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ABSTRACT 

 

Consistency analysis and data collaboration is a relatively new scientific area. It deals 

with quantifying how well scientific models approximate empirical reality. Consistency 

analysis is based on methodically comparing model predictions with experimental 

measurements, but this task is made more difficult by the fact that both models and 

experiments have their own inherent uncertainties. Computational fluid dynamics (CFD) 

models are numerical methods able to solve complicated discrete fluid dynamics 

problems. They are used thoroughly in mechanical, aerospace and energy science. As 

CFD models are being applied to more and more critical systems, there is a growing need 

to improve the reliability of CFD model predictions. This work addresses this need by 

presenting consistency analysis results for a simple CFD model and an experiment in 

which the concentration field of a buoyant helium plume had been studied by holographic 

interferometry. A detailed procedure is presented for carrying out data collaboration 

between simulation and experimental data. This work is novel in a sense that it is the first 

to present the specific difficulties of collaborating interferometric data. These difficulties 

arise from the encoded nature of information being present in interferometric fringe 

images.
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CHAPTER 1 

 

INTRODUCTION 

 

Utilizing holographic interferometry for CFD model validation and uncertainty 

quantification purposes is a complex process, which requires the understanding of the 

fluid mechanics, optics, photonics, image processing and data collaboration sides of the 

problem. In this section a systematic overview of all these topics is given, presenting past 

and historic publications and current challenges in each field. 

 

1.1 Buoyant Plumes 

The fluid dynamics of buoyant plumes and jets have been a widely studied area since 

the early seventies (1). Phenomena in real world applications, such as fuel leakages, fuel 

injection, pool fires, tank emissions and natural and artificial gas plumes give these 

studies practical relevance. Because of the typical characteristics of these applications, 

the phenomenon of injecting lower density fluids into higher density media bears the 

highest significance. The dominating driving force of the flow in all cases is the buoyant 

force acting on the lower density fluid. 

Early studies characterized the far-field behavior of buoyant plumes. In the far-field 

concentration and velocity fields achieve self-similarity (2; 3; 4; 5), however, the far-field 
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behavior depends strongly on near-field processes, which include buoyant effects, 

diffusion, fluid entrainment, buoyant instabilities and finally transition to turbulent flow. 

The near-field region is far less understood than the far-field. There are not as many 

publications discussing the instabilities of buoyant plumes in or close to the laminar flow 

region and these publications mostly concentrate on the periodic effects in the flow. 

Hamins et al. reported that periodic oscillations are not initiated in the plume unless the 

exit velocity exceeds an experimentally determined limit value (6). Subbarao and 

Cantwell reported that periodic oscillations only occur in the near-field under specific 

flow conditions characterized by the Reynolds number (300-1500) and the Richardson 

number (0.5-6) (7). Cetegen et al. found that the frequency of the periodic oscillations 

characterized by the Strouhal number was correlated with the Richardson number (8; 9).  

The cause of puffing in buoyant plumes is still a subject of debate. Most researchers 

suggest that the main cause is possibly the Rayleigh-Taylor instability, which is a gravity-

driven instability appearing at the interface between two fluids with different densities. 

Others suggest that the puffing is the combined result of the Rayleigh-Taylor and Kelvin-

Helmholtz instabilities, the latter being a shear-driven instability (10). 

 

1.2 Holographic Interferometry 

The term interferometry refers to any diagnostic technique that utilizes superimposed, 

interfering electromagnetic waves to extract information about the analyzed phenomenon 

of specimen. Interferometric techniques are widely used in astronomy, material testing, 

seismology, oceanography, quantum mechanics, particle physics and biology. 
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1.2.1 Fringe Pattern Formation 

In interferometry, typically a single coherent electromagnetic beam is split into two 

beams. The two beams are later united on an appropriate detector plate. One of the beams 

is called reference beam and the other is called measurement beam. The two beams travel 

different paths before being united on the detector. The reference beam usually traverses 

through homogeneous media (e.g., air) without any disrupt changes in its optical 

properties, while the measurement beam is passed through or reflected from an object of 

interest. Since we assume that apart from the object of interest there is no significant 

change in the optical properties of the transmitting media, the phase change of the 

measurement beam relative to the reference beam will be most strongly determined by 

the properties of the object in question. After reuniting the beams, an interference pattern 

or image forms on the detector, from which implications on the properties of the object 

can be derived. The interference pattern is formed because depending on the phase 

difference between the two beams, constructive or destructive interference occurs, 

yielding more intense or less intense signals, respectively (11). 

If the above mentioned split beam is a light beam, we call the method optical 

interferometry. In optical interferometry, a coherent light beam is split into reference and 

measurement beams and later reunited on an optical detector plate. Since the utilized light 

must be coherent, intense and convergent, lasers are usually used as emitters. The 

detector can be simple photoactive sheets or digital detector arrays. Optical 

interferometry has the advantage that the formed interference array is usually visible by 

the human eye as the pattern of bright (constructive interference) and dark (destructive 

interference) lines. Because of the appearance of optical interference patterns, they are 
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commonly called fringe patterns, where a ‘fringe’ means a continuous dark line (as a 

result of cancelling beams) on the image. 

The term ‘holographic’ refers to the Greek words ‘holo’ (whole) and ‘gramma’ 

(message), simply meaning that holographic images contain added information compared 

to simple intensity images. In most cases, the added information comes from the 

mentioned phase difference (12). 

Complete cancellation or destructive interference occurs at a point on the detector if 

the inclining reference and measurement beams have a phase difference of n and 

constructive interference occurs at a point if the two beams are at an N phase difference, 

where n is an odd integer and N is an even integer. Figure 1 illustrates the interference of 

two superimposed sinusoidal waves. Figure 2 shows some typical fringe patterns (13). 

There are two basic types of interferometry: heterodyne and homodyne techniques. In 

heterodyne methods, one beam among the two is (usually) frequency modulated by 

shifting its frequency by a small amount. The intensity of the resulting superimposed 

wave will slowly oscillate at the beat frequency determined by the known modulation. 

Since the modulation is known, the phase difference between the two original beams can 

be computed. In homodyne methods, the two beams are at the same frequency (11). 

 

1.2.2 Mathematical Representation of a Fringe Pattern 

In the most general case, two-dimensional interferometric fringe patterns can be 

described by the following equation: 
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                                                 [1]  

 

This equation describes a two-dimensional intensity (scalar) field I(x,y). The term a(x,y) 

refers to a usually low frequency spatial function, which represents the background 

illumination. The function b(x,y) is also usually a low frequency contributor, representing 

the slow contrast change of the fringes. The cosine term represents the periodic nature of 

the fringes themselves and the pattern is modulated by the two-dimensional phase (x,y) 

and the two carrier frequencies u0 (in the x direction) and v0 (in the y direction). Carrier 

frequencies are usually present in surface measurement applications, where a pre-

generated linear pattern is projected onto the analyzed surface (13). N(x,y) appears in real 

(experimentally obtained) fringe patterns and it represents noise, a high frequency 

component. 

From the above equation it is easy to see that once the phase difference function is 

known, the fringe pattern can be easily reproduced by taking its cosine. In real 

applications, the underlying phase information is rarely known (mostly it is the property 

of interest). From the point of these practical applications, it is important to understand 

the concept of the ‘wrapped’ phase. The term simply means that it is the modulo 2 

representation of the continuous phase map and its relevance is in the fact that in the 

inverse problem (where one wants to compute the phase from the fringe pattern) the 

wrapped phase map is much easier to obtain than the continuous phase map. Figure 3 

shows simulated an ideal fringe pattern (without the background illumination, contrast 

change, noise term and carriers) and underlying phase information. The phase map has 
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been prepared by Matlab’s peak function. The fringe pattern is simply its cosine and the 

wrapped phase is simply its modulo of 2. 

 

1.3 Obtaining the Unwrapped Phase 

In this section an overview of existing phase extracting techniques developed for 

solving the above outlined inverse problem is given. The available methods vary widely 

in the applied principles from partial differential equations (14) through local extrema 

methods (15) to block processing (16) and multigrid techniques (17). In most situations, 

physical information can be directly extracted from the unwrapped phase map, but it is 

rarely obtainable directly from the fringe pattern image. The extraction of the wrapped 

phase is usually carried out as an intermediate step. This intermediate step is usually 

referred to as the ‘demodulation’ step. 

 

1.3.1 Basic Digital Image Processing of Fringe Pattern Images 

As described in Chapter 2, real fringe patterns are usually corrupted by both low- and 

high frequency additive and low frequency multiplicative noise. Along with these effects, 

mostly due to calibration issues or vibration, a process called ‘registration’ is required 

before phase analysis. The registration step makes sure that successive images use the 

same absolute coordinate system. The lack of the registration step can lead to false spatial 

errors or fluctuations caused by the changing location of the reference axes in the images. 

For almost all phase extraction methods the high-frequency additive noise component 

makes the accuracy of phase approximation worse. This type of noise is usually the result 

of a combination of sensor thermal noise, quantum noise and film grain (if a film is used). 
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The probability distribution of the noise can be Gaussian, Poisson, a combination of these 

two or uniform. Also, the changes in the image induced by this type of noise are changing 

in time, as opposed to stationary noise types (pixel errors, salt and pepper noise), 

therefore simply subtracting a dark shot will not remove it (18). There are many known 

algorithms for getting rid of this noise type and several review papers are available (19; 

20; 21). 

The low-frequency noise types (gradual contrast or intensity changes) are usually 

harder to get rid of. Processes that lower the contribution of these corrupting effects are 

usually called ‘normalization’ processes. Instead of approaching the problem from the 

spectral side, as with the high-frequency type, algorithms aim to locally normalize the 

intensity and contrast of the image to balance the effects of this noise type. Difficulties 

arise when making global normalization routines local, as the local range of these filters 

are hard to approximate. It is very difficult to give a comprehensive list of publications 

that present local normalization algorithms, since the methods can be very different from 

local histogram-based methods (22) to model-based techniques (23) and mathematically 

more advanced and specific methods (24). 

 

1.3.2 Extracting the Wrapped Phase 

Until the second half of the eighties most methods for calculating the continuous 

phase map from two-dimensional interferometric images had been using extrema 

detection in the intensity image. In most cases locating continuous ridges and valleys in 

real intensity images alone incorporates interpolation. After the extrema are found, 

another interpolation step is needed to approximate the continuous phase surface between 
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ridges and valleys. Extrema detection-based methods have continued and continue to 

appear even recently (15; 25). 

More sophisticated methods utilizing image transforms appeared in the late eighties. 

One example is the method published in (25) which uses the Fourier-transform to extract 

continuous phase information without extrema detection. 

Equation [1] can be re-written by neglecting the high-frequency noise and carrier 

terms as 

 

                              [2]  

 

with 

 

       
 

 
                    

 

and c
*
(x,y) being the complex conjugate of c(x,y) and j is    . Fourier-transformed, this 

gives 

 

                               [3]  

 

Assuming that the frequency of the background intensity changes is much less than 

the frequency corresponding to fringe intensity periodicity, C(u,v) and C
*
(u,v) will appear 

as two distinct peaks in the amplitude spectrum symmetrical to the origin. If one peak is 
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filtered from the amplitude spectrum, along with the zero-peak, the inverse transformed 

image will be complex valued and the interference phase can be demodulated as 

 

 
            

           

           
   [4]  

 

where c’(x,y) means the inverse transformed complex image. Note that due to the inverse 

tangent function, this demodulated phase will be in a modulo 2 form. The filtering of 

either C(u,v) or C
*
(u,v) is not an obvious process. The simplest filter to use is a band-pass 

filter cutting any of the four half-planes. The use of such a filter is described in (25), 

concluding that even if one uses both half-planes to extract phase information, the 

method will still fail for a number of more complicated images. More sophisticated 

filtering procedures are described in (26; 27). Hilbert and Schlieren transforms can be 

used to generalize the above formulation. A method using this more general approach is 

described in (28). This method is further used in this work and is described in detail in 

section 2.3.2. 

 

1.3.3 Unwrapping the Modulo 2 Phase 

Formally, the unwrapping problem can be described by the following equation: 

 

                        [5]  

where m(x,y) is a matrix of integers, therefore the wrap count m(x,y) is a function that 

aims to remove the 2 discontinuities in the wrapped phase map (x,y). Thus, the 
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unwrapping problem is to find such an m(x,y) that produces a physically meaningful 

continuous phase map (x,y). The term “physically meaningful” refers to the fact that the 

phase extraction problem very rarely has a unique solution. The reason for this is that the 

absolute phase representing the absolute optical path length difference of the two beams 

cannot be measured directly, because fringe orders are indistinguishable based on 

intensity information alone. Therefore additional constraints must be introduced to the 

fringe processing step in order to narrow down the set of possible solutions to find the 

physically meaningful continuous phase map. One can already see that this is easier when 

imaging closed fringe formations, if every fringe caused by the studied optical 

inhomogeneity is contained in the image, as in the case of studying perturbed transparent 

media, but is impossible in the case of techniques utilizing carrier frequencies, as in the 

case of surface roughness measurements. In the case of these applications, the first 

deformed fringes indicate the boundary of the region of interest. 

The first formal derivation of an unwrapping algorithm has been published by 

Kazuyoshi Itoh in an 1982 Applied Optics letter (29). Itoh studied the phase unwrapping 

problem motivated by formalizing the methodology that had been used in meteorological 

measurements. The short study concluded that the unwrapped phase can be obtained by 

differentiating, wrapping and integrating the original sequence (which is practically the 

wrapped phase signal). Formally, this can be written as 

 

 
                    

 

   

  

 

[6]  

 

where i is the wrapping operator satisfying the following relationships: 
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                      [7]  

 

where s(n) is a sequence of complex arguments and ki is a sequence of integers such that 

 

             [8]  

 

and  is the discrete differentiation operator. It can be seen intuitively that equation [6] 

simply tells that if one cumulatively adds the differences in the wrapped signal to the 

‘initial’ signal s(0) then the continuous phase signal will be recovered provided that the 

differentiated sequence is wrapped appropriately. Itoh’s algorithm holds for two-

dimensional phase maps as well, but errors due to discontinuities or local phase errors 

will be propagated all through the signal. A strategy for finding the optimal path for 

integration has also to be found. 

The next generation of phase unwrapping algorithms focused on finding an optimal 

integration path so that no global errors are generated due to local error propagation. 

Goldstein’s work published Radio Science in 1988 was the first of many papers 

discussing and perfecting this approach (30). These methods are collectively called 

‘branch cut’ algorithms, as the path seeking algorithm is heavily based on network search 

routines developed in the area of artificial intelligence. The term branch cut refers to 

blocking points in the wrapped phase map which produce discontinuities so that no 

integration path can cross it and propagate the error. A variation of this technique can be 

achieved by introducing weighting factors for discontinuities based on initial phase image 
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quality. This allows the unwrapping overlaying image regions (where phase discontinuity 

is not an error caused by noise or quantization) without penalty, but does not allow local 

error propagation due to noise. Such an algorithm has been described by Flynn in 1997 

and has been referred to as ‘Flynn’s minimum discontinuity’ method since then (31). 

Since this algorithm is used in this thesis, it is described in detail in section 2.3.4. 

Although phase unwrapping algorithms based on branch cut are considered as the 

best available algorithms in terms of accuracy (32), other methods based on entirely 

different approaches are also available. The works of Ghiglia et al. are worth mentioning 

(33; 34), introducing cellular automata and least-square methods for phase unwrapping. 

Another least-square method utilizing a multigrid technique for multi-scale phase 

approximation is used in this thesis and is described in detail in section 2.3.3 (17). 

Regularized least-square methods followed the work of Ghiglia et al. Regularization 

is a term that refers to a mathematical method in which additional a priori information is 

introduced to solve ill-posed problems, such as the phase unwrapping problem. In 

practice, regularization usually introduces cost functionals to penalize or promote 

different options in the unwrapping algorithm so that the most ‘meaningful’ result is 

obtained. The term ‘meaningful’ refers to additional information coming from physical 

understanding which restricts the solution to certain conditions. Such a condition can be 

the continuity or smoothness of the unwrapped phase map. Algorithms using the 

regularized approach are presented in (35; 36). 
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1.4 Validation and Uncertainty Quantification 

Validation and uncertainty quantification (V/UQ) plays an increasingly important role 

in the research of scientific computing as the sophistication of simulations increase. The 

area of V/UQ is often considered as not an exact field of mathematics but a subjective 

collection of suggested frameworks and techniques for approximating or predicting 

uncertainties of scientific computations. Books and thorough review articles are available 

in this area (37; 38). Here I follow the condensed nomenclature and discussion of Roy 

and Oberkampf (39). 

The term ‘validation’ means the “assessment of model accuracy by way of 

comparison of simulation results with experimental measurements” (39). Validation has 

two roles: first, it statistically quantifies the disagreements between experimental and 

simulation data and second, it extrapolates the uncertainties to domains where 

experimental data for comparison is not available. Confidence intervals (parameter 

ranges in which the prediction is considered valid) are also extrapolated. To carry out this 

assessment, one must quantify all uncertainties arising either on the experimental or 

computational side. 

Uncertainties are generally considered to appear in two forms: aleatory and epistemic 

uncertainties. Aleatory uncertainties are also called stochastic uncertainties or variations. 

The cause of aleatory uncertainty is the inherent variation and randomness in sampled 

populations. Aleatory uncertainty can be treated statistically as probability density 

functions (PDFs) or cumulative distribution functions (CDFs). Epistemic uncertainties 

are also called reducible or ignorance uncertainties. The cause of this type of uncertainty 

is the lack of knowledge on the part of the analyst or experimentalist. In theory, epistemic 



14 

 

uncertainty can be completely eliminated by adding more information or insight to the 

process of validation. Mathematically epistemic uncertainty can be treated as an interval 

with no associated PDF or as statistical variables with uniform PDFs. Undersampled 

aleatory uncertainties can also be handled as epistemic uncertainties, because the 

insufficient number of samples represents lacking information. 

In computational models, uncertainties can come from a number of different sources. 

The model inputs may take uncertain forms represented by either known or unknown 

PDFs. Uncertainties arise due to numerical approximations of continuous variables (the 

validation of this type of uncertainties only is called ‘verification’ by some authors (39)). 

Computational models usually also contain many physical assumptions that introduce 

additional uncertainties into the predictions of the model. 

The framework suggested by Roy and Oberkampf consists of a number of steps: 

 The identification of all sources of uncertainty. One must identify the above 

mentioned types of uncertainties in the model inputs, model assumptions and 

numerical approximations. 

 The characterization of uncertainties. Mathematical structures must be 

assigned to the identified uncertainties and they must be quantified 

numerically. 

 The propagation of input uncertainties through the model. 

 The estimation of model form uncertainty. Model form uncertainty is 

evaluated with the help of validation metrics. A validation metric is usually a 

scalar that describes the quality of agreement between the model and 
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experiment. Validation metrics can be defined in many different ways and 

choosing one definition will dictate further steps in analysis. 

 The determination of the total uncertainty in the system response quantities. A 

number of things can be done in this step. First, the propagated uncertainties 

can be summed and the total uncertainty in the system response quantities of 

interest can be computed. Second, based on the estimated model and 

experimental uncertainties, feasible regions can be constructed where the 

model predictions are consistent with the experimental results. Finding 

consistent ranges in the system response space may reduce the uncertainty 

ranges of the model predictions, leading to information gain in the validity of 

the model predictions (38). 

Other authors suggest similar frameworks for computational model validation and 

uncertainty quantification, but as stated above, methods are rarely exact mathematically. 

Therefore a number of accepted techniques exist for model validation and uncertainty 

quantification and it is important to describe the used methodology in each study. A 

detailed description of the method used in this thesis is described in section 2.4.2. 
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Figure 1: Illustrating constructive and destructive interference 

 

 

 

Figure 2: Typical fringe patterns from holographic interferometry 
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Figure 3: Simulated ideal fringe pattern and the underlying phase. Left: fringe pattern; 

middle: underlying continuous phase; right: underlying wrapped phase 



CHAPTER 2 

 

METHODOLOGY 

 

In this chapter, the methodology used in the actual validation work is described in 

detail. In brief, our methodology consists of the following main steps: 

 Obtaining the interferometric images by carrying out the plume experiments. 

 Carrying out the plume simulations. 

 Processing the interferometric images to extract continuous phase 

information. This step consists of the following steps: 

o Preprocessing, registration and filtering of the intensity images. 

o Extracting the wrapped phase maps by using the isotropic quadrature 

transform technique. 

o Unwrapping the wrapped phase maps by using the weighted multigrid 

method and the minimum discontinuity method. Later, the 

performances of the two techniques are evaluated in terms of 

consistency. 

o The postprocessing of continuous phase maps in order to be able to 

compare them with the simulation data. 

 The processing of the obtained consistency dataset. 
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2.1 The Helium Plume Experiment 

The original experiments were developed and carried out by Schönbucher et al. in 

Germany, 1984 at the University of Stuttgart (40). The recorded images were digitized 15 

years later by IWF - Wissen und Medien gGmbH. 

 

2.1.1 The Experimental Setup 

A schematic of the experimental setup of Schönbucher et al. is shown in Figure 4. 

The group performed four experiments. In each experiment, helium was flowing 

through a circular outlet with a diameter of 50 mm. The flow rates of the helium was 

varied between 2 and 2.510
-4

 m
3
/s (2.25, 2.0, 2.5 and 2.310

-4
 m

3
/s, respectively). 

Temperature and pressure measurements have not been carried out to the best of our 

knowledge, therefore these have been estimated based on local historical weather data. 

To create the interferometric images, the beam of a continuous 2 W argon laser with a 

wavelength of 514.5 nm was split into measurement and reference beams as discussed in 

section 1.2.1. The measurement beam was reflected through the transparent helium plume 

while the reference beam was passed through quiescent air. The two beams were re-

united on a holographic plate and the formed interferometric images were captured by a 

high-speed camera at a frame rate of 1000 frames per second. 

 

2.1.2 The Acquired Images 

The digitized images were acquired by scanning the originally obtained photographs. 

The scanned images are all 1980 by 1080 pixel size, 24 bit RGB images. A typical 

interferometric image is shown in Figure 5. The plume boundaries can be determined by 
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locating the first significant changes in the gradient image on both sides. However, the 

exact location of these boundaries is usually hard to find from interferograms alone. 

Approximately 2500 images were digitized in each experimental set. As it is apparent 

from Figure 5, the overlapping region defined by the two beams did not cover the whole 

lower region of the plume; therefore the fringes in the lower region of the image are 

discontinuous and are not connected to the contour of the outlet. The alignment of the 

‘scene’ also varies in different images due to the manual method of digitization. The 

images were stored as .tif files. 

The quality of the images is not very high. Apart from high-frequency photonic noise, 

lower frequency degenerative effects are also present caused by the imperfections of the 

imaging media that had been used in the original experiment. Fringe-like objects are 

visible outside the assumed plume boundary in some images. This suggests impurities in 

the air in the room where the experiments were carried out. 

 

2.2 Helium Plume Simulation 

 The helium plume simulations have been carried out by Weston Eldredge at the 

University of Utah and reported in 2011 (41). A schematic showing the main 

characteristics of these simulations are shown in Figure 6. 

The modeled volume was a 13.8 cm
3
 cube. The helium inlet was placed at the center 

of the bottom plane. The bottom plane itself acted as an air inlet, simulating the air co-

flow phenomenon often arising when dealing with buoyancy driven problems. The four 

sides of the simulation domain acted as pressure boundary conditions and the top plane 

was an outlet boundary. Each simulation was run for 6 seconds of simulated time. The 



21 

 

velocities for helium and air were constant for the whole simulated time range. A total 

number of 100
3
 uniformly placed nodes were used. 

The CFD engine used for the simulations was ARCHES, a LES-based engine for 

modeling turbulent flames. ARCHES has been modified in order to be able model 

laminar cases. To model the mixing of helium and air in each node, a constant-coefficient 

Smagorinsky model was used. To provide laminar diffusivities to compute mixing, the 

Schmidt number for each node was computed. To obtain the Schmidt number, the fluid 

viscosities and binary diffusivities must be estimated. The former was approximated by a 

polynomial fit on the data of Incropera and Dewitt (42) and using the method of 

Reichenberg (43) to estimate the mixture viscosities. The binary diffusivities of the 

air/helium system were approximated by using the method of Wilke and Lee (44). 

The output uncertainty ranges were determined by introducing input uncertainties to 

the model. Three active variables have been chosen, the helium inlet velocity, the air inlet 

velocity and the system temperature. For more information on output uncertainty 

quantification, please refer to section 2.4.1. The nominal value for the helium inlet 

velocity has been chosen to be 0.135 m/s, the nominal velocity for the air inflow has been 

chosen to be 0.0405 m/s and the nominal system temperature was 315.15 K. Temperature 

and pressure data have been chosen based on historical local weather data. 

Among others, the simulations yielded numerical concentration fields xHe as a result. 

These have been converted to phase fields by applying the following formula: 

 

 
     

      

 
                   

      

 
                   

 

[9]  
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where x,y is the continuous phase map, sx,y is the the length of the path that the light 

travels inside the plume,  is the wavelength of the light and n is the refractive index. 

Subscripts x,y indicate that the fields are two-dimensional and discrete. Thus three-

dimensional concentration data is converted into projected two-dimensional phase data 

by the use of equation [9]. 

 

2.3 Fringe Pattern Analysis 

In this section a detailed description of our image processing methodology is given. 

The procedure can be divided into four steps, namely: pre-processing, phase 

demodulation, phase unwrapping and post-processing. The ultimate purpose of these 

steps is to effectively and accurately extract phase information from whole image sets in 

an automated way that can be compared to simulation data or can be the input of 

consistency analysis and V/UQ. 

 

2.3.1 Preprocessing 

The role of preprocessing is two-fold. First, it enables further processing and makes 

data extraction the most effective by filtering or transforming the image. Second, in the 

case of the helium plume images an additional preprocessing step called ‘registration’ 

was necessary to reduce the errors caused by manual digitization. 

Since we have used relatively noise-immune algorithms for phase demodulation and 

unwrapping, prefiltering and de-noising were not as important as they typically are. 

However, in some cases the unwrapped phase output was sensitive to pixel variations in 

the original intensity images due to the ambiguity in global continuous phase solutions as 
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mentioned earlier in section 1.3.3. In these cases, small discontinuities or insufficient 

resolution in the initial images lead to unstable unwrapping. Typical phase profiles are 

expected to have one global maximum at the centerline of the plume, since the phase 

difference of the two beams will be the highest at this location; however, phase 

discontinuities at the center of the plume can cause the unwrapping algorithm to produce 

significantly different results, e.g., monotonically increasing or decreasing phase profiles 

or profiles with multiple maxima. In these cases it was necessary to perturb the intensity 

images in a way that it does not alter the continuous phase profile significantly compared 

to the expected, physically meaningful result, but changes the pixel values so that a 

‘right’ solution can be obtained. This approach exploits the sensitivity of the unwrapping 

algorithms to small discontinuities in terms of obtaining the physically meaningful global 

solution that sometimes occurred. Filtering is a good way to achieve this small 

perturbation in pixel values in the intensity images, because at the same time it can 

reduce noise levels and filters can be set up in way so that they do not alter the fringe 

patterns too much. For this purpose, generalized spin filters were used, because they 

achieve noise-reduction and leave the fringe skeleton unchanged. Spin filters are 

practically local averaging filters, but the local windows are defined in a way so that the 

averaging happens along paths parallel to local fringe orientation. In this way, the loss in 

phase data is minimized, because no fringes disappear or get blurred by the filter (45). 

The algorithm determined whether additional attempts are needed to produce the 

physically meaningful solution by cross-correlating the actual normalized phase profile 

np with a previously obtained averaged ‘standard’ phase profile. Normalized phase 

profiles are defined as vectors of the column averages in the discrete phase map with 
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values normalized between 0 and 1. Since the plume images were sufficiently large in the 

vertical direction, this averaging seemed to always produce approximately the same 

profile for all the images. A crisp threshold value of 0.8 was defined as the lowest limit of 

acceptable correlation strength between the actual and standard profiles. If the actual 

phase map did not meet this requirement, additional attempts were made in order to reach 

a meaningful solution. If the threshold value was not exceeded, the new attempt would be 

made with applying the spin filter to the image. For even more degraded images, varying 

the demodulation parameters was necessary. Section 2.3.5 presents details about this 

process. Figure 7 demonstrates the unwrapping instability problem. 

Registration, as mentioned in section 2.3.1, is a procedure that is required if the 

images do not have the same global coordinate system. Registration has also been carried 

out in an automated way by exploiting the fact that the laser ‘spots’ did not move relative 

to the plume during an experiment. As can be seen in Figure 5, the outer spot can be 

detected easily, since the background of the images was very dark compared to the 

illuminated areas. Once the spot was detected in an image, the coordinates of its 

perimeter pixels were found by applying morphological operations and computing the 

difference of the eroded and dilated image. A circle was fit on the perimeter pixels and 

the center of this circle was used to find the global coordinate system between the 

images. The circle was fit by minimizing the sum of squared radial deviations. Figure 8 

demonstrates the registration process. 
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2.3.2 Phase Demodulation by an n-Dimensional Quadrature Transform 

The method that we used to demodulate the acquired interferograms was published by 

Servin et al. in the Journal of the Optical Society of America in 2003 (28). The basic idea 

of their method is to find the quadrature of the obtained n-dimensional interferometric 

signal, because knowing the quadrature signal closes the inverse problem of finding the 

phase angle (x1,x2…xn) from the n-dimensional cosine signal of an intensity image. 

Thus their method is practically a numerical method to obtain a –sin form of the 

originally cos form signal. 

The n-dimensional quadrature operator is defined as 

 

                                  [10]  

 

where Qn is the quadrature operator and r is the vector of coordinates. The quadrature is 

computed by calculating the gradient of the intensity image 

 

                                       [11]  

 

In most cases, the first term of equation [11] can be neglected, because the intensity 

variation term b(r) is usually a low-frequency term. Applying the chain rule to the second 

term we obtain 

 

                           [12]  
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If the local sign and frequency of (r) is known, the quadrature signal can be obtained 

by the following: 

 

 
                                 

     

        
       

[13]  

 

ergo dividing the product of the gradients of the intensity image and modulating phase by 

the squared magnitude of the modulating phase. However, (r) cannot be computed 

directly from I(r) in the most cases. Equation [13] can be rewritten as 

 

 
                                 

     

       
 

     

       
 

    
     

       
 

[14]  

 

where n is a unit vector normal to the local isophase contour, in other words, the n-

dimensional local fringe orientation vector. The task then is to find the vector fields n  

and I/. 

Since the vector field nmeans the orientation field of the original intensity image, it 

is easy to obtain from the gradient image, provided that the image is normalized, i.e. the 

local variation in pixel values are the same at every point of the image. For normalization 

we have used an algorithm published by Guerrero et al. developed specifically for 

interferogram demodulation (46). Once the intensity image is normalized, the local 

orientation angle can be obtained as 
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[15]  

 

Unfortunately, the obtained orientation angles will be wrapped between values 0 and  

due to the atan operator. The orientation angle values can be unwrapped by arbitrarily 

choosing a sign in one location and adjusting the rest. After the orientation angles are 

computed, the vector field n can be set up given that its magnitude is unity in every 

point. 

For the calculation of the vector field I/  Servin et al. proposes a method based 

on the Fourier transformation. They compute the generalized Hilbert transform of the 

image by the following: 

 

 
               

          

      
  

     

       
 

[16]  

 

where F is the Fourier transformation operator, F
-1

 is the inverse Fourier transformation 

and (u,v) is the Fourier transform space of the R
2
 = (x,y) plane. 

Phase demodulation by this method may seem an exact procedure. Indeed, the 

extraction of I/  might be considered exact if several assumptions hold. However, 

the extraction of the vector field nin the modulo 2 form requires mathematical 

regularization in order to avoid sharp jumps in the orientation angle field caused by the 

ambiguity of the orientation sign. Servin et al. suggest the use of a cost-function based 
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regularization technique published by Villa et al. (13). This method sets up a cost 

function 

 

                                     
      

        

                
 
      

[17]  

 

 

where ȓ denotes the neighborhood of the location r in the orientation field,  is the 

regularization parameter,  is the neighborhood size and s(r) is a Boolean value which is 

one if a given location has already been regularized. Villa et al. present a method to 

minimize this cost function in order to extract the smoothest possible orientation map 

modulo 2. From this description it is easy to see that the demodulation algorithm 

employing this regularization technique is also controlled by these two parameters. As 

described in section 2.3.1, when unwrapping instability occurred, our strategy was to vary 

these parameters in order to obtain a physically reasonable unwrapped solution. 

 

2.3.3 Phase Unwrapping by the Weighted Multigrid Method (PUWM) 

This method is one of the two algorithms that we used to unwrap the demodulated 

phase maps. For a comparison of the performance of the two in terms of consistency with 

simulation data, please refer to section 3.4. The PUWM method was published by Mark 

D. Pritt in IEEE Transaction on Geoscience and Remote Sensing in 1996 (17). 

PUWM is a weighted least-squares unwrapping algorithm which utilizes multigrid 

extensions of the Gauss-Seidel relaxation technique. The principle of least-squares 

unwrapping is to find a continuous phase solution that minimizes the differences between 
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the gradient of the wrapped phase map and the gradient of the unwrapped phase map. The 

partial derivatives are defined in the discrete case as follows: 

 

    
                    

 
            [18]  

 

where the discrete differentials exceed , 2 is added or subtracted to the differential. 

This ensures that the smoothness of the phase map is conserved and corrects the 

differentials in the case of the wrapped map. Computing the differences between the 

wrapped and unwrapped phase maps leads to the Laplace equation in the following way: 

 

 
                

  
 

   

                 
 
 
 

   

   
[19]  

                                               [20]  

 

where ij is the Laplacian of the phase. 

It is easy to see that this particular way of posing the unwrapping problem leads to the 

equation of Laplace, 2 = , which can be written as a linear system: 

 

      [21]  

 

which can be solved by the method called Gauss-Seidel relaxation. The disadvantage of 

this method when applied to phase unwrapping is that it tends to unwrap through phase 

discontinuities rather than around them, which leads to unwanted error propagation. To 
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overcome this problem, the least-squared method can be extended as the weighted least-

squares method: 

 

 
    

                
  

 

   

     
 
               

 
 
 

   

   
[22]  

 

The weighting factor w can be defined and determined prior to unwrapping attempts in 

many different ways. The approach we took in this work is to define it as the local 

reliability of the orientation vector field approximation by the quadrature transform 

method. This approach ensures that reliable data points in the wrapped phase map will 

contribute more to the unwrapping solution than inconsistent regions. 

The weighted least-squares method is further improved by introducing multigrid 

concepts to the algorithm. Multigrid methods are techniques to solve partial differential 

equations (PDEs) on large grids. They work by iteratively passing the solution between 

coarser and finer grids, repetitively applying the relaxation method. Multigrid techniques 

are generally as fast as direct Fourier-transform methods but are applicable to more 

complex problems like nonlinear PDEs as well. The implemented method utilizes the so 

called V-cycle multigrid approach, which sweeps through grid levels backwards and 

forwards until convergence is reached. There are no additional parameters to this 

algorithm, except the reliability field for weighted least-squares. 

 

2.3.4 Flynn’s minimum weighted discontinuity method (PUMD) 

The performance of this algorithm is compared to the performance of the weighted 

multigrid method in terms of consistency with simulation data in section 3.4. This 
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algorithm was published by Thomas J. Flynn in the Journal of the Optical Society of 

America in 1997 (31). 

PUMD is similar to PUWM. The only difference – apart from algorithm 

implementation – is how it defines the cost function to be minimized by the solution. 

Given that we seek the smoothest possible solution, it is practical to define the vertical 

and horizontal jump count functions qij and zij as 
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where the brackets mean the floor function. Therefore, if the difference between the two 

adjacent phase values is larger than , the jump count is equal to 1. If we apply equation 

[5], we can express the jump counts as functions of wrap counts and the wrapped phase 

image: 
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PUMD aims to find mij by minimizing the sum of the magnitudes of the jump counts 

E0(m, ): 
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[27]  

 

An unwrapping solution is called a minimum discontinuity solution if it gives the 

minimum of E0(m,) over all choices of m. 

For the same reason as in the case of PUWM, it is important to introduce weighting 

factors for the cost function. Therefore the weighted minimum discontinuity method will 

use the following cost function: 

 

             
      

       

     
 
     

       

 
[28]  

 

Again, the weighting factors are chosen based on phase data reliability. 

 

2.3.5 Postprocessing 

The purpose of postprocessing was to convert the extracted unwrapped phase maps 

into a form that can be the input of the consistency analysis routines. The first problem 

was to extract discrete phase matrices that have the same global coordinate system and 

spatial resolution as the simulation results. This step was necessary because the spatial 

resolution of the simulated matrices were determined by the coarseness of the numerical 

grid. This was 100
3
 in all cases in a 13.813.813.8 cm

3
 modeled volume. This three-

dimensional spatial resolution lead to a 100100 node projected resolution. The 

resolution of the experiments was much higher than this and it was mainly determined by 

the resolution of the images. Since the image sizes were 19201080 pixels with an 
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‘active’ area of approximately 10001000 pixels. Therefore, a reduction of one order of 

magnitude was necessary to be able to compare the results. This was done by locating the 

central positions of simulation nodes in the images using the global coordinate system 

that was set up by the registration routine as mentioned in section 2.3.1 and averaging 

around these points in an area that corresponded to one differential volume in the CFD 

model. 

Some difficulties arose after the unwrapping step as well. The previously mentioned 

unwrapping instability phenomenon often presented itself in a typical way. In these cases, 

the number of extrema in the normalized phase profiles were correctly one along the 

centerline of the plume, however instead of finding one maximum, the algorithm found 

one minimum at the same location. This is a typical result of the ambiguity and under-

determination of the phase unwrapping problem, as there is insufficient information to 

determine whether a modulating physical phase map with a single maximum or a single 

minimum caused the resulting fringe pattern. In these cases, the unwrapped phase map 

was simply ‘inverted’, i.e., the new phase map was determined by the following equation: 

 

                                     [29]  

 

This simple procedure converted the single minimum into a single maximum. 

Another postprocessing step was the re-scaling and shifting to zero of extracted phase 

maps. Again, the absolute continuous phase map is impossible to calculate from single 

fringe images without any spatial or temporal carrier or phase-shifting techniques (the 

problem is detailed in section 1.3.3). Therefore, the unwrapping algorithms produced 
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continuous phase maps which satisfied their optimization criteria but these were rarely 

meaningful physically in the absolute sense. For example, a constraint coming from 

physical intuition is that the phase must be close to zero at the plume boundaries, because 

at those locations, there is no perturbation in the optical medium that would explain phase 

changes. Thus, the unwrapping process only produced the correct gradients of the 

absolute phase maps, not the correct absolute values. By introducing physical constraints 

and boundary conditions, the phase maps were re-scaled and shifted so that they satisfied 

the boundary conditions. 

 

2.4 Uncertainty Quantification 

In this section a detailed description of the procedure for the estimation of 

experimental errors and uncertainty and the method for quantifying consistency with 

simulation data is given. 

 

2.4.1 Estimation of Experimental Errors 

The main source of bias errors (a systematic form of epistemic uncertainty) is the 

falsely detected fringes in the holographs. The applied algorithms tend to identify 

background noise and inhomogeneous illumination as fringes or miss fringes that are 

parts of dense patterns. The former phenomenon causes a systematic over-prediction, 

while the latter leads to a systematic under-prediction in the phase field. 

These errors were estimated by the following method. The demodulated and 

unwrapped phase maps were available from previous calculations for all frames in every 

experimental set. The original fringe pattern can be re-obtained from these maps by 
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simply taking the cosine of the unwrapped maps. The re-obtained fringe patterns can then 

be compared to the very original images to see if the algorithms created or destroyed any 

fringes in the process. 

Because the density of the fringe pattern in this case is mostly a function of the 

vertical coordinate Y, we have calculated the re-obtained fringe patterns of several 

images and manually computed the errors in fringe numbers at different heights. These 

errors can be transformed to errors in  values by simply multiplying by 2, because a 

fringe pattern with one missing or falsely identified additional fringe will always have a 

±2 error in  at most. Figure 9 shows the averaged systematic error in  as a function 

of the vertical coordinate y in the plume. 

The correctness of these bias error values have been checked by computing the 

concentration of helium at the bottom of the plume in its centerline. Here the calculated 

concentration should be very close to 100% helium. The computed concentration values 

always got closer to 100% by subtracting the bias error at that height in the plume. The 

residuals were smaller than 0.005 (mole fraction). 

The main source of the random errors (aleatory uncertainty) is the uncertainty in 

instantaneous  values caused by the empirically chosen algorithm input parameters  

and . The former is the neighborhood size, which determines the area around locally 

chosen pixels in which the calculation proceeds. The higher the value of , the more 

accurate the demodulation is, because fringes that are further away from the local region 

of interest also contribute to the result. The second parameter is the vector regularization 

parameter. This is a parameter controlling the smoothing of the local orientation vectors, 

which are used by the demodulation process to determine the direction for integration. 
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The random errors have been approximated by a second order sensitivity analysis of 

these input arguments. The total errors have been computed by using error propagation. 

Because of the same reasons as described above, the magnitude of the random error is 

also a function of the vertical coordinate. Figure 10 shows the magnitude of the random 

error as a function of height. Because the unwrapping algorithms did not have any 

independently variable parameters, the random errors have been estimated by analyzing 

the sensitivity of the demodulating algorithm only. 

After the bias and random errors have been quantified, the mean bias error has been 

subtracted from the phase data. Two-dimensional matrices have been created and filled 

with the values from the mean bias error profile, assuming constant bias error at a given 

height. After subtraction, the translated phase data have been assigned an experimental 

uncertainty equal to the sum of the random error and the temporal standard deviation of 

the bias error profile. 

 

2.4.2 Consistency Analysis 

Pairwise consistency tests have been carried out between the experimental and 

simulation datasets. Since the spatial resolution of the experimental data was higher, the 

experimental results have been downgraded to match the spatial resolution of the 

simulation dataset (for details, see section 2.3.5). The temporal resolution of the 

simulations was higher, but since both the simulations and the experiments had been 

designed in a way so that many ‘puff cycles’ can be recorded or simulated in one case, 

the time-averaged results should converge to a consistent result. At the current state of 
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the project, only the time-averaged (mean) phase maps have been checked for 

consistency. 

Pairwise consistency tests provide information about whether the model (simulation) 

and the experiment are consistent at certain spatiotemporal locations in the datasets. To 

understand concepts in consistency analysis, one has to define a dataset unit Yi: 

 

                   

 

where yi is the experimental measurement with lower and upper bounds li and ui, 

respectively and ym(x) is a model prediction with a vector of input parameters x. 

A dataset Y is considered consistent if the following condition is satisfied: 

 

                      

 

A pairwise consistency test is repeated for every combination of two dataset units. 

Ergo many datasets are constructed, each containing a given combination of two dataset 

units. With temporally averaged, spatially nonuniform data, every combination means 

every combination of sampled spatial locations. 

Even if a dataset is inconsistent, it is practical to define a scalar called the consistency 

measure. A consistency measure is defined in a way so that its value tells one how 

consistent or inconsistent the dataset is. Here we denote the consistency measure as  and 

define it in the following way (47): 
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By this definition, the consistency measure is a scalar that is the minimum value of  with 

which the dataset is still consistent at the best choice of x inside its variation bounds  

and . It is easy to see that if = 1, the experimental bounds can be reduced to total 

certainty, which means that the two nominal values (experimental measurement and 

model prediction) are exactly the same. The consistency measure must be above zero for 

a dataset unit to be considered as consistent. 

Pairwise consistency maps can be prepared by computing the consistency measure for 

every combination of dataset units. Consistency maps are checkerboard plots with color-

coded values of the consistency measure. They contain k rows and columns, producing 

all possible combinations of dataset-doublets. In the diagonal of the consistency map the 

datasets contain only one dataset unit (or two times the same dataset unit). If a dataset 

unit is not consistent with itself, it will not be consistent with any other dataset units. 

The pairwise consistency tests have been carried out by only looking at horizontal 

profiles in the time-averaged phase data at different heights in the plume. Therefore the 

dataset units were the discrete locations in the one-dimensional profiles. 

Three different levels of assumptions have been tested. First, the experimental and 

simulation data have been compared by only introducing the above described uncertainty 

sources. The second level was assuming an axially symmetrical experimental plume and 

considering any deviations from an axially symmetric pattern as uncertainty. We argue 

that this is a logical step because the simulated cases were all axially symmetric and 
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therefore an experiment is needed for validation that also yields axially symmetric 

plumes. The contribution and magnitudes of physical effects that may cause the plume to 

deviate from the axially symmetric pattern are unknown and thus should be treated as 

experimental uncertainty. In this case, the phase profiles have been converted into 

symmetrical profiles. The symmetrical nominal values have become the mean of the 

original mean values at the two lateral sides of the profiles. The symmetrical uncertainty 

bounds have become the maxima of the upper bounds and the minima of the lower 

bounds. In the third step, additional uncertainty from the laser wavelength (±50 nm) has 

been introduced. This has been implemented by using a uniform variation range as  in 

equation [9] on the simulation post-processing side instead of the crisp nominal value of 

514.5 nm.  
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Figure 4: The experimental setup of Schönbucher et al. 

 

 

 

 

Figure 5: A typical interferometric image of the helium plume 
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Figure 6: A schematic of the helium plume simulations. 
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Figure 7: Unwrapping instability occurs in some cases due to the unwrapping algorithm's 

sensitivity to initial pixel variations. Perturbing the initial image with de-noising filters 

helps with this problem in most cases. Top left: badly unwrapped continuous phase map 

(red means high, blue means low phase values). Top right: the correct unwrapped 

solution to the same image. Bottom left: normalized phase profile for the incorrect phase 

map (blue) and the averaged correct profile superimposed (correlation strength 0.77). 

Bottom right: normalized phase profile for the correct phase map (blue) and the averaged 

correct profile superimposed (correlation strength 0.99). 
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Figure 8: Automated registration procedure by detecting the spot boundaries and fitting a 

circle over them. Circles are fit by minimizing the sum of squared radial distances. 
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Figure 9: Averaged bias error caused by greatly varying fringe density and noise as a 

function of the vertical coordinate Y. These errors were the characteristic values obtained 

by re-calculating the fringe intensities from the phase maps obtained by the weighted 

multigrid (PUWM) and minimum discontinuity (PUMD) methods. The two curves are 

shifted slightly to improve visibility. 
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Figure 10: Averaged random error as a function of the vertical coordinate Y. These errors 

were the characteristic values obtained by re-calculating the intensities from the phase 

maps obtained by the weighted multigrid method. 



CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

In this section an overview of the most interesting results are given. This section is 

divided into six parts. First, general results are shown demonstrating the outputs of the 

methodologies. A comparison of experimental and simulation phase profile data is 

presented in section 3.2. Interesting results in consistency and consistency plots are 

shown in section 3.3. Finally, a comparison and evaluation of the performances of the 

two unwrapping algorithms is presented in section 3.4. 

 

3.1 Demonstration of General Results 

Figure 11 illustrates the steps of the fringe analysis procedure in a general way. The 

first column shows the registered and cropped fringe images. Apart from registration and 

cropping, the images have been converted to grayscale. The second column shows the 

output of the isotropic quadrature transform demodulation algorithm (discussed in section 

2.3.2). The plots show the wrapped phase maps, thus the colormaps indicate values 

between – and +. Notice that a binary mask has been applied to the cropped images in 

order to exclude regions from the computations that did not contain any fringes. The third 

column shows the unwrapped phase maps as processed by PUWM. The fourth column
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shows unwrapped phase maps as processed by PUMD. As a result of the re-scaling 

routine (described in section 2.3.5), the continuous phase values are very close to zero 

near the mask boundaries. This is an example of ‘added physical insight’ to the 

unwrapping problem as discussed in section 1.3.3. The continuous phase gradually 

increases from both sides until the centerline of the plume. This is physically meaningful, 

as the plume is assumed to be approximately axially symmetric. As another example of 

introduced physical insight, this constraint has been forced on the solutions in the post-

processing step as discussed in section 2.3.5. The bubbly motion of evolving instabilities 

in the plumes is illustrated very expressively by the sequences of continuous phase maps. 

The last two columns aim to visually demonstrate the slight differences between the 

results of the two unwrapping algorithms. These differences are described in further 

detail in section 3.4.  

Figure 12 shows continuous phase profiles plotted versus time. The measurements 

were time-resolved, since the fringe images had been recorded with a high-speed camera. 

The frame rate was 1000 frames per second, therefore the time elapsed between two 

exposures was 1 millisecond. The first row shows horizontal profiles at heights 15 mm, 

30 mm and 45 mm above the outlet. These profiles are two-dimensional projections of 

radial profiles in the three-dimensional plume. Note that among the horizontal profiles, 

only the profiles in the 20 mm – 40 mm height zone contain phase values close to zero. 

The reason of this is that the bottom and top region of the fringe patterns were not 

covered by the overlapping area of the two laser beams. Notice that the phase profiles are 

somewhat noisy. This ‘noise’ is the random error of the phase demodulation and 

unwrapping procedures identified as aleatory uncertainty in section 2.4.1. The second 
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row shows vertical phase profiles plotted versus time. From the noisiness of the vertical 

profiles at the centerline of the plume it is easy to see the trend in the aleatory uncertainty 

– higher at the bottom and top regions and lower in the middle. The vertical profiles also 

indicate plume dilution, expansion and instability effects as functions of height and time. 

Figure 13 shows time-averaged continuous phase maps. The time-averaged maps 

have been used as points of comparison with simulation data. Since the image sequences 

contain many puff cycles that show reasonable consistency in time (no unexplainable 

variations within one experiment), time-averaging has been carried out by the following 

formula: 

 

 
       

       
  
   

  
  

[30]  

 

where <> is the time-average phase map (two-dimensional), <>x,y is the x,y point of 

the time-averaged continuous phase map, n is the index of actual frame, nf is the number 

of total frames and x,y,n is the point x,y in the continuous phase map  of the n
th

 frame. 

As can be seen from the time-averaged phase maps, none of the four cases produced a 

completely axy-symmetric plume. All the plume tende to lean to the right. No significant 

correlation can be seen between the time-averaged continuous phase maps and helium 

flow rate. Time-averaged phase plots for phase maps unwrapped by both PUWM and 

PUMD are shown. The differences in these are further explained in section 3.4.  



49 

 

Figure 14 shows the computed standard deviation maps. Standard deviation maps are 

two-dimensional matrices, where each entry x,y is the standard deviation of the one-

dimensional time series consisting of the instantaneous values of the phase sequence at 

coordinate x,y. Again, because the sequences contained many puff cycles, the standard 

deviations can be calculated by the following formula: 

 

 

         
                

   
   

  
  

[31]  

 

where SD(…) is the standard deviation. Standard deviation maps show the local variation 

in the continuous phase – the higher the value at a point, the more varied is the phase at 

that particular location. One expects that the standard deviation will be the lowest very 

close to the helium outlet, as the concentration at that location is nearly constant. The 

plots confirm this, although there is some variation in the first case. As in the case of 

time-averaged phase maps, the standard deviation maps also indicate slightly asymmetric 

plumes. As for correlation with flow rate, the first and fourth sets are reasonably similar 

in terms of flow structure, which is reasonable, since these cases had been carried out 

with very similar flow rates (2.25 and 2.310
-4

 m
3
/s). The highest variation have been 

observed in the case with the highest flow rate (2.510
-4

 m
3
/s). In all cases, the most 

varying regions were close to the plume boundary. Standard deviation plots for phase 

maps unwrapped by both PUWM and PUMD are shown. The differences in these are 

further explained in section 3.4. 
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Figure 15 shows one-dimensional time series in the full time range of the experiments 

in different locations of the plume. Puff cycle frequencies, delays and overall time-

consistency (stationary behavior in one experiment) are easy to obtain from these graphs. 

The time series in the centerline of the plume are the most consistent in time, as the 

amplitude of periodic phase oscillations does not change much in on experimental run. 

The left side of the plume (X = -16.1 mm) is more consistent than the right side (X = 16.1 

mm), as the sharp jumps in phase occur more frequently in the right side. These jumps 

indicate badly unwrapped phase maps. These frames have been removed when 

computing time-averaged or standard deviation maps. Periodicity is hardly identifiable in 

the right side, which indicates asymmetry. For visualization purposes, only data from the 

first experimental case is shown here. A complete list of numerical results derived from 

these temporal profiles can be seen in Table 1. 

Power spectra of the temporal profiles shown in Figure 15 are shown in Figure 16. 

Power spectra are the magnitudes of Fourier transformed time series visualizing the 

contributions of different frequencies in the temporal signals. Due to the nature of Fourier 

transformation, in power spectra, the frequency corresponding to 0 Hz is always the 

highest contributor (this is the so called zero-peak). For the sake of clarity, zero-peaks 

have been removed from these graphs. The highest contributor after the zero-peak can be 

identified as the puffing frequency. In all cases, the puffing frequency has been found to 

be between 7 and 8 Hz. The strength of periodicity can be quantified by the signal to 

noise ratio (SNR) of the peak corresponding to the puffing frequency in the power 

spectra. The signal to noise ratio is defined as: 
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[32]  

 

where Pmax is the power corresponding to the highest peak (zero-peak removed) and <P> 

is the mean power of the spectrum. Values for SNR can be found in Table 1. 

It is apparent that in the first experimental case, the right side of the plume showed 

almost no significant periodicity. For visualization purposes, only data from the first 

experimental case is shown here. A complete list of numerical results derived from these 

power spectra can be seen in Table 1. 

Another quantity of interest can be the time lag between the phase in certain points of 

the plume. Since the continuous phase is closely periodic in time, cross correlation 

analysis can be applied to the time series in order to extract the average time lag between 

points in the plume. A typical cross correlation spectrum is shown in Figure 17. The 

value of the time lag indicates how much the periodic phase-time function is lagging 

between two in the plume. Physically, it is correlated to the velocities in the plume. Since 

the most dominant velocity component in the plume is the vertical one, the reference 

points for cross correlation have been chosen as Y = 15 mm, as the first point where the 

oscillations could be detected.  

Table 1 summarizes the results from spectral analysis of the phase maps. Note that 

the puffing frequency can only be determined as accurately as the temporal resolution of 

the data allows. In this case, cases 1, 3 and 4 allowed for an accuracy of ±0.14 Hz and 

case 2 allowed for an accuracy of ±0.7 Hz. The time lag of the Y = 15 mm are obviously 

zero, since these points are the references of themselves. The temporal resolution of case 

2 were five time lower than the rest of cases, because only every fifth frame were 
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available. Note that the signal to noise ratios must be interpreted by taking the lower 

temporal resolution into account (i.e. the lower the resolution, the lower SNR will be, 

since the powers will be lower). As a rule of thumb, a temporal signal with a SNR value 

of 150 in cases 1, 3 and 4 and a SNR value of 30 can be considered as describing a 

periodical signal. If the values are lower than this, the signal is too noisy or the flow is 

not truly periodic in that given point. Time lag values must be observed with this in mind 

(i.e. time lag is only meaningful when the SNR is sufficiently high). 

The temporal phase signals in the left side and centerline of the plumes have been 

proven to be truly periodic; however the same is not true for the right side. This can be 

explained by the asymmetrical nature of the plumes. On average, time lag values on the 

left side are longer than in the centerline, indicating slower vertical velocities near the 

plume boundaries. Since the plume is expanding and the horizontal velocity components 

increase near the boundary, this is understandable. Table 1 contains only results from 

phase maps unwrapped by PUWM. A similar table can be found in section 3.4, providing 

a point of comparison for the PUMD unwrapper. 

 

3.2 Phase Profile Comparison 

In this section, the steps we took in consistency analysis are demonstrated through 

plots showing horizontal experimental and simulated phase profiles along with the 

uncertainties of the values..  

As discussed in section 2.4.2, the first level of consistency testing was to include all 

the epistemic and aleatory uncertainties coming from algorithm sensitivity on the 

experimental and input parameter variation on the simulation side.  
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Figures 18-20 show both experimentally measured and simulated phase profiles at 

three different heights with uncertainties determined in this way. The data is reasonably 

consistent below up to 15 mm, but above that consistency diminishes. The asymmetrical 

behavior of the real plume caused the data to be very inconsistent at higher locations. 

To remedy this issue, the assumption of axisymmetric experiments have been made 

and additional experimental uncertainty introduced as discussed in section 2.4.2. Figures 

21-23 show the profiles resulting from this level of assumptions. Consistency improved, 

but in higher locations, especially near the plume boundary there were still inconsistent 

regions. In the third step, additional uncertainty has been introduced on the simulation 

side in the form of laser wavelength, as discussed in section 2.4.2. 

Figures 24-26 show phase profiles resulting from the third level of assumptions on 

uncertainty. Again, consistency improved, but the problematic regions from the second 

step persisted. At this point it has been concluded that the higher experimental phase 

values near the plume boundary compared to simulations indicated that the experiments 

had been run for a significantly longer time than the simulations (in simulated time), 

therefore the ambience in the room where the experiments had been carried must have 

become contaminated with helium. To solve inconsistency issues it has been decided that 

new simulations are needed. This is described in more detail in Chapter 4.  

Note that in this section, experimental results only from the first experimental case 

are presented. Table 1 summarizes the results of consistency tests. 
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3.3 Pairwise Consistency 

In this section pairwise consistency plots are presented for the profiles shown in 

section 3.2. Pairwise consistency plots show the consistency measure of each two-

element dataset as discussed in section 2.4.2. The plots are color coded in a way so that 

red shows consistent datasets and blue shows inconsistent datasets. 

Figures 27-35 show pairwise consistency plots for the phase profiles presented 

before. The data with the first level of uncertainty quantification showed no full pairwise 

consistency at all. Each height contained at least one inconsistent dataset (with a 

consistency measure below zero). Generally, this can suggest two things: either the 

simulation or the experiment were carried out in an incorrect way or the uncertainties 

were underestimated. Since the evolution of the phase profiles as a function of height was 

similar in both the simulated and experimental cases, we assumed the latter. 

In the second level of uncertainty quantification, the experimental plume has been 

assumed to be axisymmetrical. Any deviation from axisymmetry has been assumed to be 

uncertainty. Introducing this additional source of uncertainty on the simulation side made 

the data much more consistent with simulation data. In the best case (in the case of the 

third experimental run), the profiles have been consistent up to heights of 32.4 mm in the 

plume. Higher up in the plume inconsistent regions appeared near the X = -16.1 mm and 

X = 16.1 mm regions. These inconsistent regions suggested helium contamination in the 

ambience that showed as flatter phase profiles in the experimental data. These regions 
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present themselves as blue bands at datasets 6 to 8 and 29 to 31 in the pairwise 

consistency plots. 

Introducing additional uncertainty on the simulation side in the form of laser 

wavelength uncertainty (see section 2.4.2) did not solve this problem. The blue bands 

persisted after the addition of this uncertainty source. The general consistency of the data 

has improved, as in the best case (third experimental run), the profiles were consistent up 

to 35.1 mm height.  

The consistencies of each experimental case have improved, but as long as the 

pairwise tests show no complete consistency, there is no reason to proceed to full 

consistency analysis. As with pairwise plots, if only one two-element dataset is 

inconsistent, the whole dataset will be inconsistent, therefore if as long as all the pairwise 

tests are not consistent on their own, the full dataset consisting all the heights will not be 

consistent. 

Due to this characteristic of the pairwise tests, it is convenient to define an overall 

consistency measure for a pairwise set of two-element datasets. Such an overall measure 

can be defined as the lowest consistency measure value in the pairwise test. This 

definition is convenient, because as long as this value is negative, there will be an 

inconsistent two-element dataset in the pairwise test which will ultimately make the 

whole dataset inconsistent. This overall consistency measure is plotted versus height in 

Figure 36. 

It is easy to see that the consistency profile never reached zero in the first level. The 

difference between the second and third levels is not very significant. The third 

experimental case has been proved to be the most consistent among the four. Note that 
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the lowest value of the overall consistency measure is not bounded, but the highest value 

is unity. 

3.4 Performance Comparison of the Two Unwrappers 

In this section the performance of the PUMD unwrapper is compared to the 

performance of PUWM. This is done in two ways. First, the results derived from spectral 

analysis using PUMD are shown compared to those of PUWM in Table 2. Second, a 

comparison of overall consistency measure values is shown in Figure 37. 

Table 2 shows frequency-related properties of all four experimental cases determined 

from phase maps unwrapped by PUMD. The values for puffing frequency, time lag and 

SNR are given relative to values determined by using PUWM in the following way: 

 

                    [33]  

 

where CPUMD is the comparison value, APUMD is a property derived from phase maps 

unwrapped by PUMD and APUWM is a property derived from phase maps unwrapped by 

PUWM. In this way a negative C value indicates a lower A value for PUWM. This is a 

convenient way to compare SNR values, as higher SNR indicate a more reliable 

unwrapping routine. 

There are no significant differences between the two unwrappers in terms of puffing 

frequency time lag determination. However, there are significant differences in SNR. 

Overall, PUMD has been proved to be less reliable than PUWM with respect to 

identifying obviously present periodicities. 
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Figure 37 shows overall pairwise consistency measure profiles of phase data 

unwrapped by PUMD. Generally the consistency values were close to zero, either on the 

positive or negative side, which indicates only slight consistency or inconsistency. 

Strictly speaking, PUMD phase maps were more consistent than PUWM maps, but only 

due to the higher uncertainties introduced by the higher aleatory uncertainties of the 

PUMD unwrapper. Along with more frequent sharp jumps in temporal series (as 

mentioned in section 3.1) this is another sign of PUMD being less reliable and producing 

more stochastic oscillations in the phase data. In the best case (third experimental case), 

PUMD maps were consistent up to 42 mm height. The inconsistent upper regions 

produced half the inconsistency as the phase data unwrapped by PUWM. 

Since neither PUWM nor PUMD has been able to achieve complete pairwise 

consistency, it has been concluded that the sources for experimental and simulation 

uncertainties have been exhausted. No further reasonable sources of uncertainties have 

been found to be worth implementing. It has been concluded that the inconsistent regions 

near X = -16.1 mm and X = 16.1 mm had been caused by helium contamination in the 

room where the experiments had been run. For this reason, additional simulations have 

been designed and started. These simulations have not been conclusive by the time of 

submittal this thesis. For future ideas to improve consistency, please refer to Chapter 4. 
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Figure 11: A demonstration of general results. Units are millimeters. The left column 

shows the original images converted to grayscale, registered and cropped. The second 

column from the left shows the demodulated modulo 2 phase maps. The third and the 

last columns show continuous phase maps unwrapped by PUWM and PUMD in radians, 

respectively. The figure shows a complete puff cycle of the helium gas in four steps. 
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Figure 12: Time series of horizontal (top row) and vertical (bottom row) phase profiles. 

The continuous phase maps have been obtained by the PUWM unwrapper. The time 

between two frames is 1 millisecond. The oscillations are caused by the sensitivity of the 

algorithm to pixel variation. Top left: horizontal profiles at 15 mm high in the plume. Top 

center: profiles at 30 mm high in the plume. Top right: profiles at 45 mm high in the 

plume. Bottom left: vertical profile at X = -16.1 mm. Bottom center: Bottom right: 

vertical profile at the centerline of the plume. Bottom right: Bottom left: vertical profile 

at X = 16.1 mm. 
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Figure 13: Time-averaged phase maps. The top row shows continuous phase maps 

unwrapped by PUWM. The bottom row shows phase maps unwrapped by PUMD. From 

the left to the right the plots show the results from the four experiments. The spatial units 

are millimeters, the phase is in radians. 
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Figure 14: Standard deviations of the time series of unwrapped maps. The top row shows 

continuous phase maps unwrapped by PUWM. The bottom row shows phase maps 

unwrapped by PUMD. From the left to the right the plots show the results from the four 

experiments. The spatial units are millimeters, the phase is in radians. 
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Figure 15: Temporal profiles of different locations (one-dimensional spots) in the plume. 

The high jumps are caused by faulty unwrapping. The reliability of the unwrapping is 

higher near the outlet in terms of temporal smoothness. These profiles have been 

generated by batch-processing continuous phase maps unwrapped by PUWM. Phase 

maps are from the first experimental case. 
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Figure 16: Power spectra of the phase of different time series of one-dimensional spots in 

the plume. The puffing frequency is the highest power contributor. Its value is around 7.3 

Hz. This value is not affected much by spatial location. The unwrapper here was PUWM. 

Phase maps are from the first experimental case. 
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Figure 17: Cross correlation analysis of phase signals. The phase-time signals in two 

points are shown in the uppermost plot. The middle plot shows the cross correlation 

spectrum of the two signals. A polynomial curve is fit around the maximum of the 

spectrum in order to determine the time lag more accurately (in red, bottom plot). The 

time lag shown here is 46.02 ms. 
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Table 1: Results of spectral analysis. Phase maps have been unwrapped by PUWM. 

  
puffing frequency, Hz time lag, ms SNR 

Y = 15 mm Y = 30 mm Y = 45 mm Y = 15 mm Y = 30 mm Y = 45 mm Y = 15 mm Y = 30 mm Y = 45 mm 

case 1 

X = -16.1 mm 7.34 7.34 7.34 0 40.44 69.14 634.39 448.36 441.02 

center 7.34 7.34 7.34 0 25.06 46.02 698.13 682.68 603.34 

X = 16.1 mm 7.34 7.34 7.34 0 2* 1.19* 142.92 74.62 18.15 

case 2 

X = -16.1 mm 7.05 7.05 7.05 0 10 60.5 58.55 18.59 53.69 

center 7.05 7.05 7.05 0 10 30 96.72 147.75 123.91 

X = 16.1 mm 7.05 7.05 7.05 0 10* 10* 6.41 6.08 6.89 

case 3 

X = -16.1 mm 8.38 8.38 8.38 0 40.07 68.21 1609.1 1509.6 1434.8 

center 8.38 8.38 8.38 0 23.01 39.26 1521.2 1577.7 1405.3 

X = 16.1 mm 8.38 8.38 8.38 0 2* 2* 195.45 31.67 33.69 

case 4 

X = -16.1 mm 8.02 8.02 8.02 0 36.26 55.81 1437.7 1296.3 1014.8 

center 8.02 8.02 8.02 0 20.37 40.19 1328.2 1018.8 1038 

X = 16.1 mm 8.02 8.02 8.02 0 2* 2* 375.03 202.36 45.12 
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Figure 18: Phase profile comparison with the first level of assumptions on uncertainty. 

Height: 15 mm. 
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Figure 19: Phase profile comparison with the first level of assumptions on uncertainty. 

Height: 30 mm. 

  



68 

 

 

Figure 20: Phase profile comparison with the first level of assumptions on uncertainty. 

Height: 45 mm. 
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Figure 21: Phase profile comparison with the second level of assumptions on uncertainty. 

Height: 15 mm. 
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Figure 22: Phase profile comparison with the second level of assumptions on uncertainty. 

Height: 30 mm. 
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Figure 23: Phase profile comparison with the second level of assumptions on uncertainty. 

Height: 45 mm. 
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Figure 24: Phase profile comparison with the third level of assumptions on uncertainty. 

Height: 15 mm. 
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Figure 25: Phase profile comparison with the third level of assumptions on uncertainty. 

Height: 30 mm. 

  



74 

 

 

 

Figure 26: Phase profile comparison with the third level of assumptions on uncertainty. 

Height: 45 mm. 
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Figure 27: Pairwise consistency plots for the first level of assumptions on the uncertainty. 

Height: 15 mm. 
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Figure 28: Pairwise consistency plots for the first level of assumptions on the uncertainty. 

Height: 30 mm. 
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Figure 29: Pairwise consistency plots for the first level of assumptions on the uncertainty. 

Height: 45 mm. 
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Figure 30: Pairwise consistency plots for the second level of assumptions on the 

uncertainty. Height: 15 mm. 
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Figure 31: Pairwise consistency plots for the second level of assumptions on the 

uncertainty. Height: 30 mm. 
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Figure 32: Pairwise consistency plots for the second level of assumptions on the 

uncertainty. Height: 45 mm. 
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Figure 33: Pairwise consistency plots for the third level of assumptions on the 

uncertainty. Height: 15 mm. 
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Figure 34: Pairwise consistency plots for the third level of assumptions on the 

uncertainty. Height: 30 mm. 
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Figure 35: Pairwise consistency plots for the third level of assumptions on the 

uncertainty. Height: 45 mm. 
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Figure 36: The overall consistency measure defined as the smallest pairwise consistency 

measure in a pairwise test versus height. 
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Table 2: Comparison of the spectral analysis-derived properties determined from the phase maps unwrapped by PUMD relative to 

the values from the phase maps unwrapped by PUWM. 

 

  

puffing frequency, Hz time lag, ms SNR 

Y = 15 mm Y = 30 mm Y = 45 mm Y = 15 mm Y = 30 mm Y = 45 mm Y = 15 mm Y = 30 mm Y = 45 mm 

case 1 

X = -16.1 mm 0 0 0 0 3.56 -1.15 -19.17 112.92 95.93 

center 0 0 0 0 2.32 -1.11 -532.87 -434.13 -184.03 

X = 16.1 mm 0 0 0 0 0 0.81 -101.58 -5.23 21.52 

case 2 

X = -16.1 mm -0.28 0.01 0.01 0 29.42 5.43 30.34 14.94 16.58 

center 0.01 0.01 0.01 0 0 0 -11.83 -7.84 -7.54 

X = 16.1 mm 0.01 0.01 0.01 0 0 0 7.07 -1.76 11.04 

case 3 

X = -16.1 mm 0.13 0.13 0.13 0 -1.26 -0.63 -613.91 -678.89 -720.39 

center 0.13 0.13 0.13 0 0.49 0.45 -684.75 -841.23 -649.74 

X = 16.1 mm 0.13 0.13 0.13 0 0 0 50.36 8.02 6.4 

case 4 

X = -16.1 mm 0 0 0 0 -0.96 -2.36 -56.9 -82.6 309.5 

center 0 0 0 0 2.82 1.1 205.9 447.3 251.7 

X = 16.1 mm 0 0 0 0 0 0 101.09 117.97 -38.529 
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Figure 37: Overall pairwise consistency measure profiles of phase data unwrapped by 

PUMD. The bottom plot shows a zoomed-in detail. 
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CHAPTER 4 

 

CONCLUSIONS AND FUTURE WORK 

 

The usefulness of advanced image processing and fringe pattern analysis of fringe 

images produced by holographic interferometry for the validation and uncertainty 

quantification of the CFD model Arches has been investigated. It has been found that the 

phase demodulation and phase unwrapping techniques can produce valuable high-

resolution (both spatially and temporally) data for V/UQ purposes. The error and 

uncertainty approximation of a detailed and refined image processing and fringe pattern 

analysis method has been carried out. The unwrapped phase data along with determined 

lower and upper uncertain bounds has been used for consistency analysis. Pairwise 

consistency tests have been run and the results are presented in this thesis. A number of 

levels of assumptions on experimental and simulation uncertainties have been tried, along 

with two different phase unwrapping algorithms. No combination of these resulted in 

fully pairwise consistent data. It has been concluded that additional simulations are 

needed to take into account the possible ambient impurities observed in experiments. 

As mentioned before, additional simulation cases have been designed and initiated at 

the time of the submittal of this thesis. These cases have been designed to introduce the 

effect of helium diffusing into the ambience to mimic the effect observed in experimental 

results. 
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The preliminary consistency analysis presented in this work provided other useful 

conclusions on the consistency analysis methodology itself. It has to be noted that while 

the PUMD unwrapper has proven to be less reliable than the PUWM unwrapper, it 

produced more consistent results due to its higher inherent uncertainties. This leads to the 

conclusion that the consistency measure proposed by Feeley et al. (47) is not the most 

meaningful in this application, since it does not take into account the amount of inherent 

uncertainty in the nominal values. Therefore developing and proposing a new consistency 

measure definition might be necessary. 
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