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ABSTRACT

Diffusion tensor MRI (DT-MRI or DTI) has been proven useful for characterizing 

biological tissue microstructure, with the majority of DTI studies having been performed 

previously in the brain. Other studies have shown that changes in DTI parameters are 

detectable in the presence of cardiac pathology, recovery, and development, and provide 

insight into the microstructural mechanisms of these processes. However, the technical 

challenges of implementing cardiac DTI in vivo, including prohibitive scan times inherent 

to DTI and measuring small-scale diffusion in the beating heart, have limited its 

widespread usage. This research aims to address these technical challenges by: (1) 

formulating a model-based reconstruction algorithm to accurately estimate DTI 

parameters directly from fewer MRI measurements and (2) designing novel diffusion 

encoding MRI pulse sequences that compensate for the higher-order motion of the 

beating heart. The model-based reconstruction method was tested on undersampled DTI 

data and its performance was compared against other state-of-the-art reconstruction 

algorithms. Model-based reconstruction was shown to produce DTI parameter maps with 

less blurring and noise and to estimate global DTI parameters more accurately than 

alternative methods. Through numerical simulations and experimental demonstrations in 

live rats, higher-order motion compensated diffusion-encoding was shown to successfully 

eliminate signal loss due to motion, which in turn produced data of sufficient quality to 

accurately estimate DTI parameters, such as fiber helix angle. Ultimately, the model-



based reconstruction and higher-order motion compensation methods were combined to 

characterize changes in the cardiac microstructure in a rat model with inducible arterial 

hypertension in order to demonstrate the ability of cardiac DTI to detect pathological 

changes in living myocardium.
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CHAPTER 1

INTRODUCTION

Heart diseases remain the top cause of mortality in the Western world, with 

approximately 600,000 deaths in the U.S. in 2014. Proper diagnosis and treatment of 

cardiac diseases are necessary for potential recovery and increased quality of life in the 

affected population. Understanding the mechanisms of cardiac dysfunction is key to 

providing the correct diagnosis and treatment, which are necessary for improved 

prognoses for patients with heart disease.

Because functions of the heart are mediated by the myocardial microstructures, 

changes to the myofiber or sheet structures often lead to alternations in mechanical and 

electrical properties. Characterizing cardiac microstructure can lead to improved 

detection of heart disease and quantification of the extent, or stage, of disease. In 

addition, tracking microstructural changes over time can evaluate disease progression or 

the effectiveness of therapy. All of these can lead to more personal and effective health 

care for those with heart disease.

Cardiac disease and dysfunction are traditionally evaluated using noninvasive 

techniques such as EKG, echocardiography, and imaging via radiological techniques. The 

majority of medical imaging techniques are used to evaluate cardiac morphology and 

global cardiac function, such as ejection fraction. These methods are beneficial for



identifying failing hearts, but ultimately do not characterize cardiac microstructure and, 

therefore, do not identify the low-level mechanisms of dysfunction. Histological 

examination has been the gold standard for characterizing tissue microstructure in all 

types of organs, but histology is inherently destructive and invasive. Diffusion tensor 

imaging (DTI) has emerged as a viable alternative for characterizing biological 

microstructure in a nondestructive and noninvasive manner by measuring the random 

diffusional motion of water. DTI in cardiac applications is able to characterize the 

microstructural arrangement of myocyte bundles, or fibers, and laminar sheets. Cardiac 

DTI has the potential to correctly detect and stage disease, and provide a means to 

monitor progression of disease or therapy. However, applications of DTI in the beating 

heart still face substantial technical challenges before it is ready to be used for diagnosis 

and monitoring of heart diseases in a clinical setting.

This work represents key improvements towards making in vivo cardiac DTI more 

feasible for quantifying changes in the cardiac microstructure due to disease or recovery. 

Novel methods for executing cardiac DTI in vivo are presented along with an image 

reconstruction scheme designed to accurately reconstruct diffusion tensor data from 

fewer MRI measurements, allowing for shorter acquisition times. These methods were 

verified in numerical simulations and demonstrated experimentally in live rat models. In 

the end, the usefulness of these methods in characterizing heart disease and dysfunction 

are evaluated.

Chapter 2 provides a brief background in the preliminary concepts of cardiac 

microstructure and the use of DTI to characterize it. The chapter details the practical and 

technical challenges presented by cardiac DTI, particularly in in vivo applications. Recent

2



studies that employ DTI to characterize microstructural changes due to pathology are also 

presented. In addition, recent advances in DTI that make the technique more practical and 

feasible are described.

Chapter 3 describes a strategy to reconstruct diffusion tensor maps directly from 

accelerated k-space data. This is accomplished by modifying the objective function in 

traditional compressed sensing to be a function of the desired diffusion tensor instead of 

the magnitude of the individual diffusion-weighted images. Because the objective 

function is a function of the diffusion model, the method is referred to as model-based 

reconstruction. The proposed method is compared against other more common 

reconstruction techniques and control cases. A quantitative comparison between the test 

cases was performed to determine which method produced the most accurate DTI maps 

from accelerated diffusion data.

Chapter 4 describes a methodology for implementing higher-order motion 

compensation in diffusion-encoding MRI to obtain DTI measurements in the beating 

heart. The study compares the performance of previously established diffusion-encoding 

methods, those with no motion compensation and velocity-compensation, to the 

performance of novel diffusion encodings with acceleration- and jerk-compensation via 

gradient moment nulling. All methods were evaluated in a realistic numerical phantom of 

the beating heart and in live rats. Acceleration-compensated diffusion encoding was 

found to provide the best balance of motion artifact reduction and SNR preservation, 

which was necessary to derive accurate DTI parameter maps.

A preliminary study that combines the methodologies developed in Chapters 3 and 4 

is presented in Chapter 5. DTI scans were performed in transgenic rats, using
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acceleration-compensated diffusion encoding, prior to and two weeks after induction of 

arterial hypertension to observe changes in the cardiac microstructure due to increased 

after load. In vivo DTI was essential to observe the changes in key DTI parameters that 

would otherwise not be detectable if a terminal study was performed. Model-based 

reconstruction of diffusion tensor maps was performed to show the potential of reducing 

acquisition time without losing the proportional amount of accuracy.

The concluding chapter of this document, Chapter 6, provides a discussion regarding 

the advantages and disadvantages of acceleration-compensated diffusion encoding for in 

vivo DTI and reducing scan time with model-based reconstruction, and offers some 

recommendations for improvements on the methods presented herein as well as future 

areas of investigation.
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CHAPTER 2

BACKGROUND

2.1 Cardiac Microstructure and Function 

Myofiber structure of the heart is an important determinant of its function [1]. The 

distribution of myofiber orientation within the heart wall is the main determinant of stress 

distribution and myofiber shortening throughout the wall [2], and therefore, of cardiac 

perfusion [3] and structural adaptation [4], [5]. Myofiber structure also plays a key role in 

electrical propagation inside the heart [6]. Myofiber architecture is known to be altered in 

some cardiac diseases, such as ischemic heart disease and ventricular hypertrophy [7]. 

Therefore, detailed knowledge of myocardial fiber microstructure promises to lead to 

better understanding of the heart function in health and disease.

Anisotropy is one of the most consistent observations in studies of the heart. It is 

present in cardiac material and functional properties at essentially all scales. This 

includes, in the molecular scale, the arrangement of collagen fibers and actin-myosin 

contractile structures at the subcellular level, the arrangement of myocytes with respect to 

their neighbors at a cellular level, and the observable texture of the cardiac muscle at an 

organ level. For this reason, fiber orientation is an intrinsic part of cardiac structure, and 

affects its local material properties, mechanical and electrical behaviors, and other 

functions of the heart. The ability to extract fiber structure information from an organ or



samples of tissue is vital to explain these effects. Over time, many have proposed 

mathematical and theoretical models for different aspects of the heart as technological 

advances make fiber structure information available. Notable examples in biomechanics 

include constitutive characterization of tissues and its subsequent use in functional 

modeling of the whole heart. Experimental observations like mechanical testing of 

myocardial tissue have shown that mechanical properties are dependent on the tissue 

microstructure such as fiber orientation, the sheet-like formation of fibers (i.e., 

lamination), and the associated arrangement of the extracellular matrix. The mechanical 

properties have been described through several mathematical formulations of constitutive 

behavior [8], [9]. To reach meaningful results from the application of these models, 

information on organ geometry and tissue anisotropy are both necessary [10], [11].

The above structure-function relationships also apply to cardiac electrophysiology

[12], and should be reflected in simulation of electrical propagation and coupled electro­

mechanical modeling. It is well established that electrical conductivities of cardiac tissues 

also exhibit anisotropy [13], [14] and that those are determined by tissue microstructure, 

in particular, the local orientation and lamination of cardiac fibers. In general, anisotropic 

description of tissue properties is a crucial component for coupled, electro-mechanical 

modeling of the heart [15], which requires the integrative modeling of electrical 

activation, force development and mechanical deformation based on anisotropic tissue 

properties. For example, anisotropic cardiac tissue properties have been used to produce 

comprehensive models seeking to provide explanations for the basic mechanisms for 

ventricular contraction, expansion, and torsion [16].
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2.2 Diffusion Tensor Imaging 

The power of MRI is derived from its sensitivity to the molecular dynamics of water, 

which in turn closely follows the microstructure of tissues. By generalizing the principles 

of diffusion MRI to describe anisotropic diffusion in 3D space, diffusion tensor imaging 

(DTI) can be used to characterize myocardial structures. In the heart, although the exact 

biophysical mechanism is incompletely understood, it has been suggested that water 

diffusion anisotropy arises from the combined effects induced by the cardiomyocytic 

membrane, extracellular connective tissue, and microvasculature [17].

Mathematical descriptions of the macroscopic and microscopic consequences of 

molecular diffusion were originally provided by Fick and Einstein, respectively [18],

[19]. Torrey [20] then incorporated anisotropic translational diffusion in the MRI Bloch 

equations as an additional source of signal attenuation. About a decade later, Stejskal and 

Tanner [21] solved the Bloch-Torrey equation for the case of free anisotropic diffusion in 

the principal frame of reference. The pioneering work on combining MRI and diffusion 

anisotropy came from the rigorous formalism of the diffusion tensor by Basser et al. [22],

[23]. In this section, the physical basis of DTI and its experimental design strategy will be 

discussed.

2.2.1 Diffusion and the MR Signal

In general, there are two types of diffusion that are of interest in MRI: movement of 

molecules from regions of higher to lower concentrations, and the random or Brownian 

motion of molecules due to thermal energy. For distinction, the latter is often referred to 

as self-diffusion. For the sake of simplicity, from this point forward, the term “diffusion”

7



will refer to self-diffusion, particularly the self-diffusion of water.

In statistical mechanics, the average displacement along a given axis, say the x-axis, 

(x), of diffusing water molecules is related to the diffusion coefficient, D, via the 

Einstein’s equation

<x> = V2DA, (21)

where A is the diffusion time (e.g., time between leading edges of diffusion encoding 

gradient pulses) and D is the diffusion coefficient. In biological tissue, D decreases, 

compared to free water, due to obstructions imposed by microstructure (e.g., cell 

membranes, fibers, etc.). These obstruction effects are generally anisotropic (i.e., not 

uniform in all directions), which gives rise to a preferred direction of water diffusion 

because, intuitively, water molecules will diffuse fastest in the direction parallel to tissue 

fibers. DTI can be utilized in cardiac tissue in order to characterize its fiber structure, 

such as fiber orientation or the organization of fibers.

In MRI, linearly varying magnetic field gradients (or simply gradients) are used to 

manipulate the resonance frequencies of the individual magnetic moments, or spins, that 

contribute to the detected signal. Specifically, the relative frequency, with respect to a 

spin located at the origin, at which a spin located at r  precesses can be expressed as

« ( r, 0  = -Y G(t) ■ r ( t) , (2 2)

where y is the gyromagnetic ratio (for 1H) and G is the applied 3D gradient field. Now, 

consider the scenario in Fig. 2.1, where a spin is first subjected to a gradient pulse of +G 

amplitude, followed by an equal but opposite (-G) pulse. Suppose during the first pulse, 

the spin is located at rx, and as such, it would acquire a phase of

44 = —Y G • 5, (2 3)
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Figure 2.1: A pair of gradient pulses used to sensitize MRI to diffusion. An individual 
spin is tagged with a given phase during the first gradient pulse, depending on its spatial 
location. The second gradient pulse undoes the phase tagging for stationary spins. For 
spins that move or diffuse between the pulses, the resulting phase after the second pulse 
is proportional to the distance moved between the two gradient pulses.

where 5 is the duration of the diffusion gradient pulses. Furthermore, suppose the spin 

has moved during the time between the two gradient pulses and is located at r2 during the 

second pulse, the spin would acquire an additional phase

The phase accumulated by the spin is, therefore, proportional to the distance the spin has 

moved from rx to r2. If a spin has not moved, the cumulative phase will be zero.

The effect of diffusion in the presence of a sensitizing gradient on the MRI signal can 

be found by solving for the expected value of the phase dispersion of an individual spin, 

which is a random process, according to

= y G ■ r2 5. (2.4)

Consequently, the cumulative or net phase is

0 n e t  0 2  +  0 1
=  — y G ■ r2 5 + y G ■ rx 5 
= -y G ■ ( r 2 -  r i )  8

(2.5)

I =  Iq J  e x p ( - i^ n e t ) P ( r 2 | r i)d $ , (2.6)



where I0 is the diffusion-independent signal and P( •) is the probability density function 

of the diffusion, which in the case of free or unrestricted diffusion is a Gaussian 

distribution with a standard deviation specified by the Eq. (2.1), a = V2DA.

It can be shown that when diffusion is encoded using a pair of rectangular pulses of 

opposite polarity and with magnitudes equal to G = |G|, like those in Fig. 2.1, the 

Stejskal-Tanner expression for diffusion can be derived

I = I0 ex p (-•y2G252(A — 5 /3 )D) = I0 exp(-bD ), (2 7)

where b = y2G252(A — 5/3) is the so-called diffusion-weighting factor. Therefore, 

diffusion manifests itself in the acquired image as a loss or attenuation of signal. In turn, 

the diffusion coefficient D, better known in MRI as the apparent diffusion coefficient 

(ADC), can be computed from MRI signals acquired with and without the diffusion 

encoding gradients, I and I0, respectively, according to

D = ( - 1 /b )  ln (I/I0). (28)

To illustrate the effect of diffusion encoding and the underlying myocardial fiber 

structure, Fig. 2.2 shows a nondiffusion-weighted image, I0, along with a diffusion- 

weighted image, I, of a human heart sample. Because the amount of diffusion-induced 

MRI signal attenuation is dependent on the rate of diffusion along the direction of the 

encoding direction, the fact that different regions of the cardiac left ventricle have 

different intensities is an indication that the underlying myocardial fibers are oriented in 

different directions.

10
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Figure 2.2: Sample diffusion-weighted images of an ex vivo heart. Nondiffusion-weighted 
cardiac sample (top-left) shown alongside diffusion-weighted images of the same sample 
encoded in the x-direction (top-right), y-direction (bottom-left), and z-direction (bottom- 
right) with a b-value of 2000 s/mm2.

2.2.2 MRI of Anisotropic Diffusion

The orientation-dependence of the effect of anisotropic diffusion on the MRI signal 

can be more easily explained by first considering a special system in which the principal 

axes of diffusion coincide with the laboratory gradient axes. Specifically, suppose the 

diffusivities are Dx, D2, and D3 along the principal axes, which are aligned with the 

laboratory x-, y-, and z-axes, respectively. The combined signal attenuation is given by 

the superposition of Eq. (2.7) applied to each axes, or

/ = /0 exp(- b xDt -  byD2 -  bzD3) , (2 9)

where b ; = y2G! 52(A — S/3) is the diffusion weighting factor associated with each
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i = x, y, z axis. Moreover, provided that the diffusion encoding gradients in different axes 

are identical in timing but differ only in their relative amplitudes, Eq. (2.9) reduces to

Dx 0 0 '
I = I0 exp (—b u T 0 D! 0 u ), (2.10)

0 0 Dz

where u is the unit vector denoting the composite gradient direction (e.g., u = [1 0 0 T, 

[0 1 0 T and [0 0 1 T for the x-, y- and z-directions, respectively). Implicit in Eq. (2.10)

I = I0 exp I - b  g TRT R g = I0exp ( - b  g TD g ), (2.11)

is that G = ^G! + G^ + G| should be used in Eq. (2.7) for computing the diffusion 

weighting factor.

The obvious limitation of Eq. (2.10) is that, more often than not, the principal

diffusion axes do not coincide with the laboratory axes. In the general case when the

coordinate systems are not aligned, Eq. (2.10) can be modified by mapping the laboratory

axes onto the diffusion coordinate system via the transformation u = Rg, resulting in

D! 0 0 - 
0 D2 0

.0  0 d3.

where g is the directional unit vector (in laboratory coordinates) of the diffusion encoding 

gradient, and

"D-i 0 0 1 D xx D xy D xz
(2.12)

is the rank-2 tensor that characterizes the diffusion in 3D space, otherwise known as the 

diffusion tensor. Since diffusion cannot physically be negative, the principal diffusivities 

(i.e., the diagonal terms of the diffusion tensor) must be non-negative, which results in 

the diffusion tensor being positive semi-definite. Many diffusion tensor-fitting algorithms 

incorporate the positive definiteness constraint in their fitting [24]. It can be seen from

D- 0 0 D xx yxD zxD

D = Rt 0 D2 0 R = D xy Dyy D N

. 0 0 D3. D xz D N

NNQ
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Eqs. (2.11) and (2.12) that the major task in DTI is to use the choices of encoding 

gradient directions g to selectively probe the elements of the diffusion tensor.

Following similar derivations as described above, the signal attenuation due to 

anisotropic diffusion in the presence of time-varying gradient waveforms can be 

alternatively expressed as [25]

where b^ (i, j belongs to x, y, z) corresponds to individual entries of the “b-matrix”, b.

2.2.3 Experimental Strategy

Regardless of whether the approach described by Eqs. (2.11) or (2.13) is used, the 

typical DTI experiment consists of acquiring a series of diffusion-weighted MRI scans 

encoded using one or more b-values along at least six noncollinear gradient directions, 

(since the diffusion tensor is a rank-2, symmetric tensor as seen in Eq. (2.12)) and 

estimation of the diffusion tensor on pixel-by-pixel basis via appropriate curve fitting of 

the observed signals to the signal attenuation equation. Given that a nondiffusion- 

weighted image, commonly referred to as a b0 image, is needed to estimate the diffusion- 

independent signal I0 the minimum scan time for a diffusion tensor experiment is, 

therefore, seven times longer than a conventional scan of the same anatomy. Directly, the 

estimated diffusion tensor bears little use for inferring the tissue microstructure, since the 

relevant information is embedded in the tensor elements.

Mathematically, the surface of equal probability at a given time for finding water 

molecules, which are initially located at the origin but subject to anisotropic diffusion
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governed by a diffusion tensor, is an ellipsoid. As an ellipsoid is described by the lengths 

and orientations of its major and minor axes, the diffusion tensor is related to the 

magnitudes and directions of the underlying principal diffusion processes by its 

eigenvalues and eigenvectors. Consequently, by applying the linear algebraic eigenvalue 

decomposition, the diffusion tensor can be converted into a product between a diagonal 

matrix of its eigenvalues and transformation, or rotation, matrix consisting of its 

eigenvectors. According to Eq. (2.12), the eigenvalues and the eigenvectors of the 

diffusion tensor correspond to the diffusivities as observed along the principal axes of 

diffusion and the orientations of the axes, respectively, as shown in Fig. 2.3. The central 

premise of DTI is that the direction in which water diffusion is the fastest, in other words 

the eigenvector of the largest diffusion tensor eigenvalue, coincides with the local tissue 

fiber orientation.

To make the derived parameters even more intuitive in cardiac DTI, the fiber

Figure 2.3: Diffusion ellipsoid. The amount of diffusion in the principal axes is 
proportional to the eigenvalues D1, D2, and D3. The orientations of the three principal 
axes are determined by the eigenvectors evl, ev2, and ev3.

e\



orientations are often reported in terms of their helix angles and, to a less extent, 

imbrication angles. On the other hand, the diffusion tensor eigenvalues are commonly 

used to compute the mean diffusivity (MD) and fractional anisotropy (FA) index

MD = (Di + D2 + D3)/3 , (214)

15

FA =
(D! -  M D 2 + (d 2 -  M D 2 + (d 3 -  M D 2 (215)

D! + D2 + D!

To a first approximation, the MD is proportional to the size of the diffusion ellipsoid, 

whereas the FA is analogous to the standard deviation of its eigenvalues or the aspect 

ratio of the diffusion ellipsoid as seen in Fig. 2.4. The FA is a normalized quantity, with 

FA of zero and unity respectively denoting no and infinite anisotropy.

In practice, not only are the above indices convenient quantities that capture the 

overall magnitude of diffusion and the degree of anisotropy, but they also have the nice 

feature of being rotationally invariant or, in other words, do not depend on the 

orientations of the diffusion principal axes. The fiber orientation helix angle and the 

scalar DTI MD and FA for the same specimen shown in Fig. 2.2 are illustrated in Figs.

2.5 and 2.6.

2.3 Cardiac Diffusion Tensor Imaging 

DTI has been used to characterize tissue structure in a number of applications, 

including studies of the myocardium and its functions. This section offers a brief survey 

of these applications, which include validations of DTI (Section 2.3.1), tissue specimen 

characterization (Section 2.3.2), DTI of cardiac pathophysiology (Section 2.3.3), and 

examples of clinical applications of DTI (Section 2.3.4)
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Figure 2.4: Varying fractional anisotropy and mean diffusivity. Diffusion ellipsoids with 
varying fractional anisotropy (FA) and mean diffusivity (MD) values.

2.3.1 Validation of Myocardial DTI

As with any newly introduced imaging technique, the extent to which DTI is useful, 

in the current case for characterizing myocardial structures, requires it to be validated 

against the commonly accepted gold standard for the same measurements, which is 

histology. Early applications of DTI in the myocardium were soon followed by studies 

that directly correlated DTI-measured myocardial fiber orientations, which are 

technically the local direction in which water diffusion is fastest, with histology including 

separate studies performed on freshly excised canine right ventricular sample [26], 

perfused [7] and formalin-fixed whole rabbit left ventricle [27]. These studies using
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Figure 2.5: Diffusion tensor parameter maps from an ex vivo heart. Maps representing the 
diffusion tensor parameters derived from the diffusion data shown in Fig. 2.2. The rows 
and columns correspond to the 3 x 3 diffusion tensor as seen in Eq. 2.12. The images on 
the diagonal are scaled from 0 to 1, while the off-diagonal images are scaled from -0.25 
to 0.25.

Helix Angle FA Mean Diffusivity
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Figure 2.6: DTI parameters maps. Maps representing helix angle (left), fractional 
anisotropy (FA) (middle), and mean diffusivity (right) derived from the diffusion tensor 
data shown in Fig. 2.5.



diffusion imaging MRI have helped establish DTI as a valid alternative to histology for 

measuring myocardial fiber orientation. Because the studies were performed on 

differently prepared myocardial samples, they also suggest that DTI, at least for fiber 

orientation mapping, is immune to the effects of tissue preparation like fixation, for 

example. In the study performed on freshly excised canine ventricular sample, the fiber 

orientation helix angles measured by DTI and histology were found to differ on average 

by 2 -  5° [26]. The excellent correspondence between DTI and histology results supports 

the hypothesis that the first eigenvector of the MR diffusion tensor coincides with the 

orientation of the local myocardial fibers.

Being a noninvasive technique, DTI may be uniquely suited to help address the 

controversy over the existence of myocardial laminar or sheet structure. The concern was 

that the laminar structure is not an intrinsic property of the myocardium, but an artifact 

introduced in the tissue preparation steps (e.g., fixation and sectioning) of histology [28],

[29]. In DTI, one would intuitively expect myocardial sheets to make water molecules 

diffuse more freely within rather than across any laminar structure. Consequently, the 

existence of myocardial sheets would manifest in (a) distinct second and third 

eigenvalues in the myocardium, and (b) the eigenvectors associated with second and third 

eigenvalues to exhibit a nonrandom organization. Indeed, distinct populations of second 

and third eigenvalues within statistical confidence levels were observed in the canine 

myocardium [30]. Nonrandom second eigenvector fields were reported in fixed mouse 

hearts [31]. The organized appearance of the second eigenvector was also observed in ex 

vivo human myocardial specimens [32]. Moreover, similar organized appearance was 

also observed in fresh excised [26] and perfused unfixed myocardium [7], which suggests
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neither tissue fixation nor sectioning as source of diffusion anisotropy observed in DTI.

The link between the DTI second eigenvector and myocardial laminar structure is 

further supported by findings of a subsequent study comparing DTI and cut-face ink blots 

of the bovine myocardium [33], showing a parallel relationship between the eigenvectors 

and symmetry axes of the myocardial architecture. Specifically, the first, second, and 

third eigenvectors corresponded to the fiber, sheet, and sheet normal directions, 

respectively [33]. The use of cut-face ink blots provided a method in which fiber and 

sheet orientations could be measured under the same conditions when using different 

modalities (optical vs. MRI), by minimizing the possibility of tissue alterations between 

data acquisitions.

2.3.2 Applications of Cardiac DTI

Since its advent, DTI has been used to characterize the normal myocardium in vitro 

and ex vivo across several species. In one study on healthy goat hearts [5], the helix angle 

was found to vary transmurally across the left ventricle (LV), with the steepest slope 

found in the anterior and septal sites. Similar variability of the helix angle slope was also 

observed in rabbit hearts [34] and mouse hearts [31]. The heterogeneity of the anisotropy 

index, FA, was measured in sheep [35] and was found to vary transmurally across the 

myocardium. The variability of cardiac microstructure was also studied across different 

species [36], which showed significant fiber structural differences between any of the 

pairs of species examined.

High resolution DTI (100 p,m) was introduced [31] in mouse hearts, which allowed 

for more detailed characterization of myocardial microstructure. Cardiac studies using
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high resolution DTI were consequently performed to illustrate microstructural changes in 

the myocardium following dyssynchronous heart failure in canines [37] and myocardial 

infarction in sheep [38]. Another high-resolution DTI study linking cardiac 

microstructure to its function was performed in rats [39] and found that wall thickening 

during contraction is related to changes in fiber and sheet structure configurations.

DTI and 3D MRI imaging created the possibility of characterizing the organization of 

myocytes in 3D space, rather than in a 2D plane as is done in histology. Studies using 

alternative methods to DTI suggested that not all myocardial fibers are oriented 

circumferentially, but that there are intruding fibers that are oriented radially [40]. Other 

studies using histology [41] and confocal microscopy [42] found evidence that the 

organization of myocytes vary in 3D space. Studies using DTI on postmortem porcine 

hearts found that the ventricular mass is arranged as a mesh of tangential and intruding 

fibers and that there is no support for a unique myocardial band [17], [43], [44].

In another interesting study [45], a nonexchanging, two-component diffusion tensor 

model was fitted to diffusion-weighted images obtained in rat hearts ex vivo. The results 

suggested the existence of at least two distinct components of anisotropic diffusion, 

characterized by a “fast” component and a “slow” component, which exhibited highly 

similar orientations. It was suggested that the fast and slow components corresponded to 

the vasculature and cellular components, respectively, of the myocardium.

2.3.3 DTI and Cardiac Pathophysiology

The presence of cardiac disease often involves multiscale myocardial structure 

remodeling, which is reflected by variations of some DTI parameters. Despite the lack of
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comprehensive understanding regarding the mechanisms governing these variations, the 

correlation of DTI parameters with health and pathology have shown promise in potential 

tools for diagnosis and computational modeling of disease, and its progression.

DTI studies on multiple animal models suggest sensitivity to pathology, which imply 

that DTI may be clinically useful in determining the extent of disease extent or the 

effectiveness of therapy. Previous studies have shown that fiber disarray, detectable by 

DTI, often accompanies cardiac disease. For instance, a reduction of tissue diffusivity 

was observed on isolated ischemic rabbit hearts [7]. The same observation was confirmed 

in another study performed on excised hearts of infarcted porcine, which also associated 

infarction with flatter helix angle [46]. The effects of infarction on the border and remote 

zones have also been studied using DTI. In a study where fiber structure of excised rat 

hearts was visualized in 3D [47], it was shown that infarct areas change from a normal 

fiber distribution pattern to orthogonally intersecting networks similar to a mesh, which 

extend across the infarcted area to the border zones. A similar study on porcine models of 

infarction [48] showed that infarct border zone, delineable by DTI contains viable 

myocardial strands, which may have an effect on postinfarct electrophysiology.

The effects of infarction on FA, apparent diffusion coefficient (ADC), and helix angle 

have also been studied. When compared to its healthy state in pigs, the infarcted 

myocardium exhibits a decrease in FA value, increased ADC, and a flatter helix angle

[49], [50]. These changes insinuate fiber disarray, which is observed accompanying 

fibrosis [51]. Additional observations, as well as multiple speculative explanations for 

their appearance have been made in separate studies, for example: FA has been suggested 

as an indicator of functional recovery following heart transplant in canines [52].
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Imbrication (or intrusion) angle increases were observed in hypertrophic mouse hearts

[53]. Structural changes were observed during the progression of left ventricular 

myocardial infarction [54], and following surgical restoration [38]. Further, the double 

helix myocardial structure shifted more leftward around the infarcted myocardium, and 

the redistribution of fiber architecture correlated with the infarct size and left ventricular 

function [50], [55]. Finally, myocardial architecture is linked to initiation and 

maintenance of reentrant arrhythmias [6] as well as the mechanical coupling during 

systolic wall thickening [26], [56].

In terms of modeling of pathophysiology, DTI data have been used, within the realm 

of cardiac biomechanics, in a wide variety of studies. Some aim to improve our 

understanding in the overall structure-function of the heart [57], [58]. Others seek to 

measure stress, strain, and other biomechanical parameters by constructing finite element 

models for myocardial infarction [59]—[61], as well as computational representations of 

cardiomyopathy [62], and cardiac growth [63]. Additional researchers are also using DTI 

data to characterize the effects of fiber structure remodeling in animal disease models

[54], [64], [65], and to quantify differences across species [36], or across the cardiac 

cycle [66]. A number of studies proposed that ventricular fiber orientation is a result of 

mechanical feedback [2], [4], [67], [68]. These studies applied biomechanical simulations 

and optimization approaches to derive fiber orientations leading to, for instance, uniform 

mechanical load. A study on ovine left ventricle, however, indicated difficulties to predict 

fiber orientations based on mechanical feedback [69]. It was suggested that detailed 

geometrical information is required for prediction of fiber orientation.

A detailed knowledge of the ventricular fiber structure is important for understanding
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the nature of cardiac electromechanics in healthy, disease, and intermediate conditions. 

During postinfarct healing, the fibers rearrange parallel to fibers outside the border zone

[70]. Also, local fiber aggregation is disturbed increasing or decreasing fiber density due 

to edema, and may be affected by increased fibrosis. Tissue structure becomes irregular, 

or discontinuous, which may promote electrical function anomalies or mechanical failure 

[38], [70], [71]. Generally, the alteration of fiber structure in most cases is a dynamic 

process that accompanies healing or remodeling, and varies over time. In a study on a 

mouse model, the infarcted region measured lower ADC than the remote region, and the 

low values increased with time subsequent to infarction. Increased FA peaked after 28 

days, which may be associated to the observed development of structured collagen fibers 

in the area [54]. At the molecular level, FA was found to be associated with decreased 

induction of endothelin-1 (ET-1) and caspase-3, improved adenosine triphosphate (ATP) 

storage in the myocardium, and functional recovery of the myocardium after ischemia

[52]. Another study on infarcted sheep hearts revealed a significant reorganization of the 

three-dimensional aggregation of adjacent fibers in the remote zone of remodeled hearts

[72]. Regardless of angle classification, a positive (rightward) shift in myocardial helix 

angle is observable in all layers of the remote zone, in particular the subepicardium.

In conjunction with strain, DTI has been used to study hypertrophic cardiomyopathy 

(HCM) in humans establishing a relationship between myofiber disarray, mainly 

measured by FA, and hypokinesis, measured by tissue deformation [73], where HCM 

exhibited locally reduced diffusion FA, which indicate myofiber disarray. The same areas 

also showed decreased myocardial strain, especially in the direction perpendicular to 

fibers within the local sheet structure, which had the highest correlation between FA and
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hypokinesis.

2.3.4 In Vivo Cardiac DTI

The noninvasive nature of DTI presents the opportunity that it could be used to 

characterize myocardial structures in vivo in both animals and humans, which would be 

desirable to better understand both healthy heart functions as well as disease progression. 

Earliest works of in vivo cardiac DTI were simply to demonstrate the feasibility of the 

technique, which is not trivial due to complications arising from the beating motion of the 

heart, or to document its sensitivity to myocardial remodeling in diseases. Initial studies 

performed on perfused rat hearts [3] and on human hearts in vivo [74], [75] showed that 

not only was diffusion MRI on the beating heart technically feasible, but also fiber 

architecture of the myocardium imparted anisotropy on the water diffusion. Subsequent 

studies revealed that tissue strain in the beating myocardium affects the observed 

diffusion signal, which can be eliminated by either retrospective corrections [76] or 

averaging during acquisition [77]. (Section 2.4.3 discusses strain effects in DTI in more 

detail.) One natural application of in vivo cardiac DTI is to investigate the structure- 

function relationship of the same hearts. Studies have shown that myocardial fiber 

orientations obtained via DTI map well with fiber shortenings obtained by velocity MRI 

measurements [78], and that myocardial sheets contribute to ventricular wall thickening 

during cardiac contraction [79].

In [78], DTI was implemented to obtain images of fiber orientation in vivo in eight 

healthy subjects for comparison with strain images. The comparison showed that the fiber 

shortening, as measured by DTI, was more uniform over the myocardium than the



measured radial, circumferential, longitudinal, or cross-fiber strain. It was also found that 

fiber orientation corresponded with the direction of maximum contraction in the 

epicardium and with the direction of minimum contraction in the endocardium and varied 

linearly in between [78].

In [79], DTI and phase-contrast (PC) MRI were used to acquire myocardial sheet 

structure and strain rate, respectively. The involvement of myocardial sheets in 

ventricular radial thickening during contraction was studied by registering the results of 

DTI and strain rate data. The sheet function in normal subjects was found to be 

heterogeneous throughout the ventricular myocardium, as opposed to the contribution of 

fiber shortening to wall thickening, which was found to be uniform and symmetric. The 

strain rate results showed that the sheet shear and sheet extension were most prominent in 

the anterior free wall and that the sheet-normal thickening was prominent near the right 

ventricular insertions [79].

The feasibility of in vivo imaging paved the way for DTI to be used as a tool for 

detecting or diagnosing cardiac pathology. To date, DTI has been utilized to evaluate the 

effects of several cardiac diseases, exploiting remodeling of the myocardial 

microstructure as a marker of these diseases. In MI, the microstructural remodeling was 

evident in an increase of the DTI-derived MD and decrease of FA in the infarct, and 

alterations of the fiber orientation helix angle in adjacent zones [46], [80]. In HCM, the 

myocardial fiber disarray resulted in decreased FA, which correlated with intramural 

myocardial strain hypokinesis [73]. In another study [47], changes in the 3D myocardial 

fiber architecture resulting from ischemic heart disease were visualized via tractography. 

Although in vivo applications of DTI are still in their early stages and the biophysics
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linking microstructural alterations to DTI observations need to be better understood, DTI 

has already been shown to be a valuable tool for evaluating myocardial remodeling 

during cardiac pathology and recovery.

2.4 Practical Considerations of Cardiac DTI 

Although the general strategy for a DTI experiment is straight forward -  acquire 

diffusion-weighted images in multiple encoding directions then fit the data to the 

diffusion tensor signal equation to characterize the underlying diffusion anisotropy -  

several factors conspire to make its implementation in practice technically challenging. 

Issues to consider include low signal-to-noise ratio (SNR), long scan time, hardware 

limitation, image distortion, etc. Many methodological developments have been 

undertaken and significant progress has been achieved in addressing the practical 

challenges of DTI, albeit most of the efforts have been targeted for DTI studies of the 

brain. This section describes in general terms some of these technical challenges, not 

intended to be an exhaustive review but as background, and discusses the special 

considerations needed for performing cardiac DTI.

2.4.1 DTI Pulse Sequences

As explained in Section 2.2.1 and illustrated in Fig. 2.1, translational diffusion can be 

encoded into the MR signal by the action of a pair of equal but opposite-polarity gradient 

pulses. Therefore, by incorporating such a pair, a MRI pulse sequence can be turned into 

a so-called diffusion-weighted sequence for obtaining diffusion-weighted images (DWI). 

Figure 2.7 shows examples of diffusion-weighted gradient-recalled echo (GRE) and spin
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Figure 2.7: Diffusion-weighted gradient-recalled echo (GRE) (a) and spin echo (SE) (b) 
sequences. The grey boxes highlight diffusion sensitizing pulses.

echo (SE) sequences with the diffusion encoding parts of the sequences highlighted. Note 

that due of the inversion RF pulse in the spin echo sequence, the diffusion encoding 

gradient pair should have the same polarity. By placing diffusion encoding gradient 

pulses in all imaging axes, the pulse sequence can be made sensitive to diffusion along 

any given direction in 3D space specified by the relative amplitudes of the encoding 

pulses. Regardless of the pulse sequence used to realize diffusion encoding, one 

immediate consequence of diffusion encoding is that the minimum TE of the sequence is 

lengthened (e.g., an extra 40 ms is required to generate diffusion weighting b-value of 

1000 s/mm2 using a 40 mT/m gradient), which can aggravate the SNR challenge of DTI 

experiments.

Because the GRE sequence is more prone to susceptibility or distortion artifacts, the 

SE sequence is preferred over GRE sequence for acquiring diffusion-weighted images. 

However, SE acquisitions suffer from long scan times, which are further exacerbated by



the need to signal average or encode diffusion in a high number of directions to improve 

the accuracy of the DTI experiment. To make the DTI scan time practically acceptable, 

especially for in vivo applications, the diffusion-weighted spin-echo echo-planar imaging 

(EPI) has been used (Fig. 2.8), and to date remains to be the sequence of choice for most 

DTI studies, at least for brain applications. The typical scan time of an EPI acquisition is 

in the order of 100 ms, which is especially advantageous when hundreds or thousands of 

images are desired, as in high angular resolution diffusion imaging (HARDI). Although 

the issue with scan time is alleviated, the diffusion-weighted EPI sequence has its own set 

of technical challenges, including blurring arising from signal decay and susceptibility 

induced image distortions at tissue-air boundaries. The most notable challenge is image 

distortions generated by eddy currents associated with the use of the large diffusion 

encoding gradient pulses. The distortions vary in both appearance and magnitude as 

different diffusion encoding gradient directions and levels are used. If left uncorrected, 

the distortions cause inconsistent tissue borders across images in a DTI dataset, and are
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Figure 2.8: Spin-echo, echo-planar imaging (EPI) pulse sequence. The grey boxes 
highlight the diffusion-weighted gradient pulses.



characterized by artificially high FA values observed at edges of the tissue.

Because experimental requirements as well as pulse sequence performances vary, in 

addition to SE, GRE, and EPI, many different pulse sequences have been used for 

acquiring diffusion MRI or DTI data. For example, diffusion-encoding gradients have 

been used in conjunction with fast spin echo (FSE) pulse sequences. On the one hand, 

FSE sequences offer the advantages of speed (compared to conventional spin echo 

sequence) and being free of geometric distortions that are synonymous with EPI. On the 

other, FSE can be hampered by elevated RF power deposition associated with the use of 

multiple RF pulses, and ghosting and T2 blurring artifacts when the precise RF 

conditions (especially the inversion 180 pulses) are not met. In addition to FSE, DWI or 

DTI experiments have been performed using advanced MRI sequences such as spiral 

[81], [82], SSFP [83], [84], PROPELLER [85], [86], parallel imaging (SENSE [87] and 

GRAPPA [88], [89]), STEAM [90], etc. Needless to say, each pulse sequence has its own 

set of challenges and limitations, and the reader is referred to elsewhere [91] for a more 

exhaustive review of technical considerations associated with these pulse sequences. The 

large number of pulse sequences that have been used for DWI or DTI is a testament to 

the robustness of the DTI methodology and the flexibility in which it can be 

implemented.

2.4.2 DTI Experimental Strategy

Besides the pulse sequence used, the design of the DTI experiment, which includes 

the size of the dataset and number of diffusion encoding directions, for example, can also 

have profound effects on the accuracy of the results of DTI experiments. For example, in
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the worst-case scenario, a DTI experiment that fails to include the minimum number of 

noncollinear diffusion encoding gradient directions would yield indeterminable diffusion 

tensors. Because the typical DTI experiment consists of one or more b0 image and a 

series of diffusion-weighted scans encoded in different sensitizing directions, factors that 

naturally affect the accuracy of the obtained diffusion tensors, and the information 

therein, such as fiber orientations, include the individual image SNR, number of diffusion 

encoding directions, distribution of the directions, number and placement of the diffusion 

weighting b-values to be used, etc. As with the case of diffusion-weighted pulse sequence 

considerations discussed in the preceding section, thanks to efforts already taken, much 

understanding already exist on the impact of each of these parameters on the quality of 

DTI.

The main strategic consideration in experimental DTI is to address its low SNR, 

which is due to the nature of both diffusion encoding via signal attenuation and T2 

relaxation during the prolonged TE necessary to accommodate the diffusion encoding 

pulses. Moreover, the SNR issue is aggravated by the tradeoff among scan time, which is 

necessitated by the large dataset size, resolution and SNR. Similar to any quantitative 

MRI experiment, insufficient SNR can be detrimental to DTI. Low SNR can manifest in 

directly proportional random errors in the DTI results, as determined by, for example, the 

mean deviation angle from the true value in the estimated fiber orientation [92]. Noise 

can also result in a systematic bias of the DTI parameters, including overestimation of the 

FA, where sorting of noisy DTI eigenvalues gives rise to the artificial appearance of 

anisotropy [93]. Not surprisingly, in one way or another, all considerations in the DTI 

experimental strategy are related to boosting the effective SNR.

30



Perhaps the simplest way to improve the DTI accuracy is to signal average in order to 

improve the SNR of the individual diffusion-weighted scans. The relationships among 

signal averaging, scan time, and the resultant image SNR are well established, that scan 

time is directly proportional to signal averaging and SNR is proportional to the square 

root of the signal averaging. However, causes of inaccuracy in DTI include not only 

image noise, but also factors such as directional sampling, tensor fitting, etc. Accounting 

for these latter factors can improve the DTI accuracy beyond what is achievable by signal 

averaging individual diffusion scans alone. Indeed, in the context of the acquisition of the 

whole DTI dataset, increasing the number of diffusion encoding directions is in effect 

form of signal averaging. Employing more noncollinear gradient directions has the 

additional benefit of reducing the directional sampling error and is generally preferred 

over signal averaging in the same encoding directions. For a given scan time, determined 

by the combination of the number of individual diffusion-weighted scans and signal 

averages, the most efficient means to achieve DTI accuracy is to acquire diffusion- 

weighted scans in as many different encoding directions and distribute the encoding 

direction unit vectors as evenly spread out as possible on a unit sphere [94]. Techniques 

such as the tessellation of icosahedrons [95], [96] and electrostatic repulsion on a unit 

sphere [94] have been proposed and shown effective for optimizing the selection of 

encoding directions. In general, because of the finite number of variables in the diffusion 

tensor fitting and the square-root nature of averaging, DTI quality improvement by 

increasing the number of diffusion encoding diffusions is most pronounced when the 

number of directions is relatively low. In increasing the number of diffusion encoding 

directions, it should also be noted that since in tensor computation the same b0 image is
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used in estimating the effective diffusivity in each encoding direction, the b0 image has 

disproportional impact on the accuracy of the whole DTI experiment. Therefore, the use 

of high number of diffusion encoding directions must be balanced by proportional 

increase in signal averaging (or NEX) of the b0 scan [94], [97].

Besides the number of diffusion encoding directions, the choice of the diffusion- 

weighting b-factor (or b-value) can also impact on the accuracy of a DTI experiment. 

Intuitively, the DTI experiment is akin to measuring the decay constant of an 

exponentially attenuating signal, or the slope of the signal on a semi-logarithmic plot, 

with the b-value as the independent variable. Intuitively, if the b-value used were too high 

such that there was too much attenuation, the diffusion-weighted scans would contain 

more image noise than tissue information. In contrast, if too low of a b-value were used, 

even small amount of noise in the image would have disproportionally large impact on 

the fitted slope or decay constant. Therefore, diffusion-weighted scans acquired with 

different b-values do not contribute equally to the accuracy of a DTI experiment. The 

implications for the DTI experimental design are two-fold. First, there exist an optimal 

diffusion-weighting b-value to be used in DTI scans. Empirical experience and studies 

[94], [97], [98] have shown that diffusion-weighted scans that achieves a factor of 

e_1 «  0.4 to 0.5 attenuation of the signal contribute the most to the accuracy of DTI 

experiment. Combined with considerations on the number and distribution of encoding 

directions, it is preferable to use the DTI scan time to repeat the same b-value meeting the 

optimal attenuation criterion at different additional encoding directions. (Note the single 

b-value criterion does not apply to experiments fitting alternative models than the 

diffusion tensor). Second, because of the unequal contribution of the images toward the
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accuracy of DTI, a weighted curve fitting technique would yield more accurate diffusion 

tensor estimations than one that weighs all signal data equally [99].

Although optimal strategies for DTI acquisition are known, their practical 

implementation can be hampered by instrumentation limitations. More often than not, the 

optimal diffusion weighting b-value cannot be achieved due to the low or finite gradient 

strengths available, especially on clinical whole-body scanners. As a work around, one 

way to boost the effective b-value is to employ multiple gradients at the same time. For 

example, turning on two gradients of the amplitude effectively boost the b-value by a 

factor of V2 compared to when a single gradient is used. In this regard, while both 

{(1,0,0), (0,1,0), (1,0,0), (1,1,0), (1,0,1), (0,1,1)} and {(1,1,0), (1,-1,0), (0,1,1), (0,1,-1), 

(1,0,1), (1,0,-1)} contain six noncollinear directions and thus satisfy the criterion for 

minimal DTI encoding directions sets, the latter employ only two-gradient directions and 

is better for practical use. It is worth noting that using multiple gradients simultaneously 

to increase b-value must be weighted against the fact that the practice also dictates 

gradient directions and can interfere with the optimization of the latter.

Implicit in the above discussion on encoding direction and weighting factor 

optimization is that the gradient waveforms of the pulse sequence are precisely known, 

which can be difficult in practice. For example, even with the best shimming effort, 

background gradient is inevitable. Unaccounted background gradient can not only set off 

the DTI encoding scheme off its optimal conditions, but also cause erroneous DTI 

estimations from errors in computing the b-matrix elements (e.g., via Eq. (2.14)) due to 

the associated cross-terms [24], which can be a bigger concern. Fortunately, effects of 

cross-terms are multiplicative in both amplitude and polarity, and a simple yet effective
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means to eliminate them is to acquire diffusion-weighted scans with same but opposite- 

polarity encoding gradients, and to eliminate the cross-term contributions by taking the 

geometric average (i.e., square root of the produce of the two image intensities) of the 

scans [26]. The drawback of the strategy, obviously, is that the scan time is doubled. This 

is yet another example that optimization of the DTI experimental strategy often involves 

addressing not a single consideration but weighting and trading off among multiple 

counter-opposing factors.

In addition to the above measures for acquiring the dataset, the accuracy of DTI can 

also be improved in the postprocessing. For example, by recognizing that a properly 

estimated diffusion tensor should bear certain characteristics of the physical entity (e.g., 

having only real, positive eigenvalues), appropriate numeric estimation algorithms, in this 

case Cholesky parameterization, can be applied to avoid bad tensor fittings produced in 

noisy pixels [99]. Similarly, by recognizing that noise tends to produce more variability 

than the underlying tissue structure in tensors estimated for neighboring pixels, denoising 

or other a priori information-based “regularization” techniques have been found to be 

useful to boost the DTI quality, often without incurring additional scans. Denoising is in 

effect image smoothing, and can be achieved by techniques as simple as low-pass 

filtering of the images. Different denoising techniques have been evaluated on both 

simulated and empirical diffusion and DTI images [92], including cardiac scans [100], 

[101]. For DTI, it has been found that vector- or tensor-based denoising is better than 

image-based treatment, since in the former case deviations introduced after acquisition, 

during the tensor fitting and diagonalization, for example, are also removed [92]. Related, 

the common idea behind regularization is to introduce a priori information about the
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solution in order to smooth the diffusion-weighted images while preserving relevant 

details [102], [103]. Separately, sparse representation-based methods, which effectively 

randomize the effects of noise, have been used to denoising cardiac DTI images [101] 

while preserving image’s useful coherent structures. Because of their estimation nature, 

most regularization techniques offer the benefit for being able to capture the essential 

DTI information from only a small subset of the original dataset, and have the potential 

for accelerating DTI scan times. An example of this is using compressed-sensing 

methodology in DTI [104], which is described in more detail in Section 2.5.

2.4.3 Special considerations for in vivo cardiac DTI

Besides the same challenges facing all DTI applications, in vivo cardiac DTI requires 

at least three additional technical considerations, all of which stem from the physiology 

of the heart. First, compared to other organs, the heart undergoes large, but relatively 

periodic, beating motion and unattended motion can lead to pronounced ghosting and 

streaking artifacts along the phase encoding axis of an MR image. Because of the large 

diffusion encoding gradients used, motion artifacts in diffusion-weighted MRI are orders 

of magnitude worse than regular anatomical scans. Motion artifacts from periodically 

moving organs or objects can be greatly reduced by employing gated acquisition using 

dual cardiac and ventilation-gated MRI, for example. Indeed, cardiac gaging at the time 

point where bulk systolic motion is minimal has been shown effective in improving the 

quality of cardiac DTI [105]. Another way to address motion is to employ the so-called 

navigator echoes [106], which is essentially additional echoes formed by the MRI signal 

in the absence of phase encoding, to estimate the motion and to compensate for its effects
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via postprocessing correction. A high-resolution, cardiac DTI study using a prospective 

navigator shows potential for in vivo DTI in humans [107]. Lastly, at least theoretically, it 

may be possible to reduce the sensitivity to motion in diffusion MRI by replacing the 

conventional unipolar diffusion encoding gradient pulses with bipolar pulses, which 

cancel first gradient moments, hence reducing motion sensitivity, albeit the achievable 

diffusion-weighting b-value by bipolar gradient pulses is also expected to be significantly 

reduced. One method to attain higher b-values while minimizing the effects of motion is 

to use stimulated-echo acquisition mode (STEAM) based acquisition in conjunction with 

twice cardiac-gating, where the excitation and re-excitation, or first and third, RF pulses 

are synchronized to the cardiac cycle [74], as seen in Fig. 2.9. Even with halved SNR

A

Figure 2.9: Stimulated-echo acquisition mode (STEAM) pulse sequence. The diffusion 
sensitizing gradients are highlighted in grey. The first and third RF pulses are 
synchronized to occur at the same time point in the cardiac cycle. Using STEAM allows 
for higher b-values given a fixed gradient strength, but at the cost of losing half of the 
acquired signal due to using a stimulated-echo.



associated with using stimulated echoes, the approach has been found effective in 

mitigating motion and is increasingly used in DTI studies in humans and large animals 

[80], [108], [109]. Regardless of the means for compensation, the heightened sensitivity 

of diffusion MRI makes motion extremely challenging to correct and leaves very little 

room for uncorrected instrument imperfections.

Second, even if the images are free of motion artifacts, motion of the heart can lead to 

erroneous estimates due to the strain-memory effect of the diffusion constants. Strain 

alters the relative distance between any two given points of a tissue. Because the 

diffusion-weighted MRI signal is derived in part based on the probability of spatial 

displacement, strain can add or subtract from the displacement, and lead to over or under­

estimation of the diffusion measurements. The effects of strain on in vivo cardiac DTI 

measurements have long been documented [76]. Because cardiac strain can be separately 

quantified via, for example, tagged MRI, its effects can be subtracted to obtain pure 

diffusion and fiber orientation measurements from in vivo cardiac DTI data [76]. 

Moreover, because the effects depend on the average strain across the cardiac cycle, it 

has been shown possible to obtain strain-free in vivo cardiac DTI measurements by 

selecting the right timing delay in the cardiac-gated acquisition [77].

Lastly, recent advances in gradient hardware technology have made high-strength 

gradients available (up to 80 mT/m in whole-body scanners and 1500 mT/m or more in 

small animal systems as of the current writing), which in turn made it practically feasible 

to employ bipolar encoding gradient pulses capable of generating moderate but sufficient 

b-values, in terms of diffusion encoding, in diffusion MRI and DTI, including for cardiac 

imaging [110]. Bipolar diffusion pulses offer not only reduced motion sensitivity, as
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described in the above section, they also have decreased memory effects of strain [108]. 

However, besides the impact on accuracy as explained in Section 2.4.2, using the 

relatively low b-values associated with bipolar gradient pulses can also inadvertently 

introduce effects of tissue perfusion and lead to additional error in the DTI experiment. 

Perfusion, in this case blood flow in the capillary bed, has long been known for causing 

additional spin phase dispersion and leading to overestimated diffusion coefficients via 

the so called intravoxel incoherent motion (IVIM) effect [111] in highly vascularized 

organs such as the liver [112]. Because the capillary flow is faster than the diffusion of 

water, the flow-mediated perfusion effect can be eliminated from diffusion measurements 

by employing sufficiently high (b > 200 s/mm2) diffusion weighting. The perfusion 

dependence of diffusion MRI has been theorized [111], [113] and recently empirically 

demonstrated [114] for the perfused heart.

Together, it is clear that the specific physiology of the heart adds technical issues that 

need to be considered in performing in vivo cardiac DTI. Despite technological advances 

that have made most the known issues tractable, complete understanding and 

compensating the effects of motion in cardiac DTI remain works in progress. In the 

meantime, caution is warranted in interpreting in vivo cardiac DTI results.

2.5 Accelerating DTI Acquisition 

Because of its minimum dataset requirement, and the frequent use of signal 

averaging, including increasing the number of encoding gradient directions, to improve 

its accuracy, practical applications of DTI have been hampered by long scan times. Due 

to the repetitive nature of the DTI experiment, reduction or elimination of redundancies
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in the data has been explored as a potential means to accelerate the data acquisition [102]. 

The so-called compressed sensing is an advanced technique that reconstructs MRI images 

from partially sampled data [115], [116]. The relative benefits of compressed sensing are 

demonstrated in Fig. 2.10. Conventional reconstructions, using direct inverse Fourier 

transform for example, of partially sampled k-space data often lead to structured artifacts 

such as blurring and ringing in the result images. One key feature of compressed sensing 

is randomized k-space sampling, which turns the effects of partial k-space sampling into 

incoherent, noise-like artifacts. The latter are then minimized to yield images close to 

what the fully sampled k-space would have achieved, but using data that were acquired in
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Figure 2.10. FA and helix angle maps from accelerated DTI data. Helix angle and 
fractional anisotropy (FA) maps from (first row) using all acquired data or the “Gold- 
standard” case reconstructed traditionally and (second row) using 1/16th of the acquired 
data, reconstructed using the model-based compressed sensing reconstruction.



a fraction of the time.

The ideal experiment for applying compressed sensing is one where some knowledge 

of the images to be reconstructed already exists. In general, compressed sensing 

reconstruction can be formulated as the minimization of some cost function given in the 

form of

C(m) = ||F(m) -  y ||! + a ||^ (m )|li, (216)

—* 2
where ||F(m) — y|| is the data fidelity term and ||^ (m )|\1 is the image sparsifying term.

The fidelity term is akin to the least squares fitting between the acquired signal, y, and the 

estimated image, m , transformed into the measurement domain, or k-space, by the 

undersampled Fourier operator F(-). The image sparsifying term is used to drive the 

estimated image, m, to have desired features, such as spatial smoothness or sparsity, 

using a transform, ^ . Common examples of image sparsifying transforms are the total 

variation (TV) and wavelet transforms. The estimated image, m, is reconstructed by 

minimizing Eq. (2.16) with respect to m

m = minm||F(m) -  y||^ + a ||^ (m )|\t , (217)

which is performed using a numerical method such as gradient descent or conjugate 

gradient. The contributions from the data fidelity and image sparsifying terms are 

controlled by the regularizing term, a.

DTI lends itself well to compressed sensing because of the redundancies across the 

diffusion-weighted images (e.g., same organ size and shape with only diffusion contrast 

differences). The general cost function in Eq. (2.16) can be altered to include the series of 

diffusion-weighted images [117]
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C(mn) = ^  ( | | F ( m n) -  y||^ + ll^(mn)lll) . (218)
n = l

The reconstructed individual diffusion-weighted images, mn, can then be used to 

obtain the diffusion tensors similar to the standard DTI experiment. The goal of such 

reconstructions is to acquire DTI data in a reduced amount of time without incurring the 

proportional loss in accuracy associated with the scan time acceleration.

2.6 Conclusion

Considering that the heart is active since before birth and for the most part throughout 

a person’s life, myocardial microstructure changes across orders of magnitude in both 

time and space making structural measurements rather challenging. This short contextual 

survey of structural measurements via MR-DTI hopefully illustrates a versatile response 

to this challenge. Now, it is worth mentioning some promising examples of the future of 

fiber structure acquisition, and how it can have a positive effect in the way we understand 

cardiac structure and function. Despite its complexity, fiber structure is intimately linked 

to diagnosing, monitoring, and treating heart disease, which is one of the largest causes of 

death in the world. For this reason, many researchers and clinicians recognize the value 

of applying understanding of the heart on personalized medicine. This ideal includes two 

fundamental layers, the characterization of functional and material parameters in health 

and disease, as well as predicting the outcome of an intervention on a patient. The first 

layer involves gathering large databases of relevant information, including anatomical 

and diffusion tensor imaging, and establishing analysis criteria useful for classifying 

phenotypes and recognizing disease [118], [119]. Such an approach, would endow 

clinicians with information-age diagnostic tools never before seen [120]. Much of the
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statistical machinery, such as the ability to merge large amounts of tensor images, is 

already been applied to the brain to the classification of adult and developing structures 

[121], [122], and their cardiac counterparts are underway [123]. Likewise, thanks to 

advances in computational cardiology, the ability of predicting the outcomes of treatment 

is no longer a dream. Computational models are becoming an important tool for planning 

therapeutic strategies for fibrillation [124], and for the prevention of side effects, like 

venous occlusion by pacemaker lead placement [125]. With the advent of more 

comprehensive approaches, like electro-mechanical models of the whole heart and the 

ability to acquire fiber structure information in vivo, predicting the outcome of surgical 

procedures is within sight. Despite all the technical and logistical complexities, the hope 

of improving the quality of life of millions is a permanent source of encouragement for 

researchers, engineers, clinicians, as well as any of those willing to answer relevant 

questions in cardiac biomechanics including characterizing cardiac fiber structure.
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CHAPTER 3

MODEL-BASED RECONSTRUCTION OF UNDERSAMPLED 

DIFFUSION TENSOR K-SPACE DATA1

3.1 Abstract

The practical utility of diffusion tensor imaging, especially for 3D high-resolution 

spin warp experiments of ex vivo specimens, has been hampered by long acquisition 

times. To accelerate the acquisition, a compressed sensing framework that uses a model- 

based formulation to reconstruct diffusion tensor fields from undersampled k-space data 

was presented and evaluated. Accuracies in brain specimen white matter fiber orientation, 

fractional anisotropy, and mean diffusivity mapping were compared with alternative 

methods achievable using the same scan time via reduced image resolution, fewer 

diffusion encoding directions, standard compressed sensing, or asymmetrical sampling 

reconstruction. The efficiency of the proposed approach was also compared with fully 

sampled cases across a range of the number of diffusion encoding directions. In general, 

the proposed approach was found to reduce the image blurring and noise and to provide 

more accurate fiber orientation, fractional anisotropy, and mean diffusivity measurements

1 © 2012 Wiley Periodicals, Inc. Reprinted, with permission, from Christopher Lee 
Welsh, Edward V.R. DiBella, Ganesh Adluru, and Edward W. Hsu. Model-Based 
Reconstruction of Undersampled Diffusion Tensor k-Space Data. Magnetic Resonance in 
Medicine. DOI 10.1002/mrm.24486.



compared with the alternative methods. Moreover, depending on the degree of 

undersampling used and the diffusion tensor imaging parameter examined, the 

measurement accuracy of the proposed scheme was equivalent to fully sampled diffusion 

tensor imaging datasets that consist of 33-67% more encoding directions and require 

proportionally longer scan times. The findings show model-based compressed sensing to 

be promising for improving the resolution, accuracy, or scan time of diffusion tensor 

imaging.

3.2 Introduction

Diffusion tensor imaging [1] (DTI) is an MRI technique that allows quantitative 

characterization of the geometry and organization of tissue microstructures such as fiber 

orientation. DTI has been applied in the brain [2], [3] to, for example, trace white matter 

tracts [4]-[6], map connectivity, and characterize damage caused by stroke [7]-[9]. The 

method has also been applied to ex vivo specimens of the heart [10]-[12] to map 

structural changes due to fibrosis or infarction [13]-[17].

Because the diffusion tensor is a rank 2, symmetric matrix [1], a unique solution of 

the diffusion tensor requires a minimum of six diffusion-weighted images sensitized in 

noncollinear diffusion encoding directions, plus a nondiffusion-weighted image. In this 

sense, the minimum scan time required for a DTI dataset, which spans both the spatial 

and diffusion dimensions, is seven times that of an anatomical scan acquired using the 

same sequence and settings. DTI suffers from low signal-to-noise ratio (SNR) because 

diffusion is measured as signal attenuation and from increased echo time necessary to 

accommodate the use of diffusion sensitizing gradients. In practice, the loss of signal is
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often compensated for by additional signal averaging in forms of acquisition repetition or 

increasing the number of encoding directions, which further prolongs the scan time. 

Consequently, methods to accelerate the acquisition, especially those that minimize 

further SNR loss, are highly desirable.

Perhaps the most obvious method to accelerate acquisition would be to either scan at 

a lower resolution or simply encode fewer diffusion directions. Scanning at a lower 

resolution would introduce blurring and make it more difficult to discern fine structures 

in an image. In contrast, although the resolution is maintained, encoding in fewer 

diffusion directions would sacrifice the accuracy of the diffusion tensor estimation. A 

possible solution to both of these problems is to accelerate acquisition by partially 

sampling k-space, and apply reconstruction in such a way that fine structure and diffusion 

tensor accuracy are preserved. When not reconstructed properly, partially sampling k- 

space introduces artifacts in image space, such as ghosting, field-of-view overlap, or 

additional noise, depending on the undersampling pattern used. Techniques have been 

introduced to reduce the effects of partial sampling or undersampling when DTI is 

acquired using multiple receive coils [18]-[23].

Rather than reconstructing each image of the multi-image acquisition separately, 

compressed sensing techniques [24]-[26] are capable of jointly estimating multiple 

acquisitions by sharing sparsely sampled data. Compressed sensing can be particularly 

attractive for DTI, due to the high degree of similarity or redundancy (e.g., the size and 

shape of the brain, including the white matter) among the acquisitions at different 

diffusion directions that can be leveraged to represent a transform of the data sparsely. 

Previously, compressed sensing based on undersampling in the diffusion encoding or q-
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space has been applied to high-angular-resolution diffusion imaging [27], [28], which is a 

more general form of diffusion imaging that allows resolution of crossing fibers. A 

possible alternate way to undersample DTI or high-angular-resolution diffusion imaging 

data is in k-space [29] or spatial frequency domain. Intuitively, the nature of the desired 

information in the DTI dataset and the well-known relationship between image-space and 

k-space may offer flexibility that can be exploited for effective undersampling. For 

example, the fiber orientation of the brain white matter or myocardium varies relatively 

slowly and, therefore, the relevant information can be captured even when the outer k- 

space is sampled with a lower density.

Regardless of the scheme of undersampling, it is important that the performance of 

any reconstruction method be evaluated on not only the acquisition time acceleration, but 

also on its ability to capture the desired information. In DTI, fiber orientation, fractional 

anisotropy (FA) [30], and mean diffusivity (MD) are the often sought-after parameters 

for assessing tissue microstructure. Therefore, ideally the performance of any compressed 

sensing acceleration needs to be evaluated in terms of accuracy loss in measuring these 

parameters with respect to a ‘‘ground truth’’ or ‘‘gold standard.’’ Moreover, to be 

considered effective, any proposed technique should retain more accuracy than 

alternative methods using, for example, lower resolution or fewer diffusion encoding 

directions to achieve the same acceleration.

The goal of the current study is to investigate the validity of a compressed sensing 

framework for DTI that, in addition, uses the signal intensity model to directly estimate 

diffusion tensor fields from undersampled k-space data. The formulation bypasses the 

usual intermediate step of estimating diffusion-weighted images. By estimating the
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diffusion tensor directly, the number of variables to be solved is reduced from N x  

d im l xdim 2 xdim 3 to 6 x d im l xdim 2 xdim 3 (excluding the nonweighted volume) 

where dim1, dim2, and dim3 are the spatial dimensions of a 3D acquisition, and N is the 

number of diffusion-weighted images acquired. In a noise-dominated system, reducing 

the number of unknowns can provide the more accurate estimates of the fitted 

parameters. As well, the model-based formulation provides a convenient platform that 

numerous practical considerations involved in DTI (e.g., phase errors) can be addressed 

in a single step. Model-based approaches have been proposed previously to compensate 

for eddy currents, field inhomogeneities, and motion in DTI [31], [32] and to reconstruct 

diffusion tensor tomography data [33] but not for accelerating acquisition. Other 

compressed sensing techniques using exponential models have been proposed for T1 and 

T2 mapping [34], [35].

The current model-based algorithm is demonstrated on a 3D DTI acquisition, which 

is used for high-resolution characterization of fixed specimens [36], [37]. Three­

dimensional DTI, especially one acquired with a spin-echo sequence, can take many 

hours for ex vivo acquisitions and thus can benefit greatly from acquisition acceleration. 

Also, 3D acquisitions have a higher degree of data redundancy and can be undersampled 

in more than one dimension. For the sake of brevity, in the following sections, and unless 

otherwise noted, the term DTI strictly refers to 3D spin-warp spin-echo DTI. The 

effectiveness of the model-based compressed sensing algorithm is validated against other 

means to achieve comparable scan time reduction. Part o f the current work has been 

presented previously in a conference abstract [38].
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3.3 Theory

Compressed sensing finds the target images by subjecting the estimates to a set of 

reconstruction constraints and minimization of the associated penalty or cost function. 

One form of a cost function for compressed sensing [24], [39] reconstruction of a series 

of N undersampled MRI k-space data, dn, is given as:

where || ||2 represents the L2-norm, which produces the least squares solution [25] and 

can be substituted by any other type of measure of deviation between images [40], and 

m n is the estimated magnitude images. The terms m n and dn are the vectorized versions 

of m n and dn, such that for image resolution dim1 by dim2, the vectors m n and dn have 

dim1 x dim2 elements. The first term in Eq. (3.1) is a fidelity term that forces the solution 

to adhere to the acquired k-space data. The second term in Eq. (3.1) is a total variation 

(TV) operator [41] applied in image space to constrain the solution to generate piecewise- 

constant images, hence reducing erratic points due to undersampling k-space. The scalar 

regularization weight factor a  controls the relative contributions of the fidelity and TV 

terms. The jth k-space element of the k-space signal model, F(mn, n ) , is

where Wn is the binary undersampling function for the diffusion direction n, is the 

image phase which is estimated and fixed from the acquired low-resolution data from 

each diffusion-weighted image, x is the position in image space, and kj is the position in 

k-space. The series of images, m n, can be obtained simultaneously by minimizing the

Fj(mn, n) = Wn( k j mn(x) • • e 1 x'^i (3.2)



cost function in Eq. (3.1) with respect to m n.

In the current model-based DTI reconstruction, to allow direct estimation of the 

diffusion tensor, m n is replaced with the standard diffusion tensor intensity model [1]. 

This allows direct estimation of the diffusion tensor. The relationship between mn and 

the DTI signal is given by,

m n = l0 e - b9lDgn (3.3)

where I0 is the image without diffusion weighting, b is the diffusion weighting factor and 

gn = (gxn, gyn, gzn)T is the diffusion encoding directional vector in the 3D space 

spanned by the readout (x), phase (y), and slice (z) encoding directions. D is the rank 2, 

symmetric tensor defined as:
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Replacing m n yields the new k-space signal model:

Fj(D,n) = Wn(kj) ^  /0(x) • e~h& D(! Bn • • e -! (3.5)
X

For the current formulation, the TV term can be defined as:

7V (0 ) =  || J ( m j !  +  ( m j ! || (3 6)

where (mn)y and (mn) z are the partial derivatives of m n with respect to y  and z. TV is 

not calculated in the x-direction since it is already fully-sampled.

Maps corresponding to each diffusion tensor element can be estimated by minimizing 

Eq. (3.1) simultaneously with respect to each element of the tensor, D, via, for example, 

gradient descent optimization. To perform gradient descent, computational equations for 

the derivative of Eq. (3.1) are needed with respect to each diffusion tensor element,
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(3.7)

where gng^ is a 3 x 3 matrix and the (0 s operator extracts the sth element corresponding 

to the Ds parameter map. The full derivation of this equation can be found in the attached 

appendix. The diffusion tensor elements are then updated iteratively using the derivative 

in Eq. (3.7):

D l+1 = D! - A  (38)

where A is the step size used in the gradient descent and r is the iteration number.

3.4 Methods

3.4.1 Dataset

Fully sampled 3D, Cartesian k-space, DTI spin-echo data consisting of diffusion- 

weighted scans in a relatively high number of encoding directions (96 in all) and four 

nondiffusion-weighted “b0” images (100 x 75 x 70 matrix size, 0.5 x 0.5 x 0.5 mm3 

isotropic voxel size, echo time (TE) = 39 ms, repetition time (TR) = 500 ms, and number 

of excitations (NEX) = 1) were acquired on a fixed, excised macaque brain hemisphere 

using a Bruker Biospec 7T scanner (Bruker Biospin Inc., Billerica, MA) equipped with a 

high-performance gradient system (max gradient amplitude capable of 600 mT/m). The 

acquisition time for the entire diffusion MRI dataset was ~72 h. Figure 3.1 shows the 

‘‘b0’’ and diffusion-weighted images of a representative 2D slice, for reference. The
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Figure 3.1: Two-dimensional MRI coronal view of the macaque brain hemisphere used in 
this study. Left, nondiffusion-weighted “b0” image, b = 0 s/mm2 . Right, diffusion- 
weighted image, b = 5000 s/mm2 in a single diffusion direction, scaled up for better 
display. There is notable shading due to coil inhomogeneity.

diffusion tensor solution to the entire fully sampled dataset was used as the gold standard 

for subsequent performance assessments.

3.4.2 Undersampling Schemes

To simulate more typical DTI acquisitions, 10 test datasets each composed of a subset 

of diffusion-weighted images encoded in 24 gradient directions were retrospectively 

selected from the original 96-direction set. The first direction of each subset was 

randomly chosen, and the remaining directions were selected based on maximizing the 

angular distance between each successive encoding direction [42]. To have distinct 

datasets, precaution was taken to avoid excessive overlap of gradient directions between 

any two datasets. When the gradient directions overlapped by more than 45%, alternative 

gradient directions were substituted. Among the final test datasets, the amount of overlap 

ranged from 8 to 45%, with 20% being the average.



Undersampling was subsequently applied to the above test datasets, which was 

mathematically equivalent to multiplying the k-space data with appropriate binary masks. 

k-Space was undersampled in the phase (y) and slice (z) directions, whereas sampled 

fully in the readout (x) direction for the 3D data. Two different degrees of undersampling 

were examined, 50 and 75%, which are equal to the acceleration factor R of 2 and 4, 

respectively. Figure 3.2 shows examples of the binary masks used with R of 2 and 4. To 

take advantage of the low-frequency nature of DTI data, the center k-space was fully 

sampled, whereas the remaining k-space was sampled randomly, using a uniform 

distribution, to achieve the desired overall acceleration factor. The reference image, I0, 

was sampled fully and reconstructed separately using an inverse Fourier transform. The 

reference image was fixed throughout the reconstruction.

3.4.3 Reconstruction

All computation was performed using Matlab (Mathworks, Natick, Mass; version 

R2011a). Two steps were taken in preparation for the iterative compressed sensing 

reconstruction. First, an inverse Fourier transform was applied to the k-space data along 

the readout direction, which were fully sampled. The procedure permitted the 

reconstruction of data in each subsequent 2D ky-kz plane perpendicular to the readout 

direction to be performed separately and in parallel. Second, the phase map, needed in 

Eq. (3.5) was approximated from the central fully sampled k-space block and low-pass 

filtered using a 2D Hann window.

Implementation o f the compressed sensing reconstruction is summarized in the 

flowchart shown in Fig. 3.3. The estimation was initialized by the linear least squares
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Figure 3.2: Two-dimensional representation of sampling masks in the phase-slice plane 
for 50% (left) and 75% (right) undersampling. The data were sampled fully in the readout 
direction.

fit o f the diffusion tensor to the images generated by direct reconstruction (inverse 

Fourier transform) o f the undersampled k-space data. The initialization o f the diffusion 

tensor is important, but the optimization solution can withstand a wide range o f initial 

conditions (e.g., initializing DTI parameters to the tensor solution of using the b0 image 

plus identical DWIs). The algorithm then enters a loop, the first step of which is to 

determine the derivative o f the cost function with respect to each o f the diffusion 

coefficients, according to the procedure outlined in the Theory section. A value of 

1 x 1 0 _6 was used for b in Eq. (3.7). The derivatives were used to update the diffusion 

tensor elements according to Eq. (3.8). The loop was repeated until convergence was 

achieved, which was determined to occur when the value of the cost function changed by 

less than 1x 10_4 from iteration to iteration.

Optimal values of the computational parameters, TV weight a, and step size A from 

Eqs. (3.7) and (3.8) were determined empirically by reconstructing an arbitrarily selected 

test dataset with a range of values of a  and A. The values that yielded the most
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Figure 3.3: Flowchart of the model-based reconstruction algorithm.

accurate tensor eigenvector estimation with respect to the gold standard, 0.00025 and 

0.00001 for a  and A, respectively, were used in the remaining test datasets. The 

parameters were found to be relatively robust and when changed by a factor of 10, 

increased the estimation errors by only about 10%. The reconstruction of each 

undersampled 24-direction test dataset typically converged within 1000 iterations and 

took ~1.0 h on a computer with a quad-core processor, 8 GB of RAM, and Matlab’s 

Parallel-Computing toolbox.

3.4.4 Assessment of Performance

The effectiveness of the proposed model-based compressed sensing DTI technique 

was evaluated by comparing its performance to those of two other reconstruction 

techniques and two control experiments all of which required equal total scan time:

1. Conventional compressed sensing. The compressed sensing reconstruction 

individual diffusion-weighted images by minimizing the cost function defined in 

Eq. (3.1) with respect to m n, as in [29], utilizing a TV weight, a, equal to 0.025, 

and performing 300 iterations. The data were undersampled in the same manner 

as the proposed model-based approach.

2. Asymmetrical sampling. In the asymmetrical sampling case, a modified



iterative partial Fourier method [43] was used to fill in the missing k-space. k- 

Space was sampled asymmetrically in the phase (k y ) direction to get an overall 

acceleration factor, R, of 2 and 4. Ten phase-encodes of negative k-space were 

sampled for R = 2 and five phase encodes for R = 4. To maintain the same 

acceleration factor as the other techniques, the same number of phase-encoding 

steps were not sampled at the high, positive frequencies, but were estimated in the 

reconstruction to maintain the original resolution.

3. Low resolution. In the lower resolution control scheme, the center half (which 

is 1/V 2  in each phase and slice dimensions for R = 2) or center fourth (1 /2  in 

each phase and slice dimensions for R = 4) of k-space for each test dataset was 

taken and zero- padded. The diffusion-weighted images were obtained by using 

the inverse Fourier transform.

4. Fewer directions. The fewer directions control scheme used fewer encoding 

directions to achieve the same R factor (12 and 6 fully encoded images for R = 2 

and R = 4, respectively). The directions used for R = 2 and 4 were found by 

iterating over every 12- and 6-direction combination in each 24-direction test 

dataset to find the combination that minimized the fiber orientation deviation 

angle for each test dataset. Again, the diffusion-weighted images were obtained by 

using the inverse Fourier transform.

In each of the reconstruction and control experiments, the diffusion tensors and their 

derived parameters were obtained using conventional means (linear least squares fitting 

on a pixel-by-pixel basis).

The performances of the acquisition schemes in capturing the essential DTI
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information were quantified along three error metrics: the fiber orientation deviation 

angle (A0, in degrees), fractional anisotropy difference (AFA, dimensionless), and MD 

difference (AMD, cm2/s) with respect to the gold standard. Fiber orientation, fractional 

anisotropy, and MD are parameters commonly derived from DTI results, which are useful 

in tractography and detection of pathology. The fiber deviation angle, A0, was calculated 

by finding the angular difference (arccosine o f the vector dot product) between primary 

eigenvectors o f the gold standard and the model-based estimate. A0 was averaged over 

the brain white matter, which was defined as regions with FA greater than 0.3. In low FA 

areas, such as the brain gray matter, where diffusion is relatively isotropic, noise can lead 

to wide fluctuations of the primary eigenvector and skew the error metric. In contrast, 

root-mean square (RMS) of the FA difference, AFA, and MD difference, AMD, were 

calculated over the entire specimen. The mean A0, RMS AFA, and RMS AMD metrics 

obtained for the proposed and alternate schemes in all 10 test datasets were compared 

using one-way repeated measurement analysis o f variance. When significant group 

difference (i.e., F-test with P < 0.05) was found, post-hoc multiple comparisons based on 

the Bonferroni criterion with overall P < 0.005 were conducted to identify the group 

pairings that were significantly different.

Whereas the above comparisons were intended largely to assess the relative 

advantages of the proposed scheme, to offer guidance in the design of future DTI studies, 

and as an alternative way to evaluate the performance, it is instructive to determine the 

fully sampled DTI experiment that offers equivalent performance as the proposed 

scheme. To this end, the performance metrics, mean A0 and RMS AFA, were obtained as 

described above for DTI experiments that comprised fully sampled diffusion-weighted
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images encoded over a range of the number of gradient directions (N, 6 < N < 24, 10 

experiments for each N ). The DTI experiments (i.e., N ) that yielded the same 

performances as the proposed schemes for each R = 2  and R = 4  case were then 

identified. As an additional reference, the performance metrics obtained for N= 24 were 

extrapolated to lower values of N via the 1/VN relationship, which approximated DTI 

experiments that are SNR limited. The same analysis was not carried out for AMD 

because the deviations were found to be small across all schemes and, therefore, 

improving its measurement efficiency was less critical.

3.5 Results

Figure 3.4 shows the FA-weighted, red-green-blue (RGB) color-coded primary 

eigenvector maps for the model- based, compressed sensing, asymmetrical, low- 

resolution, and fewer direction cases, for R = 2 and 4, obtained for a representative test 

dataset. Qualitatively, compared with the gold standard (also shown in Fig. 3.4), all five 

schemes produced progressively worse DTI maps as the acceleration factor R increased, 

which was expected. The limitations of each of the low-resolution and fewer directions 

control schemes were more conspicuous at R = 4. There was considerable blurring in the 

low-resolution scheme, whereas the noise was markedly higher in the reduced direction 

scheme. In contrast, the issues were clearly improved or avoided in the model-based 

compressed sensing approach.

Figure 3.5 shows the MD maps for the five test cases. The degradation in quality due 

to image acceleration was less apparent for the MD maps than it was for the FA maps 

shown in the previous figure, although there was more blurring in the low-resolution
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Figure 3.4: FA-weighted, primary eigenvector red-green-blue maps for the gold standard 
obtained from diffusion-weighted images encoded in 96 directions (a), test dataset 
comprising of 24 diffusion images reconstructed using the model-based algorithm (b and 
g), compressed sensing (c and h), asymmetrical sampling (d and i), low-resolution scans 
(e and j), 12 fully encoded images (f) and six fully encoded images (k). The results from 
each row (b -f and g-k) require the same scan time. The results from b-e  and g-j were 
derived from undersampled k-space to accelerate scan time. The sphere in the lower left 
corner indicates the direction of the fibers according to their color in red-green-blue 
(e.g., red indicates a fiber traveling in the up-down direction).

Model-Based Compressed Sensing Partial Fourier Low Resolution Fewer Directions

Figure 3.5: Mean diffusivity maps for the gold standard obtained from diffusion-weighted 
images encoded in 96 directions (a), test dataset comprising of 24 diffusion images 
reconstructed using the model-based algorithm (b and g), compressed sensing (c and h), 
asymmetrical sampling (d and i), low-resolution scans (e and j), 12 fully encoded images 
(f), and six fully encoded images (k). Note the lack of blurring in the model-based case 
indicated by the arrow.



scheme than in the model-based case. The MD maps had more in common with each 

other than did the FA maps.

The above qualitative observations are supported by the histograms of the 

performance metrics shown in Fig. 3.6, for the same test dataset. In each R = 2 and R = 4 

case, the distributions of A9, AFA, and AMD for the model-based compressed sensing 

scheme were generally not only narrower but also closer to zero, compared with those of
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Figure 3.6: Distribution of primary eigenvector (top row), FA (middle row), and mean 
diffusivity deviation (bottom row) for 50% (left) and 75% (right) undersampling for the 
same test dataset shown in Figs. 3.4 and 3.5. The model-based approach (solid squares) 
was compared against compressed sensing (solid diamonds) and asymmetrical 
reconstructions (solid triangles) and comparable low-resolution (dashed circles) and 
fewer direction (dash dot x ’s) cases. The bias in FA deviation (e.g., in the fewer directions 
case for R = 4) indicates that the FA was underestimated when compared with the gold 
standard.



the other reconstruction and control schemes, with the exception of AMD in the fewer 

directions case. An exception to the observed trends in the histograms was in the R = 4 

case, where the A9 distributions between the proposed and low-resolution schemes were 

similar. However, this may be due to the noise-smoothing effect inherent to lowering the 

scan resolution and the absence of a penalty for blurring in the performance metrics. The 

similarity likely reflects artifacts of the experimental methodology, and not actual 

benefits of the low-resolution scheme. Also, there appears

to be a slight bias in AFA for the proposed model-based technique, the cause of which is 

currently unclear.

The quantitative performance comparisons among the schemes are summarized in 

Tables 3.1 and 3.2, which contain the means of A9, AFA, and AMD for each R = 2 and R 

= 4 case, respectively. Once again, the results were consistent with the above qualitative 

observations. Among the test datasets examined, the model-based approach at R = 2 

produced a mean A9 of 4.11 ± 0.05° (n = 10, ± SEM), RMS AFA of 3.22 ± 0.07 x 10'2 

and RMS AMD of 1.09 ± 0.01 x 10-7 cm2/s, which were better than those, respectively,
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Table 3.1. Performance of DTI acceleration schemes in terms of fiber orientation, FA, 
and MD errors for an acceleration Factor R = 2

Metrics

Schemes
Mean 
A6 (°)

RMS 
AFA (10-2)

RMS AMD
(10-7 cm2/s)

Model-based 4.11 ±  0.05 3.22 ±  0.07 1.09 ±  0.01
Compressed Sensing 4.81 ±  0.06 3.98 ±  0.06 1.18 ±  0.01
Asymmetrical sampling 4.77 ±  0.07 4.12 ±  0.07 3.58 ±  0.03
Low resolution 4.83 ±  0.06 3.98 ±  0.05 1.88 ±  0.01
Fewer Directions 4.93 ±  0.12 4.35 ±  0.01 0.57 ±  0.03

Entries are mean ±  SEM for the 10 test datasets examined.
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Table 3.2. Performance of DTI acceleration schemes in terms of fiber orientation, FA, 
and MD Errors for an acceleration factor R = 4

Metrics

Schemes
Mean 
A9 (°)

RMS 
AFA (10-2)

RMS AMD
(10-7 cm2/s)

Model-based 6.63 ±  0.04 4.86 ±  0.07 1.90 ±  0.02
Compressed Sensing 7.74 ±  0.04 5.71 ±  0.04 2.27 ±  0.01
Asymmetrical sampling 8.05 ±  0.08 6.00 ±  0.05 3.73 ±  0.02
Low resolution 7.17 ±  0.04 5.43 ±  0.03 2.93 ±  0.01
Fewer Directions 8.89 ±  0.14 7.22 ±  0.03 0.89 ±  0.05

Entries are mean ±  SEM for the 10 test datasets examined.

obtained by compressed sensing and asymmetrical reconstructions and the low-resolution 

scheme. The model-based approach performed better than the fewer direction case in 

terms of mean A9 and RMS AFA (4.93 ± 0.12° and 4.35 ± 0.01 x 10-2) but not RMS 

AMD (0.57 ± 0.03 x 10-7 cm2/s). Similarly, at R = 4, the proposed scheme outperformed 

the compressed sensing and asymmetrical reconstructions and, again, the low-resolution 

scheme and the fewer direction scheme in terms of mean A9 and RMS AFA (8.89 ± 0.14° 

and 7.22 ± 0.03 x 10-2) but not RMS AMD (0.89 ± 0.05 x 10-7 cm2/s).

Figure 3.7 shows the results of the repeated measurement analysis of variance post 

hoc comparisons. The results indicate that the performance of the proposed model-based 

compressed sensing scheme, in terms of A9 and AFA, was significantly better than any of 

the other reconstruction or control methods. Moreover, between the two control schemes, 

lowering the scan resolution performs significantly better, in terms of mean A9 and RMS 

AFA, than reducing the number of diffusion encoding directions in all cases except for 

mean A9 at R = 2. Again, this may be due to the noise-smoothing effect of lowering the 

scan resolution. Nevertheless, the results point out that, for a given total scan time, more
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Figure 3.7. Results of pairwise, post hoc analysis of the five DTI acceleration schemes 
from Tables 3.1 and 3.2. Asterisks denote a significant difference between the pairs, 
which was determined by P < 0.005 for each post hoc comparison by Bonferroni 
criterion. MB, model-based; CS, compressed sensing; AS, asymmetrical sampling; LR, 
low resolution; and FD, fewer directions. The model-based approach was shown to be 
statistically different from the other four acceleration approaches.

relevant DTI information was captured by the proposed model-based compressed sensing 

scheme than by realizing the acquisition acceleration via reducing the scan resolution or 

the number of diffusion encoding directions.

The results of the diffusion encoding gradient direction number and equivalent 

model-based reconstructed DTI experiment analysis are illustrated in Fig. 3.8, from 

which several observations can be made. First, in general and as expected, the number of 

diffusion encoding directions was inversely proportional to the error. Second, as the 

number of diffusion encoding directions was reduced from 24, AFA closely follows the 

performance of a noise-dominated DTI experiment where the RMS AFA error metric was 

proportional to (VN)_1. However, mean A9 deviates more from the (VN)_1 curve,
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Figure 3.8. DTI fiber orientation (left) and FA (right) measurement errors plotted as a 
function of the scan time in terms of the number of fully sampled diffusion scans 
included in the dataset. The dash-dotted lines represent the 1/V N  dependence of the 
errors based on the 24-direction case. The performances of the proposed model-based 
approach are plotted at their equivalent scan times, and are extrapolated (dotted lines) to 
determine the number of fully encoded diffusion-weighted images needed to achieve the 
same measurement accuracy.

suggesting that the accuracy of the diffusion tensor eigenvector (the fiber orientation) can 

easily suffer from unoptimized placements of the diffusion encoding gradient directions.

Third, at low numbers of gradient directions (<9), both mean A9 and RMS AFA 

dramatically depart from the noise-dominated behavior. Finally, depending on the 

reduction factor R used and the DTI parameter being measured, the proposed model- 

based compressed sensing scheme can achieve performances that are equivalent to a 

longer DTI experiment using a higher number of gradient directions. Specifically, instead 

of a DTI experiment using fully sampled diffusion-weighted images encoded in 12 

gradient directions, using a nominal R = 2 to encode in 24 gradient directions in the same 

acquisition time, the proposed scheme would produce equivalent fiber orientation 

accuracy that is otherwise achievable by a longer DTI scan using 16 gradient directions. 

In the case of FA mapping, the accuracy is equivalent to using 20 gradient directions. 

Similarly, instead of a six-direction fully sampled DTI acquisition, using a nominal R = 4



to encode in 24 gradient directions, the proposed model-based approach would produce 

equivalent fiber orientation and FA mapping accuracy of six- and nine-direction fully 

sampled DTI experiments, respectively.

3.6 Discussion

The results from this study show that the proposed model-based compressed sensing 

approach for DTI was generally more accurate and produces less blurring than spatial TV 

compressed sensing and iterative asymmetrical reconstruction methods. Also, the 

proposed method was better for fiber orientation and FA estimation than either the lower 

resolution or fewer direction control experiments of equal scan time, as seen in Fig. 3.6. 

These trends are shown quantitatively in Tables 3.1 and 3.2, and are statistically 

significant (Fig. 3.7). Combined, these results demonstrate the validity of the proposed 

approach for accelerating DTI, obtaining more accurate DTI, or a combination of both.

One possible exception to the relative performance of the proposed scheme was in the 

AMD metric when compared with the fewer direction control case, where the deviation

7 7 2of the former was about twice that of the latter (1.09 x 10' vs. 0.57 x 10' cm /s, for R = 

2). It is noted that both AMD values represent only 1-2% deviation from the actual MD 

value for the entire specimen (0.58 x 10-5 cm2/s). In contrast, the percentages of AFA 

values of the same schemes (3.22 x 10-2 and 4.35 x 10-2) were an order of magnitude 

larger, or about 15% of the whole-specimen FA (0.26). Moreover, unlike all other 

schemes examined, the fewer direction scheme was based on datasets that were unaltered 

image subsets of the gold standard. The overlap of image data would have made not only 

the AMD error but also the AFA error artificially lower than its true value, but the effect

75



was less apparent because of the larger error associated with AFA. Combined, the 

observed AMDs for the fewer direction control scheme as seen in Figs. 3.5 and 3.6 and 

Tables 3.1 and 3.2 were likely artificial underestimations of already low deviation values.

The data undersampling and scan time savings afforded by the model-based 

reconstruction can be exploited to include more DTI diffusion encoding gradient 

directions. Typically, DTI using more encoding directions is better than simply signal 

averaging in the same directions, especially when the number of directions used is 

relatively low [44]. The proposed compressed sensing technique in effect allows more 

DTI encoding directions to be used without requiring a proportional increase in the scan 

time. A second factor that contributed to the performance of the proposed approach was 

in its use of model-based reconstruction, where fewer parameters were involved in the 

estimation. When the model-based DTI estimation was applied to the nonundersampled 

test datasets (data not shown), the mean A9 and RMS AFA performance metrics improved 

from 3.23° and 3.01 x 10-2 to 2.77° and 2.48 x 10-2, respectively. Although spatial 

smoothing, such as in the case of lower resolution scans, can produce artificially 

improved metrics, it is unlikely that the model-based compressed sensing method added 

smoothing, since a very low weighting factor a = 0.00025 was used for the spatial TV 

constraint in Eq. (3.7). As well, in Fig. 3.4, the model-based result contained little or no 

evidence of blurring.

Practical implications of the current work for designing DTI acquisition schemes can 

be extrapolated from the results summarized in Fig. 3.8. With either R = 2 or 4 

undersampling, the proposed approach was equivalent to fully sampled DTI scans using 

1.33 (8/6 for R = 4 or 16/12 for R = 2) times more encoding directions, in terms of the
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required scan time and the performance in fiber orientation mapping. For FA mapping, 

the equivalence factors were even greater, 1.5 (or 9/6) and 1.67 (or 20/12) at R = 4 and R 

= 2, respectively. On the one hand, for acquisitions designed to improve the accuracy of 

DTI measurements for given scan times, these factors readily provide estimates of the 

improvements that can be practically realized. On the other hand, for experiments aimed 

at shortening the scan time while preserving the measurement accuracy, these factors 

provide a basis to reduce the DTI scan time. For example, to measure FA, a fully sampled 

DTI scan using 20 encoding directions can be replaced with one that uses 24 directions 

with R = 2 compressed sensing, which could be obtained in only 62% of the required 

scan time (including the b0 scan).

It should be noted that the acquisition efficiency improvement factors were 

determined in the current work for the particular 3D spin-echo DTI experiment chosen. 

Although improvements are also expected when the proposed approach is applied to 

other DTI studies, the specific gains will necessarily depend on the nature and settings of 

the experiments, including but not limited to the sample being imaged, pulse sequence, 

and the diffusion encoding gradient direction set used. Moreover, improvements in the 

implementation of the reconstruction framework may lead to further performance gain. 

For example, in the current study, the phase term, 0 n in Eq. (3.5), was estimated based on 

low-pass-filtered central k-space data. When phase maps were obtained from fully 

sampled k-space data (results not shown), which represent idealized estimates of 0 n, the 

performance metrics mean A9, RMS AFA, and RMS AMD improved by ~20% to 3.43 ± 

0.06°, 2.85 ± 0.07 x 10-2 and 1.00 ± 0.01 x 10-7 cm2/s for the R = 2 case.

In this work, the proposed method was demonstrated for the case of uniform RF coil
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sensitivity (e.g., when imaging is performed using a single coil). The proposed approach 

can be easily extended for multicoil parallel imaging [45], [46] by adding a coil 

sensitivity term, q , to Eq. (3.1) and summing over all coils, L,

Similarly, the model-based approach can be extended to deal with other MRI 

corrections, such as eddy current distortion or T2 blurring in fast spin-echo or T2* 

blurring in echo-planar imaging, by adding these terms to the signal model in Eq. (3.3). 

This would require acquisition of additional data to determine a T2* map, for example. 

Application of the model-based algorithm to echo-planar imaging could increase SNR by 

shortening TE, but would not significantly shorten acquisition time. Although currently 

demonstrated only for 3D spin-echo DTI experiments, the proposed model-based 

compressed sensing reconstruction methodology can potentially serve as a framework to 

improve other diffusion-based characterizations of ordered tissues such as those 

involving higher-order tensor representations [47], [48] for resolving crossing fibers or 

rapid acquisition techniques using fast spin-echo, echo-planar, or multicoil parallel 

imaging. These extensions, which will necessarily involve additional technical 

considerations, are beyond the scope of the current study.

The present study demonstrated a model-based compressed sensing reconstruction 

approach for undersampled DTI k-space data acquired using a spin-echo readout. The 

methodology can be applied to enhance the acquisition efficiency of 3D spin-echo DTI, 

including shortening the overall scan time, improving the measurement accuracy, or a

(3.9)

3.7 Conclusion



combination of both. The performances of the proposed approach in fiber orientation, FA, 

and MD mapping were quantified, which serve as practical guides for applying to other 

DTI experiments. The model-based method was shown to outperform asymmetrical and 

compressed sensing reconstructions and using lower resolution or fewer diffusion 

directions to accelerate acquisition. Beyond 3D spin-echo DTI, with additional work, the 

current methodology can potentially be extended to fast spin-echo or echo-planar 

imaging acquisitions, or higher order DTI.
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3.8 Appendix

The derivative of the cost function in Eq. (3.1) with respect to the diffusion tensor, D, 

is derived in this appendix. The derivative of the fidelity term

N
" (3.10)S(D; 1 )  =  ^ \\F(D,n) -  dr

n = l

will be demonstrated first, modeled after the derivation presented in [39]. The first step is 

to expand the L2-norm

S(D; ^  ^  ||F(D , n ) -  dn \\! =  ^  ^ ( f } ( D ,  n ) -  djn){F^D, n) -  djn)
n=! n=l ! (3.11)N v ’

= ^  ^  Fj (D, n) Fj(D, n) +  djn djn — djnFj{D, n ) — djn Fj(D, ri)
n = 1 j

where (0  is the complex conjugate. The derivative can be taken in a generalized sense for 

the diffusion tensor, D, at a spatial location, xa, such that

dS^D; ^   ̂ ^ ^ ^  i Trm— T ^

n = !  j

x =  /  /  Fj(D,n) „ Fj(D,n) + F^D,n) n  ■, Fj(D,n) 
dDs(xa) Z_. Z_. j dDs(xa) J J dDs(xa) J (3.12)

d»  dD,(x„) F' (D ' n ) d>" dDs(xa) n)
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N

n = l  j

+ {Fj(.D>n ) d j "  qq  ^   ̂Fj(D, n)

N d 
=  ^  ^ { F j ( D , n )  -  d j n )  d D s ^ j  F j ( D ,  n )

n = l  j

+ n) dj"  ^  ^Fj(D, n)
N

=  ^  ^  2 R e a l[ (Fj(D, n) -  djn) dD ^   ̂Fj(D,n)J
n = l  j

Therefore, the general derivative can be found by inputting the derivative of the complex 

conjugate of Eq. (3.5) at xa

N
9g p ^ ^ 2  R ea l[(F j(D ,n ) -  djn )  ( - W n(k})  • b • (.gng Tn)s • I0( x J

S !  n = !  j

• e-bgnD(xa) gn • Q-i^n&a) • e!

N
=  - 2b ^ (g ng Tn) s • I0( x J  • e ~b^ D ^n

(3.13)

n = l

Real (Fj(D,n) -  djn) e ! ! “ ! !

Next, the derivative of the TV term, Eq. (3.6), is derived. The first step is to express 

Eq. (3.6) in the continuous case

N N  _____________________
7V(D) =  JJ Vmn\dy dz =  JJ  ^  J ( m j |  +  ( m j ! dy  dz  (3.14)

n = !  n = !

where

( ™ n )  y

dm n
dy

(3.15)
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and mn is the DTI signal intensity expressed in Eq. (3.3). Next, a new function is defined 

by examining one spatial location, xa,

N __________________________________
( (™n( y - (™ n (x j)  J  =  ^  J ( m n(x j ) !  +  (m n ( x j ) J  (316)

n = l

The Euler-Lagrange equation states that

dU d dU d dU
=  0

dm n(xa) dy d (m n( x j ) y dz  d (m n(xa) ) z (317)
dU _  d dU d dU

d m ^ x j  ~  dy  d (m n (xa) ) y +  dz  d (m n (xa) ) z

The derivative with respect to the diffusion tensor parameters at xa in a general sense 

is desired, therefore, the derivative with respect to Ds(xa) can be found using the chain 

rule on the above expression

dU dm n(xa) ( d dU d dU ^  dm n(xa)
dm n(xa) dDs(xa) U y  d(m n(xaj ) y dz  d (m n (xa))  1 dDs(xa)

( y (318)
d dU d dU \  dm n(xa)

dy d (m n(xaj ) y +  dz  d (m n (xa))  J  dDs( x J

The previous expression can be found to be

(™n( x j )
'y

J ( m n( x j )  ̂  +  (m n( x j )  

(m n( x j )  7

(3.19)

(  b ( .d n  9 n )  s ̂ n C ^ a ) )

J ( m n( x j )  !  +  (m n ( x j ) !

Therefore, the generalized derivative of the total variation term can be expressed as
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dTV( D)
b (< 9 n 9 n )s ^ n ( ^ a )  I

d (™ n( * j )  y

dDs{ xa)

(mn( * a ))!  +  (™n( * j )  J +  P2

where b is introduced to avoid singularities in the calculation. The product rule needs to 

be carried out on the above expression to be implemented in the discrete case since m n is 

a function of I0(x,y, z) and D(x, y, z) . This is not shown explicitly. The overall 

expression for the derivative of the cost function can be found by combining the results 

of Eqs. (3.13) and (3.20):

/
bglDgnReal, e-i0n ^ n )

V

J
(3.21)

Q n 9 n )  s TW-n
5 y V  ( M n )  y +  ( ™ n )  1 +  P 2

d f  (mn)y
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CHAPTER 4

HIGHER-ORDER MOTION-COMPENSATION FOR IN VIVO CARDIAC 

DIFFUSION TENSOR IMAGING IN RATS2

4.1 Abstract

Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and 

diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high- 

performance gradient sets are currently not available. Even with velocity compensation 

via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion- 

induced spin phase can still give rise to pronounced artifacts. This study presents 

diffusion-encoding schemes that are designed to compensate for higher-order motion 

components, including acceleration and jerk, which also have the desirable practical 

features of minimal TEs and high achievable b-values. The effectiveness of these 

schemes was verified numerically on a realistic beating heart phantom, and demonstrated 

empirically with in vivo cardiac diffusion M RI in rats. Compensation for acceleration, 

and lower motion components, was found to be both necessary and sufficient for 

obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the 

first in vivo cardiac DTI demonstrated in the rat. These findings suggest that

2 © 2015 IEEE. Reprinted, with permission, from Christopher Lee Welsh, Edward V.R. 
DiBella, and Edward W. Hsu. Higher-Order Motion-Compensation for In Vivo Cardiac 
Diffusion Tensor Imaging in Rats. IEEE Transactions on Medical Imaging. DOI 
10.1109/TMI.2015.2411571.



compensation for higher order motion, particularly acceleration, can be an effective 

alternative solution to high-performance gradient hardware for improving in vivo cardiac 

DTI.

4.2 Introduction

Cardiac diffusion tensor imaging (DTI) [1]-[3] is increasingly used for noninvasive 

or nondestructive characterization of myocardial microstructure and myofiber orientation 

in both normal and diseased hearts. DTI data of normal hearts have been incorporated 

into morphologically accurate computational modeling to better understand their 

electrophysiology [4], [5] and mechanics [6], [7]. In diseased hearts, alterations in the 

myocardial microstructure and fiber orientation have resulted in DTI-detectable changes. 

For example, while the average magnitude of diffusion increased, the fractional 

anisotropy (FA), which is a metric for the degree of diffusion anisotropy, was found to 

decrease in regions of myocardial infarction [8]-[10]. Fiber disarray, which is manifested 

by increased local heterogeneity of DTI directional parameters, has been reported in 

cases of myocardial infarction [11], [12] and heart failure [13], [14]. These studies 

demonstrate that DTI can be a useful alternative or adjunct to current MRI evaluations for 

providing unique imaging biomarkers for the diagnosis, staging and monitoring under 

therapy of cardiac diseases.

The ability to perform in vivo DTI for conducting longitudinal observations is highly 

desirable, especially for evaluating the progression of diseases. However, most cardiac 

DTI studies reported to date have been on ex vivo specimens [15]-[18], or arrested 

Langendorff perfused hearts [19]-[21], largely due to the technical challenges presented
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by the relatively large bulk motion of the beating heart for DTI, which quantifies the 

microscopic random translational motion of water. Nevertheless, in vivo diffusion MRI or 

DTI in humans has been shown feasible [22]-[24]. Techniques employed to reduce the 

effects of cardiac bulk motion for in vivo cardiac DTI in humans have included using 

bipolar diffusion-encoding gradient pulses [3], [25], [26], stimulated echoes (STEAM) 

over two cardiac cycles [27], [28] in conjunction with acquisition during quiescent phases 

of the cardiac cycle, or single-shot acquisition with navigator-based gating [29].

Due to their frequent use in preclinical research, the ability to perform in vivo cardiac 

DTI in small animals is also highly desirable. To date, although feasibility has been 

demonstrated for the mouse [12], [30], in vivo cardiac DTI remains elusive or at best sub- 

optimal for other small animal species such as the rat and rabbit, which are also important 

research models of cardiac diseases [31], [32]. The difficulty in extending the success of 

in vivo cardiac DTI in humans to small animals is likely related to the demands imposed 

by the unique physiology of the animals. For example, the heart rates in small animals are 

typically much higher than humans (~300 vs. ~60 bpm), and their hearts are constantly in 

motion, with relatively little quiescent phase. The impacts of the cardiac motion can be 

partially remedied by using very short duration pulses afforded by ultra-high performance 

gradients to achieve the necessary diffusion sensitization. Indeed, in vivo cardiac DTI in 

the mouse was reported [30] using bipolar diffusion encoding gradients with hardware 

that was capable of 1500 mT/m peak amplitude. However, the small inner diameters of 

ultra-high performance gradient sets (6 cm for the Bruker BGA-6S) preclude their 

deployment on larger animals, such as adult rats.

Diffusion MRI or DTI using larger-diameter, relatively lower-performance gradient
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sets (those with 600 mT/m peak amplitude, for example) on the live rat heart has so far 

been unsatisfactory, even when bipolar diffusion pulses are used. Diffusion-weighted 

images obtained as part of the current study have shown that different locations in the 

myocardium suffer varying degrees of signal dropout, depending on the diffusion 

encoding direction, cardiac cycle time point, and positioning of the animal. These clues 

suggest that bulk motion remains a source of complication even with the lower heart rate 

associated with the rat (compared to the mouse). To better understand the nature of the 

problem, and to develop effective solutions, a precise knowledge of the intricate interplay 

between the animal cardiac motion and diffusion sensitization is necessary.

The primary goals of this work are to design and evaluate the effectiveness of more 

robust motion-compensated gradient waveforms for in vivo diffusion encoding in small 

animals. Specifically, diffusion-encoding schemes capable of compensating for higher- 

order motion (acceleration and jerk) are presented. The effectiveness of the proposed 

methods is evaluated by both numerical simulation and experimental demonstration. 

Although the current work centers on the rat, the findings are expected to be applicable to 

other small animal species where physiologic motion and gradient performance are the 

limiting factors for in vivo cardiac diffusion MRI.

Underscoring the need for better motion compensation, a bSSFP sequence employing 

four pairs of bipolar encoding pulses to compensate for acceleration in a twice-refocused 

spin echo preparation was recently used to obtain diffusivity maps in humans [33]. In 

contrast, the current work presents a generalized strategy for achieving higher order 

(acceleration and beyond) motion compensation that is also suited for DTI and uses the 

minimum number of diffusion-encoding pulses for maximum diffusion weighting, which
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is important for applications in small animals with much faster heart rates.

4.3 Theory

4.3.1 Gradient Moment Nulling

Signal acquisition in M RI largely records the time-evolution of the spin phase that 

results from the interaction between the spin location and applied gradient waveform, 

commonly written as,

where y is the gyromagnetic ratio, and G and r are the gradient waveform and spin 

displacement vectors, respectively. By performing a power series expansion on the 

displacement vector, the dependence of the spin phase on the individual motion 

components (such as position r0, velocity v0) and gradient moments (such as zeroth 

moment m0, first moment m1 and higher orders) can be explicitly described [34],

Having motion-induced spin phase in and of itself does not necessarily result in motion 

artifacts. Rather, it is the intra-voxel dispersion in highly heterogeneous motion [35] or 

shot-to-shot variation of the spin phase in a multi-shot acquisition (introduced by 

physiologic R-R fluctuation, for example) that gives rise to motion artifacts [36]. Due to

0 ( 0  =  y f j  G (t) ■ r ( r ) dx, (4.1)

(4.2)

the large gradient moments, and consequently spin phases, associated with the encoding
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pulses used, diffusion MRI is extremely prone to motion artifacts.

Since neither perfectly reproducible motion nor elimination of motion is practically 

feasible for in vivo imaging, an alternative approach is to employ gradient waveforms that 

have nulled moments, usually by incorporating additional gradient pulses that 

mathematically pose as constraining criteria of corresponding moments to compensate for 

the different motion components. Such gradient-moment nulling (GMN) methods [37]-

[39] have long been used to eliminate the artifacts due to blood flow and pulsatile motion 

in the body. More recently, bipolar gradient pulses placed on either side of the spin echo 

refocusing RF pulse have been used for velocity compensation during diffusion-encoding 

in human cardiac DTI [26]. Although the general framework of GMN provides a 

mechanism to compensate for any number of motion terms, in practice most pulse 

sequences compensate for only the lowest components, such as velocity, which dominate 

physiologic motion.

4.3.2 Higher-Order Motion Compensation

When lower order motion compensation is not sufficient, methodologies also exist to 

modify the waveforms to achieve higher order compensation. One approach is the 

binomial expansion method [38], which takes advantage of the properties of the gradient 

moment integral in Eq. (4.2) and successively adds inverted replicas of the gradient 

waveform immediately adjacent to the original waveforms for compensating 

progressively higher order motion. This method is the basis for using a pair of bipolar 

gradient pulses (as opposed to the conventionally used monopolar pulsed gradient) to 

compensate for velocity [26], and four pairs of bipolar pulses to compensate for
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acceleration [33]. (In the current work, compensation for a specific motion component 

(such as acceleration) implies concurrent compensation for lower-order components 

(position and velocity), unless otherwise specified.) Although elegant in its simplicity, 

GMN via binomial expansion of the gradient pulses has two practical limitations. First, 

for each successive order of motion compensation, the required number of gradient 

pulses is doubled, which has adverse implications for the TE and achievable diffusion- 

weighting b-value (when pulse duration is shortened to preserve the TE). Second, the 

method works only when the gradient timings (pulse widths and separations) are fixed, 

and does not apply to higher order motion compensation when, for example, extra timing 

delay between gradient waveform replicas is needed. There are several instances of 

timing changes in the gradient waveform when binomial expansion cannot be applied

[38].

4.3.3 Novel Designs of Practical Higher Order Motion Compensated 
Diffusion Pulses

Since rapid inversions of the spin phase reduce the diffusion encoding b-value, to be 

practical, higher order motion compensated diffusion encoding gradient waveforms must 

utilize fewer but longer gradient pulses to simultaneously minimize the TE and maximize 

the level of diffusion encoding. In the present work, optimal motion-compensated spin- 

echo diffusion encoding waveforms consist of a minimum and equal number of gradient 

pulses placed on either side of the refocusing RF pulse. (The timing of the waveform 

need not be symmetrical about the RF pulse.) In order to null up to the second moment 

and achieve the desired b-value, diffusion-encoding waveforms that compensate for 

acceleration should consist of a minimum of four alternating pulses, as shown in Fig. 4.1a
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Figure 4.1: Spin-echo diffusion-encoding schemes for higher-order motion compensation. 
Gradient waveforms using practical trapezoidal pulses that compensate for acceleration 
(a) and jerk (b) are shown, with amplitude and timing labeling indicated for reference in 
the text.

for equal-duration trapezoidal encoding pulses. A more straightforward approach could 

be to use binomial expansion, as detailed in the previous section, but six diffusion- 

encoding gradient pulses would be necessary to compensate up to acceleration, increasing 

the diffusion time required for a specific b-value. For the indicated timing variables in 

Fig. 4.1a and solving the system of analytical equations for nulling the zeroth, first, and 

second moments of the waveform, as formulated in Eq. (4.2), a novel expression that 

relates the gradient amplitudes can be obtained,

G2 = G1 (A + 8 ) /(A -  5), (4 3)

where A is the separation between the leading edges of the first and third diffusion pulses 

and 5 is the duration of a single diffusion pulse. Denoting the gradient ramp time with t , 

the gradient amplitude and timing settings would correspond to a diffusion-encoding b- 

value of

b = y 2Gi(20A2S3 -  30A28 2r  -  5A2St2 + 16A2t3 -
40 5 5 +  9054t  -  65 5 3r 2 +  1652r 3) / ( 1 5 {A + 5) ! ). (4 4)

Alternatively, to reach a desired b-value, the required gradient amplitudes can be

obtained by,



G1 =  ( (1 5 K ^  -  5 )2) / r 2(2 0 ^25 3 -  30^25 2r  -  5A28 t2 
+  16^2r 3 -  40 5 5 +  9054t  -  6583t 2 +  1652r 3) ) A(1 /2 ), (45)

G2 =  ((15b(d +  8 )2) / y ! (20A 28 3 -  30^25 2r -  5^2S t 2 
+  16^2r 3 -  40 5 5 +  9054r  -  6553t2 +  1652r 3) ) A(1 /2 ). (46)

Since the unequal G1 and G2 amplitudes mean that the spins are not completely 

refocused before the refocusing RF pulse, crusher gradient pulses, which would add to 

the minimum TE, are not needed.

Following the same design procedures, practical jerk-compensated diffusion- 

encoding schemes require six total gradient pulses, as shown in Fig. 4.1b. The required 

gradient pulse amplitude relationships are given by,

G2 =  G!(2A)/(A -  5), (4 .7)

G3 = G2 -  Gt , (48)

where G1, G2, and G3 are depicted in Fig. 4.1b. The corresponding b-value is specified 

by
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b = y 2G!(30A2S 3 -  30^25 2r  -  45A2St2 + 48A2r 3 +
5055 -  9054t  +  2553r 2 +  16S2t 3) / ( 6 0 ^ 2).

Similarly, to achieve the desired b-value, the required gradient amplitudes were,

(4.9)

G1 =  ( (1 5 K ^  -  5 )2) /Y 2(3 0 ^25 3 -  30 ^25 2t  -  45A28x2 
+  48A2t 3 +  5055 -  9054t  +  25 5 3r 2 +  1652r 3) ) A(1 /2 ), (410)

G2 =  ((60A2) / y 2(3 0 ^25 3 -  30^25 2r  -  4 5 ^2St2 
+  48A2t 3 +  5055 -  9054t  +  25 5 3r 2 +  1652r 3) ) A(1 /2 ), (411)

G3 =  ((15fc(4 +  5 )2) /Y ! (30A28 3 -  30^25 2t  -  4 5 ^25 r 2 
+  48A2t 3 +  5055 -  9054t  +  25 5 3r 2 +  1652r 3) ) A(1 /2 ). (4.12)

Since the gradient waveform has nulled zeroth moment at its halfway point, in other 

words the sum of G1, G2, and G3 is zero, crusher gradient pulses will be needed. Again, 

binomial expansion could be used to design a jerk-compensated sequence, but a total of
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ten diffusion-encoding gradient pulses would be necessary, increasing the diffusion time 

required for a specific b-value.

Although not investigated in the current study, the aforementioned methodology will 

also apply for designing diffusion gradient encoding waveforms that compensate for 

motion beyond jerk.

4.4 Methods

The effectiveness of the acceleration- and jerk-compensated diffusion encoding 

waveforms that were designed with the procedure in Section 4.3 was evaluated via both 

simulations on a numerical beating heart phantom and in live rats.

4.4.1 Numerical Testing

4.4.1.1 Realistic Numerical Beating Heart Phantom

To create a realistic beating heart model needed for subsequent motion sensitivity 

analysis, MRI was performed on a healthy, male Sprague-Dawley rat (350 g weight) 

using protocols approved by the University of Utah Institutional Animal Care and Use 

Committee in accordance to the Guide for the Care and Use of Laboratory Animals 

issued by the US National Institutes of Health (NIH Publication No. 85-23, rev. 1996). 

The animal was first anesthetized with 3.5% isoflurane in pure O2 (3.0 L/min). The 

animal’s vital signs, including heart and respiratory rate, blood oxygenation level, and 

rectal temperature, were continuously monitored and used to adjust the level of 

anesthesia when needed. A Bruker Biospec 70/30 instrument (Bruker Biospin, Billerica, 

MA) equipped with a 600 mT/m gradient set (BGA-12S) was used to acquire high-



temporal resolution, short- and long-axis 2D FLASH-CINE images (7.73/2.8 ms TR/TE, 

192 x 192 matrix size, 6.0 x 6.0 cm2 FOV, 3.0 mm slice thickness) in the mid-ventricular 

and four-chamber planes over the cardiac cycle (27 frames, 208 ms average R-R).

To create the numerical beating heart phantom, the inner and outer diameters and 

long-axis lengths of the left ventricular myocardium were measured frame-by-frame on 

the FLASH-CINE images (see Fig. 4.2), similar to the procedures described in [26]. In 

addition, the translation of the LV in the long-axis was measured by tracking the 

midpoint of the base and apex throughout the cardiac cycle in order to incorporate 

through-plane motion into the model. These measurements were smoothed using a 16th 

order Butterworth filter to reduce numerical artifacts arising from inconsistencies of 

manual ventricular wall tracking. To capture the torsional motion of the beating left 

ventricle, a rotational component -  linearly increasing to 10° at end-systole and 

decreasing back to 0° at end-diastole -  was imposed. The left ventricular diameters and 

lengths were used to define the major and minor axes of a prolate spheroid, while the 

longitudinal component shifted the center of the spheroid, allowing it to move through 

the imaging plane. The prolate spheroidal components, along with the rotational 

component, were then linearly interpolated over time and used to construct a 3D 

numerical motion phantom of the beating left ventricle, which allowed motion profiles at 

any given location in the numerical phantom, during an arbitrary time period of the 

cardiac cycle, to be computed. A static “chest wall” was added next to the beating heart 

to provide a stationary reference in the subsequent motion sensitivity simulations. 

Subsequently, short-axis slices were simulated with the same in-plane resolution (0.35 x 

0.35 mm2), slice thickness (3mm), and matrix size (128 x 128) as the in vivo experiments
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Figure 4.2: Creation of the 3D numerical motion phantom. FLASH-cine images obtained 
at specified readout delays (RD) in the short- (a) and long- axis (not shown) from which 
the inner and outer diameters (b) and lengths (c) of the left ventricular myocardial walls 
were measured. From these measurements, along with components of longitudinal 
translation (d) and linear in-plane rotation (e), a prolate spheroid representing the left 
ventricle was created, with an added stationary object to simulate the chest wall. 
Displacement profiles with respect to the first frame of the CINE acquisition are 
superimposed on simulated short-axis slices of the numerical motion phantom in (f).
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presented in a later section (see Section 4.3.2).

4.4.1.2 Gradient Waveform Motion Sensitivity Characterization

As a metric for evaluating the effectiveness of the gradient waveforms for motion 

compensation, images of the numerical motion phantom were generated via a two-step 

process that included first computing the spin phase induced by the diffusion-sensitive 

waveform, GD, in the presence of motion, followed by using the MRI signal equation to 

simulate artifacts due to motion. Without loss of generality, spin echo images, where each 

line of the k-space was obtained independently, were simulated. The spin echo 

acquisition, which was prone to shot-to-shot phase variation, was selected as a rigorous 

test of the proposed schemes and to isolate motion artifacts from other confounding 

issues, such as image distortion present in EPI.

To estimate the motion-induced spin phase for each voxel location (x, y ) under the 

diffusion gradient waveform GD, Eq. (4.1) was modified to,

0 rd O , y ) =  Yf!"_T Gd (t  -  (RD -  T )  ■ r(x, y, t ) dt, (4.13)

to account for the gradient waveform length T and the cardiac cycle time point. The latter 

was represented by the readout delay RD, or the time between the ECG R-wave and the 

start of the MRI readout pulse, which was done so waveforms of different lengths would 

yield similar LV images.

The computed motion-induced spin phase was then incorporated into standard MRI 

signal equation according to

Srd (m, n) =  J J  pRD(x, y)exp (—iy[ mAtGxx +

rnAGyy]) exp(—i $ RD(x ,y ))  dxdy, (414)



where pRD is the proton density at the specified RD during the cardiac cycle defined by 

the 3D motion phantom, At is the readout sampling period, Gx is the gradient amplitude 

of the readout pulse, t  is the phase encoding pulse duration, AGy is the phase encoding 

gradient step, and m and n are the readout and phase encoding indices, respectively.

Due to differences in their nature, motion artifacts due to intravoxel phase dispersion 

and shot-to-shot phase modulation in a multi-shot acquisition were simulated separately. 

Intravoxel phase dispersion was obtained by creating pRD and 0 RD maps at a higher 

spatial resolution, but cropping out the corresponding outer k-space before reconstructing 

the images, similar to what was done in [35]. Shot-to-shot variability of the spin phase 

was achieved by randomizing the RD in (4.13) and (4.14) with the specified Gaussian 

standard deviation around the nominal mean, to mimic the effects of physiologic 

fluctuations of the cardiac R-R interval or errors in identifying the R-wave due to a noisy 

ECG signal. Since the contribution of the imaging gradient pulses to the overall phase 

were two orders of magnitude less than the contribution from diffusion encoding, 0 RD is 

assumed to be constant during a given readout and is recalculated and randomized for 

each phase encoding step when the diffusion encoding is repeated.

For simplicity, signal loss due to diffusion and T2 relaxation was excluded in all 

simulations.

4.4.1.3 Performance Evaluation

To assess the effectiveness of the proposed acceleration- and jerk-compensation 

schemes, images were generated via the aforementioned procedures and waveforms 

designed in Part II, and compared to those obtained using conventional non-compensated
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(mono-polar pulses) and velocity-compensated (bipolar pulses) diffusion waveforms. The 

diffusion-encoding waveforms were implemented with their shortest possible length T, as 

would be done in practice, to achieve the same b-value of 350 s/mm2 using 400 mT/m 

peak gradient amplitude and 280 p,s gradient ramp time. These settings corresponded to 

an individual gradient pulse width 5 of 2.88, 2.87, 3.76 and 3.76 ms, and separation time 

A of 5.4, 10.04, 11.83 and 16.15 ms for the uncompensated, velocity-, acceleration-, and 

jerk-compensated waveforms, respectively.

Three separate numerical experiments were conducted to compare the performances 

of the diffusion encoding waveforms in compensating for the effects of each of (a) 

intravoxel phase dispersion due to different motion profiles at different cardiac cycle 

points, (b) shot-to-shot phase variability at different cardiac cycle points, (c) shot-to-shot 

phase variability as a function of the degree of the variability for a given cardiac cycle 

point.

In the first experiment, images were obtained at arbitrarily selected RD values of 60, 

90, 120 and 150 ms, which according to the motion profiles shown in Fig. 4.2, roughly 

corresponded to the cardiac cycle mid-systole, end-systole, beginning-diastole and end- 

diastole, respectively. No shot-to-shot variation was added, to simulate perfectly constant 

R-R interval and ideal gating. High-resolution prd and 0rd maps were generated at four- 

times the final image matrix size, or 512 x 512. Subsequently, 128 x 128 MR images 

were obtained from the corresponding central k-space.

In the second and third experiments, the spin phase within each voxel was considered 

constant to focus on the effects of shot-to-shot phase variation. To investigate the 

performance at different time points of the cardiac cycle, images (128 x 128 matrix size)
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were obtained for each diffusion-encoding waveform using the same nominal RD values 

as in the first experiment. Motion artifacts were introduced by adding to the nominal RD 

a small, random Gaussian-distributed variation of 5 ms standard deviation for each line of 

k-space. In contrast, the dependence of the performance on the degree of shot-to-shot 

variability was investigated by similarly generating images with the same nominal RD, 

90 ms, but different standard deviations, 1.0, 2.0, 5.0, and 7.5 ms, which were equivalent 

to 0.50%, 1.00%, 2.50%, and 3.75% of the actual R-R interval, respectively.

The root mean squared error (RMSE) between the numerical motion phantom and 

each of the simulated images was calculated for comparison.

4.4.2 In Vivo Imaging in Rats

Imaging experiments were performed in vivo to demonstrate the effectiveness of the 

three motion compensation schemes. Four male Sprague-Dawley rats (285 g ± 35 g) were 

prepared similarly to that described in Section III.A.1. The acceleration- (24 ms TE) and 

jerk-compensated (33 ms TE) schemes were each incorporated into a standard spin-echo 

sequence and used to obtain diffusion-weighted images (1500 ms TR, 128 x 128 matrix 

size, 0.35 x 0.35 x 3.0 mm3 voxel size, 4.48 x 4.48 cm2 FOV, 1 signal average, 350 

s/mm2 b-value, 280 p,s ramp time, 400 mT/m maximum gradient amplitude) encoded in 

three perpendicular directions (slice, readout and phase-encoding axes) on the animals 

(295 bpm average heart rate) with dual cardiac and respiratory gating. A readout delay of 

90 ms was selected to image the heart close to end-systole, which maximized the number 

of pixels obtained across the myocardium. The SNR was calculated in four quadrants of 

the LV myocardium and averaged for comparison between the acceleration- and jerk-
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compensated cases. Diffusion scans using monopolar (non-compensated, 13 ms TE) and 

bipolar (velocity compensated, 20 ms TE) encoding pulses were also acquired with the 

same acquisition parameters for comparison.

Because acceleration-compensation was found to provide the best tradeoff between 

motion sensitivity reduction and T2 relaxation loss, DTI was performed in the four rats 

utilizing acceleration-compensated diffusion scans with identical acquisition parameters 

as described above except that instead of 3 diffusion directions, an optimized set of 12 

gradient directions [40] was used. This required an average total scan time of 50 minutes 

for each DTI data set.

To investigate the impact of varying levels of motion compensation on DTI parameter 

maps, DTI data were acquired in two of the rats using velocity- and jerk-compensated 

diffusion encoding (during the same scanning session as the acceleration-compensated 

acquisition) utilizing the same acquisition parameters and 12 diffusion-encoding 

directions previously described.

To test the inter-animal reproducibility of acceleration-compensated DTI, eight 

additional rats (275 g ± 16 g, 307 bpm average heart rate) were imaged with acceleration- 

compensated DTI for a total of n = 12 rats (including the previous experiments). Maps of 

DTI parameters, including myofiber helix angle, fractional anisotropy, and mean 

diffusivity, were derived from diffusion-weighted images via standard methods as 

described previously [41].
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4.5 Results

The results of the numerical experiment on the effectiveness of various degrees of 

motion compensation are presented here. Figure 4.3 and Table 4.1 show the relative 

effectiveness of different degrees of motion compensation to intravoxel phase dispersion 

at different points of the cardiac cycle. Whereas the nonweighted case showed no signs of 

artifacts, the non-compensated case showed severe signal loss at all cardiac time points
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90 ± 0 ms  150 ± 0 ms

Figure 4.3: Effectiveness of intravoxel phase dispersion compensation at systole and 
diastole. Nonweighted and diffusion-weighted spin echo magnitude and phase images of 
the beating heart phantom were numerically obtained with varying degrees of 
compensation for intravoxel phase dispersion at the specified readout RD values 
representing different points of the cardiac cycle. Diffusion was encoded in the image 
readout (horizontal) axis.
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Table 4.1. Mean error in the presence of intravoxel phase dispersion.

RD

Scheme

60 ±  0 ms 90 ±  0 ms 120 ±  0 ms 150 ±  0 ms

Nonweighted 0.121 0.111 0.120 0.126
No Comp 0.793 0.309 0.453 0.826
Velocity 0.120 0.106 0.115 0.124

Acceleration 0.121 0.110 0.120 0.126
Jerk 0.121 0.111 0.120 0.126

Entries correspond to the root mean squared error between the numerical phantom 
magnitude and the simulated image magnitude from various diffusion encoding 
schemes.

tested. These artifacts were largely consistent with the artifacts reported in [35]. The 

artifacts due to intravoxel phase dispersion were absent in the magnitude images 

produced from velocity-, acceleration-, and jerk-compensated diffusion encoding and the 

variation in image phase decreased with increasing motion compensation. The RMSE 

values reported in Table 4.1 are consistent with these observations, which suggest that the 

velocity-, acceleration-, and jerk-compensated diffusion encoding schemes sufficiently 

compensate for intravoxel phase dispersion for the defined motion model. The small 

differences between RMSE values for the velocity, acceleration, and jerk compensated 

cases are most likely due to the differences in diffusion encoding duration, T.

Figure 4.4 shows the sensitivity of the different diffusion schemes to shot-to-shot 

phase variation at the same time points of the cardiac cycle. The nonweighted images at 

all points of the cardiac cycle were largely free of artifact, except for the minor localized 

hypointense areas most apparent in the RD = 150 ms (end-diastole) image that were 

likely caused by the small variation in the proton density between shots, unrelated to 

motion-induced spin phase inconsistency. In contrast, encoding diffusion without motion 

compensation yielded pronounced familiar ghosting and streaking artifacts associated
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90 ± 5 ms 150 ±5  ms

Figure 4.4: Effectiveness of motion compensation at systole and diastole. Nonweighted 
and diffusion-weighted spin echo magnitude and phase images were numerically 
obtained similarly as in Fig. 4.3, except with the RD’s randomized with a fixed 5 ms 
Gaussian-distributed standard deviation about the indicated means to simulate motion 
artifact due to shot-to-shot phase variations.

with spin phase modulation along the image phase-encoding axis over the moving heart 

region, and not the static wall region. As expected, velocity compensation markedly 

improved the artifacts, but patches of signal loss and streaking and ghosting artifacts, 

signs of residual spin phase inconsistency, were still visible. Both uncompensated and 

velocity-compensated diffusion-weighted images showed differing severity of motion 

artifacts at different points of the cardiac cycle. For example, the uncompensated image at 

end-diastole showed the least amount of artifact, whereas velocity compensation



appeared best at mid-diastole (see Table 4.2), which suggests that different motion terms 

likely dominated the motion artifacts at different parts of the cardiac cycle. When 

acceleration-compensation was employed, the images obtained appeared nearly identical 

to those of the nonweighted images, indicating the effectiveness of motion compensation. 

The same applies to the jerk-compensated images, which were not noticeably better than 

acceleration-compensated images. The variation of image phase decreased with 

increasing motion compensation, with little difference between the acceleration- and jerk- 

compensated cases. Again, the RMSE values in Table 4.2 are consistent with these 

qualitative observations. The RMSE values of the acceleration- and jerk-compensated 

cases are similar to the nonweighted case, which suggests that the novel schemes 

sufficiently compensate for motion during diffusion encoding.

Figure 4.5 shows the magnitude images numerically obtained for different motion 

compensation schemes at a fixed nominal mean RD (90 ms) but with different levels of 

RD variability, for testing the robustness of the schemes to R-R fluctuations. Compared to 

the nonweighted images, when a RD standard deviation of 2.0 ms was used, only the 

uncompensated image showed significant motion-induced ghosting and streaking
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Table 4.2. Mean error in the presence of shot-to-shot phase variation.

RD

Scheme

60 ± 5 ms 90 ± 5 ms 120 ± 5 ms 150 ± 5 ms

Nonweighted 0.080 0.020 0.058 0.071
No Comp 0.651 0.613 0.633 0.250
Velocity 0.299 0.175 0.135 0.374

Acceleration 0.076 0.025 0.073 0.067
Jerk 0.080 0.020 0.058 0.071

Entries correspond to the root mean squared error between the numerical phantom 
magnitude and the simulated image magnitude from various diffusion encoding 
schemes.
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Figure 4.5: Effectiveness of motion compensation and cardiac cycle consistency. 
Magnitude and phase images were numerically obtained similarly as in Fig. 4.4, except 
with the same mean readout delay RD of 90 ms (end-systole) and varying degrees of 
gating consistency, represented by the specified standard deviation of the Gaussian 
distribution from which the shot-to-shot RD was randomly selected.

artifacts. As the RD standard deviation increased, so did the artifacts seen in the 

uncompensated and velocity-compensated cases, albeit in the latter the severity of the 

artifacts was visibly reduced. In comparison, acceleration- and jerk-compensated images 

showed no visible artifact, even at the largest RD standard deviation (7.5 ms). Similar 

patterns were observed in results obtained for other points of the cardiac cycle, or mean 

RD values, (not shown). The phase images did not change substantially as the variation in 

RD increased. The RMSE values in Table 4.3 support the previous observations, where
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Table 4.3. Mean error in the presence of shot-to-shot phase variation.

RD

Scheme

90 ± 1 ms 90 ± 2 ms 90 ± 5 ms 90 ± 7.5 ms

Nonweighted 0.004 0.006 0.020 0.023
No Comp 0.342 0.546 0.613 0.637
Velocity 0.020 0.045 0.175 0.252

Acceleration 0.005 0.007 0.025 0.025
Jerk 0.004 0.006 0.020 0.022

Entries correspond to the root mean squared error between the numerical phantom 
magnitude and the simulated image magnitude from various diffusion encoding 
schemes.

the error increased when variation in RD increased. Again, the acceleration- and jerk- 

compensated cases produced values close to the nonweighted case. Together, the findings 

in Figs. 4.3-4.5 and Tables 4.1-4.3 suggest that although velocity-only compensation may 

be sufficient when highly reproducible cardiac gating (within 1% of the R-R interval) is 

achievable, motion artifacts can be more reliably suppressed by employing higher order 

motion compensation.

Figure 4.6 shows representative diffusion-weighted images in three orthogonal 

encoding directions obtained with different levels of motion compensation on a live rat. 

The non-compensated results showed large patches of signal voids in the entire 

myocardium, similar to the effects of intravoxel phase dispersion seen in Fig. 4.3. In 

contrast, most of the myocardium was visible in the velocity-compensated images, 

although there were still regional areas of signal voids, possibly due to either, or the 

combination of, shot-to-shot phase variation (compare to Fig. 4.4) or residual intravoxel 

phase dispersion unaccounted by the simplistic motion model. The localized hypointense 

patches in the velocity-compensated images did not appear as symmetrical as they do in 

the simulation results in Figs. 4.3-4.5, which was likely due to the non-symmetry of the
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Figure 4.6: Diffusion-weighted images of the heart obtained on a live rat with various 
degrees of motion compensation. The images are obtained at the same cardiac short-axis 
location using diffusion encoding in the specified gradient axis and motion compensation 
scheme.

underlying cardiac kinematics [42]—[44] due to the positioning of the animal. When the 

animal is in the prone position, a higher degree of motion is likely to occur in the dorsal 

left ventricle away from the chest wall, which could result in more signal loss.

Both acceleration- and jerk-compensation yielded largely artifact-free images of the 

entire heart, again similar to Figs. 4.3-4.5. One notable difference between the numerical 

and in vivo images was in the jerk-compensated images, where the in vivo images showed 

visibly reduced intensity due to the prolonged TE necessary to accommodate the



additional compensating and crusher gradient pulses. This observation was supported by 

the quantified SNRs of the in vivo acceleration and jerk-compensated images, which were 

14.2, and 6.4, respectively. Consequently, acceleration compensation represented the 

optimal tradeoff between motion sensitivity reduction and T2 signal attenuation for 

practical imaging.

Finally, Fig. 4.7 shows myofiber helix angle, fractional anisotropy (FA), and mean 

diffusivity (MD) maps obtained from DTI using velocity-, acceleration-, and jerk-
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Figure 4.7: DTI images obtained on a live rat using velocity-, acceleration-, and jerk- 
compensated diffusion encoding in the same cardiac short-axis slice. The helix angle 
maps obtained from acceleration- and jerk-compensation exhibit the well-known 
transmural variation from positive to negative helix angles from the endo- to epicardium. 
However, the maps obtained from jerk-compensation are noisier due to the prolonged TE 
necessary to accommodate the additional moment nulling gradients. No smoothing was 
applied to these results.



compensated diffusion-weighted scans on a live rat. The helix angle map obtained from 

acceleration-compensated diffusion encoding demonstrates the distinctive rotation from 

positive to negative helix angles from the endo- to epicardium [45]. Although the results 

need to be validated, to the authors’ knowledge, they are the first demonstrated DTI maps 

obtained in live rats. The transmural rotation of the helix angle is also apparent in helix 

angle map derived from the jerk-compensated diffusion encoding. However, the lower 

SNR associated with the longer TE in the jerk-compensated case results in a noisier helix 

angle map and elevated FA, as expected [46]. The transmural rotation in velocity- 

compensated case is present in the ventral wall, but not in the dorsal wall where more 

motion is suspected. Figure 4.8 shows DTI parameter maps obtained in four more rats 

using acceleration compensation. The average MD and FA values over the LV in the 

acceleration-compensated case in the 12 rat hearts were found to be 1.44 ± 0.08 x 10"3 

mm2/s and 0.41 ± 0.05, respectively, which shows low inter-subject variability. These 

measurements are also in general agreement with values previously reported in 

Langendorff perfusion studies in the rat (1.01 ± 0.07 x 10"3 mm2/s and 0.34 ± 0.04) [47] 

and in vivo studies in the mouse (~1.2 x 10"3 mm2/s and ~0.29) [30], given the dissimilar 

experimental setup and species involved.

4.6 Discussion

Results of the motion sensitivity analysis (Figs. 4.3-4.5) reveal that previous attempts 

of in vivo diffusion MRI or DTI in the rat heart likely have been complicated by 

insufficient motion compensation of the monopolar or bipolar diffusion encoding 

gradient waveforms used. Both numerical verification and live animal experimentation

113



114

Helix Angle FA Mean Diffusivity

-90° 0° 90° 0 0.5 1.0 0 1 2 3
(x 10'3 mm2/s)

Figure 4.8: Unsmoothed DTI images obtained in four live rats. Again, the helix angle 
maps exhibit the distinctive counterclockwise transmural rotation of the myocardial fiber 
orientation. In contrast, fractional anisotropy and mean diffusivity maps show the scalar 
DTI properties to be relatively homogeneous in the short-axis slice.

demonstrate the feasibility of encoding diffusion while simultaneously reducing the 

sensitivity to higher-order motion via the proposed moment-nulled gradient waveforms. 

Although waveforms that compensate for progressively higher-order motion are 

accompanied by lower achievable b-values and longer TE, acceleration compensation is 

shown to provide the necessary and sufficient combination of diffusion encoding, motion 

sensitivity reduction, and SNR preservation for practical diffusion MRI. Overall, these
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findings are highly promising and pave the way for longitudinal evaluation of myocardial 

remodeling associated with maturation, disease progression, and recovery in the rat.

The implementation adopted in the current study, by combining gradient pulses of 

identical duration but different amplitude in a spin echo setting, is not meant to be 

unique. While the principle of motion compensation by gradient moment nulling remains 

the same, there exist alternative ways motion-compensated diffusion encoding can be 

realized in practice, depending on the specific criteria desired. For example, acceleration- 

compensated diffusion encoding can also be carried out by gradient pulses with the same 

peak amplitude (either positive or negative polarity) but different durations, as shown in 

Fig. 4.9, with the required gradient durations related by,

S2 = 51 (A -  x)/(A -  281 + t ) .  (4.15)

Under these timing conditions, the gradient waveform can achieve a b-value of

,  ,  o , (T2 -  +  2AS2 y  -  125f (A + t ) ! 
b =  y ! C ! ( «2 (4 +  r) + ------------- +2(^ +  2^ 2- T )! ---------------

5% (A +  t )2 {A +  3S2 ) S2t 2 49t 3 
(A + 2S 2 -  t ) 2 6  + ~60 3

t 2 ( t 2 — At +  2AS2 ) +  3 (A + t ) (2A + S2 + 2r)
3{A +  2S2 -  t) (416)

The expected main benefit of the implementation using peak-amplitude gradient pulses is 

its shorter TE, larger achievable b-value, or both. For instance, utilizing the 400 mT/m 

peak-amplitude gradients of the current study, the TE could be shortened by 2.45 ms for 

the same b-value of 350 s/mm2. Alternatively, the same 19.43 ms waveform length, T, 

would translate to an achievable b-value improvement of 66%, to 580 s/mm2.

Besides different gradient pulse specifications, the proposed diffusion encoding 

waveforms with higher-order motion compensation can also be alternatively
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Figure 4.9: Diagram of an alternative implementation of acceleration-compensated spin 
echo diffusion encoding using constant amplitude but variable width gradient pulses.

implemented using different pulse sequences instead of spin echo, like the case of 

double-gated stimulated echo for acceleration compensation shown in Fig. 4.10. Because 

the same relationships specified in Eqs. (4.3)-(4.6) also apply, and that the spins are not 

fully refocused prior to the magnetization restoring RF pulse, while there is the automatic 

50% signal loss, the main advantage of the stimulated echo implementation is the 

increased achievable b-value. Indeed, using the same diffusion-encoding gradient pulse 

amplitudes and durations (6), the longer pulse separation (A) afforded in the stimulated 

echo preparation would increase the b-value to 680 s/mm , nearly double of the 350 

s/mm2 attained in the current study via spin echo. Likewise, it is conceivable that the 

proposed higher-order motion compensation schemes could be adopted using, for 

example, echo-planar (EPI) acquisition to shorten the scan time.

Regardless of the means of implementation, the main potential pitfall of employing 

motion-compensated diffusion pulses in diffusion imaging or DTI is the reduced image 

SNR associated with the lengthened TE. Compensating for acceleration requires stronger, 

or longer duration, diffusion gradient pulses in order to achieve the same diffusion
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Figure 4.10: Diagram of an alternative implementation of acceleration-compensated, 
diffusion-weighted gradient pulses in a STEAM sequence for acquisition over two 
consecutive heartbeats.

weighting b-value when compared to using uncompensated or velocity-compensated 

diffusion encoding pulses. This may be problematic when a sufficiently strong gradient 

set is unavailable or when imaging tissues with short T2 relaxation. Even though 

acceleration-compensation performed the best in the current study, there likely remains a 

significant noise contribution in the resulting parameter maps. Advanced recon methods

[48] may be able to both speed acquisition and increase SNR. Finally, strong magnetic 

gradient pulses with alternating polarity, like those used here, are more prone to eddy 

current effects and concomitant magnetic fields. Phase errors from concomitant fields are 

easily eliminated by using a refocusing pulse, similar to the spin echo preparation used in 

the present study.

Logistical constraints restricted the current study to a single slice per animal. The 

long scan times resulting from the use of multi-shot spin echo acquisition also limited the 

study to one DTI set in the majority of the animals. Therefore, intra-subject repeatability 

was not directly evaluated. However, good repeatability is implied in the excellent inter-

Jt
90° 90°

I

90c



subject reproducibility observed in the tight standard deviations of global DTI 

parameters.

Lastly, it should be noted that, while the ability to compensate for higher-order 

motion in diffusion MR acquisitions is highly desirable and represents a significant step 

of advancement, it is only part of a nuanced approach required to accurately characterize 

the myocardial microstructure and fiber orientation via in vivo DTI. For example, tissue 

deformation, or strain, is known to skew MR diffusion measurements [49], [50], which 

require correcting [23], [27]. The impact on acceleration-compensated diffusion encoding 

remains to be investigated, but like the case of bipolar encoding gradient pulses [25],

[26], the partial refocusing of spins that occur during the proposed scheme is expected to 

at least partially reduce the errors caused by strain. Another potential physiology-induced 

complication that may need to be accounted for are the effects of perfusion on diffusion 

measurements [51]. Systematic examinations of these complicating factors are beyond 

the scope of the current study, but represent worthy areas of future research.

In conclusion, the present study employed the principles of gradient moment nulling 

and derived diffusion-encoding schemes that efficiently compensate for higher motion 

components, including acceleration and jerk. The effectiveness of the proposed diffusion- 

encoding schemes was evaluated via numerical verification on a realistic motion phantom 

of the rat heart, and empirical demonstration of cardiac diffusion MRI on live rats. 

Acceleration compensation was found to provide both the necessary and sufficient 

compromise among achievable b-value, motion sensitivity reduction, and SNR 

preservation for practical diffusion MRI in rats, for the given gradient hardware 

capabilities. The resulting sequence was used to demonstrate the first successful DTI
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myocardial fiber orientation and FA maps obtained in vivo in rats. These findings suggest 

that prospective compensation for acceleration, along with lower motion components, can 

be an effective alternative or adjunct to high-performance gradient hardware for 

improving in vivo cardiac DTI.
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CHAPTER 5

EVALUATION OF MYOCARDIAL RESTRUCTURING IN RATS 

WITH INDUCED ARTERIAL HYPERTENSION3

5.1 Introduction

The arrangement of myocardial fibers and sheets has important implications on the 

mechanical and electrical properties of the heart [1], [2]. For example, the helical 

arrangement of cardiac myofibers creates a twisting, or torsional, motion as the heart 

contracts, which efficiently ejects blood and reduces stress within the myocardial walls

[3]. Another study has shown that branching structures within cardiac tissue can produce 

slow conduction of electrical signals [4]. Cardiac pathologies have been shown to affect 

cardiac microstructure, which in turn affects the overall function of the heart [5], [6]. 

Being able to accurately characterize cardiac microstructure can be used to quantify 

damage due to pathology and tissue remodeling during treatment. In addition, cardiac 

microstructural information has been used to create accurate mechanical [7]-[9] and 

electrical [10]-[12] models of the heart in order to simulate pathology [13]-[15], 

treatment [16], or changes in cardiac mechanics due to microstructural changes [17]-

[19].

3 Included with permission by Christopher L. Welsh, Edward V.R. DiBella, Arnold 
David Gomez, Yufeng Huang, and Edward W. Hsu from a manuscript in preparation 
entitled “Evaluation of Myocardial Restructuring in Rats with Induced Arterial 
Hypertension.”



Diffusion tensor imaging (DTI) [20] has emerged as the preferred noninvasive, or 

nondestructive, technique for characterizing the microstructure of tissues including the 

myocardium. The primary direction of diffusion, as derived from DTI, has been shown to 

correlate well with the primary myofiber orientation in cardiac tissue [21]. Other DTI 

parameters, such as the tertiary eigenvector, correlate to the direction normal to the 

myocardial sheet structures and have been used to quantify the distribution of sheet 

orientations in cardiac tissue [22], [23]. Scalar values that characterize the arrangement of 

tissue microstructure can be derived from the diffusion tensor as well. The most common 

of these are fractional anisotropy (FA) and mean diffusivity (MD). The FA is the degree 

of anisotropic diffusion and is a measure of how organized biological tissue is. The MD 

has been related to the properties of the extracellular space within biological tissue, where 

an increase in extracellular space generally corresponds to an increase in measured MD.

Diffusion tensor imaging has been used to quantify the effects of different pathologies 

on cardiac microstructure by demonstrating variation in certain DTI parameters. For 

example, cardiac DTI studies have shown that FA decreases and MD increases in the 

presence of cardiac fibrosis [24]. Similarly, other studies have shown myofiber disarray 

in areas of myocardial infarction (MI) [25], [26]. Furthermore, DTI has been used to 

study hypertrophic cardiac myopathy (HCM) in conjunction with strain imaging. Hearts 

with HCM, in addition to hypokinesis, displayed an increase in fiber disarray, reflected 

by reduced FA [5]. More recently, studies have reported conflicting results with regards 

to changes in the orientation of sheet structures, or sheetlets, in the presence of pathology. 

Some have reported that the distributions of sheet angles become more similar in systole 

and diastole in the presence of HCM [27]. Others believe that these findings are affected
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by strain when measuring diffusion in vivo [28], [29]. Further study, including 

histological validation and additional experiments with in vivo cardiac DTI, is needed to 

resolve these conflicting findings.

The majority of cardiac DTI studies have been performed ex vivo [30]-[32] or in vitro

[33]-[35] due to the complications of implementing diffusion encoding in the beating 

heart. In vivo cardiac DTI has been previously demonstrated [36]-[38] but has seen more 

widespread usage in recent years [39]-[41] thanks to motion-compensating techniques, 

which include using STEAM diffusion encoding with navigators [42] and velocity- 

compensated bipolar diffusion pulses in a spin echo preparation [43]. In vivo cardiac DTI 

has been demonstrated in humans and mice using these methods. However, in vivo 

cardiac DTI in rats, another important animal for cardiac modeling, was only just recently 

shown to be feasible using a novel acceleration-compensated diffusion-encoding scheme

[44]. This study showed that cardiac motion, with higher-order components up to 

acceleration, needs to be compensated for in order to reduce signal loss. This allowed for 

the first DTI measurements in the living rat heart and opened the door to performing 

longitudinal studies in the rat heart for the first time. However, since the acceleration- 

compensated DTI approach employs a spin echo preparation, where only one line of k- 

space is acquired per breath, the approach requires long scan times. Scan time could be 

reduced using model-based reconstruction, where the diffusion tensor is reconstructed 

directly from the undersampled k-space [45]. Previous work has shown that the model- 

based reconstruction approach is able to estimate diffusion tensors accurately from fewer 

MRI measurements.

In this study, in vivo cardiac DTI was used to study changes in the cardiac
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microstructure in an experimental rat model of heart disease over time. Transgenic rats, 

which overexpress the hormone prorenin when exposed to a gene activator, were scanned 

prior to and two weeks postinduction using acceleration-compensated DTI. These 

transgenic rats are known to develop arterial hypertension after induction [46]. The goal 

of this study is to characterize the time course of microstructural changes and to assess 

the degree of changes in the heart due to increased after load. Previous studies in the 

prorenin rat model have shown that there are detectable changes in the cardiac tissue four 

weeks postinduction using histology. Here, in vivo cardiac DTI is evaluated to determine 

whether it is sensitive to these microstructural changes at an earlier time point, with the 

added benefit of being noninvasive and nondestructive. The types of microstructural 

changes, including changes in cell morphology and myofiber arrangement, will also be 

determined from the DTI results. The application of model-based compressed sensing 

reconstruction to undersampled DTI data will also be evaluated to determine the 

feasibility of reducing scan time without sacrificing accuracy or sensitivity to 

microstructural changes over time.

5.2 Methods

5.2.1 Animal Model

In order to study the effects of plasma prorenin on arterial blood pressure, a 

transgenic, inducible, Wistar Kyoto (WKY) rat model that overexpresses hepatic prorenin 

was previously generated [46]. by incorporating rat prorenin under the cytochrome 

p4501a1 promoter. Overexpression of prorenin was induced by administering 0.3% of the 

gene activator indole-3-carbinol (I3C) to the rats. In the current study, transgenic (n = 6)
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and wild type (n =3) rats (male, 310 g average weight, 4.5 months average age) were 

studied using protocols approved by the University of Utah Institutional Animal Care and 

Use Committee in accordance to the Guide for the Care and Use of Laboratory Animals 

issued by the US National Institutes of Health (NIH Publication No. 85-23, rev. 1996). 

Scanning sessions were performed one day prior to and approximately two weeks (13.6 

+/- 0.5 days) after I3C induction in both groups. To prepare for imaging, the animals 

were anesthetized using 3.5% isoflurane in pure O2 (3.0 L/min). The animal’s vital signs, 

including heart and respiratory rate, blood oxygenation level, and rectal temperature, 

were continuously monitored and used to adjust the level of anesthesia when needed.

5.2.2 In Vivo Imaging in Rats

All MR imaging was performed on a Bruker Biospec 70/30 instrument (Bruker 

Biospin, Billerica, MA) equipped with a 600 mT/m gradient set (BGA-12S) and a 72 mm 

volume coil. In order to quantify cardiac morphology and global function, high 

resolution, retrospectively-gated FLASH-CINE images (48 ms TR, 2.4 ms TE, 392 x 392 

matrix size, 0.11 x 0.11 x 1.5 mm3 voxel size, 4.48 x 4.48 cm2 FOV, 100 signal 

repetitions, 350 s/mm2 b-value, 5 slices, 15 frames) in the short-axis were acquired in 

each rat. In addition, a single slice was acquired in the four chamber, long-axis view 

using the same acquisition parameters as the short-axis scans.

Cardiac DTI was performed using acceleration-compensated diffusion encoding to 

compensate for the beating motion of the heart in the live rats. Similar to previous work, 

the acceleration-compensated diffusion encoding was incorporated into a spin-echo pulse 

sequence to obtain diffusion-weighted images (1000 ms TR, 128 x 128 matrix size, 0.35
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x 0.35 x 3.0 mm3 voxel size, 4.48 x 4.48 cm2 FOV, 1 signal average, 350 s/mm2 b-value, 

1 short-axis slice) encoded in an optimized set of 24 directions at end-systole and in an 

optimized set of 12 directions at end-diastole, along with one nonweighted reference (b0) 

image at each cardiac phase. Dual cardiac and respiratory gating were employed to 

acquire DWIs at the desired cardiac phase. Differing numbers of diffusion encoding 

directions were acquired at systole and diastole because of practical considerations in 

scan time and in-plane resolution. The total required scan time was approximately 120 

minutes for each subject. It was found that the quality of diffusion imaging was not 

sufficient for DTI calculation at diastole for all animals. In the end, DTI data with 

sufficient quality were obtained at baseline and two weeks postinduction in three 

transgenic rats and three wild type rats

5.2.3 Image Processing and Statistics

5.2.3.1 Quantification o f Cardiac Structure and Function

Measures of cardiac morphology were derived from the FLASH-CINE images 

described in section 5.2.2. Left ventricular wall thickness and diameter (inner and outer) 

were measured at end-systole and end-diastole. Mean values for each were derived from 

repeated measurements performed in Amira (FEI Life Sciences, OR, USA). Wall 

thickness measurements were made at a mid-ventricular short-axis slice, with 

measurements spread evenly around the left ventricle, along with ventricular diameters 

measured in the same slice.

Basic measures of the global heart function were determined by calculating the left 

ventricular volume at systole and diastole, from which stroke volume and ejection
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fraction could be determined. The LV volume was estimated by segmenting the 

ventricular cavity in five short-axis slices that covered the left ventricle. Image 

segmentation was performed manually in Amira. The total number of pixels within the 

LV were then summed and multiplied by the in-plane resolution and slice thickness in 

order to estimate the ventricular volume.

Using the estimated volumes at systole and diastole, stroke volume could be 

calculated as

SV = EDV -  ESV, (5.1)

where EDV is the end-diastolic volume and ESV is the end-systolic volume. Similarly, 

the ejection fraction can be can be calculated as

BFl%) =  10„ x  J L  (5.2)

Diffusion tensor calculation was performed using a constrained linear least squares 

(CLLS) approach with Cholesky parameterization [47] to ensure the symmetric positive 

definiteness (SPD) property of the resulting tensors. Fractional anisotropy (FA) and mean 

diffusivity (MD) maps were generated from the resulting diffusion tensors via traditional 

methods and mean values were calculated within the left ventricular myocardium of each 

subject for each scanning session for longitudinal comparison.

Helix angle maps were obtained within the myocardium at end-systole by projecting 

the primary eigenvector onto the tangential plane of the myocardium and then measuring 

the inclination from the circumferential plane. The variation of the helix angle across the 

myocardium was then quantified by plotting the helix angle at each pixel versus its 

transmural position. A straight line was fitted to the resulting scatter plot using a robust
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nonlinear regression analysis [48]. The slope of the line from the robust fit provided a 

measure of the variation in helix angle across the myocardium. The robust standard 

deviation of the residuals (RSDR) [48] between the measured helix angle values and the 

fitted line was computed to evaluate the “goodness of fit” in each rat.

In order to measure the myocardial sheet structure, structural information was defined 

with respect to a local coordinate system constructed using distribution of potentials 

approach, known as the Laplace Dirichlet method for structural definition briefly 

described as follows [49]. After segmentation of the left ventricle, a pixel-wise finite- 

element mesh was constructed using hexahedral elements and assigned a potential of one 

at the endocardium and zero at the epicardium (Dirichlet boundary conditions). The 

Laplace equation was solved to obtain pixel potentials whose spatial gradients constitute 

local radial directions from which circumferential directions were obtained assuming a 

primary longitudinal direction normal to the slices via cross product. Instead of the rule- 

based method described in [49], structural information was directly calculated from the 

eigenvectors of the diffusion tensor at every voxel per DT-MRI results. From previous 

observations that associate sheet structures to principal diffusivity directions [50], [51], 

voxel-wise sheet angles were defined as the angles of elevation of the third eigenvector 

with respect to the radial-tangential plane (i.e., the plane normal to the local longitudinal 

direction) [28]. The distribution of the sheet angle was further quantified by fitting a 

quadratic polynomial to the sheet angle histogram. The coefficient of the second order 

term in the quadratic polynomial provided a measure of the concavity of the histogram.
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5.2.3.2 Statistical Analysis

In order to determine significant changes in the quantitative measurements described 

in section 5.2.3.1, a paired t-test was applied to each case. The mean measurement for 

each DTI, cardiac morphology, and cardiac function parameter was compared at baseline 

(prior to induction) and approximately two weeks after induction for the transgenic and 

wild type populations. A student’s t-test was applied to determine whether there was a 

significant change in the measurements between the two time points, where significance 

was determined by a P-value less than 0.05.

5.2.4 Comparison of Reconstruction Methods for Undersampled 
DTI Data

Because the acceleration-compensated diffusion encoding was incorporated into a 

spin echo preparation, where one line of k-space was acquired per breath, the resulting 

scan times were somewhat prohibitive. The total acquisition time could be reduced by 

acquiring fewer measurements in k-space, encoding fewer diffusion directions, or a 

combination of both. Model-based compressed sensing has been shown to accurately 

reconstruct DTI data from fewer diffusion measurements [45]. In this study, model-based 

reconstruction was implemented on retrospectively undersampled DTI acquired in this 

study in order to assess the feasibility of preserving the accuracy of the DTI solution 

when acquiring fewer measurements in k-space and diffusion encodings, allowing for 

shorter scan times or the acquisition of multiple slices. For this study, the model-based 

reconstruction technique that was presented previously was used with minor 

modifications, to improve its overall performance. Changes to the implementation 

included setting the image phase estimate in the signal model equal to the phase map
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estimated from compressed sensing reconstruction of complex diffusion weighted images 

using spatial and temporal regularization (CS-STCR, see more details in the following 

paragraph). In addition, the derived diffusion tensor solution from the CS-STCR scheme 

was used to initialize the diffusion tensor estimate in the model-based reconstruction, 

ensuring that the solution converged to the global minimum instead of a local minimum. 

Reduced acquisition time was simulated by retrospectively undersampling the acquired k- 

space by a factor of two (R = 2) and using half of the diffusion encoding directions (a 

subset of 12 optimized directions) resulting in an overall scan time reduction of four. The 

DTI parameters calculated in 5.3.3.1 were also derived from the model-based 

reconstruction results in order to determine whether the approach preserves the sensitivity 

to microstructural changes over time, which were observed in fully-sampled acquisitions 

that are reconstructed traditionally.

The performance of model-based reconstruction was compared against two other 

forms of traditional compressed sensing. (Note that prior-based, constrained 

reconstruction is implied when discussing “compressed sensing”). The first scheme was 

compressed sensing with a spatial total variation (TV) constraint (CS-TV), which is one 

of the simplest form of compressed sensing reconstruction [52]. The second comparison 

scheme was the previously mentioned compressed sensing with spatial and temporal total 

variation regularization (CS-STCR) [53], [54]. Here, in addition to a spatial total 

variation constraint, a total variation constraint was applied in the diffusion-encoding 

dimension. Since the magnitude within a given pixel is not expected to vary smoothly 

from one diffusion-encoding direction to the next, reordering was performed on a pixel- 

by-pixel basis. The reordering of each pixel, from lowest to highest, was accomplished
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using a low-resolution prior derived from the fully-sampled low frequency portion of k- 

space [55]. Smoothness across diffusion encoding directions was enforced using total 

variation applied to the reordered pixels. The same degree of scan time reduction that was 

simulated for the model-based reconstruction was applied to the CS-TV and CS-STCR 

reconstructions as well.

Diffusion tensors were derived from the diffusion-weighted images that were 

reconstructed using the CS-TV and CS-STCR schemes using traditional methods. Mean 

FA, mean MD, and transmural variation of helix angle were derived from the resulting 

diffusion tensors, similar to the procedure described in Section 5.2.3.1, and were 

compared to the same measurements derived from model-based reconstruction and from 

fully-sampled data in order to assess the accuracy of the alternative reconstruction 

schemes.

5.3 Results

5.3.1 Cardiac morphology and Function

Results of the cardiac morphology analysis in systole and diastole are shown in Figs.

5.1 and 5.2. The cardiac morphology was consistent at baseline and week 2 in the wild 

type rat at both phases of the cardiac cycle with no apparent qualitative differences 

between baseline and week 2 scans. However, the cardiac morphology of the transgenic 

rat appears to change significantly from baseline to week 2. In both systole and diastole, 

the inner and outer diameters of the left ventricle appear to decrease. The bar graphs in 

Fig. 5.2 confirm these qualitative observations, indicating there was a significant decrease 

in the inner diameter of the left ventricle in the transgenic group. However, Fig. 5.2 also
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Figure 5.1: Short-axis cardiac morphology. Representative FLASH-cine images at systole
(a) and diastole (b) are shown for a transgenic rat (top) and a wild type rat (bottom) 
before (left) and two weeks postinduction of hypertension (right).
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Figure 5.2: Measurements of cardiac morphology. Bar graphs at systole (a) and diastole
(b) show the group means and standard error of the means of the LV inner diameter (top) 
and wall thickness (bottom) before and two weeks postinduction of hypertension. A 
significant decrease in the inner diameter of the LV from baseline to week 2 was 
observed in the transgenic group in systole and diastole. No significant change in wall 
thickness at systole or diastole occurred in either group.

shows that there was not a significant change in wall thickness in either group at systole 

or diastole. The preserved wall thickness implies that there was a corresponding decrease 

in the outer diameter of the LV in addition to the decrease in inner diameter. Figures 5.1 

and 5.2 demonstrate a significant change in the cardiac morphology, which was likely 

due to the induced hypertension. Microstructural changes likely accompany the observed 

macroscopic changes in the myocardium.



Figure 5.3 shows the results of the cardiac functional analysis. The decrease in the 

inner diameter of the left ventricle at systole and diastole, as seen in Fig. 5.2, 

corresponded to a significant decrease in LV volume at both phases of the cardiac cycle 

in the transgenic group at week 2 compared to baseline. In addition to the decrease in 

ventricular volume, the stroke volume also decreased in the transgenic group. However, 

the ejection fraction remained constant in both animal groups at both time points even in
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Figure 5.3: Analysis of cardiac function. Bar graphs representing the group means of LV 
volume at systole (a) and diastole (b) are shown along with the group mean averages of 
LV stroke volume (c) and ejection fraction (d) in the transgenic and wild type groups. A 
significant decrease in LV volume was observed in the transgenic rats at systole and 
diastole. In addition, a corresponding decrease in stroke volume from baseline to week 2 
was observed in the transgenic group. No significant change in ejection fraction occurred 
in either group.
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the presence of induced hypertension. The ejection fraction did not change because of the 

decrease in heart size that resulted in lower stroke and end-diastolic volumes, both of 

which are involved in determining ejection fraction (see Eq. (5.2)). The induced 

hypertension in the transgenic rats appears to have affected diastolic filling and cardiac 

output, both of which are important indicators of cardiac function.

5.3.2 DTI Results

Figure 5.4 shows representative fractional anisotropy (FA) maps from the transgenic 

and wild type groups. There are not many appreciable differences in the FA maps from 

baseline to week 2 in either group. On the whole, the FA maps generated from the two 

groups appear mostly homogenous. Regions of increased FA are present in both groups,

Baseline Week 2

A'

Baseline 
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Figure 5.4: End-systole fractional anisotropy. Representative false color coded maps (a) 
are shown for a transgenic rat (top) and a wild type rat (bottom) before (left) and two 
weeks postinduction of hypertension (right). The bar graph (b) shows the group means 
and standard error of the means. No significant change between the two time points was 
observed in either group.
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but they are most likely a result of noise in the acquired diffusion signal. The comparison

of FA group means confirm that there was not a significant change in FA in either group

from baseline to week 2 .

Mean diffusivity maps acquired in systole are shown in Fig. 5.5. Similar to the FA

maps, the MD maps generated from both groups of rats do not demonstrate obvious

differences. The MD values throughout the myocardium are fairly homogeneous at both

time points, with some areas of increased MD near the endocardium that are likely due to

blood perfusion. The comparison of group means in Fig. 5.5(b) indicates there was not a

significant difference in MD values from baseline to week 2 in either group of rat similar

to the results seen in FA maps. Together, the results in Figs. 5.4-5.5 indicate that there

was no detectable change in FA and MD, both of which are traditional measures of

microstructural changes in cardiac pathology, in the transgenic rats two weeks after
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Figure 5.5: End-systole mean diffusivity. Representative false color coded maps (a) are 
shown for a transgenic rat (top) and a wild type rat (bottom) before (left) and two weeks 
postinduction of hypertension (right). The bar graph (b) shows the group means and 
standard error of the means. No significant change between the two time points was 
observed in either group.
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induction of hypertension.

Figure 5.6 compares helix angle maps from DTI data acquired in both groups of rats. 

The characteristic transmural variation of the helix angle, from positive to negative 

angles, when moving from endo- to epicardium is prominent in the maps obtained in both 

transgenic and wild type rats. The helix angle maps from the wild type rat acquired at 

baseline and week 2 are quite similar to each other. However, the helix angle maps from 

the transgenic rat acquired at the two time points are not as consistent. There is a wider 

range of angles in the helix angle map from the week 2 scan, with more negative angles 

than the baseline case. The presence of a wider range of helix angles indicates an increase 

in transmural variation of the helix angle across the myocardium, resulting in more
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Figure 5.6: End-systole fiber helix angle. Representative false color coded maps (a) are 
shown for a transgenic rat (top) and a wild type rat (bottom) before (left) and two weeks 
postinduction of hypertension (right). The bar graph (b) shows the group means of the 
transmural variation of helix angle. A significant increase in transmural variation from 
baseline to week 2 was observed in the transgenic group, while there was no significant 
change between the two time points in the wild type group.



myocardial fibers that are aligned in the long axis (angles near ± 90°). These results are 

confirmed by the group mean analysis in Fig. 5.6(b). A significant increase in the 

transmural variation of the helix angle was observed in the transgenic group, confirming 

the qualitative observations, while there was not a similar increase in the wild type group. 

The steepening of the helix angle has been proposed as a compensatory mechanism for 

increased after load caused by systemic hypertension [56], which would be expected in 

the transgenic population in this study. The mean RSDR values at both time points in the 

wild type (27.59 ± 1.81°) and transgenic (24.24 ± 2.32°) groups were not significantly 

different, indicating a similar “goodness of fit” in both groups. The results in Fig. 5.6 

suggest that there were changes in the myocardial microstructure that were more apparent 

in the fiber orientation measurements than in the FA and MD measurements at two weeks 

postinduction.

Histograms representing the distribution of sheet angles in representative transgenic 

and wild type rats are shown in Fig. 5.7. The sheet angle distributions generated from the 

wild type rat appear more similar at baseline and week 2 than the corresponding 

distributions obtained from the transgenic rat. The concavity of the sheet angle 

distributions increased, or became less concave-down, in both groups at week 2, but the 

change in concavity was significant only in the transgenic group. The changes in helix 

angle maps and sheet angle distributions, as seen in Figs. 5.6 and 5.7, suggest that there 

were microstructural changes in the fiber and sheet structure of the myocardium that were 

observable as early as two weeks after induction in the transgenic rats. In addition these 

results indicate that helix and sheet angle measurements may be more sensitive to 

microstructural changes due to hypertension than more traditional measures, such as FA
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Figure 5.7: End-systole sheet angle. Representative sheet angle histograms (a) are shown 
for a transgenic rat (top) and a wild type rat (bottom) before (left) and two weeks 
postinduction of hypertension (right). The bar graph (b) shows the group means and 
standard error of the means of the concavity of the sheet angle distributions. There is a 
significant increase in the concavity of the sheet angle distribution in the transgenic group 
from baseline to week 2, while no significant change between the two time points was 
observed in the wild type group.

and MD.

5.3.3 Comparison of Reconstruction Methods

Figure 5.8 compares the FA maps derived from retrospectively undersampled DTI 

data reconstructed from the schemes detailed in Section 5.2.4. The FA map reconstructed 

from CS-TV data appears less homogeneous than the other maps, with several areas of 

elevated FA, which are most likely due to artifact instead of an anomaly in the 

myocardial tissue. The FA maps generated from CS-STCR and MB appear similar to 

each other, but both contain FA values lower than the fully sampled case. The group 

mean analysis, as seen in Fig. 5.8(b), indicates that all reconstruction methods produce 

constant FA values from baseline to week 2 in both groups of rats, similar to the results in 

Fig. 5.4. However, the alternative reconstruction methods produce FA values that are



144

CS-TV CS-STCR MB FullAcq

Figure 5.8: Reduced scan time fractional anisotropy. Representative false color coded 
maps (a) are shown for a transgenic rat that were reconstructed via compressed sensing 
with a spatial total variation constraint (CS-TV), compressed sensing with a spatial and 
temporal TV constraint (CS-STCR), model-based reconstruction (MB), and traditional 
reconstruction with fully sampled data (Full Acq). The bar graph (b) shows the group 
means and standard error of the means resulting from each reconstruction scheme. No 
significant change between the two time points was observed in either group or from any 
of the reconstruction schemes.

lower at week 2 compared to baseline, but the FA values were not significantly lower 

according to the applied statistical test. Overall, the alternative reconstruction methods 

slightly underestimate FA compared to the fully sampled case. The lower FA values 

could be a result of the image smoothing inherent to the reconstruction methods 

employed in this study. Previous studies have shown that smoothing can produce lower 

FA values [57], [58].

MD maps derived from the alternative reconstruction schemes are shown in Fig. 5.9,
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Figure 5.9: Reduced scan time mean diffusivity. Representative false color coded maps 
(a) are shown for a transgenic rat that were reconstructed via compressed sensing with a 
spatial total variation constraint (CS-TV), compressed sensing with a spatial and temporal 
TV constraint (CS-STCR), model-based reconstruction (MB), and traditional 
reconstruction with fully sampled data (Full Acq). The bar graph (b) shows the group 
means and standard error of the means resulting from each reconstruction scheme. No 
significant change between the two time points was observed in either group or from any 
of the reconstruction schemes.

all of which appear highly similar to the MD map generated from the full acquisition. 

Regions with increased MD along the endocardium were present in all cases. No apparent 

under- or overestimation of MD was present in any of the maps compared to the full 

acquisition case. The group mean analysis in Fig. 5.9(b) confirms the qualitative 

observations, with little difference in the average MD values between the reconstruction 

schemes and the fully sampled case in both groups of rats.

Figure 5.10 compares the helix angle maps generated from each of the reconstruction
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Figure 5.10: Reduced scan time fiber helix angle. Representative false color coded maps 
(a) are shown for a transgenic rat that were reconstructed via compressed sensing with a 
spatial total variation constraint (CS-TV), compressed sensing with a spatial and temporal 
TV constraint (CS-STCR), model-based reconstruction (MB), and traditional 
reconstruction with fully sampled data (Full Acq). The bar graph (b) shows the group 
means and standard error of the means resulting from each reconstruction scheme. A 
significant increase in transmural variation of the helix angle was observed in the 
transgenic group in each of the reconstruction schemes.

schemes in a representative transgenic rat. The helix angle map generated from CS-TV 

appears to be the most dissimilar to the fully sampled helix angle map, while the helix 

angle map reconstructed from the MB method appears the most similar, preserving the 

transmural variation of helix angle the best out of all of the alternative reconstruction 

schemes tested. The increase in transmural variation of the helix angle from baseline to 

week 2 in the transgenic group (previously seen in Fig. 5.6) was preserved in each of the 

reconstruction schemes, as seen in group mean analysis in Fig. 5.10(b). Additionally, 

there is no significant change in the transmural variation from baseline to week 2 in the



wild type group in any of the reconstruction schemes. Therefore, all of the reconstruction 

schemes preserved the sensitivity to changes in the fiber structure that were detected in 

the full acquisition.

The performance of the different reconstruction schemes in estimating myocardial 

sheet angle is shown in Fig. 5.11. The sheet angle distributions generated from the CS- 

STCR and MB reconstruction schemes are similar to each other, but appear different to
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Figure 5.11: Reduced scan time sheet angle. Representative sheet angle distriubtions (a) 
are shown for a transgenic rat that were reconstructed via compressed sensing with a 
spatial total variation constraint (CS-TV), compressed sensing with a spatial and temporal 
TV constraint (CS-STCR), model-based reconstruction (MB), and traditional 
reconstruction with fully sampled data (Full Acq). The bar graph (b) shows the group 
means and standard error of the means resulting from each reconstruction scheme. An 
increase in the concavity of the sheet angle distributions was observed in the transgenic 
case in each of the reconstruction schemes, but the increase was only considered 
significant in the full acquisition case.



the distributions generated from the CS-TV reconstruction and from the full acquisition. 

Similar to Fig. 5.7, an increase in the concavity of the sheet angle distribution, or 

becoming less concave down, from baseline to week 2 was observed in all of the 

reconstruction schemes in the transgenic group, but the increase in concavity was not 

significant in the alternative reconstruction schemes tested here. The results in Fig. 

5.11(b) indicate that the reconstruction schemes do not preserve the sensitivity to changes 

in the sheet structure observed in the full acquisition, in particular, the change in 

concavity of the sheet angle distributions in systole. The reduced sensitivity to changes in 

sheet structure may come from the smoothing inherent to the reconstruction methods that 

were evaluated.

5.4 Discussion

Results from the group mean analysis of DTI parameters reveal that in vivo DTI was 

able to detect myocardial structural remodeling, in the form of an increase in the 

transmural variation of the fiber helix angle (see Fig. 5.6), at two weeks postinduction of 

arterial hypertension in the transgenic rats, earlier than at four weeks in a previous study

[46]. Additionally, there were also observable changes in the sheet structure (see Fig. 

5.7). The earlier detection of pathological structural alterations can be directly attributed 

to the use of repeated measurement statistics made possible by employing in vivo DTI in 

the study protocol. Without the technique, different animals would need to be used at 

different time points. As demonstration of the latter case, unpaired t-test of the group 

means of transmural helix angle rotation between the two animal groups at each pre­

induction and 2-week time points would have returned insignificant differences.
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The results also suggest that, in terms of DTI parameters for detecting myocardial 

microstructural changes, measures of structural orientations appear to be more sensitive 

than scalar quantities of FA and MD (see Figs. 5.4 and 5.5). The study would have 

reached different conclusions if changes in only FA and MD were examined. On the 

surface, the unchanged FA and MD are in contrast to previous cardiac pathology studies. 

A possible explanation for this discrepancy is that arterial hypertension actually causes 

different forms of myocardial remodeling, including at least hypertrophy (specifically 

enlargement of myocytes) and fibrosis. Myocardial fibrosis has been shown to result in 

decreased FA and increased MD [24]. However, hypertrophy as seen in hypertrophic 

cardiomyopathy (HCM) has been shown to decrease MD as the extracellular space 

becomes smaller as myocytes become larger. Therefore, the effects of cardiac fibrosis and 

HCM, both of which are likely to be present in early stage remodeling from arterial 

hypertension, could offset each other in their effects on FA and MD, resulting in 

unchanged DTI scalar parameter in the transgenic group.

The functional consequences of the observed microstructural changes (as seen in the 

DTI results in Section 5.3.2) can be interpreted in light of the cardiac morphology and 

global metrics (from CINE imagery in Section 5.3.1). It is not surprising to observe an 

increase of helical angle slope (see Fig. 5.6) associated with hypertension. Slope 

increments are a manifestation of preferential remodeling in the longitudinal direction, 

which has also been observed as a compensatory response to chronic hypertension 

consisting of myocytes and perimysial collagen longitudinal alignment [56]. However, 

left-ventricular ejection fraction remains unchanged (see Fig. 5.3) despite firm evidence 

of aortic hypertension, suggesting that this metric offers little in terms of monitoring the
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state of the failing heart in this animal model, since, under increased afterload it is 

possible to preserve, or even increase, hemodynamic work output despite a reduced 

stroke volume compared to a healthy heart. It is worth noting that a large portion of 

cardiac failure in humans occurs in individuals with preserved ejection fraction, and that 

strain and strain-sensitive microstructural observations, such as in vivo DT-MRI 

presented here have been suggested as better alternatives for disease progression 

monitoring [29], [59]-[61].

Changes in the sheet angle distribution were observed in some of the transgenic rats 

in DTI data that were acquired in diastole (n = 3). The sheet angle distributions from two 

transgenic rats, in systole and diastole, are shown in Fig. 5.12. In contrast to healthy 

myocardial tissue, where a clear change in concavity of the sheet angle distribution is 

observed as sheet angle populations reconfigure from diastole to systole [61], the
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Figure 5.12: End-systole and end-diastole sheet angle. Sheet angle histograms from two 
transgenic rats are shown at systole (blue) and diastole (red) before (left) and two weeks 
postinduction of hypertension (right). In general, the systolic and diastolic sheet angle 
distributions are more similar at week 2 than at the baseline scan for the two rats shown 
here.



observed trend in lack of sheet angle distribution changes in the transgenic rats at week 

two are consistent with diastolic deficiency expected in hypertensive hypertrophic 

cardiomyopathy; myocardial hypertrophy and diffused fibrosis often result in tissue 

stiffening limiting ventricular diastolic capacity [56], [62]. Sheet angle populations in the 

transgenic rats shown here tended to remain in their systolic configurations, which are 

closest to the most elastically unloaded cardiac state, i.e., muscle relaxation after systole 

prior to chamber filling. (Note that systolic DT-MRI data were acquired near the systolic 

pause.) The increased similarity between distributions was reflected by the decrease in 

relative entropy [63] between the systolic and diastolic sheet angle distributions from 

baseline (0.36 ± 0.01) to week 2 (0.15 ± 0.03). Therefore, it is likely that sheet angle 

distribution is evidence of hypertension-induced diastolic deficiency further confirmed by 

the observed reduction in diastolic volume (see Fig. 5.3). However, it cannot be 

determined whether these trends in the diastolic sheet angle distributions are significant 

because of the small sample size of DTI data acquired at diastole in the transgenic rats.

The examination of the alternative reconstruction schemes, presented in Section 5.3.3, 

showed that the traditional compressed sensing schemes and the model-based 

reconstruction scheme preserve the sensitivity of in vivo DTI to the changes in 

microstructural fiber orientation that were observed with the full acquisition, as seen in 

Fig. 5.10. However, the sensitivity to the changes in sheet structure was not preserved in 

either of the compressed sensing or model-based schemes. This is most likely due to the 

data smoothing that is inherent to the reconstruction schemes. An analysis of the effect of 

smoothing on the sheet angle distribution (results not shown here) revealed that as the 

degree of smoothing increased, the concavity of the sheet angle distributions also
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increased, or became less concave down, similar to the results from the alternative 

reconstruction schemes in Fig. 5.11. Future work should focus on evaluating the 

constraining weights in the reconstruction schemes in order to produce results that are 

less smoothed or regularized. However, the effects of varying the constraining weights on 

FA, MD, or fiber helix angle estimation are unknown. Overall, the reconstruction 

schemes evaluated here generated similar group means of DTI parameters in both groups 

of animals. The model-based reconstruction performed marginally better than the other 

schemes in terms of generating helix angle maps that appear closer to the fully sampled 

case, but the other schemes were still able to detect the change in transmural variation of 

the fiber helix angle.

The current study was limited by the small number of subjects scanned in both groups 

of animals. Further study, that includes obtaining more subjects, is required to confirm 

the results presented here. In addition to the small sample size, in vivo cardiac DTI was 

acquired in only one mid-ventricular slice. The changes in cardiac microstructure may be 

spatially dependent and, therefore, important information may have been missed since 

only one region of the heart was examined. This study was also limited to studying the 

heart in mostly one phase of the cardiac cycle: systole. Practical considerations motivated 

the decision to obtain more DTI data in systole, including considerations of the spatial 

resolution and overall scan time. Acquiring DTI data near end-systole allowed us to 

obtain more pixels across the myocardium given the selected field of view, which 

allowed us to observe more transmural variation of DTI parameters. Because acquiring at 

systole provided better resolution across the myocardium, more scan time was dedicated 

to acquiring DTI data at systole (24 directions in systole versus 12 directions in diastole)
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to better characterize the diffusion tensor across the myocardium. Therefore, the systole 

data were considered more reliable owing to the higher number of pixels across the 

myocardium and the increased number of diffusion directions that were obtained at 

systole. Future work will concentrate on obtaining DTI data at multiple slices and 

multiple phases of the cardiac cycle to better characterize the microstructural information 

spatially and temporally.

5.5 Conclusion

The present study showed that in vivo cardiac DTI is able to detect microstructural 

changes due to cardiac pathology, particularly from arterial hypertension. In vivo cardiac 

DTI was shown to be sufficiently sensitive to detect changes in the myocardial fiber 

structure two weeks after the onset of acute hypertension. These observations could not 

have been made without in vivo DTI. The pre-induction scans were necessary to detect 

the early signs of myofiber realignment that was observed postinduction. To the authors’ 

knowledge, this study is the first to perform longitudinal DTI measurements in a rat 

model of cardiac pathology.
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CHAPTER 6

CONCLUDING REMARKS

6.1 Summary

This research was motivated by a desire to better understand the structure-function 

relationships of the heart by improving current imaging techniques, specifically MR 

diffusion tensor imaging, used to examine the myocardial microstructure. Chapters 3 and

4 of the present work focus on the technical improvements in acquisition-time efficiency 

and motion compensation of DTI, respectively, which are critical for making the imaging 

methodology more practical. Chapter 5 describes a longitudinal study of a rat model with 

hypertension-induced cardiac remodeling where the techniques are put into practice.

Specifically, the model-based image reconstruction method presented in Chapter 3 

was designed to accurately reconstruct diffusion tensor data directly from fewer MRI 

measurements in order to reduce scan time. Comparisons to existing reconstruction 

techniques show that estimating the diffusion coefficients directly, and thus reducing the 

number of unknown variables, improves the accuracy of the resulting diffusion tensor by 

making the reconstruction more robust to noise. In addition, it was shown that model- 

based reconstruction performs better than simply acquiring fewer diffusion-encoding 

directions or employing a lower resolution to achieve the same scan time reduction. 

These results indicate that the model-based reconstruction scheme allows us to reduce the



overall scan time without the proportional loss in accuracy. Reducing scan time is 

valuable in high-resolution specimen scans and in in vivo DTI scans, which both employ 

spin echo diffusion preparations in order to increase SNR and reduce geometric 

distortions associated with EPI acquisitions.

Chapter 4 presented a study where gradient moment nulling is used to compensate for 

motion in cardiac diffusion encoding. Novel pulse sequences that compensate for higher 

order motion up to acceleration and jerk were presented and simulations on a numerical 

phantom of the beating rat heart showed that compensating for acceleration was sufficient 

for suppressing signal loss due to motion. Application of the motion-compensating 

diffusion encoding in live rats showed that minimal improvement was achieved when 

compensating for motion beyond acceleration, including jerk. In fact, better SNR was 

achieved using acceleration-compensated diffusion encoding due to the shorter TE 

necessary to accommodate the diffusion gradients. Acceleration-compensated diffusion 

encoding demonstrated the best balance of motion artifact suppression and SNR 

preservation and, therefore, was determined to be necessary and sufficient for obtaining 

diffusion measurements in the beating rat heart. The first ever DTI parameter maps, 

including helix angle maps, were demonstrated in several rats as part of the study.

The effectiveness of the methods developed in Chapters 3 and 4 in characterizing 

microstructural changes due to pathology was evaluated in Chapter 5. The DTI parameter 

maps, derived from acceleration-compensated diffusion measurements, revealed that 

measures of microstructural orientation, including fiber and sheet direction, were more 

sensitive to microstructural remodeling than the traditional DTI measures of fractional 

anisotropy and mean diffusivity. In vivo DTI was shown to be sensitive enough to detect
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changes in the fiber architecture at a relatively early time point of two weeks, compared 

to four weeks in previous studies using alternative methods. Additionally, the study in 

Chapter 5 demonstrated that in vivo cardiac DTI was necessary for detecting the changes 

in microstructural orientation, as a terminal study would not have shown a significant 

difference between the transgenic and wild type groups. This study also showed that the 

model-based reconstruction method did not outperform other traditional compressed 

sensing methods in terms of detecting changes in the fiber architecture from fewer 

diffusion measurements.

6.2 Future Directions

While the present work is extremely promising for DTI to be increasingly utilized in 

practical in vivo studies of myocardial microstructure, especially in mid-sized animals, it 

also points out that further improvements are needed in several areas. First, the current 

work is based on using water motility characterized by the diffusion tensor as the proxy 

to infer tissue microstructure. The diffusion tensor is inherently limited to one primary 

direction of diffusion, and that the orientations of the structures linked to the principal 

axes of diffusion are mutually orthogonal. As such, the diffusion tensor can produce 

erroneous results when non-parallel populations of fibers exist, such as crossing fibers, 

which are well known in the white matter tracts in the brain [1] and within infarcted 

myocardium [2]. Moreover, there is some evidence that the sheet normal direction, 

primarily considered to be in the direction of the tertiary eigenvector, may not always be 

perpendicular to the fiber direction. If this is the case, the diffusion tensor may be the 

wrong model to characterize sheet orientation, since its directionality is dominated by the
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fiber orientation. In order to characterize more complex microstructures, including fiber 

crossings and laminar sheets, a different model of diffusion should be employed. Higher 

order tensors or orientation distribution functions (ODF), which have already been 

established in diffusion imaging applications in the brain, could be used to more 

accurately characterize cardiac microstructure. These methods require more diffusion 

data and, therefore, faster acquisition methods would be necessary to execute these 

studies in a practical amount of time.

In addition to the use of the diffusion tensor, another limitation of the experiments 

presented here is the use of spin echo for the diffusion preparation. Using a spin echo 

preparation produces images with higher SNR due to shorter echo times and fewer 

geometric distortions due to the reduced eddy currents, but spin echo is the least efficient 

method for acquiring MRI data. To be considered practical, total scan times for clinical 

DTI should not exceed 30 minutes [3]-[5]. In addition, reducing scan times in animal 

studies would allow the inclusion of more subjects or the acquisition of more diffusion 

encoding directions, both of which would improve the overall results. DTI acquisitions 

could be made more efficient by acquiring fewer MRI measurements overall or more 

measurements during each excitation. Model-based reconstruction has already been 

shown to accurately reconstruct the diffusion tensor from randomly undersampled k- 

space. However, further improvements to the method presented in Chapters 3 and 5 could 

be made. For example, the signal model in the model-based reconstruction scheme could 

be modified so that it includes more complex microstructures, including crossing fibers, 

to address the first limitation mentioned in this section while also reducing scan time. 

MRI methods that acquire more data per excitation include single- or multi-shot EPI, fast
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spin echo, and multi-band acquisitions. Each of these methods has the potential of 

reducing the scan time by several factors. For example, simultaneous multi-band (SMS) 

imaging [6] could be used to excite two slices within the heart simultaneously and, 

therefore, acquire twice as many slices during the same amount of time required in the 

study presented in Chapter 5. In this case, scan time would not be reduced, but spatial 

coverage in the heart would be increased. Fast spin echo [7] measures multiple echoes 

from a single excitation, but introduces several new technical challenges. For example, 

fast spin echo is more susceptible to blurring due to varying T2-weighting in the 

measured lines across k-space. Additionally, the motion sensitivity of fast spin echo may 

be higher than traditional spin echo due to the fact that the gradient moments would only 

be nulled at the first measured line of k-space rather than at the center of each k-space 

line as is the case in spin echo. Further study in this area is warranted.

The use of numerical simulations, including retrospective undersampling to simulate 

scan time reduction, and experimental demonstration, as presented in Chapters 3 to 5, are 

useful as proof of concept of the presented methods and are a promising start towards 

making DTI more practical for widespread use. Future work will concentrate on 

acquiring more data to confirm the results presented in this study, especially with regards 

to changes in the sheet structure. DTI data from additional phases of the cardiac cycle are 

needed, particularly from end-diastole, in order to observe how the distribution of sheet 

orientations changes from systole to diastole. The additional data will hopefully help to 

resolve some of the conflicting reports regarding cardiac sheet structure that were 

mentioned in Chapter 5.

In addition to the study performed in Chapter 5, the tools developed here will be used
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to better understand other disease processes over time. For example, while there has been 

significant research dedicated to characterizing left ventricular failure (LVF); relatively 

little is known about right ventricular failure (RVF). Insufficient knowledge in this area 

has not allowed for the systematic development of effective treatment strategies of RVF

[8]. RVF is associated with left ventricular coronary disease, genetic defects, pulmonary 

hypertension, and complications due to implantation of a left ventricular assist device 

(LVAD) [9]-[12]. RVF due to pressure overload has been shown to reduce diastolic 

function primarily linked to wall stiffening because of hypertrophy and interstitial 

fibrosis [13]-[15], both of which have been shown to be detectable by DTI. Future studies 

will evaluate the performance of acceleration-compensated diffusion encoding in thin 

structures, or at higher resolutions, to determine its ability to characterize cardiac 

microstructure in the right ventricle. In vivo cardiac DTI will then be used in the Hsu lab 

to study the time course of the structural changes in the RV due to pulmonary 

hypertension and will provide quantitative measures to assess whether the RV has failed 

completely or if it can recover. Characterization of failure and recovery in preclinical 

models, such as rats or rabbits, is an important tool for designing and testing treatments 

that could have a significant clinical impact due to the wide range of conditions in which 

RVF can develop.

Furthermore, future research will be dedicated to creating structural atlases of the 

beating heart using diffusion data acquired from acceleration-compensated diffusion 

encoding. Again, this will require shorter acquisition times or more efficient data 

acquisition due to the higher number of subjects that will be needed to create an atlas. In 

addition, future work will consist of incorporating low basis functions, such as low order
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polynomials, to describe the left ventricular microstructure [16]. The parameterization of 

the three-dimensional ventricular structure can be narrowed to a set of equations and the 

coefficients of these equations could be made a function of time, opening the possibility 

of characterizing cardiac microstructure in three dimensions across time or in 4D. Future 

research will be dedicated to validating the three dimensional parameterization of 

myocardial microstructure and the diffusion measurements acquired at other phases of 

the cardiac cycle in the presence of strain and myocardial perfusion. The exact effects of 

strain and myocardial perfusion on diffusion measurements acquired using acceleration- 

compensation will need to be determined and how these measurements are interpreted 

with regards to cardiac microstructure warrant further investigation.

6.3 Final Thoughts

Medical imaging has emerged as the preferred method for noninvasive investigation 

of morphology, development, disease, and recovery in a variety of biological 

applications. This thesis has presented methods and applications that enhance diffusion 

imaging techniques by reducing scan time and motion sensitivity in order to better 

characterize tissue microstructure in the heart and brain among other potential 

applications. This work showed the potential benefit of elucidating the root mechanisms 

of physiological function, which can guide future study and experiments.
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