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Abstract

We investigate asynchronous circuit veri�cation using Dill�s trace

theory ��� as well as Milner�s CCS �as mechanized by the Concur�
rency Workbench�� Trace theory is a formalism speci�cally designed
for asynchronous circuit speci�cation and veri�cation� CCS is a gen�
eral purpose calculus of communicating systems that is being recently
applied for hardware speci�cation and veri�cation �	�� Although both
formalisms are similar in many respects
 we �nd that there are many
interesting di�erences between them when applied to asynchronous cir�
cuit speci�cation and veri�cation� The purpose of this paper is to point
out these di�erences
 many of which are precautions for avoiding writ�
ing incorrect speci�cations� A long�term objective of this work is to
�nd a way to take advantage of the strengths of both the Trace The�
ory veri�er and the Concurrency Workbench in verifying asynchronous
circuits�

� Introduction

As VLSI systems become larger� faster� and more complex� timing problems
in them become progressively more severe� and account for an ever increasing
percentage of their design and debugging expenses� One emerging solution
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to these problems lies in adopting an asynchronous style of design� Asyn�
chronous circuits have a number of strengths� the principle ones being that
of modularity and incremental expandability�

Although asynchronous circuit design techniques have been known for
nearly four decades� and their advantages have been widely discussed� they
have not been adopted widely for several reasons� The most important
reason is the inadequacy of design formalisms as well as tools to deal with the
concurrency exhibited by asynchronous circuits� The situation has recently
been changing� with the development of asynchronous circuit compilers ��� ��
�� �� 	
 as well as formalisms� the principal ones being several trace theories�
notably those of Dill ��
 and Ebergen ��
� In addition� popularizing lectures
such as Sutherland�s ��� Turing award lecture �
 have helped� See ���
 for
a survey�

I have been studying Dill�s trace theory for some time now �referred to
in the rest of this paper simply as �trace theory��� I also am fairly familiar
with Milner�s Calculus of Communicating Systems� For a while I believed
that trace theory� being a formalism tailored speci�cally for studying asyn�
chronous circuits� is a �safer bet� in terms of the direct correspondence that
its constructs have to actual circuit phenomena such as transistors going
on�o�� gates �ring� etc� This correspondence is very important because
humans are no longer able to reason directly in terms of low�level circuit
phenomena because of the increasing circuit complexity� If there is even the
slightest risk of mismatch between the abstractions o�ered by the formalism
and the circuit realities� one�s reasoning can go way o� course before one so
realizes�

The asynchronous circuits considered in this paper are assumed to follow
the transition signaling discipline �
� a module toggles the current logic level
of a wire �a� in order to invoke input action �a� of the recipient��

My main reason for thinking that CCS is not a suitable formalism for
studying asynchronous circuits� in the light of what I just now said� was
based on the fundamental di�erence in the way communication is modeled
in CCS versus how it is modeled in trace theory� Asynchronous circuits
communicate over wires� Communication over wires causes information to
�ow only in one direction� the receiver knows when it receives the commu�
nication� however� the sender does not know when the receiver receives the
communication� In CCS� information �ow during communication is bidi�
rectional because of the �handshake� or �rendezvous� semantics �both the
sender and the receiver know that the other has received the communica�
tion before they proceed�� Said another way� in asynchronous circuits� a
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module cannot refuse an input simply because the sender does not sense the
receptiveness of the receiver before it sends a communication� In CCS� since
receptiveness is explicitly checked for during handshake� the inputs o�ered
by the sender can be refused by a potential receiver�

My opinions in this regard have recently changed as I have been notic�
ing several researchers use either CCS or CCS�like formalisms for modeling
asynchronous circuits� Two examples are the use of CCS by Aldwinckle�
Nagarajan� and Birtwistle ��
� and the use of CIRCAL by Bailey and Milne
���
� This trend is quite important because this way one could �re�use�
what is being developed in the world of CCS �for example� tools such as the
Concurrency Workbench� �CWB�� for verifying asynchronous circuits�

In this paper� I report results from my preliminary studies in applying
both Dill�s trace theory ��
 as well as Milner�s CCS ���
 �as mechanized by the
CWB� to verify asynchronous circuits� Although both formalisms are similar
in many respects� I �nd that there are many interesting di�erences between
them when applied to asynchronous circuit speci�cation and veri�cation�
The purpose of this paper is to point out these di�erences� many of which
are precautions for avoiding writing incorrect speci�cations� A long�term
objective of this work is to �nd a way to take advantage of the strengths of
both the Trace Theory veri�er and the CWB in order to verify asynchronous
circuits�

Section � is devoted to explaining trace theory� as it may not be well
known outside the area of asynchronous design� Familiarity with CCS is
assumed� Section � explains the problems one may face� if the fact that
asynchronous circuits cannot refuse their inputs is ignored� Section � ex�
plains the problems one may face if a phenomenon called autofailures is
ignored� Section � presents examples where the strengths of the CWB are
pointed out� In particular� we establish correctness properties of a new com�
ponent that we have developed � a lockable C element� Section � has our
conclusions�

� Background� Trace Theory

��� De�nitions and Trace Structures

The following de�nitions and notations are taken from ��
� Trace theory
is a formalism for modeling� specifying� and verifying speed�independent
circuits� It is based on the idea that the behavior of a circuit can be described
by a regular set of traces� or sequences of transitions� Each trace corresponds
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to a partial history of signals that might be observed at the input and output
terminals of a circuit�

A simple pre�x�closed trace structure� written SPCTS� is a three tuple
�I� O� S� where I is the input alphabet �the set of input terminal names�� O
is the output alphabet �the set of output terminal names�� and S is a pre�x�
closed regular set of strings over � � I � O called the success set� I and O

are disjoint� In the following discussion� we assume that S is a non�empty
set�

These trace structures are more aptly called directed trace structures
because the direction �input or output� of every member of a trace is im�
portant �as will become clear as we go along�� Basically� information �ow
among circuit modules is unidirectional as pointed out before� whereas in
CCS �or in other rendezvous based languages� the information �ow is bidi�
rectional� This distinction has� in fact� been studied extensively by Chen�
Udding and Verhoe� in ���
 who call it the synchronous game and the asyn�
chronous game� We show later that ignoring this di�erence may have dire
consequences in terms of not being able to spot certain errors�

We associate a SPCTS with a module that we wish to describe� Roughly
speaking� the success set of a module described through a SPCTS is the set
of traces that can be observed when the circuit is �properly used��

With each module� we also associate a failure set� F � which is a regular
set of strings over �� The failure set of a module is the set of traces that
correspond to �improper uses� of the module� The failure set of a module
is completely determined by the success set� F � �SI � S���� Intuitively�
�SI � S� describes all strings of the form xa� where x is a success and a is
an �illegal� input signal �see below�� Such strings are the minimal possible
failures� called chokes� Once a choke occurs� failure cannot be prevented by
future events� therefore F is su�x�closed�

As an example� consider the SPCTS associated with a unidirectional
wire with input a� output b� and success set

�fag� fbg� f�� a� ab� aba� � � �g��

The success set is a record of all the partial histories �including the empty
one� ��� of successful executions of wire� An example of a choke for wire is
the trace �aa�� Once input �a� has arrived� a second change in �a� is illegal
since it may cause unpredictable output behavior�

There are two fundamental operations on trace structures� compose �k�
�nds the concurrent behavior of two circuits that have some of their termi�
nals of opposite directions �the directions are input and output� connected�
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and hide makes some terminals unobservable �suppressing irrelevant details
of the circuit�s operation�� A third operation� rename� allows the user to
generate modules from templates by renaming terminals� Details about
these operations are reported in ��
� brie�y� compose is like conjunction� it
constructs the success set of the composite as follows� It �rst takes the
Kleene star of the union of the alphabets of the trace structures and then
retains from it only strings s such that the projection of s onto the alphabet
of trace structure i of the composition �denoted by Ti� is a member of the
success set of Ti� After determining the success set of the composite this
way� the success set and the failure set are �adjusted� through autofailure
manifestation and failure exclusion as explained in section ���� Compose
of two trace structures T� � �I�� O�� S�� and T� � �I�� O�� S�� is illegal if
O� � O� �� �� if not� the output alphabet of the composite is O� � O� and
the input alphabet is �I� nO�� � �I� nO���

Hiding is allowed only on the output symbols� If t is a member of S �
F of trace structure T � then t

�

is a member of hide�H��T � where t
�

is a
projection of t onto the alphabet of T � Hiding is not allowed on input symbols
mainly because a module cannot refuse an input from being applied to it �and
therefore it is hard to de�ne what hiding an input means�� However� inputs
are e�ectively �removed� through compose because when an input port is
connected to an output port� the result is an output port�

Rename renames the ports used in a description� mainly to model elec�
trical connections� two ports that are named alike are connected� provided
that they are not both outputs�

We can denote the success set of a SPCTS by using state�transition
speci�cations� The success set of wire� described earlier� is captured by the
following speci�cation� where wire is regarded as a process�

WIRE � a� � b�� WIRE

In a process description� we use �j� to denote choice� ��� to denote sequenc�
ing� and a system of tail recursive equations to capture repetitive behavior�
We use symbols such as a� to denote incoming transitions �rising or falling�
and b� to denote outgoing transitions �rising or falling�� �Extensions to this
syntax will be introduced as required��

When we specify a SPCTS� we generally specify only its success set� its
input and output alphabet are usually clear from the context� and hence are
left out�
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��� �Illegal Inputs�

Suppose for a trace structure �I� O� S� with failure set F � x � S but xo � F

where o � O� Intuitively� after having seen x� the module has an output o
which it can autonomously perform� leading to a failure� It is also possible
that after x another output o

�

is enabled which can evade this failure �i�e�
xo

�

is a success�� Likewise� an input i can also be enabled which� if �applied
soon enough� can also evade failure �i�e� xi is a success�� Nevertheless�
having seen x� there is a de�nite possibility that the module can perform
o and fail� Keeping this in mind� we remove x from S and add it to F �
�Remember that F has to be made su�x�closed�� x is called an autofailure�
The process of removing x from S and adding it to F is called autofailure
manifestation� After autofailure manifestation� S is set to S n F � this step
is called failure exclusion�

The trace structures considered in the rest of this paper are already
assumed to have been subject to autofailure manifestation�

��� Conformance� The Ability to Perform Safe Substitutions

A trace structure speci�cation� TS � can be compared with a trace structure
description� TI � of the actual behavior of a circuit� When TI implements TS �
we say that TI conforms to TS� that is� TI � TS � �The inputs and outputs of
the two trace structures must be the same�� This relation is a preorder and
is called conformance� Conformance holds when TI can be safely substituted
for TS �

More precisely� TI � TS if for every T �� whenever TS k T � has no failures�
TI k T

� has no failures� either� Intuitively� TI �
�a� must be able to handle every input that TS can handle �otherwise�

TI could fail in a context where TS would have succeeded�� and
�b� must not produce an output unless TS produces it �otherwise� TI

could cause a failure in the surrounding circuitry when TS would not��
We illustrate these two facets of conformance� �rst considering restric�

tions on input behavior �case �a��� Consider a join element�

J � a�� b�� c�� J

j b�� a�� c�� J

Now� consider a modi�ed join�

J� � a�� b�� c�� J�
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Notice that the success set of J� leaves out the trace b� a� c� Clearly it is not
safe to substitute J� for J � J� cannot accept a transition on b as its �rst
input� whereas the environment is allowed to generate a b as its �rst output
transition� because this would have been acceptable for J � Formally� we say
J� �� J � since the implementation cannot accept an input transition which
the speci�cation can receive�
However� note that it is safe to substitute J for J�� since J can handle

every input �and more� which J� can handle� so J � J�� Trace theory
allows an implementation to have �more general� input behavior than its
speci�cation�
Next� consider the case of restrictions on output behavior �case �b�

above�� We begin with a simple case�

CONCUR MOD � a�� �b�� k c���� CONCUR MOD

SEQNTL MOD � a�� b��� c��� SEQNTL MOD

Note that the success set of SEQNTL MOD omits the trace a� c� It is not
safe to substitute CONCUR MOD for SEQNTL MOD� some environ�
ment of SEQNTL MOD may not accept a transition on c after producing
an a� Therefore� CONCUR MOD �� SEQNTL MOD �intuitively� imple�
mentation CONCUR MOD is �too concurrent���
However� SEQNTL MOD can be safely substituted for CONCUR MOD

in any environment� Any environment accepting outputs fromCONCUR MOD

will also accept outputs generated by SEQNTL MOD� so SEQNTL MOD �
CONCUR MOD� Trace theory allows an implementation to have �more
constrained� output behavior than its speci�cation�
This point can be illustrated more dramatically� We return to the earlier

join and a new implementation�

AlmostWood � a�� b�� c�� AlmostWood

j b�� a�� AlmostWood

The reason why J can be safely substituted by AlmostWood in any context
is the following� So long as the environment and the component keep gen�
erating the sequence abcabcabc � � �� both J and AlmostWood behave alike�
Suppose the environment generates the string ba and awaits a c� J does
generate a c after seeing ba� thereby allowing the environment to proceed�
AlmostWood� on the other hand� outputs nothing� and awaits a further a or
a b at the same time as the environment is awaiting a c� in this case� the
result is a deadlock�

	



Going to the extreme� we �nd that

BlockOfWood � a� � BlockOfWood

j b� � BlockOfWood

conforms to J �
In summary� conformance allows an implementation to be a re�nement of

a speci�cation� an implementation may have �more general� input behavior
or �more constrained� output behavior than its speci�cation� However� we
want to show not only that an implementation does no harm� but that it
also does something useful� Unfortunately� pre�x�closed trace theory cannot
distinguish �constrained� output behavior from deadlock� In spite of the
usefulness of trace theory� this is its greatest practical weakness�

��� On Establishing Conformance

A veri�er has been developed by Dill to establish conformation� Relation �
is established in this veri�er as follows �we use T � TS � etc� to denote trace
structures��

� The veri�er constructs a trace structure� TS� called the mirror of spec�
i�cation TS �see ��
� originally proposed in ��
�� TS is the same as TS �
but with input and output sets reversed� The mirror is the worst�case
environment which will �break� any trace structure that is not a true
implementation of TS �

� The veri�er then generates the parallel composition of the implemen�
tation� TI � and the mirror� TS � TI k TS � It has been proven that
TI � TS i� TI k TS is failure�free �see ��
��

� TI � TS is checked by testing that TI k TS is free of failures� This
check can be performed by �simulating� the parallel behavior of the
two trace structures� presented in Figure ��

As an example of the above simulation� consider the simulation of J�
against J � where J is the mirror of speci�cation J �

J � a� � b�� c�� J

j b�� a� � c�� J

We can see that J is the only module capable of performing the �rst
output action� either a� or b�� The production of b� will cause J� to choke�
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��	 Conformation Equivalence

We have seen that while conformance captures the notion of �re�nement��
it cannot capture the notions of deadlock and livelock� There is another
relation that can be considered� conformation equivalence� Trace structures

A and B are conformation equivalent �A
conf
	 B� if A � B and B � A �see

��
��
Unfortunately� just as conformance is �too weak� a relation for our pur�

poses� conformation equivalence is often �too strong�� Often� for a speci�ca�
tion Spec and implementation Imp� where Imp � Spec� we cannot establish

that Imp
conf
	 Spec� For example� Imp commonly is overbuilt in the sense

that it accepts more inputs than necessary�
Such an implementation gives rise to the following problems� In showing

Imp � Spec� no problem arises� because Imp will accept all the inputs that
Spec can� However� in trying to show that Spec � Imp� we �simulate�
Imp k Spec� Since Imp can accept more inputs than it needs to� Imp ends
up generating more outputs than it �needs to� some of these outputs go
beyond what Spec can accept� and thus the test Spec � Imp fails�
How do we rescue the situation� The answer lies in not attempting

Spec � Imp� but merely whether SSpec 
 SImp� where �SM � denotes the
success set of �M �� We have identi�ed precisely such a relation� called strong
conformance ���
� This relation is now brie�y explained�

��
 Strong Conformance

De�nition� We de�ne T v T
�

� read T conforms strongly to T
�

� if T � T
�

and ST � ST � � The algorithm to check for strong conformance is omitted
to conserve space�
The strong conformance relation is safe in that it guarantees confor�

mance� However� it is not guaranteed to catch all liveness failures� but for a
number of examples� a veri�er based on strong conformance provides much
better error detection capabilities ���
�

� Examples Motivating Non�refusal of Inputs

Having studied Dill�s trace theory� we now proceed to experiment with the
CWB� and compare our observations with those observed in Dill�s trace
theory veri�er�





Consider the process WIRE de�ned on page �� Suppose we specify this
process in CCS as

Wire � a��b�Wire

Here� following the syntax of the Concurrency Workbench ���
� an action of
the form �x is a co�name �output action� and an action of the form x is an
input action� Let us pose the question� �does Wire conform to Spec� where�

Spec � a���b�Spec � a�Spec�

In other words� we are asking whether Wire is a safe substitution �in the sense
of conformance�� for Spec� in any context� The most liberal environment in
which Spec can be operated is obtained by taking its mirror�

Specmirror� � �a��b�Specmirror� � �a�Specmirror��

Though the above process is the mirror� for practical reasons� we modify it
to Specmirror given below� Since CCS converts synchronizing actions to a
silent action� tau �written t in our syntax�� we add �marker� actions aout
and bout to Specmirror� so that its execution can be more meaningfully
observed from outside� We thus obtain�

Specmirror � �a�aout��b��bout�Specmirror � �a�aout�Specmirror�

Now consider the system�

Specmirror�Wire � �� Specmirror � Wire�	 
a�b��a�aout�b�bout�

In the combined system� after accepting an �a�� Wire can be subject to
another �a� from Specmirror� however� Wire can refuse this �a� and proceed
to do a �b�� Therefore� the combined system does not exhibit a deadlock �as
revealed by the ��nd deadlock� � fd � command��

fd Specmirror�Wire

No such agents�

��



If the above speci�cations are transliterated into trace�theoretic speci�ca�
tions and we ask if Wire conforms to Spec� the answer will be false� meaning
that a choke �a�a� can occur�

In other words� when modeling asynchronous circuits� it can be danger�
ous �in the sense of not being able to detect certain chokes� not to take into
account the fact that asynchronous circuits can ignore their inputs�

How do we model a �real wire�� The fact that an actual wire cannot
refuse an input is easily captured by amending the speci�cation of Wire to
Realwire� below� Then we de�ne Specmirror Realwire� also de�ned be�
low� which indeed reveals precisely the choke discovered by the trace theory
veri�er�

Realwire � a���b�Realwire � a�Choke�

Choke � nil

Specmirror�Realwire � �� Specmirror � Realwire�	 
a�b��a�aout�b�bout�

fd Specmirror�Realwire

��� t a t a ���� �Specmirror � Choke�	
a�b�a�aout�b�bout�

This shows that Specmirror Realwire �deadlocks� by going into state
Choke� �The de�nition of state Choke helps us spot these deadlocks more
easily� Also the above �deadlock� is merely a way to model actual chokes in
circuits� we could very well have modeled a choke through any other error
situation that is easily detectable in the CWB��

Thus� it appears that Realwire models an electrical conductor more
faithfully� We shall con�rm this through another experiment presented later�

� Dealing With Autofailures

To motivate the importance of directionality in trace theory� as well as the
phenomenon of autofailures� consider the following CCS de�nitions�

Test� � c��d��e�Test�

Driver� � �c�d�Driver�

Test� � �c�d��e�Test�

Driver� � c��d�Driver�

System� � �Test� � Driver��	
c�d�

System� � �Test� � Driver��	
c�d�
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The only di�erence between System� and System� is that their constituent
processes use di�erent directions for their ports c and d� Doing so has no
observable e�ect on the computations of System� and System� because the
ports c� c�� d� and d� synchronize in the same fashion as before� and they
are unobservable� In other words� we could show that System� and System�

are observationally congruent�
Now� suppose we transliterate these speci�cations into the input syntax

of Dill�s veri�er� In other words�

Test� � c�� d�� e�� Test�

Driver� � c�� d�� Driver�

Test� � c�� d�� e�� Test�

Driver� � c�� d�� Driver�

System� � hide�c� d��compose�Test�� Driver���

System� � hide�c� d��compose�Test�� Driver���

We �nd that System� exhibits a choke while System� doesn�t�
Here is the reason� Consider System�� First Driver� applies a c� onto

Test� causing both the modules to make progress� then Test� applies a d�
onto Driver�� causing Driver� to return to its top state� while Test� is in a
state where it can only generate output e�� If Test� were to now generate
e� �soon enough�� it would return to its top�level state� and all would be
well �both processes resume their behavior�� however if Test� were a bit slow
relative to Driver�� the latter� since it is now in its top level state� would
apply a c� which Test� cannot accept� The simulation of System� is safe
because after Driver� is back in its top level state� it only awaits an input
c� � and this input can only come from Test� because the output port c� of
Test� is connected to input port c� of Driver�	 and there can be no further
�drives� onto this node �see the restrictions on compose��

How do we make the CCS speci�cations manifest these errors� There are
two approaches� The �rst approach consists of the following steps� ��� con�
nect a Realwire to the input ports of every component� ��� then assemble
the system� For example� de�ne

Driver�� � � Driver� rwb�d�d� � Realwire d�rwa� rwb�d�rwb� � 	 rwb�d
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and likewise de�ne Driver��� Test��� and Test��� Now we get�

eq System�� System��

false

fd System��

� ��� rwb�c t e rwb�c t t t e rwb�c t t t e rwb�c t e rwb�c ����

����d�e�Test��rwb�c�c� � Chokerwb�c�rwb�c�rwa�� � �Driver�rwb�d�d� �

Choked�rwa�rwb�d�rwb��	rwb�d�	
c�d�

� ��� rwb�c t e rwb�c t t t e rwb�c t e rwb�c t ���� ����d�e�Test��rwb�c�c� �

Chokerwb�c�rwb�c�rwa�� � ��d�Driver��rwb�d�d� � Choked�rwa�rwb�d�rwb��	rwb�d�	
c�d�

� ��� rwb�c t e rwb�c t e t t ���� ����d�e�Test��rwb�c�c� �

Realwirerwb�c�rwb�c�rwa�� � ��d�Driver��rwb�d�d� �

Choked�rwa�rwb�d�rwb��	rwb�d�	
c�d�

fd System��

No such agents�

Notice that we can now detect a choke in System�� but not in System��

The second approach �which is automatable and more e�cient in prac�
tice� is to rede�ne the processes as follows� which then gives the indicated
simulation results�

Test��� � c��c�Choke � �d��c�Choke � �e�Test�����

Driver��� � d�Choke � �c�d�Driver���

Test��� � d�Choke � �c�d��d�Choke � �e�Test����

Driver��� � c��c�Choke � �d�Driver����

System��� � �Test��� � Driver����	
c�d�

System��� � �Test��� � Driver����	
c�d�

eq System��� System���

false

fd System���

��� t t t ���� �Choke � d�Driver��	
c�d�

fd System���

No such agents�

The way in which we have modi�ed Test�� etc�� to Test���� etc� is as
follows� for every agent� for every reachable state of the agent� if that state
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has outgoing transitions on inputs Im 
 I where I are all the inputs of the
agent� add transitions on inputs I n Im to state Choke� This transformation
helps reveal autofailures through the ��nd deadlock� �fd� command� We
call this step adding failure paths�

To sum up� in this section� we have shown the following�

�� We have shown how autofailures can be detected in the context of the
CWB�

�� We have shown how conformance can be checked for by explicitly creat�
ing themirror of the given speci�cation �for example� see Specmirror���
Actually� in e�ect� strong conformance is checked for if the CWB com�
mand eq is used�

To �simulate� the e�ects of Dill�s trace theory in CCS �and to then use the
CWB to detect errors�� a few additional transformations are required on
CCS agent de�nitions� Since CCS agent connections are �point�to�point�
�i�e� a matching name and a co�name are turned into a �� whereas Dill�s
trace theory takes the point of view of having �in�nite fanout� �i�e� an
output connected to an input is retained as an output�� explicitly use ForkN
modules in order to fanout the transition of an electrical signal� For example�
for a fanout of two� we use the Fork� module

Fork� � a���b���b��Fork� � �b���b��Fork��

� Assorted Examples

In this section we �rst discuss the veri�cation of a Lockable C Element�
Then we discuss some examples pertaining to the detection of deadlocks�

	�� A Lockable C element

Muller�s C element is a very widely used component in asynchronous circuits�
It is very close to the join element� J � introduced on page �� Its speci�cation
can be expressed in CCS �before the step of adding failure paths to avoid
clutter� as�
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� A C element that allows ��double clutching��� e�g� two successive a�s cancel�

�

C � a�Aseen � b�Bseen

Aseen � a�C � b�ABseen

Bseen � b�C � a�ABseen

ABseen � �c�C

� A C element that has seen a ��b��

Cb � Bseen

In typical applications� a C element allows two threads of control to ren�
dezvous� One common use of a C element is to build a micropipeline stage
as shown in �gure ��

We have recently developed a lockable version of the C element called
LockC� Its speci�cation is now given�

LockC � a�Aseen � b�Bseen � lock��lack�Locked

Aseen � a�LockC � b�ABseen � lock��lack�AseenLocked

Bseen � b�LockC � a�ABseen � lock��lack�BseenLocked

Locked � lock��lack�LockC � a�AseenLocked � b�BseenLocked

ABseen � a�Bseen � b�Aseen � lock���lack�ABseenLocked � �c��lack�Locked�

� �c�LockC

ABseenLocked � lock��lack�ABseen � a�BseenLocked � b�AseenLocked

AseenLocked � a�Locked � lock��lack�Aseen � b�ABseenLocked

BseenLocked � b�Locked � lock��lack�Bseen � a�ABseenLocked

� LockC that has seen a �b�

LockCb � Bseen

The basic application of LockCb is in building stallable micropipelines as
described in ���
� It di�ers from Cb in that it o�ers the possibility of being
�locked� via a lock signal� and acknowledges locking via lack� it is then
unlocked via lock and it acknowledges the unlocking also via lack�

Suppose LockCb is used in place of Cb� with the lock and lack of LockCb
connected to a driver process� as shown in �gure ��

LockCDriver � �lock�lack��lock�lack�LockCDriver

Further assume that lock and lack are restricted� Then we expect the
circuit using LockCb to behave exactly the same as the one using Cb� We
could con�rm this using the CWB� using the eq command�
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We could also apply the diveq command which checks whether both the
processes are observationally equivalent� also respecting divergence � this
proved to be false� because the circuit using LockCb can diverge through a
sequence of lock� �lack actions � LockCDriver can be so fast that it causes
the circuit using LockCb to diverge in a tau loop� e�ectively preventing
LockCb from making any progress�

Finally� we could check the following propositions about the circuit us�
ing the CWB� after every lock� �lack will eventually happen� and vice
versa� These model checking commands are quite valuable in verifying asyn�
chronous circuits� Currently this facility is not available in Dill�s trace theory
veri�er�

	�� Detecting Deadlocks and Livelocks

Consider the circuit shown in �gure �� The components used in this circuit�
before the step of adding failure paths� have the following behaviors�

Gselector � ain���bout�Gselector��cout�Gselector�

Merge � a��c�Merge � b��c�Merge

We connect bout to the external output b� cout to x�� the b input of Merge
to x�� the c output of Merge to x�� and the ain input of Gselector to
x�� Then� after applying a transition at the A input� the circuit can engage
in a sequence of X��X��X����� actions of arbitrary length before it emits
a B �depending upon the �fairness� of selection of unit Gselector �shown
as G�S� in the Figure�� Dill�s veri�er is incapable of pointing out that the
circuit can diverge� the CWB is able to do this� If we now consider the circuit
shown in �gure �� ��� the conformance check passes the deadlockable wire
as a safe substitution for a wire� ��� the strong conformance check rightly
points out that the deadlockable wire is not a safe substitution for a wire�
and ��� the CWB is able to detect a deadlock�

� Conclusions

We have identi�ed some of the precautions necessary to be observed be�
fore CWB can be applied for verifying asynchronous circuits� We have also
presented two approaches� the addition of a Realwire component at every
modules� input� or alternately� the process of adding failure paths� to con�
vert CCS speci�cations into those that exhibit all�chokes and autofailures�
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By taking one of these approaches� the CCS�CWB combination becomes
a powerful tool that is capable of detecting circuit errors� and also permit
checking for divergences� deadlocks �even those other than the ones caused
by Chokes�� and also user�given modal properties� �Note� there is ongoing
work at the Carnegie Mellon University to study the use of both trace theory
and various temporal logics for asynchronous circuit veri�cation�� Another
advantage we see with the CCS�CWB approach is that it permits both high
level protocols as well as low�level implementations of these protocols to be
reasoned about using the same tool�

Currently the CWB is not very e�cient � even moderately sized circuits
take a long time to run� Dill�s veri�er� on the other hand� executes much
faster� Perhaps the CWB can be re�coded to solve this�

In conclusion� we believe that we have identi�ed some useful connections
between Dill�s trace theory and the CCS model from the point of view of
asynchronous circuit veri�cation�
Acknowledgements� Graham Birtwistle and his group at the University
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Notations�

� It is assumed that the network TI k TS is closed �each output of
TS matches an input of TI � and vice�versa�� and no two outputs are
connected together�

� De�ne T� � TS and T� � TI �

� De�ne T�� � the set fT�� T�g�

� De�ne !T � if �T � T�� then T� else T��

� De�ne next�s� x� to be the next state attained from state s upon pro�
cessing input�output x�

� Initialize a global set of state pairs� visited � ��

� Call conforms�to�p�T��� start�state��� start�state����

� Report �success��

conforms�to�p�T��� st�� st�� �
if �st�� st�� � visited

then return
else

visited �� visited� f�st�� st��g�
for each T � T��

for each enabled output x of T

if x is enabled in !T
then conforms�to�p�T��� next�st�� x�� next�st�� x��
else ERROR �print failure trace and abort�

end if
end for

end for
end if
end conforms�to�p

Figure �� Algorithm for Checking for Conformance
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