
Testing Self-Timed Circuits using Partial Scan

Ajay Khoche Erik Brunvand
Department of Computer Science

University of Utah
Salt Lake City, UT, 84112

Abstract

This paper presents a partia l scan method fo r testing
both the control and data path parts o f macromodule based
self-timed circuits fo r stuck-at faults. Compared with other
proposed test methods fo r testing control paths in self-timed
circuits, this technique offers better fau lt coverage under
a stuck-at input model than methods using self-checking
properties, and requires few er storage elements to be made
scanable than fu ll scan approaches with sim ilar fa u lt cov­
erage. A new method is proposed to test the sequential
network in the control path in this partia l scan environ­
ment. The partia l scan approach has also been applied to
data paths, where structural analysis is used to select which
latches should be made scannable to break cycles in the cir­
cuit. Experimental data is presented to show that high fau lt
coverage is possib le using this method with only a subset o f
storage elements in the control and data paths being made
scannable.

1 Introduction

Asynchronous and self-timed circuits have recently
been receiving renewed interest by circuit designers as an
alternative to globally synchronous system organization.
As the size and speed of systems grow, so do the prob­
lems related to the global clock signal. Asynchronous and
self-timed circuits that avoid timing problems by enforc­
ing simple communication protocols between parts of the
circuit can help avoid these problems. These systems can
also allow simpler system composition, show increased ro­
bustness in the face of process and environmental varia­
tion, can exhibit much lower power consumption, and can
even show increased performance when compared to glob­
ally synchronous systems in some cases.

Testing asynchronous circuits, however, is a relatively
new area. Despite the growing number of recent efforts in
the specification and design of asynchronous circuits, test­
ing these circuits has not been explored to any great degree.
Traditionally, testing asynchronous circuits has been con­
sidered a difficult problem, especially when compared to

synchronous circuits, where significant advances have been
made. Unfortunately, methods used to test synchronous cir­
cuits are not directly applicable to asynchronous circuits.
This is due, in large part, to the absence of the global
clock signal in the asynchronous circuits. New methods
are required to adapt the rich knowledge about testing syn­
chronous circuits to test asynchronous circuits. This is pre­
cisely the subject of this work: to adapt scan path technol­
ogy to a class of asynchronous circuits.

Asynchronous style control circuits can be classified
broadly into two categories: centralized and distributed. In
the centralized style the control is designed like conven­
tional state machines, where a single state machine controls
the sequencing in the circuits. These machines are typically
designed with restrictions on inputs and outputs and need
proper adjustment of delays to handle an asynchronous en­
vironment. Many approaches have been proposed to design
control circuits in this style [10,22,33,35].

In the distributed style of design the control unit con­
sists of an interconnection of many smaller state machines
(macromodules). These macromodules are typically de­
signed to follow certain self-timed protocols at their in­
terfaces that obey delay-insensitive or speed-independent
properties to make their composition simpler [3, 20, 23,
30]. Self-timed macromodular circuits have been used in
a wide variety of academic research efforts [4,21,25], as
well as in industrial research settings [2,29], and it is this
style of distributed self-timed control that we focus on in
this work. Using these modules, distributed self-timed con­
trol can be built easily by connecting the modules directly
into a control network. These modules also allow simple
syntax-directed translation from language descriptions into
control networks [3,20,23]. In particular, the set of macro­
modules used by Brunvand [3, 5] and Sutherland [30] are
the modules used to build the circuits which are the target
of this paper. The particular set of macromodules used is,
however, not critical as the techniques we present could be
applied to any similar set of control circuits.

In this paper a partial scan method is proposed to test
both the control and data path portions of macromodule
based self-timed circuits for stuck-at faults. This method

0-8186-7098-3/95 $04.00 © 1995 IEEE
160

provides better fault coverage in the control path than
methods using the self-checking property of self-timed cir­
cuits which assumes that the circuit halts in response to
faults [13]. It also requires fewer storage elements in the
control path to be made scannable than full scan methods
while offering acceptable fault coverage. The partial scan
approach to testing the data path involves converting some
of the latches in the data path into scannable latches such
that cycles in the circuit can be broken.

The paper is organized as follows. In the next sec­
tion, self-timed circuits will be described briefly along
with some discussion on why they require different test­
ing strategies than other circuits. Section 3 reviews related
work. Section 4 presents the proposed partial-scan method
for control and data paths of the circuits including the the
overall architecture, modifications to the various modules,
the procedures used to test sequential logic consisting of
XOR and C-elements, and the modifications needed to test
the data path. Section 5 presents experimental results ob­
tained on four examples. Finally, Section 6 offers some
conclusions.

2 Self-Timed Macromodule Circuits

Self-timed circuits are a subset of a broad class of asyn­
chronous circuits which do not use a global clock for syn­
chronization. Specifically, self-timed circuits are asyn­
chronous circuits that generate completion signals to indi­
cate that they are finished with their processing [28]. A
signaling protocol used with the completion signal allows
self-timed systems to be composed of circuits which com­
municate using self-timed protocols. Self-timed protocols
are often defined in terms of a pair of signals, one to re­
quest or initiate an action, and another to acknowledge that
the requested action has been completed. One module, the
sender, sends a request event (Req) to another module, the
receiver. Once the receiver has completed the requested ac­
tion, it sends an acknowledge event (Ack) back to the sender
to complete the transaction.

Although self-timed circuits can be designed to imple­
ment their communication protocols in a variety of ways,
the circuits used in our library use two-phase transition sig­
naling for control and a bundled protocol for data paths.
Two-phase transition signaling [28] uses transitions on sig­
nal wires to communicate theR eq and Ack events described
previously. Only the transitions are meaningful; a transi­
tion from low to high is the same as a transition from high
to low and the particular state, high or low, of each wire is
not important.

A bundled data path uses a single set of control wires
to indicate the validity of a bundle of data wires [30].
This requires that the data bundle and the control wires be

Req

Sender Ack Receiver

Data

Figure 1: Two Modules Connected with a Bundled Data
Path

Figure 2: Control Modules for Self-Timed Designs

constructed such that the value on the data bundle is sta­
ble at the receiver before a signal appears on the control
wire and remains valid until Ack is received. This condi­
tion is similar to, but weaker than, the equipotential con­
straint [28]. Two modules connected with a bundled data
path are shown in Figure 1.

Our design method builds circuits using a variety of
modules which communicate using two-phase transition
signals. The modules used to build the control path, de­
scribed in more detail elsewhere [5, 30], are shown sym­
bolically in Figure 2. Other modules in the library, such
as transition-controlled latches, and completion-sensing
adders, are used to build self-timed data paths. The func­
tionality of the main control modules is as follows:

XOR: An XOR behaves as an OR for transition signals.
When a transition occurs on any of its inputs, the XOR
generates a transition at its output.

C-Element: A C-element is used as an AND function for
transitions. A transition occurs at the output only
when there have been transitions at both of its inputs.
Note that the C-element must start in a state where
both inputs are at the same value to behave in this way.

161

A global clear signal to the control modules ensures
this condition on system reset.

Select: A two-way transition Select module, in response to
an input transition, causes a transition on one of two
outputs depending on the value of its select (SEL) sig­
nal. The SEL signal should be valid before the input
transition arrives and must remain valid until after an
output transition is generated at one of the outputs. In
other words, SEL is bundled with respect to the input
transition.

Toggle: A Toggle module causes, in response to an input
transition, an output transition alternately on its tv/o
outputs. After initialization, the first input transition
causes a transition on outO and subsequent input tran­
sitions cause transitions on alternate outputs.

Call: A Call module acts as a hardware subroutine call al­
lowing multiple requesters to access a shared resource.
The Call module routes the Req signal from a client
(for example, either R l or R2 in a two-way Call) to the
subroutine circuit, and after the subroutine acknowl­
edges, routes the Ack back to the appropriate client.
The requests must be mutually exclusive.

One way this module library is used is with an O C ­

C A M based automatic circuit compilation system [3]. The
software constructs of O C C A M have been implemented us­
ing these library components and allow programs written
in O C C A M to be translated automatically into self-timed
circuits. The O c c a m compiler has been used to build a
number of systems ranging from a memory controller for
standard DRAMs used in a self-timed environment [3], to
a simple wormhole router designed for a mesh-connected
multiprocessor array [3]. This library has also been used
to build large circuits by hand, including a self-timed mi­
croprocessor [4], using commercial schematic capture soft­
ware from Viewlogic.

2.1 Testability of Macromodule based
Self-Timed Circuits

Some of the problems associated with testing asyn­
chronous circuits in general and self-timed circuits in par­
ticular include:

• Asynchronous and self-timed circuits are more sen­
sitive to races and hazards than synchronous cir­
cuits. This puts an additional requirement on the test
methodology that test application must also be hazard
and race free otherwise the test may be invalidated. In
particular, races and hazards create two main types of

problems in testing asynchronous circuits: the exis­
tence of a race or hazard can invalidate a test, and tech­
niques for avoiding races and hazards in asynchronous
circuits usually require the addition of redundant logic
which may not be testable by any functional test.

• Self-Timed circuits operate in an autonomous way in
the sense that once the control is passed from the en­
vironment to the circuit the progress is determined
totally by the circuit. This is different from a syn­
chronous circuit where an external clock dictates the
operation of the circuit. This creates problems if one
attempts to use an iterative array model for testing be­
cause the number of frames is not controllable.

• Using our library module approach, control is dis­
tributed throughout the system and is not centralized
in a single controller with a convenient state register
for the scan path. Each self-timed module is, in fact,
a tiny state machine in itself. This increases the com­
plexity of testing if functional testing of the entire cir­
cuit is desired.

• In a synchronous system, it is possible to slow down
the operation of the entire system simply by decreas­
ing the clock speed to reason about noise related prob­
lems (which might interfere with testing). Self-timed
circuits react to local handshake signals and there is
no analogous technique for slowing system operation
without modifying the circuit in other ways.

• Functional testability of a self-timed module depends
on the way it is used in a circuit. In other words, it
depends on the environment which interacts with the
module. Certain circuit configurations lead to only a
subset of input patterns ever being applied statically
to the module. For example, C-elements are often
used as a rendezvous for two forked processes. In this
case, the only static values seen at the inputs to the
C-element will be 11 and 00. The 10 and 01 cases
will be seen only during the time that one process has
finished and the other is still executing. In addition,
other faults may be masked by functional test meth­
ods where the only observability mechanism is ob­
serving the primary output. A detailed discussion of
these problems may be found in [17]. The percentage
of detectable faults for each self-timed control module
using only functional test and the self-checking prop­
erty is are shown in Table 1.

3 Related Work

Testing asynchronous circuits is a relatively new area.
Very few attempts have been made to date. For test-

162

Module Fault Coverage
C-element 60.0%
Call2 60.2%
Select 71.5%
Toggle 90.0%

Table 1: Fault Coverage of Modules using Self-Checking
Functional Tsst

ing macromodule based self-timed circuits only two ap­
proaches have been reported in the literature that we know
of. In [18] a. functional approach is used for testing self­
timed macromodule circuits using the self-checking prop­
erty mentioned earlier. In this approach SEL lines of the
Select modules are made controllable thereby influencing
the flow of control in the circuit. After selecting a particu­
lar path the input to that path is changed from low to high
and then back. The observation mechanism consists of out­
puts also changing after waiting for sufficient amount of
time. This approach targets faults only on module’s input
and output in the control path. A method is also proposed to
test the data path, where the data flow is controlled by influ­
encing the control flow as described above. A modified D
algorithm wais proposed for test generation. This approach
has the following drawbacks:

• In their approach modules are considered atomic:
faults inside the modules are not targeted. Since the
faults on the input and output of the module form a
small percentage of the total faults in the control cir­
cuits the fault coverage offered by this method is low
when faults inside the modules are also considered, as
shown in Tables 1 and 2.

• The only observation mechanism is observing the out­
put. This is not sufficient because a great deal of fault
masking may occur inside the circuit modules.

• Functional testing may result in high complexity when
faults inside the modules are also considered. This
is because certain faults inside the modules require
state justification to activate them, which is not nec­
essary for faults on the module input/output consid­
ered in [18], State justification may be computation­
ally complex in the type of circuits considered in this
paper, w hich contain a lot of state distributed through­
out the circuit.

• Loop structures in the control path can not be tested
without adding extra observability to the circuit. Se­
lect modules are often used to build looping structures
in the circuit. When faults keep the circuit in the con­
figuration which executes the loop body, the control
stays in that loop and there is no way out.

• Only pipeline style structures can be handled in the
data path. The method is not clear about handling
cyclic structures.

Other researchers [12,14,26] have also proposed meth­
ods based on the self-checking property for the control
path of circuits similar to ours. However all these ap­
proaches will suffer the same disadvantages described in
previous section. Hazewindus [12] proposed adding con­
trol/observation points for each untestaible fault. Clearly
this is impractical in this type of circuit as the number of
such faults is large. In [15] the authors propose a full scan
approach where the scan path is instantiated on th e, Reqi Ack
lines of each of the control modules. Faults inside the mod­
ules were also considered. This method provides excellent
fault coverage, but has high overhead. The overhead of our
full scan approach is what initiated the partial scan work re­
ported in this paper.

Other efforts reported in literature do not deal directly
with self-timed macromodular circuits, however some of
them are still relevant. In [34] a full scan approach was pro­
posed for circuits generated from Signal Transition Graph
(STG) descriptions. These circuits are essentially Huffman
type asynchronous state machines. In their approach each
storage element (C-element) is replaced by an SRL latch
[1], This approach is not practical for macromodular cir­
cuits as the ratio of logic gates to latches is very low and
thus it will result in high scan latch overheads. Even with
a full scan path it may not be possible to test for all faults
due to reconvergent fanout, which is very common in self­
timed macromodular circuits. Full scan also implies longer
scan chains, resulting in longer test application times, how­
ever this should be compared against the number of extra
vectors in the partial scan where sequential testing may be
required.

All these approaches with the exception of [12] do not
consider datapath testing. In [12] a method was proposed
to test data path elements implemented in a specific way.
This method is very tightly coupled to the way the data path
elements are implemented is not applicable in general to the
circuits considered in this paper.

Some other approaches have been used to test the data
path of specific circuits, but these methods are not gener­
ally applicable. In [6] a scan based method was proposed to
test asynchronous counter circuits in linear time. In [16,24]
methods have been proposed to test micropipeline struc­
tures. In a recent paper [27] a partial scan test is described
for an asynchronous DCC error corrector circuit. However
no general method was proposed to apply partial scan in
the circuits. Also a stuck-at-output fault model [13] was as­
sumed for the control path of the circuit which is less gen­
eral than the stuck-at-input model [13] assumed in this pa­
per.

163

4 Partial Scan Solution

As described in the previous section, if the gate to latch
ratio in the control path of the circuits is low, the overhead
of full scan will be high. Also due to the structure of the
circuits it may not be possible to test the circuits for 100%
fault coverage even with full scan. A partial scan solution
which requires less overhead but still offers acceptable fault
coverage is described in this section. The partial scan ap­
proach is also applied for testing the data path of the circuit
by making a subset of the data path latches scanable. This
provides a coherent approach for testing both control and
data path circuits.

4.1 Partial Scan for the Control Path

4.1.1 Selection of Scan Latches

Current approaches in synchronous circuits for selection of
scan latches are based upon testability analysis, test pat­
tern generation, or structural analysis [7, 8,11,19]. In our
method a combined approach involving testability analysis
and structural analysis has been followed for scan latch se­
lection. This process involves three stages:

1. Analysis of Select and Toggle elements revealed that
faults inside the Select and Toggle modules are diffi­
cult to test using functional test methods [17], so all
the Select and Toggle elements are added to the scan
path. This partitions the remaining circuit into net­
works of XORs and C-elements (Call elements can be
considered to be a network of XORs and C-elements).
The C-elements are special sequential elements with
only two states. These elements have been modified
such that they can be tested in combinational way.
This will be described in Section 4.3.

2. In the second stage, the Call elements are analyzed to
see if it is possible to justify values of the AS line inde­
pendent from the values of R l andi?2. This is required
to test the faults which would otherwise be untestable
using functional test on Call elements [17]. If this is
not possible then extra transparent scannable latches
are added to the circuit. These latches are added in
such a way that delay incurred can be hidden. This
will be explained in Section 4.1.2.

3. The last stage involves analysis of the circuit for loops
not having any scannable latch in them. In such cases
a C-element in the loop is made scannable. We have
developed software to detect these conditions and to
suggest which C-elements should be made scannable
such that many loops can be broken simultaneously.

S»2

Figure 3: Modified Select Module

Figure 4: Modified C-element

4.1.2 Modifications to Circuit Elements

Some of the circuit modules in the library require some
modification to fit into the partial scan environment.

Select Module The modified Select element is shown in
Figure 3. The first modification involves the latches
inside the Select module. Originally these latches
were single stage gated latches. These latches have
been modified to become master-slave latches. This is
done to reduce correlation between successive stages
of the scan path which could restrict certain vectors
from being justified on the scan path. The CLR sig­
nal has also been removed from the latches as these
latches can be reset using the scan path by putting the
scan path in transparent mode from scan path input to
output.

The second modification is made to the SEL line of the
module. The SEL line is disabled during scan mode
so that both latches receive input from the scan path
rather than from their normal input. After the scanning
is over and the circuit has stabilized the SEL line is en­
abled. This causes one of the latches to be enabled de­
pending on value of SEL line which allows the output
of the network under test to be captured into the the
master latch.

164

D I N

C w e a k P

C w e a k P

DELAY AS RS

Figure 5: Register and Functional Block Modeling in the
Circuits

C-element The C-elements are, in general, not included in
the scan path as described above. Instead they have
been modified to be testable in a combinational way.
This modification is based on the observation that a
C-element acts as an AND gate if its internal state is
0 and as an OR gate if its internal state is 1. The state
of a C-element is the state of its feedback wire, so if
we can control the state of the feedback wire we can
make it act like an AND gate or an OR gate. One way
to do this could be to add a MUX in the feedback wire
controlled by a mode signal such that in test mode the
value of feedback wire is determined by the other in­
put of the MUX. This approach was proposed in [32]
however this method leaves the normal feedback in­
put to the MUX untested and also adds one extra con­
trol signal. In our method an OR gate is introduced in
the feedback line so only a 1 value can be controlled
on the feedback line. For controlling a 0 value we use
the system clear signal, which is already present in the
original C-element design. This allows a fault on the
feedback line to also be tested and requires one fewer
control signal. The model for the modified C-element
is shown in Figure 4. This gate level circuit is a model
of the actual circuit which is described in terms of tran­
sistors elsewhere [31,3]. The procedure to test C ele­
ments will be described in Section 4.3.

Modifications to Registers and Function Blocks
In a Call element it is sometimes not possible to con­
trol the value of the AS line independent of values of
RI and R2, which is required to test for certain faults.
This typically happens when the Call module is used
to share a register or a functional module. The way
registers and functional modules are used is shown in
Figure 5. In this case the RS line directly feeds the AS
line through a delay element and then, due to reconver-
gent fanout certain faults are untestable [17]. In such
a case the delay elements are converted into transpar­
ent latches during scan mode, so that the AS line is in-

Figure 6: Basic TLNO

dependently controllable. This allows us to hide the
delay introduced by the extra storage elements.

4.2 Partial Scan for the Data Path

4.2.1 Selection of Latches

A structural analysis method is followed to select the
latches in the data path which are to be made scanable. It
was shown in [7] that the two factors which affect the com­
plexity of test generation most are cycles and sequential
depth. Cycles are especially important in asynchronous cir­
cuits [1], where the control is autonomous, which results in
uncontrollable number of frames in an iterative model for
test generation. In our approach the latches are selected for
scanning so that the cycles in the circuit can be broken. Cur­
rently the minimum number of latches that need to scanned
to break all the cycles are selected manually, however tech­
niques proposed in the literature for synchronous sequen­
tial circuits can adopted here because it is a structural prop­
erty. The latches in the remaining circuits are modified as
described in the next section to be transparent in test mode.
This allows logic in the partitioned circuits to be tested in
combinational way.

4.2.2 Modifications to Latches

The latches are modified either to be made scannable or to
be transparent in test mode as described in the previous sec­
tion. The latches used in the circuits considered in this pa­
per are transition latches. Specifically the latches used in
the example circuits are called Transition Latches Normally
Opaque (TLNO). A schematic of a TLNO is shown in Fig­
ure 6. The state of control signals C and P decide when the
state of the latch is transparent (when C and/’ are different)
or opaque (when they are the same). These control signals
can be connected as shown in Figure 5 to form a latch with
a Req/Ack interface rather than a CIP interface. This cir­
cuit is modified with the addition of a single XOR gate as
shown in Figure 7 such that when the test signal is asserted

165

C w e a k 3? p i

REQ

Figure 7: Transparent TLNO

the latch is transparent from input to output. This modifi­
cation will not be required for a latch which is modified as
described in the control path section, because the require­
ment for transparency can be satisfied by scanning an ap­
propriate value in the scan path elements inserted between
C and P signals.

The latches of the scan register are modified such that
they act like a shift register during scanning and as a mas­
ter slave register during test application. In normal mode
the latches act like normal TLNOs. A schematic of a mod­
ified latch is shown in Figure 8. The latch is put in scan
mode by asserting Testl and Test2 control signals. Signals
P I and P2 provide nonoverlapping clocks to the scan path
to provide a race free scan operation. Note that the clocks
are used only during test mode. In normal mode the circuit
returns to fully self-timed operation.

While in test mode, the Testl signal to the NOR gates
disables the tristate buffers allowing the scan path to drive
the latch. Similarly the P signal is controlled by Test2 such
that the upper pass gate is off, while the lower one is on dur­
ing test mode. The input value on DIN is sampled during
the test by deasserting the Testl signal which enables the in­
put driver of upper latch (this is guaranteed by the OR gate
at the bottom of the figure controlling the value of C). Thus
the input value is captured in the master stage.

4.3 Test Procedure

A generic block diagram of the circuits is shown in Fig­
ure 9. The interaction between the control and data paths
takes place in two forms: the select signals for the multi­
plexers in the data path are generated by the control path,
and the data path generates the SEL signals for various Se­
lect elements in the control path. A single scan path is
introduced across the control and data paths. The values
of MUX control signals and the SEL signals can be set

Figure 8: Scannable TLNO

Prima ry
C o n tro 1

In p u ts

Prima ry
Data

In p u ts

Prim ary
C o n tro l
O utpu ts

Prim ary
Data
O utput s

Figure 9: Block Diagram for Circuits

by scanning appropriate values into the scan path and by
setting appropriate inputs. The control and data paths are
tested in different phases. This section will first describe the
scan path operation and then the procedure used for testing
control and data paths will be described.

4.4 Scan Path Operation

The scan path and testing operations are controlled by
a set of global signals consisting of Testl, Testl, P I , P2,
and Ctest. The circuit is put into scan mode by asserting
Testl and T estl control signals (shown in Figures 3. The P I
and P I signals provide two phase non-overlapping clocks
to the scan register to provide a race free operation. Note
that these clocks are used only to clock the scanning opera­
tion. The circuit is still self-timed in normal operation. The

166

Ctest signal controls the behavior of the C-elements in the
circuit.

Once the circuit has settled based on the scan path in­
puts, its output is captured by deasserting the Test I signal.
In the control path deasserting Testl enables the SEL signal
to the latches . Enabling the SEL causes one of the latches to
be enabled depending on the value of the SEL line which is
input to the control path. In the data path it causes the driver
of the normal input to be enabled as described in the pre­
vious section. The circuit output is now captured through
the normal input of the latch. The circuit is then returned to
scan mode and the output is scanned out. The faults on the
SEL line get tested during the capture process by appropri­
ately controlling its value through the data path.

4.5 Testing the Control Path

Testing control circuits in this partial scan environment
involves testing the remaining network of XOR and C-
elements. The procedure to test these network is described
below.

1. In the first step the C-elements are put into OR-mode
by asserting the Ctest signal to the C-elements. Thus
in this step the network of XOR and C-elements re­
duces to a network of XOR and OR gates. The tests
for this network can be generated using any conven­
tional test pattern generation software.

2. While the first testing step covers most of the faults in
the network of XOR and C-elements, about 40% of the
faults inside the C-elements remain untested. These
faults require the C-element to be put into AND-mode.
The C-elements are put into AND mode by asserting
the global clear signal, CLR. This signal is kept as­
serted during the scan-in operation. This is required
because otherwise during the scan-in operation differ­
ent inputs will appear at the input of the C-elements
and the state of the C-elements at the end of the scan-
in operation will be indeterminate. Once the scanning
is over, CLR is deasserted and the signal values are
allowed to flow through the network of XOR and C-
elements. This operation does, however, raise the is­
sue of races and hazards since the signal changes at the
input to the network propagate through the network in
parallel. This puts additional requirements on the test
generation for this test step that the tests should be haz­
ard free. There are two alternatives. One is to generate
the tests and then validate that the tests are hazard free.
Second is to generate only hazard free tests, which will
require a new test pattern generator. Presently the first
approach is used to generate the tests.

3. After the first two test steps all the faults in the C-
elements are tested except for the s-a-0 fault on the
feedback line/ to the OR gate in Figure 4. In order
to test for these faults the C-elements are put into OR
mode and a 01 or 10 input is justified at the inputs of
the C-element which is under test. The test input feed­
ing the OR gate is then deasserted. Now in a fault free
case the output of the C-element will remain 1 while
in a faulty case the output will change to 0. This fault
behavior can be propagated to the output of the net­
work. The conditions for propagation are the same as
in the first step where the C-elements are also put into
OR mode.

4.6 Testing the Data Path

Testing the data path involves controlling the Testl and
Test2 control signals. In addition to enabling the scan path,
these signals put those latches which are not part of the scan
path in the data section into transparent mode. The test vec­
tor for the data path includes the test for the circuit block to
be tested and the values required to be scanned in the data
path to set the proper values on MUX control signals. The
observation mechanism is the same as described above.

5 Experimental Results

The method described in this paper was applied to four
small example self-timed macromodular circuits. The cir­
cuits are described using schematic capture and test soft­
ware from Viewlogic, or in VHDL descriptions. Test vec­
tors were generated using Attest software. The results are
listed in Table 2. The router circuit is a torus-connected
wormhole routing chip for message routing in a multipro­
cessor [3, 9]. The circuit called IFstage is the instruction
fetch unit of the NSR, a self-timed pipelined RISC proces­
sor [4]. GCD is an implementation of Euclid’s algorithm
and Division is a serial divider circuit. The self-checking
column in the Fault Coverage section refers the fault cov­
erage for the control path obtained by the functional test
method described in [18] which relies on the self-checking
property that the circuit will halt in response to a class of
faults. The coverage reported here assumes that some ad­
ditional observability mechanisms have been used to detect
faults inside the loop body as mentioned in Section 3, oth­
erwise the coverage will be even lower. The Partial Scan
column refers to the fault coverage for the control path ob­
tained by the method described in this paper. In the No.
of Latches section, the ALScan column reports the num­
ber of latches that would have been made scannable if the
full scan method proposed in [34] were adopted for con­
trol path. The Partial Scan column gives the number of

167

Design Control Path Data Path
Fault Coverage No. of Latches Scanned

Self-checking Partial Scan ALScan Partial Scan Total Latches No. Scanned

Router 65.7% 98.2% 34 17 2(4/5) 1
IFstage 66.1% 97.4% 26 13 3(16) 1
GCD 74.6% 95.5% 11 7 3(8) 1
Division 67.5% 100.0% 7 6 5(8) 2

Table 2: Comparison of Fault Coverage and Number of Scannable Latches

latches that were made scannable in the control path using
our method, which includes latches inside Select and Tog­
gle modules and also any extra latches added to the circuits
as mentioned in the previous sections.

The data path columns indicate the statistics for the data
path. The Total Latches column indicates the number of
latches in the data path and their widths (in parenthesis).
The No. Scanned column indicates the number of latches
required to break all the cycles in the circuit data path.

The table shows clearly that our method provides bet­
ter fault coverage for the control path compared to the self­
checking method of [18] for all the examples. It also shows
that the number of latches that need to made scannable
is much smaller than the full scan approach of [34], To
make fair comparison with ALScan one should also con­
sider that overhead due to the changes made to the C-
elements in our circuits. However the circuit overhead
added to the C-element in our method is also much smaller
than that needed to make it fully scannable. The scannable
C-element design reported for ALScan uses about 55 tran­
sistors whereas we use 20 in our design. Fewer scan latches
also implies a smaller test application time. The datapath
column shows that very few latches were required to be
made scannable to break all the cycles and be able to test
the data path logic in a combinational way.

6 Conclusions

We have described a partial scan methodology to test
self-timed macromodule-based circuits. The proposed
method provides good fault coverage using a stuck-at
model while requiring that only a subset of the latches in the
circuit be made scannable. This is a substantial improve­
ment over full scan techniques. The fault coverage is also
much better than function-based testing that relies on the
self-checking property of self-timed circuits.

The technique requires minor modifications to those
control modules that contain internal state such as Select
and Toggle modules, and provides for a novel method for
testing the resulting XOR and C-element networks that
make up the bulk of the remaining control circuitry. Al­
though the scanning of tests is done using a test clock, the
asynchronous nature of the circuit is unchanged in normal

operation.
The partial scan technique is also applicable to the data

path where a fraction of latches can be made scannable to
break all the cycles in the circuit’s data path. The remain­
ing latches are made transparent during test mode such that
the logic between scannable latches can be tested in a com­
binational way.

References

[1] Miron Abramovici, Melvin A. Breuer, and Arthur D.
Friedman. D igita l Systems Testing and Testable D e­
sign. Computer Science Press, 1990.

[2] K. V. Berkel, R. Burgess, J. Kessels, M. Roncken,
F. Schalij, and A. Peeters. Asynchronous Circuits for
Low Power: A DCC Error Corrector, volume 11,
Summer 1994.

[3] Erik Brunvand. Translating Concurrent Communi­
cating Programs into Asynchronous Circuits. PhD
thesis, Carnegie Mellon University, 1991. Available
as Technical Report CMU-CS-91-198.

[4] Erik Brunvand. The NSR Processor. In Proceedings
o f the 26th Intl. Conference on SystemSciences, Maui,
Hawaii, January 1993.

[5] E. Brunvand and R. Sproull. Translating Concurrent
Programs into Delay-insensitive Circuits. In Proceed­
ings o f Intl. Conference on Computer A ided Design
(ICCAD) 1989.

[6] Gerald Carson and Gaetano Borriello. A Testable
Asynchronous Counter. IEEE Journal o f Solid State
Circuits, 25(4), Aug 1990.

[7] K. T. Cheng and V. D. Agrawal. A Partial Scan
Method for Sequential Circuits with Feedback. IEEE
Transactions on Computers, pages 544-548,1992.

[8] V. Chickermane and J. H. Patel. A Fault Oriented Par­
tial Scan Design Approach. In Intl. Test Symposium,
1991.

[9] William J. Dally and Charles L. Seitz. The Torus
Routing Chip. D istributed Computing, 1,1986.

168

[10] A. L. Davis B. Coates and K. Steven. Automatic Syn­
thesis of Fast Compact Self-timed Control Circuits.
In Proc. o f the IFIP Working Conference on Asyn­
chronous Design M ethodologies, 1993.

[11] R. Gupta, R. Gupta and M. A. Breuer. BALLAST:A
Methodology for Partial Scan Design. In Fault Toler­
ant Computing Symposium, 1989.

[12] Pieter Hazewindus. Testing Delay-Insensitive Cir­
cuits. PhD thesis, California Institute of Technology,
1991.

[13] Henrik Hulgaard, Steven M. Bums, and Gaetano Bor-
riello. Testing Asynchronous Circuits: A Survey.
Technical Report UW-CSE-94-03-06, Department of
Computer Science and Engineering, Univ. of Wash­
ington, Seattle, 1994.

[14] Michiel Kamp. Testing Delay-insensitive Circuits: A
Case Study. Technical report, Eindhoven Institute of
Technology, September 1990.

[15] Ajay Klioche and Erik Brunvand. Testing Self-Timed
Circuits Using Scan Paths. 5th NASA Symposium on
VLSI D esign, Now 1993.

[16] Ajay Klioche and Erik Brunvand. Testing mi­
cropipelines. In Proceedings o f Intl. Symposium
on Advanced Research in Asynchronous Circuits and
Systems, 1994.

[17] Ajay Khoche and Erik Brunvand. A partial scan
methodology for testing self-timed circuits. Techni­
cal Report UUCS-95-001, Department of Computer
Science, Univ. of Utah, Salt Lake City, 1995.

[18] P. Kudva and V. Akella. Testing Two Phase Transi­
tion Based Self-timed Circuits in a High Level Syn­
thesis Environment. High Level Synthesis workshop
May 1994.

[19] H. K. T. Ma, S. Devadas, A. R. Newton, and A San-
giovanmi Vincentelli. An Incomplete Scan De­
sign Approach to Test Generation for Sequential Ma­
chines. In Intl. Test Symposium, 1988.

[20] Alain J. Martin. Compiling Communicating Pro­
cesses into Delay-insensitive Circuits. D istributed
Computing, 1(3), 1986.

[21] A. J. Martin, S. M. Bums, T. K. Lee, D. Borkovic,and
P. J. Haizewindus. The Design of an Asynchronous
Microprocessor. Advanced Research in VLSI. MIT
Press, 1990.

[22] S. M. Nowick and D. Dill. Automatic Synthesis of
Locally-clocked Asynchronous Machines. In Proc.
Intl. Conf. Computer-Aided Design (ICCAD), 1991.

[23] Cees Niessen, C.H. (Kees) van Berkel, Martin Rem,
and Ronald W.JJ. Saeijs. VLSI Programming and
Silicon Compilation; A Novel Approach from Philips
Research. In ICCD, Rye Brook, NY, October 1988.

[24] S. Pagey, G. Venkatesh, and S. Sherlekar. Issues in
Fault Modeling and Testing of Micropipelines. First
Asian Test Symposium, Hiroshima, Japan, Nov 1992.

[25] N. Paver. The Design and Implementation o f an Asyn­
chronous M icroprocessor. PhD Thesis, University of
Manchaster, U K , 1994.

[26] Marly Roncken and Ronald Saeijs. Linear Test Times
for Delay-insensitive Circuits: A Compilation Strat­
egy. Proceedings o f IFIP Working Conference on
Asynchronous D esign M ethodologies, 1993.

[27] Marly Roncken. Partial scan test for asynchronous
circuits illustrated on a dcc error corrector. In Pro­
ceedings o f Intl. Symposium on Advanced Research in
Asynchronous Circuits and Systems, 1994.

[28] C. L. Seitz. System Timing. In M ead and Conway,
Introduction to VLSI Systems, chapter 7. Addison-
Wesley, 1980.

[29] R. Sproull, I. E. Sutherland, and C. E. Molnar. Coun­
terflow Pipeline Processor Architecture. IEEE Design
and Test o f Computers, F all 1994.

[30] Ivan Sutherland. Micropipelines. CACM, 32(6),
1989.

[31] Ivan E. Sutherland, Robert F. Sproull, and Ian Jones.
Standard Asynchronous Modules. Technical Memo
4662, Sutherland, Sproull and Associates, 1986.

[32] C.A. Traver. A Testable Model for Stoppable Clock
Asics. In Proceedings o f IEEE Intl. ASIC C on f,1991.

[33] S. H. Unger. Asynchronous Sequential Switching Cir­
cuits. John Wiley & Sons Inc., 1969.

[34] Chin-Long Wey, Ming-Der Shieh, and P. David
Fisher. ASLCScan: A Scan Design Technique for
Asynchronous Sequential Logic Circuits. In Intl.
Conference on Computer Design(ICCD),Cambridge,
Mass., October 1993.

[35] K. Y. Yun D. Dill and S. M. Nowick. Synthesis of
3d asynchronous state machines. In Proc. Intl. Conf.
Computer-Aided Design (ICCAD), 1992.

169

