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High-precision quasienergies for a driven two-level atom at the two-photon preresonance
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A computation with unprecedented precision is presented for quasienergies of a two-level atom in a mono­
chromatic radiation on the basis of a recently obtained exact expression [D.-S. Guo et al., Phys. Rev. A 73,
023419 (2006)]. We start with the proof of an expression theorem. With this theorem the quasienergies for any 
two-level atom can be expressed in terms of the quasienergies for only those with the original energy spacing 
(per field photon energy) being an integer (preresonances). Then we carry out a numerical evaluation of the 
quasienergies at the two-photon preresonance, which involves computing an infinite determinant, up to the 
18th power of the coupling strength. The theoretical prediction presents an experimental challenge for high- 
precision tests of quantum mechanics and could be exploited for precise calibration of high laser intensities,
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In a recent paper [I], a closed expression for quasiener­
gies exhibiting explicit Floquet periodicity, together with the 
corresponding wave functions, is derived for a two-level 
atom in a monochromatic radiation field without any restric­
tion on the range of the parameters. The study of the two- 
level atom [2 ] in a radiation field has occupied a central 
position in quantum optics (see, e.g., [3-6]). The ultimate 
goal of quantum optics is to achieve a complete understand­
ing of atoms interacting with radiation fields. To reach this 
goal, the most important thing is to obtain accurate wave 
functions with corresponding accurate quasienergies for an 
arbitrary atom (or ion) interacting with a radiation field. A 
real atom (or ion) has an infinite number of energy levels, 
which may include a finite number of bound-state energy 
levels (occupied or nonoccupied ground states), an enumer­
able infinite number of excited states (occupied or nonoccu­
pied Rydberg states), and a nonenumerable infinite number 
of states in its continuous spectrum. With present computing 
techniques, all continuous quantities are discretized to sets of 
finite numbers. Thus the iV-level atom model with an arbi­
trarily large N  number is an appropriate way to describe a 
real atom.

The importance of the model of a two-level atom in a 
radiation field is in the following two aspects, (i) The model 
can apply to many physical systems directly—e.g., atoms in 
a laser field when the laser frequency is near a transition 
frequency between two levels of a real atom and a two-level 
system of magnetic resonances, (ii) The model is the first 
step in the development of an accurate theory for the iV-level 
atom in radiation fields: Analytic or numerical techniques for 
solving a driven two-level system may be generalized to the 
driven iV-level system; and as a necessary condition, the ana­
lytical and numerical solutions for a driven two-level atom 
will provide strong checks for the correctness of the solu­
tions for a driven AMevel atom. Now, obtaining accurate ana­
lytic and numerical solutions for an arbitrary AMevel atom is 
in our short-term plan. Thus an accurate numerical solution 
for a two-level atom plays a key role in our current and 
future researches.

There is a vast literature on the two-level atom in a mono­
chromatic classical field described by the Bloch equation [7].

Analytic methods with various approximations have been 
used (see, e.g., [3-6]), while numerically accurate, direct in­
tegration of the Bloch equation in strong radiation fields still 
remains elusive, because the pertinent time-dependent differ­
ential equations involve discrete quasienergies and discrete 
boundary conditions to be determined.

The closed expression for quasienergies obtained in Ref. 
[1] involves infinite determinants. Numerical evaluations of 
these infinite determinants involve some complicated alge­
braic manipulations, such as multiple infinite series and infi­
nite products, which cannot be found in any mathematics 
textbook. One of the main purposes of the present paper is to 
demonstrate, with physically interesting examples, how to 
evaluate these infinite determinants in a numerically satisfac­
tory fashion. Moreover, the precise numerical values of 
quasienergies provide theoretical predictions which can be 
put to precise experimental tests and exploited to calibrate 
laser intensities. The techniques developed here are useful 
for evaluating quasienergies and wave functions at any pre­
resonance. The special case we are presenting here is when 
the level spacing 2A is twice the photon energy w of the 
radiation. We call this the two-photon preresonance, which 
has been proven [1] to be not a true resonance. (The true 
resonances occur only when the radiation-s/i(/te</ level spac­
ing is an integral multiple of the laser-photon energy, such as 
Freeman resonances in above-threshold photoelectron spec­
tra [8 ].) However, as shown below, the preresonance cases 
play a very important role in calculating quasienergies for a 
generic value of 2 A /w¥=n, since those quasienergies can be 
expressed in terms of all quasienergies only at the prereso­
nances.

Theorem 1. The quasienergies of a driven two-level atom 
whose original spacing (before interacting with the driving 
radiation field) is a nonintegral multiple of the photon energy 
of the driving field can be expressed in terms of the quasien­
ergies of all two-level atoms with an integral original spacing 
interacting with the same radiation field.

Proof. In Ref. [1], the quasienergy when the original spac­
ing 2A=£ integer (we set w = l, as in Ref. [1]), the quasiener­
gies can be expressed as any one of the following two ex­
pressions:
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E  = —cos \/cos‘(irA) + t t R + sin(2irA) (2A #  n),
7T

1
E = — sin vsin‘(7rA)-  7r/?+ sin(27rA) (2A #  «), (1)

fl*
A-l

4A
_4A -  ( 2 k -  1 ) jCOS2(77£2A-l)

4A
4A2 -  (2k):

;&m2(TrE2k) (5)

where, for notation simplification, we do not write the addi­
tive arbitrary integer explicitly. In the square root of above 
equations, R+ has an expression

4A
A4- — t4A2 -  n

(2)

where the residues r„ relate to the quasienergies of the two- 
level atoms with the original spacing 2A = integer as

E 2k-1  = -c o s  1 (ttV- r2JM) (2 A = 2k -  1),
77

E 2k = ~sin 1 (-tt-V— r 2A.) (2A = 2k) (k=  1 ,2 ,3 ,...), (3)
TT

which can be converted to

'M- 1 = ^ c o s 2(77£2A'-i) (2A = 2k -  1),

r2k = - — mr(7TE2k) (2A = 2k) (k=  1 ,2 ,3 ,...). (4)

Thus we have

Now, the quasienergies for any two-level atom with an arbi­
trary original spacing are expressed in terms of the quasien­
ergies of all preresonance cases through Eqs. (1), (3), and 
(5). Q.E.D.

According to this theorem, the entire calculations of the 
quasienergies of two-level atoms, where the original spacing 
2A is an arbitrary number, greatly reduce to the calculations 
in the preresonance cases, where 2A = integer. The applica­
tion of this theorem is not limited to the exact solutions 
obtained in [1]. For example, one may develop other solution 
techniques to get the quasienergies from other methods with­
out calculating the residues /•„, such as solving the differen­
tial equation set directly. This theorem tells us that we can 
just concentrate on the preresonance cases in quasienergy 
calculations with any kind of solution techniques.

In the following, we show the detailed evaluation process 
for r2. The mathematical technique developed here should be 
useful for future calculations for __

We proceed to present details of evaluating r2. The 
quasienergy at the two-photon preresonance is given by E2 

= ± ^sii'T1 (7r \ —r2), with r2 being the following determinant 
infinite in the two directions along the main diagonal:
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We simplify this determinant by multiplying and dividing the 1 / 77 2 \
row and the column crossing each main-diagonal element 1 E2 = — ~ s n̂ I "3 ^  r2 ) ' ®
by the same factor, respectively, and then break it into the
product of two subdeterminants with equal value, resulting in We haye developed techniques t0 calculate exactly the coef-
r2-~~9 r2 > where >2 is a half-infinite determinant (infinite in ficients of the expansion of r ' in 
the down-right direction):
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The quasienergies are now given by

D
6

1

(7)

r'2= 1 -  K xD2 + K2D4 -  K3D 6 + K4D s + ■■■.

in terms of the partial sums
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n , j , l ,k >  2

(13)

(14)

The above exact expression of K 3 gives the reader a flavor of 
what is going on. For K4, to save space we did not present 
its exact expression, but its numerical value to high preci­
sion. Similarly the higher-order coefficients are calculated 
to be [9]

and

K* = 4.089694836636745 ... X 10“

K*= 1.761826370939839... X 10‘i-ii

(15)

K6= 8.661234370774032... X 10-8, (16)

K7 = 1.393524486588925... X 10-9, (17)

(18)

With these coefficients, the quasienergies can be calculated 
up to order Z)18. Our method is applicable to any desired 
higher order.

We have carried out a numerical evaluation using the 
above coefficients. We set D -  0.6 in a sample calculation. 
(For a hydrogen atom in a laser field of wavelength 243.2 
nm, the transition between a 2p  state and the Is state is at 
two-photon preresonance; when the intensity is 2 
X 1014 W /cm 2, the corresponding dipole coupling has ap­
proximately the value D - 0.6.)

A quasienergy calculated by using above coefficients up 
to K7 is -0.107 131 400 930 337.... The precision of this 
evaluation is estimated to be better than 15 figures: From Eq. 
(8) the error due to neglecting Ks and higher-order terms 
satisfies

, 1 
\SE2\ -

1

3 C0s(7T'£,2)
K*p 18 . 1 X IO-15, (19)
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FIG. 1. The two thick lines are the main quasienergy levels, the 
upper one (solid line) and the lower one (dot-dashed line), which 
reduce to the original two levels, respectively, when the dipole mo­
ment vanishes. The thin lines, in each respective group, are quasien­
ergy levels derived by the Floquet periodicity.

which means the 15 figures for this quasienergy are all ac­
curate.

To compare, the quasienergy from the usual rotating- 
wave approximation (RWA) calculation is -1.083 095 189 4 
(or -0.083 095 189 4 by the Floquet theorem). Its error is 
about 22%. The quasienergy from an improved RWA result 
[1] is -1.120 483 682 2 (o r-0.120 483 682 2 by the Floquet 
theorem), still with an error of 12%. High precision of the 
predicted quasienergy is clearly guaranteed by the analyti­
cally exact expression.

In Fig. 1, we present the quasienergy spectrum, calculated 
at the two-photon preresonance, versus the dimensionless di­
pole coupling squared, D 2. Recall that the energy-level spac­
ing is 2 (twice the photon energy) at D 2 = 0 and we have 
chosen the zero energy to be at the midpoint of the two levels 
in the absence of a radiation field (i.e., at D = 0 ), so the 
quasienergy spectrum is symmetric with energy zero. The 
quasienergy shift, corresponding to the well-known Bloch- 
Siegert (BS) shift [7], increasing with D 2, is shown by the 
two thick lines. The thin lines are the quasienergies due to 
the Floquet periodicity: There are two sets of quasienergies
[ 1 0 ], corresponding to the quasi stationary states derived 
from the original two levels. For any two quasienergies, if 
their difference (or sum) is always an integral multiple of

photon energy, then they belong to the same (or the distinct) 
quasistationary states. A weak probe laser beam with appro­
priate frequency (allowing small detuning) can induce a tran­
sition between two quasienergies belonging to distinct qua­
sistationary states. This may be used to test the predicted 
quasienergies with high precision. To test the nonperturba- 
tive nature of our results, we note that a transition induced by 
a probe beam may happen even between quasienergies with 
spacing smaller than the original spacing.

In the driven two-level atom model, various atomic ef­
fects that affect the atomic levels and wave functions show 
up only through two parameters: the level spacing 2A and 
the coupling strength D. As shown in Eq. (8 ), the quasien­
ergy at the preresonance depends only on the coupling D. 
With this advantage, the measurements of the quasienergy at 
the two-photon preresonance may provide a new possibility 
to test quantum mechanics to high precision.

Moreover, since the coupling strength D 2 is proportional 
to the driving laser intensity, measurements of quasienergy at 
the two-photon preresonance can also be used for calibration 
of laser intensities with high precision. For example, for the 
2 /7 -1 s transition of a hydrogen atom in two-photon prereso­
nance, we have

D 2 = [Dp [2 = 2 n X 3”“8cv—— m„. (20)
2 TTUfj

Here k  = 2iTlco is the photon wavelength, a = \ / m ea() the 
fine-structure constant, and up=2ire2l l m (,(jy' is the pondero- 
motive parameter—i.e., the ponderomotive energy per field- 
photon energy, with I  being the light field intensity. We see 
that D 2 is proportional to up or to /, numerically, when the 
field intensity /= 2 .0 0 x 1 0 14 W /cm 2 (or 1.00X1015 W / 
cm2), «;)=0.216 (or «;,= 1.08), and /)2=0.360 (or /)2=1.80). 
The corresponding quasienergies can be easily read from 
Fig. 1.

The demonstration here for evaluating the infinite deter­
minant r2 for two-photon preresonance up to high precision 
gives us confidence that the other preresonance cases can be 
dealt with in a similar way. According to the theorem proved 
in this paper, quasienergies for a generic driven two-level 
atom could be calculated with high precision after the calcu­
lation of r,, r4, etc.
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