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ABSTRACT

Fingernail imaging is a method of sensing finger force using the color patterns on the 

nail and surrounding skin. These patterns form as the underlying tissue is compressed and 

blood pools in the surrounding vessels. Photos of the finger and surrounding skin may be 

correlated to the magnitude and direction of force on the fingerpad.

An automated calibration routine is developed to improve the data-collection process. 

This includes a novel hybrid force/position controller tha t manages the interaction between 

the fingerpad and a flat surface, implemented on a Magnetic Levitation Haptic Device. The 

kinematic and dynamics parameters of the system are characterized in order to appropri

ately design a nonlinear compensator. The controller settles within 0.13 s with less than 

30% overshoot.

A new registration technique, based on Active Appearance Models, is presented. Since 

this method accounts for the variation inherent in the finger, it reduces registration and 

force prediction errors while removing the need to tune registration parameters or reject 

unregistered images. Modifications to the standard model are also investigated. The number 

of landmark points is reduced to 25 points with no loss of accuracy, while the use of the 

green channel is found to have no significant effect on either registration or force prediction 

accuracy.

Several force prediction models are characterized, and the EigenNail Magnitude Model, 

a Principal Component Regression model on the gray-level intensity, is shown to fit the 

data most accurately. The mean force prediction error using this prediction and modeling 

method is 0.55 N. White LEDs and green LEDs are shown to have no statistically significant 

effect on registration or force prediction. Finally, two different calibration grid designs are 

compared and found to have no significant effect.

Together, these improvements prepare the way for fingernail imaging to be used in less 

controlled situations. W ith a wider range of calibration data and a more robust registration 

method, a larger range of force data may be predicted. Potential applications for this 

technology include human-computer interaction and measuring finger interaction forces 

during grasping experiments.
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CHAPTER 1

INTRODUCTION

Fingernail imaging is a method of sensing fingerpad force using the color patterns created 

by the flow of blood through the tissue beneath the nail and surrounding skin [1]. These 

color patterns are formed as blood vessels within the finger are compressed by the interaction 

between the distal phalanx bone, the fingernail and the soft tissue surrounding the blood 

vessels. As the tissue compresses, blood collects and skin reddens in certain regions while 

blood evacuates and skin whitens in other regions. The resulting patterns correlate with 

the magnitude and direction of force on the fingerpad, indicating tha t they may be used as 

a general method of transducing finger forces [2].

Mascaro and Asada developed the original fingernail sensors, which consisted of an 

array of photodetectors and infrared light-emitting diodes (LEDs) mounted on a printed 

circuit board (PCB), with optically transparent epoxy to attach the board to the finger 

and optically opaque epoxy to attach the back side of the board to a hard plastic nail [1]. 

These fingernail sensors were custom-manufactured for each test subject, with 6 infrared 

LEDs and 8 photodetectors arranged to cover the region of the nail displaying the most 

visible color changes. The sensors were tested on 16 subjects using a manual calibration 

routine, with a spiraling trajectory rather than specific targets in the force space. The 

trajectory guided the subjects to apply normal forces up to 4 N and shear forces up to 2 N. 

The calibration process resulted in a root-mean-squared (RMS) error on validation data of

1.4 N normal force and 0.6 N shear force.

This technique was expanded to use a digital camera with an external light source for 

detecting the color patterns [3], essentially increasing the number of photodetectors to equal 

the number of pixels in the image while eliminating the need for custom manufacturing of 

sensors. In addition, the surrounding skin is included in the imaging to benefit from the 

color changes that occur there. The tradeoffs, however, are the need to control the lighting 

and the requirement tha t the finger remain in view of the camera at all times. Expanding 

the regions of the nail and skin that are imaged allows a larger range of forces to be 

transduced. The original fingernail imaging experiments involved normal forces up to 10N
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and shear forces up to 3N. Modeling and prediction were performed on one direction of 

force at a time. In other words, only images involving z-direction force were used to form 

and validate the z-direction model, and only images involving y-direction force (and the 

normal force required to maintain frictional contact) were used to form and validate the 

y-direction model. This method resulted in validation RMS errors of 0.3 N normal force 

and 0.6 N shear force.

Some important results have come from attem pts at optimizing and refining both tech

niques. When using fingernail imaging, it was determined tha t the green channel of an 

RGB image correlated most closely with the forces [4]. In addition, the wavelength of 

light emitted by the LEDs in fingernail sensors was studied to determine an optimal LED 

color. Green LEDs, having a wavelength of 525 nm, were found to provide the best force 

response [5]. The requirement for fingernail sensors to be custom-manufactured has been 

eliminated by the introduction of a flexible PCB [6]. Using data from fingernail imaging, 

it was found tha t the photodetectors and LEDs in fingernail sensors are optimally placed 

when they are as near as possible [5].

This work addresses improvements made to the fingernail imaging process, including the 

creation of an automated system for recording calibration data and the development of a 

new registration process as well as detailing the optimization of the modeling and lighting 

used during fingernail imaging calibration.

1.1 Interacting with the Human Fingerpad
Two primary concerns related to interacting with the human fingerpad are relevant to 

this work. First, sensing the contact forces (normal and shear) between the fingerpad and 

an object has many applications and has been performed in a large number of ways. All 

other available methods restrict the finger in some way, however. Camera-based fingernail 

imaging removes these restrictions. Second, three-dimensional force control of a robot 

interacting with the fingerpad, using a flat surface as the end effector, has not been studied. 

As such control is required to develop an automatic calibration system, it is important to 

the improvement of fingernail imaging systems.

First, some definitions regarding the hand are given (Fig. 1.1). The joints of each finger 

(index, middle, ring and little) are named, beginning with the knuckle, the metacarpopha

langeal (MCP) joint, the proximal interphalangeal (PIP) joint, and the distal interpha- 

langeal (DIP) joint. The bones of each of the fingers, beginning at the MCP, are named the 

proximal phalanx, the middle phalanx and the distal phalanx. The joints of the thumb are, 

beginning with the knuckle, the metacarpophalangeal (MCP) joint and the interphalangeal
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Fig. 1.1. Parts of the human hand. The joints and bones of the index finger and thumb 
are labeled. Although this work is concerned only with the thumb and index finger of the 
right hand, the joints and bones of the other three fingers are named identically to those of 
the index finger.

(IP) joint. The bones of the thumb, beginning at the MCP, are the proximal phalanx and 

the distal phalanx. This work is concerned only with the thumb and index finger of the 

right hand.

Some conventions are established concerning force directions on the human fingerpad. 

A right-handed coordinate system is used, where the z-axis points vertically away from 

the nail and the y-axis points distally. When the finger pushes in the direction of the 

positive axis, the force is positive in tha t direction, so when the finger pushes to the right 

(as viewed from the perspective of Fig. 1.2), a positive x-direction force is generated. When 

the finger presses normally against a flat surface, a negative z-direction force is generated. 

Alternatively, when the finger is stationary and a platform pushes up (as viewed from the 

perspective of Fig. 1.2), a negative y-direction force is generated since it is the same as the

Fig. 1.2. Force conventions on the finger. A right-handed coordinate system is used, 
where the z-axis points vertically away from the nail and the y-axis points distally. When 
the finger pushes in the direction of the positive axis, the force is positive in tha t direction.
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finger pushing down. Using planar contact without adhesive, it is not possible for the finger 

to exert a positive z-direction force.

1 .1 .1  F o rc e  S e n s in g

Fingernail imaging differs from other methods of fingerpad force sensing in tha t it 

permits the contact force to be measured without restricting the haptic senses and without 

requiring tha t force sensors be precisely placed in prespecified contact locations. Using 

fingernail imaging to measure precision grasping force would simplify many grasping studies 

since it would remove these restrictive requirements.

Many researchers have studied human precision grasp force [7-11], as it has several 

potential applications. A better understanding of the interaction among the fingers during 

grasping should help with the design of improved prosthetic devices [12]. Understanding the 

force on the fingers and the frictional properties of skin can help engineers design products 

tha t can be grasped more easily [13]. When loss of limb function and sensation occurs, 

neuromuscular electrical stimulation can be used in rehabilitation [14]. Such stimulation 

could be improved by a better understanding of the relationship between the central nervous 

system and the finger forces. Studies have been performed on the effects on grasping of 

different neurological conditions, such as Parkinson’s Disease [15,16] and stroke [17]. To 

examine the role of tactile sensation in grasp force control, anesthesia has been applied to 

the hand in several different experiments [11,18,19].

A typical grasping study uses a manipulandum with sensors beneath each finger [20], as 

illustrated in Fig. 1.3(a). The test subject lifts the object while attem pting to minimize the 

tilt angle. A weight is placed in one of multiple locations (marked A, B, and C) to change 

the location of the center of mass. The force sensor locations are fixed, and the fingers are 

restricted to those specific contact points so that the force sensors may measure the finger 

contact forces. These forces are used to describe the interaction between the fingers as the 

object is grasped.

However, such a constrained grasp may introduce confounding factors. One experiment 

compared the effect of Parkinson’s Disease (PD) on the ability of subjects to coordinate 

multifingered grasp forces [15]. It was determined tha t all subjects (both with and without 

PD) were able to modulate individual fingertip forces to minimize object tilt. Although 

medication improved their abilities, subjects with PD who were off medication were demon

strably slower to adjust their finger forces to compensate for the changed center-of-mass 

location. Since these tests were performed using specified contact locations, however, it 

might be suggested tha t the effects of prespecified contact locations are conflated with the



Fig. 1.3. Schematic of typical grasping experiments. (a) Constrained grasping experimen
tal apparatus. Finger contact positions are defined by the locations of the force sensors 
along the sides of the object to be grasped. (b) Unconstrained grasping apparatus. Fingers 
may contact anywhere along the pads on both sides. W ith both objects, the center of mass 
of the object may be changed by adding a weight in positions A, B, or C.

5

effects of the task itself. In other words, one might question whether the difficulty lay 

in forcing the fingers to hold what might be an unnatural posture or in modulating the 

fingertip forces to adjust for object tilt.

Implementing fingernail imaging in a grasping experiment to measure the individual 

finger forces would allow each test subject to hold the manipulandum in an individual, 

natural grip. No prespecified contact locations would be required because no force sensors 

would be needed. Instead, the finger forces would be measured with a camera on either side 

of the object, recording the finger coloration patterns, which could then be transformed into 

finger forces. Additionally, any reasonable object could be used in a grasping experiment. 

Custom objects would not need to be manufactured for testing. Concerns about different 

hand sizes would no longer restrict test subjects from participation. The fingers could be 

placed anywhere on the object and oriented in any direction relative to the object as long 

as a camera could see the nail and surrounding skin.

Interest in finding a method of performing such an unconstrained grasping test already 

exists in the field. One study demonstrating this concern investigated the effects of con

strained and unconstrained grasping on two-fingered grasps [8]. In addition to a constrained 

grasping apparatus, a new, unconstrained grasping apparatus was designed, as illustrated 

in Fig. 1.3(b). Test subjects were required to use the predefined contact points on the 

constrained apparatus but were free to choose contact locations on the unconstrained object. 

The results of these experiments demonstrate tha t lower overall forces are used when contact
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locations are not constrained. This is compensated by a high variability in contact position. 

(It should be noted that the prior study, involving subjects with PD, found tha t the forces 

were not as well coordinated in multifingered grasping as in two-fingered grasping [15].) 

Conversely, in constrained grasping, the forces must be higher while the contact locations 

are consistent. One conclusion drawn was tha t the finger force and posture have a complex 

interrelationship in anticipatory grasping, which is controlled through the central nervous 

system. As PD affects the central nervous system, it might be suggested tha t a subject 

with PD could struggle more with anticipatory control of finger force during constrained 

grasping than during unconstrained grasping.

Although the last study demonstrates two-fingered unconstrained grasping, the re

searchers note tha t it would be difficult to extend the concept to three or more fingers. 

If fingernail imaging is used to detect the force on the fingers, however, all fingers could be 

used in either constrained or unconstrained grasping as long as all are visible to a camera. 

This would allow a researcher to restrict the potential explanations for the outcome of 

experiments.

1 .1 .2  F o rc e  C o n tro l

While many techniques exist for controlling force, research into the application of con

trolled force to the human fingerpad has been limited. Single-axis actuators have been used 

to study finger dynamics, such as the stiffness to normal force as a function of contact 

angle [21] and to determine the pressure distribution along the finger with a constant 

contact angle [22]. To study friction (or shear) forces, a single-axis actuator was used 

to apply controlled shear forces in a single direction while the contact angle varied [23]. 

These single-axis actuators all implemented position rather than force control and so are 

only tangentially relevant to this work.

A high-performance 3-axis force controller was developed to allow a haptic device to 

apply 3-axis forces to the fingertip [24]. However, this method placed the fingertip in a 

thimble, which applies the forces to the finger as a whole rather than to the fingerpad. 

Thus, the horizontal forces were more like normal force applied along the sides of the finger 

rather than frictional shear forces applied to the fingerpad.

One other true three-dimensional force controller applying forces between the human 

fingerpad and a flat surface has been implemented [25]. This controller uses two connected 

Novint Falcons with an ATI Nano17 6-axis force sensor to apply three-dimensional forces 

and z-direction torque to the fingerpad. The controller has a settling time of 0.25 s and 

is able to track desired trajectories with RMS errors of 0.05 N or less in all three force
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directions and 0.39 N in z-direction torque. It should be noted that although the paper title 

claims 5-DOF (degrees-of-freedom) force control, the paper repeatedly acknowledges that 

the 5th degree of freedom, y-direction torque, does not produce consistent results due to 

the difficulty of reliably locating the finger with respect to the force sensor. The inability 

of the system to properly track and control torque in the y-direction makes sense as the 

sensor is not really detecting a pure torque exerted by the finger on the flat plate, but the 

effect of the x- and z-directions forces, combined with the appropriate moment arms. In 

addition, the controller settling time is approximately 2.5 times as long as tha t of the one 

designed here. This would greatly increase calibration time while reducing accuracy. One 

final potential problem is tha t no maximum force range is mentioned in the paper. The 

plots show up to 4 N of normal force being applied, but no mention is made of the absolute 

maximum of which the mechanism is capable. If a much larger range is not possible, the 

mechanism would not be suitable for this application.

Studies of finger dynamics [21-23] demonstrate tha t the dynamic behavior of the fin- 

gerpad is complex and nonlinear. Applying force control to the fingerpad will result in 

coupling between the normal and shear forces. The dynamic behavior of the fingerpad and 

the coupling of forces in the three axes due to finger geometry and frictional constraints 

make this a unique and challenging problem.

1.2 Image Registration
Finger image registration has been studied extensively for use in predicting finger forces. 

Prior methods used for fingernail image registration include 2D-to-3D Registration, the 

Harris Method, the Canny Method, the Scaled Rigid-Body Transform, and the Hand-to- 

Finger Transform. Each method has its benefits as well as its drawbacks.

The 2D-to-3D registration method [3] uses fiducial marks drawn on the finger to register 

each image. First, a stereo image of the finger is used to generate a 3-D model of the finger. 

Then, 2-D images are registered to this model by relating the location of the fiducial marks 

in the 2-D images to their coordinates in the 3-D model. While this method has been seen 

to be accurate, the complexity of the model requires longer processing time. In addition, 

relevant color information may be obscured by the fiducial marks. All other techniques 

assume the finger to be a flat plane and attem pt to register the finger to some template 

image.

The Harris method [26,27] correlates the Harris feature points [28] from an image to 

be registered with feature points in the template image. This correlation is based on 

pixel intensities in the neighborhood surrounding each pixel. The RANSAC (RANdom
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SAmple Consensus) method [29] is then applied to find the transformation tha t best fits 

the correlations. This method fails to register some images due to the lack of well-defined 

feature points on the finger. It also frequently identifies correlations between points that do 

not correspond, whether due to the changing color patterns on the finger or the similarity 

of large regions of the finger and nail. These miscorrelations result in skewed images that 

are improperly registered. Additionally, since the RANSAC algorithm is probabilistic, the 

method is not repeatable. It has correctly registered an image on one attem pt and failed to 

do so on another, simply because of noise in the image and the random number generator.

The Canny method [26] uses Canny edge-finding [30] to locate the edge points in both 

the template image and a new sample image. As with the Harris Method, these edge points 

are then correlated between the sample image and the template image, and RANSAC is used 

to find the correlated pairs tha t produce a minimum-error transformation. This method 

has been more successful at registering images than the Harris method, but has proven 

to be slower. It also requires the optimal values of the parameters (i.e., the high and low 

thresholds and the standard deviation of the Gaussian) to be experimentally determined 

for each data set, based on the lighting conditions as well as the shape of the finger itself. 

In addition, when the proximal end of the finger is obscured, a false edge is found that may 

provide incorrect registration information to the algorithm.

The Scaled rigid-body transform [26, 31] first locates the finger in the image using 

thresholding, given a predefined skin-color vector. Connected-component (CC) analysis 

is then used to find all pixels belonging to the largest region in the image, which is assumed 

to be the finger. The rotational offset of the finger is estimated from the major axis of 

this CC. The finger is rotated to align with the vertical axis, and the image is cropped 

to the edge of the CC. The model assumes tha t the motion of the finger is limited to (1) 

motion in and out of the image plane (i.e., scaling) and (2) motion parallel to the image 

plane (i.e., x-y translations and z-rotation). Although this method is fast and accurate for 

predicting force, it does not accurately register the images. The seemingly accurate results 

previously demonstrated in force prediction [26] are an effect of the movement of the finger 

within the bounding-box of the final image, rather than the changing intensity of the finger 

regions themselves. In other words, the model is calibrated to the movement of the finger 

within the bounding-box, not simply to the coloration of the finger. This failure is because 

the basic assumptions of this model fail. While experience has shown tha t rotations out of 

the plane (i.e., x-rotation and y-rotation) are negligible, one other modality is ignored: the 

finger may deform as force is applied, leading to apparent motion between the nail and the
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edge of the finger.

The Hand-to-finger transform [32] begins with an image of the entire hand. First, the 

hand is found using a predefined skin color vector. The angle between each pixel intensity 

and this color vector is calculated, and if the angle is less than a given threshold, the pixel 

is defined to be part of the hand. The fingertips are found using Integral Image [33] to 

search for hand pixels whose neighborhood contains more than a given threshold of other 

hand pixels. The finger direction is estimated by searching for the chord of a circle at 

the centroid of the fingertip tha t crosses the hand pixels. The finger angle is estimated 

to be the same as the angle of the radial line tha t bisects the chord. While this method 

appears to be successful on all images, according to the authors, its underlying assumption 

is that the image contains the entire hand. When images contain only a single finger 

down to the PIP joint, the results are mixed. In addition, several parameters must be 

adjusted for any given data set. The ideal skin color vector must be adjusted for lighting 

conditions and test subjects. The color angle threshold depends on lighting conditions and 

can frequently include background regions in the finger CC. The size of the neighborhood 

and the percentage of the neighborhood required for a pixel to be classified as a fingertip 

vary depending on the shape of a person's finger and the scale of the finger with respect to 

the image. The final parameter, the radius of the circle used to find the finger direction, 

varies with scaling as well as with the location of the fingertip centroid. If any of these 

parameters is adjusted incorrectly for a given image (or a given test subject or lighting 

condition), the finger will be found in the wrong location and with the wrong orientation. 

Finally, once the fingers have been located, the rest of the procedure is the same as for the 

Scaled Rigid-Body Transform, meaning that this method has the same problems with skin 

deformation.

Only a few examples exist of finger image registration outside the realm of fingernail 

imaging for finger force detection. One, a method of biometric authentication using finger

nail structures was created [34], although this technique required images of the entire hand to 

begin, and the nails were registered using an ad hoc method tha t made several assumptions 

about the shape and size of the nail relative to the finger. This method would likely suffer 

from the same deficiencies as the Hand-to-Finger Transform if applied to fingernail imaging.

Other image registration techniques have been considered and rejected for various rea

sons. The Lucas-Kanade iterative approach [35], for example, uses the gradient of the 

image to align two images. One of the key requirements of this method, however, is that 

the object to be registered must have approximately the same pixel intensities from one
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image to the next, the differences being due to Gaussian noise. Fingernail images during 

force application do not exhibit this characteristic as the color patterns change significantly 

depending on the force magnitude and direction.

A novel registration method has been developed [36, 37] that iteratively uses Active 

Appearance Models (AAM) to register all of an individual’s data, compensating for scaling, 

translation, and rotation. The technique requires a group of training images, which should 

be representative of the modes of variation of the data set. A set of common landmark 

points are identified on each of the training images. A statistical model of Shape variation 

is generated by aligning each set of points to a common frame of reference and applying a 

Principal Component Analysis (PCA) to find the modes of Shape variation. Each training 

image is then warped to the mean shape, and the gray-level information is extracted. These 

values are then normalized, and PCA is applied to find the modes of Texture variation. 

The Shape and Texture parameters for each training image are next combined into a single 

Appearance vector, and PCA is applied a third time. This final PCA generates the modes of 

Appearance variation. Finally, a Search Model is created by correlating the pixel intensities 

to the Appearance and pose parameters. Given a new image, this Search Model may be 

used to estimate the appropriate Shape, Texture, and Appearance parameters as well as 

the required position, scale, and orientation.

AAMs have been used in a wide variety of applications. Some of the earliest applications 

were to register images of faces [38-41] and electrical components [38]. Later applications, 

particularly in medical image analysis, include knee MRI [38,42], cardiac MRI [40,43], 

dental radiographs [44-46], vertebra MRI [47], eye OCT scans [48], abdominal organs [49], 

and red blood cells [50]. The general AAM procedure has been applied to the problems 

of counting people [51], performing expression recognition [52,53], synthesizing speech [54], 

and synthetically aging individuals in images [55]. As far as the author is aware, no attem pt 

has been made to register fingernail images using AAM.

1.3 Modeling and Optimization
Multiple force prediction models have been used throughout the history of fingernail 

imaging. Each has drawbacks and advantages. In this work, previous models have been 

expanded to accommodate three-dimensional force prediction. In addition, new models 

have been developed. All are evaluated herein. In addition, the light color is investigated 

further to determine whether it may be optimized. The effect of the design of the grid of 

calibration points is characterized.
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1.3 .1  F o rc e  P r e d ic t io n  M o d e ls

Several models relating pixel intensity to the magnitude of finger force have been imple

mented in the past. A generalized least squares technique, which forms a weighted linear 

least-squares model relating a single force direction to all of the pixel intensities in the 

finger, was found to have an RMS error in all directions of 0.2 N to 0.6 N [3]. This model 

relies on locally-weighted linear regression [56] to fit the response of each pixel to the force 

before determining the model coefficients.

A multivariable least squares model was used in later work [26]. In the newer model, 

all of the data were assumed to form a linear fit between pixel intensity and force in each 

direction. This model was found to have an RMS error of 0.3 N in all three directions. 

However, the accuracy of this fit was dependent on the registration method, in addition 

to overfitting the data. Registration using anything but the Scaled Rigid-Body Transform 

degrades the performance of this model. The registration method was not correctly aligning 

the fingers as pixels near the edges of the finger and around the edge of the nail were the 

most relevant for force prediction.

The EigenNail method [27] was used to classify the direction of force. This technique 

uses the eigenvectors of the pixel data set to linearly separate the classes (i.e., the different 

directions of force). It was shown to correctly classify forces in all directions with at least 

70% accuracy, which improved to 90% upon application of a second level of classifier.

1 .3 .2  L ig h tin g

Different lighting methods have been used throughout the history of fingernail imaging. 

In early experiments [3,26,27], a diffusely reflective dome with several yellow-white LEDs 

mounted around the outside reflected light onto the finger, attem pting to create diffuse 

illumination, as illustrated in Fig. 1.4(a). This dome was mounted around the camera so 

tha t light emanated from approximately the same location as the camera and placed near 

the finger, as shown in Fig. 1.4(b). Later experiments have used arrays of LEDs in different 

configurations, placed above and behind the finger. Different colors of LEDs have been used, 

including bright white, cool white, and green. The inclusion of green LEDs is motivated by 

work with the fingernail sensors. The wavelength of light emitted by the LEDs has been 

studied [5] and green light was found to correlate with the optimal response rate of the 

sensors. In addition, past work has shown that the green channel of the camera correlates 

most effectively with the force [57].

More motivation to investigate the effect of lighting comes from the design of the 

camera’s CCD (charge-coupled device). As shown in Fig. 1.5, the Green photodetectors (G)
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Fig. 1.4. Old lighting method. (a) A diffusely reflective dome is placed above the finger. 
An array of cool white LEDs is placed around the rim of the dome, shining upward, so that 
the light reflects off the dome and down onto the finger. (b) The lighting dome is placed 
close to the finger and images are recorded as the forces are exerted.
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Fig. 1.5. Camera CCD photodetector response from the Sony CCD documentation [58]. 
The green photodetectors respond to a wide range of wavelengths, meaning they might 
saturate more easily under white light than under green.

respond to a wide range of wavelengths, indicating tha t the green channel of the RGB images 

includes more than just green light and may be saturating prematurely in the presence of 

white light. Since prior work has found tha t the green channel is most correlated to  the 

force response [4], such saturation is undesired. If green LEDs were used to illuminate the 

finger, a narrower spectrum of light would be available to the photodetectors, and the green 

channel might be more sensitive to the effects seen in previous work.
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1.4 Summary
The aims of this work are threefold. The first objective is to develop and characterize 

an automated calibration routine, including novel force control on the interaction between 

a robot with a flat-surface end effector and the human fingerpad. The second goal of 

this work is to create and investigate the effectiveness of a new registration method using 

Active Appearance Models for aligning fingernail images. This work’s final objective is to 

optimize the calibration process to improve the force prediction accuracy through adjusting 

the lighting, designing appropriate calibration trajectories, and selecting effective force 

prediction models. W ith these tools available, it is expected tha t a researcher will be 

able to implement a grasping study tha t allows the measurement of interaction forces using 

fingernail imaging.

The following three chapters are each prepared for submission to journals appropriate 

for their content. Chapter 2 discusses the design, development, and characterization of a 

novel force controller for the automated calibration routine. This controller is specifically 

designed to control force during interactions between a flat-plate end effector and the 

human fingerpad. The modeling choices are shown and the static and dynamic calibration 

procedure is detailed. The controller design process is outlined, and the implementation on 

a Magnetic Leviation Haptic Device (MLHD) is demonstrated. The resulting controller is 

analyzed. The controller is applied to a group of test subjects for the purposes of imaging 

calibration, and the force prediction results are shown.

Chapter 3 details the new registration method. Using Active Appearance Models is a 

novel approach to fingernail image registration. This technique includes the design and 

characterization of relevant contours to retain important shape and texture information 

for registration. In addition, an optimal landmark point density is determined, and the 

effects of color-processing regime are characterized. The effect of these modifications on 

registration and force prediction accuracy are investigated.

In Chapter 4, the optimization of force prediction modeling, lighting choice, and cali

bration grid are outlined. The effect of each of these modifications on registration accuracy 

(where applicable) and force prediction error are analyzed.

Various materials related to each of the three papers are provided in the appendices. 

Appendix A contains more specific information about the use of the MLHD API (application 

programming interface) in the controller as well as the system identification procedures 

used to determine the static and dynamic properties of the flotor and camera system. The 

model parameters are concretely defined, including more thorough diagrams than could be
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included in the journal article format. In addition, observability and identifiability of the 

identification data sets are addressed. Further information regarding the performance of 

the controller is also presented, including the gain margins, phase margins, and bandwidth 

for each of the six force/angle directions.

Appendix B explains, in further detail, the smoothing procedure used on the hand- 

selected nail contours. Minor details, such as specific choices relating to the formation 

of the AAM, are included in this section. This appendix also presents further material 

regarding the behavior of the AAM, including analyses of the covariance of Shape, Texture, 

and Appearance, the modes of variation for each subject, and so forth.

In Appendix C, additional details regarding the calibration grids are included. The 

layout of the two types of grids is given as well as the method used to divide the grids into 

regions for calibration.



CHAPTER 2

3-D FINGERTIP TOUCH FORCE PREDICTION  

USING FINGERNAIL IMAGING  
WITH AUTOMATED  

CALIBRATION

2.1 Abstract
This paper presents an automated routine for calibrating a fingernail imaging system 

with the intent of predicting fingerpad forces. The system uses a Magnetic Levitation 

Haptic Device to apply forces to the human fingerpad while recording images of the nail and 

surrounding skin. A novel force controller is implemented to interact stably with the human 

fingerpad. The data are used to calibrate a principal component regression model relating 

pixel intensity to three-dimensional force. Using data from this automated routine, this 

model simultaneously predicts three-dimensional force with an RMS error of 0.56 ±  0.03 N.

2.2 Introduction
Force estimation using fingernail coloration was introduced by Mascaro and Asada [1]. 

This concept relies on the coloration effect achieved by the movement of blood in the tissue 

beneath the fingernail. The interaction of the fingerpad with other surfaces causes blood 

to evacuate from some areas of the finger while pooling in others. Since the fingernail is 

essentially transparent, this coloration change can be seen clearly in images of the fingernail 

and surrounding skin. In this paper, an automated calibration method for fingernail imaging 

is presented tha t results in full three-dimensional force prediction. Prior calibration methods 

required a test subject to exert the forces and only estimated the force in one direction at 

a time. Thus, the new calibration procedure presented here results in a more robust model 

tha t is able to more accurately predict arbitrary shear and normal forces on the human 

finger.
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2 .2 .1  B a c k g ro u n d

The first fingernail sensor [59] was designed to be mounted on the test subject’s fin

gernail, in much the same way as an artificial nail. It consists of an array of LEDs 

and photodetectors tha t illuminate the fingernail and measure the coloration effect. For 

calibration, the test subject was guided to apply a series of desired forces on a force sensor 

while the fingernail sensor simultaneously recorded data. This calibration data were used 

in the creation of a model that could be applied to future measurements to predict forces. 

The original calibration was able to predict force magnitude and direction over a range of 

shear force up to 2 N with an error of 0.5 N and normal force up to 3 N with an error of 1N. 

The fingernail coloration effect was found to have patterns common across all people [2]. 

This commonality justifies using this method to estimate finger force.

Two major problems with the on-nail sensors are the manufacturing cost and the 

resolution of the sensors. Due to variability between fingers, the sensors must be individually 

manufactured to fit each test subject. Even when the sensors are fit perfectly, there is 

limited space for photodetectors and LEDs. Additionally, the fingernail saturates near 6N, 

while the surrounding skin can transduce forces up to 10 N. A new method was proposed 

using a high-resolution digital camera [57]. The data set available from such an approach 

is much larger. In addition, the method may be applied to any finger, regardless of size or 

shape. This method also allows the surrounding skin to be imaged and used in the force 

estimation. The calibration process was much the same as before, with the test subject 

asked to exert forces to cover the force space. Using the digital camera, the calibration 

error in normal force was reduced to 0.3 N over a range up to 10 N. In other work, force 

was estimated in one direction at a time with accuracy of 0.1 N in all directions over the 

ranges of normal force up to 10 N and shear up to 2 N [3]. Discrete finger force directions 

were estimated with an accuracy of 90 percent without any individual calibration [27]. The 

prediction accuracy held even as the resolution of the images was reduced to 10 x 10 pixels. 

This increase in accuracy comes with a price, however. The lighting must be consistent for 

the imaging method to function correctly. Obviously, the fingernail must remain in view of 

the camera. While calibration may currently be performed in a controlled setting, it will 

be necessary to find solutions to these problems before the imaging method can be used in 

other environments.

An automated calibration process requires a controller capable of applying forces in 

three dimensions to the human fingerpad. While many techniques exist for controlling 

force, research into the application of controlled force to the human fingerpad has been
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limited. Finger dynamics have been studied using single-axis actuators [21-23,60], although 

all of these used position control and measured the output forces. A high-performance 

three-axis force controller was developed for a haptic device to apply three-dimensional 

forces to the fingertip [24]. However, this method placed the fingertip in a thimble, which 

applied the forces to the finger as a whole rather than to the fingerpad. Thus, no distinct 

shear forces were being applied. One true three-dimensional force controller applying forces 

between the human fingerpad and a flat surface was implemented using two connected 

Novint Falcons [25]. The controller had a settling time of 0.25 s and was able to track 

desired trajectories with RMS errors of 0.05 N or less in all three force directions. While 

the RMS error would be sufficient for fingernail imaging calibration, a faster settling time 

is desired for calibration of fingernail imaging. In addition, no maximum force range was 

mentioned in the paper. The dynamic behavior of the fingerpad and the coupling of forces 

in the three axes due to finger geometry and frictional constraints make controlling these 

forces a unique problem.

2 .2 .2  C u r r e n t  W o rk

In prior experiments, calibration was performed using a GUI tha t guided the test 

subjects through the desired force space and asked them to provide the expected forces. 

Several limitations of this method have led to the development of this new automated 

calibration routine. First, nearly all subjects required time to become familiar with the 

calibration procedures, slowing the entire process. Second, subjects had some difficulty 

controlling two directions of force at a time. It was found that independently controlling 

normal force and shear force was nearly impossible. It is logical to assume tha t adding 

more variables, such as shear torque, contact angles, and finger joint angles, would likely 

complicate the process beyond the ability of most subjects. Third, after a few minutes, it 

became increasingly difficult to maintain the level of force on the finger, especially at large 

shear and normal force combinations. It is desired to reduce or eliminate this fatigue on the 

test subjects. Fourth, the human subjects required time to process the change in desired 

force and to exert tha t force, which prolonged the calibration and added to the fatigue. 

An automated calibration system simplifies the process and answers all of these difficulties. 

Familiarization time with the calibration procedure is reduced. Control of the variables is 

performed by computer. The calibration can be made mostly passive so tha t the subjects 

are more relaxed throughout the testing. Since the calibration system is in control, changes 

in force may be performed much more quickly, and desired force levels may be held more
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reliably. This allows thousands of images to be collected where previous calibration methods 

required multiple sessions to record little more than 300 images.

2.3 Calibration Procedures
2 .3 .1  E x p e r im e n ta l  A p p a r a tu s

Fig. 2.1 illustrates the experimental apparatus. To perform the automated calibration, 

a Magnetic Levitation Haptic Device (MLHD) [61, 62] is used. The MLHD consists of 

a flotor supported by the magnetic field generated in six Lorentz coils. The flotor can 

translate freely in a 12 mm-radius sphere while rotating up to 8° in any direction. It is 

capable of exerting up to 20 N of three-dimensional force and 4 N ■ m of three-dimensional 

torque. While these ranges are adequate to apply force to the human fingerpad and perform 

the desired calibration, they are insufficient to cause damage to the finger, and so the 

experiments will not endanger the test subjects. The MLHD has the advantages of high 

fidelity (< 2 pm resolution) and high bandwidth (130 Hz) [63]. These properties allow for 

excellent static and dynamic characterization of the force/coloration relationship.

An ATI Nano17 6-axis Force/Torque sensor is attached to the flotor of the MLHD to 

measure the contact force. A rubber surface is attached to the sensor to provide comfort, 

and a 3 cm square of two-sided tape is affixed to improve frictional behavior. The sensor is 

capable of detecting normal forces up to 17 N and shear forces up to 12 N with a resolution 

of 0.78 mN. This range and resolution is sufficient for the calibration as the intended ranges 

are 10 N normal and 5N shear.

Fig. 2.1. Schematic of calibration setup. The flotor exerts force against the fingerpad with 
a flat contact surface, while the finger rests against the restraint to guide the approximate 
angles of the joints. The camera is positioned above the nail with the light source above 
and behind the finger. The light shield blocks glare from ambient light.
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A Point Grey Research FLEA video camera is mounted over the finger to record images 

during the calibration. This camera can record 1024 x 768-pixel RGB images at 30 Hz. 

The camera is attached to a static frame since the location of the finger does not vary 

substantially during calibration. The camera uses a Tamron A201118 lens whose aperture 

and focal length can be manually adjusted to find the optimal light level and focus for each 

set of calibration images.

A lighting box is placed above and behind the finger to provide uniform illumination 

during calibration. This box consists of an array of 140 LEDs with a piece of tracing 

paper (3-lb. weight) to diffuse the light and reduce the shadowing effect due to the internal 

structure of the LEDs. The box is placed on a gooseneck so tha t it may be adjusted 

for individual variation prior to each experiment. Positioning the light source above and 

behind the finger ideally eliminates any glare on the nail, allowing only tha t light which 

penetrates into the nail bed to reflect back to the camera. Two lighting boxes are created, 

one containing white LEDs and the other containing green. It is eventually desired to 

investigate the effects of lighting color on the force prediction results as other research has 

shown tha t on-nail sensors react best under green light [64]. White light is chosen as a 

reference color since all fingernail imaging up to this point has been performed under white 

light. A light shield is mounted over the camera, the finger and the MLHD to block ambient 

light.

Past research [59] has found that the metacarpophalangeal (MCP) joint angle has no 

effect on the coloration of the finger. The distal interphalangeal (DIP) and proximal 

interphalangeal (PIP) joints, on the other hand, do affect the blood flow to the finger 

(and hence the coloration). Direct control of either the DIP or PIP joints without affecting 

blood flow or obscuring the camera’s view of the finger has thus far proved impossible. 

However, they can be controlled in the sense tha t the angle of the proximal phalanx can be 

controlled relative to the force sensor. If this angle is set correctly, the finger is positioned 

to encourage test subjects to maintain a constant angle in each of the DIP and PIP  joints. 

To position the finger during calibration, a restraint device is implemented using a Roylan 

Static Progressive Finger Flexion Splint. The straps, which would ordinarly be used to hold 

the splint on the finger, restrict blood flow and so are removed. Rather than restrain the 

finger’s movement, the splint is used to guide the subject in finger placement.

Although any of the fingers may be calibrated using the standard calibration position, 

doing so with the thumb would be awkward since the subject would be required to stand 

for an extended period of time. This is because of the shape of the hand and the location
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of the thumb relative to the rest of the fingers. Instead, an alternate calibration position 

is designed, at 90° to the standard position (Fig. 2.2). A separate restraint is attached to 

the frame that guides the thumb into place, and a separate end effector is designed with 

a vertical pad to contact the thumb. The data presented in this paper corrects for this 

rotation so that Fz always corresponds to normal force on the finger, Fx corresponds to 

lateral force, and Fy corresponds to longitudinal force. In this way, the forces on the thumb 

and the finger may be directly compared, in spite of the configuration differences.

A picture of the calibration setup is shown in Fig. 2.3(a). The finger is placed in a

Fig. 2.2. Schematic of finger positions. (a) The index finger is calibrated so that the x-, y- 
and z-axes are aligned with the flotor’s axes. (b) To accommodate the shape and position 
of the thumb on the hand, it is calibrated in a position at 90° relative to the other fingers. 
The forces are rotated so that F z always corresponds to normal force.

Fig. 2.3. Photos of calibration equipment. (a) Calibrating the index finger. The camera is 
positioned above the finger, with the light box above and behind the finger. The restraint 
positions the finger with respect to the flotor, which contacts the fingerpad. The light shield 
has been partially removed to allow this picture to be recorded. (b) Calibrating the thumb. 
While the thumb is oriented at 90° to the finger calibration position, the relative positions 
of all other components are similar.
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restraint that controls the proximal phalanx angle and positions it above the MLHD. The 

camera is stationed above the finger, while the light source is positioned above and behind 

the finger. The thumb calibration method is shown in Fig. 2.3(b). The thumb is calibrated 

at 90° to the index finger, with a separate restraint and a separate end effector. The camera 

and light sources are placed in different locations, maintaining their locations relative to 

the nail.

2 .3 .2  In te r f a c e  D e s ig n

The finger restraint merely acts as a guide for the proximal phalanx. Due to the motion 

afforded by the finger joints, the test subject must still provide some active input to the 

system. The MCP joint has a range-of-motion (in abduction/adduction) of 35°, and the 

average distance from the MCP to the end of the finger is 8 cm [65]. If the MCP is held 

stationary but free to rotate in this direction and the contact location is assumed to be at 

the end of the finger, the flotor would need to translate approximately 11.4 cm to remain 

in contact, far beyond the workspace limits.

The subject is therefore provided with a graphical interface as a guide to maintain the 

flotor within the workspace. A short period of instruction is given before each experimental 

session to familiarize the subject with the GUI (Fig. 2.4), which consists of an L-shaped 

crosshairs marking the flotor’s current (x, y) coordinates and a circle, centered at the origin, 

representing the boundary of the workspace at the current z-coordinate. In addition, a white 

L-shaped crosshairs marks the origin of the workspace, and a white circle represents the 

maximum radius of the workspace. As the flotor’s z-coordinate increases from 0 mm to

Fig. 2.4. Graphical user interface for automated calibration. The white xy axes indicate 
the origin of the flotor’s workspace, while the red axes indicate the flotor’s current location. 
The red circle indicates the radius of the workspace at the current z-coordinate, while the 
white circle indicates the maximum radius, at z =  0. The circle and axes are red when 
z > 1mm, magenta when z < -1 m m , and green when |z | < 1mm. When this image was 
generated, the flotor was near ( -3 , -4 ,  +4) mm.
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+12 mm, the circle’s diameter decreases, and as the flotor’s z-coordinate decreases from 

0 mm to -1 2  mm, the circle’s diameter also decreases, as if the subject is viewing the 

horizontal cross-section of the spherical workspace. To aid subjects with understanding the 

z-coordinate, the circle changes colors, green when |z| < 1mm, red when z > 1mm, and 

magenta when z <  - 1  mm. In this way, the user receives visual cues indicating how to 

adjust position in all three axes simultaneously, to assist in the task of maintaining the 

flotor’s position near the center of the workspace.

2 .3 .3  E x p e r im e n t  D e s ig n

To test the force controller, data from 17 subjects is collected. The test subjects include 

13 males and four females. Twelve subjects are Caucasian, two are of east Asian descent, 

and three are of Middle-Eastern origin. Each subject sits for a period of two hours while 

images and forces are recorded on both the index finger and the thumb. The images 

and the corresponding forces are recorded only once at each force level (a frequency of 

approximately 2 Hz), which is used to calibrate the force prediction model. At the same 

time, information such as the position and orientation of the flotor, the force input to the 

flotor, and the interaction force between the flotor and the subject’s finger, are all recorded 

at a frequency of 1 kHz. This much larger data set is then used to investigate the operation 

of the force controller.

The test sessions proceed as follows. Four data sets (finger/LED color combinations) 

are collected from each subject: (1) Index/W hite, (2) Thum b/W hite, (3) Index/Green, and 

(4) Thumb/Green. Each subject is introduced to the task and the visual cuing system. The 

desired force space is divided into nine sections, and the force controller traverses each of 

these sections three times for each subject/finger/LED combination. (The overall order is 

randomized to minimize the effects of learning and fatigue on a particular section.) This 

results in 108 data files per subject (9 x 3 x 2 x 2), each containing between 6000 and 92 000 

data points. When stored as ASCII .txt files, this requires nearly 17 GiB of disk space.

In addition, two different types of calibration grid are used. The points may be arranged 

in either an (x, y, z) Cartesian grid or an (r, d, z) cylindrical grid. The type of grid is assigned 

randomly to each subject/finger/LED color combination. Each grid contains approximately 

the same number of points, although they cover the space in a different fashion.

2 .3 .4  Im a g e  R e g is t r a t io n

Active Appearance Models (AAM) [39] are used to register the images. Each finger’s 

images are used to form an AAM following a method developed previously [36,37]. The
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Search Model is used to register all images pertaining to tha t particular finger. Once 

registered, the images may be used to form a force prediction model.

2.4 Control Design
2 .4 .1  C o n tro l le r  R e q u i r e m e n ts

The primary requirement of the force controller is that it be accurate. As the range 

of normal forces on the fingers (other than the thumb) in a typical five-fingered grasping 

experiment [15] is less than 10 N, it may be assumed tha t two-fingered grasping would 

involve forces up to 10 N on each finger. Therefore, it is desired to apply normal forces up 

to 10 N and shear forces up to 5 N with a resolution of 0.1 N. It is therefore desired that 

the steady-state error of the force in any direction be less than 0.05 N.

A secondary requirement is tha t the calibration process be as fast as possible. The 

test subject is not required to control the force, as in previous calibration processes, which 

should reduce the effects of fatigue. A new task has been added, in tha t the need to 

actively resist the forces, in order to keep the MLHD end effector within the workspace, is 

fatiguing over an extended session. The larger number of desired forces, combined with the 

larger magnitude of total force, is expected to create nearly as much fatigue as the manual 

calibration processes used in prior experiments. Therefore, the calibration should proceed 

as swiftly as possible. However, the speed of the process is limited by the hemodynamics 

of the finger, which have time constants of between 0.1s to 0.4 s [66]. Therefore, the force 

controller should have a two percent settling time of no more than 0.1 s so tha t calibration 

time can be minimized.

Safety is obviously a major concern. As mentioned previously, the MLHD is incapable 

of injuring the test subjects through impact loading. W ith IRB oversight, fatigue-related 

injuries are carefully controlled through experimental design and in-experiment monitoring. 

Damage to the MLHD itself is prevented during normal operation through software limits. 

The most relevant problem during the experiments is tha t the controller becomes unstable 

and the flotor moves outside its workspace. In this case, the flotor needs to be raised again, 

the controller restarted, and the test reinitialized from the appropriate point. Thus, falling 

out of the workspace is an inconvenient delay rather than a danger to the test subject or 

the equipment.

The MLHD API provides commands that allow the user to specify any of the following 

control inputs: (1) electrical current in each of the six Lorentz coils, (2) position and 

orientation of the flotor, (3) translational and angular velocity of the flotor, or (4) the 

forces and torques exerted on the flotor by the Lorentz coils. A force controller was
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developed using the position commands as an inner loop [67]. However, the authors have 

been unable to eliminate some high-frequency dynamics present in tha t controller, leading 

to the supposition that they are due to some unknown dynamics of the internal position 

controller. The controller could be developed using the current commands, requiring 

detailed identification of the current-to-force system properties. While it would be possible 

to develop a force controller using the velocity commands, this approach is unintuitive and 

needlessly complex. Since the force commands provide simple open-loop force control, they 

can be used in concert with the force sensor to create a closed-loop controller that applies 

forces to the fingerpad.

A nonlinear feedback controller with an underlying PID controller is used in this work. 

To design this controller, it is necessary to develop a model of the open-loop response of 

the system.

2 .4 .2  S y s te m  M o d e l

The flotor is modeled as a 6-DOF rigid-body lumped-parameter mechanism, able to 

freely translate and rotate in x, y, and z (Fig. 2.5). The angles reported by the MLHD are 

assumed to be ZYX Euler angles, that is, tha t the rotation matrix of the flotor relative to

Fig. 2.5. Schematic of kinematic calibration. On the left is a close-up view of the flotor, 
showing the World Frame (X 0,Y 0,Z 0) in light gray, the flotor coordinates (x,y, z) and 
unrotated Flotor Frame (X f, Yf, Z f ) in dark gray, and the rotated flotor in black. The 
distance from the Flotor Frame origin to the contact surface zs is indicated. On the right 
is shown the flotor and camera (both in black) relative to the World Frame (again in light 
gray) and the Camera Frame (Xc, Yc, Zc) in dark gray. During kinematic calibration, a 
small piece of tape provides fiducial marks on the contact surface while the flotor moves 
through the workspace and the camera records images.
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the base frame is represented by Rz (dz) Ry (dy) Rx (6x). Since these angles are all small (less 

than 8°), however, the order of rotation is assumed to be irrelevant. The flotor has a mass 

m / and a center of mass (defined in the frame of the flotor) located at r /  — [rx ry rz] . 

The inertia matrix of the flotor is defined as I / , likewise with regard to the frame of the 

flotor.

When performing parameter identification, it is assumed tha t the finger is not in contact 

with the flotor. Then, the forces Fm and torques t m on the flotor may be written in the 

following form:

fn =  Inan +  vn x Invn (2.1)

where In , vn , and an are the spatial inertia, spatial velocity, and spatial acceleration of the 

flotor, respectively. (See Section 14.3 in [68] for more information.) This equation may be 

rewritten in a linear least squares form:

fn — A n0n (2.3)

where A n contains terms relating to the position, velocity, and acceleration, and 0 n is a 

vector containing the unknown parameters (m / and the components of r /  and I / ).

2 .4 .3  S y s te m  Id e n t i f ic a t io n

To fully characterize the system, the parameters of the model must be defined. The 

location of the base frame is determined. Then, the wrench formula (2.3) may be used 

to determine the flotor inertial parameters. Finally, the finger force may be added to the 

system model to determine its effects. Only then can an appropriate controller be designed 

to interact with the finger and compensate for the nonlinearities present in the system.

2 .4 .3 .1  S ta t ic  P a r a m e te r  Id e n t i f ic a t io n

First, the coordinate systems must be established. The world frame is defined such that, 

when the flotor is at the zero position, the world and flotor frames are aligned. The flotor 

frame is defined such that the axes are parallel to the force sensor’s axes, with the origin 

located at the center of rotation in all three axes when the flotor is at (0,0,0). The kinematic 

calibration is used mainly to estimate the location of the flotor frame origin relative to the 

contact platform.

The calibration procedure is illustrated in Fig. 2.5. A piece of white two-sided tape 

is affixed to the contact platform. The previously-calibrated camera is used to record an
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image at each of 120 poses throughout the workspace. The flotor pose is measured by 

three planar position sensitive photodiodes paired with LEDs mounted on the flotor and 

reported through the MLHD API function. The four corners of the tape are used as the 

reference points in the images. Canny edge detection [30], in concert with the standard 

Hough Transform, is used to identify the corners. In two of the images, one side of the tape 

is out of the frame, meaning that 476 data points are available. Given tha t each data point 

is represented by the camera’s (u, v) coordinates, this gives two equations per data point, 

for a total of 952 equations in the 15 unknowns.

The parameters tha t are to be identified during this process are (1) the six components 

of camera pose (location and orientation) relative to the base frame, (2) zs, the vertical 

coordinate of the contact platform within the flotor frame (i.e., the distance between the 

origin of flotor actuation and the fingerpad), and (3) the x- and y-coordinates of the four 

tape corners within the flotor frame. The initial parameter values are estimated through 

manual measurements. The task variables (i.e., the camera coordinates u and v) are scaled 

using their respective standard deviations, while parameter scaling is accomplished using 

the Euclidean norm of each column of the calibration matrix [69]. The Gauss-Newton 

method converges to a residual of less than 0.01 after 6 iterations. The fingerpad contact 

surface is found to lie zs =  48.1 ±  0.5 mm above the origin of flotor actuation. The other 

parameters fit well with the measured values. The scaled calibration matrix has a condition 

number of 53, within the range suggested by Schroer [70], indicating tha t the parameters 

are identifiable from this calibration set.

2 .4 .3 .2  I n e r t i a l  P a r a m e te r  I d e n t i f ic a t io n

Second, the flotor’s inertial parameters must be identified. A series of wrench commands 

tha t should excite all of the model parameters is sent to the MLHD and the position, 

orientation, and input wrench are recorded for n time steps during these commands. Then, 

the n data points are substituted into (2.3) to produce a set of 6n equations in 10 unknowns 

(the inertial parameters). Finally, this set of equations is solved to calculate the inertial 

parameters. Given this overview, the details are now shown:

For data collection, a series of force/torque commands is sent to the MLHD designed to 

excite all of the modes of movement so that the parameters may be identified. The flotor 

pose is measured using the MLHD API, with numerical differentiation used to calculate 

velocities and accelerations. A series of step inputs tracing out a grid around the workspace 

is selected that covers the range - 6  mm < k < 6 mm and -4 °  < 9  ̂ < 4° at intervals of 

3 mm and 2° (where k £ {x, y, z}). The wrench applied by the MLHD to the flotor, as well
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as the flotor’s position and orientation, are recorded at each time step. A short section of 

the inputs and outputs is shown in Fig. 2.6. A total of 80s of data are collected as the 

MLHD moved through this trajectory at a rate of 1 kHz.

Since (2.3) is linear in the parameters, ordinary least squares may be used to solve for 

the parameters. These six equations (with the 80 000 data points gathered) provide 480 000 

equations in the 10 unknown parameters. These equations are solved using M atlab’s matrix 

algebra solver. The values found using this method are reported in Table 2.1. Given that 

these numbers are approximately the same as those reported during the design of the initial 

MLHD prototype [61], the authors are confident in the results reported here.

2 .4 .4  C o n tro l le r  D e s ig n

W ith a complete model, the controller may be designed to appropriately compensate 

the system. The controller is a standard PIVF force control scheme [71] with nonlinear 

feedback compensation, as shown in Fig. 2.7. Defining the force error as A F =  Fd — F, the

Fig. 2.6. Selection of flotor dynamic parameter identification data. Time is given on the 
x-axis in all plots. In the first column, the flotor position coordinates x, y, and z are shown. 
The second column contains the flotor angles 6x, 0y, and 0z. The forces exerted by the 
Lorentz coils on the flotor Fxm, Fym, and Fzm are given in the third column. In the fourth 
column are plotted the torques exerted by the Lorentz coils on the flotor rxm, Tym, and Tzm.

T able 2.1. Flotor Inertial Parameters
Q ty V alue Q ty V alue

m f (0.56 ±  0.01) kg ry (1.84 ±  0.01) mm

Tx (1.98 ±  0.02) mm Tz (—18.7 ±  0.1) mm

Ixx (0.161 ±  0.050) g • m2 yIxy (0.003 ±  0.004) g • m2

Ixz (0.046 ±  0.005) g • m2 I yy (0.900 ±  0.130) g • m2

I yz (0.037 ±  0.013) g • m2 I zz (2.65 ±  0.36) g • m2
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Fig. 2.7. Force controller design. The forces (in x , y , and z ) are controlled in a separate 
loop from the angles. The two controllers join for nonlinear compensation. Since the goal is 
to maintain planar contact with the finger, when the controller is implemented, the desired 
angles © d are identically zero.

force control input F in and rotational control input Qin may be written as

F in =  K p  A F +  K i  f  A F dt — K y  v  +  Fd

Qin =  -K p Q  — K i  Q dt — K y w

(2.4)

(2.5)

where Qd =  0, since the controller will only be used to stabilize the angles. Finally, the 

nonlinear compensator has the general form

u

InU +  V

Q

Zs0R fk  x 0R fF  
0

in

in
R f F in

(2.6)

(2.7)

a Qin
a F in

where the final term on the right-hand side of 2.6 compensates for the displacement between 

the flotor origin and the sensor origin. When the system parameters have been estimated 

exactly, the nonlinearities from the matrix In and the cross product all cancel exactly with 

their counterparts in (2.1), resulting in a set of dynamic equations of the form

(2.8)

or, essentially, six pure inertias with PID controllers in place. Small deviations in parameter 

estimation are compensated by the controller.

The block labeled “Finger Dynamics” represents the dynamic interaction between the 

flotor and the fingerpad. Although the dynamics of the fingerpad are highly nonlinear [21, 

22,60,72], for the purposes of simulation and initial gain estimation, a linear approximation 

is used. It is assumed tha t the finger can be represented by a simple stiffness-damping

n
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lumped-parameter model of the form F s =  bf v +  kf p. For the initial controller design and 

simulation, estimates of bf =  5N • s • m-1 and kf =  2000N • m-1 are used. These rough 

estimates are calculated using very simple force-displacement-velocity measurements. Due 

to the complex nonlinear behavior of the finger, including stiffness and damping in the skin 

and the joints, this linear model is used as a first approximation to find initial estimates of 

the controller constants. These controller constants are then adjusted once the controller is 

implemented, as described in Section 2.5.

Prior to implementation, the controller is simulated to verify desired operation and find 

initial estimates for the controller constants. The results of step inputs in each direction are 

shown in Fig. 2.8. Note that in this figure, the steps occur at different times, but the plots 

have been aligned to allow for ease of comparison and to reduce the number of separate 

plots that must be created. Each force direction settles within 0.05 s with less than 35 % 

overshoot. (Note that, during fingernail imaging calibration, the subjects will experience 

ramp-and-hold rather than step trajectories, so the overshoot will not be as dramatic as 

what is shown here.) The simulation was also used to verify tha t the controller inputs to 

the MLHD do not exceed the maximum allowable values.

2.5 Results
The controller is implemented on the MLHD using C + + . The initial estimates of the 

controller constants found during simulation are adjusted once the controller is implemented 

until stability is achieved. This period of gain tuning required approximately 2 hours once 

the controller was brought online, but this single set of gains was found to be stable for all

J-------
1.5 2

r ^
3.5 4 

Time (s)

Fig. 2.8. Force controller simulation results. Note tha t the steps in each force direction 
occur at different times, but are aligned in this figure for comparison's sake. All force 
directions settle within 0.05 s.
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19 subjects. The final set of gains used for all experiments is given in Table 2.2.

2 .5 .1  C o n tro l le r  Im p le m e n ta t io n

Several tests are performed to verify that the controller is working as designed. First, 

step inputs in each of the three principal force directions are applied. The response in the 

x-direction is shown in Fig. 2.9. The force response is found to have a 2 % settling time of 

0.2 s. The overshoot is less than 7%. The other directions show good disturbance rejection, 

never deviating by more than 0.4 N from the target values.

Fig. 2.10 shows the response to a step input in the y-direction. There is no overshoot 

in the y-direction, but the 2% settling time is 0.25 s, which is longer than desired. The 

x-direction response shows a slight deviation from the desired force level, but never more 

than 0.5 N and settling back to the desired force within 0.05 s. The z-direction force shows

T ab le  2.2. Controller Gains____________________________________
D ir G ain V alue D ir G ain V alue

K p 0.5 Kp 30

Fx K d 5 Ox Kd 0.15

Ki 20 Ki 20

K p 0.5 Kp 30

Fy Kd 5 Qy Kd 0.15

Ki 20 Ki 20

Kp 0.5 Kp 10

Fz Kd 20 Oz Kd 0.15

Ki 40 Ki 0

0 0.25 0.5 0.75

- -

- -

0 0.25 0.5 0.75

- -

-

'40 0.25 0.5 0.75 1

Fig. 2.9. Fx step response. There is less than 7% overshoot, with a 2% settling time of 
0. 2 s. The other two force directions deviate by less than 0. 4 N from their target values.
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-

-  -

3 0.25 0.5 0.75

-

3 0.25 0.5 0.75

- -

-

.......— - v  -  -
-

3 0.25 0.5 0.75

Fig. 2.10. Fy step response. The 2% settling time is 0.25 s, somewhat longer than the 
goal of 0.1 s, but with no overshoot. The other two force directions never deviate from their 
targets by more than 0.5 N and settle within 0.05 s.

a small amount of coupling with the y-direction, oscillating between ±0.1 N but settling to 

the desired value within 0.05 s.

Fig. 2.11 shows the response to a step input in the z-direction. The response has an 

overshoot of 25% and a 2% settling time of 0.09s. The other directions exhibit good 

disturbance rejection, with a maximum error of 0.2 N. Both settle back to the desired force 

within 0.05 s.

An arbitrary step input in shear force is shown in Fig. 2.12. The response can again be 

seen to have a 2 % settling time of 0.25 s. Both directions show overshoot of approximately 

30 %. The z-direction exhibits excellent disturbance rejection, never deviating by more than 

0.4 N and settling within 0.05 s.

These results are then extended and a step is commanded in all three directions at

3 0.25 0.5 0.75

- -

- -

3 0.25 0.5 0.75

-

3 0.25 0.5 0.75

Fig. 2.11. Fz step response. The step response has 30 % overshoot with a 2 % settling time 
of 0. 09 s. The other two directions show excellent disturbance rejection, with a maximum 
error of 0.2 N, and settling back to the desired force within 0.05 s.



32

-3
-4 - ............................... s.

0.25 0.5 0.75

A  A. , .....

0.25 0.5 0.75

- 5 -

Fig. 2.12. Shear force step response. A step in both Fx and Fy is applied. Both directions 
settle within 0.25 s with an overshoot of 30 %. The z-direction settles within 0.05 s with an 
error less than 0.4 N.

once. As seen in Fig. 2.13, the applied force settles within 0.2 s, with an overshoot in the 

z-direction of 40 % and smaller overshoots in the other two. It should be noted that, under 

intended operation, the controller will never have to deal with a step input as the force will 

gradually transition from one level to the next.

The trajectory-tracking ability of the controller is investigated next. In this test, a 

constant normal force is held while a rotating shear force vector is applied to the finger. 

The vector rotates with a frequency of 1 ^ . In Fig. 2.14, the controller can be seen to 

follow this desired trajectory with an error of less than 0.05 N and 0.1 rad. The normal 

force is held at the desired level with an error less than 0. 05 N.

Although large variations in the finger dynamics could cause instability, the worst effect 

of an unstable system will be the need to realign the flotor and restart the calibration (a 

procedure which requires less than 1 minute). The stability of the calibration system is also

Fig. 2.13. Simultaneous step response in all three directions. The forces have an overshoot 
less than 40% while settling within 0.2 s.
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0  5 10 15 20

0  5 10 15 20

5 -

0  5 10 15 20
Time (seconds)

Fig. 2.14. Tracking behavior on rotating shear force. A constant normal force is held 
while a constant-magnitude shear force rotates with a frequency of 1 — . The forces in all 
three directions exhibit errors less than 0.05 N. The desired angle is held with an error less 
than 0.1 rad.

dependent upon the choice of force commands. If the shear force is too large relative to the 

normal force, the finger and flotor will experience relative motion. Once this relative motion 

is introduced, it has been observed tha t the system quickly becomes unstable and oscillates 

until it moves outside the desired workspace, requiring tha t the system be reset. Thus, 

when designing trajectories, it is necessary to include only those combinations of shear and 

normal force tha t prevent slip between the finger and flotor. Experience has shown tha t a 

static friction coefficient of ^  =  f  yields target force combinations without slip on all fingers 

when using the equipment described above.

2 .5 .2  T r a je c to ry  T ra c k in g

Each of the 17 subjects experiences 108 individual data collection periods. These periods 

last from 10s to 60s with normal forces varying from 0N  to 6N and shear forces varying 

from —4 N to +4 N. The flotor is commanded to hold the rotation angles at identically zero. 

A sample data set is shown in Fig. 2.15. This set exhibits 0.06 N RMS error in the x- and 

y-directions and 0.03 N in the z-direction, with 0.03° RMS error in dx , 0.01° in dy, and 0.1° 

in dz.

Fig. 2.16 shows the force RMS errors across all subjects, grouped by LED color and 

force direction. It is to be expected tha t no significant difference exists between the two 

LED colors, as this should have no effect on the controller or the subject's performance. 

Although each force direction is slightly different, both LED colors exhibit approximately 

the same error (White: 0.057 ±  0.001 N, Green: 0.058 ±  0.002 N).
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Fig. 2.15. Measured forces and angles during an experiment. The forces are plotted in 
Newtons, with the angles in degrees. The data in this experiment show 0.06 N RMS error 
in Fx and Fy, with 0.03N in Fz. The angular errors are 0.03° in 0X, 0.01° in Qy, and 0.1° in 
0Z.

Fig . 2.16. Measured vs. desired force-tracking RMS error, grouped by LED color and 
force direction. As expected, no significant difference exists between the LED colors, in 
spite of differences among the force directions.

The force RMS errors grouped by trajectory type (Cartesian vs. Cylindrical) and 

force direction are shown in Fig. 2.17. The choice of trajectory has a significant effect 

on force tracking RMS error, with the Cartesian grid having a significantly larger error 

(0.061 ±  0.002N) than the Cylindrical grid (0.054 ±  0.001N). Not only do the two grid 

designs exhibit significantly different RMS tracking errors, but the pattern of error between 

the two is different as well: the Cartesian grid has significantly larger error in both the x- and 

y-directions, with no statistically-significant difference between the two in the z-direction.
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Fig. 2.17. Measured vs. desired force-tracking RMS error, grouped by calibration grid and 
force direction. The Cartesian grid exhibits significantly larger error than the cylindrical 
grid. The patterns among the force directions are also significantly different.

The force RMS errors are aggregated by finger and force direction in Fig. 2.18. The 

difference in the way force direction interacts with the choice of finger in its effect on tracking 

error is shown clearly here. When acting on the index finger, all three force directions exhibit 

tracking errors that are approximately equal (0.054 ±  0.001 N). When the flotor acts on the 

thumb, a significantly larger tracking error is detected in Fx (0.064 ±  0.001 N) than either 

Fy (0.055 ±  0.001 N) or Fz (0.053 ±  0.001 N). Recall tha t the contact condition is different 

when calibrating the thumb. This is most likely the cause of the difference between the 

two fingers. It may be possible to confirm this by calibrating other fingers using the same 

contact condition as the index finger.

In Fig. 2.19, the angle-tracking RMS errors are grouped by LED Color and angle

Fig. 2.18. Measured vs. desired force-tracking RMS error, grouped by finger and force 
direction. The force directions clearly interact with the choice of finger in their effect on 
tracking error. All force directions exhibit approximately the same error on the index finger, 
while the three force directions have significantly different effects on the thumb.
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Fig. 2.19. Measured vs. desired angle-tracking RMS error, grouped by LED color and 
angle direction. As expected, no significant difference exists between the two LED colors, 
in spite of differences among the angle directions.

direction. As with the forces, the LED Color should have no effect on the accuracy of 

the angular position controller. There is no statistically significant difference in the angular 

RMS error in any direction between the two LED colors, as expected.

Fig. 2.20 shows the angle-tracking RMS errors grouped by calibration grid and angle 

direction. The angular error is significantly lower in all three directions for the Cylindrical 

grid than for the Cartesian grid. An additional significant effect is detected: For the Carte

sian grid, the errors in 0X (0.135 ±  0.004°) and Qy (0.137 ±  0.004°) errors are statistically 

similar. For the Cylindrical grid, however, these two errors are significantly different, with 

Qx having an RMS angular error of 0.104 ±  0.004° and Qy having an RMS angular error of

Fig. 2.20. Measured vs. desired angle-tracking RMS error, grouped by calibration grid 
and angle direction. The tracking error is significantly lower in all three directions for 
the Cylindrical grid than for the Cartesian grid. In addition, the errors in Qx and Qy are 
statistically different for the Cylindrical grid, while for the Cartesian grid, they are similar.
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0.116 ±  0.004°.

The angle-tracking RMS errors, grouped by finger and angle direction, are shown in 

Fig. 2.21. The interaction effect is less pronounced than it was in the force tracking results, 

although it is still significant. The angular error is significantly larger in both the x- and 

z-directions regardless of the finger, while in the y-direction the reverse is true. As with the 

force-tracking differences, such differences are most likely due to the differences in contact 

condition between the two fingers.

Note, however, tha t all of these angular errors are less than one-third of one degree, or 

approximately 2% of the full range of ±8° of rotational movement in any direction. Even 

a statistically significant difference between rotational directions or fingers is not likely to 

make much of a difference in stability during a calibration test.

2 .5 .3  M o d e l C a l ib r a t io n  - F o rc e  P r e d ic t io n

The end goal for this system, of course, is to improve the process of developing a model 

relating finger images to fingerpad force. The EigenNail Magnitude Model, introduced 

previously [36], is a Principal Component Regression model. It relates the coordinates of 

the image in the eigenspace spanned by the eigenvectors of the pixel intensity values to the 

forces on the fingerpad. The prediction model takes the form

p =  p +  Spbp

F  s — A b p +  fo

where p is a vector of pixel intensities, p is the mean pixel vector, Sp — 

is the matrix of EigenNails, A  — [aji] is a matrix of coefficients, bp — [bip b2p

(2.9)

(2.10)

■ ^k]

bkp]

Fig. 2.21. Measured vs. desired angle-tracking RMS error, grouped by finger and angle 
direction. The tracking errors between the fingers show a complicated interrelationship 
here, with significance being detected in nearly every pairing.
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is the vector of Nail Space coordinates and fo is the offset force vector.

Fig. 2.22 shows the force prediction RMS error grouped by force direction for a series 

of validation experiments. In these experiments, 25% of the images for a given sub
ject/finger/LED color combination were set aside as “validation” data, while the rest were 

used to form the model. Then, the model was applied to the validation data, and the 
resulting predicted force was compared to the measured force. It may be seen from the figure 

that bp correlates well with the finger forces Fs, resulting in RMS errors of 0.56 ±  0.03° 
in Fz, with 0.54 ±  0.02° in Fx and 0.56 ±  0.03° in Fy. The choice of force direction has no 

significant effect on the force prediction RMS error.
A secondary, qualitative check that may be performed is to create a set of synthetic 

images where each pixel's intensity indicates the contribution of that pixel in the prediction 

model to the corresponding direction of force. The formula used to generate these images 
is k

Pj =  ^ 2  aH ^iV^i (2.11)
i= 1

where Ai is the eigenvalue corresponding to the ith EigenNail, and the index j  corresponds 
to the force direction (x, y, and z). The resulting images for one subject are shown in 
Fig. 2.23 (index finger) and Fig. 2.24 (thumb). The patterns shown here correspond to those 

expected: the asymmetric pattern exhibited when the finger is under x-direction force, the 

opposing bands near the distal end and across the middle of the nail under y-direction force, 

and the band near the distal end of the finger paired with the discoloration in the finger 
along the sides of the nail under z-direction force all appear in the corresponding image

Fig. 2.22. Force prediction RMS error, grouped by force direction. The RMS error in Fz 
is 0.56 ±  0.03°, with slightly lower values in the two shear force directions. No statistically 
significant effects are detected.
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Fig. 2.23. Qualitative prediction model analysis (index). The intensity of each pixel in 
these images represents the contribution made by that pixel to the force prediction in each 
of the (a) x-, (b) y-, and (c) z-directions. The brighter a pixel, the more it contributes. The 
images are each scaled to the range (-1 ,1 ), with yellow having a more positive effect and 
green having a more negative effect. The asymmetric pattern in (a) matches the patterns 
visible on the thumb when x-direction force is applied, while the alternating green and 
yellow bands across the distal end and middle of the nail in (b) correspond to the patterns 
visible when y-direction force is experienced. In (c), the brightest regions correspond to 
those that become most white when applying z-direction force.

(a) (b) (c)

Fig. 2.24. Qualitative prediction model analysis (thumb). The intensity of each pixel in 
these images represents the contribution made by that pixel to the force prediction in each 
of the (a) x-, (b) y-, and (c) z-directions. The brighter a pixel, the more it contributes. The 
images are each scaled to the range (-1 ,1 ), with yellow having a more positive effect and 
green having a more negative effect. The asymmetric pattern in (a) matches the patterns 
visible on the thumb when x-direction force is applied, while the alternating green and 
yellow bands across the distal end and middle of the nail in (b) correspond to the patterns 
visible when y-direction force is experienced. In (c), the brightest regions correspond to 
those that become most white when applying z-direction force.

maps.

2 .5 .4  C a libration  G rids

Finally, the effect of the size of the data set on the force prediction error is investigated. 

The intent of this experiment is to determine how many images must be collected to achieve 
the prediction error shown previously. Thus, the number of images is reduced and the data 

set is divided into calibration and verification sets. Then, the calibration set is used to form 

the model, and the verification set is used to validate the model. This experiment is repeated 

100 times for each combination of subject, finger, and LED color, with a different randomly-
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selected division each time. The results are shown in Fig. 2.25. When the number of images 

is reduced to 625, the error (0.59 ±  0.02 N) is not statistically different from the standard 

model (0.55 ±  0.02N). When the number of images is reduced to 500 (0.68 ±  0.02N), a 
statistically significant difference is detected. The 250-point model has a much larger error 

(1.00 ±  0.04 N).

2.6 Conclusion
This paper has demonstrated the development and tuning of a new force controller 

for interacting with the human fingerpad, with the end goal of calibrating a new method 
for transducing force on the fingerpad by measuring the coloration of the fingernail and 

surrounding skin. The controller has a step response with an overshoot of less than 30% 
and a 2 % settling time of less than 0.13 s in all three directions of force. The three directions 

of force exhibit an RMS tracking error of 0.065 ±  0.002 N normal force and 0.054 ±  0.001 N 

shear force. The three angular directions have an RMS tracking error of 0.173 ±  0.003°.
The automatically calibrated force prediction model predicts force simultaneously in all 

three directions, with an RMS validation error of 0.56 ±  0.03 N in all directions. The shear 

force is estimated within 8% of the full range of —4N to +4N, while the normal force is 

estimated within 10% of the full range of 0N to 6N. In addition to correctly predicting 
forces, the new model presented here is shown qualitatively to be dependent on the correct 
color patterns and regions of the finger. Past force prediction models sometimes relied on 

movement of the finger relative to the frame of the image. This qualitative technique may 

be used in future work to assess the accuracy of registration and prediction models.

Fig. 2.25. Force prediction error by number of images. The standard data set contains 
750 images and is reduced according to the numbers shown. While the 625-point data set 
does not result in a statistically-significant difference in error, the other sizes do.
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The authors intend to use these results in the future to perform a study of human 
grasping, demonstrating that the force in each finger may be estimated reliably using the 

imaging method. This approach would greatly improve existing grasping research, as it 
would no longer be necessary to instrument either the object or the finger. It would also 

allow the object to be grasped in a natural way, rather than requiring the test subject to 

place the fingers on prespecified contact points designed for measuring the force.



CHAPTER 3

IMAGE REGISTRATION USING ACTIVE 
APPEARANCE MODELS FOR 

CALIBRATION OF 
FINGERNAIL 

IMAGING

3.1 Abstract
This paper demonstrates the registration of finger images using Active Appearance 

Models (AAM ) for the purpose of predicting fingerpad force while also presenting an 

investigation into various AAM parameters. It is shown that these individually calibrated 

models may be used over a wide variety of subjects and that simpler models preserve both 
the registration and force-prediction accuracy of the more complex models. The mean 

registration error is shown to be 1.5 ±  0.3 (RMS pixel intensity error), less than 0.5% of 

the range of 0 to 255, while the corresponding force prediction error is found to be 0.55 N,
9.1 % of the full range of forces measured.

The Standard model that achieves these results uses 75 landmark points across the nail 
and finger and between 9 and 10 training images, calibrating the AAM using the entire RGB 

color space. The remaining images, between 580 and 750 per subject, are then registered 

using the Search Model formed as part of the AAM. The reduced models achieve statistically 
similar results while reducing the number of landmark points to 25 and processing only the 

Green color channel of the images. Since these reductions all result in fewer pixels and fewer 

landmark points to calculate when performing the registration and the force prediction, the 

images may be processed more quickly.

3.2 Introduction
Fingernail imaging has been shown to be an effective method of measuring contact force 

on the human fingerpad [1-3,27]. Using fingernail imaging, these contact forces may be 

measured without restricting the haptic sense or requiring that force sensors be placed
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in specific contact locations. This method of fingerpad force measurement can improve 

human/machine communication, for example in rehabilitative environments or machine 

learning opportunities. As patients interact with robots designed to aid rehabilitation, the 
finger forces may be measured using imaging rather than costly force sensors, also allowing 

patients more freedom in contact locations. When training robots using supervised learning, 
a vision system may measure finger forces using fingernail imaging, allowing a wider range 

of interactions for the system to learn.

For fingernail imaging, contact forces are measured by inspecting the coloration of the 

tissue beneath the fingernail. The coloration change is caused by the constriction of blood 

vessels in the flesh of the finger. Nearly transparent, the fingernail transmits the color 
change from these underlying tissues, allowing the imaging of fingernails and the surrounding 

skin. The effect is common across a wide range of people [2]. This paper discusses the 
application of Active Appearance Models (AAM ) as a registration method for fingernail 

images. While previous registration methods are generally effective, each is deficient in 

some aspect, preventing accurate application of calibration models to data recorded in 

another setting.

Fingernail imaging as a method for predicting force is a two-step process. First, a 

calibration phase is required. This includes the collection of images while the finger ex

periences a series of forces designed to cover a desired force space. Once the calibration 
images have been collected, a prediction model relating the intensity values to the forces is 

created. Second, this force prediction model is applied to the intensity values of an image 

to estimate the force. If the actual finger forces are measured, they may be compared to 

the predicted force to determine the model’s accuracy. Models have been developed that 

estimate a single direction of force magnitude [3], the most likely force direction [27], and 

the full 3-D force magnitude [26].

Using the fingernail coloration effect to detect finger force has many applications. A 

computer mouse may be replaced with a vision system that senses finger force readings 
and converts them to cursor velocities and clicks. Another application is to measure finger 

forces during grasping. A problem with traditional grasping studies is that they typically 

require a change of grasp to achieve measurement. When the fingers are instrumented [7,73], 

the potential exists for loss of haptic sense. When the object is instrumented [9,74], the 

finger contact points are constrained. Although it is possible to perform unconstrained 

grasping with instrumented objects [8], finger contact locations are still somewhat limited. 

As a solution, cameras could be placed to record the coloration effect of the fingers. This
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approach could lead to a more natural grasp of the object and reduce the amount of time 

required to set up such experiments.

3.2.1 P r io r  R eg istra tion  M eth od s
Proper image registration is necessary to ensure the same locations of the finger will be 

compared from one image to the next. Prior methods used for fingernail image registration 

include: 2D-to-3D Registration, the Harris Method, the Canny Method, and the Scaled 

Rigid-Body Transform. Each method has its drawbacks.
The 2D-to-3D Registration method [3] uses a stereo image of the finger to generate a 

3-D model of the finger. 2-D images are registered to this model using fiducial marks that 
are drawn on the finger. While this method has been seen to be accurate, the complexity 

of the model requires longer processing time. All other techniques assume the finger to be 

a flat plane and attempt to register the finger to some template image.
The Harris method [26,27] correlates the Harris feature points [28] from an image to 

be registered with feature points in the template image, based on pixel intensities in the 

surrounding neighborhoods. RANSAC [29] is then used to find the transformation that best 

fits the correlations. However, this approach fails to register some images due to the lack of 
well-defined feature points on the finger. It also frequently identifies correlations between 

points that do not correspond, resulting in skewed images that are improperly registered. 
Additionally, since the RANSAC algorithm is probabilistic, the method is not repeatable. 

It has correctly registered an image on one attempt and failed to do so on another simply 

because of the random number generator.
The Canny method [26] uses Canny edge-finding [30] to locate the edge points in the 

image. As with the Harris Method, these points are then correlated between the image 

and the template image, and RANSAC is used to find the correlated pairs that produce a 
minimum-error transformation. This method has been more successful at registering images, 

but has proven to be slower. It also requires the optimal values of the parameters (i.e., the 

high and low thresholds and the standard deviation of the Gaussian) to be experimentally 

determined for each data set, based on the lighting conditions as well as the shape of the 
finger itself. In addition, images where the finger does not continue to the edge of the image 

have a false edge that should not be used to register the image.
The Scaled Rigid-Body Transform [26, 31] first locates the finger in the image using 

thresholding and connected-component (CC) analysis. The rotational offset of the finger is 
estimated from the major axis of this CC. The finger is rotated to align with the vertical axis 

and the image is cropped to the edge of the CC. Although this method is fast and accurate
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for predicting force, it does not accurately register the images. The seemingly accurate 

results previously demonstrated in force prediction [26] are an effect of the movement of 
the finger within the bounding-box of the final image, rather than the changing intensity 
of the finger regions themselves. In other words, the model was being calibrated to the 
movement of the finger within the bounding-box in addition to the coloration of the finger. 

This problem is due to the basic assumption of this model, that the motion of the finger was 

limited to (1) motion in and out of the image plane (i.e., scaling) and (2) motion parallel 

to the image plane (i.e., x-y translations and z-rotation). While experience has shown that 

rotations out of the plane (i.e., x-rotation and y-rotation) are negligible, one other modality 

is ignored: the finger may deform as force is applied, leading to apparent motion between 
the nail and the edge of the finger.

The Hand-to-Finger Transform [32] finds the hand in an image using a predefined skin 

color vector. The angle between each pixel intensity and this color vector is calculated, and 

if the angle is less than a given threshold, the pixel is defined to be part of the hand. The 

fingertips are found using Integral Image [33] to search for hand pixels whose neighborhood 
contains more than a given threshold of other hand pixels. The finger direction is estimated 

by searching for the chord of a circle at the centroid of the fingertip that crosses the hand 

pixels. The finger angle is estimated to be the same as the angle of the radial line that 

bisects the chord. While this method appears to be successful on all images, its underlying 

assumption is that the image contains the entire hand. When images contain only the 

finger down to the PIP joint, the results are mixed. In addition, several parameters must 

be adjusted for any given data set, depending on the skin’s color and the lighting conditions. 

Finally, once the fingers have been located, the rest of the procedure is the same as for the 

Scaled Rigid-Body Transform, meaning that this method ignores skin deformation.

3.2.2 A ct iv e  A p p ea ra n ce  M od e ls
A novel registration method has been developed [36, 37] that iteratively uses Active 

Appearance Models (AAM) to register all of an individual’s data, compensating for scaling, 
translation, and rotation. AAM have been used to register images of faces [38-41], electrical 

components [38], and medical images (including knee MRI [38,42], cardiac MRI [40,43], 

dental radiographs [44-46], vertebra MRI [47], eye OCT scans [48], abdominal organs [49], 

and red blood cells [50]). In addition, AAM have been applied to count people [51], to 

perform expression recognition [52,53], to synthesize speech [54], and to synthetically age 

face images [55].
An AAM is formed in effectively the same way, no matter the object to be found
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(Fig. 3.1). The AAM technique requires a group of training images, which should be 

representative of the modes of variation of the data set. (This requires some knowledge 

of the underlying characteristics of the data.) A set of common landmark points are 
identified for each of the training images. A statistical model of Shape variation is generated 

by aligning each set of points to a common frame of reference and applying a Principal 

Component Analysis (PCA) to find the modes of Shape variation. Each training image is 

then warped to the mean shape, and the gray-level information is extracted. These values 
are normalized, and PCA is applied to find the modes of Texture variation. The Shape and 

Texture parameters for each training image are then combined into a single Appearance 

vector, and PCA is applied a third time. This generates the modes of Appearance variation. 
Finally, a Search Model is created by correlating the pixel intensities to the Appearance and 
pose parameters. Given a new image and an initial estimate of the pose parameters of the 

mean shape, this Search Model may be used to determine the appropriate Shape, Texture, 

and Appearance parameters, as well as the position, scale, and orientation (Fig. 3.2). Thus, 

it may be used to register the image to a template, such as the mean shape.

Shape

ar ia t ion

Texture

V a r ia t ion

.p pea ranee 

Va r ia t ion

Fig. 3.1. Forming an AAM from fingernail images. The training images are chosen. For 
each of these images, the landmark points are selected. Using the method of [38], the AAM 
is formed, including the Shape, Texture, and Appearance Variation, and the Search Model. 
For the subject shown here, six training images were selected, representing Fzero, +Fx, 
—Fx, +Fy, —Fy, and Fz. The first two modes each of Shape, Texture (gray-level), and 
Appearance (combined Shape and Texture) variation are shown.
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Fig. 3.2. Image registration procedure using the AAM search model. The mean shape is 
placed in an estimated location over the image to be registered. The AAM Search Model is 
applied to determine the final shape. The position of the points in this final shape is used 
to warp the image to the template image. The parameters used to make any of the three 
force prediction models may then be extracted.

3.2.3 C urrent W ork

This paper details the application of AAM to fingernail images, a process which began 

with the publication of [36,37]. Novel contributions of this work are numerous. First, 

an enlarged data set improves the statistical significance of the results and demonstrates 
the applicability of the method over a larger range of the general population. Second, the 
method for generating landmark points has been refined, leading to improved registration. 

Third, a new set of contours is devised and examined to attempt to reduce the remaining 

residual. Fourth, a more in-depth comparison to previous registration and prediction 

methods is presented. Fifth, the iterative technique used to refine the training data set 

is explained. Finally, a novel method for estimating registration error is presented due to 

the absence of true comparisons.

The paper is organized as follows: In Section 3.3, the experimental procedures are 
explained, while the registration method is detailed in Section 3.4. The image registration 

error is estimated and analyzed in Section 3.5. Various modifications to the registration 

method are discussed in Section 3.6, and the registration error of these modifications is
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examined. Finally, in Section 3.7, the registered images are used to predict force, and the 

results are discussed.

3.3 Experimental Procedures
Data are collected using an automated calibration platform [26] that applies forces to 

the finger while the subject remains relatively passive. Forces are recorded using an ATI 

Nano17 6-axis Force Sensor, with a range of 17N normal force, 12N shear, and 120N ■ mm 

torque. The desired levels of force are visited at a rate of approximately one every 0.5 s 

to ensure that the finger coloration has time to settle [3]. To reduce the number of files 

that need to be coordinated, the force is encoded into the (1,1) pixel of the corresponding 

image. This results in an effective resolution of 0.047 N [26]. A piece of two-sided tape is 

placed between the end effector and the fingerpad to ensure nonsliding contact.
Images are collected using a Point Grey Research FLEA 1.0 camera, recording one RGB 

image at each level of desired force, at a resolution of 1024 x 768 pixels. The camera is 
placed approximately 30 cm above the finger so that the region of interest of the finger 

occupies approximately 300 x 300 pixels of the image. The camera is located such that the 
finger is nearly centered in the image. Thus, when the finger is displaced during calibration, 

it remains within view of the camera. The camera gain, exposure time, and shutter speed 

are all maintained at a constant level to provide consistency across images and subjects.
Data from 16 subjects is collected, including images of both thumb and index finger. 

Between 550 and 750 images from each subject/finger combination are recorded, represent

ing combinations of normal forces between 0N to 6N and shear forces in the range —4N 
to 4 N. As explained in Section 3.4, an AAM is formed using between 9 and 10 training 

images for each of the 32 subject/finger combinations and used to register the remaining 

images. Once all of the images for one data set have been registered, they may be used to 
form a force prediction model. The calibration apparatus for both thumb and index finger 

is shown in Fig. 3.3.

3.4 Registration Procedure
Once the images have been collected, they must be registered. As explained in Sec

tion 3.2, each of the previous image registration methods has some fault or limitation 

that renders it unsuitable or, at best, undesireable. A novel registration method has been 

developed [36, 37] that iteratively uses AAM to register all of an individual’s data. As 
summarized in Fig. 3.1 and Fig. 3.2, this registration method consists of (1) selecting the 
training images, (2) choosing landmark points within those images, (3) forming the Shape,
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(a) (b)

Fig. 3.3. Experimental apparatus. (a) Calibrating the index finger. The finger rests 
between the restraint and the end effector while the sensor, mounted on the flotor, records 
forces. A light box is placed above and behind the finger to provide consistent illumination 
while a shield blocks ambient light. The camera is stationed directly above the nail. (b) 
Calibrating the thumb. Due to the differing kinematics of the thumb, its calibration takes 
place at 90° to the finger. The restraint and end effector are different, as are the position 
of the camera and light source. The calibration apparatus compensates automatically for 
the differences in required forces.

Texture, Appearance, and Search Models, (4) registering all of the other images using 

the Search Model, and finally (5) refining the training set and the subsequent models, if 
needed. This technique has two additional benefits: the modes of variation of the finger 
under normal and shear forces are identified, and new sets of parameters are determined 

that can be incorporated into force-prediction models. These benefits will be explored at 

appropriate locations.

3.4.1 Train ing Im ages

First, a subset of the data set must be selected and identified as training images. These 

should, within reason, exhibit the full variation of Shape and Texture present in the data 
set [39]. Some past fingernail imaging data sets, such as those collected for the original 

EigenNail experiments [27], consist of several groups of images recorded at approximately 
the same levels of force. The desired force in the x- and y-directions for one such data set 

are plotted in Fig. 3.4(a). In this data set, it is reasonable to suppose that a single image 
from each of these groups would suffice to form a training set as it may be expected that 
all images within each group have approximately the same characteristics.

The goal of the current work is to characterize variation of the finger coloration over the 

full range of forces, rather than classify directional patterns of coloration. Because of this,
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Fig. 3.4. Force grouping of finger images. (a) Shear forces from a directionally grouped 
data set, where many images are collected at a few specific force levels. Such a set is easily 
divided into groups. (b) Shear forces from a more continuously distributed data set, where 
only one or a few images are collected at many specific force levels. Dividing such a data 
set into groups is not as intuitive, although the same general procedure may be used. In 
both cases, forces near zero shear form one group. Other forces are grouped according to 
shear force angle. Lines in both images indicate divisions between groups.

the images in experiments conducted for the current work are not grouped as conveniently, 

but are instead more continuously spread throughout the force space, as illustrated in 

Fig. 3.4(b). To attempt to obtain a representative set of training images, however, a similar 

principle may be applied. The images are grouped by location in the force space, first by 

their proximity to the z-axis and then by their angular coordinate. The groups are shown 

in Fig. 3.4(b). A representative image from each group is randomly selected, and together 

these images form the set of training images.

3 .4.2 L andm ark  P oin ts

Once the training images have been selected, the landmark points must be identified. At 
first glance, the human finger appears to contain several well-defined landmarks, as shown 

in Fig. 3.5(a). The endpoints along the edge of the finger (pair A), the points where the 

lunula edge (the half-moon shape at the proximal end of the nail) meets the edge of the 

fingernail (pair B), or the points where the free matrix (the white portion that is customarily 

trimmed) terminates on either side of the fingernail (pair C) might each be chosen.
However, there are potential problems with each of these landmark points. If Pair A 

were selected to lie at the edge of the images in Fig. 3.5(b) and (c), the Shape Model would 

interpret that finger (b) is longer than finger (c). Alternatively, if an arbitrary point along 

the finger were chosen, one could imagine the individual placing the point having difficulty 

choosing the location reliably. In Fig. 3.5(c) and (e), the lunula is either missing or obscured. 

The landmark points illustrated by pair B could not be reliably placed. The problem with 

pair C is illustrated in all of the images in Fig. 3.5(b) through (e). Each of these fingers 

is trimmed differently, or the shape of the nail is different. The placement of pair C would
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Fig. 3.5. Landmark point location considerations with the human finger. (a) Potential 
landmark points for AAM on the human finger are shown. The endpoints for the finger edge 
contour (Pair A), the points where the lunula edge meets the edge of the fingernail (Pair B), 
and the points where the free matrix terminates on either side (Pair C) are suggested. Each 
pair creates problems in certain cases. The finger images may contain differing lengths of 
the finger, as in (b) and (c), which would inhibit the proper placement of Pair A. The lunula 
is not visible in some fingers, as in (c) and (e), making Pair B unsuitable. The variation in 
nail-trimming condition and nail shape shown in these images indicate that Pair C would 
likewise make a poor landmark. In (f), two contours are used to represent the finger: the 
outer edge (points 1-15) and the fingernail edge (points 16-35).

vary depending on the judgment of the individual placing the points. Even if these three 

sets of points could be selected reliably, they would be insufficient for registering the full set 

of finger images. Other landmarks might be chosen that are specific to the individual, such 
as wrinkles in the skin, hangnails, or other imperfections, but these would not be generally 

applicable from one subject to the next. Since a registration method that can be generalized 

is desired, a different approach is required.
Rather than locating specific landmarks, two contours are chosen to represent the 

variation in shape of the finger, as illustrated in Fig. 3.5(f). The finger contour represents 

the outside edge of the finger. The nail contour follows the edge of the fingernail, tracing 
along the inside edge of the free matrix to eliminate differences in nail trimming. Points 

are selected by hand along each of the two contours.
The following algorithm is then applied to smooth the data:
1. Smooth each contour using linear interpolation.

2. Estimate the angle between the finger vector and the positive x-axis.

3. Identify the most distal point on the fingernail contour (along the finger vector).
4. Starting with this point, smooth the nail contour using linear interpolation.

5. Calculate the fingernail length (Ln) (along the finger vector).
6. Identify the most distal point on the finger contour (along the finger vector).

7. Starting from this point, the endpoints of the finger contour are found at 1.5Ln.
8. Smooth the revised finger contour using linear interpolation.

These steps are described in detail in the following sections. For the standard registration
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model used in this paper, 30 points are used to form the final finger edge contour, and 45 
points are used to form the final fingernail edge contour. The final smoothed contours for 

each image are shown in Fig. 3.6 and Fig. 3.7.

Smoothing of the contours by interpolation is illustrated in Fig. 3.8(a). The finger 

contour is interpolated such that the x- and y-coordinates are each spaced evenly between 

the first and last points. The nail contour, on the other hand, is arranged such that the 

first point is repeated at the end. This allows the interpolation to take place over the 

entire intended loop. One more point than required is generated since the first and last 

points of the output will also be identical. This repeated final point is eliminated after the 
interpolation. Initially, each of the two contours is interpolated so that they contain 51 

points to standardize the following steps.

3.4 .2 .1  F in din g the F inger A n gle

Determining the approximate angle of the finger involves finding the average of the 

angles of each of the two sides, as shown in Fig. 3.8(b). The first third of the finger contour

Fig. 3.6. Index finger training images from all subjects. The automatically smoothed 
contours are shown on the images. Due to the design of the calibration equipment, index 
finger images always point up.

Fig. 3.7. Thumb training images from all subjects. The automatically smoothed contours 
are shown on the images. Due to the design of the calibration equipment, thumb images 
always point to the left.
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/
Fig. 3.8. Smoothing contours/finding the finger angle. (a) Smoothing a sample finger 
contour by linear interpolation. The black dots are the initial (manually-selected) points, 
while the red circles are the interpolated points along the contours after the first step. 
(b) The angle that the finger direction vector (blue line) makes with the positive x-axis is 
approximated by finding the average of the angles of each of the two sides (green lines).

is designated as the “right” side of the finger. The angle (Or) between these points and 

the positive x-axis is estimated. (All angles in this paper are measured positive clockwise 

since they are in image plane coordinates where the x-axis is positive right and the y-axis 

is positive down.) Likewise, the final third of the finger contour is designated as the “left” 

side of the finger, and its angle (Oi) relative to the x-axis is estimated. These two angles 
are averaged to estimate the finger angle, Of =  0.5 (Or +  di). The finger angle may also be 
used to define the finger direction vector, Vf =  [cos Of sin Of ]T.

Since the two-argument arctangent function is used to calculate the side angles, a range 
correction may be necessary. Given that the range of the atan2() function (in Matlab) is 

[—n,n], if the finger is pointing approximately to the left, the two line angles may be at 

opposite ends of the range. Averaging such values would result in a finger angle near zero 

(i.e., pointing to the right). To correct for such an event, the angles are compared prior to 

averaging. If their difference is more than 1.5n radians, the positive angle is reduced by 2n 
before averaging.

3 .4 .2 .2  A d ju stin g  the N ail C on tou r

To adjust the nail contour, it is first desired to find the most distal point on the nail 
contour, along the line through the nail centroid and parallel to the finger direction vector, 

as illustrated in Fig. 3.9(a). To do this, the nail points are translated so their centroid lies 

at the origin and then rotated into a coordinate system defined such that the new x-axis 

is parallel to V f, with the same z-axis as the original image. In terms of a coordinate 
transformation, this may be written as
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Fig. 3.9. Adjusting the nail contour. (a) Finding the most distal point of the nail contour. 
The finger axis is shown through the nail centroid, and the two points where it intersects 
the nail contour are located. The one with the larger (more positive) coordinate parallel to 
the finger axis is chosen as the most distal point. (b) Smoothed nail contour (red circles), 
with initial point (larger green circle), superimposed over original points (black dots).

x\\ cos Of — sin Of —x - i xi
xi = sin Of cos Of —y yi
1 0 0 1 1

(3.1)

where X =  xi and y =  yi are the centroid of the n nail points. The zero crossings 
of the perpendicular coordinate (x i)  are then found by locating the two sets of consecutive 

pairs of indices where the sign of the perpendicular coordinate changes. The initial and 

final points are considered a consecutive pair for the purposes of this calculation.
The most distal zero crossing is found by comparing the signs of the parallel coordinate 

and selecting the positive one. The exact zero crossing location is then estimated by linear 
interpolation between these points. Using this new starting point, the entire contour is 
smoothed again using linear interpolation, this time generating 45 points. The results for 

the sample image are shown in Fig. 3.9(b). As a final note, the length of the fingernail along 

the finger direction vector, Ln, is calculated as the distance between the two zero crossing 

points. This will be used in the next section to find the endpoints of the finger contour.

3 .4 .2 .3  Segm enting the F inger C on tou r
The final step for adjusting the contours is to segment the finger contour so that the full 

length of the finger is 1.5Ln. As with the nail, the most distal point of the finger is found 
by transforming the finger points into a coordinate system aligned with the finger direction 

vector and with their centroid at the origin. (This point is marked with a blue circle in 

Fig. 3.10(a).)
To find the endpoints of the new finger contour, the same algorithm used to find the most- 

distal point is adapted. First, the rotation angle used in the transformation is Oe =  Of +  n . 
This rotation means that the algorithm will now search for intersections perpendicular to



55

•• •

•
• •

•
•

•
o

o
• \ • • • 

x  •*
•* ’• • /  •

♦ :  /  \  \  *

• K /  /  •*

. * *

&

® $  CK
° g  X  •
O ® <P °
*  % J  °°

* °  <fe®0aooo<!P # ° °
» o  0.0°̂

•
•

•

(a) (b)

Fig. 3.10. Segmenting the finger contour/final smoothed contour. (a) Segmenting the 
finger contour using the length of the nail as a guide. The centroid of the finger contour 
points is the blue circle. The blue line is parallel to Vf and the green line is perpendicular 
at a distance 1.5Ln from the most distal point. The green circles are the new endpoints of 
the finger contour. (b) Final sample finger contour. Once all segmenting is finished, the 
remaining contour is smoothed as before. The original points are shown as black dots, while 
the final points are shown as red circles.

the direction vector. Also, rather than translating the points so their centroid is at the 

origin, a new point must be found that lies along the line that will define the end of the 

finger. The coordinates of the point Pe locating the end of the finger contour along the 
finger direction vector is found using the formula

Pe =  P0 — 1.5Lnv f  (3.2)

where P0 is the coordinate vector of the most distal point. (The line through the most 

distal point along Vf is drawn in blue in Fig. 3.10(a), while the line perpendicular to the 
finger direction vector, which defines the end of the finger, is drawn in green. Pe lies at their 

intersection.) After transforming the finger contour points to the coordinate system defined 

by 9e and Pe, the algorithm now yields two points, one on either side of the finger (marked 

in Fig. 3.10(a) with green circles). These are the new endpoints of the finger contour. The 

points between these two (on the distal side) are retained, while the proximal points are 

discarded.

Once the endpoints have been identified, the finger contour is smoothed again (using 30 
points) to provide even spacing along the contour between points, as shown in Fig. 3.10(b). 

In the figure, the original (hand-selected) contour is shown with black dots, while the final 

contour is shown with red circles. This procedure ensures consistent generation of contour 

points across all subjects, potentially allowing for future interfinger registration and force 

prediction.
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3.4.3 Shape M o d e l

The procedure of forming the Shape Model (as well as the rest of the AAM) essen

tially follows that given in the original work by Cootes et al. [39] and expanded on by 
Stegmann [75]. However, some details as applied to fingernail images are of interest here. 

The point coordinates (xji , yji) for the ith training image are extracted to a column vector 

of the form xi — [yu ■■■ y^ x u ■■■ x^  ]T.

The shape vectors are then aligned to the mean shape X using Procrustes analysis [76, 

77] within an iterative procedure. After alignment is complete, a Principal Component 

Analysis (PCA) is performed on these vectors to determine the principal modes of variation. 

The PCA reveals the principal axes, or eigenvectors, $ s — [ $ 1 0 2 ■ ■ ■ 0 2n ] of the 
covariance matrix

Ss$s — $sAs (3.3)

where S s is the covariance matrix of Shapes, and A s is a diagonal matrix of the eigenvalues 

(Ai, ■■■ , A2n) corresponding to each of the eigenvectors. The variation in shape may be 

modeled using the formula

x — X +  $sbs (3.4)

where bs is a vector of Shape parameters, and x is an instance of shape. Given (3.4), new 

shapes may be synthesized.

It is instructive to investigate variation in a single Shape mode. Fig. 3.11 shows the first 
two modes of variation from the index finger of one subject. The patterns seen here are 

typical of all subjects. The first mode is the left-to-right motion of the nail across the finger 

characteristic of x-direction force. The second mode is the up-and-down motion of the nail 

across the finger characteristic of y-direction force. For all of the PCA models in this work, 

the number of eigenvectors required to describe 99% of the variation are retained and the 

rest are discarded.
Another test of the Shape Model is the relationship between the Shape Parameters. If 

the parameters are dependent, it may signify that the PCA was not a good approximation 
of the data since it depends on the assumption that the variation in the data is linear. 

Fig. 3.12 shows plots of pairs of the first three Shape Parameters for the same subject. 

Since these plots (and those of the rest of the pairs of the Shape Parameters) show no 
evidence of a relationship between the parameters, it may be concluded that the linear 

relationship assumed by the PCA holds, and the Shape Model is an accurate representation 
of the variation in the finger.
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Fig. 3.11. First two modes of Shape variation (subject 10 thumb). The first mode (first 
row) shows the lateral movement of the nail relative to the finger edge typical of x-direction 
force. The second mode (second row) shows the longitudinal movement of the nail relative 
to the finger edge typical of y-direction force.
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Fig. 3.12. Shape parameter pairs (subject 4 index finger). Gray dots are all images, 
while black dots represent the training images. Only the first three shape parameters are 
shown. The lack of relationships apparent in these plots indicates that the linear relationship 
assumed by the PCA is accurate.

3 .4 .4  T extu re  M o d e l

As with the Shape Model, the general formation of the Texture Model adapts the method 

of Cootes [39]. First, the Training Images are warped to the mean shape using a modified 
Piecewise Affine transformation. This transformation involves dividing the region of the 

finger into triangles, then finding the affine transformation T  that relates the ith triangle in 

the current Shape to the same triangle in the reference Shape. The Delaunay triangulation 

is used to determine the triplet of points that form each triangle. The ith transformation 
is estimated (using least squares) to relate the three vertices in the current Shape to the 

reference Shape.

To reduce the number of calculations that must be made, only the triangulation of 

the mean Shape x is calculated for each subject. Although for most subjects the general 
Delaunay triangulation is sufficient, about 40% (13 of 32) require modifications. This occurs 

due to two different problems in the contours. First, some contours do not form a convex 

shape, occasionally containing some points that are within the convex hull. In these cases, 

the triangles that close the hull but are outside the finger contour are discarded. Second, in
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a few cases, the finger shape does not completely enclose the nail. This most often manifests 
when the nail extends beyond the proximal end of the finger contour, as in the 5th image 

in the top row of Fig. 3.6. In this case, the nail points that lie outside the finger shape are 
added to the outside shape, and the triangulation is recalculated.

This mean triangulation is used when transforming all images for this subject/finger 

combination. For a specific image, the current Shape is transformed to the mean Shape 

using this standard triangulation. Any triangles that are reversed (where the points have 

moved too far relative to each other) are discarded.
Once the image is warped, the pixel intensities are raster scanned to a column vector 

[ ] T
gi — [Pu ■ ■ ■ Pmi\ . These Training Image intensity vectors are normalized to reduce 
global lighting effects. A PCA is then used to determine the principal modes of Texture 

variation. The details of the PCA are much the same as for the Shape Model:

S g/ — Ag (3.5) 

In the texture case, a modified covariance matrix [78] of the form S g/ — G TG, where 

G — [g1 — g g2 — g ■ ■ ■ gn — g ]. The eigenvectors $ g/ of this matrix are related 

to the eigenvectors of the original covariance matrix using the formula — G T$ g/ . The 
variation in Texture may be modeled using the formula

g — g +  bg (3.6) 

where bg is the vector of Texture parameters, and g is an instance of texture. As before, 

new textures may be synthesized using (3.6). The first two modes of variation in Texture for 

one finger are shown in Fig. 3.13. The first mode exhibits the asymmetric pattern formed 

when x-direction force is applied. The second mode exhibits the alternating bands across 

the middle of the nail and the distal end of the nail that form under y-direction force. These 

trends hold across all subject/finger combinations.
As with the Shape model, the relationship between the Texture Parameters is investi

gated. Fig. 3.14 shows plots of pairs of the first three Texture Parameters for the same 

subject. As with the Shape Model, there is no evidence of a relationship between the 
parameters, indicating that the linear relationship assumed by the PCA holds and the 

Texture Model is an accurate representation of the color variation inherent in the finger.

3.4.5 A p p ea ra n ce  M o d e l
The general method is again followed to form the Appearance Model. First, weights are 

calculated to relate the Shape parameters to the Texture Parameters. Then, the two sets
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Fig. 3.13. First two modes of texture variation (subject 2 index finger). The first mode 
(first row) shows the asymmetric patterns characteristic of x-direction force. The second 
mode (second row) shows the alternating bands across the distal end and middle of the nail 
characteristic of y-direction force.
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Fig. 3.14. Texture parameter pairs (subject 4 index finger). Gray dots are all images, 
while black dots represent the training images. Only the first three texture parameters are 
shown.

of parameters are combined into a new set of column vectors ci =  [rbT bJi]T. Various 

methods have been proposed to find the weight values relating Texture to Shape [39,75]. 

This work uses the variance ratio r =  Ag/As of the overall variance in Shape (As =  ^  ) 

and the overall variance in Texture (Ag =  ^  Aĝ ).
Given the combined Appearance vectors, the PCA follows the standard procedure, 

resulting in the following formula for the variation in appearance:

b =  $ cc (3.7)

where c is the vector of Appearance parameters, b is an instance of Appearance, and 

is the matrix of eigenvectors. As before, new instances of appearance may be synthesized 

using (3.7). The first two modes of variation in Appearance for one subject are shown in 

Fig. 3.15. The first mode exhibits the characteristics of force in the x-direction, while the 

second mode displays the characteristics of y-direction force.
Again, the relationship between the Appearance Parameters is investigated. Fig. 3.16 

shows plots of pairs of the first three Appearance Parameters for the same subject. Since
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Fig. 3.15. First two modes of appearance variation (subject 4 index finger). The first mode 
(first row) shows the lateral movement of the nail and corresponding color pattern typical 
of x-direction force. The second mode (second row) shows the longitudinal movement of 
the nail and corresponding color pattern typical of y-direction force.
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Fig. 3.16. Appearance parameter pairs (subject 4 index finger). Gray dots are all images, 
while black dots represent the training images. Only the first three appearance parameters 
are shown.

these parameter-pair plots show no evidence of a relationship between the parameters, it 
may be concluded that the Appearance Model accurately represents the variation inherent 
in the data.

3 .4 .6  Search M o d e l

A four-level, multiresolution Search Model is formed using the standard method of 

perturbing the training image parameters, resampling the images using the new parameters 
and calculating the matrix relating the perturbed parameters to the resampled image 

values [39]. The Search Model is applied to each image in the data set to register each 

of them. A manual pose estimate with the mean Shape is placed on the first image. The 

standard AAM Search procedure is then applied, with a maximum of seven iterations for 

each level of resolution. The search converges when the residual reaches the predefined 

minimum. Once the search procedure has converged, the point locations are saved. These 
locations are used as the initial estimate of the pose for the next image. This procedure is
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summarized in Fig. 3.2.
For some images, the previous image location does not provide a sufficiently close 

estimate for the AAM to register the image. In these cases, manual intervention is required, 

and the investigator stops the registration process to re-align the mean Shape. This 

generally happens when data collection was interrupted and the finger was repositioned 
or when the test subject relaxed enough that the controller “surprised” them with a new 

level of force, causing the finger to apparently jump between one image and the next.
While registering the images, it sometimes becomes apparent that certain images cannot 

be characterized by the Search Model, regardless of the initial placement of the contour. 

This is assumed to be an indication that a mode of variation of the data set is not present in 
the Training Images. Therefore, once all of the images are processed by the Search Model, 

these images that cannot be processed are grouped. One of the images from this group is 

randomly selected and added to the set of Training Images. The point contours are manually 

selected for this new image, and the smoothed finger and nail contours are generated as 
before. The Shape, Texture, Appearance, and Search Models are all recreated, and the 

new Search Model is applied to the images in the unprocessed group. This procedure is 

repeated until no unprocessed images remain. Most data sets are successfully registered 

with no additional Training Images; however, 6 of the 32 data sets required one extra 
Training Image. No sets required more.

3.5 Registration Error
One may reasonably inquire as to whether the images have been registered correctly 

when the process is complete. The general procedure for determining correct image regis
tration is to subtract pixel intensities from one another. However, since the intensity at a 

given location in these images changes from one force level to the next, repeated images 

would need to be recorded at each level to verify registration using this method. Since time 

constraints prohibit such a large data set from being collected, the current image is instead 

compared against other “nearby” images, where the Cartesian distance between images in 

Force Space is used. (It is assumed that, when the finger is experiencing similar forces, the 

Shape, coloration, and other properties should also be similar.) This distance metric d is

=  ( fxi — f xj)2 +  (fyi — f yj)2 +  ( f zi — f zj)2 (3.8)

A thresholded Gaussian kernel method is used to determine the weight each other image 
should carry for any given image, similar to that used in Locally-Weighted Polynomial 

Regression [56]. The weight for the jth image (relative to the ith image) is
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djj A2
K '  dij <  dc 

dij >  dc
(3.9)

for the kernel width K  and cutoff distance dc. The weighted average of all nearby images 

is calculated, and this average is used for comparison. For the data analyzed in this paper, 

the kernel width is set to K  =  0.25, and the cutoff distance is set to dc =  2K =  0.5. 

Using these parameters, at least 2 nearby images are used to form each average image, 
while many combine over 100 nearby images. The RMS error in pixel intensity between the 

current image and the average image is then found. Outliers are investigated as potentially 

poorly registered images and the registration corrected, if needed. For each subject/finger 
combination, the overall RMS error is also found. No statistically significant difference is 

found between the effect on the registration accuracy in the thumb images (1.5 ±  0.3) or 
the index finger images (1.4 ±  0.3).

The standard method presented thus far has been modified, in an attempt to characterize 
its behavior and determine optimal parameters. The three alterations that are considered 

here are (1) changes to the number of landmark points used to represent each contour, (2) 

selection of the color channel to be processed, and (3) shape of the underlying model. Each

The first parameter that has been varied in these experiments is the density of the 

landmark points in the contours used for AAM registration. A preliminary investigation into 

the variation of force calibration accuracy with point density was conducted previously [37]. 

The motive is to reduce the computational complexity. The Standard model uses 75 

landmark points, with 45 points on the edge of the fingernail and 30 on the outside edge 
of the finger. When registering images between subjects such density may be necessary as 
different shapes of finger and nail require more complete models to ensure accurate mapping. 
When registering images that all belong to the same finger, however, the nail remains rigid, 

with the only apparent deformation occurring due to rotations out of the viewing plane. A 

less complex model should suffice and reduce the number of calculations required to form 

and apply the AAM.

Various landmark point configurations were designed in order to characterize the rela

3.6 Method Modifications

of these modifications is detailed, along with the corresponding results, in the following 

sections.

3.6.1 Landm ark  P oin t D ensity
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tionship between landmark point density and registration error. The Standard model is 

used as the basis for the other models. For consistency, the same training images are used. 
The number of landmark points is reduced using the same interpolation procedure explained 

previously. Fig. 3.17 shows the five different landmark point configurations (containing 75, 

50, 25, 15, and 6 points) applied to the same image. This process is repeated for each of 

the training images in the original data set. The AAM is formed as before and the rest of 

the image set is registered.

The registration error for these images is calculated as follows. First, each of the 
registered contours from the Standard model is interpolated as if it were one of the Training 

Images. Then the corresponding image is transformed to the mean image for the current 
reduced-point model. The pixel intensity RMS error for each image is calculated as before. 
These errors are aggregated for each subject into a single RMS value. The overall mean and 

95% confidence intervals for each Point Density registration model are shown in Fig. 3.18. 

Since the error for the Standard model is calculated using a different method than the 

others, it should not be considered an adequate benchmark for the other error values. It 
is more appropriate to compare the four reduced-count models. The mean Pixel Intensity 

RMS errors for the respective models are 3.3 ±  0.7 (50-point model), 4.0 ±  0.6 (25-point 

model), 5.1 ± 0.8 (15-point model), and 6.8±  1.4 (6-point model). Using ANOVA followed by 

Tukey’s HSD test, no significant difference is detected between the 50-point model and the 

25-point model, while the lower density models do show a statistically significant difference. 

Thus, a conclusion may be drawn that the point density can be reduced to the 25-point 

model without significantly affecting the registration results. It should be noted, however, 

that even the largest error represents approximately 2.7 % of the full intensity range of 

0-255.

Fig. 3.17. Different landmark point configurations for the same image, with (a) 75, (b) 
50, (c) 25, (d) 15, and (e) 6 points.
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Fig. 3.18. Pixel intensity RMS error of the point density registration models (scale 0-255). 
The 75-point model is used as the standard for the other models, so only comparisons among 
the reduced-point models are valid. The 15- and 6-point models have significantly higher 
error than the 50-point model.

The color channel used during registration was the second parameter to be investigated. 
A preliminary investigation into the variation of force calibration accuracy with color 

channel was conducted previously [37]. The Standard model uses the full RGB images 

to form the AAM. However, since the finger coloration effect is most pronounced when 

reflecting green light [4,64], the force prediction model uses only the Green channel to 

predict force. If the Green channel alone could be used to register the images, processing 
time would decrease, since the full RGB images require three times as many calculations. 

If it is demonstrated that the registration accuracy is not reduced when using a Green-only 
AAM for registration, this change may be freely implemented.

Three other color-based registration models are also implemented: Gray (in which the 

grayscale average of the three color channels is taken before model formation or image 

registration), Red-only, and Blue-only. It is expected that the registration algorithm will 
work nearly as well for these models since the color information contained within all of the 

channels is roughly the same. However, force prediction should be less effective using the 

Red-only AAM since red light has been shown in the past to be less effective when reading 

the force coloration effect [64]. To form the color-specific AAM, the same 9 or 10 training 
images and landmark point locations are used across all five models. As with the Landmark 

Point Density models, this ensures a consistent starting point.

Estimating the error for these registration models is straightforward: since the number 
of points remains the same, no interpolation is needed. The images are registered to the 

new template (e.g., the Red model) using the points from the Standard model and the

3.6.2 C o lor  C hannel R eg istra tion  M od e ls
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triangulation from the new model. The Pixel Intensity RMS error is again calculated, 
and the error in all images for one subject is calculated as a representative value for that 

individual. The mean and confidence intervals for the individual errors are shown in Fig. 3.19 

for each of the color channel registration models. As with the previous error comparison, 

the error from the Standard model is included only for reference. The Gray (4.8 ±  0.9), 

Red (4.9 ±  0.6), Green (5.5 ±  0.9), and Blue (6.4 ±  1.1) models exhibited mean errors with 

no statistically significant difference. As before, all numbers are given in the unitless pixel 
range of 0-255.

3 .6.3 M od ified  Shape R eg istra tion  M o d e l

The final method of modifying the standard AAM is to extract only the skin along the 

sides of the nail, rather than the entire skin shape. The motivation behind this alteration 
is that the skin along the distal end of the finger tends to deform much more than the skin 

along the sides of the nail while not providing as much useful color information for force 

prediction. When it deforms, the apparent space between the nail and the edge of the finger 

changes, causing features in this region (such as the free matrix, hangnails, etc.) to occupy a 
larger or smaller percentage of the region. When the image is warped to the standard image, 

the nail appears to change shape in response to force. Obviously, this effect is undesireable. 

Eliminating the distal region of the skin from a force prediction model would be ideal since 

it would remove this dependence on deformation-based pixel intensity changes. However, 

it would be useful to know whether removing these regions negatively impacts registration 

of the images.
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Fig. 3.19. RMS error of the various color channel registration models (scale 0-255). The 
RGB model is used as the standard for the other models, so only comparisons among the 
alternate color-channel models are valid. No statistically significant difference among the 
errors is detected.
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This method is illustrated in Fig. 3.20(a). The nail contour remains identical to that 
used in the standard AAM. However, the finger contour is segmented using the following 

algorithm: The nail centroid, the finger direction vector, and the most proximal point of the 
nail were all found in Section 3.4.2.2. A line is drawn perpendicular to the finger direction 

vector, through the nail centroid. The intersection of this line with the finger contour is 

found using the method of that same section. The same procedure is used to find the 

intersection of the finger contour with the line perpendicular to the finger direction vector 

through the most proximal point of the nail. These two pairs of points are used to divide 

the finger contour into segments along either side of the nail, which are then smoothed as 

described previously. For this work, only 5 points are used to smooth along each side of 

the finger since the edge of the finger is relatively straight in this region, as illustrated in 
Fig. 3.20(b).

The general Delaunay triangulation would include much of the skin along the upper 

sides of the nail that is not desired in the Texture formulation. Therefore, the modified 

algorithm detailed previously is applied in three parts. The nail contour is used as the first 
region, and each of the two sides are extracted as separate regions. The side regions are 

bounded by the proximal end of the nail on one side and by the nearest nail contour point 

on the distal side. Only the triangles inside each region are retained. A typical triangulation 
is shown in Fig. 3.21.

From here, the procedure is the same as that used to form the Point Density models. 

The Training Image shapes for a given subject are converted to the Sides model using

(a) (b)

Fig. 3.20. Segmenting the finger contour to use only the skin along the sides of the 
nail. (a) The nail contour is adjusted as before. To segment the finger contour, the line 
perpendicular to the finger vector is drawn through the nail centroid (lower green line). This 
marks the most distal point of the finger contour on both sides (lower-left green circles). 
The most proximal points of the finger contour (upper-right green circles) are found by 
drawing the line perpendicular to the finger vector through the point along the nail contour 
that intersects the finger vector line in the proximal direction (upper green line). (b) The 
final smoothed contour is superimposed over the original points.
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Fig. 3.21. Modified Delaunay triangulation of the modified shape registration model. The 
procedure begins with the standard Delaunay triangulation. Lines are drawn between the 
ends of the finger contour, and triangles outside this region are eliminated.

the above procedure. Then, a new AAM is formed using these newly annotated Training 

Images. The new AAM is used to register the other images in the data set. To calculate 

the registration error, the point contours found using the Standard registration model are 

converted to the Sides model using the above procedure. The Pixel Intensity RMS error is 

then calculated for all images and the RMS error for each subject is found. The mean RMS 

error for the Register Sides model is 4.7 ±  0.6.

3.7 Force Prediction
The final goal, of course, is not merely to register the images, but to calibrate a 

force prediction model using these registered images. The EigenNail Magnitude model, 

whose derivation has been detailed previously [36], is used to evaluate the force prediction 

capabilities of each of these registration models. In essence, this model uses Principal 

Components Regression [79] to relate the forces to the pixel values, thus reducing the 

unwieldy M -by-N  (images by pixels) input matrix to a more manageable M-by-P (images 

by EigenNail coordinates) matrix. The first P  EigenNails are found that represent 99% of 

the variation in the pixel data, and all of the images are projected onto these P  EigenNails 

to form coordinates in Nail Space. A least-squares regression is performed to relate these 

Nail coordinates to the forces in x, y, and z simultaneously.

To validate the models, each subject’s registered images are randomly divided into 

Training and Validation sets, with 25 % of the images selected as Validation data. The 

model constants are calculated using the Training data. Then, the model is used to predict 
force on the Validation data. This simulates the situation where a representative calibration 

set has been taken and a new data set is also taken, but may not contain exactly the same 

forces as the calibration set. One hundred such validation experiments are simulated for 

each subject, with a different validation set chosen each time. The aggregate prediction 

RMS error is calculated for each subject. In Fig. 3.22, the Standard model results are
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Fig. 3.22. Force Prediction RMS Error of the Standard registration model, grouped by 
force direction. No statistically significant difference is detected among the three force 
directions.

plotted, showing the mean RMS error in each force direction, along with the 95 % confidence 

intervals. All three directions of force exhibit RMS errors of 0.56 ±  0.03 N or less.
This same method is used to determine whether any significant effect may be seen among 

the three model variations. Fig. 3.23 shows the comparison among the five Landmark Point 

Densities. The standard 75-point model exhibits an overall RMS error of 0.55 ±  0.01 N, 

while the 50-point, 25-point, and 15-point models each exhibit 0.56 ±  0.01 N of RMS error. 

The 6-point model shows a significantly higher error of 0.62 ±  0.02 N.
The Color Channel registration model comparison is shown in Fig. 3.24. As before, the 

Standard (or RGB) model has an RMS error of 0.55 ±  0.01 N, while the Gray model has an 

error of 0.57 ±  0.01 N. The Red model has an error of 0.57 ±  0.02 N, while the Green and 

Blue models have an error of 0.56 ±  0.01 N. No significant difference may be seen between 

any of the models. This result is surprising, given that past results [57] have shown that the 
green channel correlates more closely with force prediction than other channels. However,

Fig. 3.23. Force prediction RMS error of the landmark point density registration models. 
The 6-point model has a significantly higher error than the rest.
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Fig. 3.24. Force prediction RMS error of the color channel registration models. No 
statistically significant difference in the error is detected.

it may be due to variations in lighting as previous data collection used an unspecified “soft” 

white LED source, while the current data set used super-bright white LEDs (Model No. 

YSL-R547W2C-A13). In addition, prior experiments did not control the lighting as closely, 

allowing ambient light to reflect from the fingernail into the camera.

The comparison of the registration model Shape is shown in Fig. 3.25. An additional 
model is shown here since the comparison may be made between the Standard model, the 

“Register Sides” model (which was discussed previously), and the “Convert Sides” model, 

in which the force is predicted from the images registered using the Standard model but 

then converted to the short Sides-only model. Again, beginning with the Standard model's 

0.55 ±  0.01 N mean RMS error, the Register Sides and Convert Sides models both exhibit 

a slightly higher (albeit statistically significant) error of approximately 0.60 ±  0.02 N. Note 

all of these results in light of the resolution of the force encoding method (0.047 N).

In addition, the time required to predict force on 100 randomly selected images from each
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Fig. 3.25. Force prediction RMS error of the modified shape registration models. The 
Standard model has a significantly lower error than the other two models.
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subject is calculated. In these experiments, the Standard (RGB) 75-point registration model 

predicts force at an average rate of 0.63 ±  0.01 ms per image. The 50-point and 25-point 

models exhibit statistically similar times (0.62 ±  0.01 ms and 0.62 ±  0.01 ms, respectively), 
while the 15-point model (0.58 ±  0.01 ms) and the 6-point model (0.43 ±  0.01 ms) are sta

tistically different. Likewise, the Gray (0.67 ±  0.01ms) and Green (0.66 ±  0.01ms) models 

predict force significantly slower than the RGB model but similar to each other, while 

the Red (1.04 ±  0.02 ms) and Blue (0.94 ±  0.02 ms) are significantly slower than the other 

three. Likewise, the Convert Sides (0.39 ±  0.01 ms) and Register Sides (0.37 ±  0.01 ms) 

models predict force significantly faster than the Standard model.

3.8 Conclusion
A new registration method has been demonstrated and developed that registers fingernail 

images with an RMS pixel intensity error of approximately 1.5 ±  0.3, an error of less than 

0.5% of the total intensity range of 0-255. Three-dimensional force prediction based on 

these images has an RMS error of approximately 0.55 N, which represents 9.2% of the full 
range of forces measured in the experiments. The marked improvements of this method over 

prior registration methods are (1) no need for fine-tuning of registration method parameters 

for each individual, (2) no images are discarded because they cannot be registered, (3) 
a registration model based on actual variation of the finger, rather than general image 

processing techniques, and (4) the force prediction model is no longer training to the residual 

motions in the registered images.
In addition, the new registration method has been refined according to the needs of 

fingernail imaging. Specifically, the following improvements to the Standard model have 

been made: (1) the number of landmark points may be reduced to as low as 25 and (2) 
the green color channel may be used to form the registration model rather than using the 
entire RGB image or the grayscale average of the color channels. Both of these have been 

shown to result in no significant loss of accuracy in registration or force prediction.

In spite of these advances, some questions have arisen due to the investigation as well 

as some avenues for future inquiry. First, a simple improvement to the technique used 
to encode forces from the calibration used here may shed more light on the significance 

and accuracy of the results. Second, the registration method still requires some human 
intervention. It may be possible to more fully automate the process by implementing an 

edge-detection procedure to position the initial estimate of the contour prior to the search 
as well as for the Training Image contour Landmark Point placement. Additionally, it may
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be possible to further automate the error checking when the contour estimate is unable to 
converge to a good solution, using techniques similar to the registration error calculation 

for the Standard model.
Finally, it is the goal of the authors to show that this registration method and the 

associated force prediction models may be used to successfully perform a human grasping 

experiment, wherein the individual finger forces are measured only using the coloration 

of the fingers, without mediating force sensors. This would allow test subjects to freely 
choose both the contact locations and modality of their grip, improving researchers' ability 

to measure natural grasps.



CHAPTER 4

OPTIMIZING FINGERNAIL IMAGING 
CALIBRATION FOR FORCE 

PREDICTION 

4.1 Abstract
This paper discusses the optimization of a fingernail imaging system for predicting 

fingerpad force. Three aspects of fingernail imaging are investigated: the lighting coloration, 

the calibration grid design, and the models used for force prediction. White and green LEDs 

are found to produce statistically similar effects on registration error and force prediction 
results across all three directions of force. Two calibration grids are implemented with 

no statistically significant difference in either registration or force prediction between the 

Cartesian and cylindrical grid designs. Of the five force prediction models investigated, a 

principal component regression model based on the pixel intensity eigenvectors estimates 

the force with the greatest accuracy.
This EigenNail Magnitude Model simultaneously estimates force in all three directions 

with RMS error of 0.55 ±  0.02 N (9.1 % of the normal force range of 6N). The other four 

models exhibit significantly larger RMS errors, from 0.65 ±  0.03 N to 1.30 ±  0.09 N. The 

calibration grids result in force prediction errors less than 0.57 ±  0.05 N in all directions. 

White LEDs correlate with a force prediction RMS error of 0.55 ±  0.01 N, while green LEDs 

correlate with an error of 0.59 ±  0.02 N. These results indicate a set of optimal parameter 
choices for the calibration of a fingernail imaging system.

4.2 Introduction
Finger force estimation using fingernail images is a method with some history and 

multiple attempts at refinement [1,3,27,59]. Fingerpad force is transduced using the 
naturally occurring color patterns present in the fingernail and surrounding skin. When 

the tissue beneath these surfaces is deformed by the incident force, the blood flow through 
those tissues is impeded, creating patterns that correlate to the magnitude and direction of 

force on the finger. These patterns have been observed across the entire population [2].
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The original fingernail sensors, consisting of a series of photodetectors and infrared LEDs 

in a sheath that was custom-manufactured for each user, were capable of simultaneously 

measuring three-dimensional normal forces up to 3 N and shear forces up to ±2 N, with an 
RMS error of 1 N normal force and 0.5 N shear force [59]. Multiple improvements have been 

made to this method. Stretchable materials have been incorporated into the design [6], 

removing the need for individually fitted sensors. In addition, the effects of the optical path 

length (the distance between the LED and the photodetector) and the wavelength of light 

emitted by the LEDs have both been optimized [5]. Green light has been found to correlate 

with the optimal response rate of the sensors.

Fingernail imaging is an additional technique based on the same principle, using digital 

cameras and controlled lighting to image the finger [3]. Using this method expands the 
imaging capability to include a larger area of the finger while increasing the resolution. The 

errors in force sensing are likewise improved, resulting in RMS errors of 0.3 N in normal 

forces up to 6 N and 0.5 N in shear forces up to 3N. The modeling complexity required 

to achieve this accuracy was reduced in that the model was trained on only one or two 
components of force at once, rather than simultaneous three-dimensional force prediction. 

Although the authors are not aware of any formal investigation into the effects of green 

light on the force prediction accuracy of fingernail imaging, past results have shown that 

the green channel of an RGB image does correlate most closely with the force [57]. The first 
parameter investigated herein is the light color. No significant difference is found between 

white and green light in either registration error or force prediction error.

Previous work has relied on the test subject to exert forces on a stationary sensor during 
data collection for calibrating the force prediction models. An automated calibration routine 

has been developed that permits the subject to be more passive during calibration [67], 

which allows a larger data set to be collected. Where 300 images may have been the 
limit during a manual calibration experiment, nearly 3000 images may be collected in a 

reasonable time using automated calibration. With the increase in collection ability, the 
concern becomes how best to arrange the target calibration set within the desired force 

space to maximize the observability [80] and identifiability [70] of the prediction model 

parameters. Therefore, the effect of calibration grid choice on force prediction error is also 

characterized in this paper. No significant difference is found between the two grid types 
in either registration or force prediction error.

Several models relating finger force to pixel intensity have been proposed. A generalized 

least squares technique uses a linear model to relate each force direction to all of the
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pixel intensities in the finger [3]. Several forms of Principal Component Regression have 

been used to relate the forces to either the pixel intensities or the Active Appearance 

Model parameters [36]. However, the relative merits of these various models have not 
been investigated. Thus, the third and final purpose of this paper is to compare the 

existing models and determine which is most successful at predicting force. The EigenNail 

Magnitude Model, originally introduced in [36], is found to have significantly lower force 

prediction error than all of the other models examined. In addition, a qualitative analysis 

method is introduced, which demonstrates that the models are trained to the expected 
patterns found in the finger.

In preliminary work [36,37], three of the five force prediction models presented here were 

developed. This work expands on those results in several ways. First, two new models, the 
Shape Parameters Model and Appearance Parameters Model, are introduced. Second, the 

effectiveness of all five models is examined across a larger data set, including 64 combinations 

of subject, finger, and LED color. Third, a standardized validation method is demonstrated, 

which may be used in future work to determine the effectiveness of new models. Fourth, 

to demonstrate the effectiveness of the model training, a qualitative analysis method is 

developed. Fifth, the prior work used only white LEDs and did not examine the effect of 

calibration grids on the results.

This paper presents the experimental setup, including details of the lighting method and 
calibration grids, in Section 4.3. The force prediction models are explained in Section 4.4, 

and the experimental results are presented in Section 4.5.

4.3 Calibration Setup
4.3.1 E xperim en ta l A pp aratu s

To perform the calibration, a Magnetic Levitation Haptic Device (MLHD) [61] is em

ployed. The MLHD has a translational workspace with a 12 mm radius and a rotational 
workspace of 8° in all three directions. It is capable of exerting up to 20 N of three

dimensional force and 4 N ■ m of three-dimensional torque.

An ATI Nano17 6-axis Force/Torque sensor is attached to the flotor of the MLHD to 

measure the contact force. A rubber surface is attached to the sensor to provide comfort, 

and a 3 cm square of two-sided tape is affixed to improve frictional behavior. The sensor is 

capable of detecting normal forces up to 17 N and shear forces up to 12 N with a resolution 

of 0.78 mN. This range and resolution is sufficient for the calibration as the intended ranges 
are 10 N normal and 5 N shear.
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A Point Grey Research FLEA video camera is mounted over the finger to record images 

during the calibration. This camera records 1024 x 768-pixel RGB images during calibration. 

The camera is attached to a static frame since the location of the finger does not vary 

substantially during calibration.
A lighting box is placed above and behind the finger to provide uniform illumination 

during calibration. This box consists of an array of 140 LEDs with a piece of tracing 

paper (3-lb. weight) to diffuse the light and reduce the shadowing effect due to the internal 

structure of the LEDs. The box is placed on a gooseneck so that it may be adjusted 

for individual variation prior to each experiment. Positioning the light source above and 
behind the finger ideally eliminates any glare on the nail, allowing only that light which 

penetrates into the nail bed to reflect back to the camera. Two lighting boxes are created, 
one containing white LEDs and the other containing green. A light shield is mounted over 

the camera to block ambient light.
Past research [59] has found that the metacarpophalangeal (MCP) joint angle has no 

effect on the coloration of the finger. The distal interphalangeal (DIP) and proximal 

interphalangeal (PIP) joints, on the other hand, do affect the blood flow to the finger 
(and hence the coloration). Direct control of either the DIP or PIP joints without affecting 

blood flow or obscuring the camera's view of the finger has thus far proved impossible. 
However, they can be controlled in the sense that the angle of the proximal phalanx can be 

controlled relative to the force sensor. If this angle is set correctly, the finger is positioned 

to encourage test subjects to maintain a constant angle in each of the DIP and PIP joints. 
To position the finger during calibration, a restraint device is implemented using a Roylan 

Static Progressive Finger Flexion Splint. The straps, which would ordinarly be used to hold 
the splint on the finger, restrict blood flow and so are removed. Rather than restrain the 

finger’s movement, the splint is used to guide the subject in finger placement.
The calibration setup is illustrated in Fig. 4.1. A restraint controls the proximal phalanx 

angle and positions the finger above the flotor. The camera is placed directly above the 
finger. The light source is located on a flexible support above and behind the finger. Fig. 4.2 

shows a picture of the experimental apparatus.

4 .3 .2  C a libration  G rids
The effect of different types of calibration grids on the calibration process is explored. 

The calibration grids chosen, as shown in Fig. 4.3, are a Cartesian (x ,y ,z) grid and a 

cylindrical (r, 0, z) grid. The grid spacing is selected such that the number of points is 

approximately the same.



76

Fig. 4.1. Schematic of calibration setup. The flotor exerts force against the fingerpad with 
a flat contact surface, while the finger rests against the restraint to guide the approximate 
angle of the proximal phalanx. The camera is positioned above the nail, with the light 
source above and behind the finger. The light shield blocks glare from ambient light.

Fig. 4.2. Photo of calibration setup. The camera, mounted on a fixed base, is positioned 
above the finger, with the light box above and behind the finger. The restraint positions 
the finger with respect to the flotor, which contacts the fingerpad. To allow the camera to 
view the scene, the light shield has been partially removed.

The grids are generated with closer spacing at lower levels of normal force to increase 

sensitivity. At normal forces below 1.5 N, A F  =  0.25 N, while above 3.0 N, A F  =  1.0 N. 

Between these limits, A F  =  0.5 N. For the Cartesian grid, the forces are spaced evenly in 

all three directions. In the cylindrical grid, the normal force and the shear force magnitude 
likewise are distributed evenly, while the angular spacing (A# =  30°) does not change across 

the range of normal force. The Cartesian grid covers the force space with 194 points, while 

the Cylindrical grid uses 250.
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Fig. 4.3. Calibration grid design. (a) Cartesian vs. (b) Cylindrical grids. Grid spacing is 
chosen so that approximately the same number of points are generated in both grids.

4 .3 .3  E xperim en t D esign
Data from 16 subjects are collected. Each subject sits for a period of 2 hours while images 

and forces are recorded on both the index finger and the thumb. Images are recorded only 

once at each force level. These images and the corresponding forces are used to calibrate 
the force prediction model. Four data sets are collected from each individual, representing 

all combinations of LED color (white vs. green) and finger (thumb vs. index). Each subject 
is given a brief introduction to the task prior to the experiments.

Past experiments showed a training effect when all calibration data followed consistent 
motions. For example, the on-nail sensors [1] were trained using a calibration trajectory 

that always rotated counter-clockwise. A bias was detected in the data that may have been 
due to this rotation. True randomization in the calibration trajectory would eliminate such 

biases. Since such a randomized trajectory might require the MLHD to transition quickly 

between very different force conditions, it could cause unstable operation. A different, more 
structured randomization method is chosen.

To reduce the influence of point order on the results, each calibration grid is divided 
into nine regions, with a central region consisting of shear forces near zero, and eight 

wedge-shaped regions containing ranges of shear force angles. For a single Finger/Color 
combination, a subject experiences all of the forces in each region three times, with the 
overall region order being randomized for each combination of test subject, finger, and LED 

color. Within a single region, the target point order always remains the same, to prevent 
large motions through the workspace (and thus, unstable operation). Thus, four data sets 

are recorded per subject, each using a randomized test order, containing between 580 and 

750 images and the corresponding force readings.
Two-minute rest breaks are provided after every nine trajectories. In addition, after the
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finger experiences all 27 trajectories, a longer, 5-minute break takes place while the light 

box is changed. For some subjects, the two fingers are calibrated on different days. For 

those that experience the entire 2-hour session at once, a third, 10-minute rest period passes 
between finger sessions while the experimental platform is modified to accommodate the 

changes between finger and thumb.

4 .3 .4  Im age R eg istra tion

Image registration is accomplished using Active Appearance Models (AAM) [39]. Fol

lowing a method developed previously [36,37], each finger’s images are used to form an 
AAM. The Search Model is then applied to register all images pertaining to that particular 

finger. Following registration, the images are used to form force prediction models.

4.4 Force Prediction Models
Five different force prediction models are used, two of which are significant extensions 

of previous models, and the other three of which are entirely new. All five predict force 

simultaneously in three dimensions.

4 .4.1 L inearized  S igm oid  M o d e l

The Linearized Sigmoid Model is based on the generalized least squares force prediction 

model used in prior experiments [3]. Previous use of this model, however, only implemented 
prediction of a single direction of force at a time and trained the model on a data set that 

only included images from a single direction of force at one time. This model does not 

readily expand to three dimensions of force, as will be demonstrated shortly. The response 

of the ith pixel to force in the j-direction ( f ) has a shape such as that shown in Fig. 4.4, 
approximately following a sigmoid curve with an upper and lower saturation limit and a 
nearly linear region in the middle. The original model involved fitting sigmoid curves using 

nonlinear least squares. The data for each pixel was fit to the model

p  ( f j ) = + r + i f o )  (41)

To reduce computational complexity, several simplifications were made. First, a locally 

weighted linear regression procedure was used to fit the data rather than nonlinear least 

squares. Second, the gradient of this fit was estimated, and all points with gradients above 

20% of the maximum gradient were marked to lie within the force transducing range. The 
corresponding pixel intensity value range was called the response range. The saturation 
limits were estimated by finding the maximum and minimum values of this response range.
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Fig. 4.4. One-dimensional force response of a single pixel. In general, either a pixel does 
not respond to force in a given direction, or fits the model of (4.1).

If this range was too small (less than 5 units on a scale of 0-255), the pixel was rejected 

as not varying enough. Third, the data within the range were assumed to fit a straight 
line. The correlation coefficient of this line was calculated and, if it was less than a certain 

threshhold (0.8), the pixel was rejected as insufficiently linear. The line models of all pixels 

that were not rejected were combined to form a single prediction model.
When pixel response data are collected that include full three-dimensional force, the 

response of any given pixel does not typically follow such a simple curve (Fig. 4.5). The 
same pixel may respond to force in all three directions, and the force in one direction may

Fig. 4.5. Three-dimensional force response of several pixels. The response of several pixels 
to Fx, Fy, and Fz are shown. Each pixel is marked with a different symbol. The pixel 
intensities (in the range 0-1) are centered about the mean value for each pixel to better 
display trends for all pixels.
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affect the response to force in another. Different directions of force respond at different 

levels of force, if at all. Visualization of the response pattern is difficult at best, given that 

the overall model must now include four variables ( fx, f y, f z, and pi).

Although a nonlinear least squares procedure could be used to fit this model, it has 

instead been determined to proceed as before. First, the values for the ith pixel across all 

images are extracted into a single vector, pi, and a locally weighted polynomial regression 

procedure [56] is implemented to find the local four-dimensional hyperplane that fits each 

point. The maximum gradient of this fitting function is found, and any data points with 

gradients more than 20% of this maximum are designated to lie in this response range. 
(No transducing range is designated as it is found that the three-dimensional shapes are 
complex and not easily specified.) The saturation limits are used in the same manner: if 

this range is less than 5 units on the scale of 0-255, the pixel is rejected as not varying 

enough. As before, the data within this range are assumed to be linear. However, it now 

must be fit to a four-dimensional hyperplane, with the equation pi =  aif x +  bif y +  cif z +  di. 

If the correlation coefficient of this hyperplane is less than the threshold (0.8), the pixel is 

rejected as insufficiently linear.
Finally, the covariance matrix (S ) is approximated by a diagonal matrix consisting of 

the variances of each of the M  retained pixels. The final assembled model is

F =  (Lt S -1L )-1 Lt S - 1 (p -  d) (4.2)

where L =  [a b c] is the coefficient matrix whose columns consist of the hyperplane 

coefficients (ai, bi, ci) and d =  [d1 d2 ■ ■ ■ dM]T is the pixel offset vector. Once an image 

has been registered, (4.2) may be applied to estimate the force.

4.4 .2  E igenN ail M agn itu d e  M o d e l

The EigenNail Magnitude Model is based on a force direction classifier, which was 

developed previously [27]. In prior experiments, images were collected at discrete force levels 

and a Principal Component Analysis (PCA) was performed to determine the eigenvectors 
(called EigenNails because they reveal the major color variations of the fingernail). Only 

the first k EigenNails, representing 99% of the variation in the data, were retained. A 

Linear Discriminant Analysis was used to determine the weights of each image along the 

eigenvectors and find a classifier to separate the force directions.
The new model expands on this concept by recognizing that the eigenvectors form a 

vector space that spans a k-dimensional subspace (hereafter referred to as the “Nail Space” ) 

of the entire M-dimensional pixel space. Using this terminology, what were referred to as



81

“weights” in previous work may now be called “coordinates” in Nail Space. Given that 

a classifier successfully separated the six groups of force, it is hypothesized that a linear 

relationship exists between the Nail Space coordinates and the force associated with the 
image. A linear multivariable least squares regression fit is determined between these Nail 

Space coordinates and the forces. Once the images have been registered, the pixel values 
for each image are arranged in column vectors, g. A PCA is performed to calculate the 

mean vector g, the eigenvalues Ai, and the eigenvectors (EigenNails) v i. Only the first 

k EigenNails are retained, to retain 99% of the variation in the data set. The EigenNail 

model may then be expressed as

g =  g +  S w  (4.3)
[ ] [ ]T 

where S  =  [vi v 2 ■ ■ ■ v k] is a matrix of EigenNails, and w =  [wi w2 ■ ■ ■ wk] is a 
vector of Nail Space coordinates. Multivariable linear least squares is applied to relate the 

force to the Nail Space coordinates using the model

F =  Kw +  F0 (4.4)

where K  =  [a b c ]T is a matrix of coefficients, and F0 =  [fx,0 f y,0 f z,0]T is the force 

offset vector. Once an image has been registered, it may be projected onto the EigenNails 

to obtain the Nail Space coordinates. Then, (4.4) may be applied to estimate the force.

4 .4 .3  A A M  P aram eters M od e ls

Three potential models suggest themselves, based on the Shape, Texture, and Appear
ance parameters found during the formation of the Active Appearance Model (AAM) used 

to register the images. These parameters are similar in concept to the Nail Space coordi

nates found during formation of the EigenNail Magnitude model, in that each represents 

coordinates in a vector space spanned by the eigenvectors representing the variation of the 

data set. In the case of the Shape model, for example, the eigenvectors represent the modes 
of variation in the Shape of the finger contour and define a Shape Space, and so the Shape 

parameters correspond to the Shape Space coordinates.

Suppose that the Shape parameters (bs), Texture parameters (bg), and Appearance 
parameters (c) for the calibration data set have been extracted. The Shape Parameters 

model is defined as

F =  Sbs +  Fq (4.5)
[ ]T

where the coefficient matrix S =  a b c T and the force offset vector F0 are identified 

using multivariable linear least squares. The Texture Parameters model (F =  T bg +  F0)
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and the Appearance Parameters model (F =  A c +  Fo) function in exactly the same way, 

with a different set of parameters for each model. The coordinates for a given model are 

calculated by projecting a given image onto the corresponding eigenvectors, a process which 

takes place during image registration. With these coordinates, the force on any desired 

image may be estimated.

4.5 Results
The effects of the three modifications to the process are evaluated on multiple criteria as 

explained previously. An optimal combination of parameters is sought, which improves the 

performance of the force prediction. Unless otherwise specified, the force prediction model 

used is the EigenNail Magnitude Model. All other analyses use all data available (i.e., white 

and green LEDs, Cartesian and cylindrical grid data).

4.5.1 L ighting

Each subject experiences both green and white light on both fingers over the full range 

of forces. Each set of images from one combination of subject, finger, and LED color are 

registered using a different model.

4 .5 .1 .1  R eg istra tion  E rror

The registration error, grouped by LED color and finger, is shown in Fig. 4.6. There is no 

significant difference in the registration accuracy between the two lighting conditions across 

the two fingers. This similarity indicates that the green LEDs may be used for collecting 
data without impacting the ability to register the images.

Fig. 4.6. Registration error grouped by LED color and finger. No significant difference is
detected between the two lighting conditions across the two fingers.
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4.5 .1 .2  F orce P red iction  E rror

To estimate the force prediction error, a subset of the data is selected at random to form 

the model. For this work, 75 % of the data is selected to form the model. The remaining 
25 % is presented to the resulting model for force prediction. This approach simulates an 

actual calibration phase followed by the acquisition of new image data. The validation 
error ej for the jth image is calculated as the difference between the predicted force Fp,j 

and the measured force Fm,j. The validation experiment is performed 100 times, randomly 
separating the data each time, and the mean validation error for each image is calculated 

to estimate the “true” validation error for each image. Finally, the overall RMS error for a 
data set is calculated.

The interaction effect between LED color and force direction on force prediction error 

is shown in Fig. 4.7. No significant difference is found between LED color across all 
force directions. Since [5] found that green light correlates better with force prediction 

accuracy, this result may require further investigation. The difference in results may be due 
to differences between the photodetectors used in previous studies and the camera CCD 

photodetectors.

4.5.2 C a libration  G rids

The calibration grids will be evaluated on three criteria: (1) their effect on registration 

accuracy, (2) their effect on force prediction accuracy, and (3) the observability and identi- 
fiability of the corresponding calibration matrices. Registration error and force prediction 

accuracy were defined previously. Observability indicates which model parameters (or 
combinations of parameters) may not be able to be estimated given the current data

0.7

Fig. 4.7. Force prediction error grouped by LED color and force direction. No significant
difference is detected between the LED colors among all three force directions.
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set. Identifiability refers to the likelihood that any model parameters can be estimated 
successfully from the given calibration set.

4 .5 .2 .1  R eg istra tion  E rror

The registration error is shown grouped by calibration grid and finger in Fig. 4.8. There 

is no significant difference between the two grids’ effects on registration accuracy. Since the 

choice of force locations visited should have little or no effect on the registration process, 
this result is expected.

4 .5 .2 .2  Force P red iction  E rror

ANOVA likewise demonstrates that there is no significant effect on force prediction error 
between the two calibration grids across all force directions (Fig. 4.9). While it has been 

assumed that such grids may have a task-specific effect, it appears that force prediction 

functions equally well between these two grid designs.
The number of images used to form a prediction model likewise has an effect on the 

force prediction error as well as the calibration time. If the same accuracy could be achieved 

using fewer images, less data would need to be collected, and the calibration time could 

be shortened. To determine the effect of the size of the data set on the force prediction 
error, the number of calibration images is reduced methodically to reduce the number of 

points by 6 , |, 2, and |. Images are removed at random to achieve the desired number 

of points, which are 485, 388, 291, and 194, respectively. The validation experiments are 

then repeated, using only the EigenNail Magnitude Model. The results for all subjects 

experiencing the Cartesian grid, grouped by number of images and force direction, are
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Fig. 4.8. Registration error grouped by calibration grid and finger. No significant difference
is detected between the calibration grids across both fingers.
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Fig. 4.9. Force prediction error grouped by calibration grid and force direction. No 
significant difference is detected between the two calibration grids across all force directions.

shown in Fig. 4.10. While the full grid, with 582 points, has an RMS error of 0.57 ±  0.01 N, 
each of the reduced-point grids has a significantly larger error, beginning with the 485-point 
grid (0.62 ±  0.02N).

For the cylindrical grid, the standard data set contains 750 images. Thus, the reduced 

numbers of points are 625, 500, 375, and 250, respectively. The results for all subjects 
experiencing the cylindrical grid, grouped by number of images and force direction, are 

shown in Fig. 4.11. The full grid has an RMS error of 0.55 ±  0.02 N, and each of the reduced- 

point grids has a significantly larger error, beginning with the 625-point grid (0.60 ±  0.02 N).
Finally, the two grid types are shown together in Fig. 4.12. This illustrates that the force 

prediction accuracy is affected by the number of calibration images in the same pattern

Fig. 4.10. Force prediction error grouped by Cartesian grid size and force direction. The 
prediction error is significantly different across all grid sizes, indicating that the standard 
number of images (582) achieves the most accurate results.
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Fig. 4.11. Force prediction error grouped by cylindrical grid size and force direction. The 
prediction error is significantly different across all grid sizes, indicating that the standard 
number of images (750) achieves the most accurate results.

Fig. 4.12. Force prediction error grouped by grid size and grid type. While no difference 
is detected between Cartesian and cylindrical grids, the standard number of images results 
in the lowest force prediction error.

across both grids and shows that the increased number of images used in the cylindrical 
grid does not affect the general trend of the error.

4.5 .2 .3  O b serv ab ility /Id en tifiab ility

The authors have chosen to use four observability criteria [80], defined as O 1 through 
O4, to compare these two calibration grids. The formulas for the indices are

Oi = (ViV2 • • • VN) N 
V M  • P

O2 =  VN  
Vi

(4.6)

(4.7)

1
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Os =  mn (4.8)

O4 =  —  (4.9)
Ml

where Mj is the jth  of the N singular values, M  is the number of equations per pose, and 
P  is the number of poses recorded. Observability index Oi is the root of the product of the 

N singular values. O2 is the ratio of the smallest to the largest singular values, while O3 is 
the minimum singular value. Observability index O4 is the product of O3 and O2. Each of 

these indices indicates a better data set by a lower result.
The observability results are shown in Fig. 4.13. No significant difference is detected in 

observability between the two calibration trajectories using any of these four observability 
indices.

One identifiability criterion, the condition number I  =  ^ , is used. The range suggested 
by Schroer [70] indicates that the calibration model parameters are identifiable from a given 

calibration set if the condition number of the matrix is less than 100. The two grids have 

an average identifiability index (across all combinations of subject, finger, and LED color) 
of 74 ±  12 (white) and 70 ±  7 (green). No significant difference is detected between them. 

These values indicates that all model parameters are likely to be identifiable using both 

calibration trajectories.

4.5 .3  F orce P red iction  M od els

The five force prediction models are compared quantitatively on their ability to estimate 
forces. They are also evaluated qualitatively on the pixels used to form the model and those
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Fig. 4.13. Observability index grouped by calibration grid. Since each observability index 
is independent of the others, only the interaction between the two calibration grids for 
any given index is meaningful. For all indices, no statistically significant difference exists 
between the two grids.
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pixels’ influence on the final model.

4.5 .3 .1  F orce P re d ic t io n  E rror
For the five prediction models, the force errors are aggregated by force direction as 

shown in Fig. 4.14. The EigenNail Magnitude Model performs significantly better than 

the other four models in all three directions of force, with an RMS error of approximately 
0.55 ±  0.02N in all three directions. The other four models exhibit errors varying from 

0.65 ±  0.03 N to 2.8 ±  1.9N. Somewhat surprisingly, the Texture Parameters Model, though 
seemingly equivalent to the EigenNail Magnitude Model in principle, has a much larger 

error. This may be due to the Texture Parameters Model being formed using only a few 
training images, or it may be due to the extensive scaling process used to condition the pixel 

intensities prior to formation of the final Texture model. The Linearized Sigmoid Model is 
significantly worse than all of the other models, a result that is unsurprising, considering 

that it generally rejects more than 80 % of the pixels for each finger. The Texture and 
Appearance Parameters models are statistically equivalent (which is intuitively appealing 

since the Texture parameters dominate in the formation of the Appearance model).

4 .5 .3 .2  Q ualitative A nalysis
A secondary, qualitative check that may be performed is to create a set of synthetic 

images where each pixel’s intensity indicates the contribution of that pixel in the prediction 
model to the corresponding direction of force. For the Linearized Sigmoid Model, the 

qualitative analysis images are straightforward. Each image is simply the corresponding

Fig. 4.14. Force prediction error grouped by prediction model and force direction. The
EigenNail Magnitude Model has significantly lower force prediction error than all of the
other models in all three directions.
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column in the coefficient matrix (px =  a, p y =  b, and pz =  c ) . The resulting images for 

one subject are shown in Fig. 4.15 and Fig. 4.16. Part (a) shows the pixel offset (d), while 
parts (b)-(d) show the images corresponding to the forces in x, y, and z, respectively.

These images (and the following qualitative images for the other models) use yellow 
to represent positive correlation, or pixels that increase in intensity as the force increases, 

and green to represent negative correlation, pixels that decrease as the force decreases. 
Note that, due to the sign convention, decreasing normal force is equivalent to pressing 

more firmly with the finger. The patterns shown here correspond to those expected: the 
asymmetric pattern exhibited when the finger is under x-direction force, the opposing bands 

near the distal end and across the middle of the nail under y-direction force, and the band 
near the distal end of the finger paired with the discoloration in the finger along the sides 

of the nail under z-direction force all appear in the corresponding image maps. These same 
patterns are exhibited, even more clearly, in the following corresponding images.

It should be noted that these images show the major problem with the Linearized 

Sigmoid Model: the majority of the pixels cannot be used due to either insufficient linearity 
or variation, and so only a small fraction of the total area of the finger affects the results. 
In many cases, the pixels chosen by the algorithm are surprising and do not seem to be 

relevant to the blood flow within the finger. This deficiency is likely the reason for the much 
larger errors exhibited by this model.

r x

Fig. 4.15. Qualitative Linearized Sigmoid Model analysis (index). The intensity of each 
pixel in these images represents the contribution that pixel makes to (a) the pixel offset 
(d), (b) the force prediction in each of the x-, (c) y-, and (d) z-directions. The brighter a 
pixel, the more it contributes. The images are each scaled to the range (-1 ,1 ).

Fig. 4.16. Qualitative Linearized Sigmoid Model analysis (thumb). The intensity of each 
pixel in these images represents the contribution that pixel makes to (a) the pixel offset 
(d), (b) the force prediction in each of the x-, (c) y-, and (d) z-directions. The brighter a 
pixel, the more it contributes. The images are each scaled to the range (-1 ,1 ).
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For the EigenNail Magnitude Model, the formula used to generate these images is

k
Pj =  £  aj  (4-10)

i= 1

where Ai is the eigenvalue corresponding to the ith EigenNail, and the index j  corresponds 
to the force direction (x, y, and z). The resulting index and thumb images for one subject 

are shown in Fig. 4.17 and Fig. 4.18, respectively. The expected patterns are exhibited in 

these images.
The qualitative images for the Texture Parameters Model are formed in a similar fashion. 

The formula is nearly identical, with the only differences being in the notation. The images 
are formed using the Texture eigenvectors § g, the Texture eigenvalues Ag, and the Texture 

Space coordinate weights tji , combined in the same form as for the EigenNail Magnitude 

Model: gj =  ^  ĵi^ g,i\JAg,i, where the index j  again represents the x-, y-, or z- coordinate. 
The qualitative images for the same subject, for index finger and thumb, are shown in 

Fig. 4.19 and Fig. 4.20. In these images, the same patterns for Fx and Fy are shown.
The major apparent difference comes in the z-direction images, where the index finger

nail is now mostly yellow with a green band near the distal end. While there are many 

potential causes of this phenomenon, it is important to recognize that the yellow is darker

(a) (b) (c)

Fig. 4.17. Qualitative EigenNail Magnitude Model analysis (index). The intensity of each 
pixel in these images represents the contribution that pixel makes to the force prediction in 
each of the (a) x-, (b) y-, and (c) z-directions. The brighter a pixel, the more it contributes. 
The images are each scaled to the range (-1 ,1 ).

(a) (b) (c)

Fig. 4.18. Qualitative EigenNail Magnitude Model analysis (thumb). The intensity of each 
pixel in these images represents the contribution that pixel makes to the force prediction in 
each of the (a) x-, (b) y-, and (c) z-directions. The brighter a pixel, the more it contributes. 
The images are each scaled to the range (-1 , 1).
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(a) (b) (c)

Fig. 4.19. Qualitative Texture Parameters Model analysis (index). The intensity of each 
pixel in these images represents the contribution that pixel makes to the force prediction in 
each of the (a) x-, (b) y-, and (c) z-directions. The brighter a pixel, the more it contributes. 
The images are each scaled to the range (-1 ,1 ).

(a) (b) (c)

Fig. 4.20. Qualitative Texture Parameters Model analysis (thumb). The intensity of each 
pixel in these images represents the contribution that pixel makes to the force prediction in 
each of the (a) x-, (b) y-, and (c) z-directions. The brighter a pixel, the more it contributes. 
The images are each scaled to the range (-1 , 1).

(i.e, near zero), and the green in this area of the EigenNail Magnitude Model image is 

likewise near zero. Pixels in this region may be affected by the force in the z-direction 

either in the positive or negative direction, but the force does not have a large effect on the 

pixel intensity. Visual inspection of the finger confirms that this region of the finger does 

not change much under the influence of normal force. Thus, this result is to be expected.

The other result of note from these images is the few “bright spots” in the images and 

their locations. The locations of highest intensity in the images for the EigenNail Magnitude 

Model are in regions most closely associated with the color changes corresponding to that 

direction of force. In the images for the Texture Parameters Model, the most intense pixels 
are located in seemingly unimportant locations, such as the right side of the fingernail in 

the thumb or the skin just below the nail in the index finger. This result indicates that the 

Texture Parameters Model has trained the intensity of these pixels to be the most important 

when estimating force in these directions, which does not correspond to results of visual 

inspection of the fingers. Such a surprising effect may be due to the subset of Training 
Images being used to form the Texture model and thus not containing the entire range of 

Texture variation in the data set, or it may reflect the scaling of the intensity values that 

takes place in the formation of the Texture model. Either way, it is likely that this difference
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is the cause of the poorer accuracy of the Texture Parameters Model.

4.6 Conclusion
This paper has investigated the optimization of the calibration and modeling of finger

nail imaging for predicting fingernail force. A new force prediction model (the EigenNail 

Magnitude Model) was developed and shown to be capable of simultaneously estimating 

three-dimensional fingerpad force with an RMS error of 0.55 ±  0.02 N. In addition, two 

calibration grids were found to be equivalent in both their effect on registration accuracy 
and on force prediction error. Complementing these results is the determination that white 
LEDs and green LEDs have no significant effect on registration accuracy or force prediction 

error. Taken together, these results provide improvements to the automated calibration 

process.

The studies performed herein may be used to develop calibration and prediction tech
niques for use in measuring individual finger forces during human grasping experiments. 

Such measurements could be used to improve the ability of robots to analyze and duplicate 

human grasps. In medical studies, these techniques might be employed to characterize 
human development, or to track progression of cognitive conditions that affect motor skills.



CHAPTER 5

CONCLUSION

This dissertation has presented several improvements and expansions of fingernail imag

ing for force prediction. The major contributions are (1) an automated calibration system 

for collecting calibration images, (2)  a new registration method that accounts for variation 

inherent in the finger and nail, and (3) a series of optimizations to identify the important 
variables within the calibration process. These contributions have been shown to reduce or 
maintain the force prediction RMS error of fingernail imaging across a variety of subjects.

With the automated calibration system in place, a test subject is no longer required 

to apply all of the desired forces manually. Instead, a force controller is applied to the 
the MLHD flotor so that it may sustain the desired forces with an RMS error of 0.05 N 

in all three directions. Given this controller, a test session lasting approximately 2 hours 
results in nearly 3000 images, where manual calibration limited data collection to around 

300 images per subject. As discussed in Chapter 4, increasing the number of images reduces 
the force prediction error of the calibrated model. This method also allows the collection of 

force combinations that are difficult for an individuals to consciously control, such as those 

not on the edges of the friction cone. Although no quantitative work has been performed 

measuring the effect of using these forces in the model, this work prepares the way for such 
a study to be performed.

The new registration method, applying Active Appearance Models in an iterative man

ner, demonstrates several improvements over previous registration methods. It is faster and 
more accurate than other methods, without requiring parameter tuning, and eliminates the 

need to reject images due to registration problems. This method has been evaluated as the 
number of landmark points is reduced and found to preserve both registration and force 
prediction accuracy. In addition, the choice of color channel has been found to have no 

effect on registration accuracy, meaning the green channel could be used alone to register 

images. Both of these modifications will reduce registration time.
While prior force prediction models were limited to either predicting force on an image 

in a single direction or assigning an image to one of six direction groups using a classifier,
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the new model developed here (the EigenNail Magnitude Model) has been shown to predict 

force with an RMS error of 0.55 ±  0.02 N in all three directions simultaneously. Four other 
models have been evaluated using similar methods and found to perform more poorly.

Two more parameters have been evaluated for their effects on registration and prediction. 

The choice of calibration grid type has no significant effect on either image registration or 

force prediction. However, the density of points in the grid does. No limit was detected in 

the data sets taken during this work, although it appeared that an asymptote was nearly 

reached. The study undertaken here could be used as a template if different calibration 
grids are designed in future work.

The color of lighting imposed on the finger during image collection also has no signif

icant effect on image registration or force prediction. This surprising result needs to be 

investigated further as previous results indicate that green light should improve prediction 

performance. It is possible that the differences between this work and the conclusions found 
with fingernail sensors are due to variations in sensing equipment, differences in lighting, or 

it may be due to a fundamental difference in the way the two sensing methods transduce 
the force signal.

5.1 Future Work
Multiple avenues for further exploration exist. In the short term, the effect of variation 

between users in selecting the initial training image contours should be investigated. If the 
smoothing algorithm is not sufficient to remove the variation between these users, it will 

need to be improved.
It should be possible to make the registration process faster by automating the placement 

of the initial contours on training images, rather than asking users to select them manually. 
An initial procedure for this would involve a combination of edge-finding and joining of 

contours, including some resolution of problems along the same lines as those encountered 

when using the Canny Registration Method discussed in Chapter 1.
An alternative approach would be to build a much larger database of fingers (including 

hundreds of subjects) with only a few (approximately 10-15) training images from each 
subject. Then, an Active Appearance Model may be formed from all of these training 

images, and this model used to register any new image that arrives. Given enough training 

data, the model should be sophisticated enough to recognize most fingers presented to it.
The registration process may also be made faster by removing the am_tools programs 

(see Appendix B) from the loop. In the interests of time and efficiency, the author used 

existing applications to generate some of the intermediate results. However, this required
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interrupting the workflow in the middle of the registration process, running a separate 

program, and then returning to the original workflow once the external program had 

completed. Integrating this step into the overall series of Matlab programs would improve 
the speed of the entire process.

These results depend on carefully controlled lighting with no specular reflection on the 

finger. While any such reflection on the finger would obscure the data beneath it, it may be 

possible to methodically detect and remove such imperfections in the data, using a method 

developed by Swaminathan et al. [81]. Such a result would be an important step to moving 
these experiments from the lab to real situations.

Finally, future work should apply all of these results to human grasping experiments. 
There are two major challenges yet to be overcome before such experiments may occur. 

First, during preliminary studies, it has been found that the fingers quickly move beyond 

the borders of the image or rotate so that the nail ceases to be nearly perpendicular to 

the stationary camera. It has been proposed to mount the cameras on 5-DOF robots and 

use the registration techniques developed here to track the finger and adjust the camera 

pose to maintain perpendicularity. Second, during these same preliminary studies, it was 

found that stationary lighting was insufficient to maintain consistent light on the finger. 

Two solutions suggest themselves: either mount the lights on separate robots following the 

same type of tracking algorithm, or use a series of spaced light sources, where different 
sources are assigned to shine at different intensities, depending on the finger pose. Once 

these two challenges are solved, a grasping experiment using fingernail imaging to measure 

the individual finger forces should be possible.



APPENDIX A

ADDITIONAL CONTROLLER DETAILS

This appendix contains material relating to the force controller that did not fit within 
the scope of the paper in Chapter 2.

A.1 General Equipment Notes
A .1 .1  M L H D

The MLHD system consists of the stator (a stationary spherical base containing six 

permanent magnets and 3 two-dimensional optical sensors) and the flotor (an end effector 

containing six electromagnetic Lorentz coils and three LEDs). While the flotor is not 

mechanically connected to the stator, actuation is achieved by aligning the coils with the 

permanent magnets and generating current through the coils. By varying the currents, 
the position and orientation of the flotor is modified. Position and orientation sensing is 

performed by aligning the LEDs with the optical sensors.

As stated in Section 2.3.1, the flotor has a translational workspace of radius 12 mm and 

a rotational workspace of ± 8° in all three directions. It should be noted, however, that, just 

as the workspace is spherical rather than cubic, full simultaneous rotations in x, y, and z of 
8° are not possible. In addition, the full range of translation is not available when extreme 

rotations are in effect. The entire range has not been explored, but it is also asymmetric. 
For example, simultaneous rotations in +y and translations in + x  have a different limit 

than simultaneous rotations in —y and translations in —x. It may be beneficial for future 
work to fully characterize these limits.

The system is also nonlinear in several different ways. The flotor is essentially an inverted 

pendulum in the rotational x and y directions. When the position controller in either of 

these directions is turned off, the flotor must be firmly grasped to maintain stability. In 

addition, it is known that a force command sent at one position does not produce the same 

result as a force command given at a different position. As with the workspace limits, these 
nonlinearities have not been fully characterized since the controller has been sufficient to 
compensate for them. However, it may be possible to design a more efficient controller in
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the future, if the nonlinearities are identified.

Given the small workspace of the MLHD, sudden, relatively large changes in position 

and/or force often result in unstable operation and the flotor leaving the workspace. When 
the flotor leaves the workspace, at least one of the optical position sensors is generally no 

longer aligned. Consequently, the system must be manually realigned before calibration 

can resume. While realignment is not a difficult process, it requires training and familiarity 

with the system, and the process of “lift off” for the flotor freezes the client computer for 

approximately 5 seconds. Overall, it generally takes anywhere from 30 seconds to 2 minutes 

to recover from the flotor leaving the workspace. It would be beneficial to find a way to 
limit the number of times the flotor leaves the workspace.

It has been proposed that the open-loop force control available through the setForce() 
function in the MLHD API could be used to control the forces. However, this open-loop 

control assumes a perfectly accurate model of the electrical coil dynamics, the magnetic 
dynamics between permanent magnet and coil, and the mechanical translational/rotational 

dynamics of the flotor. Since the built-in compensation model can never be completely 

accurate and the flotor has been modified from its original dynamics, a closed-loop feedback 

controller is required to limit steady-state error and to provide desired system performance. 

The setForce() command is used to provide the wrench commands that control the flotor, 

but the values sent to the flotor are determined by the closed-loop controller.

A .1 .2  Force Sensor

The Nano17 force sensor is used in concert with the ATI signal conditioning hardware as 

well as a custom-built low-pass filter designed to remove signals above 40 Hz. The voltages 
from the sensor are read using the analog inputs on a Sensoray S626 data acquisition card, 

using the 10 V transducing range. From there, the voltages (si through S6) are converted 

to forces and torques using the calibration equation supplied by the manufacturer:

xF r aF

Fz

Jz_

-0.0001 0.0638 -0.1052 1.7541 0.0284 -1.6721
-0.0476 -1.9468 -0.0302 1.0996 -0.0567 0.8878
1.8590 0.0072 1.9666 -0.0315 1.7720 -0.0150
0.3781 0.2180 10.6226 -0.2446 -10.3128 -0.0379

-11.8349 -0.0240 6.8510 0.0358 5.4326 -0.1363
0.0965 7.0361 0.4954 7.1050 0.0145 6.5864

si
S2
S3
S4
S5

_S6_

(A.1)

A.2 System Identification
The mass m j and center of gravity r j of the flotor are as defined in Chapter 2. The 

inertia matrix is defined in the frame of the flotor and with respect to the flotor axes, as
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Ixx Ixy Ixz
If = Ixy Iyy Iyz

Ixz Iyz Izz
(A.2)

The model of the flotor used here assumes a single, rigid body floating freely in space 

(three degrees of translational freedom and three degrees of rotational freedom) with a single 
wrench applied at some unknown point of action (O f). The Newton-Euler equations for 

the flotor are
Ff
T f.

H (0 )  0  +  V  0 ,  0  +  G (0 )

where the joint “angle” vector 0  =  [pT 0T]T includes both the position p and orientation
0 of the flotor. Using this notation, the joint angular velocity vector may be written as 0  = 
[vT u>T]T and the joint angular acceleration vector may be written as 0  =  [aT a T]T. 

All positions and orientations are defined in the world frame. Each of the other terms is 

defined as

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

Fxm Fxs
Ff = FF ym +  0R f FFys

FF zm FF zs
Txm ' 0 ' Fxs

T f  = Tym + 0 R f 0 fRf
CD

X FFys
_Tzm_ .Zs. F_ zs_

H (0 )  

V  ( 0 ,  0  

G (0 )

- m f S (°R fr f)  
0R f I f f  Ro

m f I3
m f S (0R f rf ) “R f i f  

mf S (w) S (w) 0Rf rf 
S (w) i f  0R f w

- m f  g 
- m f  S (0Rf f  g

where Fim is the force exerted by the MLHD on the flotor in the i direction, Fis is the force 

exerted by the finger on the flotor in the i direction, Tim is the torque exerted by the MLHD 
on the flotor in the i direction, I3 is the 3 x  3 identity matrix, 0R f is the rotation matrix 

between the flotor frame and the world frame, g is the gravity vector defined in the world 

frame, and S (x) is the skew-symmetric matrix “operator” on the vector x. It is assumed 

that the finger does not exert pure torques on the flotor since the contact is approximately 

a point.
Figure A.1 repeats and enlarges Figure 2.5 for clarity. The derivation of the calibration 

equations are given in the following section, with the observability and identifiability of the 

parameters addressed in the following section.
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\
'  W o rld  Fram e

Fig. A.1. Enlarged Schematic of Kinematic Calibration. On the left is a close-up view of 
the flotor, showing the World Frame (X 0, Y0, Z0) in light gray, the flotor coordinates (x, y, z) 
and unrotated Flotor Frame (X f , Y f, Z f) in dark gray, and the rotated flotor in black. The 
distance from the Flotor Frame origin to the contact surface zs is indicated. On the right 
is shown the flotor and camera (both in black) relative to the World Frame (again in light 
gray), and the Camera Frame (X c,Yc, Zc) in dark gray. During kinematic calibration, a 
small piece of tape provides fiducial marks on the contact surface, while the flotor moves 
through the workspace and the camera records images.

A .2 .1  S tatic P aram eter Identification

The flotor’s axes are assumed to be parallel to the force sensor’s axes. The contact 

surface, where the tape is attached, is assumed to be parallel to the flotor’s xy-plane at a 

distance of zs along the flotor’s z-axis. The tape square’s four corners have coordinates 

f P1 =  [xi y1 zs]T through f p4 =  [x4 y4 zs]T in the frame of the flotor. These 
coordinates are transformed into the world frame using the formula

world frame) and 0R f =  R z (0z) R y (0y) R x (0x) is the rotation matrix relating the flotor 

coordinates to the world coordinates. In this work, R k (0) indicates rotation about the 

k-axis by the angle 0.

angles, 0cx, 0cy, and 0cz relative to the world frame. For the purposes of this calibration,

TThe camera frame is translated by a vector d0c =  [cx cy cz] and rotated by three
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the rotation matrix relating the world frame to the camera frame is defined as

0Rc =  R  z (9CZ) Ry (Qcy) Rx (0cx) (A.10)

A point’s world-frame coordinates may thus be transformed into the camera frame coordi

nates using the formula

CPi =  0R T 0Pi +  doc (A.11)
l Twhere cp i =  [xc,i yc,i zc>i\T contains the coordinates of the point in the camera frame. 

G

[ui Vi\T are found using the formulas

Given these camera-frame coordinates, the coordinates of the point in the image u  =
lT

ui fx c
zc,i

f y c,i
zc

u0

V0

(A.12)

(A.13)

where u0 =  -511, v0 =  -384, and f  =  -3600 have been established using prior identifica
tion on the camera.

Given these equations, the partial derivatives required for nonlinear least squares (i.e.,

the Gauss-Newton method) may be calculated. The parameters to be identified are 0  =

[CX cy 
du

T
Cz 9cx 9cy 9cz zs xi yi x2 y2 x3 y3 x4 y±\ . The Jacobian Jp,i =

- 70 of the image coordinates with respect to the parameters is

P,i
duj
d0
dvi
.90.

(A.14)

Substituting from (A.12) and (A.13) and rearranging

9P,i
z2 .C,i
J_z2

dxc
' d0  
dyc,i 

1 d0

x dzc
d0

dzc i
yc,i100

Jp,i =  z2 
zc,i

zc,i
0 z

0 - x c,i 
-  yc,i

r dxc,i 
d0  
dyc,i 
00 
dzc,i 
d0

JP,i F i J cp,i (A.15)

dcpwhere Jcp,i =  is the Jacobian of the point coordinates in the camera frame with respect 
to the parameters. It may be partitioned for computational ease into three submatrices 

Jcn.i =  [Jcc,i Jcr,i Jtc,i,] since the parameters related to each submatrix may be considered
as a group. Jcc,i relates the point coordinates in the camera frame to the coordinates of the

v

z

z
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camera relative to world frame. Jcr>i relates the point coordinates in the camera frame to the 

rotational angles of the camera relative to world frame. Jtc>i relates the point coordinates in 

the camera frame to the tape corner coordinates in the flotor frame. Each of these Jacobians 
is considered in one of the following sections, followed by a discussion of the formation of 
the Gauss-Newton iteration problem.

A .2 .1 .1  C am era  P osition
The three camera position coordinates have similar effects on the Jacobian. Thus, the 

Jacobian Jcc>i of the camera coordinates (cpi) with respect to the coordinate vector of the 

camera (doc) is

Jc

Jc

Jc

d cPi 
d doc 

d 
d doc 

d

;0r T  0 Pi +  doc)

d d,oc (0R tc 0Pi) +
d d,Oc
d d,Oc

(A.16)

(A.17)

(A.18)

Since 0R t  and Opi are independent of the camera position dOc, the derivative of the 
first term is identically zero. The second term is the identity matrix, and so the Jacobian 

is simply

Jc
1 0 0 
0 1 0
0 0 1

(A.19)

Since this Jacobian is constant in the tape corner coordinates, the combined Jacobian for 

all points is simply the individual Jacobian, stacked

(A.20)

where I3 is the 3 x 3 identity matrix.

A .2 .1 .2  C am era  R ota tion a l Param eters

The camera rotational parameters ( o c — \dcx dcy 0cz]Tj  are grouped in a similar 

fashion. The Jacobian Jcr>i of the point coordinates in the camera frame with respect to 
the three angles is

dcPi
Jc

Jc
d 9c
~dcPi dcPi
dec aec

9cPi
aecz (A.21)

Jcc
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If only the derivative with respect to the angle in the k direction is considered, the 

notation becomes slightly simpler. Substituting from (A.11)

d cPi 
90ck
d cPi

d
ck

(0RT 0Pi +  doc)

0R T d0Pi , d0RT 0p , d d0c R c — -----\--- ------  Pi +

(A.22)

(A.23)

Since 0Pj and d0c do not depend on the camera angles, the partial derivatives of these
gcP d°̂ ^T 0terms are always zero. Thus, the derivative may be written =  Qe c 0p^ This may be 

substituted into the formula for the Jacobian to find

Jc d0RT 0
08c Pi d0RT 0

d8c Pi d0RT 0
d8c Pi

Each of the derivatives may be expanded further, by substituting from (A.10):

d0 RT d
dOck

d0 RT
dOck

dOck 
d Rz

[Rz (Ocz) Ry (Ocy) Rx (Ocx)]

)
dOck

\ R z (Ocz)

R y (Ocy) R  x (Ocx)

d R■y (Ocy)
dOck

R x

+  Rz (Ocz) Ry (Ocy)
dRx )

DO,ck

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

Two of the three derivative terms in this final equation will be zero for any direction k. 

Eliminating the appropriate values, the partial derivatives with respect to each of the angles 

are

d0RT
dOcx

d0RT
dOcy

d0RT

R z

R z

a) R y (Ocy)
d Rx )

dRy (Ocy)
dO,

dOc

R x )cy
dRz (Ocz) R y cy) R x (Ocx)

(A.29)

(A.30)

(A.31)
dOcz dOcz

These formulas may be used to find the columns of (A.24). The equation changes only 

slightly for each corner of the tape, and so the final Jacobian may be written as

[d° r t 0 d°RT0 d°RTn
ddcx 0Pi ddcy Pi ddcz Pi

d° r t 0 a°RT0 d°RTn
ddcx 0P2 ddcy P2 ddcz P2

d° R T0 a°RT0 d°RTn
ddcx 0P3 ddcy P3 ddcz P3

d° R T0 d°R;J0 d°RTn
L ddcx P4 ddcy P4 ddcz P4

(A.32)

)

)

Jcr
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A .2 .1 .3  T ape C oord in a tes

The flotor frame coordinates of the first corner of the tape square (x\ ,y i,zs) are likewise 

grouped. The Jacobian Jtc>1 relating the coordinates of the first corner in the camera frame 

to the first point’s coordinates in the flotor frame is found using the following procedure:

dcPi
Jtc,1 --

Jtc,1 =  

Jtc,1 =

d f  Pi 
d 

d f  Pi

dORTO„ , O„ T  dOPi , ddOc

T Ov, R c Oc

O TP 1 +  R c +

(A.33)

(A.34)

(A.35)
df  p 1 c df  p 1 df  P1

Since OR c and dOc are independent of f p 1, the first and last terms are identically zero. 
Expanding the remaining term using (A.9)

dJtc,1

>tc,1

0 r T

O TR c

df  P1
/  d OR

OR / f P1 +  do/ 

d f  pf f Ô  ° J Pi dd, / f  P1 +  OR ^ ^ ^  + Of

(A.36)

(A.37)
\ d f p 1 ^  ' f df p 1 ' df p 1

As before, the first and last terms may be eliminated since OR /  and dO/  are independent 

of f  p 1. The remaining term is merely the identity matrix:

d f  P1T _ 0t} TO-pJtc,1 -- R c R f

»tc,1 Op? T O-pR c R f

d f  P1 
1 0 0  
0 1 0  
0 0 1

(A.38)

Note that the order of this portion of the parameter vector is different from what is given 

here. In the parameter vector, zs is given first, followed by x 1 and y1. To correct this, the 

final matrix needs to be re-ordered:

T OT3 T O-pJtc,1 =  R c R f
0 1 0
0 0 1
1 0 0

(A.39)

This would represent the Jacobian for this section, if those three values were the only 

parameters. However, this section involves the other xy-coordinates (x2, y2, x3, y3, x4, y4), 
which are not adequately represented. Thus, we augment the final matrix with a column 

of zeros for each of the six remaining parameters:

T _ 0t} TO-pJtc,1 — R c R f
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

»tc,1 0r T  OR / A 1

(A.40)

(A.41)
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The Jacobian is slightly different for each of the other corners since zs needs to be 

repeated for each one.
0 0 0 1 0 0 0 0 0

Jtc,2 _ 0tdt— R c R f 0 0 0 0 1 0 0 0 0 (A.42)
1 0 0 0 0 0 0 0 0

Jtc,2 — 0r T  0R f  A 2 (A.43)
0 0 0 0 0 1 0 0 0"

Jtc,3 fRf0TcTRc0 0 0 0 0 0 0 1 0 0 (A.44)
1 0 0 0 0 0 0 0 0

Jtc,3 — 0r T  0R f  A 3 (A.45)
0 0 0 0 0 0 0 1 0"

Jtc,4 fRf0TcTRc0 0 0 0 0 0 0 0 0 1 (A.46)
1 0 0 0 0 0 0 0 0

Jtc,4 — 0r T  0R f A 4 (A.47)

These equations may be combined to form the full Jacobian for this section:
r0RT 0R f Ai

Jtc —
0RT 0R f A

fA i
f  A 2

0RT 0R f A 3 
0RT 0R f A 4.

(A.48)

A .2 .1 .4  C a libration  M a tr ix  F orm ation
To form the calibration matrix Jp,j for the jth image, the three Jacobian submatrices 

(A.20), (A.32), and (A.48) are substituted into (A.15).

Jp,j

’ p, j

F j ['Jcc Jc

Fj

I3

I3

I3

I3

d R  0
ddcx

d0RT 0

Jtc]

Pi

ddcx
d0RT 0
ddcx

d R  0
ddc

P2

P3

P4

doRT 0
ddcy

d0RT 0
ddcy

dORT 0
ddcy

d R  0
ddc

Pi

P2

P3

P4

doRT 0
ddcz

d°RT 0
ddcz

d°RT 0
ddcz

dORT 0
ddc

Pi

P2

P3

P4

0r T  0R f A i 

0RT 0R f A 2 

0RT 0R f A 3

0RT 0R f A 4

(A.49)

(A.50)

(A.51)

where Fj is a matrix containing the camera parameters:

Fi 02,3 02,3 02,3
F . — 02,3 F2 02,3 02,3 

j 02,3 02,3 F3 02,3
02,3 02,3 02,3 F4

where 02,3 is a 2 x 3 matrix of zeros. Assuming that the jth image displays all four 

corners, the eight Gauss-Newton equations describing the image may be written in the 
form A U j — Jp,j A 0 , where

iTAU j — [ui Vi U2 V2 U3 V3 U4 V4]' (A.52)
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These equations are stacked for all m images, adjusting as needed for missing points in 

the images. The stacked equations have the form AU  =  C A 0. The calibration proceeds 
using standard Gauss-Newton iteration. The full results are given in Table A.1.

A .2 .2  Identifiab ility

Questions may arise as to the suitability of the sample data for observing and identi

fying all of the parameters determined in Section 2.4.3. It has been suggested [70] that 
the condition number of the matrix A  should be less than 100 as a reliable heuristic to 

indicate whether the singular values are large enough to indicate that the parameters are 

all identifiable.
For the static parameter data (Section 2.4.3.1) in Table A.1, the matrix condition number 

is 54. Since this is below 100, it is reasonable to assume that all of the parameters are 

identifiable from the data set.

For the dynamic parameter data collected in Section 2.4.3.2 and used to calculate the 
parameter values in Table 2.1, the matrix condition number is 4.4, well within the acceptable 
range, indicating that the parameters are all identifiable from the data.

A .2 .3  O bservab ility

The author is familiar with five different observability indices from the literature [80]. 

The first four direct the investigator to the best data set by maximizing an index, while the 

fifth indicates the best data set by a minimum. The formulas for the indices are

O =  f c i w - w ) N (A.53)

0 2 =  —  (A.54)
Ui

0 3 =  un (A.55)

0 4 =  Un  (A.56)
Ui

Table A.1. Flotor/Camera Static Parameters
Quantity Value Quantity Value Tape Corner Coordinates

cx -1 .3  mm @cx 186° (x i,y i) ( -1 3 .9 ,14.7)mm

cy 2.5 mm day °0.- (X2,y2) (13.1,15.0)mm

Cz 280 mm Ocz 180° (X3,y3) (13.6, —8.98)mm

Zs 48.1 mm (X4,y4) (—13.1, —9.48)mm
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O5 =  £  -2  (A*57)
j =1 - j

where - j  is the jth of the N singular values, M  is the number of equations per pose, and 

P  is the number of poses recorded. Observability index O 1 is the root of the product of the 

N singular values. O2 is the ratio of the smallest to the largest singular values, while O3 is 

the minimum singular value. Observability index O4 is the product of O3 and O2, while O5 

is the trace of (C TC) 1. The five observability indices are shown for the static calibration 

matrix and the two dynamic matrices (calibration and validation) in Table A.2 .

A.3 Controller Implementation
To investigate the gain and phase margins of the calibration system, frequency response 

procedures were used. The calibration system was commanded to apply sinusoidal forces 

(or angles) in one direction at a time while the remaining directions were held constant. For 

all directions except Fz , the oscillations occurred around zero, and the constant value was 

zero. For Fz, the oscillations occurred around - 3N, and the constant value was - 3N. All 
oscillations had an amplitude of either 1N or 1°. Frequencies varied from 0.1 Hz to 100Hz.

Bode plots for all three directions of force are shown in Fig. A.2. The gain margins 

were 6.7 in Fx and 3.0 in Fy. From the plot, it is evident that the phase delay in Fz does 

not cross -180° over this frequency range. Since hardware and software limitations prevent 

exploration of frequencies above 100Hz, these cannot be explored. It is assumed that the 
gain margin is at least 10 since the magnitude plot rises no higher than this after the initial 

downward plunge. The phase margins for the force directions are 171.3°, 38.9°, and 76.8°, 

respectively.
Bode plots for the three rotational directions are shown in Fig. A.3. The gain margins 

were 2.3 in 9x , 1.8 in 9y, and 16.7 in 9z. The phase margins in the three directions are 8.0°, 

5.8°, and 89.4°, respectively. These margins indicate that there is a range of gains for which 
the controller will be stable. Although large variations in the finger dynamics could cause 

instability, the worst effect of an unstable system will be the need to realign the flotor and

N 1

Table A.2. Observability of Calibration and Va
Trajectory Oi O2 O3 O4 O5

Static Calibration 0.013 0.019 0.034 0.0006 2.12

Calibration 2.61 0.255 832 212 4.26 x 10- 6
Validation 2.56 0.261 835 218 4.41 x 10- 6

idation Trajectories
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Fig. A.2. Bode Plots for Fx, Fy, and Fz. The magnitude plot is shown in the top row, 
with the phase plot shown in the bottom row. The x-axis in all plots contains (in log-scale) 
the frequency (in Hz) at which the sinusoid data were collected. In the magnitude plots, the 
y-axis gives 20 log M , or the gain of the response, with the horizontal dashed line indicating 
the zero-gain level. In the phase plot, the y-axis gives the phase delay (in degrees) of the 
response, with the horizontal dashed line indicating the -180° level. The vertical dashed 
line in the x- and y-direction plots represents the gain margin. No phase margin was found 
in the Fz plot.

Fig. A .3. Bode Plots for 6x, 0y, and 0z. The magnitude plot is shown in the top row, with 
the phase plot shown in the bottom row. The x-axis in all plots contains (in log-scale) the 
frequency (in Hz) at which the sinusoid data were collected. In the magnitude plots, the 
y-axis gives 20 log M , or the gain of the response, with the horizontal dashed line indicating 
the zero-gain level. In the phase plot, the y-axis gives the phase delay (in degrees) of the 
response, with the horizontal dashed line indicating the -180° level. The vertical dashed 
line in all plots indicates the gain margin in each direction.
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restart the calibration (a procedure which requires less than one minute).

The closed-loop bandwidth of the force controller was also investigated. In the force 
directions, the bandwidth is 1.4 Hz (Fx), 1.4 Hz (Fy), and 7.0 Hz (Fz). For the angular 
directions, the bandwidth is 32.7Hz (9x), 31.7Hz (9y), and 12.8Hz (9z).



APPENDIX B

ADDITIONAL REGISTRATION DETAILS

This appendix contains additional details pertaining to the registration method that did 

not fit within the scope of Chapter 3. Since that chapter is taken from a journal article 

that does not address differences in light color, only the 32 data sets (16 subjects, 2 fingers) 

collected under white LED light are used. However, this appendix pertains to the work as 

a whole and therefore contains all 64 data sets.

B.1 Alternative Registration Methods
An alternative method was proposed that involved a form of contour-matching, where 

the outside edge of the finger and the edge of the nail were fitted to ellipses, and these ellipses 
matched for registration. It was found that this method neglected many complexities of the 

finger, including the many nails that are not elliptical. It also had difficulty with noise in the 

image creating inappropriate edges, which caused incorrect identification of the contours. 

Finally, since this method used Canny edge finding to locate the edge points, it required 
the same parameter tuning as in the Canny method.

B.2 Training Images
The hand-selected contours for one training image from each combination of subject and 

LED color are shown in Fig. B.1 (index finger) and Fig. B.2 (thumb). Each finger is shown 

twice, once under white LED illumination (full RGB image) and once under green LED 

illumination (grayscale image). The finger contour is shown in red, while the nail contour 
is shown in yellow.

B .2 .1  S m ooth in g  the C on tou rs

The first step of smoothing the contours, smoothing by linear interpolation, begins with 
calculating the Cartesian distance between each consecutive pair of points. A parameter, t, 

is designated as the cumulative distance from the beginning of the contour to the current 

point. Thus, the ith value of the parameter may be calculated as
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Fig. B.1. All subject/LED color combinations for the index finger, showing the user-se
lected contours. Each finger is shown twice, with the image under white LED illumination 
(full RGB image) on the left and the image green LED illumination (grayscale image) on 
the right. The finger contour is shown in red, while the nail contour is shown in yellow. 
These contours are later smoothed using the algorithm described in Chapter 3.

ti — ti- 1 +  Ati

where 1 < i < m, t1 — 0 and

Ati — \J (xi xi - 1) I (yi yi - 1)

(B.1)

(B.2)

For n desired points, the desired points are linearly interpolated across the interval [t1,tm]
using the formula

tj — tm
m 1 (j -  1) (B.3)

for 1 < j  < n and tm — tn. The coordinates (xi,yi) are then interpreted as functions of t 

and linearly interpolated using the standard formulas
. . X i— X i-1 , 

x (t j ) — Xi-1  +  - ----------- (tj -  t i -1)

V(tj ) — Vi-1  +

ti ti- 1 
Vi -  Vi-1  
ti -  ti 1

(tj -  ti - 1)

(B.4)

(B.5)

for ti-1  < tj < ti .
When smoothing the outer finger edge contour, the first and last points selected termi

nate the contour and the desired number of points are used. When smoothing the nail edge 

contour, the first point is repeated at the end of the contour, so that smoothing may be 

performed over the entire closed loop. In addition, n +1 points are used, so the desired point 
count is still achieved, but the repeated endpoint is eliminated to avoid redundancy. An 

example of the process is shown in Fig. 3.8(a) for one finger contour and one nail contour.
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Fig. B.2. All subject/LED color combinations for the thumb, showing the user-selected 
contours. The thumbs are shown first under white LED illumination (full RGB image) and 
then once more under green LED illumination (grayscale image), below the first image. The 
finger contour is shown in red, while the nail contour is shown in yellow. These contours 
are later smoothed using the algorithm described in Chapter 3.

B .2 .2  A d ju stin g  the N ail C on tou r
The following formula is used to find the most distal nail point by interpolating the 

parallel coordinates:
x \\2 — X\\i

X||0 — x p  +------------- (—x± i) (B.6)
11 11 x ±2 — x± i

B .2 .3  E stim ating the A n g le  o f  a Series o f  P oin ts
Finding the angle a series of points makes with the positive x-axis is illustrated with 

an example data set, given in Fig. B.3. The actual difference between the maximum and 
minimum values for each direction is determined

A xa — max x — min x (B.7)
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Fig. B.3. Estimating the Angle of a Series of Points. A total least squares fit line is found. 
The angle between this line and the positive x-axis is used as the angle of the series of 
points.

A ya — max y — min y (B.8 )

If A xa > A ya, then x is designated as the independent variable. Otherwise, y is used. Since 

the linear model used is the slope-intercept form, this step removes the possibility of an 

infinite (or near-infinite) slope.
Once the independent variable is designated, the total least squares procedure (see 

Section B.2.4) is used to fit the data to the linear model (yi — a0 +  a1x i or x i — a0 +  a1yi). 

The difference between the maximum and minimum values of the fitted dependent variable 
is then found. Finally, the angle of the line is found using the two-argument arctangent 

function,
6 — atan2 (Ay, Ax)

where the difference in the actual data is used for the independent variable, but the difference 

in the fitted data is used for the dependent variable.

B .2 .4  T ota l Least Squares F it o f  a Series o f  P oin ts
Various methods of performing a total least squares fit have been explored in other 

sources [82,83]. The procedure used in this work follows that given in [84]. The point 
coordinates (x i,y i) are first scaled by the standard deviation of the coordinates in each 

direction (ax ,a y). This scaling reduces round-off error as well as bias towards the errors in 
one direction or the other:

X si —

ysi —

x_
ax
yi_
ay

(B.9)

(B.10)

This section assumes that x is the independent variable, although the two are inter

changeable. The scaled data is assumed to fit a model with the equation ysi — a0 +  ai x si.
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The n data points may be recast as a matrix equation of the form X 0  =  Y , with 0  =

[ ai ao ]T, Y  =  [ ysi ys2 ••• Vsn Y  andT

X

Xsi 1 
Xs2 1

(B.11)

The Singular Value Decomposition (C =  U S V T) of the augmented matrix C =  [ X  Y  ] 

is calculated. The V  matrix is partitioned as follows:

V V ii V  i2 
V 2i V22

(B.12)

where (in this case) V ii is 2 x 2, V i2 is 2 x 1, V 2i is 1 x 2, and V22 is a scalar. The total 
least squares fit for the parameters is

0 TLS =  —
V 12
V22

a1
ao

(B.13)

Once the line’s parameters have been estimated, the parameters must be corrected to 
remove the scaling:

m =  ai —  (B.14)
Ox

b =  a0oy (B.15)

The original data then fits the line y =  mx +  b in a total least squares sense.

B .2 .5  Final S m ooth ed  Im ages

The initial (hand-selected) and final (smoothed) contours for one training image from 

each combination of subject and LED color are shown in Fig. B.4 (index finger) and Fig. B.5 

(thumb). These correspond to the images shown in Fig. B.1 and Fig. B.2. As before, the 
intial finger contour is shown in red and the initial nail contour is shown in yellow. The 
smoothed contours are shown in black.

1xsn

B.3 Shape Model
Further details and results of the Shape model formation are included here.
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Fig. B.4. All subject/LED color combinations for the index finger, showing the user-se
lected contours and the final smoothed contours. Each contour corresponds to the image 
in the corresponding location from Fig. B.1. The finger contour is shown as red dots and 
lines, the nail contour is shown as yellow dots and lines, and the smoothed contour is shown 
as black circles.

B .3 .1  P rocru stes  A lign m en t

First, for ease of notation, the Training Image shapes are extracted to column vectors. 

The ith shape vector has the form

Vii
V2i

Xi (B.16)yni 
x1i 
x2i

xni

(The y-coordinates are listed first, both for consistency with Cootes’ work [39] and to have 

the row coordinates first, followed by the column coordinates.) The shape vectors are then 

aligned to the mean shape using Procrustes analysis [76, 77] within an iterative procedure 

as follows. The first shape is chosen as the initial estimate of the mean, and all other shapes 

are aligned to it. This involves finding the translation (tx ,ty), scale S (x), and rotation d 

parameters that align two shapes, in the sense that the Procrustes distance between the 

first Training Image and each of the other images is minimized. The Procrustes distance 

Pd between two shapes x i and x 2 will be defined in (B.21). The translation parameters are 
simply the algebraic means of the coordinates:
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Fig. B.5. All subject/LED color combinations for the thumb, showing the user-selected 
contours and the final smoothed contours. Each contour corresponds to the image in the 
corresponding location from Fig. B.2. The finger contour is shown as red dots and lines, 
the nail contour is shown as yellow dots and lines, and the smoothed contour is shown as 
black circles.

1tx — _  /n x j
j =1
n

ty — n 2̂ Vj

(B.17)

(B.18)
j =1

Scaling may be accomplished using any one of several scale metrics, although this work 

follows Stegmann’s choice [75] to use the Frobenius norm,

S (x) —
\

n
^  [(xj -  tx)2 +  (Vj -  ty)2 
j =1

(B.19)

The rotation parameter is calculated in the following manner. First, the points are 

translated so that their centroids are at the origin. The coordinate values are divided by
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the scale parameter and then rearranged into n x 2 matrices. The matrix B — xTx 2 is 

found, and then the Singular Value Decomposition B — U S V T is calculated. Finally, the 
rotation matrix R, which provides the optimal rotation from x 1 to x 2, is calculated as

R cos 9 
sin 9

-  sin 9 
cos 9 — V U T (B.20)

For this work, the rotation parameter is calculated as 9 — atan2 (R 21, R 11) 

The Procrustes distance between two shapes x 1 and x 2 is defined as
n

Pd — 2̂ [(Xj! -  Xj'2 )2 +  (Vjl -  Vj2)2 (B.21)
j =i

This value is calculated between each shape and the estimate of the mean. A new estimate 

of the mean shape, x, is calculated, where

k

E
i=1

xi (B.22)

where x i is the shape vector from the ith of k Training Images. All of the shapes are then 

aligned to this new estimate of the mean, and the new Procrustes distance (Pd,new) is 
calculated. The relative percent error is calculated as

Pd,new -  Pd%Error — max x 100% (B.23)
Pd,new

The process is repeated until the percent error is less than some desired metric (in this case, 

0 .0 1 %).
Fig. B .6 illustrates, using the shapes from one subject’s Training Images, how the entire 

process works. The initial set of shapes (a) are individually compared to the first shape 

(b). The alignment parameters are found and each shape is aligned, one by one, to the first 

shape (c). The mean shape is then calculated, and the process is repeated, until convergence 
(d).

Fig. B .6 . Shape alignment by Procrustes analysis. (a) Shapes from training images. (b) 
Two shapes to be aligned. (c) The same two shapes after alignment. (d) All training shapes 
after alignment.
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B .3 .2  P rin cip a l C om p on en t A nalysis

The Shape Model covariance matrix is formed using the formula:

1 n
£ s =  -  ^ 2  (x * -  x) ( x  -  x )T (B.24)

n i=i

This matrix may be inspected to verify that the points are correlated, and Fig. B.7(a) shows 

a graphical representation of the covariance matrix for the training images of one subject’s 

index finger. In this image, green pixels represent pairs of coordinates that are more 

negatively correlated, while yellow pixels represent pairs that are more positively correlated, 

and black pixels represent pairs of coordinates with low correlation. In a covariance matrix 
where the points are completely uncorrelated, the image would be entirely black except for 
a strongly yellow diagonal. The red lines are only for reference and divide the image into 

convenient regions representing the x- and y-coordinates of the finger and nail.
Further information may be gleaned from the correlation matrix, r , which is formed by 

normalizing the covariance matrix by the variance

(B.25) 

(B.26)

The correlation matrix for the same subject/finger combination is shown in Fig. B.7(b). 

As with part (a), yellow indicates coordinate pairs that are positively correlated, green

x(finger) 

x(nail) 

y(finger) 

y(nail)

x(finger) x(nail) y(finger) y(nail) x(finger) x(nail) y(finger) y(nail)
(a) (b)

Fig. B.7. Shape covariance and correlation matrices. (a) Covariance and (b) Correlation 
matrices of Shape variation for one subject. In both figures, green pixels represent more 
negatively correlated pairs of coordinates, while yellow pixels represent more positively 
correlated pairs. Black pixels in both images represent pairs of coordinates with low 
correlation. The x- and y-coordinates of both the finger and the nail contours are correlated, 
indicating that they move in a synchronized manner.

r  =  v s , v

V  =
0

0
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indicates negatively correlated coordinate pairs, and black pixels have low correlation. 
This is essentially the same image with the contrast improved, which better illustrates 

the correlations and shows that the point coordinates are definitely not independent.

The number of eigenvalues and eigenvectors are limited using the following procedure: 

t modes are chosen to retain 99% of the variation in the training set, using the formula,

t 2 n
^  Xi <  0.99 ^  Xi (B.27)
i=1 i=1

For most subjects, t =  6 or t =  7, although of the 64 data sets, one has t =  5 and three have 

t =  8. Fig. B .8 shows a plot of the eigenvalues (as a percentage of the total) for all subjects. 
This shows the typical behavior of the finger image sets, in that the first few eigenvalues 

contain most of the variation, followed by a few more to reach the 99 % level specified.

B.4 Texture Model
The ith texture vector, consisting of the m pixels raster-scanned from the aligned ith 

image, has the form

gi

Pii
P2i

Pmi

(B.28)

Normalizing the Textures is an iterative process, much the same as aligning the Shapes. 
To begin, the mean Texture g is estimated as

Fig. B .8 . Shape eigenvalues for all subject/finger/LED color combinations. The first nine 
eigenvalues are represented along the x-axis, while the y-axis shows the relative weight of 
each eigenvalue for each combination. Line colors correspond to subjects, as shown in the 
legend. Circle edge colors (black vs. red) correspond to finger (thumb vs. finger). Circle 
face colors (white and green) correspond to LED color.
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g =  N  ^  gi (B.29)i=i

where each of the N  Training Images is represented by its texture vector, gi. The mean 

vector estimate is then “standardized” using the formula

g =  ^  (B.30)a

where a  and P are the standard deviation and mean of g. The Training Images are then 

“aligned” to g:

„  _ gi Pi /t:) o -| \gi,n a (B.31)a i
a i =  gf  g (B.32) 

m

Pi =  mm ^ gji ( b .3 3 )in . ..3 = i

This is an iterative process, in that the mean vector gg is estimated again after all of the 

Training Images have been aligned. The alignment and re-estimation of the mean are 

repeated until convergence is achieved.
The covariance and correlation matrices for the Texture model could be inspected in 

a fashion similar to that used for the Shape model. However, due to their size (tens of 

thousands of pixels) and less obvious structure (adjacent pixels in the image may be far 
from each other once the images have been raster scanned into pixel vectors), such an 

analysis would not be as useful. Thus, this qualitative exercise is not performed here.

As before, (B.27) is used to find the required number of eigenvectors to achieve 99% of 
the variation. The same patterns of variation in the number of eigenvectors are present, 

with t being between 5 and 8 . Fig. B.9 shows a plot of the eigenvalues as a percentage of 

the total, for all subject. The typical Texture eigenvalue plot shows a gradual reduction 

instead of the sharp dropoff seen in the Shape Model. This is likely due to the greater 
nuance present in the pixel intensity information.

B.5 Appearance Model
Since the covariance and correlation matrices are again of manageable size and have a 

recognizable structure, they may be inspected to determine the qualitative behavior of the 

data. Fig. B.10 shows both matrices. As before, green pixels show negative correlation, 
while yellow shows positive correlation, and black pixels are pairs with no correlation. From 

this figure, it may be seen that the Shape Parameters have no correlation among themselves,
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Eigenvalues

Fig. B.9. Texture eigenvalues for all subject/finger/LED color combinations. The first 
nine eigenvalues are represented along the x-axis, while the y-axis shows the relative weight 
of each eigenvalue for each combination. Line colors correspond to subjects, as shown in the 
legend. Circle edge colors (black vs. red) correspond to finger (thumb vs. finger). Circle 
face colors (white and green) correspond to LED color.

Shape 

Texture

Shape Texture Shape Texture

Fig. B .1 0 . Appearance covariance and correlation matrices. (a) Covariance and (b) 
correlation matrices of Appearance variation for one subject. In both figures, green pixels 
represent more negatively correlated pairs of coordinates, while yellow pixels represent more 
positively correlated pairs. Black pixels in both images represent pairs of coordinates with 
low correlation.

and the Texture Parameters likewise have no intercorrelation. However, there is correlation 

between the Shape and Texture Parameters. This is to be expected since the color patterns 

are known to relate to force and the shape of the finger also relates to the force.

Again, (B.27) is used to find the required number of eigenvectors to achieve 99 % of the 

variation. As with the other models, between five and eight eigenvectors are identified for 

each subject. Fig. B.11 shows a plot of the eigenvalues as a percentage of the total, for 

all subjects. As with the Texture model, the dropoff is more gradual than with the Shape 
model, probably due to the Appearance model incorporating both types of information.
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Eigenvalues

Fig. B.11. Appearance eigenvalues for all subject/finger/LED color combinations. The 
first nine eigenvalues are represented along the x-axis, while the y-axis shows the relative 
weight of the eigenvalue for each combination. Line colors correspond to subjects, as shown 
in the legend. Circle edge colors (black vs. red) correspond to finger (thumb vs. finger). 
Circle face colors (white and green) correspond to LED color.

B.6 Pixel Intensity Error
Fig. B.12 shows the mean RMS errors in pixel intensites by finger and LED color, across 

all subjects. Neither the thumb (1.5 ±  0.3) nor the index finger (1.4 ±  0.3) is found to have 

a statistically significant effect on the registration accuracy.

B.7 Method Modifications
B .7.1  Landm ark  P oin t D en sity

The method of Landmark Point reduction for a sample finger contour are illustrated in 

Fig. B.13. The endpoints of the finger contour are used as static points, and the contour is 

interpolated with the desired number of points. The initial nail contour point is retained, 
and the desired number of contour points is used to interpolate along the length. The 

original points are shown by dots, with “x” marks showing the new landmark points. An 

“o” marks the three points that remained in the same location.
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Fig. B.12. Errors in Pixel Intensity for each Finger/LED Color. The 95% confidence 
intervals, calculated across all 16 subjects, are also shown.

Fig. B.13. Landmark Point Reduction. The endpoints of the finger contour (marked 
with an “o” ) are retained, and the desired number of finger contour landmark points are 
interpolated along the length of the finger contour (marked with an “x” ). Similarly, the 
most distal nail contour point (marked with an “o” ) is retained, and the desired number of 
nail contour landmark points are interpolated along the length of the nail contour (marked 
with an “x” ). For reference, the original landmark points are marked with dots.



APPENDIX C

ADDITIONAL MODELING AND 
OPTIMIZATION DETAILS

This appendix contains additional details that did not fit within the scope of Chapter

4.

C.1 Calibration Grids
Between 582 and 750 images of each digit are recorded under each lighting condition. 

As explained in Chapter 4, these images are taken at specified locations distributed around 
the force space.

The space is divided into nine regions, numbered 1-9, as shown in Fig. C.1. Region 1 
is the central core of shear force, with magnitude Fs <  0.5N. Regions 2-9 are 45°-wide 

wedge-shaped regions containing nonzero shear forces. For example, region 2 spans the 

range F, > 0.5N with angle -157.5° < 0 <  -112.5°.

2.5

2

1.5

1

0.5 

u_>' 0 
-0.5 

-1 

-1.5 

-2 

-2.5

^2 1̂ 0 1 2 
F

x

Fig. C.1. Regions of the calibration grid, viewed in the xy-plane. Region 1 contains forces 
near zero shear, while regions 2-9 are wedge-shaped nonzero shear forces arranged around 
the central core. During a typical calibration session, each region is visited 3 times, in a 
random order.
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Each combination of subject/finger/light color was randomly assigned either a Cartesian 

or Cylindrical grid, as shown in Table C.1. This table also gives the order in which the nine 

trajectory regions were presented to each subject.
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Table C.1. Grid Choice and Region Order for Each Data Set.

Subj Finger
LED

White
Color

Green Region Order

1

Thumb
Index

Cart
Cyl

Cyl
Cyl

144982165528396269377437185
823652548994971375246173186

2

Thumb
Index

Cyl
Cyl

Cyl
Cart

186142253826789433147695597
214955686239477785496332118

3
Thumb
Index

Cart
Cart

Cyl
Cyl

941746878415325389192236576
518694271238781573943694526

4
Thumb
Index

Cyl
Cart

Cyl
Cart

811257993841426332584696757
238564264692399118387571547

5
Thumb
Index

Cart
Cart

Cart
Cart

695449284171165986758322337
568477968398236712925144513

6

Thumb
Index

Cart
Cyl

Cart
Cyl

739659148518283652973462174
792961141723663855385744289

8

Thumb
Index

Cart
Cyl

Cart
Cyl

394686252947868371153749521
845188336475624126732919759

9
Thumb
Index

Cart
Cart

Cart
Cyl

599193416273218845364567782
394844857325253627691871619

10

Thumb
Index

Cyl
Cyl

Cart
Cyl

329176265244599387186853471
727643995395273281486156841

11

Thumb
Index

Cart
Cyl

Cart
Cart

366951475644391288582712379
746563219897488516223159473

12

Thumb
Index

Cyl
Cart

Cart
Cart

813182592667538344757194962
161599228648729558434377613

13
Thumb
Index

Cart
Cart

Cyl
Cart

964462578231875542639837911
292684534771594867693113582

14
Thumb
Index

Cart
Cyl

Cyl
Cart

518289714941267343936587652
736225468171155462339849978

15
Thumb
Index

Cyl
Cyl

Cart
Cart

539756917817142462826493385
842811235579684697429613735

17
Thumb
Index

Cyl
Cart

Cart
Cyl

684258849125331351769246797
576768439758112935946318224

19
Thumb
Index

Cyl
Cyl

Cart
Cart

839861825794261355934216477
978124533536621965984774812
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