
■ H P P P *

rfr r m in i,A

Although the'
of this 1C w*|
the evafuatios
p e r f o r » f t i n c e i

T r a n s f o r m i n g a n A d a

P r o g r a m U n i t t o S i l i c o n

a n d V e r i f y i n g I t s B e h a v i o r

in a n A d a E n v i r o n m e n t :

A F I R S T E X P E R I M E N T

E. I. Organick, T. M. Carter, M. P. Maloney, A. Davis, A. B. Hayes,
l^lass, G. Lindstrom, B. E. Nelson, and K. F. Smith, Universit

Background art. Ada lo Silicon
by Frank Dalton is available as an

16 * 24' fut!-cok>r poster (see p 48)

M icroelectronics technology has advanced so rapidly and been so suc
cessful that we are now having to build large systems with a multitude

of diverse, interacting components. Some components of these systems exhibit
distinct architectures and may, in fact, be implemented following different
choices of data abstraction realized in a variety of logic a n d circuit tech
nologies. When we as designers understand how to build such systems, we
are no longer j u s t software engineers or j u s t hardware engineers—we

January 1984 0/40 >4&9/S4l0100/0031UII 00 19*4 IEEE

become “ heterosystems” engineers,
a more accomplished breed of engi
neering professional concerned with
building systems that are truly
heterogeneous in the fullest sense.

Fitting the diverse components of
large systems together has always
been a troublesome design and im
plementation challenge. Although at
times doable, the cost for success is
usually very high, often prohibitive.
We now know that a major reason
for this high cost is the lack of a
suitable system modeling language—
one that is formal enough in its syn
tax and semantics to be used both for
specifying system components at re
quired levels of abstraction a n d for
running simulations at chosen ab
straction levels. With a satisfactory
modeling language, we would be able
to build components from their for
mal descriptions in the modeling
language, rather than merely
simulate them. Software engineers
have been developing such ap
proaches to system building for some
time, and hardware engineers are
now beginning to recognize their use
fulness.12

It is intriguing to consider what the
required relationship between a con
ventional compiler and a very high-
level silicon compiler must be. On
the one hand, a conventional com
piler transforms a high-order lan
guage specification of a system com
ponent into a program/data structure
for a host machine, but a sufficiently
advanced silicon compiler could
compile the same source-language
specification into a semantically
equivalent hardware component. An
examination of this relationship has
led us to the following observation
(and principle): if we are going to
build heterogeneous systems with the
aid of compilers, then a l l b u i ld a b le
p a r ts o f th e s y s te m s h o u ld b e p r o
d u c e d b y c o m p ile r s th a t a re d r iv e n
b y th e s a m e la n g u a g e s y n ta x a n d
s e m a n t ic s .

This principle implies another,
namely that c o n v e n t io n a l a n d s il ic o n
c o m p ile r s m u s t re c o g n iz e th e s am e
c o m p i la t i o n u n i t s o f t h e s y s te m
m o d e l in g la n g u a g e a n d t h a t o n ly

W e w e r e o b l i g e d t o s e e k an
e x i s t i n g l a n g u a g e w h o s e

c h a r a c t e r i s t i c s c a m e c lo s e to
w h a t w e n e e d e d a n d , f o r th i s

r e a s o n , c h o s e A d a .

th e se c o m p i la t io n u n i t s s h o u ld be
c o n v e r te d t o s i l ic o n . By adhering to
these two principles, we can be
assured that system parts built using
different implementation media (and
exhibiting different levels of data
abstraction) will consistently fit at
their interfaces. We also have the
assurance that system parts can be
replaced with semantically equivalent
ones when implemented in different
technologies. For example, if stan
dard Ada were used as the modeling
language, then naked Ada tasks,
which are not legal Ada compilation
units, could not be “ extracted”
from a program, converted into sili
con, and then “hooked up” with the
rest of the program executing, say,
on a general-purpose host.

Having an appropriate system
modeling language in hand permits
the engineer to view an entire system
under design as a single “program”
whose static components correspond
to compilation units and whose asso
ciated interfaces have clearly speci
fied semantics. Thus, when choosing
a particular implementation medium
for a selected component C, a guid
ing principle to follow is the preser
vation of C’s behavior as specified in
the system modeling language. This
also implies the preservation of C’s
interface (semantics) with the other
system components, which we’ll call
“Others” —regardless of what medi
um of implementation has been
chosen for the Others. Thus, we
have the derived principle that alter
native interfaces between a pair of
components can differ physically,
but cannot differ semantically. If a
modeling language is rich enough
and has adequate expressive power,
it should be possible to specify a suf
ficiently wide range of implementa
tions for any selected system compo

nent or group of components, thus
maintaining the designer’s control of
the design responsibility.

We are aware that system model
ing languages fully meeting the above
criteria may not currently exist, let
alone be widely available, even for
use in designing a relatively limited
class of systems. On the other hand,
since we wanted to proceed as far as
possible with the development of a
system-building methodology and
style based on the use of a system
modeling language, we were obliged
to seek an existing language whose
characteristics came close to what we
needed. For this reason, we chose
Ada—both to learn how to use it as a
system modeling language for
building systems with heterogenous
components and, in the course of
doing so, to learn what crucial
features, if any, Ada now lacks. In
fact, we began reporting our initial
study of Ada as a system modeling
language candidate some time ago.3

Mapping specific program units to
silicon. Any high-order language
program module can, in principle,
serve as a specification for an ar
chitecture and corresponding circuit
realization tailored to the algorithms
and data structures of that module.
In particular, an Ada package can
play a number of useful roles—for
example, it can function as an ab
stract state machine consisting of a
set of operations on objects of pri
vate data types, or as a server/re
quester task, which can be either
purely functional or also own some
private data objects.4,5 The circuit
equivalent of a package can be logi
cally embedded in (and physically
appended to) an environment whose
components are also specified in
Ada.3

All program modules in such an
environment are executable as a
compiled program on a conventional
host computer. The resulting system
is physically heterogeneous, but
semantically homogeneous since the
semantics are Ada based. The physi
cal interfaces between disparate
media of a system and the specific

32 IEEE SOFTWARE

logic used to implement these inter
faces have to be transparent with
respect to the semantics of the high-
level specification language. The
homogeneity of the semantic medi
um provides the opportunity to
design Ada-level in-system evalua
tion testbeds for studying the behav
ior of circuits that are equivalent to
software p ackag e s . Indeed, the im
portance of developing effective test
beds like these cannot be stressed
enough6—they can even help realize
the full potential of e x is t in g silicon
compilers.

Our approach to assembling such
heterogeneous systems presupposes a
continued decline in cost and time
for reliable VLSI design and fabrica
tion. If this comes to pass, the ad
vantages to be gained for such sys
tems are impressive: the achieved
logical and physical tailoring of com
ponents; the isolation and replica
tion of function, with the resulting
reduction of resource management
overhead (time and space) and com
plexity; and increased speeds
(achieved through concurrency).

Experiment summary. Our experi
ment was intended to further the
development of design methodologies
and procedures for the system-build
ing approach described above
something that we consider a modest
but nontrivial first step. As a
demonstration of our ideas, a minor
component of the Department of
Defense Internet Protocol was speci
fied as a server/requester task em
bedded in an Ada package. This
package was transformed to a speed-
independent NMOS circuit composite
using various design aids, many of
which were developed locally. It was
simulated at various levels, fabricated
through the MOSIS (MOS implemen
tation system) as a single chip, and
then tested at three levels: electrical,
logical (gate), and in-system Ada.

This circuit, mapped from approxi
mately 100 lines of Ada code, is the
first, large NMOS circuit we have
designed with cell-based PPL meth
odology (see box at right).*'' The cir
cuit’s active area measures only 3.8 x

3.0 mm, but represents the equiva
lent of 1928 two-input NAND gates.
It is also the first circuit demonstrat
ing the effectiveness of the Assassin
(assembly, specification, and analysis
system for speed-independent con
trol unit design)1' 1'' silicon compiler
and was produced by adhering to a
completely asynchronous (speed-
independent) design discipline.

The package chosen for transfor
mation has three favorable charac
teristics that significantly increase the
chance for a successful first experi
ment:

(1) Only simple arithmetic, corre
sponding to nested for-loop control
and array addressing, is needed.

(2) A relatively small amount of
on-chip RAM-like memory is re
quired. This RAM requirement is so
small, in fact, that it is feasible to im-

O u r a p p r o a c h to assembling!
s u c h h e t e r o g e n e o u s s y s t e m s

p r e s u p p o s e s a c o n t i n u e d
de c l in e in c o s t a n d t im e
fo r r e l iab le V L S I d e s ig n

a n d f a b r i c a t i o n .

S o m e u s e f u l i n f o r m a t i o n a b o u t VLSI
The VLSI Group at the University of Utah has developed a

methodology known as “path programmable logic” for the design of In
tegrated circuits.10"12 PPL uses predefined cells for an NMOS silicon
gate process and has proven useful as the foundation upon which CAD
tools for structured" logic can be suilt.

With PPL methodology, IC design Is performed by placing small cir
cuit modules (cells), which can be represented by logic symbols, on a
grid representing the IC. When the grid Is completely populated, It Is
both the logical representation and the topological layout of the circuit.
The circuit modules have predefined schemat ic and composi te
representations. They are custom-designed to optimize performance
and size for any specific IC process. The conversion from high-level
descriptions to the PPL cells is easily accomplished because of the
tight coupling between the topology and the logic.

PPL methodology yields circuits similar in structure to that found in
a programmed logic array. In PPL, however, the AND and OR planes of
the PLA are folded into one plane. The AND conditions of the input
signals are formed on the rows of the PPL and the OR conditions are
formed on the columns. Complex cells—other than those needed to
perform the AND/OR products of a function—are provided and can be
inserted into the grid at arbitrary locations. These cells can be flip
flops, inverters, loads, row and column connections, pass transistors,
etc. AND/OR cells are of unit s ize—one row high and one column
wide—but the complex cells are composed for multiple rows and col
umns.

The row and column wires that connect the cells can be interrupted
at any cell boundary. In contrast to a PLA, the columns and rows in a
PPL can be divided into any desired number of segments, allowing
greater design flexibility. Discrete modules, which can include memory
as well as combinational logic, can be placed anywhere on the grid and
segmented from the other modules by row and column breaks. Special
ohmic contact cells are used to directly connect rows with columns,
allowing the path of a signal to be routed between different modules.

January 1984 33

Figure I. Logical structure of the internet
module.

plement it as a linear array of
registers; at the Ada level, the array
represents a two-dimensional table.

(3) The embedded server/re
quester task never has more than one
external task at a time requesting
service of it; consequently, no
queueing circuitry is needed either
on- or off-chip. This makes imple
mentation of the Ada rendezvous
especially simple.

Choosing a package exhibiting
these simplifying characteristics
allowed us to concentrate on a num
ber of important practical design and
system-building-and-testing issues
that might otherwise have been over
looked had we been too ambitious in
selecting our first package. Some of
our follow-up research should give
us the opportunity to choose Ada
packages whose characteristics are
not so favorable. On the other hand,
we are also conducting research
aimed at applying the discipline
developed thus far to building in
teresting signal processing subsys
tems. For this class of system-build
ing applications, the kinds of Ada
packages needed are (happily) char
acterized by somewhat simpler com
munication protocols than those re
ported in this article.

T h e c o n t e x t
Here we review the original con

text from which the candidate soft
ware specification was selected for

implementation in hardware. Our
sample problem involves the specifi
cation and implementation of the
Department of Defense Internet
Protocol.7 This example, termed the
“ internet module,” performs data
gram formation, fragmentation, ad
dressing, and reassembly. Our top-
level formulation of the internet
module is roughed out in Figure 1.
The internet module can be decom
posed into three logically distinct
modules.1 Inm_Out, which processes
outbound datagrams, InrtLln, for
inbound datagrams, and a host gate
way module called Inm_Srv, which
interfaces the host computer to the
Inm^In and lniTL Out modules.

For our experiment, we concen
trated on the InnLOut module and
constructed a complete Ada imple
mentation of it.15 Hardware design
time limitations required further
decomposition of the Inm Out
module, so the module was sepa
rated into two submodules (see Fig
ure 2). The RIP Manager package
with its embedded Read Init
Parameters (RIP) task was extracted
from the original Inm_Out module.
Of these two submodules, the re
duced Inm_Out module and RIP
Manager, the RIP Manager was im
plemented as an NMOS circuit.

The original function of the RIP
task was to accept initialization
parameters for the Inm Out module.
These parameters were then stored in

Figure 2. Decnmpositnn of Inm Out.

IEEE SOFTWARE

the InirL Out Module package. The
separation of the RIP task from the
Inm„Out Module required storing
the initialization parameters in the
RIP task, meaning that the RIP task
functioned as a small, smart store for
the parameters.

The resulting Ada subsystem con
sists of four packages: the two
modules making up the original
InnuOut module and its immediately
surrounding modules (Figure 3). Note
that each package contains one
embedded task15 and that the RIP
task communicates with surrounding
tasks by accepting and issuing entry
calls.

T h e t r a n s f o r m a t i o n o f
r i p i n t o s i l i c o n

The transformation of the Ada
code for RIP Manager and its
embedded Read Init Parameters
task into a silicon implementation re
quired two manual steps—the ex
traction of the data path and asso
ciated control from the Ada program
and the rendering of these two
elements as a path-programmable
logic program unit.

The extraction of the RIP data
path was relatively straightforward
since it contained only the simplest
arithmetic operations. Each declared
variable was implemented as a self
timed register and as a register/
counter combination. The memory

array for the Type of Service (TOS)
table was also implemented as a bank
of eight, eight-bit self-timed
registers. The only data operations
besides reading to and writing from
registers were increment-by-one and
an equality comparison. Increment-
by-one was implemented as a register
and an associated up-counter, and
equality comparison as a bank of
exclusive-NOR gates, whose output
indicated when equality occurred.
Figure 4 shows the block-level
diagram of the RIP chip, which was
created from the Ada code. Note
that all registers and counters are
self-timed and return a DONE signal
upon completion of the requested
operation.

Once the data path had been de
fined, the extraction of control was
equally straightforward. In the
absence of contention, a task entry
call is implemented as a request
signal generated by the caller and an
acknowledge signal generated by the
called task, thereby maintaining the
self-timed design discipline.

There are two buses in this system.
The first is a four-bit bus connecting
RIP, Inm Out, and the Mem
ory Module. Since RIP simply
stores the first value present on this
bus (INITNUM) and forwards the
rest to the Memory Module as ac
tual parameters, we decided not to
latch these values in order to forward
them. This optimization is accept

able only because of the self-timed
design discipline, which requires the
requester to maintain the data being
sent until the acknowledgment is
raised. Thus, RIP simply does not
respond to Inm Out until the
INITNUM bus value has been re
ceived by the Memory.Module.

The second bus is bidirectional
and is used to receive and transmit
data to and from the Memory_Mod
ule. Since this is not a contention bus
(even though it is bidirectional),
there is no violation of the self-timed
design discipline.

The RIP control-unit must handle
interfaces with three other modules
and control two banks of eight
registers and three counters. As a
result, it required 12 states, 17 transi
tions, 20 inputs, and 21 outputs. In
the case of loops, which include en
try calls to other tasks, much of the
(rendezvous) control was achieved
without the addition of extra states.
We did this through the judicious
use of the conditional output genera
tion feature provided by Assassin.
The control-unit was expressed in
Asssassin’s input language and was
functionally simulated in the com
piler; thereafter, a PPL module im
plementing this control logic was
automatically generated.13 The con
trol units produced by Assassin were
physically implemented using a one-
hot style encoding.16

I_______________________________

Figure 3. The Read Init Param eters software em ironm ent.

January 1984

J

35

T h e PPL r i p p r o g r a m
a n d t h e r i p c h i p

The actual implementation of the
RIP chip required the addition of
one cell (with four different layout
configurations) to the PPL library. It
also required the implementation of
three new pads that could be used

for self-timed communication.
Because a large portion of the chip
was going to be taken up by self
timed memory (registers), a single
cell was designed that required only
one-third the area of a functionally
equivalent implementation in stan
dard PPL. This cell includes the cir

cuitry for a normal PPL latch as well
as bus drivers and sensors and the re
quest/acknowledge circuitry re
quired by the self-timed architecture.
It covers an area of three PPL col
umns by seven PPL rows. Four dif
ferent layouts of this cell (mirror im
ages) were produced so that the

CONTROL UNIT
(Assassin generated)

Figure 4. Block diaeram of the R IP chip.

36 IEEE SOFTWARE

registers could be packed as tightly as
possible. A com posite layout o f this
cell is shown in Figure 5.

The electrical environment inside a
single chip is relatively '‘friendly” as
far as noise and electrical levels are
concerned; but, as we know, the
outside world is not nearly so well-
behaved. Here, noise becomes a
problem, and electrical levels cannot
be easily assured. Additionally, in
order for the RIP chip to send data
to another device, it must know
when the data is stable in the outside
world before it issues a request to the
Memory Module to receive the
data. Noise and electrical level prob
lems are solved by using hysteresis-
inverting drivers on all signals com
ing onto the chip. The stability of
data being transmitted is estimated
by sampling the output pad with a
hysteresis inverter and assuming the
outside world is stable when the
hysteresis sample is stable.

Once these additional cells were
available, the layout of the RIP chip
advanced rapidly, taking about one
week to complete. The only process
ing elements that needed to be con
structed by hand were the counters
and the comparators, the PPL pro
grams for which are illustrated in
Figure 6. The chip’s multiplexers and
decoders were easily implemented
using PPL’s inherent PLA imple
mentation capabilities. The difficult
part of this assembly task was the
manual PPL interconnection of the
modules. In fact, the control module
was altered somewhat from the lay
out produced by Assassin to better
conform to the rest of the circuit.
The changes, however, were merely
cosmetic: the inputs and outputs
were placed at pons different from
those assigned by Assassin. A floor
plan of the entire RIP chip is shown
in Figure 7. Once the PPL layout of
the chip was completed, some simu
lation was performed using Asylim
(a PPL logic simulator) and Mos-
sim'‘ (a switch-level simulator). Ex
haustive simulations were not per
formed because of fabrication dead
lines.

CLR
| REQ

1 *1--------- ----------- —
I M I I I I# #l l» »l 1
1 1 121* •
1 3 | | 1 IH| H| H| H| 1 |H H H1 H 1 1 IHIHIH H
M M 0 u R 0 I 1 0 U R 0 | 1 0 u R 0
1 1 11 1 u 0 R | 1 1 U 0 R11 1 U 0 R
1 1 1 IS U 11 i s u 11 IS U 1
M i l " R 1 U| | R R 1 U| | R R 1 U
I 2 | |0 U S s S | 0 u S s S 1 0 u s S S
| V 11 0 R 0 R U 0 R | 1
IS 0 U 0 0 |0
|+ 1 0 1 U 0 1 0 1 | | I

ACK
(a)

BO Bl B2

AO A1 A2

I I I

t
BO

‘3 | I I I I
2 I 2 | 2 | 2 121

! » j I I * I I HI
U|
U|

) U|
I Ul

1 01
o H

Bl B2

EQUAL

Finure 6. A self-timed PPI counter (a) and a PPL comparator (b).

Figure 5. Composite la\out of the self-timed register cell.

January 1984 37

Figure 7. Floor plan of the RIP chip.

In closing this section, please take
note of the following statistics con
cerning the PPL layout of the RIP
chip:

(1) The chip took one week to lay
out.

(2) Total size of the chip was
119 x 149 mils (no special effort was
made to minimize the layout).

(3) Only 18 percent of the total
PPL cell placements were completely
unused—that is, not used for logic or
interconnect.

(4) The chip contains 1928 tran
sistors (an equivalent two-input
NAND-gate implementation would
require about 2000 gates).

(5) The most random portion of
the chip layout (the control unit) was
automatically generated in less than
five minutes using the Assassin com
piler.

A d a - l e v e l t e s t s t r a t e g y
a p p l i e d t o t h e
r i p M a n a g e r c h i p

To transform our package to an
equivalent silicon composite, we first
had to replace all rendezvous com
munication with port-based com
munication to/from the Read Init
Parameter task. (The semantics of
such ports are defined by Cox et
al.1 v) We then enclosed RIP
Manager with an interface package,
RIP Interface (Figure 8), which
owns the communication ports and
provides public procedures in place
of entry calls to the RIP task. Re
quest and reply ports were also pro
vided for each RIP Interface pro
cedure (corresponding to each entry
of the Read Init Parameters task).
To assure that no change took place
in the sourrounding Ada packages,
we added an Entry Call Forwarder
task. In short, the RIP Interface
package preserves the integrity of the
surrounding Ada software by pro
viding an interface to the hardware
version of the RIP Manager pack
age—one that is transparent to the
packages remaining in software.

Next, an entry call to Read Init
Parameters was represented as a call
to the appropriate RIP Interface

IEEE SOFTWARE

procedure, which sends inbound
parameters to a request port and re
ceives outbound parameters from a
response port. The calling task is sus
pended pending service from Read_
Init_Parameters because the “entry
procedure” does not return until the
outbound messages are actually re
ceived from the response port.

An entry call from Read lnit_
Parameters to the Memory task was
then performed by the Entry CalL
Forwarder task; this task waits for a
command (containing inbound
parameters) at the MerruReq port to
perform a rendezvous with memory.
When the rendezvous is terminated,
the Entry^CalL Forwarder task will
send the outbound parameters to the
MetTLResp port. (The Ada code for
this RIP_Interface package is shown
in the sidebar on pp. 43-47.)

Replacing the software RIP_Man-
ager package with the RIP chip
causes the RlP_Interface package to
function as an Ada-level “communi
cation interface” to this chip. The
RIP chip interfaces to parallel ports
of a peripheral subsystem of an Intel
432. The peripheral subsystem con
sists of an Intel 432 interface pro
cessor, an 8086-based attached pro
cessor, and parallel ports, all of
which are connected to a Multibus.
Software executing in this peripheral
subsystem provides port-based com
munication facilities to the RIP chip.

The testing subsystem for the RIP
chip is summarized as follows:

(1) To provide a hardware link
between the RIP chip and a periph
eral subsystem, we used one hard
ware parallel interface for each of the
communication paths between

Read_Init_Parameters and the soft
ware tasks. The parallel interfaces
consisted of three programmable pe
ripheral interface chips (Intel 8255s).

(2) The peripheral subsystem soft
ware supplied by Intel was aug
mented to (a) utilize the parallel in
terfaces and (b) provide the RIP chip
with message-based communication
facilities. This additional software
was written in PL/M using Intel’s
RMX-88 real-time multitasking ex
ecutive.

(3) As previously mentioned, the
software RIP_Manager was removed
from the RIP_Interface package.
The port-based communication pro
cedures provided by our peripheral
subsystem software (and associated
hardware) allowed the direct replace
ment of the software RIP Manager
package by the RIP chip.

Figure 8. The RIP Interface package.

40 IEEE SOFTWARE

This Ada-level test strategy makes
it possible to specify in Ada any
desired (and possibly redundant)
testing procedures whose execution
by the chip under test can shed light
on the functional correctness of the
chip’s operations. In our case, we
specified certain operations that,
when invoked, will indicate that the
RIP chip correctly loads the initiali
zation parameters—in other words,
that it behaves as a smart store.

If we were to redesign RIP as a
stand-alone smart store (something
we did not originally anticipate the
need for), the Ada specification for
the chip and its Ada test environ
ment would have been different. The
top-level test strategy, however,
would have remained the same.
Namely, the internal behavior of the
chip would still have been verified by
Ada-level probing actions from its
testbed environment.

Figure 9 is a schematic of our
“high-level testbed.” Its principal
components are

(1) T h e A d a p a c k a g e (c h ip) u n d e r
le s t . In this instance, it is connected
to the interface through three two
way communication channels—one
for each of three other Ada tasks
that constitute the chip’s Ada en
vironment.

(2) T h e tr a n s p a re n t in te r fa c e im
p le m e n te d u s in g o f f - t h e - s h e l f c o m
p o n e n ts (r e fe r r e d to as th e I / O p r o
c e sso r) . This interface converts each
two-way hardware channel into cor

responding software representations
for sending and receiving messages.
The same interface is also instru
mented, using software written in
PL/M, to include a pin-level viewing
window. Using this window, one can
monitor the chip by viewing its
behavior at the register transfer level.

(3) T h e 432 s y s te m h o s t , w h ic h e x
e c u te s th e p a c ka g e s th a t c o n s t i tu te
th e c h ip ’s A d a e n v ir o n m e n t . These
program units are modified to in
clude steps to permit the user to in
teractively control the course of the
test via terminal I/O. Responses to
input commands generated by the
chip under test are viewed on the ter
minal screen, which therefore serves
as a functional-level window.

With this type of testbed, the ex
perimenter is able, during the course
of the experiment, to view the chip
under test at two levels of abstrac
tion: the Ada level or the register
transfer level. Viewing at both levels
is also possible.

T e s t i n g t h e RIP c h i p
Functional and electrical testing.

The fabricated RIP chips were easily
tested with a switch and light panel.
This simple test setup was made pos
sible by the self-timed nature of the
part. RIP chip state variables were
brought to pads as well as to the off-
chip interfaces. In this way, we could
observe the behavior of the chip
without microprobing. We soon

discovered, however, that there was
a problem with the circuit when
more than one row was required for
the TOS table. The chip behaved as
expected when the table had a single
row, but caused failure when tested
for cases involving more than one
row.

To find the cause of this problem,
we had to use a Tektronix DAS-9000
digital analysis system and micro
probing. This digital analysis system
was used as a pattern generator,
causing the circuit to loop quickly
through its complete functional cycle
and allowing us to watch internal cir
cuit nodes on an oscilloscope. Micro
probing was facilitated because we
had included one-mil probe pads on
almost every internal node (any node
not brought to a pad) in the circuit.
These pads were implemented as a
PPL OCB (ohmic contact of both
column wires to a row wire) cell to
which a glass cut was added over a
one-mil by one-mil piece of metal.

Microprobing the circuit showed
us that the comparator for the TOS
row counter was not functioning cor
rectly. The problem, it turned out,
was that one set of comparator in
puts was incorrectly connected to the
TOS row register. The result was that
a correct comparison occurred only
when the register was equal to zero.
Correcting this error (which took
several days to locate) involved plac
ing three additional PPL cells on the
chip, a redesign step requiring less
than two minutes.

Our experience here confirms one
important advantage of using PPL
to design a circuit, but also shows
that the manual layout portion of the
work is still a source of potential er
ror. Contrast this to the fact that no
errors were found in the automatical
ly generated portions of the circuit.
As our CAD tool capability for PPL
design increases, we expect that er
rors, such as the one accidentally in
troduced into the data path, will be
completely eliminated.

In-system testing. For the in
system evaluation of the RIP chip,
the Inm Srv task was coded to

IEEE SOFTWARE

Figure 9. High-level testbed schem atic.

behave as the driver for the whole
Ada system. This task passes param
eters supplied by the user at the ter
minal to the memory task. This same
driver then communicates the proper
parameters to the Inm Out and RIP
task. The memory task is also
enhanced to print the parameters as
it receives them from RIP.

First-level testing of the Ada en
vironment involved the use of the
software version of RIP. We were
able to test the port-based com
munication paths between RIP and

the rest of the Ada environment,
confirming the fact that our
message-based design properly im
plemented the original Ada environ
ment, where rendezvous was used to
communicate to and from RIP.

Second-level testing involved veri
fying the message paths between the
Intel 432 and our I/O controller
(8086) subsystem. To do this, we
used simple Ada tasks on the 432 to
send and receive messages to and
from the 8086.

At this point, we could have per

formed one more level of testing by
writing a software version of RIP for
residence within the peripheral sub
system, but the arrival of the
fabricated chip enabled us to skip
this step and move on to testing the
chip itself in the Ada environment.
The chip was connected to the I/O
controller through three off-the-
shelf programmable peripheral inter
face chips. The Ada parameters con
tained in the messages transferred to
and from the RIP task were passed
through these three chips to and

T h e RIP c o d e

with lnm_Oui__Defs, In_Out_Srv_Def«:
w Inm_Out_Defs. In_Out__Srv__Defs;

package R!P_Manger is

— Function:
— Described in the body of this aniJe.

task Read_Init_Parameters is

entry Go(
init__num_formal: bit4;
response : out oul_response);

— Function:
— This is the principal eniry. The task operates in either of
— two modes. These modes are referred to below as:
— NORMAL or TEST, according to the value of
— init_num_formal.

— In NORMAL mode, i.e., when init_num_formal > 0, a
— call on GO causes the task to
— (a) accept init__num address chunks from INM_SRV
— and forward them to the associated memory module,
— forming the base address of the storage block contain
— ing the initialization parameters;
— (b) get values of initialization parameters from the mem
— ory module;
— (c) set out_rcsponse to either send_ok if successful or to
— bad_srv_command if unsucessful. (Can be unsuc-
— cessful if required TOS table size exceeds available
— local storage space.)

— In TEST mode, i.e., when init__num_formal “ 0, a call
— on GO causes the task to “dump” its local memory to the
— memory module.

— Control flow diagrams, showing the ensuing entry calls
— that are then followed in both the NORMAL and TEST
— modes, arc given below. Data flow patterns implied by
— these entry calls are also shown. The First two diagrams
— illustrate the NORMAL mode operation of GO, and the
— third diagram depicts behavior for the TEST mode of GO.

— NORMAL MODE: Load command (phase I)

— LM = Local memory

January 1984 43

from the RIP chip. This final level of
testing confirmed that the behavior
of the RIP chip was identical to the
software RIP, with a minor excep
tion explained below.

A logic bug in the chip design,
discussed earlier, was discovered by
the PPL circuit designers during
their testing of the first fabricated
RIP chip. This bug was then deliber
ately modeled in the software version
of RIP to ensure that both the soft
ware and first hardware versions of
RIP would exhibit the same func
tional behavior. The bug will, of

course, be eliminated in the next
fabrication of the RIP task.

This mode of testing a chip in a
high-level environment was a new ex
perience for us. Several problems
slowed down work on this end of the
project. One was that the Ada com
piler we were using did not fully sup
port the Ada language. This limita
tion forced us to simulate features of
the Ada language on our test system.
We should not have this handicap in
the future. Also, failure to enforce
maintenance of one master copy of
the code used by both the hardware

and software designers caused
another source of confusion, which,
again, can be eliminated in future
work. Additionally, the interaction
between the software and hardware
designers was limited and did not im
prove until near the end of the ex
periment.

Recognition of these problems
(and their elimination) will un
doubtedly allow for a quicker
development of test environments
and smoother interactions between
the hardware and software designers
in later projects.

— NORMAL MODE: Load command (phase 2) — TEST MODE: Unload command

— LM — Local memory - LM = Local memory

entr> Sr\ _req(
server_command_datum: srv_data__iicm_type;
response_to_server: out out_response);

— Function:
— This entry receives commands from the INM_SRV mod
— ule. These “ requests” furnish chunks of the address that
— is forwarded (in identical chunks) via entry calls to the
— memory module.

end Read_lnit_Parameters;

end RIP_Manager;

44 IEEE SOFTWARE

our in-system evaluation of the RIP
chip, only the functional behavior of
the integrated circuit was tested. A
logical next step is to augment the
testbed to determine the circuit’s
performance, and ways to obtain
timing information about the circuit
in our high-level testing environment
are now being considered.

Our current testing procedure is
mainly interactive. In the future, we
would like to streamline the test
operation by executing generated test
scenarios. The test data received by

Schemes for future experiments. In exercising the chip will automatically
be compared with the test data
received by exercising its software
equivalent. This technique should be
especially easy to implement because
all the host resident software is
specified at the Ada level.

O ur work on system-building
methodology is breaking new

ground in three areas: First, we have
developed a systematic approach to
mapping high-order language specifi
cations of system components (Ada
packages) to VLSI equivalents.

These VLSI equivalents adhere to an
asynchronous (speed-independent)
discipline, simplifying the job of in
terfacing these and similar com
ponents with a larger subsystem.

Second, this exercise has demon
strated the utility of PPL in the rapid
design of integrated circuits. The use
of PPL results in very short design
times, the elimination of many
design and layout errors, and the
simplification of design and layout
corrections, when required. We have
demonstrated the use of the Assassin
silicon compiler (for state-machine

with Inm_Out_Dcfs, In_Out__Srv_Dcfs,
Inm_In_Out_Defs, Memory__Module;

r Inm_Oul__Defs, In_Out__Srv_Defs.
Inm_In__Out_Defs, Memory_Module;

package body RIP_Manger is

task body Read_lnil__Parameter is

— The following initialization variables were originally located in
— the package Inm_Out_Module and are now located in the
— task body of Read__Init_Parameters.
— Variables to hold initialization parameter values:
Inm_max__packet: two_octet__record;

— Largest size packet for the
— local net. Represented as a
— pair of octets and also used
— as a 16-bit integer
— after applying
— unchecked_conversion.

— TOS array:
tos_table: octet_buffer_type(0 .. max__tos_table__size-I);

— The size of this table
— depends on the storage
— space available in the
— hardware implementation
— of RIP

— init_num value used for echoing back the initialization
parameters read_init__information: constant integer :=0;

— Local variable declaration:
octet__register:
dummy_memory__request:
index:

octet_type;
memory_req uest_
integer;

-type;

Inm_address_length;

Inm_time_out:

ack_type:

octet_type;
— Used in Read_in__header.

two_octet_record;
— Waiting time at LN.
— Represented as a pair of
— octets and also used as a
— 16-bit integer after applv-
— ing unchecked_conversion.

octet__type;
— Early/late.

local__net_type_of__service_table__row_size: octet__type;
number_of_local__net_types_of_service ; octet__type;

begin
loop

acccpt Cio(
init_num_formal : bit4;
response : out_response)

do
response : = sent_ok; — Also means ini!_ok.
if init_num_formal »> read__init__information

then dummy_memory_request : = send_datum_octet;
— lest mode
— (echo contents of RIP
— into Memory)

else dummy_memory__request : *= receive_datum_octet;
— normal mode
— (load contents of
— Memory into RIP)

end it

— accept from the server all of the addr_chunks needed to
— form the base address in memory that holds the
— initialization parameters and send these chunks to the
— memory module.

index : *= 0;
if not (index = init_num__formal) then — normal mode
loop

index :■* index + I;

January 1984 45

design), which also provides a good
argument for the use of the one-hot
state-machine implementation tech
niques advocated by Hollaar.16

Third, we have developed and
demonstrated a message-based inter
process communication strategy that
operates at the level of the high-
order specificaton language. This
can be used for testing produced cir
cuits and, hence, for testing sub
systems to which such circuits are ap
pended.

We have yet to fully automate our
transformation methodology. Ulti
mately, we would like to input an

Ada package to a transformation
system as a means of producing a cir
cuit composite or, at the least, pro
ducing input to the transformation
system discussed in this article. (A
high-level transformation system2"
which maps a subset of Ada to a
form that can be input to the
Assassin system is, in fact, under
development; however, as yet it is
not usable.) We also believe that ex
tensive research and development
must be done on the lowest level cir
cuit layout and design methodologies
in order to develop an efficient auto
mated transformation system.

The semantically transparent in
terface that we have described for
use wth our Intel 432 object-based
testbed must be streamlined. It is
currently, and admittedly, slow and
baroque. One approach worthy of
future research is based on the
“ frame” idea, recently advanced by
Lynn Conway. Although Conway’s
approach may be considered ambi
tious in this context, the develop
ment of on-chip interface circuits
that are easily tailored for particular
Ada packages converted to silicon
may be possible. Augmented by this
interface circuit, the chip could then

: srv_data__item_type;
: out_response)

accept Srv_rcq(
server_command_datum
response_to_server

do
Memory.Out_request! — Put chunk out to the Memory

— modi Ic.
request_type_formal => load_address,
chunk_of_address_for••..»! = > server_

command_
datum,

octet__formal «»> dont_care_
octet);

end Srv_req:
exit when index ■= init__num_formal;

end loop;
end if;

— Get the six individual initialization parameters (contained in
— the next eight octets received) from the memory module,
— or, if init_num_formal is read_init__information, send
— them back to the memorv.

index :*> — 1;
loop

index index -t- I;
If init__num__formal - read_init_information then

— test mode case index is
when 0 « > octet_register : = Inm_max_packet.lo;
when I => octet_register ; » Inm_max_packet.hi;
when 2 => octet_register : = Inm__address_length;
when 3 * > octet_register ; «= Inm_time_out.lo;
when 4 - > octet_register :*= Inm__time_out.hi;
when 5 = > octet_register ;« ack_type;
when 6 => octet_register

local_net_type_of_service_table_row_size;
when 7 = > octet_register : =

n umber_of_local__net__t ypes_o f_service;
when others = >

null;
end case;

end If;

Memory .Out_request)
request_type__formal * > dummy_memory_

request, — set to test
— (echo) mode or normal (load) mode

chunk_of_address_formal “ > donl__care_X__datum.
octet_formal « > octet__register);

If not (init_num__formal = read__init__information)
then -- normal mode

case index is
whenO ■=> lnm_max_packet.k> : ■= octet_rgister;
when 1 = > Inm_max packet .hi :«= octet_register;
when 2 = > Inm_address_length :«= octet__register;
when 3 ■>> Inm_time_out.lo :* octet_register;
when 4 => Inm_time__oui.hi := octet_register;
when 5 = > ack_type := octet_register;
when 6 - > local_net_type_of_service_table_

row_size
:«= octet_register;

when 7 « > number_of_local__net_types_of_service
:*= octei_register;

when others « >
null;

end case;
end it
exit when index » 7;

end loop;

— Read in type of service translation table (or write it out),

declare
row_number: integer range — I ..

number_of__local__net_types_of_service
:= - I ;

col__number: integer range — 1 . .
local_net_iype_of_service_table_row_size;

index: integer range — 1 . .
number_of_local_net__types_of_service •
local__net_type_o f_service_t able_row_
size
:«= - I ;

46 IEEE SOFTWARE

be connected directly to the host’s
system bus.

We have also yet to demonstrate
that our PPL methodology can be
mixed on the same substrate with
other, more space-efficient tiling
components for RAMs, ROMs, and
other large, but important, building
block elements. Such a “ mixture”
would permit us to extend the ap
plication areas for our silicon com
piler to functionally more elaborate
program units.

Finally, consider the following as
our vision of the essence of the
system modeling “ art” as we cur

rently understand it; in short, think
of it as a tentative set of modeling
principles to be adhered 10 when
using Ada to model systems for later
translation into silicon:

(1) We must somehow choose a
one-to-one correspondence between
the Ada compilation units that we
supply to an Ada compiler and those
that we want to represent as distinct
physical (silicon) units.

(2) The particular computation
distribution among the physical units
(and also between the components to
be reduced to silicon and the remain
ing compilation units in the specify

ing program) must be deducible by
an A d a s il ic o n c o m p ile r .

(3) When we wish to prohibit the
sharing of communication channels
among physical units to achieve max
imum concurrency and minimize ar
bitration circuitry, we must avoid
writing Ada specifications from
which such sharing can be inferred.

(4) Memory should be distributed
among the Ada units in the same way
that it will be divided among their
physical counterparts. This means,
for example, that pointers into a cen
tral memory must not be passed
within communication packets.
Thus, the actual values would be
passed, not the pointers to them.

(5) Lastly, we must confine recur
sion, if it is to occur at all, to within
(and only within) single Ada compi
lation units. In this way. recursion
within a constructed system compo
nent will imply dynamic storage
management localized to the storage
within that constructed (silicon cir
cuit) component.

The list of principles above is not
likely to be complete, and some of its
elements may not even be necessary.
Further study along these lines is cur
rently underway. ■

A c k n o w l e d g m e n t
We wish to acknowledge the special

help and advicc given us by several
others: in particular Lee Hollaar. Doug
Fisher. P.A. Subrahmanyam. and San-
jay Rajophadye.

This research was supported in part by
the Defense Advanced Research Projects
Agency (DoD). ARPA order no. 4305.
under contract no. MDA 903-81-C-0411,
issued by Defense Supply Service.
Washington. DC 20310.

R e f e r e n c e s
1. R Pilotv et al., “ C'onlan Report.”

Lecture S o les in C om puter Science.
Goos and Harmannis, eds.. Vol.
151. Springer-Verlag. Berlin. 1983.

2. G. \ \ Preston, "Report o f IDA
Summet Studs on Hardware De
scription 1 anguage." tech. report
IDA Paper P - l595. Institute for
Defense Analysis, Science and Tech-
nologx Division. Oct. 1981.

3. E. I Organick. and G. 1 indsirom.
"M apping High-Order Language
l !nits Into VI SI Structures." Proc.

begin
loop — Outer loop reads all rowsof TOS table.

coL—number :» - I:
rim-_number :■ row_number I;
loop — Inner loop re». in one row of TOS table.

col_number : » coL_mimK ■ I;
index :« index 1;
Memory.Out_request(

request__type_formal » > dummy_mem
ory_request. set to test (echo) mode

8 or normal (load) mode
chunk_of_address_formal ■ > dont__care_

X_datum.
octet_formal • > tot_tabk< index));

H (index = max_tos_table_size) and
col_number /■ local_net_type__of_service_
table_row_sin or
row_number / *■ number_of_k>cal__net_types_
of_service) then

response : « bad_srv_command:
return; — Exit the current accept statement,

end if;
« l t when col_number «

tecal_net_type _of__servlce_table—row_size;
end loop; — End Inner loop
— the test of row_number «■ 0 has been added to simu-
— late an error found In the first fabricated RIP chip
exit when (row_number «* 0) and

(row_number « number_of_local_net__types_
of_service):

end loop; — End outer loop,
end: — End declare block,

end Go;
end loop; — End of outer-most (infinite) loop

end Read_lnii_Parameters;
end RIP_Manager;

January 1984 47

Compcon Spring 82, Feb. 1982, pp.
15-18.

4. G. Booch, Software Engineering
with Ada, Benjamin/Cummings,
Meno Park, Calif.. 1983.

5. E. I. Organick. Programmer’s View
o f the Intel 432 System, McGraw-
Hill. New York, N.Y.. 1983.

6. R. Bisiani et al., “ MISE: Machine
for In-System Evaluation of Custom
VLSI Chips,” tech. report CMU-
CS-82-132, Dept, o f Computer Sci
ence, Carnegie-Mellon University,
Aug. 1982.

7. “ Internet Protocol: DARPA In
ternet Program. Protocol Specifica
tion.” tech. report RFC 791, Infor
mation Sciences Institute, University
o f Southern California, Sept. 1981.

8. T. M. Carter et al.. “ Path-
Programmable Logic and the Use of
CADD S2/V LSI.” Proc. Fourth
Ann. Computervision User C onf,
Computervision Corp., Bedford,
Mass.. Sept. 1982, pp. 523-528.

9. K. F. Smith. T. M. Carter, and
C. E. Hunt. “ Structured Logic
Design of Integrated Circuits Using
the Stored Logic Array.” IEEE
Trans. Electron Devices, Vol. ED-
29. No.4, Apr. 1982. pp. 765-776.

10. B. E. Nelson, K. F. Smith, and T.
M. Carter, “ Cost Effective VLSI
Design System,” IEEE Int 7 Symp.
Circuits and Systems, Mav, 1983,
pp. 505-508.

11. K. F. Smith, T. M. Carter, and C.
E. Hunt, "Structured Logic Design
of Integrated Circuits Using the
Stored Logic Array,” IEEE Trans.
Electron Devices, Vol. ED-29, No.
4. Apr. 1982, pp. 765-776.

12. K. F. Smith et al., “ Computer-
Aided Design of Integrated Circuits
Using Paih-ProgrammabIc Logic,”
IEEE Electro 83 Professional Pro
gram Session Record. New York,
N.Y.. Apr. 1983, paper no. 22/2.

13. T. M. Carter, “ ASSASSIN: A CAD
System for Self-Timed Control-Unii
Design," tech. report UTECH-82-
020, Dept, of Computer Science,
University o f Utah. Sail Lake Citv.
Ut.. Oct. 1982.

14. T .M . Carter. "ASSASSIN: A CAD
System for Self-Timed C'ontrol-Unil
Design,” IEEE Trans. Computer-
Aided Design o f Integrated Circuits
and Systems, to appear.

15. G. lindstrom et al., “ Ada Speci
fications for the DoD Internet Pro
tocol: The INM OUT Submodule,

Report No. 1,” tech. report. Dept,
o f Computer Science, University of
Utah, Nov. 1982.

16. L. A. Hollaar, “ Direct Implementa
tion o f A synchronous C on tro l
Units,” IEEE Trans. Computers,
Vol. C-31, No. 12. Dec. 1982. pp.
183-1141.

17. Brent E. Nelson, “ ASYLIM: A
Simulation and Placement Checking
System for P a th -P rogram m able
Logic Integrated Circuits,” master’s
thesis. University o f U tah, Oct.
1982.

18. R. E. Bryant. “ MOSSIM: A Logic-
Level Simulator for MOS LSI,"
Users Manual Version /. MIT
Laboratory for Computer Science,
MIT. Cambridge, Mass., Sept. 17,
1979.

19. G. W. Cox et al.. “ Interprocess
C om m unication and P rocessor
Dispatching on the Intel 432,”
ACM Trans. Computer Svstems.
Vol. 1. No. I. Feb. 1983, pp. 45-66.

20. S. V. Raiopadhve and P. A. Su
brahm anyam , "T R A C IS : Trans
formations on Ada for Circuit Syn
thesis," tech. report UTEC-83-003,
University o f Utah. Dept, of Com
puter Science. Aug. 1983.

R u s h Y o u r O r d e r T o d a y
“Ada to Silicon," the background art (from p. 31)
created by Southern California artist Frank
Dalton, is a unique illustration of a w om an with
an equally unique place in the history of com
puter sc ience. Printed in full color on heavy,
glossy stock and su itab le for framing, th is 18 x
24-inch poster is only $5.95 for C om puter Society
m em bers; $7.95 for nonm em bers. P rices include
postage and handling. California residen ts add
6% sa les tax.
To order 'Ada to Silicon" (catalog num ber P2S),
p lease com plete and return the coupon. Prepaid
orders only, please.

• ADA TO SILICON" POSTER
Quantity Unit Price $5 95 (membars)

17.95 (nonmembers) Amount

Chech Enclosed Subtotal
California residents

add 6H sales tax
Total

Name (please prmn

City State»Zip

Telephone No

Country
Send tc IEEE Computer Society

1 0 6 6 2 Lot Vaquaros Circle. Los Alamitos C A 9 0 7 2 0

48 IEEE SOFTWARE

Gary Lindstrom: Current position—
associate professor o f computer science.
University o f Utah; technical interests—
programming languages and systems;
prior professional experience—none;
awards—none; education—BS (math),
MS (math), PhD (computer science), all
from Carnegie Mellon University.

Elliott I. Organick, a professor o f com
puter science at the University o f Utah
since 1971, has worked in programming
languages, operating systems, and com
puter architecture. His current work
centers on the use of object-based pro
gramming languages for specifying sub
system components. He received BS, MS
and PhD degrees in chemical engineering
from the University o f Michigan in 1944,
1947, and 1950, respectively, and is a
member of the ACM, the IEEE Com
puter Society. SIAM. MAA, AlChE,
and the American Chemical Society.

Tony M. Carter is currently employed as
a member of the technical research staff
of the VLSI Research Group at the Uni
versity o f Utah. His current interests in
clude CAD for VLSI, self-timed systems,
the application of database systems to
engineering and computer arithmetic. He
received BS, MS, and PhD degrees in
computer science from the University o f
Utah in 1980, 1982, and 1983, respective
ly. Carter is a member of the IEEE and
the ACM.

Alan L. Davis is currently the manager of
the Al Architecture Group at the Fair
child Research Center in Palo Alto,
Calif. He received his first degree from
MIT in electrical engineering in 1969 and
his third degree from the University of
Utah in 1972. In addition, Davis holds an
instrument airplane rating from the
FAA, and FCN and FCA certificates
from PSIA.

Alan Hayes is a research scientist with
Evans & Sutherland Computer Corpora
tion. His areas of interest include self
timed circuits, distributed systems, and
data-driven computation. Hayes received
BS and MS degrees in electrical engineer
ing from MIT and a PhD in computer
science from the University o f Utah. He
is a member of the IEEE and an FIS
technical delegate.

Brent Nelson is currently a member of
the VLSI Group at the University of
Utah. His current research interests in
clude CAD tools for integrated circuit
layout and verification and the develop
ment o f structured IC design methodolo
gies. Nelson received BS and MS degrees
in computer science from the University
of Utah in 1981 and 1983. respectively,
and is currently working toward a PhD.

Mike Maloney is a member of the Ada-
to-Silicon Research Group at the Univer
sity of Utah. His current interests include
object-based architectures, programming
languages, and hardware-software sys
tem design. He completed a BS degree in
physics at Washington State University in
1980 and an MS degree in computer
science at the University o f Utah in 1983.

Dan Klass is currently working as an Ada
system programmer at the Ada-to-
Silicon Project at the University of Utah.
He received a BS in 1978 and an ME in
1980 from the Computer Science Depart
ment at the University of Utah.

Kent F. Smith is currently an associate
professor of computer science and elec
trical engineering at the University of
Utah and a consultant to General Instru
ment Corporation. He has been active in
integrated circuit design and testing for
the past 17 years, holds 11 patents in
these areas, and has published numerous
technical papers. Smith received his BS
and MS degrees in electrical engineering
from Utah State University in 1957 and
1958, respectively, and his PhD degree in
electrical engineering from the University
o f Utah in T982.

Questions concerning this article can
be addressed to Elliot I. Organick,
University o f Utah. Computer Science
Dept.. Salt Lake City. UT 84112.

January 1984 49

