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ABSTRACT

Graphics processing units (GPUs) are highly parallel processors that are now com-

monly used in the acceleration of a wide range of computationally intensive tasks. GPU

programs often suffer from data races and deadlocks, necessitating systematic testing.

Conventional GPU debuggers are ineffective at finding and root-causing races since they

detect errors with respect to the specific platform and inputs as well as thread schedules.

The recent formal and semiformal analysis based tools have improved the situation much,

but they still have some problems. Our research goal is to aply scalable formal analysis

to refrain from platform constraints and exploit all relevant inputs and thread schedules

for GPU programs. To achieve this objective, we create a novel symbolic analysis, test

and test case generator tailored for C++ GPU programs, the entire framework consisting

of three stages: GKLEE, GKLEEp, and SESA. Moreover, my thesis not only presents that

our framework is capable of uncovering many concurrency errors effectively in real-world

CUDA programs such as latest CUDA SDK kernels, Parboil and LoneStarGPU bench-

marks, but also demonstrates a high degree of test automation is achievable in the space of

GPU programs through SMT-based symbolic execution, picking representative executions

through thread abstraction, and combined static and dynamic analysis.
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CHAPTER 1

INTRODUCTION

This thesis is about the techniques for building more reliable software, especially the

GPU software, which is easier to induce errors but more difficult to guarantee the correct-

ness. To enable practical tools, we require scalable testing techniques that are capable of

reasoning about real programs. This thesis examines the problem of precise and scalable

formal analysis techniques in the context of data-parallel GPU programs and presents the

first dynamic symbolic analysis, test, and test case generator tailored for GPU programs.

1.1 Motivation
Modern GPUs are parallel many-core processors designed for throughput processing.

GPUs are widely used as parallel coprocessors under the control of a host CPU in a

heterogeneous system. The host CPU is responsible for copying input data to the GPU,

launching parallel programs on the GPU and fetching resulting data back from the GPU,

and the compute-intensive part of an application is always offlined to GPUs. A typical

GPU consists of multiple multiprocessors each made up of many simple cores. Each

multiprocessor executes instructions in a SIMD fashion where multiple cores execute the

same instruction on different data.

At present, GPUs are making inroads into virtually many aspects of our daily lives,

ranging from GPU-based mobile chips [49], image processing and scientific computing [21],

and system software accelaration [47, 48] to high performance computing [50]. In top

500 [51] of July 2012 [1], there are 52 supercomputers built upon NVidia GPUs. In order to

accomodate various GPU architectures, many GPU-based programming models have been

proposed, such as NVidia CUDA [17], OpenCL [38], and C++ AMP [12], etc. In particular,

NVidia CUDA (Compute Unified Device Architecture) is drawing widespread interest,

and C/C++ CUDA programs are being developed and used extensively, so improving the



2

reliability of CUDA programs becomes a critical issue.

Random testing is the most prominent method to improve software reliability in indus-

try; however, it always detects errors with respect to the specific platform and execution

path as well as the thread schedule. In this thesis we focus on formal analysis based

testing to improve CUDA programs’ correctness. Testing is expected to be exponential.

For example, testing for a program is expected to be exerted with respect to all platforms.

In sequential programs testing is supposed to exploit all feasible program paths, while

in concurrent scenarios it is complete to take into account of all thread schedules. Our

testing goals are to employ formal analysis based testing to refrain from porting issues

(i.e., platform constraints) while exploiting all execution paths and thread schedules.

1.2 CUDA
A CUDA program is a hybrid of host code and kernel code, host code is executed

sequentially in the CPU, and kernel code is executed with the parallel SIMD mode in the

GPU. A CUDA kernel is launched as a 3D grid of thread blocks. The total size of a 3D grid

is gridDim.x × gridDim.y × gridDim.z. Each block has block ID 〈 blockIdx.x,

blockIdx.y, blockIdx.z 〉 and contains blockDim.x× blockDim.y× blockDim.z

threads, each of which has thread ID 〈 threadIdx.x, threadIdx.y, threadIdx.z 〉.

For brevity, we use gdim to denote gridDim, bid for blockIdx, bdim for blockDim, and

tid for threadIdx. The constraints bid.∗ < gdim.∗ for ∗ ∈ {x, y, z} and tid.∗ < bdim.∗ for

∗ ∈ {x, y, z} always hold. Figure 1.1 presents a simple CUDA program containing 3 × 2

blocks, each of which consists of 4 × 3 threads. Threads within the same block can share

information via shared memory and synchronize via barriers. Threads belonging to distinct

blocks must use the much slower global memory to communicate and may not synchronize

using barriers. Each thread uses its own local memory and register. Groups of 32 (a “warp”)

consecutively numbered threads within a thread block are scheduled at a time in a Single

Instruction Multiple Data (SIMD) fashion.

1.3 The Difficulty of Debugging CUDA Programs
CUDA programs are extensively used, but programming CUDA programs to achieve

high performance often requires many intricate optimizations involving memory bandwidth

and the CPU/GPU occupancy. Most of these optimizations are being carried out manually,
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Grid 

Block(0, 0) Block(1, 0) Block(2, 0) 

Block(0, 1) Block(1, 1) Block(2, 1) 

Block(1, 1) 

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0) 

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1) 

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2) 

Figure 1.1: Grid of thread blocks, adapted from [18].

and due to the complexity of these optimizations in the context of actual problems, design-

ers routinely introduce insidious correctness and performance bugs. Conventional GPU

debuggers [34–36] are ineffective at finding and root-causing races that are dependent on

thread schedules and inputs. Locating these bugs using today’s commercial debuggers is

always a hit-or-miss affair: one has to be lucky in so many ways, including (i) picking the

right test inputs, (ii) choosing the appropriate thread interleaving, (iii) ability to observe

data corruption (and be able to reliably attribute it to races), (iv) ability to demonstrate all

possible thread/warp schedules in the specific platform, and (v) ability to diagnose defects.

1.4 Improving Correctness of GPU Kernels
In the following we review techniques for improving correctness of GPU kernels. We

broadly classify the techniques as dynamic or static. Dynamic techniques execute programs

on concrete test cases to derive information about the executions of the program, whereas

static techniques use program verification to reason about all executions of the program
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without having to run it.

1.4.1 Dynamic Analysis with Code Instrumentation

Given a parallel program, dynamic instrumentation works by instrumenting and exe-

cuting the program to dynamically record all memory accesses. Then, after running the

program, we can determine if the execution has a data race by examining the logs for

conflicting accesses. This technique is simple to apply and races that are uncovered are true

bugs (no false positives) because the program is executed concretely. The main weakness of

dynamic instrumentation is that it cannot guarantee the completeness (completeness means

no false negatives or omissions) since it only checks a single path (out of many). Tools that

use dynamic instrumentation include work by Boyer et al. [10], CUDAMEMCHECK [35]

and GRace [54], the GRace tool additionally uses static analysis to reduce the number of

memory access pairs for further dynamic analysis.

1.5 Static Verification
Unlike dynamic techniques, static verification can offer guarantees of completeness.

However, a recurring weakness of these techniques is the need for invariants to refrain

from false positives. An invariant is a property that always holds at a particular program

point (e.g., that a variable is always greater than 0).

The PUG tool [28] verifies GPU kernels for race-freedom through encoding thread in-

terleavings and translating CUDA kernels to verification conditions in SMT format. Given

a CUDA program, PUG generates a verification condition that reflects the accesses of the

program from the point of view of two symbolic (arbitrary) threads. PUG uses the canonical

schedule (a sequential thread schedule) to reduce the number of thread schedules that must

be considered. PUG also uses the idea of barrier intervals to incrementally consider one

barrier interval at a time. PUG addresses the problem of generating loop invariants by loop

normalization, overapproximation and invariant finding. The tool recognises certain loop

patterns and automatically encode invariants into the verification condition. The tool allows

the programmer to annotate loops with invariants.

GPUVerify [8, 14] verifies race- and divergence-freedom of GPU kernels, which are

written in mainstream GPU programming languages such as CUDA and OpenCL. At a

high-level, GPUVerify is similar to PUG. The main difference is the technique used to
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generate verification conditions. GPUVerify also exploits the property that race-freedom

is a pairwise property. Rather than directly encoding the kernel as a verification condition,

GPUVerify translates the kernel into a sequential program that models the behavior of

an arbitrary pair of threads; the correctness of this program implies the race-freedom of

the given kernel. However, GPUVerify suffers from the problem of precise reasoning for

data-dependent GPU kernels, whose control- or data-flow is dependent on shared state.

Barrier invariants, manually written invariants with respect to data-dependent kernels, en-

able precise reasoning while retaining the two-thread reduction necessary for scalable

verification. But barrier invairants are difficult to be written unless the kernel behaviors

are clear to users, and ambiguous invariants will lead to incorrect verification results.

1.6 Hybrid Technique
A hybrid technique uses both dynamic and static techniques in conjunction. Work by

Leung et al. [27] has applied test amplification to GPU kernels. Test amplification is to use

single dynamic run to learn much more information about a program’s behavior. First, a

CUDA kernel is instrumented and the behavior of the kernel with some fixed test input and

under a particular thread interleaving is logged. Second, they compute if the kernel is access

invariant: the input variables of a kernel will not actually flow-to or affect the integrity

of the variables appearing in the property to be verified. A taint analysis conservatively

tracks the inputs of the kernel and ensures that (i) no tainted variable is used in the address

computation of any memory access and (ii) no memory access is control-dependent on a

tainted variable. Finally, if a kernel is access invariant, then race-freedom can be amplified

to all executions of the program. The main advantage of this technique is that it combines

the complementary strengths of dynamic and static approaches. However, test amplification

is inapplicable for access variant kernels, which exist extensively.

1.6.1 Dynamic Symbolic Execution

Dynamic symbolic execution uses symbolic execution to explore the executions of a

program. Under symbolic execution, the program is executed in a symbolic virtual machine

(VM) where program variables can be marked as concrete or symbolic. During execution

the VM can fork execution paths whenever it encounters a nondeterministic situation (e.g.,

a conditional where both choices can be true or dereferencing a symbolic pointer that may
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point to multiple objects). Execution can be forced along a particular path by applying

constraints over symbolic variables. For example, if execution reaches an if-statement with

condition (x == 0) where x is an unconstrained symbolic variable then we will explore

execution paths where the condition holds (x == 0) and not explore paths where (x 6= 0).

The main advantage of this technique is that it executes the program and so does not

suffer from false positives. Additionally, if a bug is uncovered (e.g., an assertion failure

or a null pointer dereference), then the constraints over symbolic variables (called the path

condition) can be used to automatically generate a concrete test case as the witness.

Tools that have applied dynamic symbolic execution to GPU kernels include KLEE-

FP [15] and KLEE-CL [16]. KLEE-FP [15] presents an effective technique to cross-check

an IEEE 754 floating-point program against its SIMD-vectorized version. The key insight

behind their approach is that floating-point values are only reliably equal if they are essen-

tially built by the same operations. As a result, their technique works by lowering the Intel

Streaming SIMD Extension (SSE) instruction set to primitive integer and floating-point

operations and then using an algorithm based on symbolic expression matching augmented

with canonicalization rules. In addition, the analogue technique is used by KLEE-CL [16]

to detect races and help cross-check OpenCL code against sequential code.

1.7 Thesis Statement
We always aim at building effective yet practical analysis and methodology for GPU

programs, and the framework we create to realize this objective must be precise, fully

automatic and complete as much as possible. To achieve the objective, we construct

the first symbolic analysis, testing and test case generator tailored for GPU programs.

Since CUDA is the most prominent GPU programming model, our framework targets

CUDA programs, this framework supports a significant subset of CUDA/C++ and is able to

uncover many concurrency errors effectively in real-world CUDA programs. In addition,

our thesis statement is summarized as follows:

A high degree of test automation is achievable in the space of GPU pro-

grams through SMT-based symbolic execution, picking representative execu-

tions through thread abstraction and combined static and dynamic analysis.
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1.8 Research Outline
The entire symbolic analysis framework for CUDA programs is realized through three

stages:

First, we implemented GKLEE [31], which is the first symbolic analyser and test gen-

erator tailored for C++ CUDA programs. GKLEE analyzes whole programs, which means

that it verifies the “main” (CPU) program together with the collection of GPU kernel

functions that it calls (we call these functions “GPU kernels”). GKLEE extends KLEE [13]

in many ways. While KLEE provides the basic capabilities for sequential program analysis,

GKLEE (“GPU + KLEE”) extends KLEE to provide self-contained and powerful facilities

for analyzing GPU programs. GKLEE executes the programmer’s CUDA application in a

symbolic environment. With the user declared symbolic assignment of program variables,

GKLEE can execute through all different branches in the code where the predicates are

based on the symbolic variables. These executions output as test cases, with concrete values

substituted for the symbolic ones. GKLEE fully executes the CUDA program, including the

kernel portion, closely following CUDA semantics, and using a canonical schedule fully

respecting warp-based SIMD execution (which is proven to be sound for race detection).

Second, GKLEE encounters a major drawback of all the semiformal tools described so

far: these tools model and solve the data-race detection problem over the explicitly specified

number of GPU threads. This makes these tools difficult to apply in many situations

in supercomputing where many program modules (e.g., library modules) often assume

a certain minimum number of threads to be involved, where these minimum numbers

themselves are very large. To address this problem, we provide an extension of GKLEE

that exploits thread symmetry and provides a way to analyze GPU programs containing

large (bounded) numbers of threads in real kernels. In a nutshell, our method partitions

the space of executions of a GPU program into parametric flow equivalence classes (PFE)

and models the race analysis problem over two parametric threads in one PFE equivalence

class. This analysis method over parametric flows has been implemented in a new version

of GKLEE called GKLEEp [32].

Last but not least, GKLEEp still requires users to pick the symbolic inputs. Choosing too

many symbolic inputs can result in slower symbolic evaluation while choosing less might

miss important errors. In addition, GKLEEp still suffers from search explosion: even if only
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two symbolic threads are considered, each thread may create a large number of flows or

symbolic states. For instance, if a thread contains n feasible branches, then O(2n) flows

or paths may be generated. To resolve those problems, we present a new tool SESA [33]

(Symbolic Executor with Static Analysis) that significantly improves over prior tools in its

class both in terms of new ideas and new engineering:

1. SESA implements a new front-end (based on Clang). It also supports all core CUDA

C++ instructions, 95 arithmetic intrinsics, 25 type conversion intrinsics, all atomic

intrinsics, and 82 CUDA runtime functions.

2. SESA is the first tool to employ data-flow analysis to combine parametrically equiv-

alent flows that may otherwise exponentially grow in many examples.

3. SESA employs static taint analysis to identify inputs that can be concretized without

loss of verification coverage while significantly speeding up verification. This analy-

sis has yielded fairly precise results in practice (very little overapproximation), partly

helped by the selective use of loop unrollings.

4. SESA can scale to thousands of threads for typical CUDA programs. It has been used

to analyze over 50 programs in the SDK and popular libraries such as Parboil [3]

and Lonestar [2]. Previously reported formally based GPU analysis tools have not

handled such practical examples before.

5. We describe conditions under which SESA is an exact race-checking approach and

also present when it can miss bugs. In all our experiments so far, these unusual

patterns have not arisen.

1.9 Summary of Contributions
After comparing against all aforesaid formal analysis tools with GKLEE in Table 1.1,

the main contributions of this dissertation are highlighted as follows:

• The automation of GPU programs testing is achieved through SMT-based symbolic

execution; we built the first symbolic analyser and test generator tailored for CUDA

programs: GKLEE. In GKLEE, the hierarchical memory model is supported fully and

accurately, a novel sequential canonical thread schedule, which is sound for detecting

races, is provided to improve GKLEE’s scalability, and the SMT-based race detection

is applied to uncover races effectively.
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Table 1.1: Comparison of formal analysis and testing frameworks of GPU programs.

Comparison
Categories Boyer et al. [10] PUG [28] GRace [54]

KLEE-FP [15]
KLEE-CL [16] TestAmp [27] GPUVerify [8, 14]

GKLEE [31]
GKLEEp [32]

SESA [33]
Methodology Dynamic Check Symbolic Static Analysis Dynamic Static Analysis Static Verification Dynamic Symbolic Execution [31]

Static Analysis + Dynamic Check Symbolic Execution + Dynamic Check + Barrier Invarient + Parametric Flow [32, 33]
+ Static Analysis [33]

Target Program CUDA CUDA CUDA IEEE 754 floating-point program CUDA CUDA CUDA
OpenCL OpenCL

Level of Analysis Source Code Source Code Source Code LLVM Bytecode Source code LLVM Bytecode LLVM Bytecode
(Instrument.) (Instrument.) (Instrument.) Boogie

Bugs Targeted Shared Mem. Race, Shared Mem. Race, Intra-/Inter- Warp Race Race, Race Race Race (intra-/inter- warp, all memory),
Bank Conflicts Deadlocks, Functional Correctness, Deadlock Memory Errors, Deadlocks,

Bank Conflicts Memory Errors Warp Divergence, Memory Coalesce,
Bank Conflicts,

Compilation level bugs (e.g. Volatiles)
False alarm elim. Auto./Manual Refinement Dynamic Execution Dynamic Execution SMT-solving Dynamic Execution SMT Solving, Barrier Invariant SMT-solving, GPU replaying
Test Generation Not supported Not supported Not supported Automatic Not supported Not Supported Automatic, Hardware Execution,

Coverage Measures, Test Reduction
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• Thread abstraction is proposed and used to further improve scalability and simplify

race detection significantly. GKLEEp is an important extension to implement the

thread abstraction.

• Symbolic execution can take advantage of static analysis in terms of automatic se-

lection of symbolic inputs and avoidance of redundant symbolic execution. GKLEEp

evolves to SESA after combining static taint anlysis.

• All these tools are built based upon LLVM/Clang-3.2 and can be used independently

or as a whole. They support a significant subset of CUDA language features, pro-

vide high-degree automation, and uncover actual errors from the latest CUDA SDK

kernels and other popular CUDA software.

1.10 Dissertation Outline
The rest of the dissertation is organized into chapters as follows:

• Chapter 2 presents the basic SMT-based symbolic analysis approaches and the first

CUDA symbolic analyser and test generator called GKLEE.

• Chapter 3 introduces the thread abstraction idea through grouping threads that di-

verge in the same manner into parametric flows and detecting races based on para-

metric flows.

• Chapter 4 demonstrates static analysis to automatically symbolize inputs and prune

off redundant symbolic execution that will not contribute to race detection. In this

chapter, we present the latest framework called SESA and show this framework is

useful to uncover insidious errors in the latest CUDA SDK 5.5 kernels and some

well-known CUDA software, such as Parboil [3], etc.

• Chapter 5 concludes our work and looks ahead to the future research directions.



CHAPTER 2

BASIC SYMBOLIC ANALYSIS APPROACHES

Programs written for GPUs often contain correctness errors such as races or deadlocks,

leading to the wrong result. Existing debugging tools often miss these errors because

of their limited input-space and execution-space exploration. Existing tools based on

conservative static analysis or conservative modeling of SIMD concurrency generate false

alarms resulting in wasted bug-hunting. They also often do not target performance bugs

(noncoalesced memory accesses, memory bank conflicts, and divergent warps).

This chapter presents a new tool framework called GKLEE for analyzing GPU programs

with respect to important correctness and performance issues (the tool name coming from

“GPU” and “KLEE” [13]). GKLEE profits from KLEE’s code base and philosophy of testing

a given program using symbolic execution. GKLEE is the first symbolic analyser and test

generator tailored for GPU programs.

In GKLEE, the execution of a program expression containing symbolic variables results

in constraints amongst the program variables, including constraints due to conditionals and

explicit constraints (assume statements) on symbolic inputs. Conditionals are resolved by

KLEE’s decision procedures (“SMT solvers” [44]) that find solutions for symbolic program

inputs. This approach helps the symbolic analyser do something beyond bug-hunting: they

can automatically enumerate test inputs in a demand-driven manner. That is, if there is

a control/branch decision that can be affected by some input, a symbolic analyser can

automatically compute and record the input value in a test that is valuable for downstream

debugging. Recent experience shows that formal methods often have the biggest impact

when they can compute tests automatically, exposing software defects and vulnerability

[20, 24, 41].

The architecture of GKLEE is shown in Figure 2.1. It employs a C/C++ front-end

based on LLVM-GCC (with our customized extensions for CUDA syntax) to parse CUDA
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Figure 2.1: GKLEE’s architecture.

programs. It supports the execution of both CPU code and GPU code. GKLEE employs a

new approach to model the symbolic state (recording the execution status of a kernel) with

respect to the CUDA memory model.

2.1 Contributions
Our main contribution is a symbolic virtual machine (VM) to model the execution of

GPU programs on open inputs. We detail the construction and operation of this virtual

machine, showing exactly how it elegantly integrates error-detection and analysis while

not generating false alarms or missing execution paths when generating concrete tests. This

approach also allows one to effect scalability/coverage tradeoffs. The following features are

integrated into our symbolic VM approach:

• GPU programs can suffer from several classes of insidious data races. GKLEE finds

such races (sometimes even in well-tested GPU kernels).

• GKLEE detects and reports occurrences of divergent thread warps (branches inside

SIMD paths), as these can degrade performance. In addition, GKLEE guarantees

to find deadlocks caused by divergent warps in which two threads may encounter

different sequences of barrier (__syncthreads()) calls.

• GKLEE’s symbolic virtual machine can systematically generate concrete tests while

also taking into account any input constraints the programmer may have expressed

through assume statements.

• While tests generated by GKLEE guarantee high coverage, it may lead to test ex-
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plosion. GKLEE employs powerful heuristics for reducing the number of tests. We

evaluate these heuristics on a variety of examples and identify those heuristics that

result in high coverage while still only generating fewer tests.

• We can automatically run GKLEE-generated tests on the actual hardware; one such

experiment alerted us to the need for a new error-check type, which we have added to

GKLEE: has a volatile declaration been possibly forgotten? This can help eliminate

silent data corruption caused by reads that may pick up stale write values.

• We target two classes of memory access inefficiencies, namely noncoalesced global

memory accesses and shared memory accesses that result in bank conflicts and show

how GKLEE can spot these inefficiencies and also understand platform rules (i.e.,

compute capability 1.x or 2.x). Some kernels originally thought free of these errors

are actually not so.

• GKLEE’s VM incorporates the CUDA memory model within its concolic execution

framework while (i) accurately modeling the SIMD concurrency of GPUs, (ii) avoid-

ing interleaving enumeration through an approach based on race checking, and (iii) scal-

ing to large code sizes.

• GKLEE handles many C++/CUDA features, including struct, class, template, pointer,

inheritance, CUDA’s variable and function derivatives, and CUDA specific functions.

• GKLEE’s analysis occurs on LLVM byte-codes (also targeted by Fortran and Clang).

Byte-code level analysis can help cover pertinent compiler-induced bugs in addition

to supporting future work on other binary formats.

2.2 Roadmap
§ 2.3 explains the error-classes covered by GKLEE. § 2.4 presents GKLEE’s concolic

verification: state model, memory type inference, and concolic execution (§ 2.4.2) and

error checking/analysis (§ 2.4.3). § 2.5 presents the test generation as witness of errors.

§ 2.6 presents experimental results, covering issues pertaining to correctness checking/per-

formance (§ 2.6.1) and test set generation/reduction (§ 2.6.2).

2.3 Examples of our Analysis/Testing Goals
GKLEE currently supports the CUDA [17] syntax. CUDA programs suffer from not

only many common concurrent errors, i.e., race conditions, but also CUDA specific errors.
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This section demonstrates the CUDA error classes in detail.

2.3.1 Deadlocks

Deadlocks occur when any two threads in a thread block fail to encounter the same

textually aligned barriers [23], as in kernel deadlock below.

Here, threads satisfying tid.x + i > 0 invoke the barrier while the other threads do

not:

__global__ void deadlock(int i) {
if (tid.x + i > 0)
{ ...; __syncthreads(); }

}

Random test input generation does not guarantee path coverage especially when con-

ditionals are deeply embedded, whereas GKLEE’s directed test generation based on SMT-

solving ensures coverage. While the basic techniques for such test generation have been

well researched in the past, GKLEE’s contributions in this area include addressing the

CUDA semantics and memory model and detecting nontextually aligned barriers, a simple

example of which is below. Here, the threads encounter different barrier calls if they diverge

on the condition tid.x+ i > 0.

if (tid.x + i > 0) { ...; __syncthreads(); }
else { ...; __syncthreads(); }

2.3.2 Data Races

There are three broad classes of races: intrawarp races, interwarp races, and device/CPU

memory races. Intrawarp races can be further classified into intrawarp races without warp

divergence, and intrawarp races with warp divergence.

2.3.2.1 Intrawarp Races Without Warp Divergence

Given that any two threads within a warp execute the same instruction, an intrawarp

race (without involving warp divergence) has to be a write-write race. The following is an

example of such a race which GKLEE can successfully report. In this example, writes to

shared array v[] overlap; e.g., thread 0 and 1 concurrently write four bytes beginning at

v[0] (in a 32-bit system).
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__global__ void race()
{ x = tid.x >> 2; v[x] = x + tid.x; }

2.3.2.2 Intrawarp Races With Warp Divergence

In a divergent warp, a conditional statement causes some of the threads to execute the

then part while others execute the else part. But because of the SIMD nature, both parts

are executed with respect to all the threads in some unspecified order (undefined in the

standard). Thus, in example ‘race’, depending on the hardware platform: (i) the even

threads may read v first, and then the odd threads write v, or (ii) the odd threads may write

v and then the even threads may read v:

__global__ void race() {
if (tid.x % 2) { ... = v ; }
else { v = ... ; }

}

While on a given machine the results are predictable (either the then or the else

happens first), an unpleasant surprise can result when this code is ported to a future machine

where the else happens first (think of it as a “porting race”—race-like outcome that

surfaces when the code is ported). The culprit is of course overlapped accesses across

divergent-warp threads, but if v is a complicated array expression, this fact is virtually im-

possible to discern manually. GKLEE’s novel contribution is to detect such overlaps exactly

regardless of the complexity of the conditionals or the array accesses. (For simplicity, we

do not illustrate a variant of this example where both accesses are updates to v.)

This example also covers another check done by GKLEE: it reports the number of

occurrences of divergent warps over the whole program.

2.3.2.3 Interwarp Races

Interwarp races could be read-write, write-read, or write-write: we illustrate a read-

write race below. Here there is the danger that thread 0 and thread bdim.x− 1 may access

v[0] simultaneously while these two threads also belong to different warps in a thread block.

__global__ void race() {
v[tid.x] = v[(tid.x + 1) % bdim.x];

}
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Testing may fail to reveal this bug because this bug is typically noticed only when the

write by one thread occurs before the read by the other thread. However, the execution

order of threads in a GPU is nondeterministic depending on the scheduling and latencies of

memory accesses. GKLEE guarantees to expose this type of race.

2.3.2.4 Global Memory Races

GKLEE also detects and reports races occurring on global device variables:

__device__ x;
__global__ void race()
{ ...conflicting accesses to x by two threads... }

2.3.3 Memory Access Inefficiencies

There are two kinds of memory access inefficiencies: bank conflicts and noncoalesced

memory accesses. GKLEE reports their severity by reporting the absolute number and the

percentage of accesses that suffer from this inefficiency, as described in § 2.6.1 in detail.

2.3.3.1 Shared Memory Bank Conflicts

Bank conflicts result when adjacent threads in a half warp (for the CUDA compute

capability 1.x model) or entire warp (for capability 1.2) access the same memory bank.

GKLEE checks for conflicts by symbolically comparing whether two such accesses can fall

into a memory bank.

2.3.3.2 Noncoalesced Device Memory Accesses

Noncoalesced memory accesses waste considerable bus bandwidth when fetching data

from the device memory. Memory coalescing is achieved by following access rules specific

to the GPU compute capability. GKLEE faithfully models all 1.x and 2.x compute capability

coalescing rules and can be run with the compute capability specified as a flag option

(illustrates the flexibility to accommodate future such options from other manufacturers).

2.3.4 Test Generation

The ability to automatically generate high quality tests and verify kernels over all

possible inputs is a unique feature of GKLEE. The BitonicSort (Figure 2.2) kernel

taken from CUDA SDK 2.0 [17] sorts values’s elements in an ascending order. The steps
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1 s h a r e d unsigned s h a r e d [NUM] ;
2
3 i n l i n e void swap ( unsigned& a , unsigned& b )
4 { unsigned tmp = a ; a = b ; b = tmp ; }
5
6 g l o b a l void B i t o n i c K e r n e l ( unsigned * v a l u e s ) {
7 unsigned i n t t i d = t i d . x ;
8 / / Copy i n p u t t o sh ar ed mem .
9 s h a r e d [ t i d ] = v a l u e s [ t i d ] ;

10 s y n c t h r e a d s ( ) ;
11
12 / / P a r a l l e l b i t o n i c s o r t .
13 f o r ( unsigned k = 2 ; k <= bdim . x ; k *= 2)
14 f o r ( unsigned j = k / 2 ; j > 0 ; j /= 2 ) {
15 unsigned i x j = t i d ˆ j ;
16 i f ( i x j > t i d ) {
17 i f ( ( t i d & k ) == 0)
18 i f ( s h a r e d [ t i d ] > s h a r e d [ i x j ] )
19 swap ( s h a r e d [ t i d ] , s h a r e d [ i x j ] ) ;
20 e l s e
21 i f ( s h a r e d [ t i d ] < s h a r e d [ i x j ] )
22 swap ( s h a r e d [ t i d ] , s h a r e d [ i x j ] ) ;
23 }
24 s y n c t h r e a d s ( ) ;
25 }
26
27 / / W r i t e r e s u l t .
28 v a l u e s [ t i d ] = s h a r e d [ t i d ] ;
29 }

Figure 2.2: The Bitonic Sort kernel.

taken in this kernel to improve performance (coalescing global memory accesses, mini-

mizing bank conflicts, avoiding redundant barriers, and better address generation through

bit operations) unfortunately end up obfuscating the code. Manual testing or random

input-based testing does not ensure sufficient coverage. Instead, given a postcondition

pertaining to the sortedness of the output array, GKLEE generates targeted tests that help

exercise all conditional-guarded flows. Also, running this kernel under GKLEE by keeping

all configuration parameters symbolic, we could learn (through GKLEE’s error message)

that this kernel works only if bdim.x is a power of 2 (an undocumented fact).

Covering all control-flow branches can result in too many tests. GKLEE includes heuris-

tics for test-case minimization, as detailed in § 2.5.
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2.4 Algorithms for Analysis, Test Generation
Given a C++ program, the GKLEE VM (Figure 2.1) executes the following steps, in

order, for each control-flow path pursued during execution (to a first approximation, one can

think of a control-flow tree and imagine all the following steps occurring for each tree path

and for each barrier interval along the path). Deadlock checking and test generation occur

per path (spanning barrier intervals; the notion of barrier intervals is explained in § 2.4.3).

GKLEE checks for barriers being textually aligned and applies a canonical schedule going

from one textually aligned barrier to another one.

• Create the GPU memory objects as per state model; infer memory regions represent-

ing GPU memory dynamically (§ 2.4.2)

• Execute GPU kernel threads via the canonical schedule (§ 2.4.3)

• Fork new states upon nondeterminism due to symbolic values, apply search heuristics

and path reduction if needed (§ 2.3.4)

• In a state, at the end of the barrier interval or other synchronization points, perform

checks for data races, warp divergence, bank conflicts, and noncoalesced memory

accesses (§ 2.4.3)

• When execution path ends, report deadlocks and global memory races (if any), per-

form test-case selection, and write out a concrete test file (§ 2.5)

2.4.1 PTX versus LLVM

Parallel Thread Execution (PTX) [39] is a pseudo-assembly language used in Nvidia’s

CUDA programming environment. The nvcc compiler translates code written in CUDA

into PTX, and the graphics driver contains a compiler that translates the PTX into a binary

code that can be run on the processing cores. LLVM is a low level intermediate represen-

tation which is platform-independent.

GKLEE works on LLVM bytecode instead of PTX becuase the predecessor of GKLEE,

KLEE, is a LLVM symbolic virtual machine for C/C++ programs, a CUDA program is a

C++ program with many GPU-specific language features and semantics, so it is straight-

forward to support CUDA in KLEE virtual machine after we provide some customized

transformations to translate CUDA programs to LLVM bytecode. If GKLEE is applied

on top of PTX, we may take advantage of simpler compilation in that all front-end cus-
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tomizations for CUDA are not needed. However, PTX is a assembly language, similar to

C/C++ assembly language; it is more difficult and error-prone to implement the symbolic

interpreter on assembly laugnage instead of IR. NVVM [37] may be a better candidate over

PTX.

2.4.2 LLVMcuda

This section describes in more details the LLVMcuda language that GKLEE works on,

with emphasis on CUDA-specific extensions. LLVM bytecode is a Static Single Assign-

ment (SSA) based representation providing low-level operations for high-level languages

like C/C++. It is the common code representation used throughout all phases of the LLVM

compilation and optimization flow. LLVMcuda extends LLVM to handle CUDA specific

features.

Figure 2.3 shows an excerpt of its syntax. One main extension in LLVMcuda is that a

variable is attached with its memory sort τ indicating which memory in GPU it refers to.

A variable v : 〈ψ, τ〉 has data type ψ and memory sort τ . For example, %1 : 〈i32, τs〉 with

value 1000 indicates that register %1 is a 32-bit reference or pointer pointing at location

1000 in the shared memory. For a nonpointer and nonreference variable the memory sort

information τ is not used.

2.4.2.1 State Model

In a symbolic state in GKLEE, each thread (in a block) has its own stack and local

memory; each block has a shared memory; all blocks can access the device memory in

the GPU and the main memory in the CPU. Figure 2.4 visualizes an example state for a

GPU with grid size n ×m and block size 32 × i. Each block consists of i of warps; each

warp contains 32 threads. To support test generation, a state also contains a path condition

recording the branching decisions made so far.

Moreover, Figure 2.5 presents the formal description of CUDA memory and state

model in GKLEE. The state Φ is extended to consisting of a data state Σ, a PC P, and

a path condition PC, as well as the current scheduled thread T, where Σ contains the

entire memory hierarchy, P records the pcs of all threads, and PC includes the constraints

on inputs gathered from conditional branches encountered along the execution. It is a

conjunction of a series of constraints. Thread t’s pc is given by P[t]. In this section we hide
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ψ := void void
| i1, i2, . . . bitvector
| float float
| [n × φ] array
| (ψ,ψ, . . . )→ ψ function
| ψ∗ pointer
| {ψ,ψ, . . . } struct

τ := τ unknown memory sort
| τl local memory sort
| τs shared memory sort
| τd device memory sort
| τh host memory sort

v := undef undefined value
| n : ψ constant
| @0 : 〈ψ, τ〉, . . . global unamed variable
| @id : 〈ψ, τ〉 global named variable
| %0 : 〈ψ, τ〉, . . . unamed register
| %id : 〈ψ, τ〉 named register
| tid, bid, bdim, gdim, . . . CUDA built-in variable

lab := l1, l2, . . . label
instr := br v, lab, lab conditional branch

| br lab unconditional jump
| v = call (v, v, . . . ) function call
| ret v | ret void function return
| v = alloc ψ, n memory allocation
| v = getelptr v, . . . address calculation
| v = load v load
| store v, v store
| v = binop v, v binary operation
| v = cast v, ψ type casting
| v = icmp v, v compare
| v = phi (v, lab), . . . φ-node for SSA
| v = syncthreads synchronization barrier

block := lab : instr, . . . , br . basic block
func := fid(v, . . . ) {instr, . . . , } function

Figure 2.3: Syntax of LLVMcuda (excerpt).
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Figure 2.4: Components in a symbolic state.

Program := L ⊂ lab 7→ instr
Value := V ⊂ byte+

Memory Store := M ⊂ var 7→ V
Local Memory := σl ⊂ tid 7→M
Read Set := R ⊂ tid 7→M
Write Set := W ⊂ tid 7→M
Shared Memory := σs ⊂ bid 7→ 〈M,R,W 〉
Device Memory := σd ⊂ 〈M,R,W 〉
Data State := Σ ⊂ σl × σs × σd
Program Counter := P ⊂ tid 7→ lab
Path Condition := PC ⊂ exp
Current Thread := T ⊂ tid
State := Φ ⊂ Σ× P× PC× T

Figure 2.5: Formal descripion of state model in GKLEE.

the details of the stack frame Γ and heap allocation record A and useM to compactly denote

the various components 〈σ,Γ,A〉. We also reuse the notation σl to refer to the local store

consisting of the stack and local memory, e.g., thread i’s local store maps its local variables

to values. A value consists of one or more bytes (our model has byte-level accuracy). We

also use a single unique label l (rather than a block ID and an offset within the block) to

represent the label of an instruction. These simplifications allow us to skip unimportant

details and present when only the core semantics about CUDA. Each thread has its own

local store (σl); the threads in a block share a shared memory (σs), and all blocks share the

device memory M . Note that the shared memory and device memory are both associated

with the read set R and write set W . These two sets are the mappings from thread IDs to

shared/device memory stores. Each thread has a program counter (pc) recording the label

of the current instruction. Now read operation Σ[v] and write operation Σ[v 7→ k] occur in
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the appropriate memory load/store according to v’s memory sort, e.g., if v’s sort is τs, then

the shared memory of the current block is accessed.

In Figure 2.5, the thread local store σl, the shared store σs, the device store σd, and the

program counter P, as well as the path condition PC constitute the program state Φ. We use

Σ.σl, Σ.σs, etc., to refer to the components of Σ. An initial state Φ0 = (Σ0,P0,PC0,T0) is

valid if

1. Σ0.σl(i).v = 0 for all v ∈ V (0 ≤ i < n)

2. Σ0.σs.R = Σ0.σs.W = ∅

3. Σ0.σd.R = Σ0.σd.W = ∅

4. P0(0) = P0(i) = ... = P0(n− 1) = 0 (0 ≤ i < n)

5. PC0 = true

6. T0 = 0

The first requirement ensures that local variables are initialized to the value in Word

corresponding to 0, the second and third requirements are straightforward, the read and

write sets of shared/device memories must be empty, and all threads’ initial program coun-

ters must be same and set as the entry point of kernel, indicated in the fourth requirement.

The last requirement specifies that the path condition of the initial state must be true.

2.4.2.2 Memory Typing

After a source program is compiled into LLVM bytecode, it is not straightforward to

determine which memory is used when an access is made because the address of this access

may be calculated by multiple bytecode instructions. We employ a simple GPU-specific

memory type inference method by computing for each (possibly symbolic) expression a

sort τ , which is either τ (unknown), τl (local), τs (shared), τd (device), or τh (host), as per

the rules in Figure 2.6. The rules in Figure 2.6 also define a transition: 7→t⊆ Φ→ Φ′. That

is, after thread t’s statement is executed, the state moves forward.

In our experience, these rules have been found to be sufficiently precise on all the ker-

nels we have applied GKLEE to. Rule T-alloc abstracts the LLVM instruction alloca, it

allocates n elements of type ψ in the local memory, the sort of the address v is τl, indicating

that it refers to a memory block in the local store. A getelementptr instruction calculates

the address by adding the offsets v2, . . . , vn to basic address v1, the final address v points to



23

[T-alloc]:
P[t] = l L[l] = (v = alloc ψ, n)

(Σ,P,PC,T) 7→t (Σ[v : τl 7→ 0n×sizeof(ψ)],P[t 7→ l + 1],PC,T)

[T-getelementptr]

P[t] = l L[l] = (v = getelementptr (v1 : τ), v2...vn)

(Σ,P,PC,T) 7→t (Σ[v : τ 7→ Σ[v1] + Σ[v2] + ...+ Σ[vn]],P[t 7→ l + 1],PC,T)

[T-binop]
P[t] = l L[l] = (v = binop (v1 : τ), (v2 : τ))

(Σ,P,PC,T) 7→t (Σ[v : τ 7→ Σ[v1] + Σ[v2]],P[t 7→ l + 1],PC,T)

[T-load]:

P[t] = l L[l] = (v = load v1 : τ) τ 6= τ

(Σ,P,PC,T) 7→t (Σ[v : τ 7→ Σ[v1], τ = τs|d 7→ σs|d.R ∪ {v1}],P[t 7→ l + 1],PC,T)

[T-store]:

P[t] = l L[l] = (store v1, v2 : τ) τ 6= τ

(Σ,P,PC,T) 7→t (Σ[v2 : τ 7→ Σ[v1], τ = τs|d 7→ σs|d.W ∪ {v2}],P[t 7→ l + 1],PC,T)

[T-br-conc]:

P[t] = l L[l] = (br v, lab1, lab2)

(Σ,P,PC,T) 7→t (Σ,P[((Σ[v] = true) 7→ (t 7→ lab1)) || ((Σ[v] = false) 7→ (t 7→ lab2),PC,T)

[T-br-sym]:

P[t] = l L[l] = (br v, lab1, lab2) Σ[v] = unknown

(Σ,P,PC,T) 7→t (Σ,P[t 7→ lab1],PC ∧ v,T) ∪ (Σ′,P′[t 7→ lab2],PC′ ∧ ¬v,T)

[Memory-inference]:

v : τ ((v′ : τ ′) 7→ k) ∈ Σ Σ ` v′ ≤ v ≤ v′ + sizeof(k)

v : τ ′

[T-barrier]:

P[t] = l L[l] = ( syncthreads)

(Σ,P,PC,T) 7→t (Σ,P[t 7→ l + 1],PC,T[t := (t+ 1)%#T ]) (t = 0 7→ T-race)

[T-race]:

Race =
∀(tid1 7→M1) ∈ σs|d.R ∀(tid2 7→M2) ∈ σs|d.W tid1 6= tid2 &&M1.var = M2.var
∀(tid1 7→M1) ∈ σs|d.W ∀(tid2 7→M2) ∈ σs|d.W tid1 6= tid2 &&M1.var = M2.var

Figure 2.6: Rules for thread-level operation.
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the same memory as v1. A binop instruction returns the calculated value of two operands,

if both operands have known sorts, then the calculation fails in identifying the sort of the

return value. And the search rule will be applied to locate the right memory. A load

or store instruction can be executed only if the address sort is known, and the value

loaded from memory has unknown sort. A br instruction is executed in a different manner

according to the evaluation result of the conditional v. If v is evaluated to a concrete result,

true or false, then the program counter P is updated based on the evaluation result of the

conditional v, shown in rule T-br-conc. If the evaluation of v is nondeterministic, then

a new state Σ′ is spawned, and the original and newly produced states’ PC are extended

with v and its negation. This procedure is illustrated with rule T-br-sym. In this rule, we

employ (PC, e) to represent the combination of the path condition PC and an expression

e. The last rule says that a valid sort τ ′ is found for v with unknown memory sort if there

exists a memory object v′ residing in memory sort τ ′ and v’s value falls within this object.

GKLEE traverses the memory hierarchy to reason about the target memory if the previous

analysis fails to identify v’s sort. It is the extended version of KLEE’s method to resolve

pointer aliasing, which addresses CUDA’s memory hierarchy. In the rule T-barrier, if the

current thread t encounters the barrier, then next thread is to be executed. If all threads

encounter the barrier, then thread number rolls back to 0, GKLEE starts race detection

through comparing read/write and write/write pairs in shared/device memory. If race is

detected, then symbolic execution aborts. The entire race detection is formally described

in the rule T-race and depicted in Section 2.4.3.

2.4.2.3 CUDA Built-in Variables

CUDA built-in variables include the block size, block id, thread id, and so on, The ex-

ecutor accesses these variables during the execution. GKLEE sets their values in respective

memories before the execution. For example, the variable for the thread id, tid, is assigned

three 32 bit words in the local memory of each thread. These words record the tid’s values

in dimension x, y, and z, respectively.

tid : τl (96b) . . .
{x : 32b, y : 32b, z : 32b} . . .
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2.4.3 Canonical Scheduling and Race Checking

We now focus on the interleavings of all the threads within a thread block from one

barrier call to another (global memory accesses across thread blocks are discussed later).

Naively interleaving these threads will result in an astronomical number of interleavings.

GKLEE employs the following schedule generation approach:

• Pursue just one schedule, namely the canonical schedule shown in Figure 2.7 where

each thread is fully executed within a barrier interval before moving on to another

thread.

• During the execution of all the threads in the current barrier interval, build a read-set

R and a write setW , recording in them (respectively) all loads and stores (these will

be in mixed symbolic/concrete form) encountered in the execution.

• After the check points (as shown in Figure 2.7), build all possible conflict pairs,

where a pair 〈r1, w1〉 or 〈w2, w1〉 is any pair that could potentially race or other

conflicts.

• Through SMT-solving, decide whether any of these conflicts are races. If none are

races (do not overlap in terms of a memory address), then the canonical schedule is

equivalent to any other schedule. Thus, we can carry on to the next barrier interval

with the next-state calculated as per the canonical schedule.

Canonical scheduling is sound for safety properties (will neither result in omissions or

false alarms). The caveats that go with this argument are that C/C++ has no standard shared

memory consistency semantics to define safe compiler optimizations, and the CUDA pro-

gramming guide 5.5 provides only an informal characterization of CUDA’s weak execution

semantics. Assume that the instructions within CUDA threads in a barrier interval can be

reordered; then under no conflicts (DRF), reordering transformations are sound [42]. This

→t0 · →t1 · · · →t31 ·︸ ︷︷ ︸ →t32 · →t33 · · · →t63 ·︸ ︷︷ ︸ · · ·

→w0
·(!1 : intra warp) →w1

·(!1 : intra warp) · · ·︸ ︷︷ ︸
→b0 ·(!2 : inter warp)

→b0 · →b1 · · ·︸ ︷︷ ︸ · · · →b0 · →b1 · · ·︸ ︷︷ ︸
→bi0 · · · · →bim ·(!3 : global mem)

Figure 2.7: Canonical scheduling and conflict checking in GKLEE.
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result also stems from [5] where it is shown that race detectors for sequential consistency

can detect the earliest race even under weak orderings. One can also infer this result

directly from [43] where it is shown that under the absence of conflict edges, the delay set

(set of required program orderings) can be empty. We further elaborate on the soundness

of the canonical scheduling method (also considering SIMD execution) in [30].

Consider the following two schedules, we record the writes and reads on v1 and v2 and

see whether these accesses overlap at the end point (the check is denoted by a “!”). A race

occurs in schedule 2 if and only if it also occurs in schedule 1.

Schedule 1 : · W v1−−−→t1 ·
W v2−−−→t1 ·

R v1−−−→t2 · → · · · → ·(!)
Schedule 2 : · R v1−−−→t2 ·

W v2−−−→t1 ·
W v1−−−→t1 · → · · · → ·(!)

2.4.3.1 Intrawarp scheduling

A schedule is a sequence of state transitions made by the threads. The threads within

a warp are executed in lock-step manner, and if they diverge on a condition, then one side

(e.g., the “then” side) is executed first, with the threads in the other side blocked, and then

the other side is executed (this is sound after checking for the absence of intrawarp races).

(Note that GKLEE executes LLVM byte-codes and is therefore able to capture the effect of

compiler optimizations.)

In GKLEE, we schedule these threads in a lock-step manner and provide an option to

not execute the two sides sequentially. Now we show that these two scheduling methods

are equivalent if no data race occurs. Specifically, the sequence (up to the next joint point)

Φ0
c−→t1 Φ1

c−→t2 · · ·
c−→tn Φn

¬c−→t1 · · ·
¬c−→tn Φ2n

can be shuffled into the following one provided that it is race-free. We use c−→ti to indicate

that thread ti makes the transition with condition c.

Φ0
c−→t1 Φ1

¬c−→t1 Φ′2
c−→t2 · · ·

c−→tn Φ′2n−1
¬c−→tn Φ2n

Since c exclusive-or (⊕) ¬c holds for a thread, the sequence is equivalent to the fol-

lowing one (where Φ′′n = Φ2n) which GKLEE produces. This is the canonical schedule for

intrawarp steps.

Φ0
c⊕¬c−−−→t1 Φ′′1

c⊕¬c−−−→t2 · · ·
c⊕¬c−−−→tn Φ′′n

Hence GKLEE’s intrawarp scheduling is an equivalent model of the CUDA hardware.
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It eases formal analysis and boosts the performance of GKLEE. Similarly, as Figure 2.7 we

can reduce a race-free schedule to a canonical one for interwarps, multiblocks, and barrier

intervals (BIs). These transition relations are represented by→w,→b, and→bi respectively.

2.4.3.2 Conflict checking

Figure 2.7 indicates that GKLEE supports various conflict checking:

• Intrawarp race (denoted as !1), checked at the end of a warp. Threads t1 and t2 incur

such a WW race if they write different values to the same memory location in the

same store instruction: ∃l : L[l] = store e v ∧ P[t1] = P[t2] = l and Σ ` vt1 =

vt2 ∧ et1 6= et2 (GKLEE issues a warning if et1 = et2). For a diverged warp, RW and

WW races are also checked by considering whether the accesses in both sides can

conflict (discussed in Section 2.3).

• Interwarp race (denoted as !2), checked at the end of a block. Thread t1 and t2 (in

different warps) incur such a race if they access the same memory location, and one of

them is a write, and different values are written if both accesses are writes. Formally,

let R〈t, v, e〉 and W 〈t, v, e〉 denote that thread t reads e from location v and writes

e to v, respectively. Then a RW race occurs if ∃R〈t1, v1, e1〉,W 〈t2, v2, e2〉 : Σ `

v1 = v2 (or the case of exchanging t1 and t2); a WW race occurs if ∃W 〈t1, v1, e1〉,

W 〈t2, v2, e2〉 : Σ ` v1 = v2 ∧ e1 6= e2 (again GKLEE will prompt for investigation

if et1 = et2).

• Global race (denoted as !3), checked at the end of the kernel execution. Similar to

interwarp race but on the device or CPU memory. Deadlocks are also checked at !3.

Conflict checking is performed at the byte level to faithfully model the hardware.

Suppose a thread reads n1 bytes starting from address a1, and another thread writes n2

bytes starting from address a2, then a overlap exists if the following constraint holds.

(a1 ≤ a2 ∧ a2 < a1 + n1) ∨ (a2 ≤ a1 ∧ a1 < a2 + n2)

Without abstracting pointers and arrays, GKLEE inherits KLEE’s methods for handling

them: suppose there are n arrays declared in a program. Then, when ∗p is evaluated, for

every array the concolic executor will check whether p can fall within the array, spawning

a new state if so (works particularly well for CUDA, where pointers are usually used for

indexing array elements).
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Note that our method reports accurate results in contrast to static analysis methods such

as [6] (where no decision procedures are applied) and [28] (which uses SMT solving but

relies heavily on abstractions). The method in [54] uses run-time checking to rule out false

alarms produced by its static analyzer; while GKLEE builds all the checks into its VM and

produces no false alarms.

Figure 2.8 visualizes the sequential thread schedule. GKLEE provides two types of

sequential schedule, pure canonical schedule shown in the left of Figure 2.8 and SIMD-

aware canonical schedule shown in the right of Figure 2.8. The pure canonical schedule is

the default one for GKLEE, and it shows how GKLEE moves away from generating all

(exponential) interleavings to merely generating one canonical interleaving per barrier

interval (barrier intervals are thread code paths from one __syncthread()to the next).

This approach is sound (no false alarms) and complete (no omissions) for safety properties.

The basic point of this approach is that if no races are found, then the canonical schedule

is equivalent to any other schedule.

2.4.4 Power of Symbolic Analysis

We now present how GKLEE detected a WW race condition in histogram64Kernel

(Figure 2.9), a CUDA SDK 2.0 kernel. Since the invocation of this kernel in main passes

d_Data that can be quite large, a user of GKLEE (in this case, us) chose to keep only the

first 10 locations of this array symbolic, and the rest concrete at value 0. (This is the only

manual step needed; without this, GKLEE’s solver will be inundated, trying to enumerate

every array location.) GKLEE now determines that addData64 can be called concur-

rently by two distinct threads. Drilling into this function, GKLEE generates constraints

for s_Hist[threadPos + IMUL(data, THREAD_N)]++ (not marked atomic) to race.

The SMT solver picks two thread IDs 5 and 13; for this, threadPos assumes values

20 and 52, respectively. What flows into data is data4>>26 & 0x3FU, where data4

obtains the value of d_Data[pos]. Since the top 10 elements of d_Data[DATA_N] are

symbolic, thread 5 assigns a symbolic value denoted by d_Data[5] to data4, while thread

13 assigns the concrete value of 0 to d_Data[13].

The SMT solver now solves 20+((d_Data[5]>>21)&2016) = 52+0 (>>26 changed

to >>21 because THREAD_N is 32), resulting in d_Data[5] obtaining value 0x04040404,
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Figure 2.8: GKLEE’s canonical schedule (left) and SIMD-aware canonical schedule (right).

1 g l o b a l void h i s t o g r a m 6 4 K e r n e l ( unsigned * d R e s u l t ,
2 unsigned * d Data , i n t dataN ){
3 c o n s t i n t t h r e a d P o s =
4 ( ( t h r e a d I d x . x & ( ˜ 6 3 ) ) >> 0) |
5 ( ( t h r e a d I d x . x & 15) << 2) |
6 ( ( t h r e a d I d x . x & 48) >> 4 ) ; . . .
7 s y n c t h r e a d s ( ) ;
8 f o r ( i n t pos = IMUL( b l o c k I d x . x , blockDim . x ) + t h r e a d I d x . x ;
9 pos < dataN ; pos += IMUL( blockDim . x , gr idDim . x ) ) {

10 unsigned d a t a 4 = d Data [ pos ] ; / / t o p 10 i s symb . f o r t5 ,
11 . . .
12 addData64 ( s H i s t , t h r e a d P o s , ( d a t a 4 >> 26) & 0x3FU ) ; }
13 s y n c t h r e a d s ( ) ;
14 . . .
15 }
16
17 i n l i n e void addData64 ( unsigned char * s H i s t , i n t t h r e a d P o s ,
18 unsigned i n t d a t a ) {
19 / / Race o f T5 and T13 w i t h t h r e a d P o s o f 20 ,52 r e s p .
20 s H i s t [ t h r e a d P o s + IMUL( da ta , THREAD N) ] + + ; / /<− Race !

}

Figure 2.9: Write-write race in Histogram64 (SDK 2.0).

which causes a race! The user not only obtains an automatic race alert, but also the concrete

input of 0x04040404 to set d_Data[5] to, in case they want to study this race through

any other means.

2.5 Test Generation
During its symbolic execution, GKLEE’s VM has the ability to fork two execution

paths whenever it “encounters a non-deterministic situation”; e.g., when a conditional is

evaluated and both choices are true, or when a symbolic pointer is accessed, it may point
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to multiple memory objects. GKLEE organizes the resulting execution states as a tree. The

initial state of the GPU kernel forms the root of this tree. It then searches the state space

guided by various search reduction heuristics.

2.5.1 The Essence of the VM Executor

GKLEE can be regarded as a symbolic model checker (for GPU kernels) with the

symbolic state modeling the hardware state and the transitions modeling nondeterminism

due to symbolic inputs.

With this view, it is natural that GKLEE supports facilities such as state caching and

search heuristics (e.g., depth-first, weighted-random, bump-merging, etc.), all of which are

inherited from KLEE. The checks discussed in Section 2.4 are essentially built-in global

safety properties examined at each state. In the state space tree, a path from the root to

a leaf represents a valid computation with a path condition recording all the branching

decisions made by all the threads. At a leaf state, we can generate a test case by solving the

satisfiability of this path condition. This ability makes GKLEE a powerful test generator.

2.5.2 Soundness and Completeness of the Test Generator

Given a race free kernel with a set of symbolic inputs, GKLEE visits a path if and only if

there exists a schedule where the decisions made by threads (recorded in the path condition)

are feasible.

Note that the feasibility of a path condition is calculated by SMT solving, which is

precise without any approximation. At the first glance, the completeness of test generation

may be not be obvious since we consider only one (canonical) schedule, while another

schedule may apply the branchings in a different order.

To clarify this, consider the following situation where thread t0 (t1) branches on condi-

tions c0,0 (c1,0):

t0 t1
if (c0,0) . . . ; if (c1,0) . . . ;

If t0 executes before t1, then a depth-first search visits four paths with path conditions

c0,0 ∧ c1,0, c0,0 ∧ ¬c1,0, . . . . If t1 executes before t0, then the 4 path conditions become

c1,0∧ c0,0, c1,0∧¬c0,0 . . . . The commutativity of the ∧ operator ensures, under the race-free

constraint, the equivalence of these two path sets. Hence, it suffices to consider only one
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canonical schedule in test generation as in conflict checking (Section 2.4).

2.5.3 Example

Consider the Bitonic kernel running on one block with 4 threads. Suppose the input

values is of size 4 and has symbolic value v. Lines 1–4 copy the input to shared: ∀i ∈

[0, 3] : shared[i] = v[i]. For thread 0, since lines 7–8 involve no symbolic values, they are

executed concretely. In the first iteration of the inner loop, we have k = 2, j = 1, and

ixj = 1. The conditional branch at line 10 is evaluated to be true; so does that at line 11.

Then the execution reaches the branch at line 12. GKLEE queries the constraint solver to

determine that both branches are possible; it explores both paths and proceeds to the loop’s

next iteration. Finally the execution terminates with 28 paths (and test cases).

2.5.4 Coverage Directed State/Path Reduction

Given that a kernel is usually executed by a large number of threads, there is a real

danger, especially with complex/large kernels, that multiple threads may end up covering

some line/branch while no threads visit other lines/branches. We have experimented with

several heuristics that help GKLEE achieve coverage directed search reduction. Basically,

we keep track of whether some feature (line or branch) is covered by all the threads at

least once, or some thread at least once. These measurements help GKLEE avoid exploring

states/paths that do not result in added coverage.

Another usage of these metrics is to perform test case selection, which still explores the

entire state space, but outputs only a subset of test cases (for downstream debugging use)

after the entire execution is over, with no net loss of coverage. Details of these heuristics are

discussed in § 2.6.2. To the best of our knowledge, coverage measures for SIMD programs

have not been previously studied.

2.6 Experimental Results
As shown in Figure 2.1, a GPU kernel along with a CPU driver is compiled into LLVM

bytecode, which is symbolically executed by GKLEE. Since GKLEE can handle GPU and

CPU style code, we can mix the computation of CPU and GPU, e.g., execute multiple

kernels in a sequence.

CPU code; GPU code; CPU code; GPU code; ...
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The user may give as input a kernel file to test together with a driver representing the

main (CPU side) program. To cater for the need of LLVM-GCC, we redefine some CUDA

specific directives and functions, e.g., we use C attributes to interpret them, as illustrated

by the following definition of shared .

#define __shared__
__attribute((section ("__shared__")))

#define cutilSafeCall(f) f
void cudaMalloc(void** devPtr, size_t size) {

*devPtr = malloc(size);
}
void cudaMemcpy(void* a, void* b, size_t size, ...)
{ memcpy(a,b,size); };

We show below an example driver for the Bitonic Sort kernel. The user specifies what

input values should have symbolic values and may place assert assertions anywhere in

the code, which will be checked during execution. Particularly, the pre- and postconditions

are specified before and after the GPU code, respectively. Function begin GPU(NUM) (a

more general format is begin GPU(gdim.{x,y,z}, bdim.{x,y,z})) specifies that

the x dimension of the block size is NUM.

int main() {
int values[NUM];
gklee_make_symbolic(values, NUM, "input");

int* dvalues;
cutilSafeCall(cudaMalloc((void**)&dvalues,

sizeof(int)*NUM));
cutilSafeCall(cudaMemcpy(dvalues, values,

sizeof(int)*NUM, cudaMemcpyHostToDevice));

// <<<...>>>(BitonicKernel(dvalues))
__begin_GPU(NUM); // block size = <NUM>
BitonicKernel(dvalues);
__end_GPU();

// the post-condition
for (int i = 1; i < NUM; i++)

assert(dvalues[i-1] <= dvalues[i]);

cutilSafeCall(cudaFree(dvalues));
}

A concrete GPU configuration can be specified at the command line. For instance,

option –blocksize=[4,2] indicates that each block is of size 4× 2. These values can also be
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made symbolic so as to reveal configuration limitations.

2.6.1 Results I: Symbolic Identification of Issues

GKLEE supports (through command-line arguments) bank conflict detection for 1.x

(memory coalescing checks cover 1.0 & 1.1, and 1.2 & 1.3), as well as 2.x device capabil-

ities. Table 2.1 presents results from SDK 2.0 kernels while Table 2.2 presents those from

SDK 4.0 (many of these are written for 2.x). These are widely publicized kernels. Our

results are with respect to symbolic inputs.

Tables (2.1 and 2.2): (#T denoting the number of threads analyzed) assert that, under

valid configurations, (i) all barriers were found to be well synchronized; (ii) the functional

correctness is verified (w.r.t the configurations), but only the canonical schedule is consid-

ered for cases with races (marked with *) (thus for cases with fatal races, we are unsure

of the overall functional correctness); (iii) performance defects (to specific degrees) were

found in many kernels, (iv) two races were observed (Histogram64 and RadixSort kernels),

and (v) several alerts pertaining to the use of volatile declarations were reported. ‘WW’

denotes write-write races; they are marked benign (ben.) if the same value is written in our

concrete execution trace. The computation is expected to be deterministic.

The race in Radix Sort was within function radixSortBlockKeysOnly() involving

sMem1[0] = key.x for distinct key.x written by two threads. In Histogram64, we

mark the race WW? as we are unsure whether s Hist[..]++ of Figure 2.9 executed by

two threads within one warp is fatal (apparently, CUDA guarantees a net increment by 1).

It is poor coding practice anyhow (we notate correctness as ‘Unknown’). In Table 2.1,

Table 2.1: SDK 2.0 kernel results concluded by GKLEE.

Kernels Loc Race Func. #T Bank Conflict Coalesced Accesses (↑ perf.) Warp Diverg. Volatile
Corr. (↓ perf.) (↓ perf.) Needed

1.x 2.x 1.0 & 1.1 1.2 & 1.3 2.x
Bitonic Sort 30 yes 4 0% 0% 100% 100% 100% 60% no
Scalar Product 30 yes 64 0% 0% 11% 100% 100% 100% yes
Matrix Mult 61 yes 64 0% 0% 100% 100% 100% 0% no
Histogram64tb. 69 WW? unknown 32 66% 66% 100% 100% 100% 0% yes
Reduction (7) 231 yes 16 0% 0% 100% 100% 100% 16∼83% yes
Scan Best 78 yes 32 71% 71% 100% 100% 100% 71% no
Scan Naive 28 yes 32 0% 0% 50% 100% 100% 85% yes
Scan Workefficient 60 yes 32 83% 16% 0% 100% 0% 83% no
Scan Large 196 yes 32 71% 71% 100% 100% 100% 71% no
Radix Sort 750 WW yes* 16 3% 0% 0% 100% 100% 5% yes
Bisect Small 1,000 ben. – 16 38% 0% 97% 100% 100% 43% yes
Bisect Largetb. 1,400 ben. – 16 15% 0% 99% 100% 100% 53% yes
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Table 2.2: SDK 4.0 kernel results concluded by GKLEE.

Kernels Loc Race #T Bank Conflict(↓ perf.) Coalesced Accesses (↑ perf.) Warp Diverg. Volatile(N/M)
1.x 2.x 1.0 & 1.1 1.2 & 1.3 2.x (↓ perf.)

Clock 38 64 0% 0% 0% 100% 100% 85% no/no
Scalar Product 47 128 0% 0% 50% 100% 100% 36% no/no
Histogram64tb. 70 64 0% 33% 0% 0% 0% 0% no/no
Scan Short 103 64 0% 0% 0% 100% 100% 0% yes/no
Scan Large 226 64 0% 0% 0% 67% 67% 25% yes/no
Transpose (8) 172 256 0∼50% 0∼100% 0∼100% 0∼100% 0∼100% 0% no/no
Bisect Small 1,000 ben. 16 38% 0% 97% 100% 100% 43% yes/yes

“Reduction” contains seven kernels with different implementations; we average the results.

Results for “Histogram64,” and “Bisect Large” are time-bounded (tb.) to 20 mins. Func.

Corr. results about float values are skipped at –. We checked the integer version of “Radix

Sort,” and CUDPP library calls involved in “Radix Sort” were not analyzed. In Table 2.2,

if volatiles needed (N) is ‘yes’ and missed (M) is ‘no’, the code annotation is correct.

Examples with both ‘yes’ (missed volatiles) were found. Transpose contains eight different

implementations; we report the results as a range through “∼.” Kernels having the same

results as their SDK 2.0 versions, including Bitonic Sort, MatrixMult and Bisect Large, are

not presented.

One row result is presented for Bank Conflicts, Memory Coalescing, and Warp Di-

vergence, this row averaging over barrier intervals. The 71% for Scan Best under Bank

Conflict (compute capability 2.x) is obtained by 14 BIs being analyzed, and out of it, 10

had bank conflicts, which is 71%. All other “z%” entries may be read similarly. This

sort of a feedback enables a programmer to attempt various optimizations to improve

performance. When a kernel’s execution contains multiple paths (states), the average

numbers for these paths are reported. Also, with GKLEE’s help, we tried a variety of

configurations (e.g., symbolic configurations) and discovered undocumented constraints

on kernel configurations and inputs.

To show that the numbers reported by GKLEE track CUDA profiler reports, we em-

ployed GKLEE-generated concrete test cases and ran selected kernels on the Nvidia GTX

480 hardware. GKLEE includes a utility script, gklee-replay, that compiles the kernels

using nvcc, executes them on the hardware, and optionally invokes the NVIDIA command

line profiler (which is the back end to their Compute Visual Profiler). We found GKLEE’s

findings to be in agreement with that discovered by the profiler. GKLEE’s statistics can be

used for early detection of these performance issues on symbolic inputs.
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GKLEE employs a heuristic to help users check for potentially missed volatile qualifiers.

Basically, GKLEE analyzes for data sharings between threads within one warp involving

two distinct SIMD instructions. The gist of an example (taken from the CUDA SDK

2.0) when it was compiled for device capability of 2.x was as follows: a sequence ‘a;b’

occurred inside a warp where SIMD instruction ‘a’ writes a value into addresses a1 and a2

on behalf of t0 and t1, respectively, and SIMD instruction ’b’ reads a0 and a1 in t0 and t1,

respectively. Now t1 was meant to see the value written into a1, but it did not, as the value

was held in a register and not written back (a volatile declaration was missing in the SDK

2.0 version of the example). An Nvidia expert confirmed our observation and has updated

the example to now have the volatile declaration.

We now provide a few more details on this issue. The SDK 4.0 version of this example

has the volatile declaration in place. We exposed this bug when we took a newer release of

the nvcc compiler (released around SDK 4.0 and does volatile optimizations), compiled

the SDK 2.0 version of this example (which omits the volatile), and ran the program on our

GTX 480 hardware, finding incorrect results emerging. The solution in GKLEE is to flag

for potentially missed volatiles in the aforesaid manner; in the future, we hope to extend

GKLEE to “understand” compiler optimizations and deal with this issue more thoroughly.

2.6.2 Results II: Testing and Coverage

We assess GKLEE with respect to newly proposed coverage measures and coverage

directed execution pruning. In Table 2.3, we attempt to measure the source-code coverage

by converting the given kernel into a sequential version (through Perl scripts) and applying

the gcov tool (better means are part of future work). The point is that source-code

coverage may be deceptively high, as shown (“a/b” means “statements/branches” covered;

collectively, we call this a target). This is the reason we rely upon only byte-code measures,

described in the sequel.

Table 2.3: Covt and CovTBt measure bytecode coverage w.r.t threads.

Kernels src. code coverage min #test avg. Covt max. Covt avg. CovBIt max. CovBIt exec. time
Bitonic Sort 100%/100% 5 78%/76% 100%/94% 79%/66% 90%/76% 1s
Merge Sort 100%/100% 6 88%/70% 100%/85% 93%/86% 100%/100% 1.6s
Word Search 100%/100% 2 100%/81% 100%/85% 100%/97% 100%/100% 0.1s
Suffix Tree Match 100%/90% 7 55%/49% 98%/66% 55%/49% 98%/83% 31s
Histogram64tb. 100%/100% 9 100%/75% 100%/75% 100%/100% 100%/100% 600s



36

GKLEE first generated tests for the shown kernels covering all feasible paths, and

subsequently performed test case selection. For example, it first generated the 28 execution

paths of Bitonic Sort; then it trimmed back the paths to just five because these five tests

covered all the statements and branches at the byte-code level. Four byte-code based

target coverage measures were assessed first: (i) avg.Covt measures the number of targets

covered by threads across the whole program, averaged over the threads; (ii) max.Covt

that measures the maximum by any thread; (iii) avg.CovBIt computes Covt separately for

each barrier interval and reports the overall average; and (iv) max.CovBIt is similar to

avg.CovBIt except for taking a maximum value. From Table 2.3, we conclude that the

maximum measures give an overly optimistic impression, so we set them aside. min #test

tests are obtained by performing test case selection after the execution. The result for

“Histogram64” is limited to 600 s. No test reductions used in generating this table. Exec.

time on typical workstation. We choose avg.CovBIt for our baseline because activities

occurring within barrier intervals are closely related, and hence separately measuring target

coverage within BIs tracks programmer intent better.

Armed with avg.CovBIt and min #tests, we assess several benchmarks (Table 2.4) with

‘No Reductions’, and two test reduction schemes. Runs with ‘No Reductions’ and no test

case selection applied show the total number of paths in the kernels and the upper limits of

target coverage (albeit at the expense of considerable testing time). RedTB is a reduction

heuristic where we separately keep track of the coverage contributions by different threads.

We continue searching till each thread is given a chance to hit a test target. For instance,

in one barrier interval, if one target is reachable by all the threads, we continue exploring

all these threads, but if the same target is reachable again (say in a loop), we cut off the

search through the loop. In contrast, RedBI only looks for some thread reaching each

Table 2.4: Reduction heuristic comparisons.

Kernels No Reductions RedTB RedBI
#path avg. CovBIt #path avg.CovBIt #path avg. CovBIt

Bitonic Sort 28 79%/66% 5 79%/66% 5 79%/65%
Merge Sort 34 93%/86% 4 92%/84% 4 92%/84%
Word Search 8 100%/97% 2 100%/97% 2 94%/85%
Suffix Tree Match 31 55%/49% 6 55%/49% 6 55%/49%
Histogram64 13 100%/100% 5 100%/100% 5 100%/100%
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target; once that thread has, subsequent thread explorations to that target are truncated

(more aggressive reductions). While the coverage achieved is nearly the same (due to the

largely SIMD nature of the computations), it is clear that RedTB is a bit more thorough.

The overall conclusion is that to achieve high target coverage (virtually the same cov-

erage as with ‘No Reductions’), reduction heuristics are of paramount importance, as they

help contain test explosion. Specifically, the number of paths explored with reductions

is much lower than that done with ‘No Reductions’. A powerful feature of GKLEE is

therefore its ability to output these minimized high-quality tests for downstream debugging.

We generated purely random inputs (as a designer might do); in all cases, GKLEE’s test

generation and test reduction heuristics provided far superior coverage with far fewer tests.



CHAPTER 3

THREAD ABSTRACTION FOR SCALABILITY

This chapter introduces an extension of our symbolic approach to GPU program analy-

sis published recently in [31] and supported by our recently released tool GKLEE. GKLEE

employs a formal analysis approach that is convenient to use for practitioners, yet effective

at finding deep-seated bugs. A GKLEE user writes standard C++ CUDA programs, indi-

cating some of the program variables to be symbolic (the rest are assumed to be concrete

variables). These programs are compiled into LLVM byte-code, with GKLEE serving as

a symbolic virtual machine. When GKLEE runs such a byte-code program, it generates

and records constraints relating the values of symbolic variable. Conditional expressions

in the C++ code (e.g., switch statements) generate constraints covering both outcomes of

a branch; these are solved by instantiating the symbolic variables to cover all feasible

branching options (or as per user-control of how much to cover). The result is that users

automatically obtain path-coverage to the desired degree. GKLEE also writes out these

cases into test files that then form test suites to be run on any platform, ensuring high

coverage. Because of the recent growth in the power of SMT-solvers used to solve these

constraints [44], a tool such as GKLEE is able to handle nontrivial SDK kernel functions.

This chapter addresses a major drawback of all the semiformal tools described so

far—including GKLEE: these tools model and solve the data-race detection problem over

the explicitly specified number of GPU threads. This makes these tools difficult to apply in

many situations in supercomputing where many program modules (e.g., library modules)

often assume a certain minimum number of threads to be involved, where these minimum

numbers themselves are very large. While it may be possible to manually downscale

the number of threads, unfortunately many program modules do not document how such

downscalings of size parameters can be done consistently (if at all that is feasible for a

particular implementation). Thus, automatically handling large numbers of threads is a
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necessity.

In this chapter, we provide an extension of GKLEE that exploits thread symmetry and

provides a way to analyze GPU programs containing large (bounded) numbers of threads in

real kernels. In a nutshell, our method partitions the space of executions of a GPU program

into parametric flow equivalence classes (PFE) and models the race analysis problem over

two parametric threads in one PFE equivalence class. This analysis method over parametric

flows has been implemented in a new version of GKLEE called GKLEEp:

• GKLEEp has found all the data-races found by GKLEE, plus many new ones that

GKLEE missed (because we had to deliberately keep thread-population sizes low

under GKLEE).

• GKLEEp represents a major revision of GKLEE to efficiently represent PFE classes,

yet its basic operation of finding these equivalence classes uses the same symbolic

analysis methods as used in GKLEE, hence inheriting all powerful symbolic facilities

from GKLEE.

• In the best case (e.g., in kernels without loops), GKLEEp produces the most impres-

sive results by modeling race-checking over conflicting (read/write) configuration

over just two threads (as opposed to N threads under GKLEE).

• In cases with loops whose iteration counts depend on the number of threads and

thread-blocks, GKLEEp still reduces one dimension of complexity. More specifically,

in a situation where GKLEE encodes races overN threads of (loop-unravelled) length

N , GKLEEp encodes races over two threads of (loop-unravelled) length N . Since

GKLEEp does not overapproximate the loops, it has a low false alarm rate (none

observed so far), making it particularly useful for realistic programs that may contain

loops that cannot be precisely abstracted.

• We describe the conditions under which GKLEEp is an exact race-checking approach

and also present when it can miss bugs or give false alarms. In all our experiments

so far, these unusual patterns have not arisen, suggesting that GKLEEp is practical.

3.1 Background
This section presents background about GKLEEp. GKLEEp inherits the symbolic execu-

tion power from GKLEE, whose infrastructure is introduced in Figure 2.1. GKLEEp differs
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from GKLEE in the part of executor and scheduler. They share the same front-end and test

generator.

Race checking in concurrent programs has been studied extensively. GPU program race

checking differs in many essential ways from that studied in the non-GPU contexts: (i) GPU

programs are largely computation-oriented, synchronizing sparingly through barriers and

atomic operations, and (ii) the number of threads involved in GPU programs is vastly more

than entertained in non-GPU areas. Formal and semiformal methods in non-GPU contexts

employ various lock-set and happens-before based methods [26, 40]. In terms of finding

races with high assurance, one of the main impediments has been schedule (or interleaving)

explosion. For example, five threads carrying out five sequential instructions each generate

25!/(5!)5 ≈ 13 trillion interleavings. While methods such as partial order reduction [19,53]

dramatically reduce the number of interleavings to be examined, in the case of CUDA

programs we can do much better.

In the previous section, we show that symbolically executing one schedule (called the

canonical schedule) through all the threads, and recording potential conflicting pairs during

this schedule gives us the ability to detect a race if there is any race. The saving due to

canonical scheduling is essential for the success of GKLEE. For example, with N being 5

and there being five threads, instead of examining 13 trillion schedules to check for races,

under the canonical scheduling, one schedule finds a race such as R′ (or finds R itself) if

there is any race.

In general, GKLEE will take k threads each withN steps and run one schedule of length

k×N and encode all possible pairs of accesses over the k×N = O(k2N2) total accesses.

Under parametric flow equivalencing, GKLEEp will, whenever possible, safely reduce the

problem to two threads each with N steps and run one canonical schedule of length 2×N

and encode all pairs over 2×N = O(4N2). IfN is independent of the number of threads (as

is the case in GPU programs where loop iteration counts are independent of the number of

threads or thread-blocks), then the savings are even more dramatic. In fact, for debugging

purposes, a loop abstraction that does not go through all loop iterations is often the most

efficient compromise.
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3.2 A Motivating Example
Let bid and tid stand for block ID and thread ID, respectively. A GPU program consists

of tid-independent conditionals (TIC) and tid-dependent conditionals (TDC). Notice that

the bid-depdendent conditionals are also categorized into the TDC domain. For simplicity’s

purpose, we do not discuss the cases where the conditions depend on symbolic inputs in

this section. An assignment statement such as x = 1 is a TIC (with condition “true”). A

conditional expression that does not involve the tid is also a TIC. Since TICs only have one

successor state, we can group TICs into maximal basic blocks. TDCs are conditionals that

involve the tid. For instance, if (tid%2) is used as a conditional expression, the even threads

will branch one way and the odd threads another way. We put the conditional expression

of a TDC into a basic block of its own. Since basic blocks are basic units of execution, we

will model them as our GPU program “instructions.” Thus, after a TDC instruction, some

threads will be executing the “if” sequence of instructions while the other threads will be

executing the “else” sequence.

A motivating example (Figure 3.1) manifests the advantages of GKLEEp. In this kernel,

8K threads are involved, with four blocks and 2K threads per block. Two arrays a and b are

created and located in the device memory and shared memory, respectively.

Parametric flows are the control-flow equivalence classes of threads that diverge in the

same manner. In more detail, GKLEEp’s race checking approach is one of (i) checking for

data races across a pair of threads within a single parametric flow and (ii) race checking

between one thread (each) of two different flows. The former is to cover intrawarp races

while the latter is to cover interwarp races.

As shown in Figure 3.2, GKLEEp yields four parametric flows. Each lozenge denotes

a TDC, and each rectangle in the diagram represent the TICs. GKLEEp starts its execution

within one thread. When a TDC is encountered, it spawns a new flow. For example, when

bid%2 6= 0 is encountered, two flows are generated with the appropriate conditional path

conditions (namely bid%2 6= 0 and bid%2 = 0).

3.2.1 A Data Race

Whenever two memory accesses involving a common location are performed concur-

rently by two threads, with one of the accesses being a write, a data race situation is created.
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1 / / a [4 * 2048] i n d e v i c e memory ;
2 / / b [2048] i n sh ar ed memory ;
3 g l o b a l void t e s t ( unsigned * a ) {
4 unsigned b i d = b l o c k I d x . x ;
5 unsigned t i d = t h r e a d I d x . x ;
6
7 i f ( b i d % 2 != 0) {
8 i f ( t i d < 1024) {
9 unsigned i d x = b i d * blockDim . x + t i d ;

10 b [ t i d ] = a [ i d x ] + 1 ; / / W r i t e o f Race−1
11 i f ( t i d % 2 != 0) {
12 b [ t i d ] = 2 ; / / W r i t e o f Race−2
13 } e l s e {
14 i f ( t i d > 0)
15 b [ t i d ] = b [ t i d −1]+1; / / Read o f Race−2
16 }
17 } e l s e {
18 b [ t i d ] = b [ t i d −1]; / / Read o f Race−1
19 }
20 } e l s e {
21 unsigned i d x = b i d * blockDim . x + t i d ;
22 b [ t i d ] = a [ i d x ] + 1 ;
23 }
24 }

Figure 3.1: The motivating example.

Figure 3.2: Parametric flows for the motivating example.
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Data races are almost impossible to discern manually. They may never produce corrupt

data results upon testing because of the restricted nature of scheduling employed by typical

GPU hardware. Most damaging of all, races may license compiler transformations that are

“unwarranted,” resulting in an error that appears completely unrelated to the root-cause and

is potentially very confusing.1 This example has two race conditions:

• The Write access in Line 10 (done by Thread 1023) and the Read access done by

Thread 1024 in Line 18. This is an interwarp race – well-understood by anyone who

has studied GPUs and the CUDA execution semantics.

• Any odd-numbered thread (e.g., thread 1) and an even-numbered thread that is num-

bered one higher (e.g., thread 2), both of which are in the range 0, . . . , 1023, involving

the Write access on Line 12 and the Read access on line 15. These lines are mutually

exclusive; then why is it a race? Reason: on one GPU, line 12 may be executed before

Line 15, and vice versa on another. Thus on GPU1, the write occurs before the read,

while on GPU2, it is the other way. This “race” is noticed when programmers port

the code from GPU1 to GPU2. This race type was first identified in [31] where it is

called a porting race.

GKLEE requires around 30 seconds to explore all pairs of potential conflicts and reveal

these two errors. In constrast, GKLEEp only needs 1.3 seconds.

Furthermore, for this example, GKLEEp reports a race if and only if GKLEE does so

too, making GKLEEp a sound and lossless reduction of GKLEE.

3.3 Foundation
We first introduce the race and deadlock checking in the parameterized circumstance,

and then prove the soundness of parameterized checking. Finally, we demonstrate that the

parameterized checking respects the SIMD property of CUDA programs while not losing

analysis precision.

3.3.1 Parameterized Race and Deadlock Checking

To better understand GKLEEp, let us study the following example where f1 and f2 are

functions over the block id bid and thread id tid.

1We are grateful to Vinod Grover of Nvidia for this insight.
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void __global__ kernel1 (int *a, int b) {
__shared__ int temp[N];
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) temp[idx] = a[f1(idx)] + b;
__syncthreads(); // A barrier
if (idx < N) a[idx] = temp[f2(idx)];

}

Suppose the barrier is removed from this example; we can observe that the accesses

a[idx] and a[f1(idx)] by different threads may race depending on function f1. This can

be detected by examining the symbolic models of two threads as follows (private variables

in a thread are superscripted by the thread id, and for simplicity we assume that threads

t1 and t2 are in the same block but in different warps). More formally, a race occurs if

predicate t1.x 6= t2.x ∧ idt1 < N ∧ idt2 < N ∧ f1(idxt1) = idxt2 ∧ |t2.x − t1.x| ≥ 32

holds. A constraint solver (an SMT tool for us [44]) can determine whether this predicate

is satisfiable, and if so, it would return a concrete satisfying instance. Accesses to temp

can be analyzed similarly (knowing f2).

thread t ∈ {t1, t2}
idxt = blockIdx.x ∗ blockDim.x+ t.x
if (idxt < N) read a[f1(idxt)]
if (idxt < N) write a[idxt]

To further illustrate these ideas, consider the control-flow graph (CFG) given in Figure

3.3(a). This diagram shows how statements s1 through s3 might be situated in some

example program. At first glance, this appears ill-synchronized: one thread may take the s1

to s2 path encountering no barriers while another may take the path through p1 encountering

a barrier. Our SMT techniques can determine whether these paths are feasible and flag a

s1

write k[i];
barrier;

s2 s3

¬p1

p1
s0

s1;
s2;
s3;

s4;

p ¬p

(a) (b)

Figure 3.3: Example CFGs.
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deadlock (due to textually nonaligned barriers [46]) if so. Our approach checks whether all

threads make the same decision on the condition.

In Figure 3.3(b), both the left and the right branch contain no barrier; thus they are

considered well synchronized. We now check for conflicting accesses, some of which

involve conditionals. The conflict check includes the following expressions (here∼ denotes

the conflict relation, and 6∼ denotes nonconflicting). Also let us use p ? s to denote an

expression s guarded by path condition p. Now, this CFG may be regarded as consisting of

one barrier interval (BI) containing five accesses (1) s0, (2) p ? s1, (3) ¬p ? s2, (4) s4, and

(5) ¬p ? s3. Conflict freedom requires the pairwise comparison of these five accesses for

two parameterized threads; the 5× 5 = 25 comparisons include the following. In GKLEEp,

this procedure is done by constructing a flow for each path condition and checking the

conflicts over two representative threads (with symbolic ids):

pt2 ⇒ st10 6∼ s
t2
1 ¬pt2 ⇒ st10 6∼ s

t2
2

pt1 ∧ ¬pt2 ⇒ st11 6∼ s
t2
2 ¬pt2 ⇒ st14 6∼ s

t2
3

Note that GKLEEp makes such case analysis scale for very large numbers of threads by

choosing representative threads from each flow equivalence class.

3.3.2 Parameterized Checking with SIMD

A feature of CUDA is SIMD execution: threads are grouped in warps and the threads

within a warp are executed in a lock-step manner, while the threads in different warps (but

in the same block) are synchronized through explicit barriers. Two intrawarp threads can

race only if they simultaneously write to the same shared variable at the same instruction.

Interwarp threads may race at different instructions under different path conditions since

warp scheduling is nondeterministic in CUDA. Our parameterized method must account

for the SIMD characteristic when checking races.

GKLEE performs scheduling with respect to SIMD. The threads within a warp are exe-

cuted in a lock-step manner. The warps (or blocks) themselves follow the usual canonical

method, synchronizing at the CUDA barriers. Figure 3.4 shows how multiple warps are

executed. In particular, in cases where the threads in a warp diverge (i.e., make different

decisions over the same branch), the lock-step requirement is met by the hardware by

executing the two sides sequentially and merging them at the first convergence point (e.g.,



46

Figure 3.4: Canonical schedule with SIMD.

the nearest common postdominator). This is adopted by GKLEE to take care of all nuances

of the CUDA semantics. GKLEEp inherits GKLEE’s SIMD-aware scheduling scheme and

makes it parameterized (the parametric flow is marked in Figure 2.8 as bold arrows).

For an unconditional instruction, its execution by N threads is modeled by using one

parameterized thread. This thread represents other threads in the same warp, in the different

warp, in the different group, and so on. Suppose this instruction accesses shared location

a(tid), then threads may cause a race when t1 6= t2 ∧ a(t1) ∼ a(t2), regardless of whether

t1 and t2 are within the same warp or not.

When a conditional instruction is encountered, the threads within a warp may diverge

into two parts whose execution order is not fixed. GKLEEp forks the flow and produces two

new nodes representing the two branches of the condition. These nodes will not be merged,

and subsequent executions will start from each one. No matter what the execution order of

these two parts is, the race between the two parts can be detected by examining whether

the involved accesses conflict.

∃t1, t2 in the same warp : (c(t1) ? a(t1)) ∼ (¬c(t2) ? a(t2))

Clearly, this constraint is also applied when t1 and t2 are in the different warps. Hence

(c(t1) ? a(t1)) ∼ (¬c(t2) ? a(t2)) is a generic constraint for detecting races relevant

to condition c, and we need not to distinguish the intrawarp and interwarp cases. This

illustrates the following general principles of using parametric flow tree to check races

when respecting the SIMD model. In sum, our parametric flow based analysis respects
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SIMD by considering both intrawarp and interwarp. The case of intra- and interblocks is

analogous.

• A node c1 ? a1 may conflict with node c2 ? a2 if c1 6= c2, e.g., even for intrawarp

threads.

• A node c ? a1 (note that c may be empty) may conflict with node c ? a2. If a1 and a2

are at different instructions, then only interwarp threads (e.g., |t2 − t1| ≤ warp size)

should be considered.

3.4 Parameterized Checking: Algorithm
We perform parameterized race checking by exploring a parametric flow tree (PFT) for

two representative threads. One way is to construct a PFT for the entire program once and

for all, then instantiate this tree with two parameterized threads. Another way (used in

GKLEEp) builds the tree and performs instantiations on the fly during symbolic execution.

This approach fits well with our overall implementation approach and facilitates dynamic

conflict checking (e.g., with respect to SIMD).

In a program, conditions may be purely concrete and be evaluated by GKLEEp to true

or false immediately. Other conditions may depend on tid, bid, and/or symbolic inputs and

will be evaluated by forking new nodes in the PFT.

Roughly speaking, the construction of a PFT proceeds as follows (here we focus on

how the symbolic executor constructs the tree, skipping most details discussed in §3.3).

1. Starting with each barrier statement (the initial state of the program can be assumed

to have one), GKLEEp launches one representative thread tid0 – a symbolic value –

for execution. So long as a conditional statement is not encountered, this representa-

tive thread would keep running until the next barrier is encountered.

2. When a tid- or bid-dependent condition is encountered, two nodes are forked, one

representing the threads satisfying the condition, the other one for those satisfying

the negation of the condition.

3. Similarly, when a symbolic-input-dependent condition is encountered, two nodes

may be forked to represent the true and false cases of the condition.

4. Once all nodes reach an explicit barrier syncthreads(), the tree enters a synchro-

nization status and starts checking various kinds of errors (including intrawarp races).
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Figure 3.5 shows a portion of the PFT of the Bitonic Sort kernel. Since the first BI

contains no conditional statements, no forking is needed. In the next BI, the PFT shown in

Figure 3.5 is constructed during the execution. Conditions in two outer loops are evaluated

to be concrete values, so they are not shown in the parametric flow tree. The top three

conditions are TDCs leading to node forking. The other four depend on both the symbolic

inputs and built-in variables (e.g., tid and bid) and will lead to node forking too. The

figure shows that flow 0 takes the path with path condition ixj > tid, (tid & k) == 0 and

shared[tid] > shared[ixj]. Note that memory accesses such as shared[tid0] are guarded by

ixj > tid0 ∧ (tid0 & k) == 0.

In essence, GKLEEp follows a “canonical+SIMD” scheduling approach to build a PFT

for parameterized thread tid0. Recall that we need another thread, say tid1, for conflict

checking. Naturally, tid1’s PFT can be obtained through t0’s PFT by simply replacing tid0

with tid1. That is, by utilizing the symmetry of CUDA kernels, we can avoid executing

tid1 again to obtain its PFT. GKLEEp provides a facility to replace and simplify symbolic

expressions, making it convenient to duplicate a PFT through cloning and thread id renam-

ing.

For example, the bank conflict check requires two threads involved, and the write access

shared[tid0] is guarded by a TDC constraint: ixj0 > tid0 ∧ (tid0 & k) == 0. Through

renaming, thread tid1’s write access becomes guarded by its own TDC constraint ixj1 >

Figure 3.5: Parametric flow tree for Bitonic Sort.
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tid1 ∧ (tid1 & k) == 0.

Extra care must be taken on the relation of two threads. In the scenario without warp

involved, the following constraints specify the threads’ relation.

Same Block:
(bid0 = bid1) ∧ (tid0 6= tid1)

Different Blocks:
(bid0 6= bid1)

If warp is taken into account, then these two threads can be within the same warp, in

different warps but in the same block, or in different blocks. The following shows the

constraints over the thread ids for these scenarios.

Same Block and Same Warp:
(bid0 = bid1) ∧ (tid0 6= tid1) ∧ ( tid0

WarpSize = tid1
WarpSize )

Same Block and Different Warps:
(bid0 = bid1) ∧ (tid0 6= tid1) ∧ ( tid0

WarpSize 6=
tid1

WarpSize )

Different Blocks:
(bid0 6= bid1)

3.5 Formal Description of GKLEEp

After introducing the parametric flow and the construction of parametric flow tree,

this section formally presents state model of GKLEEp, parametric flow operation, and the

construction of parametric flow tree, as well as state transition within GKLEEp.

3.5.1 Formal Description of State Model Upon GKLEEp

With respect to the parametric flows, we should define new state models upon GKLEEp.

Since bid and tid are symbolic in GKLEEp, CUDA model semantics must be changed

accordingly. We use fid to denote the parametric flow’s identifier.

Similar to GKLEE, GKLEEp maintains the σl and σs, as well as σd to represent the

local memory, shared memory, and device memory, respectively. However, these memory

resorts are not operated by real threads; for example, σl represents a mapping from flows to

memory store; that is, each flow owns and manipulates its own local memory. σs in GKLEEp

is slightly different from that in GKLEE since shared memory in GKLEEp is used to denote

any of shared memories. Moreover, the read set R and write set W consist of memory
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accesses, each of which is associated with a predicate represented as pred, acquired through

PFT. Intuitively, (pred, r) represents a read access that should be operated if pred holds.

For instance, in the code if(threadIdx.x % 2 == 0) {shared[threadIdx.x] = ...}, the write

access on shared memory shared[threadIdx.x] is constrained by threadIdx.x % 2 == 0.

In constrast to GKLEE, each flow includes a program counter (pc) recording the label of the

current instruction. Instead of the path constraint PC, GKLEEp maintains a parametric flow

tree PFT. And this tree is interpreted as the mapping between fid to pred to specify the

parametric flow. GKLEEp defines the notations analoguely — read operation Σ[v] and write

operation Σ[v 7→ k] occur in the appropriate memory load/store accordingto v’s memory

resorts. In Figure 3.6, the data state Σ, the program counter P and parametric flow tree PFT

constitute the program state Φ.

Since parametric flows are produced on the fly, it is difficult to obtain the exact number

of flows initially, and we use n, the number of real threads, as the possible upper bound of

number of flows. An initial state Φ0 = (Σ0,P0,PFT0,F0) is valid if

1. Σ0.σl(i).v = 0 for all v ∈ V (0 ≤ i < n)

2. Σ0.σs.R = Σ0.σs.W = ∅

3. Σ0.σd.R = Σ0.σd.W = ∅

4. P0(0) = P0(i) = ... = P0(n− 1) = 0 (0 ≤ i < n)

5. PFT0 = ∅

6. F0 = 0

Program := L ⊂ lab 7→ instr
Value := V ⊂ byte+

Memory Store := M ⊂ var 7→ V
Local Memory := σl ⊂ fid 7→M
Read Set := R ⊂ fid 7→ (pred,M)
Write Set := W ⊂ fid 7→ (pred,M)
Shared Memory := σs ⊂ 〈M,R,W 〉
Device Memory := σd ⊂ 〈M,R,W 〉
Data State := Σ ⊂ σl × σs × σd
Program Counter := P ⊂ fid 7→ lab
Parametric Flow Tree := PFT ⊂ fid 7→ pred
Current Flow := F ⊂ fid
State := Φ ⊂ Σ× P× PFT× F

Figure 3.6: Formal description of state model in GKLEEp.



51

The first requirement ensures that local variables are initialized to the value in Word

corresponding to 0, the second and third requirements are straightforward, the read and

write sets of shared/device memories must be empty, and all threads’ initial program coun-

ters must be the same, indicated in the fourth requirement. The last requirement specifies

that the parametric flow tree of the initial state must be empty.

3.5.2 Formal Description of Flow Operation

Similar to GKLEE, we must employ the GPU-specific memory type inference method

by computing for each expression a sort τ . The type inference rules based on parametric

flow are described in combination of flow level operation, illustrated in Figure 3.7.

The rules in Figure 3.7 and 3.8 also define a transition: 7→f⊆ Φ → Φ′. That is, after

flow f ’s statement is executed, the state moves forward.

Rule F-alloc abstracts the LLVM instruction alloca. It allocates n elements of type

ψ in the local memory, and the sort of the address v is τl, indicating that it refers to a

memory block in the local store. A getelementptr instruction calculates the address

by adding the offsets v2, . . . , vn to basic address v1. The final address v points to the

same memory as v1. A binop instruction returns the calculated value of two operands. If

both operands have known sorts, then the calculation fails in identifying the sort of the

return value, and the search rule will be applied to locate the right memory. A load

or store instruction can be executed only if the address sort is known and the value

loaded from memory has unknown sort. Note that each load or store access must be

associated with the pred expression, which is acquired from the PFT. A br instruction is

executed in a different manner according to the evaluation result of the conditional v. If v is

evaluated to a concrete result, true or false, then the program counter P is updated based

on the evaluation result of the conditional v (Eval(Σ[v])), shown in the rule F-br-conc.

Note that Eval(V ) represents the evaluation result acquired through SMT solver under the

constraint of the predicate acquired from PFT. If the evaluation of v is nondeterministic

and v is not categorized into the pure bid- or tid-dependent conditional, then a new state

Φ′ is spawned, and the original state updates its P and extends its PFT with the conditional

Σ[v]. Φ′ differs from Φ in two ways: (i) the program counter P′ and (ii) the parametric

tree PFT′. Then Φ′ is preserved and will be scheduled when the current state terminates.
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[F-alloc]:
P[f ] = l L[l] = (v = alloc ψ, n)

(Σ,P,PFT,F) 7→f (Σ[v : τl 7→ 0n×sizeof(ψ)],P[f 7→ l + 1],PFT),F
[F-getelementptr]

P[f ] = l L[l] = (v = getelementptr (v1 : τ), v2 ... vn)

(Σ,P,PFT,F) 7→f (Σ[v : τ 7→ Σ[v1] + Σ[v2] + ...+ Σ[vn]],P[f 7→ l + 1],PFT,F)

[F-binop]
P[f ] = l L[l] = (v = binop (v1 : τ), (v2 : τ))

(Σ,P,PFT,F) 7→f (Σ[v : τ 7→ Σ[v1] + Σ[v2]],P[f 7→ l + 1],PFT,F)

[F-load]:

P[f ] = l L[l] = (v = load v1 : τ) τ 6= τ pred 7→ PFT[f ]

(Σ,P,PFT,F) 7→f (Σ[v : τ 7→ Σ[v1], τ = τs|d 7→ σs|d.R ∪ {(pred, v1)}],P[f 7→ l + 1],PFT,F)

[F-store]:

P[f ] = l L[l] = (store v1, v2 : τ) τ 6= τ pred 7→ PFT[f ]

(Σ,P,PFT,F) 7→f (Σ[v2 : τ 7→ Σ[v1], τ = τs|d 7→ σs|d.W ∪ {(pred, v2)}],P[f 7→ l + 1],PFT,F)

[F-br-true]:
P[f ] = l L[l] = (br v, lab1, lab2) Eval(Σ[v]) = true

(Σ,P,PFT,F) 7→f (Σ,P[f 7→ lab1],PFT,F)

[F-br-false]:
P[f ] = l L[l] = (br v, lab1, lab2) Eval(Σ[v]) = false

(Σ,P,PFT,F) 7→f (Σ,P[f 7→ lab2],PFT,F)

[F-br-sym]:

P[f ] = l L[l] = (br v, lab1, lab2) (Eval(Σ[v]) = unknown ∧ v /∈ TDC)

(Σ,P,PFT,F) 7→f (Σ,P[f 7→ lab1], (PFT[f ],Σ[v]),F) ∪ (Σ′,P′[f 7→ lab2], (PFT′[f ],¬Σ[v]),F′)

[F-fork]:
P[f ] = l L[l] = (br v, lab1, lab2) (Eval(Σ[v]) = unknown ∧ v ∈ TDC)

f ′ is forked ∧ (Σ[f ′] := Σ[f ],P[f ′] := P[f ],PFT[f ′] := PFT[f ])

[F-br-tdc]:

P[f ] = l L[l] = (br v, lab1, lab2) (Eval(Σ[v]) = unknown ∧ v ∈ tdc)
(Σ,P,PFT,F) 7→f (F-fork) ∧ (Σ,P[f 7→ lab1, f ′ 7→ lab2], ((PFT[f ],Σ[v]), (PFT[f ′],¬Σ[v])),F)

[Memory-inference]:

v : τ ((v′ : τ ′) 7→ k) ∈ Σ Σ ` v′.base ≤ v.base < v.base+ v.size ≤ v′.base+ v′.size

v : τ ′

Figure 3.7: Rules for flow operation.
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[F-barrier]:
P[f ] = l L[l] = ( syncthreads)

(Σ,P,PFT,F) 7→t (Σ,P[f 7→ l + 1],PFT,F[f := F-next-flow])

[F-next-flow]:
flow stack ! = ∅ f := popflow stack

(Σ,P,PFT,F) 7→ (Σ,P,PFT,F)(flow stack = ∅ 7→ F-race)

[F-race]:

∀(fid1 7→ (pred1,M1)) ∈ σs|d.R ∀(fid2 7→ (pred2,M2)) ∈ σs|d.W
fid1 6= fid2 && pred1 ∧ pred2 &&M1.var = M2.var

∀(fid1 7→ (pred1,M1)) ∈ σs|d.W ∀(fid2 7→ (pred2,M2)) ∈ σs|d.W
fid1 6= fid2 && pred1 ∧ pred2 &&M1.var = M2.var

Figure 3.8: More rules for flow operation.

Note that in Φ′ the flow f is not changed. The entire procedure is illustrated in the rule

F-br-sym. In this rule, we employ (PFT[f ], e) to represent the combination of flow f ’s

predicate and an expression e. The rule F-fork describes that if the evaluation of the

conditional v is nondeterministic and v is TDC, a new flow f ′ is forked through copying

flow f ’s memory space and predicate and synchronizing its program counter, and then f ′ is

preserved and scheduled when the current flow f encounters the explicit barrier. Details are

described in Section 3.5.3. The rule F-br-tdc is a continuation of F-fork; that is, after

producing the new flow f ′, GKLEEp further updates P[f ′] as well as PFT[f ′]. In GKLEEp,

we use {base, size} to model a variable. So the last rule Memory-inference says that

a valid sort τ ′ is found for v with unknown memory sort if there exists a memory object

v′ residing in memory sort τ ′, and v’s value falls within this object. GKLEEp traverses

the memory hierarchy to reason about the target memory if the previous analysis fails to

identify v’s sort. It is the extended version of KLEE’s method to resolve pointer aliasing,

which addresses CUDA’s memory hierarchy. F-barrier specifies that when the current

flow encounters the syncthreads() barrier, then next flow is scheduled, which is depicted

in rule F-next-flow.

3.5.3 Formal Description of Parametric Flow Schedule

Let N = {0, 1, 2, . . .} and consider a CUDA program pgm meant for execution within

blockIdx ∈ gridDim.{x,y,z}; then there are gridDim.x×gridDim.y×gridDim.z

blocks where

gridDim.{x,y,z} ∈ N, and a relation can be automatically inferred:
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0 ≤ blockIdx.{x,y,z} < gridDim.{x,y,z}

Similarly, there are threadIdx ∈ blockDim.{x,y,z}; then there are blockDim.x

× blockDim.y × blockDim.z threads per block where blockDim.{x,y,z} ∈ N, and a

relation can also be inferred:

0 ≤ threadIdx.{x,y,z} < blockDim.{x,y,z}

These two relations shown above describe that block or thread identifiers must be within

the bound specified by users. And they are used as the precondition of parameterized

race checking; thus parametric flow schedule is considered the Bounded flow schedule. A

barrier interval (BI) is the interval (block of code) enclosed by two successive barriers.

We employ the set DoneBar = fid 7→ barset to record the set of barriers the flow fid

explored, and DoneBar is an empty set initially.

GKLEEp employs a simple flow-based sequential schedule, parametric flow schedule,

by default. In addition to the flow operation semantics shown in Figure 3.7, it is often

necessary to present the semantics on how the flow f switches. Briefly, within a barrier

interval, a flow f starts executing from the top barrier and terminates at the bottom barrier.

During the exploration, a child flow might be forked and preserved in the flow stack. Then

all enabled flows will be scheduled until the flow stack is empty. All flows explored in the

current BI will be extended in the next BI; that is, their predicates are propagated to flows

in the next BI. The parametric flow schedule is formally described as follows:
P[f ] = l ∧ L(l) = syncthreads ∧
(Σ,P,PFT) 7→f (Σ,P′,PFT) ∧
l′ = l + 1 ∧ P[f ] = l′ ∧ flow stack = ∅ ∧
create flow stack

 ∧ Races ∧ Barrier Divergence

(Σ,P,PFT)7→(Σ,P′[f 7→l′],PFT)

The flows within the current BI are constructed based on the flows created in the

previous BI, and the flows across all the BIs in a program constitute an intact PFT. The

flow schedule within a BI proceeds as follows (here we focus on how the symbolic executor

constructs the tree).

1. Popping a flow from the stack, the flow continues exploring. As long as a condi-

tional statement is not encountered, this flow keeps running until the next barrier is

encountered.

2. If a BDC/TDC is encountered and its evaluation is nondeterministic, then a new flow

is spawned and pushed into the stack. This is described in the rule F-br-tdc.
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3. When a symbolic-input-dependent condition is encountered and its evaluation is also

nondeterministic, a new state is produced, and the details are introduced in the rule

F-br-sym.

4. Once the current flow reaches the explicit barrier syncthreads(), GKLEEp picks

up the next flow from the stack, shown in the rule F-next-flow.

5. If the flow stack is empty, all flows reach synchronization status, then GKLEEp starts

checking various kinds of errors and regrouping all the flows produced in the current

BI into the stack. The rule NextBI depicts the details.

3.5.4 Soundness and Completeness of Parametric Execution

After the description of the state model and the semantics of flow-level operations, we

need to know when our parametric execution w.r.t. SIMD execution is sound and complete.

First we will introduce SIMD execution here.

3.5.4.1 SIMD Execution

We describe the SIMD execution of a CUDA program w.r.t the data store σ. Naturally,

we view that all the n threads access σ simultaneously (rather than that each thread perform

the thread sequentially). We introduce the concept of value vector to depict the values

related to n threads. A value vector v is a size-n vector whose ith element (denoted by

v(i)) stores the value for thread i. For example, value vector 〈2, 4, . . . , 2n〉 indicates that

the value pertaining to thread i is 2i.

SIMD computations are parametric over the threads. In general, a computation can

be modeled by a function f mapping the input to output. In CUDA, the threads perform

the same computation on different data. Each thread is supposed to execute the same

instruction sequence (although they may diverge on conditions). By definition, a parametric

computation can be modeled by a function λtid. f(tid). The result of the computation at

thread i is modeled by f(i). In other words, the computation result at each thread i can

be obtained by instantiating the λ function with i. Hence thread i’s computation is α-

equivalent to thread j’s. We call such a computation a thread parametric computation. An

expression obtained by a thread parametric computation is a thread parametric expression.
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3.5.4.2 Basic Operations

We start with the cases without branches. The instructions can be divided into three

categories: (1) reads from the store, (2) writes to the store, and (3) arithmetic computations.

Arithmetic computations occur on local stores.

Consider an SIMD read instruction: “v = readτ (f(tid)),” where address f(tid) is a

function of the thread id tid, and type τ marks whether the read is local (when τ = l) or

global (when τ = g). Thread i reads the value vi from the store, e.g., v(i) = στ [f(i)].

We can image that all the reads are done simultaneously, resulting in a value vector <

σ[f(0)], σ[f(1)], . . . , σ[f(i− 1)] >.

thread 0 thread 1 ... thread n-1
read f(0) read f(1) ... read f(n-1)

For an m-arity operation op, each thread operates on its part of the data and produces

an output value. That is, n threads consumes n value vectors v1,. . . , vm and produce a new

one: 〈op(v1(i), . . . , vm(i)), . . . , op(v1(n− 1), . . . , vm(n− 1))〉.

Next, consider an SIMD write instruction “writeτ (f(tid)) (v(tid)),” where address f(tid)

and value v(tid) are functions of the thread id tid. Thread i write the value v(i) to the

store at address f(i). We can image that all the writes are done simultaneously, but need

to consider possible data races. To stress the simultaneousness, we introduce notation

στ [f(0) 7→ v(0) | f(1) 7→ v(1) | . . . | f(n − 1) 7→ v(n − 1)] (and στ [f(i) 7→i∈[0,n−1] v(i)] for

short) to denote the SIMD update. If no data races exist, then the writes can be executed

in a sequential order from thread 0 to n − 1 and then result in a new store στ [f(0) 7→

v(0)][f(1) 7→ v(1)] . . . [f(n− 1) 7→ v(n− 1)], which is equivalent to στ [f(i) 7→i∈[0,n−1] v(i)].

Any other order is equivalent to this one as long as there exist no data races.

For a local write, each thread updates its local store; hence we have the following. A

global write is more complicated since it may involve multiple threads.

σl[f(i) 7→i∈[0,n−1] v(i)] =
〈σl0[f(0) 7→ v(0)], . . . , σli−1[f(i− 1) 7→ v(i− 1)]〉

Consider the following instruction sequence, which first reads two values from the

store, then performs an operation op, and then writes the result back into the store. After

that, a read occurs on the updated store. This is a general case of the statement at line 7 of

the reduction kernel (Figure 3.9) where f1 = f3 = λt. t, f2 = λt. t + s and the op is the
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1 / / R e d u c t i o n k e r n e l
2 s h a r e d i n t s d a t a [NUM * 2 ] ;
3 g l o b a l void r e d u c e ( f l o a t * i d a t a , f l o a t * o d a t a ) {
4 . . . ; / / copy i d a t a t o s d a t a
5 f o r ( unsigned i n t s = 1 ; s < blockDim . x ; s *= 2) {
6 i f ( t i d % (2* s ) == 0)
7 s d a t a [ t i d ] += s d a t a [ t i d + s ] ;
8 s y n c t h r e a d s ( ) ;
9 } / / end f o r

10 }
11 . . . ; / / copy s d a t a t o oda ta

Figure 3.9: Reduction kernel.

addition operation.

1 : v1 = read f1(tid);
2 : v2 = read f2(tid);
3 : v3 = op(v1, v2);
4 : write f3(tid) v3

5 : v4 = read f4(tid);

Using the notations introduced above, we can depict the value vector evolves when n

threads execute this sequence.

after 1 : 〈σ0[f1(0)], σ0[f1(1)], . . . , σ0[f1(n− 1)]〉
after 2 : 〈σ0[f2(0)], σ0[f2(1)], . . . , σ0[f2(n− 1)]〉
after 3 : 〈op(σ0[f1(0)], σ0[f2(0)]), . . . , op(σ0[f1(n− 1)], σ0[f2(n− 1)])〉
after 4 : σ1 = σ0[f3(i) 7→i∈[0,n−1] op(f1(i), f2(i))]
after 5 : 〈σ1[f4(0)], σ1[f4(1)], . . . , σ1[f4(n− 1)]〉

It is easy to see that for thread i, the values v1 and v2 are σ0[f1(i)] and σ0[f2(i)],

respectively. That is, these two values are thread parametric. So does value v3. In contrast,

v4’s value may or may not be thread parametric. For instance, for the statement sdata[tid]

+= sdata[tid + s] in the reduction kernel, the elements in the resulting sdata are not

thread parametric.

We need to know when our parametric method is sound and complete. Since local

reads/writes and global reads are always thread parametric, we focus on global writes.

3.5.4.3 Global SIMD Write

We consider only SIMD writes that will not incur races. That is, for στ [f(i) 7→i∈[0,n−1]

v(i)], we have ∀i, j ∈ [0, n − 1]. f(i) 6= f(j). SIMD writes and reads satisfy the following

property. Specifically, if there exists a thread j whose write address matches the read
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address of thread i, then i obtains the value written by thread j. Otherwise, i gets the value

from the old global store.

(σg[f1(i) 7→i∈[0,n−1] v(i)])[f2(i)] ={
v(j) if ∃j ∈ [0, n− 1]. f1(j) = f2(i)
σg[f2(i)] if ∀j ∈ [0, n− 1]. f1(j) 6= f2(i)

Global SIMD updates play an important role in parametric analysis. There are two

cases whether such an update can be removed:

case 1 : f1(i) = f2(i)⇒
(σg[f1(i) 7→i∈[0,n−1] v(i)])[f2(i)] = v(i)

case 2 : (∀j ∈ [0, n− 1]. f1(j) 6= f2(i))⇒
(σg[f1(i) 7→i∈[0,n−1] v(i)])[f2(i)] = σg[f2(i)]

In the first case, thread i obtains the value from its previous write since the addresses of

the read and the write are equal. In the second case, the SIMD update does not affect the

value since the address of the read does not match that of the write by any thread. In both

cases, the read after an SIMD update is resolved so that the value obtained by the read is

not dependent on the SIMD update. We say that such a read is a resolved read.

Theorem 1 If all the reads in an expression e are resolved, then e is thread parametric.

Corollary 2 If a value v involves no global SIMD updates, then v is thread parametric.

3.5.4.4 Proposition

If address expressions involved in shared/global memory accesses are resolvable, para-

metric computation is sound and complete.

Parametric execution symbolically executes with respect to two-thread abstraction; it

executes the following steps:

• Starting with the state of one symbolic thread with thread ID t0 where t0 is fully

symbolic (t0 ∈ [0...n − 1] where n means the number of threads), symbolic thread

t0 executes along with a flow E1, and other threads in this flow are unupdated; their

states remain fully symbolic (called lazy symbolization).

• Cloning E1 and substituting t1 for t0 everywhere, then we are given the other flow

E2.

• Checking whether E1 and E2 may incur a race under the assumption (t0 6= t1).

Two-thread abstraction might result in false alarms or omissions. If there exist unresolv-
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able address expressions in shared/global memory accesses, unresolvable reads will load

unupdated values. Different from the “havoced” value (more general unknown variable

‘X’), those unupdated values might fool SMT solvers to make incorrect decision to execute

“infeasible” paths or miss “feasible” paths, resulting in false alarms or omissions. Two

examples are present below to demonstrate the false alarms and omissions caused by

incorrect SMT derivation of unresolvable values.

Figure 3.10 presents the false alarm incurred by unresolvable variable S[i]. In this

example, after the update of A1 and A2, each element of array S is expected to be greater

than or equal to 10, so the branch including race will not be executed; GKLEE verifies so.

1 # i n c l u d e <s t d i o . h>
2
3 # d e f i n e NUM 4
4
5 g l o b a l void t e s t ( i n t * dOut ) {
6 s h a r e d i n t S [NUM] ;
7 s i z e t i = t h r e a d I d x . x ;
8 S [ i ] = 0 ;
9 s y n c t h r e a d s ( ) ;

10
11 S [ i ] += 1 0 ; / / A1
12 s y n c t h r e a d s ( ) ;
13
14 i f ( i < blockDim . x / 2 ) {
15 S [ i ] += S [ i +blockDim . x / 2 ] ; / / A2
16 }
17 s y n c t h r e a d s ( ) ;
18
19 i f ( S [ i ] >= 10 ) {
20 S [ i ] −= 1 0 ;
21 } e l s e {
22 S [ i ] += S [ ( i +1)%blockDim . x ] ; / / race
23 }
24 s y n c t h r e a d s ( ) ;
25
26 dOut [ i ] = S [ i ] ;
27 }
28
29 i n t main ( void ) {
30 i n t * dOut ;
31 cudaMal loc ( ( void **)&dOut , s i z e o f ( i n t )*NUM) ;
32 t e s t <<<1, NUM>>>(dOut ) ;
33 re turn 0 ;
34 }

Figure 3.10: False alarms incurred by unresolvable values.
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Under parametric computation, unresolvable S[i] fools SMT solver to explore both of

the branches, leading to a “false” race.

We contrived a similar example shown in Figure 3.11 to demonstrate the omission

caused by an unresolvable value. In the concrete scenario, after the operations in A1 and

A2, thread 0 and 1 are supposed to execute the “then” branch and the rest will execute the

“else” path, resulting in a race. But, under parametric computation, after A1 operation, all

threads are expected to be updated to 10. Suppose that we do not abstract shared state;

then because every thread tid only writes 10 to its corresponding element S[tid] and has

not modified S[tid + blockDim.x/2], we erroneously preserve the condition that S[tid +

blockDim.x/2] = 0 in A2 position. In this way, SMT solver always evaluates conditional

S[i] == 20 false so that only false branch is executed; thus a race will not be reported.

To avoid omissions, we can “havoc” (set to a fresh symbolic value) the value of a read

over global SIMD update. (Our current release of GKLEEp does not have this facility, yet.)

The “havoced” values can overapproximate all nondeterminism. The evaluation result of

SMT solvers for “havoced” values will absolutely subsume the expected result and the

unexpected result, leading to false alarms but no omissions. To warrant soundness, we may

use global invariants as in [14, 28], which often require manual effort.

If unresolvable memory accesses do not exist, it is guaranteed that each thread loads

the value not written by other threads, and these values are merely updated by the thread

itself. Then we can safely claim that the representative thread t0’s memory accesses are

rename-equivalent to each explicitly modeled thread’s memory accesses. Consequently,

parametric computation based on the representative symbolic thread is sound and complete

if address expressions involved in shared/global memory accesses are resolvable.

3.6 Experimental Results
GKLEEp supports (through command-line arguments) race and bank conflict detection

for programs written with respect to CUDA Compute Capability 1.x (also called “SDK

1.x”) as well as Capability 2.x (memory coalescing checks cover 1.0 through 1.3 models).

All experiments are performed on a machine with Intel(R) Xeon(R) CPU @ 2.40GHz and

12GB memory. Our results about bank conflict and memory coalescing checks were done

for 2.x device capabilities.
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1 # i n c l u d e <s t d i o . h>
2
3 # d e f i n e NUM 4
4
5 g l o b a l void t e s t ( i n t * dOut ) {
6 s h a r e d i n t S [NUM] ;
7 s i z e t i = t h r e a d I d x . x ;
8 S [ i ] = 0 ;
9 s y n c t h r e a d s ( ) ;

10
11 S [ i ] += 1 0 ; / / A1
12 s y n c t h r e a d s ( ) ;
13
14 i f ( i < blockDim . x / 2 ) {
15 S [ i ] += S [ i +blockDim . x / 2 ] ; / / A2
16 }
17 s y n c t h r e a d s ( ) ;
18
19 i f ( S [ i ] == 20 ) {
20 S [ i ] = S [ i + 1 ] ; / / race
21 } e l s e {
22 S [ i ] = 5 ;
23 }
24 s y n c t h r e a d s ( ) ;
25
26 dOut [ i ] = S [ i ] ;
27 }
28
29 i n t main ( void ) {
30 i n t * dOut ;
31 cudaMal loc ( ( void **)&dOut , s i z e o f ( i n t )*NUM) ;
32 t e s t <<<1, NUM>>>(dOut ) ;
33 re turn 0 ;
34 }

Figure 3.11: Omissions incurred by unresolvable values.

Table 3.1 presents results from SDK 2.0 kernels while Table 3.2 presents those from

SDK 4.0 (many of these are also available in 2.x). Here, #T denotes the number of threads

analyzed. Each cell contains a WW (write-write race), Ben. (benign race, meaning the

same value written by two concurrent writes), a Y or N (yes/no), or two numbers of the

form A/B, where A is the tool runtime (in seconds) and B is the number of control-flow

paths analyzed (i.e., the TICs branched in so many ways). Most examples only generate

one path, as there are no data-dependent control flow variations (except Bitonic sort, where

these variations are essential to sorting). In Table 3.1, we set 7200 seconds as the threshold

for time out (abbreviated as T.O.). “BC” and “MC” are the abbreviations of “Bank Conflict”
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Table 3.1: SDK 2.0 kernel results.

Kernels Race #T = 32 #T = 64 #T = 256 #T = 1,024 #T = 2,048 BC MC
GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp

Bitonic Sort T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O. N Y
Histogram64 WW 15.8/10 25.9/9 23.2/1 25.8/1 75.4/1 120/1 725.3/1 387.6/1 2,682.0/1 904.6/1 Y Y
Scalar Product 0.7/1 16.1/1 0.6/1 4.3/1 0.8/1 0.8/1 1.3/1 0.9/1 2.6/1 1.2/1 N Y
Matrix Mult 0.2/1 4.5/1 0.4/1 4.0/1 2/1 3.2/1 19/1 2.8/1 362.1/1 3.4/1 N Y
Reduction0 0.02/1 0.07/1 0.1/1 0.03/1 0.3/1 0.2/1 2.9/1 0.3/1 10.5/1 0.4/1 N Y
Reduction1 0.01/1 0.1/1 0.1/1 0.1/1 0.8/1 0.2/1 8.1/1 0.3/1 24.0/1 0.5/1 Y Y
Reduction2 0.02/1 0.1/1 0.03/1 0.1/1 0.2/1 0.1/1 2.9/1 0.3/1 10.2/1 0.4/1 N Y
Reduction3 0.01/1 0.1/1 0.03/1 0.1/1 0.3/1 0.1/1 2.7/1 0.3/1 10.0/1 0.4/1 N Y
Reduction4 0.1/1 0.04/1 0.3/1 0.03/1 2.8/1 0.2/1 17.3/1 0.4/1 42.4/1 0.6/1 N Y
Reduction5 0.1/1 0.04/1 0.3/1 0.03/1 2.8/1 0.2/1 11.4/1 0.4/1 21.3/1 0.5/1 N Y
Reduction6 0.1/1 0.05/1 0.3/1 0.04/1 2.8/1 0.2/1 11.5/1 0.4/1 22.6/1 0.6/1 N Y
Scan Best 0.3/1 3.6/1 2.1/1 5.1/1 48.8/1 8.1/1 923.3/1 12.5/1 T.O. 26.6/1 Y Y
Scan Naive 0.04/1 0.2/1 0.2/1 0.4/1 3.4/1 0.5/1 66.0/1 0.9/1 291.8/1 15.2/1 N N
Scan WorkEfficient 0.1/1 0.6/1 0.4/1 0.8/1 12.1/1 1.2/1 250.8/1 2.1/1 T.O. 3.1/1 Y N
Scan Large 0.2/1 2.3/1 1.4/1 3.0/1 40.0/1 3.9/1 736.1/1 2.1/1 T.O. 2.1/1 Y Y
Bisect Small Ben. 2.2/1 105.9/1 3.5/1 108.8/1 10.6/1 108.7/1 36.0/1 108.8/1 58.1/1 233.7/1 N Y
Bisect Large Ben. T.O. 226.0/1 T.O. 203.0/1 T.O. 212.6/1 T.O. 218.5/1 T.O. 248.1/1 Y Y

Table 3.2: SDK 4.0 kernel results.

Kernels Race #T = 1,024 #T = 2,048 #T = 4,096 #T = 8,192 #T = 16,384 BC MC
GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp

Clock 3.8/1 12.1/1 6.1/1 12.2/1 9/1 12.6/1 26.6/1 13/1 92.2/1 13.9/1 N Y
Scalar Product 50.9/1 97.9/1 213.2/1 200.2/1 902.9/1 410.9/1 T.O. 859.4/1 T.O. 1,812.2/1 N Y
Histogram64 122.3/1 50.8/1 158.7/1 55.7/1 283.8/1 65.9/1 511.8/1 85.1/1 T.O. 120.0/1 Y N
Scan Short 36.3/1 18.1/1 92.5/1 32.3/1 216.4/1 62.6/1 714.8/1 116.7/1 3,222.7/1 227.0/1 Y N
Scan Large 40.1/1 92.9/1 107.5/1 133.9/1 336.6/1 482.2/1 1,175.1/1 761.4/1 6,134.4/1 555.7 Y N
Copy 0.1/1 0.1/1 0.3/1 0.1/1 0.8/1 0.1/1 2.8/1 0.1/1 10.2/1 0.1/1 N Y
copySharedMem 0.8/1 0.3/1 1.6/1 0.6/1 11.1/1 0.3/1 23.2/1 0.7/1 172.7/1 0.6/1 N Y
transposeNaive 0.2/1 0.2/1 0.3/1 0.1/1 1.0/1 0.1/1 3.4/1 0.2/1 11.6/1 0.2/1 N N
transposeCoalesced 4.7/1 0.2/1 9.6/1 0.3/1 27.3/1 0.3/1 55.3/1 0.4/1 242.4/1 0.5/1 Y Y
transposeNoBankConflicts 0.8/1 0.4/1 1.8/1 0.4/1 11.3/1 0.4/1 24.1/1 0.5/1 179.2/1 0.7/1 N Y
transposeDiagonal 0.8/1 0.3/1 1.7/1 0.4/1 11.2/1 0.4/1 23.5/1 0.5/1 172.1/1 0.6/1 N Y
transposeFineGrained 0.8/1 0.3/1 1.7/1 0.4/1 11.1/1 0.4/1 23.2/1 0.5/1 170.0/1 0.6/1 N Y

and “Coalesced Global Memory Accesses,” and the results of these two categories are

acquired through GKLEEp.

Note that for Histogram64, GKLEE or GKLEEp explore multiple paths when #T = 32,

even though this example does not contain data-dependent control flows. The reason for

path generation is due to out-of-bound memory accesses happening (these generate a case

analysis as explained in [30]). As another example, matrix multiplication using SDK 2.0

takes 362 seconds to explore the sole path using GKLEE, while it only takes 3.4 seconds

under GKLEEp.

Since the occurrence of a race aborts the execution of GKLEE or GKLEEp, for bench-

marks involving races, we measured runtimes after switching off race checking.

Many of our results were obtained with respect to symbolic inputs. For instance, as

reported in [31] for runs using GKLEE, the Histogram64 example’s race will be almost

impossible to detect unless the first 10 bytes of a certain array are made symbolic (the same
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symbolic setting was used in runs using GKLEEp also).

3.6.1 Tables (3.1 and 3.2 )

These tables show that (i) all barriers were found to be well synchronized; (ii) the

performance issues detected (bank conflict and noncoalesced memory accesses) were cali-

brated to the same degree of severity both by GKLEE and GKLEEp. (We suppress detailed

results in terms of the percentage of barrier intervals suffering from these performance

issues, summarizing the results as Y/N.)

While none of our examples have a deadlock, it is the case that GKLEEp’s ability to

detect deadlocks has the same power as that in GKLEE. This is because GKLEEp accurately

models all the flows that may result in deadlocks (modeling more threads within each flow

equivalence class will not increase the number or kinds of deadlocks detected).

As for data races, (iii) all races listed in [31] were also detected by GKLEEp. We also

found additional interwarp write-write races in SDK 2.0 kernels, thanks to the fact that we

ran those examples with more than one thread block.

The races in kernels named Reduction4–6 were similar. Let us consider Reduction4

in some detail (more details on our website). This example has an instruction if (blockSize

≥ 64) sdata[tid] += sdata[tid + 32]; EMUSYNC; involving a read operation sdata[tid + 32] and a

write operation sdata[tid]; these are involved in a read-write race by thread 0 and thread 32

that belong to two distinct warps. GKLEEp was able to automatically instantiate those two

threads’ identifiers.

Figure 3.12, 3.13, 3.14, and 3.15 show that GKLEEp outperforms GKLEE with respect

to different scales of number of threads. When #T = 8K, GKLEEp speeds up matrix

multiplication by a factor of 300 times. When #T = 16K, GKLEEp speeds up the kernel

transposeCoalesced by a factor of around 500 times. Figure 3.14 and Figure 3.15

illustrate ScanLarge and Clock benchmark in which GKLEEp performs several times

faster than GKLEE.

3.6.2 New Results on Histogram64

In [31] we reported that GKLEE identified a possible WW race occurring within a warp.

It has been an open question whether such race will manifest in the interwarp cases (we

could not run these larger models using GKLEE). GKLEEp checks whether two threads from
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Figure 3.12: Matrix Multiplication (SDK 2.0, LOC 60).
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Figure 3.13: TransposeCoalesced (SDK 4.0, LOC 23).
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Figure 3.14: Scan Large (SDK 2.0, LOC 196).
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Figure 3.15: Clock (SDK 4.0, LOC 38).
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different warps may cause such a race and confirms that it will not (this race is present only

within a warp). This demonstrates the added analysis power offered by GKLEEp.



CHAPTER 4

COMBINING ABSTRACTION WITH STATIC

ANALYSIS

Existing concolic execution based GPU program correctness analysis tools suffer from

two major drawbacks. First, they require users to pick the desired symbolic inputs. Inad-

vertently picking less symbolic inputs causes omissions, while picking excessively burdens

the symbolic analysis engine (typically an order of magnitude slower than concrete execu-

tion). These tools also model and solve the data-race detection problem over an explicitly

specified (and often small) number of GPU threads. This makes these tools difficult to

apply to analyze realistic programs that assume a certain minimum number (and often

much larger) number of threads. Moreover, downscaling the number of threads together

with other problem parameters in a consistent way is often impractical.

Our recent tool GKLEEp [32] provides more scalability by exploiting thread symmetry,

but still requires users to pick the symbolic inputs. In particular, this tool partitions the

space of executions of a GPU program into parametric flows, and models the race analysis

problem over two parametric threads in each equivalence class. GKLEEp can scale to

thousands of threads for nondivergent programs (e.g., programs not forking paths with

respect to symbolic inputs). Unfortunately, GKLEEp still suffers from search explosion:

even if only two symbolic threads are considered, each thread may create a large number

of flows or symbolic states. For instance, if a thread contains n feasible branches, then

O(2n) flows or paths may be generated. As shown later, this scenario is not uncommon

in realistic CUDA programs. We present a new tool SESA (Symbolic Executor with Static

Analysis) that significantly improves over prior tools in its class both in terms of new ideas

and new engineering:

1. SESA implements a new front-end (based on Clang). It also supports all core CUDA

C++ instructions, 95 arithmetic intrinsics, 25 type conversion intrinsics, all atomic
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intrinsics, and 82 CUDA runtime functions.

2. SESA is the first tool to employ data-flow analysis to combine parametrically equiv-

alent flows that may otherwise exponentially grow in many examples.

3. SESA employs static taint analysis to identify inputs that can be concretized without

loss of verification coverage while significantly speeding up verification. This analy-

sis has yielded fairly precise results in practice (very little overapproximation), partly

helped by the selective use of loop unrollings.

4. SESA can scale to thousands of threads for typical CUDA programs. It has been used

to analyze over 50 programs in the SDK and popular libraries such as Parboil [3] and

Lonestar [2]. It reveals at least three new bugs that have not been reported by any

other tool before. Previously reported formally based GPU analysis tools have not

handled such practical examples before.

5. We describe conditions under which SESA is an exact race-checking approach, and

also present when it can miss bugs. In all our experiments so far, these unusual

patterns have not arisen.

4.1 Background
The following example ‘race’ contains two classes of races: (1) In the statement

before the barrier, thread 0 and thread bdim.x − 1 may race on v[0] (and similarly for the

remaining adjacent threads). (2) In the conditional after the barrier, one thread may execute

the then part while others execute the else part, and there is no guarantee that these accesses

are ordered in a specific way (hence it may change across GPU families).

__global__ void race() {
v[tid.x] = v[(tid.x + 1) % bdim.x];
__syncthreads();
if (tid.x % 2 == 0) { ... = v[tid.x] ; }
else { v[tid.x >> 2] = ... ; }

}

For race checking, SESA records the Read Set and Write Set of shared variables. For

the above example, the code from the beginning to the barrier constitutes the first barrier

interval. In this barrier interval, the read set and write set of thread tid are {v[(tid.x +

1) % bdim.x]} and {v[tid.x]}, respectively. To check races, we instantiate the read set and

write set for two different threads as following. For WW (write-write) races, we check
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whether an access in t1’s write set can have the same address as an access in t2’s write

set. This is reduced to checking where t1.x = t2.x holds, which is false since t1 and t2 are

different threads. Similarly, to check WR races, each element in t1’s write set is compared

with each element in t2’s read set, e.g., where t1.x = (t2.x + 1)%bdim.x is satisfiable for

t1.x 6= t2.x ∧ t1.x < bdim.x ∧ t2.x < bdim.x. A constraint solver can find a solution, e.g.,

t1.x = 0 and t2.x = bdim.x− 1 for any bdim.x 6= 0. This gives a witness of the WR race by

threads 0 and bdim.x−1. Note that we need not to compare v[t2.x] and v[(t1.x+1) % bdim.x]

since t1 and t2 are symmetric.

thread t1 thread t2
WriteSet : {v[t1.x]} {v[t2.x]}
ReadSet : {v[(t1.x+ 1)%bdim.x]} {v[(t2.x+ 1)%bdim.x]}

The code after the barrier constitutes the second barrier interval. The read set and write

set of thread tid contain conditional accesses of format ‘condition?access’. This

accurately models the cases of divergent threads. That is, the sets are the same whether

the then part or the else is first executed. Race checking is similar to the above procedure,

except that the conditions must be taken into account. For instance, there exists a RW race

since formula t1.x% 2 = 0 ∧ t2.x% 2 6= 0 ∧ t1.x = t2.x� 2, which is satisfiable, e.g., when

t1.x = 0 and t2.x = 1. This happens no matter whether t1 and t2 are within a warp or

not. For instance, the race manifests when t1 executes the else part while t2 idles, then t2

executes the then part while t2 idles.

thread t1 thread t2
WriteSet : {t1.x%2 6= 0 ? v[t1.x� 2]} {t2.x%2 6= 0 ? v[t2.x� 2]}
ReadSet : {t1.x%2 = 0 ? v[t1.x]} {t2.x%2 = 0 ? v[t2.x]}

SESA inherits several features from its predecessors [31, 32]. In particular, it has the

ability to do race-checking under standard warp-sizes, or a warp-size of 1. The latter option

is important because many programmers rely on warp semantics and run into inexplicable

races, as studied and explained in [45, 52]. A CUDA compiler can “assume” that the warp

size is 1, and may miscompile codes that race under this view. SESA also checks for global

memory races—a feature missing in commercial tools such as [35].
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4.2 New Techniques
To explain the features in SESA, consider three examples, namely Generic (Figure 4.1),

Reduction (Figure 4.2), and Bitonic (Figure 4.3). One of the central problems of GKLEE

stemmed from its explicit modeling of every thread in a CUDA program. GKLEEp im-

proved the situation by capitalizing on the symmetry inherent in a CUDA program. For

example, consider the Reduction example in Figure 4.2. If there is a data race experienced

by a thread satisfying the condition listed on line 3 such a race will also be experienced

by a group of threads satisfying this condition. Thus, GKLEEp splits the threads into

two equivalence classes at line 3 and models two symbolic threads t1 and t2 for each

of these equivalence classes. In [32], it was shown that GKLEEp can simply proceed

on the assumption that t1 6= t2 and detect the same class of races as GKLEE and thus

avoid directly facing the complexity of modeling the actual number of threads (hence the

name “parametric flows”). However, this approach of GKLEEp can generate an exponential

number of flows (four flows in Generic, and many more in the others). In Section 4.2.1 and

Section 4.2.2, we explain how such flows are combined by SESA through some examples.

4.2.1 Flow Combining with Respect to Local Variables

In our Generic example, notice that local variable v is set to a or b depending on

condition e1(tid). Since the CUDA program will be populated with thousands of

threads, one has to track the behavior of threads satisfying e1(tid) and !e1(tid)

separately. This can become a huge overhead, especially if such conditionals occur within

loops, as in Reduction kernel, line 3, and Bitonic kernel, lines 4 and 5. (GKLEEp times out

on these examples.) SESA applies its static analysis to avoid this situation. Observe the

statement A[w] on line 4 of Generic, where A is a global array. If it is possible for two

1 / / Gener i c Example
2 / / l o c a l : v , w , z ;
3 / / g l o b a l : a , b , c , a r r a y A
4 . . . / / up da t e c
5 i f ( e1 ( t i d ) ) t h e n v = a ;
6 e l s e v = b ;
7 i f ( e3 ( c ) ) u = e2 ( t i d ) ;
8 A[w] = v + z ;

Figure 4.1: Contrived generic kernel.
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1 / / R e d u c t i o n k e r n e l
2 s h a r e d i n t s d a t a [NUM * 2 ] ;
3 g l o b a l void r e d u c e ( f l o a t * i d a t a , f l o a t * o d a t a ) {
4 . . . ; / / copy i d a t a t o s d a t a
5 f o r ( unsigned i n t s = 1 ; s < blockDim . x ; s *= 2) {
6 i f ( t i d % (2* s ) == 0)
7 s d a t a [ t i d ] += s d a t a [ t i d + s ] ;
8 s y n c t h r e a d s ( ) ;
9 } / / end f o r

10 }
11 . . . ; / / copy s d a t a t o oda ta

Figure 4.2: Reduction kernel.

1 s h a r e d unsigned s h a r e d [NUM] ;
2
3 i n l i n e void swap ( unsigned& a , unsigned& b )
4 { unsigned tmp = a ; a = b ; b = tmp ; }
5
6 g l o b a l void B i t o n i c K e r n e l ( unsigned * v a l u e s ) {
7 unsigned i n t t i d = t i d . x ;
8 / / Copy i n p u t t o sh ar ed mem .
9 s h a r e d [ t i d ] = v a l u e s [ t i d ] ;

10 s y n c t h r e a d s ( ) ;
11
12 / / P a r a l l e l b i t o n i c s o r t .
13 f o r ( unsigned k = 2 ; k <= bdim . x ; k *= 2)
14 f o r ( unsigned j = k / 2 ; j > 0 ; j /= 2 ) {
15 unsigned i x j = t i d ˆ j ;
16 i f ( i x j > t i d ) {
17 i f ( ( t i d & k ) == 0)
18 i f ( s h a r e d [ t i d ] > s h a r e d [ i x j ] )
19 swap ( s h a r e d [ t i d ] , s h a r e d [ i x j ] ) ;
20 e l s e
21 i f ( s h a r e d [ t i d ] < s h a r e d [ i x j ] )
22 swap ( s h a r e d [ t i d ] , s h a r e d [ i x j ] ) ;
23 }
24 s y n c t h r e a d s ( ) ;
25 }
26
27 / / W r i t e r e s u l t .
28 v a l u e s [ t i d ] = s h a r e d [ t i d ] ;
29 }

Figure 4.3: Bitonic kernel.
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different threads to be performing this update concurrently, there could be a data race on

A[w], depending on how w is calculated as a function of the thread ID. However, if the

index w in A[w] does not depend on v (determined through static analysis), the manner in

which TIDs split based on e1(tid) and !e1(tid) has no influence on whether A[w]

will incur a race or not. In this case, it suffices to maintain a single flow that is not predicated

on e1 at all. SESA employs static analysis to identify whether local variables flow into

sensitive sinks, namely shared/global memory addresses or conditionals downstream in the

code. In the Bitonic kernel, the conditionals at lines 4 and 5 carry on with a single flow

through them, avoiding flow splitting.

4.2.2 Flow Combining with Respect to Global Variables

Now consider the Generic example where global variable c affects the value that a

particular thread assigns to u (via e2(tid)). Suppose global variable c is assigned a

symbolic value, then two branches are supposed to be exploited. Since u’s value is not

used in w, we can combine the flows again at line 3 of the Generic example. This is how we

handle the “flow explosion” due to the conditionals on lines 6 and 10 of the Bitonic kernel:

even though we are updating shared[..] through the swap function, this updated state

does not flow into any of the future sensitive sinks.

4.2.3 Symbiotic Use of Static and Symbolic Analysis

No practical tool can be entirely push-button; this is especially so for symbolic analysis

tools. In particular, while SESA has static data-flow and taint analysis capabilities, users

must still intervene and set loop bounds concrete (without bounding loops, concolic execu-

tion tools cannot finish their search; the alternative is to discover loop invariants, which is

far from a practical approach for the average CUDA programmer).

Fortunately, SESA provides information on why certain inputs must be kept symbolic.

For those inputs that are deemed to be symbolic because they flow into array index ex-

pressions, the programmer must proceed treating these inputs as purely symbolic. Finally,

for those inputs found not to flow into array index or control expressions, SESA allows the

programmer to safely set them to concrete values.

In our results section §4.5, we show that the combination of the aforesaid static analysis

and the flow combining approaches of §4.2.1 and §4.2.2 were essential to handle practical
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benchmarks such as the Lonestar benchmark.

4.3 Parametric Execution and Race Checking
Figure 4.4 shows the infrastructure of SESA. The front-end uses the Clang-3.2

compiler to translate a CUDA program into LLVM bytecode (with this front-end, support

for OpenCL [38] is within reach and is being planned). The bytecode is first processed by

the static analyzer (§4.4) to add annotations on data-flow information, specifically whether

a variable can flow into sensitive sinks. The annotated bytecode is then interpreted by the

symbolic executor during parametric execution (§4.3.1), at which time, races are checked

(§4.3.2). The annotated bytecode contains information about what inputs should be sym-

bolic as well as flow into sensitive sinks; this guides the symbolic executor to carry out the

functions described in §4.2 (§4.4). SESA currently supports all core LLVM instructions, 95

arithmetic intrinsics, 25 type conversion intrinsics, all atomic intrinsics, and 82 CUDA

runtime functions. This amounts to ∼3K LOC new for the basic infrastructure. This

represents substantial effort in making a practical C++ CUDA front-end; existing formal

approaches to GPU correctness do not have these features.

4.3.1 Parametric Execution of CUDA Programs

In this section, we recap the essential ideas of parametric execution introduced in

GKLEEp and point out key innovations made in this work. We present the basics of the

CUDA syntax handled (as captured at the LLVM level), our store model, how SIMD

execution is carried out, and the basics of preserving parametricity. In §4.3.2, we present

Figure 4.4: SESA’s infrastructure.
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the highlights of parametric race checking.

Figure 4.5 shows an excerpt of the syntax of CUDA LLVM bytecode. We now provide

a high level view of how a collection of CUDA threads execute from the perspective of

race checking. For this, we focus on the “Race State” of each thread. Given a thread

ID and a flow conditional (flow cond), a single access is either a read (r) or a write (w)

followed by the address being accessed. For brevity, consider a sequence of race states of

the form c1?r(a1), c2?r(a2), c3?w(a3), . . . that a single thread evolves over. We now define

the notion of a Parametric Execution.

4.3.1.1 Parametric Execution

Because of the thread symmetry, within each barrier interval in a CUDA program,

threads execute across an “identical-looking” race history. Specifically, consider a barrier

interval containing instruction I . This instruction syntactically looks the same across all

threads. Thus, given one race history of thread ti

c1(i)?r(a1(i)), c2(i)?r(a2(i)), c3(i)?w(a3(i)), . . .

we can obtain the race history of another thread tj by simply replacing every occurrence of

i with j.

Now, when can we claim that regardless of the number of threads executing a barrier

interval, we can detect all data races within the barrier interval by simply modeling two

τ := τl, τg memory sort
var := varcuda | v : τ variable
varcuda := tid, bid, . . . CUDA built-in
lab := l1, l2, . . . label
e := var | n atomic expression
instr := br v lab lab conditional branch

| br lab unconditional jump
| store e v store to addr e value v
| v = load e load from addr e
| v = binop e e binary operation
| v = alloc n τ memory allocation
| v = getelptr v e ... address calculation
| v = phi [lab, v] ... control-flow merge
| syncthreads synchronization barrier

Figure 4.5: Summary syntax of CUDA bytecode.
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symbolic threads ti and tj and checking races across just these threads (this is the key idea

of parametric checking). In §4.3.2, we proceed to describe that these ideas can be used to

efficiently perform race checking without incurring parameterized flow explosion.

4.3.2 Parametric Flows and Race Checking

A barrier interval may contain multiple conditions where the threads diverge over. We

discuss divergent computations in terms of conditional SIMD instructions. A conditional

SIMD instruction is of format c ? isl : isr, where c is the condition and instruction

sequences isl and isr will be executed when c is true and false respectively. When n

threads diverge over this instruction, the threads satisfying the condition will execute isl

while other threads are idle. The isr case is analogous. The execution orders of isl and isr

are not deterministic.

Suppose for now there are no symbolic inputs such that c is a function of thread id tid.

This condition divides the threads into two groups, one satisfying c and one satisfying ¬c.

We say that this condition creates two parametric flows. Each flow represents a group of

threads with a flow condition. Since the threads within a flow perform similar operations,

they can be reasoned about using a parametric thread.

A parametric flow represents a set of threads that perform parametric computations

under a flow condition. In the case of multiple conditions c1, c2, . . . , ck, each condition ci

partitions the threads into two flows. In general, the number of flows can grow exponen-

tially. Here are two facts about the number of flows:

1. There is only one flow if the threads are nondivergent.

2. If all conditions depend on only the thread ID, the number of threads is an upper

bound of the number of distinct flows (this number can indeed be quite large).

Now we describe race checking during parametric execution. For barrier interval, one

can follow a canonical (sequential [7]) schedule. That is, we symbolically execute one

thread from one barrier to the other, then switch to the other thread and do the same, etc.

The fact that this single sequential schedule [7] is sufficient is argued in [4, 8, 28, 31]. Both

GKLEEp and SESA carry this sequential schedule using one symbolic thread. The resulting

race history is cloned and instantiated over two thread IDs t1 and t2 with t1 6= t2. This idea

is applied within each parametric flow described below.
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We begin one parametric thread that represents all the threads that are situated in

one flow. During the execution, a flow may be split into multiple flows, each of which

represents a group of threads. Regardless, each flow is executed as per the aforesaid

canonical schedule. When the final thread of a barrier interval has finished running, the

race history of the parametric thread is cloned, and race checking is carried out.

Figure 4.6 shows the parametric flow tree of the reduction kernel. The initial flow

represents all bdim.x threads. Consider the first loop iteration where s = 1. At line 3,

the threads are divided into two groups upon condition tid%2 = 0: one with thread ids

{0, 2, 4, . . . }, and the other one with {1, 3, 5, . . . }. Accordingly, SESA creates two flows:

flow F1 with flow condition tid%2 = 0 and flow F2 with tid%2 6= 0. Then, SESA can

execute F1, producing read set {tid%2 = 0 ? sdata[tid + 1], tid%2 = 0 ? sdata[tid]} and

write set {tid%2 = 0 ? sdata[tid]}. When this flow reaches the barrier, flow F2 is scheduled

to execute. Since F2 contains no computation before the barrier, its read set and write set

are empty. Now all the flows for the first barrier interval reach the barrier. We union the

read-sets of F1 and F2 to produce the barrier interval read set: {tid%2 = 0 ? sdata[tid +

1], tid%2 = 0 ? sdata[tid]}. Similarly we obtain the barrier interval write-set: {tid%2 =

0 ? sdata[tid]}. Then we instantiate these barrier interval sets with two symbolic threads t1

and t2 for race checking (for simplicity, we do not show the extra assumption t1, t2 < bdim.x

here). Since the solver returns “unsat,” no race is found.

tid % 2 == 0

F0

F1 F2

sdata[tid] +=
 sdata[tid+s]

tid % 4 == 0

F1

F1 F2

F3 F4 F5

sdata[tid] +=
 sdata[tid+s]

F3
Barrier 

encounter 2

T F

T F tid % 4 == 0

Barrier 
encounter 1

tid % 2 == 0

F0

F1 F2

sdata[tid] +=
 sdata[tid+s]

F1

F0

Barrier 
encounter 2

T F

Barrier 
encounter 1

F1 F2

sdata[tid] +=
 sdata[tid+s]

F1

tid % 4 == 0T F

F3 F4 F5 F0

tid % 8== 0 tid % 8== 0 tid % 8== 0

F6 F7 F8 F9 F10

tid % 8== 0

F1 F2

F

Figure 4.6: Parametric flows of kernel reduction, and how flows are combined.
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WW race: t1 6= t2 ∧ t1%2 = 0 ∧ t2%2 = 0 ∧ t1 = t2
RW race: t1 6= t2 ∧ t1%2 = 0 ∧ t2%2 = 0 ∧ (t1 + 1 = t2 ∨ t1 = t2)

Suppose flow F1 is executed first in the next barrier interval. Again two new flows

are generated upon condition tid%4 = 0. The leftmost flow F3 has flow condition tid%2 =

0∧tid%4 = 0, which is simplified to tid%4 = 0. For flow F4 with condition tid%2 6= 0, since

tid%4 = 0 conflicts with tid%2 6= 0, e.g., tid%2 6= 0 ⇒ tid%4 6= 0, SESA keeps only one

flow with condition tid%2 6= 0. Finally we have five flows at barrier 2. Each flow represents

a group of threads, e.g., F6 represents threads {0, 4, 8, . . . }. Then we can obtain the barrier

interval read/write sets by uniting the flows’ read/write sets, instantiating them with two

threads, and checking address overlapping for possible races. In the implementation, when

two flows are generated, we can reuse the current flow for one of the generated flows so as

to reduce the flow cloning cost. For example, we can reuse F0 for F1, F3 and F6, and F2

for F5 and F10.

Since m conditions over thread ids and symbolic inputs can result in O(2m) flows, we

can utilize static data-flow information to combine the flows by (1) keeping sdata value in

the “then” path, (2) keeping the value of s, e.g., s = 1, and (3) emptying the flow condition

(since (tid%2 = 0 ∨ tid%2 6= 0) = true). Similarly at barrier 2 we have only one flow after

flow-combining.

SESA also supports warp execution as per CUDA’s SIMD model. The threads within

a warp are executed in a lock-step manner: two intrawarp threads can race only if they

simultaneously write to the same shared variable at the same instruction. In case of diver-

gence, we execute the two sides sequentially and merge them at the first convergence point

(e.g., the nearest common postdominator). When a conditional instruction c ? is1 : is2 is

encountered, SESA forks two new flows F1 and F2, representing the two branches of the

condition, and subsequent executions will start from each one. At F1, after is1 is executed

and the convergence point is reached, SESA executes is2 immediately. That is, flow F1

executes c ? is1 followed by ¬c ? is2. Similarly, flow F2 executes ¬c ? is1 followed by

c ? is2. For example, when the threads diverge on the condition at line 1 in the Generic

Example of Figure 4.1, the order “F1;F2” produces v = bwhile the order “F2;F1” produces

v = a. The executor has to enumerate both orders to be complete (unless data-flow analysis

helps eliminate one).
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Since we use only one parametric thread ti to model all the n threads, the soundness

and completeness of our method depends on whether ti can accurately simulate how the

state is accessed by n threads, e.g., whether ti can parametrically model the read and write

by all the threads. We consider various cases from ti’s perspective:

1. For an access (read or write) involving no shared data, we can always obtain the

accurate value of this access. That is, ti is parametric.

2. If ti reads the shared data written only by itself, then this read obtains the right value

as in a normal single thread execution. Again, ti is parametric. This is the case where

each thread reads its own portion of the shared data.

3. If ti reads the shared data written by other threads, then the value depends on how

other threads write the data. We call the such an write global SIMD write.

In Generic Example, no SIMD writes occur. Hence all reads obtain the right values, and

our parametric checking is accurate. In Reduction kernel, line 4 contains an SIMD write to

shared variable sdata such that each thread updates its own portion of the data. The next

loop iteration reads this variable, whose value depends on the previous SIMD write. To

study such accesses, we introduce the concept of an access being resolvable (whether we

can estimate such read values accurately). By definition, an access c ? v is resolvable if

both c and v do not contain global SIMD writes.

Clearly, all reads in a computation are resolvable if this computation contains no global

SIMD writes. A read over an SIMD write may be still resolvable by analyzing the relation

of their addresses, e.g., our prior work [29] uses SMT solving to reason about resolvable

reads. Currently, GKLEE resolves only the global reads and writes performed by the same

(parametric) thread.

In general, the v part of an access c ? v involves no global SIMD writes (i.e.,, in such a

write to a global variable, multiple threads contribute to the variable’s value). For example,

in the Reduction kernel, the SIMD write on sdata at line 4 does not appear in the read set

or write set for race checking. However, the c part is not resolvable in some kernels, e.g.,

the conditions at lines 6 and 10 in the Bitonic kernel introduce global SIMD writes into the

read set and write set, and the reads pertaining to these writes are currently not resolvable

with our one parametric thread model.

If each access c ? v in the read set or the write set is resolvable, i.e.,, c and v do not
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contain global SIMD writes, then our parametric checker is sound and complete.

If an address expression involved in shared/global memory updates are unresolvable,

then parametric checking may be unsound and incomplete. To avoid omissions, we can

“havoc” (set to a fresh symbolic value) the value of a read over global SIMD update. (Our

current release of SESA does not have this facility, yet.) To warrant soundness, we may use

global invariants as in [14, 28], which often require manual effort. In our results section

§4.5, we indicate whether the race checking of a kernel involves unresolved SIMD writes

and indicate whether soundess and completeness are affected if such writes exist.

4.4 Taint Analysis
We now describe our taint analysis. It utilizes multiple LLVM passes, inlining, use-def,

live-var, pointer-alias, then annotates LLVM instructions with live-vars relevant for race-

checking. Passes are designed CUDA-feature-aware.

In addition to built-in variables (bid.{x,y,z}, tid.{x,y,z}), a kernel takes in-

puts from the CPU. The analysis consists of three LLVM passes, which mark how variables

flow into sensitive sinks such as race related accesses:

1. Inline function calls within a kernel.

2. Determine data inputs and intermediate variables that flow into relevant sinks, em-

ploying LLVM alias analysis to handle memory accesses.

3. Annotate LLVM br and switch instructions to assist the dynamic flow removal and

merging.

The second pass is the most important one since it calculates which inputs and inter-

mediate variables flow into sensitive sinks. A traditional method is to start from all sinks

and calculate the relevant variables by exploring the control flow graph backwards. We

however make use of LLVM’s in-built facilities and perform a forward pass to find out this

set. Basically, this pass answers what variables will be used by the sinks from a given

program point? If the point is at the kernel entry, then we can obtain all those inputs that

should be made symbolic. For flow merging, the point is at barrier statements or warp

convergence places (for divergent warps). We need not track other program points.

This pass is extended from LLVM’s use-def analysis. Roughly, it (i) identifies a set

of live variables (“live” in terms of traditional use-def analysis) at a program point, (ii)
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propagates these variables along the control flow, and (iii) when a variable appears in

a sink (e.g., in the address of a shared memory access), it marks the variable as tainted.

Additionally, we need to process the cases where sinks are control-dependent on active

variables. Due to the existence of loops in the control-flow graph (CFG), the calculation

iterates until a fixed-point is reached.

We check whether the live variables can flow into the addresses of shared memory

accesses. We consider two cases: (1) the address addr is data dependent on a variable v

such that v appears in addr and (2) addr is control dependent on v such that v appears in

the flow condition of the access. For the second case, we maintain flow conditions during

the analysis.

Each variable v is associated with a live variable set (LVS), which records the live

variables used by v. For each new instruction, we apply the taint propagation rules of

Figure 4.7, where we use T as a short hand for LVS. One complication is about memory

loads and stores. We introduce a notation Tµ[v] to represent the LVS of a variable whose

memory address is v. We maintain a memory model to compute Tµ and use LLVM’s pointer

alias analysis to resolve memory accesses.

For illustration, consider the following C code (for succinctness we absort the getelptr

instructions into load and store). Here live variable v1 resides at register %1. Upon the

store instruction, we maintain in Tµ that Tµ(A[1]) = {v1}. This LVS is propagated to register

variable %2 such that T (%2) = {v1}. The second load instruction results in an empty LVS

for %3. Finally the add instruction makes T (%4) = {v1} ∪ {} = {v1}.

C code LLVM code
char A[10]; store A 1 %1
A[1] = v1; %2 = load A 1

v = alloc n τ T (v) = v is live ? {v} : {}
v = getelptr v1, v2 ... vn T (v) = T (v1) ∪ T (v2) ∪ · · · ∪ T (vn)
v = binop v1, v2 T (v) = T (v1) ∪ T (v2)
v = load v1 T (v) = Tµ(v1)
store v1, v2 Tµ(v1) = T (v2)
v = cmp bop, v1, v2 T (v) = T (v1) ∪ T (v2)
v = cast v1 T (v) = T (v1)
v = phi [l1, v1], [l2, v2] T (v) = T (v1) ∪ T (v2)

Figure 4.7: Taint propagation rules.
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char c = A[1]+A[0]; %3 = load A 0
%4 = add %2 %3

In the implementation, we maintain a CFG for the inlined kernel. We follow the CFG

to examine each instruction and update the LVS of the target variable. Each instruction

will be visited at least once. For an instruction, if its LVS is updated, the new LVS will

be propagated along the control flow. If the LVS is unchanged, then no propagation will

be made. The entire analysis stops when no more propagation is needed ( e.g., the LVS of

each variable will not change anymore; thus a fixed point is reached). This is similar to the

live variable calculation in compiler construction.

4.4.1 Example 1

We show below the LVS sets for the variables in the Generic example. Global inputs a

and b are propagated to the LVS sets of local variable v and memory address A[w]. Since

w’s LVS is empty, all inputs can be made concrete.

Line 1: T(v) = {a}
Line 2: T(v) = {b}
Line 3: T(v) = {a,b}, T(u) = {tid}
Line 4: Tµ(A[w]) = {a,b}
Finally: TaintSet = {}

Moreover, it is safe to combine the flows for the branches at lines 1 and 3. In our

implementation, we instrument the LLVM instructions by adding a flag “skip” to the “else”

parts of these branches. This flag tells the symbolic executor not to fork a flow. When

the part contains executable code, this flag allows the executor to abandon the flow after

executing this code. Since the remaining flow is a merge of the two original flows, its flow

condition does not contain the branch condition.

4.4.2 Example 2

Consider the loop in the reduction kernel, which takes three inputs including sdata.

We show below its bytecode (for better readability we simplify the byte-code including

ignoring datatypes, e.g., “float”). Loop index s is an intermediate variable residing at

register %1. There are many more intermediate variables stored in the registers, e.g., %5

stores tid% (2s) (at line 3 in the source code) and %7 stores v2 = tid+ s (at line 4).

loop:
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%2 = cmp lt %1 bdim.x ; s < bdim.x?
br %2 body end.for ; branch

body:
%3 = phi [loop,1] [if.end,%9] ; s’s value
%4 = mul 2 %1 ; 2 * s
%5 = mod tid %2 ; tid % (2*s)
%6 = cmp eq %5 0 ; tid % (2*s) == 0?
br %6 if.then if.else ; branch

if.then:
%7 = add tid %3 ; tid + s
%8 = load sdata %7 ; read sdata[tid+s]
store sdata tid %8 ; write sdata[tid]
br if.end ; jump to if.end

if.else:
br if.end

if.end:
%9 = mul %3 2 ; s *= 2
call __syncthreads ; barrier
br loop ; continue the loop

end.for:

There are two program points of interest: pnt1 at the kernel entry and pnt2 at the

barrier at line 5. Consider pnt1, where the live variables are the inputs including sdata.

The analyzer’s task is to, given a program point, determine which live variables will flow

into the sinks. For pnt1, we check whether the live variables (e.g., the inputs) can flow into

the two shared memory accesses at line 4. The calculation is done by investigating each

instruction and propagating the variables according to the rules shown in Figure 4.7.

Initially, the LVS of each variable is empty. At the first instruction, %1’s LVS is empty

since %1 stores local variable s (hence involving no global inputs). Instruction “%2 = cmp

lt %1 bdim.x” propagates %1’s LVS to %2, whose LVS is also empty. The “phi” instruction

propagates %9’s LVS to %3, and so on. At line 4, we check the addresses of sdata[%7]

and sdata[%8] for possible races; hence the variables in %7’s LVS and %8’s LVS need to

be marked as tainted variables. Since these two sets are empty, no variable will be marked,

indicating that no inputs should be made symbolic.

The computation goes on when the control jumps back to label “loop.” Since process-

ing the instruction does not change the LVS, propagation stops here, reaching a fixpoint,

concluding that all inputs can be concrete.

The analysis results can also be used to remove parametric flows. At program point

pnt2 at the barrier, variables %3,%4,%5,%7, and %8 are determined to be not related to

the sinks (e.g., addresses in shared accesses), variable %2 is not live, and variables %1 and
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%9 have the same values for both flows; hence only one flow is needed to be explored

during symbolic execution. Basically we check whether the writes in a BI (barrier interval)

will be used in subsequent BIs. A live variable not updated in any flow within the BI can

be ignored since its value will be the same in all flows.

We show below more information, where the data store gives the variable values. Note

that after flow merging, the path condition of the merged flow is the union of those of the

two original flows. Based on the LLVM Metadata encoded by static analyzer, symbolic

executor merely picks the left flow.

left flow right flow
Path Cond : tid% 2 = 0 tid% 2 6= 0

Data Store :

%1 = 0
%9 = 2
%7 = tid+ 1
%8 = sdata[%7]
. . .

%1 = 0
%9 = 2
%7 = undef
%8 = undef
. . .

4.5 Experimental Results
We run SESA on the kernels in CUDA SDK, the Parboil library [3], and the Lon-

estarGPU benchmark [2]. All experiments are performed on a machine with Intel(R)

Xeon(R) CPU @ 2.40GHz and 12GB memory. We perform extensive comparisons of

SESA and a start-of-the-art GPU testing tool GKLEEp [32]. The benchmarks are available

at https://sites.google.com/site/sesabench/.

4.5.1 CUDA SDK

Table 4.1 shows results on a few CUDA SDK 5.5 kernels that have no thread divergence

(hence both SESA and GKLEEp explore one flow). And no races are found. Timing results

(sec.) are the average over three runs. For example, for kernel vectorAdd, SESA determines

that none of the four inputs need to be symbolic, while a typical GKLEEp user sets two

symbolic inputs (the other two are related to the concrete thread number). SESA finishes

the execution for 50, 176 threads in 0.8 second, while GKLEEp needs 3.8 seconds. This

shows the advantages of reduced symbolic inputs, even for small examples. The case of

kernel matrixMul is similar.

For some benchmarks, while having excessive symbolic inputs does not affect per-

formance (because most steps such as, e.g., memory block matching are unrelated to
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Table 4.1: CUDA SDK 5.5 nondivergent kernel results.

Kernels # Threads GKLEEp SESA
# Inputs Time # Inputs Time

vectorAdd 50,176 2/4 3.8 0/4 0.8
Clock 16,384 2/3 4.7 0/3 4.6
matrixMul 204,800 2/5 95.25 0/5 9.8
Scan Short 4,096 1/4 179.3 0/4 181.9
Scan Large 4,096 1/4 107.1 0/4 109.1
scalarProd 32,768 2/5 Crash 0/5 77.6
Transpose 262,144 1/4 132.0 0/4 128.4
fastWalsh 1,024 2/4 54.8 0/4 44.5

inputs), it causes other problems. For example, SESA detects no symbolic inputs for kernel

scalarProd, while GKLEEp sets 2 symbolic inputs and crashes without giving any useful

result.

This explains another important issue in GPU symbolic testing: constraints on the

symbolic inputs must be set properly. By avoiding excessive symbolic inputs, this problem

seems ameliorated. In summary, SESA is able to detect all races and errors found by GKLEE

and GKLEEp on SDK kernels. For example, SESA spends 2 seconds to find a real WW race

in histogram64 in SDK 2.0, while both GKLEEp and GKLEE spend more than 20 seconds.

4.5.2 Performance Improvement with Flow Optimizations

Table 4.2 presents the SESA’s advantage over the GKLEEp for kernels whose execution

produces many flows. SESA identifies a subset of inputs to be symbolized. Each result

cell is of the form ‘Num-Flows’ (‘elapsed-time-in-secs.’), and Time-Outs are at 3,600

seconds. ‘Num-Flows’ refers to the maximum of flows that occur during the execution.

Column RSLV? represents if the kernel is resolvable. Column RR/OM denotes if Races

were Reported by SESA or Omissions occur. A “-” means that these outcomes did not

happen. stream compaction suffers from a false out-of-bound error and write-write

race (manually confirmed). For stream compaction and n stream compaction kernels,

‘Num-Flows’ refers to the number of the execution paths. The last four benchmarks are

from [14]. SESA’s performance improvement becomes more significant when the number

of threads becomes larger. For example, with 16 threads in mergeSort kernel, GKLEEp
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Table 4.2: Comparison of SESA and GKLEEp.

Kernel
Name RSLV? RR/OM #T = 16 #T = 32 #T = 64 #T = 128 #T = 256

GKLEEp SESA GKLEEp SESA GKLEEp SESA GKLEEp SESA GKLEEp SESA
bitonic
2.0 Y –/– T.O.

1
(5.9) T.O.

1
(12.1) T.O.

1
(30.4) T.O.

1
(79.7) T.O.

1
(248.2)

wordsearch Y –/– T.O.
1
(1.6) T.O.

1
(4.5) T.O.

1
(15.7) T.O.

1
(72.1) T.O.

1
(474.2)

bitonic
4.3 Y –/– T.O.

1
(29.3) T.O.

1
(105.6) T.O.

1
(295.4) T.O.

1
(504.5) T.O.

1
(1,215.6)

mergeSort
4.3 Y –/–

17
(75.4)

1
(3.0)

38
(442.5)

1
(4.5)

78
(2,174.4)

1
(7.3) T.O.

1
(9.2) T.O.

1
(14.1)

stream
compaction∗ N RR/–

32
(9.1)

5
(6.1)

33
(16.2)

6
(11.9)

65
(36.2)

7
(21.6)

129
(81.7)

8
(34.8)

257
(181.5)

9
(50.6)

n
stream
compaction∗ N –/–

34
(58.7)

16
(8.3)

35
(224.7)

33
(120.6)

67
(541.5)

65
(301.9)

131
(1497.8)

129
(813.9)

259
(1596.8)

257
(936.6)

blelloch Y –/–
93

(1,496.1)
3

(9.7) T.O.
3

(20.3) T.O.
3

(46.9) T.O.
3

(114.5) T.O.
3

(629.0)

brentkung Y –/–
65

(1,476.7)
3

(9.6) T.O.
3

(24.2) T.O.
3

(55.5) T.O.
3

(140.7) T.O.
3

(315.5)

explores 17 flows in 75.4 seconds, while SESA explores only one flow and finishes the

execution in 3 seconds thanks to removal of duplicate flows. For kernels bitonic and

wordsearch, GKLEEp times out in 1 hour even for 16 threads, while SESA can scale to over

256 threads. SESA produces 3 flows for kernel blelloch with 64 threads, and SESA finishes

the checking in 46.9 seconds while GKLEEp times out. Here we count only the execution

time since the taint analysis time is negligible. For the buggy stream compaction kernel,

SESA spends less than half of the time than GKLEEp to locate the bug. Note that these

programs are highly divergent with large state spaces, and hence it may take both GKLEEp

and SESA quite some time to analyze. Without flow optimizations it is very hard to check

them for even small configurations such as 16 threads.

SESA may suffer from false alarms or omissions caused by unresolvable reads de-

scribed in §4.3.2. In our experiments, we spent effort identifying these unresolvable reads

manually. Whenever feasible, we also compared our manual results against GKLEE [31],

the predecessor of GKLEEp and SESA. For example, stream compaction and n stream

compaction are unresolvable kernels.

Table 4.3 presents the results for the LonestartGPU benchmark, which consists of

irregular kernels with multiple flows. Each # Flow cell is of the form ‘Num-Flows’

(‘elapsed-time-in-secs.’). We set 3,600 seconds for T.O., and each # Flow refers to the

maximum number of flows that occur during the execution. Column RR/OM denotes if

Races were reported by SESA or if OMissions occur. If an R/W or a W/W race is listed

under “Errors,” then that means that the Race Report was manually confirmed as being a
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Table 4.3: Comparison of SESA and GKLEEp for LonestarGPU benchmark.

Kernel Name RSLV? RR/OM #Threads GKLEEp (Conc.) SESA (Conc.) GKLEEp (Sym.) SESA (Sym.)
# Flow # Flow # Flow Errors # Flow Errors

bfs ls
(BFS) N RR/– 256 9 (37.9) 9 (36.8) T.O. ? 2 (0.9) ?
bfs atomic
(BFS) N RR/– 1,024 7 (7.9) 7 (7.9) T.O. R/W∗ T.O. R/W∗
bfs worklistw
(BFS) N RR/– 256 4 (140.6) 4 (147.6) 19 (40.5) ? 2 (20.2) ?
bfs worklista
(BFS) N RR/– 1,024 5 (2.3) 5 (2.3) 19 (8.5) ? 3 (0.6) ?
BoundingBox
(BH) Y RR/– 6,144 16 (106.7) 2 (50.1) 16 (103.9) R/W∗ 2 (46.4) R/W∗
sssp ls
(SSSP)∗ N RR/– 1,024 6 (19.9) 6 (19.9) 310 (198.1) W/W 2 (2.5) W/W
sssp worklistn
(SSSP)∗ N RR/– 1,024 5 (318.2) 5 (327.3) 390 (617.5) W/W 2 (21.4) W/W

genuine race. Whenever a kernel suffer from an out-of-bound error, we disabled this

check in order to be able to collect the runtime. We use # execution path rather than

# Flow for kernels marked with ∗ symbols. In bfs atomic and BoundingBox kernels,

R/W race stems from “don’t-care non-det.” (ensures one body inserted in each position).

? denotes those errors are under investigation. The columns with (Conc.) use pure

concrete inputs (the thread ids are still symbolic), while the columns with (Sym.) apply the

symbolic inputs identified by the taint analyzer, with those flowing into loop bounds being

excluded (as mentioned in §4.2.3). For example, consider kernel bfs ls. When symbolic

inputs are used, GKLEEp times out in 1 hour, and SESA finishes the checking in 0.9 seconds

with only two flows.

Note that when the symbolic inputs are not constrained with proper assumptions, many

memory out-of-bound (OOB) errors may be produced, while these errors are not relative

to races. GKLEEp suffers seriously from this problem, while SESA is more resilient with

only a portion of inputs being symbolic. To make the comparison fair, we disable the

OOB checking and OOB related state spawning in both GKLEEp and SESA. This often

reduces the total execution time (e.g., less than that with concrete inputs). We also show

intuitively in Figure 4.8 the speedup, e.g., SESA is more than 3, 000x faster than GKLEEp

for kernel bfs-ls with symbolic inputs. For better readability, this figure does not show

the overflowing values in an exact way, e.g., the red bar of bfs-ls, which has over 3, 000x

speed-up. Similarly, Figure 4.9 shows some speedups for kernels in Table 4.2. Here SESA

can outperform GKLEEp by 1–3 orders of magnitude.
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4.5.3 Parboil

We have run SESA on the entire Parboil benchmark [3]. Table 4.4 lists the results

on 10 kernels, many of which contain issues revealed by SESA. We set 2 hours for T.O.

in this table. For mri-gridding and spmv, the first member of the 〈〉 pair denotes the

number of inputs inferred by SESA to be made symbolic, while the second represents the

actual number of symbolized inputs needed (revealed by manual analysis). For example,

for histo prescan kernel, SESA infers that one out of the three inputs should be made

symbolic. SESA can scale to 32, 768 threads. It explores two flows and detects a real RW

race detailed below.

Figure 4.10 explains the read-write race uncovered in histo prescan (witness was

automatically generated). The write access in SUM(stride) is performed by thread

〈17, 0, 0〉 while the read access in SUM(16) is by thread 〈1, 0, 0〉; these conflict, leading to

the race.

Figure 4.11 illustrates the out-of-bound access caught in the histo final kernel. The

OOB access occurs in the 47th iteration of the loop, and the initial value of i is tid.x +

bid.x ∗ 512 for symbolic tid and bid. In addition, the size of memory region the pointer

global histo refers to is 8, 159, 232. Then the OOB is modeled as a constraint (tid.x +

bid.x × 512 + 47 × 42 × 512) ∗ 8 < 8159230, and SESA solves this formula and identifies

a thread with the configuration: bid = 〈24, 0, 0〉 ∧ tid = 〈0, 0, 0〉 that could incur the OOB

access. Note that it is nontrivial to use manual or random testing to come up with such

witnesses.

Figure 4.12 illustrates the interblock read-write race caught in the binning kernel. This

Table 4.4: Parboil results.

Bench Name Kernels # Threads # Inputs (SYM) Errors # Flow
bfs BFS in GPU kernel 512 4/11 W/W (Benign) 1
cutcp cutoff potential lattice6overlap 15,488 1/8 W/W (Benign) 1
histo histo prescan kernel 32,768 1/3 R/W 1
histo histo intermediates kernel 32,370 0/5 – 1
histo histo main kernel 21,504 2/9 – 1
histo histo final kernel 21,504 0/8 OOB 1
mri-gridding binning kernel 16,896 〈2,1〉/7 R/W 1
mri-gridding reorder kernel 16,896 〈1,0〉/4 – 1
spmv spmv jds 1,152 〈2,0〉/7 W/W (Benign) 1
stencil block2D hybrid coarsen x 8,192 0/7 – T.O.
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1 g l o b a l void h i s t o p r e s c a n k e r n e l ( . . . ) {
2 # d e f i n e SUM( s t r i d e )
3 i f ( t h r e a d I d x . x < s t r i d e ){
4 Avg [ t h r e a d I d x . x ] += Avg [ t h r e a d I d x . x+ s t r i d e ] ;
5 StdDev [ t h r e a d I d x . x ] += StdDev [ t h r e a d I d x . x+ s t r i d e ] ;
6 }
7
8 # i f (PRESCAN THREADS >= 32)
9 f o r ( i n t s t r i d e = PRESCAN THREADS / 2 ;

10 s t r i d e >= 3 2 ; s t r i d e = s t r i d e >> 1) {
11 s y n c t h r e a d s ( ) ;
12 SUM( s t r i d e ) ;
13 }
14 # e n d i f
15 # i f (PRESCAN THREADS >= 16)
16 SUM( 1 6 ) ;
17 # e n d i f
18 . . .
19 }

Figure 4.10: The read-write race in histo prescan kernel.

1 / / gr idDim . x : 42 , blockDim . x : 512
2 g l o b a l void h i s t o f i n a l k e r n e l ( . . . ) {
3 unsigned i n t s t a r t o f f s e t = t h r e a d I d x . x +
4 b l o c k I d x . x * blockDim . x ;
5 f o r ( unsigned i n t i = s t a r t o f f s e t ;
6 i < s i z e l o w h i s t o / 4 ;
7 i += gridDim . x * blockDim . x ) {
8 / / o u t o f bound e r r o r found here
9 u s h o r t 4 g l o b a l h i s t o d a t a =

10 ( ( u s h o r t 4 * ) g l o b a l h i s t o ) [ i ] ;
11 . . .
12 }
13 }

Figure 4.11: The OOB in histo final kernel.
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1 g l o b a l void b i n n i n g k e r n e l ( . . . ) {
2 unsigned i n t samp le Idx = b l o c k I d x . x* blockDim . x
3 + t h r e a d I d x . x ;
4 . . .
5 i f ( s amp le Idx < n ){
6 p t = sample g [ sample Idx ] ;
7
8 b i n I d x = ( unsigned i n t ) ( p t . kZ )* s i z e x y c +
9 ( unsigned i n t ) ( p t . kY)* g r i d S i z e c [ 0 ] +

10 ( unsigned i n t ) ( p t . kX ) ;
11 i f ( b i n C o u n t g [ b i n I d x ]< b i n s i z e ){
12 c o u n t = atomicAdd ( b i n C o u n t g + b in Idx , 1 ) ;
13 }
14 }

Figure 4.12: The read-write race in binning kernel.

race is uncovered when the memory region sample g is set symbolic, and the size of the

memory region is 404, 160. SESA exposes that the thread 1 with bid = 〈32, 0, 0〉 ∧ tid =

〈64, 0, 0〉, and the thread 2 with bid = 〈0, 0, 0〉 ∧ tid = 〈0, 0, 0〉 are involved in the race,

thread 1 reads the binCount g[binIdx], and thread 2 writes the same element with

the atomicAdd instruction where binIdx is evaluated to be 0 because pt is symbolic.

These issues have not (to the best of our knowledge) been reported before by others;

most of these bugs manifest only when the state space is analyzed sufficiently. For example,

GKLEEp generates a huge number of flows and timesout before the bug in binning is

reached. Flow-combining and tight symbolic input-set selection helps SESA reach the bug

in affordable time budget.



CHAPTER 5

CONCLUSION AND FUTURE WORK

Symbolic execution based verification is highly attractive in that one is able to bring

the benefits of formal analysis to real code (not models of the code) written in practical

languages (e.g., C++) and compiled using actual compilers (e.g., LLVM).

First, we presented GKLEE, the first symbolic virtual machine based correctness checker

and test generator for GPU programs written in CUDA/C++. It checks several error cate-

gories, including one previously unidentified race type. We discussed logical errors and

performance bottlenecks detected by GKLEE in real-world kernels. For many realistic

kernels, finding these issues takes less than a minute on a modern workstation. We propose

several novel code coverage measures and show that GKLEE’s test generation and test

reduction heuristics achieve high coverage.

To overcome the scalability problem GKLEE suffers from, parameterized reasoning is

proposed. This strategy fully utilizes the thread symmetry property within CUDA pro-

grams. Despite the theoretical inexactness of this approach, our results show that we have

caught all the races found in our earlier efforts, found some new ones, and have been able to

scale GKLEE to huge amount of threads, finishing testing within acceptable runtimes. This

makes GKLEEp a practical race checking facility—the first of its kind—that also allows

programmers to choose symbolic inputs and obtain code coverage over all the branches

that depend on these inputs.

The current symbolic testing frameworks require users to manually select inputs that

should be symbolized, which not only costs more manual efforts, but incurs the impreci-

sion, leading to the unnecessary symbolic execution or the missing of the chance to uncover

potential defects. Hence, GKLEEp evolves to SESA, and SESA employs static analysis to

automatically identify inputs that can be safely set to concrete values, often identifying

most of the inputs that can be so set without losing coverage. A key novelty of SESA
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is that its static analysis also informs parametric flow combining, a key technique that

avoids the creation of unnecessary flows. It also provides a race-modulo analysis technique

that is reminiscent of techniques developed for CPUs (e.g., [9, 11, 22, 25]), but adapts this

thinking to GPU (SIMD) codes. In addition, SESA provides many of the advanced CUDA

features including CUDA atomics, many CUDA intrinsics, etc. We thoroughly evaluate

SESA on large benchmark suits such as Parboil and Lonestar. During these experiments,

the tool automatically found several genuine bugs, including out of bound array accesses

and data races. It also found a few races later deemed to be benign and in the process forced

useful code walk-through and code understanding. All error reports are accompanied by

concrete witnesses (input values and thread IDs involved in the issue). These results,

together with the enriched CUDA subset that SESA handles, positions itself as (to the best

of our knowledge) the foremost of formally based GPU correctness analysis tools geared

primarily toward race-checking.

5.1 Future Work
In the future, our framework can be extended in terms of new ideas and new engineer-

ing:

1. Symbolic executor can be extended to automatically detect the “unresolvable” mem-

ory accesses. For example, we can employ SMT solvers to reason about if the

shared/global data will be upated by multiple threads. If “unresolvable” values are

used in sensitive sinks, false alarms or omissions might happen. To overcome the

disadvantages incurred by “un-resolvable” variables, we should use a good havocing

(meaning different symbolic variables are introduced for different shared writes),

then no omissions.

2. GKLEEp and SESA can be parallelized through multithreaded or MPI programming

model, leading to better performance.

3. Since CUDA programming model evolves fast, more CUDA runtimes and features

can be supported to improve tool’s power to handle host code better.

4. Since GKLEE, GKLEEp, and SESA are all based on Clang/LLVM, which provides

better supports for OpenCL, and OpenCL shares the similar programming model as

CUDA, they can be used as a good symbolic testing platform for OpenCL as well.
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