It is concluded that the cloud filtering 

technique has resulted in PSDs that are satisfactorily described by the 2D-S alone, at least 

in the case of this comparison.

Final Result and Conclusion

In D05, complete parameterization of a 2DC/2DP-measured PSD is achieved by 

using the universal shape Fa/(x) along with N0* parameterized by radar reflectivity and 

D m parameterized by temperature. A similar parameterization scheme (also based on 

radar reflectivity and temperature) for the 2D-S (based on Field et al., 2005) is outlined in 

Chapter 3. Figure 4.10 shows the results of computing PSD-based quantities using the 

fully parameterized 2D-S (red, labeled “x2DS”), the fully parameterized 2DC (blue, 

labeled “x2DC”), and directly from the 2D-S data (black). Again, probability density 

functions of 94 GHz effective radar reflectivity match because they are forced to by the 

two instrument parameterizations. Otherwise, biases exist between computations based
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Histogram of Computed Reflectivities

2D-S + PIP
Fig. 4.8: Two-dimensional histogram  of 94 GHz effective rad a r reflectivity 

computed, using the Ham m onds/M atrosov approach, from the 2D-S alone versus 
tha t computed from the 2D-S combined with the PIP.
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(a) log10(NT) (b) log10(a)

(c) Effective 94 GHz Reflectivity
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Fig. 4.9: Distributions of quantities computed using the param etric modified 
gamma distribution along with the true  values of N 0 and Dm computed from the 
2D-S alone (black) and from the 2D-S combined with the PIP (gray). (a) NT, (b) 

extinction coefficient, (c) IW C, (d) 94 GHz effective rad a r reflectivity.
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on simulated instruments and computations based on the actual 2D-S. This bias is due 

mainly to the temperature parameterization of D m. The density functions of extinction 

coefficient and IWC for the two parameterized instruments match one another quite well 

(the differences in their medians are not statistically significant). However, the density 

function of total number concentration for x2DC is shifted to higher number 

concentrations compared to the density function of total number concentration for x2DS: 

using a Mann-Whitney U test, the difference in their medians is statistically significant at 

the 95% level. We therefore conclude that the older D05 parameterization based on the 

2DC-2DP datasets predicts a statistically significant higher number of total ice crystals 

than does the parameterized 2D-S (by a factor of about 1.3, or a little over 1 dB) and that, 

more generally, the 2DC measures a larger ratio of small ice crystals to large ice crystals 

than does the 2D-S, as shown in the effective radius comparison in Fig. 4.6.

Via an indirect comparison to older, 2DC-based datasets by means of a 

parameterization given by D05, it is determined that the 2D-S cirrus cloud datasets used 

here are significantly different from historical datasets in numbers of small ice crystals 

measured. Furthermore, it is determined that were a 2DC to have been flown alongside a 

2D-S in the three flight campaigns utilized and processed with the same methodology as 

was used in D05, 2DC would have reported significantly higher numbers of the smallest 

ice crystals. We also note that the differences between the 2D-S and the 2DC databases 

are relatively small. Our aim was to determine whether the historical datasets analyzed 

by D05 continue to be scientifically viable given the newer probes and modern 

processing techniques. Given the modest differences found here between the newer and 

older data, we conclude that the historical datasets do indeed continue to be useful with
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the caveats noted above. However, it is surmised that since the 2D-S is superior in 

response time, resolution, and sample volume to the 2DC and that since steps were taken 

to mitigate ice particle shattering in the 2D-S data, the newer datasets are more accurate. 

Therefore, we recommend continuing field investigations of cirrus clouds using the 

newer particle probes and data processing techniques and, where possible, investigating 

the possibility of effecting the statistical correction of historical cirrus ice particle datasets 

using newer datasets.
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CHAPTER 5

REMOTE SENSING AND RADAR FORWARD 

MODEL UNCERTAINTY

A number of algorithms for the retrieval of cirrus properties using instruments 

from the A-Train or from the ARM program have been devised for combinations of 

instruments from these remote sensing platforms (see, e.g, Zhang and Mace, 2006).

Cloud property retrieval schemes—including those for cirrus— often make assumptions, 

either implicitly or explicitly, about cloud PSDs (Comstock et al., 2007), and some 

schemes attempt— at least implicitly—to retrieve parameters of assumed PSDs [e.g., 

Gossard (1994), Austin and Stephens (2001), Mace et al. (2002), Zhang and Mace 

(2006), and Zhao et al. (2011)]. Another purpose, then, to be served by data from the 

three flight campaigns being examined is to provide cirrus PSD data that can be used to 

inform and to refine remote sensing retrieval algorithms. As an example, Evans et al. 

(2002) used cloud in situ measurements to construct a database of many possible, 

hypothetical cloud configurations, each matched to their radiation signatures, for use in a 

cloud property retrieval scheme. By way of explanation, the manner in which it is 

proposed that this purpose be fulfilled is now elaborated upon.

The A-Train dataset is able to provide several independent measurements of a 

volume of cloudy atmosphere, in the form of radar reflectivity and lidar backscatter as 

well as brightness temperatures from the MODIS instrument. The ARM dataset is able to



provide even more independent measurements, such as the full Doppler radar spectrum 

and in situ measurements of the atmospheric state. In either case, the number of degrees 

of freedom associated with a volume of cloudy atmosphere is larger than the number of 

independent measurements that can be made. There are, for instance, three degrees of 

independent air motion. Also, for whatever analytical distribution function used to 

approximate the cloud’s average PSD for the volume, there are at least two independent 

parameters. For ice clouds, other degrees of freedom include particle habit, cross­

sectional area, density, and so on. A direct solution method for any physical retrieval 

using either dataset therefore requires the inversion of a set of heavily underconstrained 

forward model equations.

The strategy then becomes to limit the solution space to some “correctness set” C, 

which is a subset of the entire solution space, where we expect a priori to be able to find a 

unique, physically plausible solution to the inversion of the physical retrieval (Zhdanov, 

2002). This can be accomplished— and not infrequently is, in atmospheric retrieval 

problems—by the addition to the inversion problem of physically based and/or ad hoc 

constraints, such as by the Tikhonov regularization method (Zhdanov, 2002). Many 

retrieval schemes make use of Bayesian inference (Rodgers, 2000; Press, 2003), which 

provides a convenient vehicle both for adding constraints in the form of prior statistical 

knowledge and for estimating the uncertainty in retrieved results. The latter can be 

accomplished if the method is properly applied.

The Bayesian method is a general approach (Rodgers, 2000): the probability 

density of the entire set of possible solutions—the posterior solution—is produced; and 

from this posterior distribution a retrieved value can be chosen (using any of a variety of
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possible mathematical inversion methods). The application of prior knowledge narrows 

the posterior distribution, effectively reducing the solution space for the inversion, and 

the narrowed posterior distribution contains the uncertainty information for whatever 

solution is eventually chosen. The Bayesian inferential method is rich in the complexity 

of its depth and in the scope of its applications, but a brief review of the principles thereof 

relevant to this work is given next.

A Brief Review of Bayesian Inference

The mathematical underpinning for Bayesian inference is Bayes’ Theorem:

wherep  represents the pdf of a random variable. Within this discussion, the vector x 

contains a set of cirrus PSD parameters, and vector y contains a set of remote sensing 

observations. The prior distribution p(x) contains the knowledge of the parameter vector 

x apart from the measurement vector y. The conditional distribution p(y|x), also often 

written as the likelihood function £(x|y) (Severini, 2000), contains the forward model that 

relates the observations y to the parameters x. The distribution of observations p(y) will 

not be made use of here. The posterior distribution, p(x|y), is then used to make 

inferences about the parameters in x.

The likelihood function £(x|y) is derived from a forward model Xy|x)

(Broemeling, 1985) that can be written generally as

(5.1)

(5.2)
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where F  is the forward model operator that transforms a vector x in cirrus cloud state 

space into a vector y in measurement space, and e, representing measurement noise, is a 

random vector with zero mean and covariance matrix Se. A handful of assumptions then 

allow for the mathematical construction of the likelihood function (Zhdanov, 2002).

of observations. The second assumption is that measurement errors are normally 

distributed random variables. (Measurement errors are also commonly assumed to be 

independent of one another.) The third assumption is that whatever observations are 

made are the most likely given the true state of the forward model. Under this third 

assumption, the optimum values for the model parameter x are those that maximize the 

probability that the observed data are in fact observed. With these three assumptions, the 

likelihood function becomes

Beyond the use of prior information, in order to further reduce the number of 

degrees of freedom of the inversion problem, certain empirical assumptions must be 

employed that fall under the rubric of “forward model parameters” (Rodgers, 2000). One 

common group of assumptions, mentioned already, uses a set of power laws to relate ice 

particle maximum dimension, for a few examples, to particle mass (or density), particle 

cross-sectional area, and particle radar backscatter cross-section (e.g., Mitchell, 1996; 

Aydin and Walsh, 1999; Heymsfield and Iaquinta, 2000; Heymsfield et al., 2002,

The first assumption is that the relationship (y) = F  (x ) holds true for the mean

(5.3)

if y e ! nX1.
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Hammonds, 2013). All such sets of coefficients are highly uncertain, resulting in 

(ostensibly) quantifiable forward model uncertainties that further aggravate measurement 

uncertainties. One approach to dealing with these forward model parameter uncertainties 

is to incorporate them into the measurement covariance matrix (Rodgers, 2000). 

Following Rodgers’ (2000) notation, let the vector b contain all such parameters, and let 

the matrix Sb be its covariance matrix. Furthermore, let K b be the Frechet derivative of 

the forward model operator F  with respect to b. Then the overall error covariance 

becomes (using a linear approximation)

This chapter focuses on the prior distribution of cirrus PSD parameters p(x). 

Accordingly, the distributions of fit parameters from Chapter 2, as well as their 

covariance structure, are here examined and used.

Armed with expressions for the likelihood function and for the prior distribution, 

the posterior distribution may be constructed by combining Eqs. 5.1 and 5.5:

S = S + K ThShK h .y e h h h (5.4)

Substitution of this result into the likelihood function results in

(5.5)

(5.6)

Evidently, if  the posterior distribution is maximized with respect to x, then the
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maximum is independent ofp(y). We are thus left with a maximization problem, 

assuming we wish to obtain the maximum a posteriori (MAP) solution (Rodgers, 2000).

Cloud retrieval schemes using complete Bayesian inferential approaches have 

been formulated, some of them numerically integrating a partially analytical posterior 

distribution [e.g., Evans et al. (2002), McFarlane et al. (2002), and Evans et al. (2005)], 

and some of them taking a Markov chain Monte Carlo (MCMC) approach (see, e.g., 

Posselt et al., 2008). However, the particular form of Bayesian inference most often used 

in atmospheric retrievals is optimal estimation, wherein the likelihood function and prior 

distributions are assumed to be multivariate normal, thus conveniently producing a 

multivariate normal posterior distribution that can be maximized with respect to the 

vector x  (Rodgers, 2000). In this case, the prior distribution takes the form

if x  e ! mx1, Sa is the prior covariance matrix, and x a is the expected value of the prior 

distribution. Often, for a lack of better information, Sa is assumed to be diagonal.

Using the distributions of fit parameters and their covariance structure given in 

Chapter 2, the utility of the optimal estimation technique for the retrieval of cirrus PSDs 

is examined here, and a set of questions is considered. First, may the optimal estimation

= 0

(5.8)
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technique be properly applied to the retrieval of cirrus microphysics via the retrieval of 

cirrus PSDs? Second, if  so, is there a penalty for using the normal statistics called for by 

optimal estimation? Third, what is the penalty for ignoring the off-diagonal elements of 

the prior covariance matrix? And finally, fourth, can the prior distribution be categorized 

by meteorological variables?

As discussed in Chapter 2, the use of the unimodal fits to the cirrus PSDs will be 

sufficient for the purposes of remote sensing. Evidently, a simple look at Tables 2.1 and 

2.2 would rule out the use of optimal estimation were it not for the high correlation 

between log10[Ay and the shape parameter. Use of this fact is now made in order to 

express log10[^o] as a function of a  and thereby reduce the number of parameters needed 

to describe a PSD to two. Two-dimensional histograms of log10[^o] versus a  are shown 

in Figs. 5.1 and 5.2— one for the midlatitudes and one for the Tropics. Overlaid on each 

plot (in purple) is a quartic fit between the two parameters. In either case, the 

parameterization takes the form

Transform ation to an Optim al Estim ation Problem

(5.9)

The coefficients for both geographical regions are listed in Table 5.1.

Using this parameterization, Eq. 2.1 becomes

Looking back at Fig. 2.11, one PSD parameter has been removed whose marginal pdf is
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Fig. 5.1: Assuming all fits are unimodal, the scatter between log10[N0] and a  for the 
midlatitudes. A quartic fit between the two is shown by the purple curve and given

in the purple box.
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Fig. 5.2: Assuming all fits are unimodal, the scatter between log10[N0] and a  for the 
Tropics. A quartic fit between the two is shown by the purple curve and given in

the purple box.
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Table 5.1

Coefficients for quartic  fits shown in Figs. 5.1 and 5.2.

Midlatitudes Tropics
Co 1.2088 0.71562
Cl -0.084245 0.06085
C2 -0.099211 -0.10947
C3 0.0043435 0.0044239
C4 -7.4154X10-5 -6.9355X10-5
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nonnormal. Though the marginal pdf of log10[D0] is modeled as normal (albeit sloppily 

so for the tropical dataset), the marginal pdf of a  cannot be. However, if  a  is 

transformed according to

w =  logjo [ «  +  l] (5.11)

then the distribution of w is skewed (see Fig. 5.3), but its mathematical support is 

w g (- ^ , <»), and so its marginal pdf may be approximated as normal. Reformulating Eq.

5.10 according to this second parameter transformation gives

n (D ) = {l0 A cQ + c1 (lQw - 1) + c2 (l0 w - 1)2 + c3 (l0 w - 1)3 + c4 (l0 w - 1)4 }x

(  D \(loM) 

vD 0y
exp

v Doy

(5.12)

The unimodal size distribution is now expressed in terms of two parameters, both of them 

having quasi-normal marginal pdfs. These pdfs, for both the midlatitudes and for the 

Tropics, are shown in Fig. 5.3, along with the mean and standard deviations needed in 

order to parameterize them as normal distributions. Their correlation and covariance 

matrices are given in Table 5.2. These formulations will allow for the use of optimal 

estimation for the retrieval of cirrus PSDs, though it should be noted that the nondiagonal 

prior covariance matrix given in Table 5.2 must be used.

Penalty for Using Optimal Estimation

Using the optimal estimation technique where the prior distribution is not 

multivariate-normal will perforce result in a penalty in the estimated retrieval uncertainty
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(a)
logio(Do)

w

Fig. 5.3: M arginal pdfs of the param eters of the PSD reworked for use with the 
optimal estimation technique. (a) log10[Do], (b) w.
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Table 5.2

Covariance and correlation matrices for 
reduced unimodal fit PSD param eters.

General Form

(J2 cS logio[Do ] logio[Do
J  j 2

lo§io[Do ]"w w

M IDLATITUDES
Covariance Matrix Correlation Matrix

0.14 -0.10 
-0.10 0.22

1.00 -0.60 
-0.60 1.00

ORT PICS
Covariance Matrix Correlation Matrix

0.14 -0.15 
-0.15 0.25

1.00 -0.80 
-0.80 1.00



(Posselt et al., 2008). A rigorous characterization of this penalty will require a 

comparison of the results of retrieval exercises using the optimal estimation technique 

with the results of performing the same exercises using the complete, parameterized 

multivariate prior distribution given in Chapter 2. In order to perform the latter, the 

Markov chain Monte Carlo (MCMC) approach (Press, 2003) has been settled on. The 

specific algorithm to be used is an adaptive variant of the Metropolis-Hastings algorithm 

(Haario et al., 1999; Tamminen and Kyrola, 2001) that was developed for the solution of 

Bayesian inverse problems involving nonnormal statistics. Application of this method 

requires the implementation of random number generators, the construction of which is 

detailed in Ghosh and Henderson (2002), that are capable of producing random vectors 

with arbitrary marginal distributions and specified covariance matrices. This work is 

incomplete and is not presented here.

Penalty for Ignoring Off-Diagonal Elements 
of P rio r Covariance M atrix

Because of the narrowing constraint that the nonzero correlations in the prior 

covariance matrix impose upon the posterior distribution of a Bayesian retrieval 

algorithm, their use will result in a reduction of retrieval uncertainty. To demonstrate this 

effect in a simple way, the prior knowledge of ice water content is estimated from the 

marginal distributions of the reduced, unimodal PSD parameters, and the distribution of 

these estimates is compared with the distribution of ice water contents estimated directly 

from the 2D-S (SPartICus dataset only). The estimation is performed in two ways: first, 

the marginal distributions of PSD parameters are considered uncorrelated and second, 

their correlations are taken into account. The results are shown in Fig. 5.4, except for the
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IWC from Correlated Covariance Matrix, Variance 0.0053985 g/irr
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Fig. 5.4: IW C estimated from correlated vectors of unimodal PSD param eters (top)

and from 2D-S measurem ents (bottom).



estimation performed using uncorrelated vectors of PSD parameters: the uncorrelated 

vectors produce impossible combinations of parameters that lead to unphysical IWC 

computations that cannot be displayed on a histogram. Thus, not only should the off- 

diagonal elements produce smaller uncertainties in retrieval results, but they are also 

necessary if the prior distribution of PSD parameters is to describe the actual distribution 

of possible bulk cloud parameters.

Partial work (which is not shown here) has been performed to demonstrate the 

effect in uncertainty estimates of including and of not including the off-diagonal elements 

of the prior covariance matrix. This is being done using synthetic remote sensing 

measurables computed using the 2D-S measurements along with a forward model for 

radar reflectivity and lidar backscatter in cirrus clouds outlined in Zhang and Mace 

(2006).

U ncertainty in R adar Forw ard Models

The comparison of simulated radar measurements, computed from simulated 

cloud microphysics, with actual radar measurements of modeled clouds is emerging as a 

tool for use in model validation and intercomparison exercises. It is thought that the 

comparison of simulated and real radar measurements avoids much of the uncertainty 

involved with comparing modeled cloud microphysics with microphysics derived from 

inversion algorithms applied to radar measurements. While comparison of real 

measurements with simulated measurements may seem straightforward to implement, it 

not only does not completely avoid the inherent uncertainty of microphysical retrievals, 

but it also introduces new sources of uncertainty.

For example, the Cloud Feedback Model Intercomparison Project (CFMIP)
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Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011) is a multi­

instrument simulator package designed to compute via forward model the measurements 

that a number of orbiting sensors would make were they to view a modeled scene. While 

the COSP suite of simulations goes to great pains to model things such as subgrid scale 

variability, instrument beam width, instrument viewing angle, and surface properties, it 

perforce contains a large number of assumptions concerning cloud microphysics.

The Quickbeam component (Haynes et al., 2007) of COSP is used to model radar 

reflectivities such as would be measured by CloudSat. Quickbeam models ice particles 

as spheres and allows for the modeling of ice PSDs using one of a handful of 

predetermined parametric forms. Given one or two modeled moments of the ice particle 

size distribution (such as total number concentration and/or ice water content),

Quickbeam attempts to discern the corresponding ice PSD and to compute an appropriate 

effective radar reflectivity.

Ignoring any other considerations at all regarding the forward modeling of radar 

reflectivities, two concerns based purely in cloud microphysics are immediately raised. 

First, as seen in Fig. 4.1, error in the Quickbeam forward model is introduced by its 

assuming that ice particles are spheres and then using Mie theory to compute their radar 

backscatter cross-sections. Second, and much more importantly, as discussed in Chapter 

3 with regards to the normalization of ice PSDs using two moments and as illustrated in 

Fig. 3.1, there is an unavoidable natural variability in a cirrus PSD when only two of its 

moments are specified.

Here, uncertainty in forward-modeled radar reflectivity due to incomplete model 

specification of cloud particle size distributions is inspected. With data from TC4,
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MACPEx, and SPartICus, it is found that natural variability in particle size distributions, 

given only two simulated moments, requires assigning a distribution of radar reflectivities 

per set of modeled cloud moments.

For a modeled cloud, output from a two-moment CRM (courtesy of Andreas 

Muhlbauer), initialized with meteorological conditions from an A-Train overpass on 1 

April 2010 of the ARM Southern Great Plains site, is used. A two-dimensional histogram 

of modeled particle number concentration versus modeled ice water content is shown in 

Fig. 5.5. Figure 5.6 shows the two-dimensional histogram of measured number 

concentration versus measured ice water content for all three flight campaigns (for 

reference, the modeled histogram coincides with the pixels outlined in red). The inability 

of the in situ database to cover the range of modeled N t-IWC may suggest that 

nonphysical combinations have been modeled, but it certainly suggests the need for more 

flight campaigns using the updated particle probes in order to extend the range and 

statistical significance of the in situ database.

Radar reflectivities for the modeled Nt-IWC pairs are computed three ways.

First, Quickbeam is used, and the distribution of results is called “Muhlbauer 

Quickbeam.” Second, the parameterization of log10[Wo] given above is used, and the two 

modeled moments are used to solve for D 0 and a. These two parameters are then used to 

compute a radar reflectivity using the forward model described in Chapter 3. The 

distribution of these results is called “Mace Deterministic” . Third, measured Nt-IWC 

pairs are grouped into bins of at least 10 samples, and the radar reflectivity for each 

corresponding measured PSD is computed according to the forward model described in 

Chapter 3. Thus, each Nt-IWC bin contains a distribution of possible radar reflectivities.
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Modeled Moments, NT vs IWC
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Fig. 5.5: Two-dimensional histogram  of modeled num ber concentration versus

modeled ice w ater content.
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In Situ Dataset, NT vs IWC

IWC (mg/L)
Fig. 5.6: Two-dimensional histogram of measured number concentration versus 

measured ice water content for the three flight campaigns. For reference, the 
domain of Fig. 5.5 is indicated by the pixels outlined in red.



(This is illustrated in Figs. 5.7 and 5.8, which show the determined N t-IW C  bins and the 

means and standard deviations o f  the radar relectivity distributions contained in each 

bin.) Then, the measured N t-IW C  bin for each modeled N T-IWC pair is identified, and 

the corresponding individual distributions o f  radar reflectivities are combined via mixture 

modeling to construct an overall distribution o f  possible radar reflectivies. This final 

distribution o f  reflectivities is called “Stochastic.”

From Fig. 5.7, an overall increase in mean reflectivity with increase in IWC is 

seen, which is entirely expected, given Z-IWC relationships that have reflectivity 

increasing with ice water content (e.g., Protat et al., 2007). For a given IWC, it is also 

seen that mean reflectivity decreases with increasing N T. This also is not an unexpected 

result as spreading the same amount o f  mass over more particles results in smaller 

particles. Figure 5.7 also shows that there is more variation in mean reflectivity for a 

given N t than there is for a given IWC. Also, as seen in Fig. 5.8, the current in situ 

database gives uncertainties in reflectivity distributions o f  up to several dBZ.

Figure 5.9 shows the three distributions o f  computed reflectivities for only the 

modeled N t-IW C  pairs that overlap with the in situ database. The fact alone that the 

“deterministic” and “Quickbeam” distributions are significantly different indicates that 

two modeled PSD moments are not enough to definitively determine radar reflectivity. 

Figures 5.10 and 5.11 show pressure-dBZ histograms for the “deterministic” and 

“stochastic” reflectivity distributions. These figures clearly demonstrate that natural 

variability in ice PSDs— which translates into natural variability in radar reflectivity—  

results in smearing out a deterministically computed histogram o f  pressure versus dBZ. 

Thus, to reiterate, natural variability in particle size distributions, given only two
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Mean dBZ

IWC (mg/L)
Fig. 5.7: Means of the distributions of radar reflectivity contained in each measured 

N t - I W C  bin (each bin contains at least 10 PSDs).
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Standard Deviation dBZ

IWC (mg/L)
Fig. 5.8: Standard deviations of the distributions of radar reflectivity contained in 

each measured N t - I W C  bin (each bin contains at least 10 PSDs).
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Fig. 5.10: Pressure-dBZ histogram for the distribution of “deterministic"
reflectivities.

0



Pr
es

su
re

 
(h

Pa
)

168

Stochastic

160

180

200

220

240

260

280

300

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

320

-60  -55  -50  -45  -40  -35  -30  -25  -20  -15  -10
dBZ

Fig. 5.11: Pressure-dBZ histogram for the distribution of “stochastic” reflectivities.



simulated moments, requires assigning a distribution o f  radar reflectivities per set o f  

modeled cloud moments. This result is entirely expected in light o f  the results shown in 

Chapter 3.

In the estimation o f  radar reflectivity from modeled PSD moments, from a 

Bayesian standpoint, what has been shown is the spread in reflectivity computations due 

to the covariance in prior knowledge o f  ice PSDs. Other sources o f  spread will inevitably 

include variance in aspect ratios used to compute radar backscatter cross sections, 

variance in the mass-dimensional relationship, and uncertainty in the analytical PSD  

parameters, especially when one parameter is expressed as a function o f  another. What 

remains is to further explore the use o f  this in situ database by constructing a hierarchical 

Bayesian model, using latent variables such as temperature, relative humidity, and m ass­

dimensional relationships, in order to fully express the uncertainty in forward modeled 

radar reflectivity due to microphysical variability. Information content analysis will also 

be used to analyze the importance o f  various modeled moments in the estimation o f  radar 

reflectivity.
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CHAPTER 6

CONCLUSION

A  database o f  cirrus particle size distributions, with concomitant meteorological 

variables, has been constructed using data collected during the TC4, MACPEx, and 

SPartICus flight campaigns. These campaigns were chosen due to their use o f  up-to-date 

instrumentation as w ell as to the measures taken to mitigate ice particle shattering 

artifacts. Parametric particle size distributions, both unimodal and bimodal, were fit to 

each measured particle size distribution, and properties o f  the PSDs, including bimodality 

and various bulk quantities, were examined in relation to meteorological variables such 

as temperature and RHi. It was determined that, at least for certain purposes, the 

unimodal fits to the measured PSDs are sufficient. Parametric, marginal density 

functions for each o f  the unimodal fit parameters, along with their covariances, were 

given.

Via an indirect comparison to older, 2DC-based datasets by means o f  a 

parameterization given by D 05, it is determined that 2D-S cirrus cloud data is 

significantly different from the historical data. It is surmised that since the 2D-S is 

superior in response time, resolution, and sample volum e to the 2DC and since steps were 

taken to mitigate ice particle shattering in the 2D-S data, the newer datasets are more 

accurate. That being said, the historical datasets may still be useful, depending on the 

degree o f  accuracy needed for a particular application.



A  parameterization o f  the “universal” particle size distribution, based on the 

method o f  Field et al. (2005), is also given. Due to the method in which the 

parameterization was estimated, its sampling distribution is also available.

The work presented in Chapter 2 constitutes a prior distribution for cirrus particle 

size distribution in the Bayesian estimation o f  cirrus microphysical properties using 

remote sensing measurements. It is demonstrated that the unimodal fits are sufficient for 

remote sensing purposes and that one o f  the fitting parameters may be eliminated and the 

parametric particle size distribution reformulated so that the traditional technique o f  

optimal estimation for the retrieval o f  cirrus microphysical properties may be properly 

applied. It is critical to point out, though, that this technique may only be properly 

applied i f  the proper prior covariance structure, as given in Chapters 2 and 5, is used. 

Work remains to be completed in this application o f  the microphysical database, viz., a 

full-on error analysis via the MCMC method and an analysis o f  the consequences on the 

uncertainties in retrieved parameters o f  the off-diagonal elements o f  the prior covariance 

matrix.

Finally, the in situ database was used to investigate the uncertainty in forward 

m odels o f  radar reflectivity based on modeled moments o f  cirrus cloud particle size 

distributions. It is concluded that due to natural variability in the ice PSD, a set o f  

modeled PSD moments results in a distribution o f  possible radar reflectivities rather than 

in a single, analytically computed radar reflectivity.

This in situ database, as constructed, may be easily added to and the analysis 

structure given in this dissertation reapplied to continually keep it up to date. In fact, due 

to the ever-present need for more data for the purposes o f  informing model
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parameterizations, refining cirrus retrieval algorithms, and characterizing the forward 

m odeling o f  remote sensing measurements from model outputs for model validation, the 

final conclusion o f  this dissertation is that there is a pressing need for more in situ 

measurement campaigns with continual improvement in instrumentation and in data 

processing techniques.
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APPENDIX A

FITTING BINNED PSDs USING  THE

METHOD OF M OMENTS

Before performing a fit, both the measured and parametric PSDs are normalized 

such that their zeroth moments are unity (thus making them probability density 

functions). For a unimodal gamma distribution, the normalized parametric form is 

expressed as

Pr (D ) = p  (D ):
1

D or  (a  + 1)

f  D

vD 0y
exp

y Do j
(A 1 )

The parameters D 0 and a  are estimated in a manner similar to H eym sfield et al. (2002), 

using the first, third, and fifth noncentral moments o f  the normalized, measured PSD. 

The corresponding parametric moments are

E [  D  ]  = D„ (a  + 1), (A.2)

E [  D 3 ]  = D 03 (a  + 3 ) (a  + 2 ) (a  + 1), (A 3 )

E [  D 5 ]  = D0 (a  +  5 ) (a  + 4 ) (a  + 3 ) (a  + 2 ) (a  + 1) (A.4)
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Defining the quantity

F
E [  D 5 ]  E [  D 1 ]

(A.5)

and using the empirical moments to compute F, it may be shown that a  is a solution to 

the quadratic equation

0 = a 2 ( l -  F ) + a ( 5  -  9 F  ) +  (6 -  20 F ). (A .6)

As the condition a  > - 1  must be satisfied in order for the zeroth moment o f  the 

parametric PSD to exist, the smaller, real solution greater than negative unity is chosen.

If none exists, then no unimodal fit for the measured PSD is given. Having a solution for 

a, the solution for D 0 is

D 0 =
E " D 3' 1

E " D 1" (a  +  3 ) (a  + 2)
(A.7)

Finally, a solution for N 0 com es from the first noncentral moment o f  the nonnormalized, 

measured PSD M 1:

0 n 2
A 2r (“ + 2 )

(A .8)



APPENDIX B

FITTING BIM ODAL M IXTURE DISTRIBUTIONS TO

BINNED PSDs

The M ethod of Moments

The zeroth moment, or total particle number, o f  the bimodal distribution is

N t — (a l + l) +  N 2 D2T ( a 2 + l) — N T x +  N (B.1)

which is the sum o f  the particles in both modes. Normalized, then, the bimodal 

distribution (Eq. 2.2) becomes

T1 /D

y Du
exp

D

D 1

+

N T 2

D 2 r  ( a 2 +  1 )  N T

/  _D

vD 2y
exp

D

D 2

(B 2 )

It is convenient to rewrite this as

p  ( D  ):
r D  ^

VD 1 J
exp

k D u
+ (1 - n )

D 2r  ( a  + 1)
exp

V " D 2 J
(B.3)

a

1
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N  T
where nj = G[ 0 , l ]  • The distribution parameter vector Q = [ n , D 1,a 1,D 2,a 2]  is

then estimated using the method o f  moments, minimizing the misfit functional

E data -  E  ( 0 )
(B.4)

Where E data and E (0 ) are vectors whose elements are the first through the fifth 

measured and parametric noncentral moments, respectively. The parametric moments are

e  [  d 1 ] = n  d x ( a + i ) + ( i -  n ) d  ( a + 1 ) (B.5)

e  [ d  2 ] = n  d \  ( a + 2 ) ( a + i ) + ( i  -  n ) d 2 ( a + 2)(a 2+ 1) (B.6)

e  [ d 3 ] = nxD i ( a + 3)(a ! + 2 ) ( a + i)+ (i -  n ) d 3 (a 2+ 3)(a2+ 2)(a 2+ 1), (b.7)

E [d 4 ]= n D4 (a+4)(«i+3)(«i+2)(ai+ i)+ 
(1 -  ni) D-4 (a2+4)(a2+3)(a2+2)(a2+ l),

(B.8)

E [  D 5 ]  = n D  ( a 1 + 5)(aj +  4 ) ^  + 3 ) ^  + 2 ) ^  + 1) +

(l -  n  ) D  ( a 2 + 5 ) ( a 2 + 4 ) ( a 2 + 3 ) ( a 2 + 2 ) ( a 2 + 1).
(B.9)

2

Finally, solutions for N i and N2 come from the definition o f  n and from the zeroth 

moment o f  the nonnormalized PSD Mo:
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* 2 = (17 - )  ̂
2 d j  ( a  + -)

(B 1 1 )

The mode for which the product o f  the scale and shape parameters is the larger is selected 

as the large mode.

E xpectation-M axim ization

For this fitting method, binned counts o f  cloud particles are modeled as 

independent samples taken from a multinomial distribution (Bain and Englehardt, 1992), 

following Johnson et al. (2013). L etyi be the total number o f  particle counts in the lth 

size bin (from a total o f  L possible size bins). Therefore, i f  the observed particle size 

distribution is the vector y, then the probability mass function o f  the counts in its size 

bins is

the assumed mixture distribution) and where N T is the total number o f  counts.

Alternatively, the binned counts o f  cloud particles can be modeled as samples 

taken from a multinomial distribution with 2L bins: a sample may fall in bin lu (small 

particle mode) or in bin l2 (large particle mode), or, in other words, let xu be the number

(B 1 2 )

w herep l is the probability o f  obtaining a count in the I th size bin (computed by integrating

o f  counts in the lth size bin pertaining to the small particle mode, and let x2l be the number



o f  counts in the lth size bin pertaining to the large particle mode. (It must be that the total 

number o f  particle counts in a size bin is equal to the numbers o f  counts in the small and 

large particle m odes.) In this case, the probability mass function o f  the counts in the 

particle size distribution is

Pr ( V  X21>-> XL1’ X12’ X22, -> X L2 ) = Pxj,x2 ( X1’ X 2 ) (B.13)

and may be expressed in either o f  two forms:
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p ^ 2 (X1,x 2 ) = r [ l N t  !, , n t i P nP n  , or (B .14)
I I  x,. !x„ !1 1  1=1 11 i2

Pxvx2 ( X1, x 2 ) = ■
N t !

exP { E m  X11ln [ Pn ]  + xi2ln [ Pi2 ]} . (B .15)

Here, pu  is the probability o f  obtaining a count in the f h size bin o f  the small mode 

component o f  the PSD, andp l2 is the probability o f  obtaining a count in the lth size bin o f  

the large mode component. These probabilities are computed by integrating the large and 

small modes o f  the assumed mixture distribution and are given, for example, for the small 

mode by

Pii = Y
Dl , 

a  + 1, — l±L
\  f  

+Y
i /

a 1 +1,—
1 Di /

(B.16)

where Y (...) is the lower incomplete gamma function.

The expectation-maximization algorithm is an interative algorithm that makes use



of two steps: an expectation step and a maximization step. Following Moon (1996), we 

begin with the function

Q(e,elk]) = E{ln[ p (x | e) | y,e[k]]}. (B.17)

On the right-hand side o f Eq. B.17, p (x ,0 ) denotes the likelihood function o f the vector of 

mixture distribution parameters 6 given the (missing) data vector x. The data vector 

contains counts o f all sampled particles, segregated by mode, and is considered “missing” 

for two reasons: 1) the data is binned and 2) it is not known to which mode each sample 

would belong were they had. For the expectation step, the expected value of the log- 

likelihood function (with respect to x) is computed, given a set of observed data y (in this 

application, the binned PSD) and a current estimate o f the parameters . This expected 

value becomes the current estimate o f the missing data x [k]. Equation B.17 is then 

maximized with respect to the parameter vector 6 in order to obtain a new estimate 

6[k+I]:
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a \k+1]0 L ] = argmax (B 18)

As Px x (XPx 2) is a member o f the exponential distribution family (see Eq.

B.15), it will suffice for the expectation step to estimate x1 and x2 (Moon, 1996). To do 

so, their expected values, conditioned upon the observations y and on an estimate of the 

distribution parameters 6[k], will be found. Equation B.18 is therefore transformed using

y  =  [ • V - y L  J  =  [ ( X 11 +  X 12 ) > - > ( +  X L 2 ) T  =  X 1 +  X 2 ( B . 1 9 )
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so that

y )=Pxpx2 (X1, y -  X1 ) =
N t !

n = i  Pn lPn~Xn) ■ (B.20)

The conditional distribution o f x 1 is therefore (from Eqs. B.12 and B.20)

p (x | y) = (Xpy) = n L y -____
( 1 p  y (y) 1=1 xn!( y -  xn)!

f \ xn f \(yi~xn)
P i  \E h . 

kPi ) I Pi ) ’

(B 21)

which is evidently the joint distribution o f a sample o f independent binomial random 

variables. Similarly, it may be found that

p (x 2 1 y )=n y! / \(y ~xi 2) / \xi 2P12
xi 2!( yi - x 2 )!

Pii
\Pij pl

(B.22)

The conditional expectations are therefore

E [ x/il y ] = ]=yt-
\k ]

\k ] = (B.23)

\k ]

E [  XnJy, ]  = 4 * 1 =  . (B .24)
p

The maximization step then requires, by Eq. B.18, the maximization o f the 

logarithm of Eq. B.17 with respect to 0, using the estimates x 1[k] and x2[k]. Dropping 

terms that are not functions o f the distribution parameters gives
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{ Z t i  xn +1] ln [ Pn ]  +  xn ̂  ln [ Pi2 ]} (B.25)

Beginning with an initial estimate for the distribution parameters d[0], Eqs. B .23-B .25  are

iterated until the distribution parameters converge.

In this case, solutions for N 1 and N2 come from the definition o f  n  and from the 

second noncentral sample moment o f  the nonnormalized PSD M 2:

The second noncentral moment was used to ensure good reproduction o f  the zeroth 

through the second noncentral PSD moments by the expectation maximization solution. 

The mode for which the product o f  the scale and shape parameters is the larger is selected 

as the large mode.

The m isfit functional (Eq. B .4) has many local minima, and the log-likelihood  

function (Eq. B .18) has many local maxima. In either case, then, the iterative search for a 

global extremum is highly sensitive to the first guess given it. To circumvent this 

problem, the minimization o f  Eq. B .4 and the iterative set o f  Eqs. B .23-B .25  are executed 

multiple times with multiple first guesses in this manner: the measured PSD is broken up

N (B .26)

I1 - n )M 2
(B .27)

First Guesses for Fitting Algorithms



into many first guesses as to which bins might comprise the small and large modes, and 

the moments scheme described in Appendix A  is used to fit parameters for each first 

guess at each mode. This set o f first-guess fit parameters is used as the set o f first 

guesses for the minimization o f  Eq. B .4 and as the set o f  first guesses 6 [0] for the 

expectation-maximization algorithm. Then, for both the method o f moments and the 

expectation-maximization algorithm, the solutions ultimately used as bimodal fits are 

those which give the minimum Anderson-Darling test statistic for binned data 

(Demortier, 1995; see Appendix C).

Finally, between the method o f moments solution and the expectation- 

maximization solution, that solution was kept as the bimodal fit that proffered the smaller 

Anderson-Darling test statistic for binned data (Demortier, 1995). It should be noted that 

this method has proved successful at modeling bimodality in ice PSDs measured by the 

2D-S instrument alone, but i f  an ice PSD is constructed from a combination o f  the 2D-S  

and a precipitation particle imager (such as the HVPS), this method is problematic, and 

the combined PSD is better modeled as a sum o f  two distributions contributed by each 

instrument (however the distribution associated with each instrument is parameterized).
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APPENDIX C

STATISTICAL TESTS FOR THE EVALUATION OF FITS

Maximum Likelihood Ratio Test

The likelihood ratio test statistic is twice the natural logarithm of the ratio o f the 

likelihood o f  the bimodal fit to the unimodal fit (Wilks, 2006):

A = 2ln

The asymptotic distribution o f  A  is X  with three degrees o f  freedom. Computation o f  

these likelihoods is performed by treating the PSDs as samples from multinomial random 

variables (as is done in the expectation-maximization fitting algorithm). First, the 

proposed unimodal and bimodal parametric fits are converted into probability density 

functions, as in Eqs. A.1 and B.3. Then, these density functions are integrated over each 

of the size bins, and the result for each size bin is the probability for each category in the 

multinomial distribution (unimodal and bimodal probabilities, respectively, shown below, 

where P is the regularized, lower incomplete gamma function):

P. = P
D  , a  + 1 ,^ * 1
D

P
0

a  +1
D  

____ l_

’ D,
(C.2)

0
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Pi = n

(>- n )

( D ■ 1 D (  D  DP a. + 1 ,—■±L
1 1 D i N

- P a. + 1,—
{ 1 D i

+

( D (  D  DP a 2 + 1,—— 
2 D 2

- P a 2 + 1,—
2 D 2

(C.3)

The P SD s’ units are converted to (# o f  particles) L-  jjm - , and the total number o f  counts 

from all the bins is taken to be the sample size. The likelihood function, in either the 

unimodal or the bimodal case, thus becom es

1  {# samples in bin i} 

i= \r  i
(C.4)

If the p-value is at least 95%, then the null hypothesis that the unimodal fit is 

sufficient is rejected.

One-Sample Anderson-Darling Test for Binned Data

This is an application o f  a general algorithm given in Demortier (1995). The one- 

sample Anderson-Darling statistic, like the corresponding K olm ogorov-Sm irnov and 

Smirnov-Cramer-von M ises statistics, are designed to measure deviations o f  an 

empirical cumulative distribution function from a proposed parametric cumulative 

distribution function. Demortier (1995) adapted these statistics and their corresponding 

sampling distributions to the case where only a binned version o f  the original data is had.

Follow ing Demortier’s (1995) notation, given that a total o f  NT data samples are 

binned into B bins with contents dj, the empirical cumulative distribution function is 

computed according to the follow ing two equations:



Sk = —  y k d  , (k = 1,..., B ).
k N T j=i 1 v '

(C.6)
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The binned, parametric cumulative distribution function (denoted by F) is computed by 

integrating the unimodal, parametric probability density function from Eq. A.1 over each 

o f  the B  size bins as follow s (where u  and lj denote the upper and lower edges o f  the j th 

bin, respectively):

F  ( u  ) = P

/  \  u .
a + 1,—

V A y
(C.7)

ti = F ( u ) -  F (lj ) (C.8)

E B
t ,

j=i j
(C.9)

(C.10)

The test statistic is then given by

A2 =  N r X (C.11)

The strategy for computing a p-value is as follows:

1) Compute the test statistic A2 from the data.
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2) Generate NT random numbers D t according to the theoretical distribution function.

3) Collect the D / s  into a histogram with the same bins as the PSD and form a new  

empirical distribution function Sk.

5) Repeat steps 2 )-4 ) 1 000 times, and calculate the fraction o f  times that the

simulated test statistic is larger than the measured statistic. This fraction is the p- 

value.

In order to generate random numbers according to the probability density function 

given in Eq. A.1, it is necessary to use the method o f  inverse transform sampling 

(Devroye, 1986). A  total o f  N T uniform random numbers a. are generated on the interval

a  e  [ 0 , l ] , and they are transformed via the inverse o f  the cumulative distribution

function o f  D  (or, in other words, via the inverse o f  Eq. C.7) to random numbers D , from 

the desired density function:

2
Generalized % Goodness-of-Fit Test Using Sample Moments

Consider the vectors m (containing noncentral sample moments) and ^  

(containing hypothesized, noncentral population moments). B y the multivariate central 

limit theorem (van der Vaart, 1998),

4) Calculate the test statistic A 2 between Fk and the new Sk.

(C 1 2 )

(C 1 3 )

for large n, where N here denotes the multivariate normal distribution (Kotz et al., 2000)



and where (Gurland and Dahiya, 1972)

C ov ( /i)  =  G =  [ g ..]  =  [ , j -  ]. (C.14)
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The test here described is an adaptation o f  that given in Gurland and Dahiya (1972). 

Specifically, whereas they used linear combinations o f sample cumulants in order to 

simplify the statistical test, only the pure sample moments are used here. Thus, given Eq. 

C.13, the asymptotic distribution o f  the test statistic

Q = n(m  -  u )  G-1 (m -  u )  = aTG-1a T (C.15)

is the generalized X  distribution (Jones, 1983):

Q ~  Z 2 (G -1,G ). (C.16)

The cumulative generalized X  distribution function must be computed 

numerically. It is evaluated here, at a particular value o f  Q, according to the algorithm  

given by Sheil and O ’Muircheartaigh (1977), which requires that the matrix G-1 be either 

symmetric positive definite or positive semidefinite (in the case that it is neither, the test 

cannot be performed, and it is assumed that the observed PSD cannot appropriately be fit 

with the hypothesized, parametric distribution). Evaluation of the distribution function 

proceeds as follows, using the notation o f  Sheil and O ’Muircheartaigh (1977).

First, the Cholesky decomposition o f  the covariance matrix is performed:

G = LrL . Let a  be the eigenvalues o f  the matrix LG-1L . Then, let F (n y ) denote the 

cumulative distribution function o f  a central generalized X  random variable with n ’
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degrees o f  freedom. Then

Pr (a T G-1a ) < t
F

k =0 k
n '+ 2k ,

t
t > 0

v r
0 , t < 0

(C 1 7 )

where n ' is the rank o f  the matrix LG L . It remains to define and the coefficients ck. 

Follow ing Sheil and O ’Muircheartaigh (1977), the value P = 0 .90625amin is used, a min

being the smallest eigenvalue o f  the matrix LG-1Lr . The coefficients ck are then 

computed via the following set o f  equations:

(C 1 8 )

Yi = 1 - a - , (j  = 1,...,n ') (C 1 9 )

(C.20)

(C.21)

m

Ck = k~l E ^  Pk-rCr • (C .22)

As for accuracy, the series in Eq. C.17 is terminated when the maximum possible
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contribution from the remaining terms is less than 10 5. This is determined from the 

following inequality (Sheil and O ’Muircheartaigh, 1977):

X c, Fk=Z+1 k n '+ 2k
p

<(1 - X  Z , » ,) F n '+ 2k —
p

(C.23)

where Z  denotes the number o f  terms that have already been computed.

In the current practical application, viz., that o f  testing whether a binned, 

measured PSD is sufficiently w ell fit by a unimodal, parametric gamma distribution, the 

sample size is chosen by scaling the measured PSD so that its units are (# particles) L-1 

jumT1, and the total number o f  counts from all the bins is taken to be the sample size. The 

measured PSD is then normalized so that its zeroth moment is unity, and the test is 

performed, comparing the sample moments o f  the normalized PSD with the moments o f  

the fit, normalized parametric gamma distribution.



APPENDIX D

COMPUTATION OF PHYSICAL QUANTITIES USING

PARAMETRIC PSDs

Physical quantities are computed using the unimodal PSD fits, except for the total 

number concentration NT, which is computed using both the unimodal and the bimodal 

PSD fits. Total number concentration is best estimated by computing a truncated zeroth 

moment o f  the PSD, to wit, by integrating the PSD from the smallest used bin edge (15 

jam) to infinity. For the unimodal PSD, this is given by (in cgs units)

(D 1 )

where r  (x, y ) denotes the upper incomplete gamma function. For the bimodal PSD, it is 

given by

(D.2)

The shortwave extinction coefficient a  is computed assuming some 

dimensional/cross-sectional area relationship:

A( D  ) = aAD b , (D.3)
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a  = aAN^ D b "T  ( a  +  bA + 1) (D.4)

Ice water content is computed assuming some dimensional/density relationship p ( D ) ,

where p  is the density a nonspherical particle with maximum dimension D  would have 

were it a sphere with diameter D:

To compute effective radar reflectivity, a dimensional/backscatter cross-sectional 

power law is used, but the power law coefficients are defined piecewise-constant over 

several size intervals. The coefficients come from a set o f  power-law fits to T-matrix 

computations o f  backscatter cross section (Matrosov, 2007; Matrosov et al., 2012; 

Hammonds, 2013; Posselt and Mace, 2013) to compute reflectivity, assuming an air/ice 

dielectric m ixing model and that all particles are prolate spheroids with aspect ratios o f  

0.7 (Korolev and Isaac, 2003; Westbrook et al., 2004a; Westbrook et al., 2004b; Hogan et 

al., 2012).

where D t and D i +1 are the beginning and the ending o f  each size interval over which the 

dimensional/backscatter cross-sectional power law coefficients are defined (for the last

(D .5)

(D 6 )

(D 7 )



size interval, the upper size limit is infinity). The terms J  are given by
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J  = a N 0D h*+1i zi 0 0 Y D Y
0

a  +  h +1,
D
D

0

(D.8)

except for the last size interval, where

j  d = a .Nn Dcr d+1rend zend 0 0
D

\
a  +  b d + 1 ,-^ndzend

V D o J
(D.9)

Here, Y (x ,y ) denotes the lower incomplete gamma function, \k \̂ , the square o f  the

magnitude o f  the complex index o f  refraction o f  water and n(D), the particle size 

distribution. Using the constants given, i f  the units o f  X are millimeters and the units o f

the particle size distribution are as given in Chapter 2, then the units o f  Ze are mm6 m 3.



APPENDIX E

COMPUTATION U SIN G  THE UNIVERSAL PSD  

FROM CHAPTER 3

Physical quantities are here computed using both the bimodal and the trimodal 

forms o f  the universal PSD (shown in Eqs. 3.4 and 3.5) in combination with the 

appropriate scale factors N* and D*. It is important to recall that all other parameters 

used in this Appendix are as in Table 3.2, that is, they are fixed and do not vary for each 

PSD as in Chapter 2. For each quantity, the bimodal computation is listed first, followed  

by the trimodal computation.

Total number concentration NT is computed by integrating a PSD from the left 

edge o f  the smallest size bin (denoted here as a) out to infinity. For this computation, it is 

critical to note that the shape parameter is negative unity for the smallest mode.

N  = N  DT ,bimodal V N A E
a

v D ' D u
+ N ,D ,r a  + 1,

a

1
(E.1)

N  = N  DT ,trimodal V N i D E
a

v D ' A
+ N 1D 1r a  + 1,

a
+ N ,

1
(E.2)

where Ei(x) denotes the exponential integral and H X y) denotes the upper, incomplete 

gamma function.
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The shortwave extinction coefficient a  is computed by assuming a cross-sectional 

area/dimensional relationship A (D ) = aAD b-A and an extinction efficiency o f  two.

b. +1
a = 2 a N  * (D* ) Abimodal A N  D ,v ‘r  (« , +  bA + 1 ) + N  D '+ 'r  a  + bA + 1 )] , (E.3)

= l a s '  (D')‘b" [N ft^ 'r(a  + bA +1)+N D *T( a +bA+1)]+1„, (M)

where

O a3
I„ = N  —t —r J (w + 1 .5 5 )14 w~a,~l exp

wV J

dw. (E.5)

Ice water content is computed via an assumed density/dimensional relationship 

p ( D ) = amD hm (which relationship gives the density that a nonspherical particle with 

maximum dimension D  would have were it a sphere with diameter D ):

IWCw = abimodal m
v 6 / (E.6)

IWCtr. . .=  atrimodal m
v"6 /

N ' (O ’ ) m+ [ ^ , 0 ^ ( 0 ,  +  bm +  4)

n 2 O r +4r  (a2+ b + 4 ) + i iwc J ,2 2 V 2 m ) IWC J5

(E.7)

where



f “ / , 1 z z \ b"+3 -a3-1J (w + 1 .5 5 )  w  3 e x pIWC 3 r (« :, )J ”
p '
wV /

dw. (E 8 )
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Effective radar reflectivity is computed piecewise, as in Appendix D. It is first 

noted, however, in accordance with Eq. 3.3, that

Z = n r - :  (D )dD
K  n K  n D * (E.9)

where D, and A + ; are the beginning and the ending o f  each size interval over which the 

dimensional/backscatter cross-sectional power law coefficients are defined (for the last 

size interval, the upper size limit is infinity). It may then be written that

Z 1 0 8A 4 Y"1 f ° i+1 TTbziN* F Z  = -------;—  >  I a . D * N  FJD 21 u D * y

108A4 

\K  |2 n
dD = (E .1 0 )

If the bimodal form o f  the universal PSD is being used, then the terms in the 

summation are

J  = a N * ( D* f +1i(bi) zi \ )

■ /

n d ^ + 1 Y
_ V

b . + a. + 1,i 1
D i+1

D iD  j
Y b . +  a, +1,. 1

D

D iD

+ N 2 D b +1

/

Y
D

\

b . + a 2 +1 , — —  . 2 D  D
2

Y b + a  +1,. 2
D

D 2D  ,

(E 11 )

w w

( Y (x ,y ) denoting the lower incomplete gamma function) with the last term being
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b , +  a. +1,z e n d 1
D end
D1D

+ N 2 D br +ly b d + a 2 +1,zend 2
D end

D 2D  J

(E.12)

If the trimodal form o f  the universal PSD is being used, then the terms in the 

summation are

= a N  '* (D* fz(tn) zi \ )

■ /
n d 1;*+1 Y

_ V

D
\

b . +  a , + 1 ,— —
zi 1 D 1D  ,

- Y
D

\

v
b . +  a, +1.

. 1 D 1 D

+ N 2 D b +1 Y
D  ,

b +  a 2 +  - — —z i 2

\

D 2 D  J
- Y b +  a  +1,z i 2

D

D D

y '
+ rZi

(E 1 3 )

with the last term being

N  * (D* )b
D

b d +  a , + 1 .— ^z e n d 1 D1D

+ N 2 D br +ly b d + a 2 +1,zend 2
D end

D 2D  J
+ IZend

(E 14 )

The form o f  the term IZi depends upon the range o f  the size interval over which 

integration is being performed:

I 7 =Zi
n a 3 „ D t+ i 

A  f—
N 3^ 7^

3 r  ( 0 3  )  ^

B a 3 

N  P3

* 1 5 5  - a 3- 1W 3 (W +( W +  1 .5 5 )* exp

r  ( “ 3 )

ID W~a3-1 (w + 1 .5 5 )*
J D end —1 .5 5  V /

exp
3/ D

wV J

f  A
V w /

dw ,

D D 11 .5 5  > 1+1 >
D * D*

D  1 D 11+1 > 1.55 >
D* D*

D  1 D1+1 > ^  > 1.55
D '* D *

(E 1 5 )

0



Again, for the last size interval, the upper size limit is infinity, and so
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AI  d = N
Zend 3 r ( a 3 )

D  , W  a3 1 ( W  +  
a  I J 1.55

(w + 1 .5 5 ) zend exp
3 f  D

dw. (E.16)

Given a measured radar reflectivity, the scale parameter N*  may be parameterized 

by solving Eq. E.10 for N*:

N  *
K  n 5Zw e

108A4 Y  [ D‘+1 a  .Db*FJ d. zz u D *y
dD

(E 1 7 )

a



APPENDIX F

ON THE TRANSFORM ATION A N D  NORM ALIZATION OF CIRRUS PSDs

T ransform ing PSDs by Scaling from  D -Space to D e-Space

Due to the uncertainty in the zeroth mode o f  the measured PSDs, scaling from D - 

space to De-space so that Eqs. 4.2 and 4.3 are both satisfied is not possible. Since for the 

sake o f  estimating D m and N 0* it is more important that the IWCs be matched, this was

done while matching the N T’s to within a factor o f  approximately 0.75. The scale factor, 

then, is derived based on this simple consideration: i f  the number o f  particles within a 

size bin is conserved upon the bin’s transformation from D-space to D e-space, then, given  

that the transformation is from maximum dimension to mass-equivalent spheres, so also 

is the mass o f  the particles within a size bin conserved. That is,

It is surmised that a similar conundrum was encountered in the analysis performed by 

Delanoe et al. (2005). Though it is not shown here, the scaling was also performed so as 

to match N T rather than IWC, and the result that concentrations o f  particles with the 

smallest scaled diameters were in the neighborhood o f  an order o f  magnitude smaller 

than those shown in Delanoe et al. (2005) still held true.



Using the Transformed Distribution to Compute 
Shortwave Extinction Coefficient

A  spherically equivalent PSD will not produce the same extinction as the real 

PSD because the cross-sectional area o f  the distribution has been altered by the 

transformation to mass-equivalent spheres. Instead, to compute extinction from the 

spherical distribution, the variable transformation given in Eq. 4.1 must be used to 

transform the spherical distribution back into its nonspherical form (Bain and Englehardt, 

1992).

3bA +bm
\ ‘ 2 a A& ‘ r,D (D ) d D  = j ; 2a AD  3
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1
a

V P w J

■ V I
D  3

a

V P w j

b +  3m___
3

dD. (F.2)
3

m m

Computation of Effective Radar Reflectivity 
Using Transformed PSDs

The appropriate transformation for computing effective radar reflectivity is given

in Eq. 4.5. The dimensional-backscatter cross-section power law coefficients are defined

piecew ise constant over several size intervals (Hammonds, 2013) as in the previous two

Appendices, so that Eq. 4.5 is rewritten as

z =  y  j ,
z \K  I2 n 5 .■ '

(F 3 )

where

J  = [
1 Jd

3bz +bm
1 a D nr

f  \  a_m

V j

i

D  3
/  \  a_m

V j

i

' bm+3 
D  3 dD. (F.4)

w

3
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The index variable i iterates through the set o f  power law coefficients, and the 

integrations Ji are performed piecew ise over the corresponding size ranges.

Given that the spherical-equivalent PSD, when normalized, takes the form given  

in Eq. 4.8, the parameter N 0* can be retrieved with a radar reflectivity measurement i f  D m 

is known (D05). Substituting Eq. 4.8 into Eq F.4 and defining

rD Z +bm
I  = f +1 a 7D  3 Fi Jd. 71

/  V/3 am
P

bm +3
D  3

D

f  \  a_m

\  p w J

1/3 b„+3
(F.5)

m

then the formula for effective reflectivity becomes

Then, for any form o f  the universal distribution, N 0* is found using

I |2
* Z \ k \  n 5TLT* _ e\ w\

N 0 = 1 4

The parameterization for N* defined in Appendix E works equally well, given an 

estimated 94 GHz effective radar reflectivity and a value for D*. D m (from D 05) and D*  

are both parameterized by temperature, as follows:

D m = 1802.05exp [0 .0 3 2 6 (r  -  32.5) (F 8 )



D* = 9 .29exp(0 .99T ) , (F.9)
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where T  is temperature, given in C .

Computations of Physical Quantities Using 
Parameterized PSDs from D05

The total number concentration is computed by integrating Eq. 4.2 from the left 

edge o f  the smallest transformed size bin out to infinity for each parametric, universal 

PSD form. The results are shown here, with the subscript indicating whether the result 

corresponds to the gamma-w distribution or to the modified gamma distribution. For this 

computation, it is critical to note that the a  parameter is negative unity for the modified 

gamma distribution.

D
1 + ^ ,( 4 + ^ )  d (F .1 0 )

where r  (x, y ) denotes the upper incomplete gamma function, and

r (4 ) r l  n
T a ,fi  0 m 4 4  /

r
a  + 4

T ~

\ 4 E i

D r
a + 5

ei V p
D r a + 4

p

(F.11)

where E. (x ) =  [ — dt is the exponential integral.
1 w  Jx t

The extinction coefficient is obtained via Eq. F.2.

m

m

- t
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a  = 2 a N  Dp A 0 i a
V  m  /

r  (4)
J

(4 + p j
r  (4 + p )

r
3b,

b +  3
V  m

+ p  + 1 (F.12)

bA
bm +3

44

a  a = 2a AN*D b-+3a,a A 0 m
Pw
aV  m J

b„+3
r  (4 )

r
3b,

+ -
a  + 1

a ( b + 3 ) a

r

3bm+9-3bA

a

r
r a  + 4^

a

x

(F.13)

m +3bA

4 4bm+12-3bA4 m +3

For effective radar reflectivity, solutions o f  Eq. F.6 for each o f  the parameterized, 

universal distributions from D05 are given next.

3b-3b2 +9 
b+3

3bZi-b-3

= a r (4 ) (4 + ^ )
44 r  (4 + y )

I  = A, „î  Zi /\ 4

/  V/3 /  \
Pw D 2 p w

I  a  J I a  J
D

b+3
x

y
3bZ -  b -  3

---------- + u  +  2,
b + 3

/  V/3aD b

v Pw y
D

D

y
3bZ -  b -  3

---------- + u  + 2 ,
b + 3

/  ~ 6 \ 13aD

p w
D

D

(F.14)

m
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I

. . , . ______Zena

r ( 4 ) ( 4 + ft)  b+3
endft Zend 44 

/

r
3bZ -  b -  3
— Z---------- + u  + 2 ,

b + 3

r  ( 4 + ft)

(4 + f t )

/  V/3 /  V/3 "
p w D 2m

p w D m
v a  y v a  y

b+3
X

/  n b V/3 aD .end
p

D end
w

D

Zend-b -3

3b-3b~, +9

r (4 ) r l  f

a  + 5

a r

b+3

ia,f Zi a 4 D4b-3b~,+12 m

r
a  + 4

Y
3 b

+ -
a  +1

f ( b +  3) f

b+3

/  ~b V/3

f  \ ^ 3 
Pw

v a  y
D

3bZi
b+3

X

aD

v Pw y
r

/ a  + 5^
\ f

f

Y

D
r

r a  +  4^

f

3b
+ -

a  + 1

f  (b + 3 ) f
P

\ f

y y f
D

r
/ a  + 4^

f
m

(F.15)

(F.16)
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r (4) r l fi

a  + 5

I OL

b+3

e n d a fi Zend 4 4 -D

r a  + 4 b+3

Y

'<  a D \ ' ' 1/3
z + 1

3b,Zend + -
a  1

fi(b  +  3) fi
P

D end r

/  \V3
P ,

a + 5

3bz,

D

\fi

b+3

V r  w J fi
D r a + 4

fi

X

m

(F .17)
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