
FORMAL VERIFICATION OF PROGRAMS AND

THEIR TRANSFORMATIONS

by

Guodong Li

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2010

Copyright c© Guodong Li 2010

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of
has been approved by the following supervisory committee members:

, Chair
Date Approved

, Member
Date Approved

, Member
Date Approved

, Member
Date Approved

, Member
Date Approved

and by , Chair of
the Department of

and by Charles A. Wight, Dean of The Graduate School.

Guodong Li

Ganesh Gopalakrishnan Sept. 9, 2010

Konrad Slind Aug. 22, 2010

Mary Hall Sept. 10, 2010

Matthew Flatt Sept. 13, 2010

John Regehr Sept. 13, 2010

Martin Berzins

School of Computing

ABSTRACT

Formal verification is an act of using formal methods to check the correctness

of intended programs. The verification is done by providing a formal proof on

an abstract mathematical model of the program, with respect to a certain formal

specification or property.

We present three case studies on using formal methods to verify programs

and their transformations: (1) we use term rewriting and theorem proving to

construct and validate a compiler from logic specifications to ARM assembly

code; the equivalence of a source specification and the generated assembly code

is proven mechanically with respect to the formal semantics; (2) we model, in an

“executable” declarative language TLA+, the Message Passing Interface (MPI) 2.0

library as well as C programs using MPI calls for parallel computations; and use

explicit model checking to check the specifications and programs; and (3) we model

CUDA kernel programs as symbolic logical formulas, and use constraint solving

to automatically reason about these Graphics Processing Unit (GPU) kernels.

We have built a couple of unique verification tools to check intrinsic proper-

ties (e.g. race freedom for concurrent programs and translation correctness for

compilers) and user-defined properties (e.g. functional correctness). Specifically,

the presented compiler is the first trusted compiler translating logic specifications

embedded in a theorem prover to low-level code; the MPI specification is the

first attempt to provide executable semantics for a comprehensive set of message

passing Application Programming Interfaces (APIs); and the CUDA verifier is the

only existing formal symbolic checker for GPU kernel programs.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

CHAPTERS

1. INTRODUCTION . 1

1.1 Compiling Sequential Functional Programs 2
1.2 Analyzing Parallel Programs with Message

Passing Communications . 2
1.3 Verifying Parallel Programs with Shared

Memory Communications . 3
1.4 Discussions . 4

2. COMPILING LOGIC SPECIFICATIONS: OVERVIEW 6

2.1 A Trusted Compiler for HOL Specifications 7
2.2 Motivating Example . 9
2.3 Related Work . 11

2.3.1 What is a Verified Compiler? . 12
2.3.2 Correctness Statement . 13
2.3.3 Literature Review : Compiler Verification 14

2.3.3.1 Certified Compilers . 14
2.3.3.2 Translation Validation . 17
2.3.3.3 Proof-carrying Code . 17

2.3.4 Rewriting-based Compilation . 18
2.3.5 Related Work in Cambridge . 18

2.4 Source Language TFL . 19
2.4.1 Notational Conventions . 20

2.5 From Imperative Language C0 to TFL . 20

3. COMPILING LOGIC SPECIFICATIONS : FRONT-END AND
MID-END . 25

3.1 Main Conversions in the Front-end . 25
3.1.1 Monomorphisation . 25
3.1.2 Defunctionalization . 28
3.1.3 Lightweight Closure Conversion . 30
3.1.4 Pattern Matching . 31

3.2 Main Conversions in the Mid-end . 33
3.2.1 Normalization . 33
3.2.2 Optimizations . 36

3.2.2.1 Dead Code Elimination . 36

3.2.2.2 β Conversion and Constant Folding 36
3.2.2.3 Common Subexpression Elimination 36
3.2.2.4 Tail Recursion . 36
3.2.2.5 Code Motion . 36
3.2.2.6 Inline Expansion . 37
3.2.2.7 SSA (Static Single-Assignment) Form 37

3.2.3 Register Allocation . 37
3.2.3.1 Offline Register Allocation . 39
3.2.3.2 Example . 39

3.2.4 Exposing Heap and Stack . 39

4. COMPILING LOGIC SPECIFICATIONS : BACK-END 42

4.1 Back-end I . 42
4.1.1 Imperative Languages . 42
4.1.2 From LF2 to HSL . 44
4.1.3 From HSL to CFL . 46
4.1.4 From CFL to ARM . 49

4.2 Back-end II . 50
4.2.1 Structured Assembly Language . 51
4.2.2 Machine Code Generation . 53

4.3 Examples . 55
4.3.1 Compilation of TEA . 55
4.3.2 A Detailed Example . 56

5. ANALYZING PARALLEL PROGRAMS: MPI PROGRAMS . 59

5.1 Motivation and Background . 59
5.1.1 Background . 61
5.1.2 Related Work . 62

5.2 Specification . 64
5.2.1 Data Structures . 64
5.2.2 Notations . 65

5.2.2.1 Operational Semantics . 68
5.2.3 Quick Overview of the Methodology . 69
5.2.4 Point-to-point Communication . 72
5.2.5 Collective Communication . 78

5.3 Evaluation and Program Verification . 81
5.3.1 Issues Raised by Modeling . 82

5.4 An Application: Soundness Proof . 82
5.4.1 Send and Receive . 84
5.4.2 Barrier . 85

6. VERIFYING PARALLEL PROGRAMS: CUDA KERNELS . . 86

6.1 Overview . 87
6.1.1 Illustration of CUDA . 87
6.1.2 Internal Architecture of PUG . 88
6.1.3 Organization . 90

6.2 SMT-Encoding Sequential Constructs . 91
6.2.1 Basic Statements . 92
6.2.2 Branches . 92
6.2.3 Variable Aliasing . 93
6.2.4 Scopes and Function Calls . 93

v

6.3 Encoding Concurrency . 94
6.3.1 2-thread Translation of Shared Updates 94
6.3.2 An Advanced Example Showing Barrier Encoding 95

6.4 Conditional Barriers and Conflicts . 96
6.5 Serial Checking, Exploiting Barrier Intervals 98

6.5.1 Barrier Intervals (BI) and Incremental Modeling 99
6.6 Loop Abstraction . 100

6.6.1 Loop Normalization . 101
6.6.2 Automatic Refinement . 102
6.6.3 Interiteration Race Checking . 103

6.7 Implementation and Experimental Results 104
6.7.1 Bank Conflict Checking . 107
6.7.2 Road-Testing PUG . 107
6.7.3 Assertion Checking (Functional Correctness) 108
6.7.4 Performance Improvement . 109
6.7.5 Some Limitations of PUG . 109

6.8 Appendix: Details of the Static Checker . 110
6.8.1 Data Structures . 110

6.8.1.1 List, Transition Stack and Path Condition 110
6.8.1.2 SSA Map . 111
6.8.1.3 Access Pattern and Flag b . 111

6.8.2 Main Rules . 112
6.8.2.1 Expression Evaluation . 112
6.8.2.2 Expressions and Statements . 115
6.8.2.3 Control Flow Structures . 116

7. PARAMETERIZED VERIFICATION: CUDA KERNELS 118

7.1 Background and Motivating Examples . 119
7.1.1 Related Work . 120

7.1.1.1 Parameterized Verification . 120
7.1.1.2 Equivalence Checking . 121

7.2 Nonparameterized Checking . 122
7.2.1 Serializing Concurrent Executions . 122

7.2.1.1 Equivalence Checking and Property Checking 123
7.3 Parameterized Checking . 124

7.3.1 Single Conditional Assignment . 124
7.3.2 Instantiation of Conditional Assignments 126
7.3.3 Barrier Interval and Control Flow . 128
7.3.4 Quantified Formulas . 129

7.3.4.1 Fast Bug Hunting . 129
7.3.4.2 Coverage . 130
7.3.4.3 Omega Test . 130

7.3.5 Loops . 130
7.3.5.1 Symmetry Reduction . 131

7.4 Experimental Results (Equivalence Checking) 132
7.5 Discussions . 133

8. SUMMARY AND FUTURE WORK . 134

8.1 Comparing Formal Analysis Techniques . 134
8.2 Future Work . 135

REFERENCES . 137
vi

LIST OF FIGURES

2.1 Main phases of the HOL compiler. 9

2.2 A motivating example fex. 9

2.3 Two intermediate forms of the fex example. 10

2.4 The syntax of the total function language TFL. 19

2.5 Compositional rules for converting C0 to TFL. 22

3.1 Build instantiation maps for polymorphic components. 27

3.2 An example set of instantiation maps. 28

3.3 Remove higher-order functions through closure conversion. 30

3.4 (a) Source programs fact and f1; (b) fact’s intermediate form before
register allocation; (c) f1’s intermediate form after closure conversion. 34

3.5 f1’s FIL (left) and SAL (right) . 40

4.1 Syntax for HSL (top) and CFL (middle), and evaluation rules (bot-
tom). (Note: FC structures only appear in HSL) 43

4.2 Syntax and evaluation rules of the machine language 44

4.3 Memory layout in HSL. 49

4.4 Compositional semantics of SAL. 52

4.5 Derivation of composite rules. 54

5.1 MPI objects and their interaction . 65

5.2 Modeling point-to-point communications (I) 73

5.3 Modeling point-to-point communications (II) 74

5.4 Modeling point-to-point communications (III) 75

5.5 A point-to-point communication program and one of its possible
executions. 76

5.6 The basic protocol for collective communications 79

5.7 An example using the collective protocol (with cid = 0). 79

6.1 Scalar product: sequential and CUDA parallel versions. 89

6.2 The internal architecture of PUG. 89

6.3 Summary syntax of Kernel C . 92

6.4 An advanced example illustrating the encoding of concurrency. 96

6.5 Example CFGs. 97

6.6 A serialized model of an example kernel. 101

6.7 Representative rules used by the static checker (I). 113

6.8 Representative rules used by the static checker (II). 114

7.1 A unparameterized model of the naiveTranpose kernel. 123

viii

LIST OF TABLES

1.1 Summary of methods presented in the thesis. 4

5.1 Size of the MPI 2.0 specification (excluding comments and blank lines). 64

6.1 Experimental results of checking some SDK kernel programs for
synchronization errors, races, and bank conflicts. 106

6.2 Experimental results of running PUG on class examples. 107

6.3 Experimental results of property checking. 108

7.1 Comparing the two methods in equivalence checking. 132

7.2 Comparing the two methods in bug finding. 133

8.1 A comparison of involved formal analysis techniques. 134

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Professor Ganesh Gopalakrishnan.

Without his guidance and continued support, my dissertation would not have been

possible. He led me to the area of formal verification and provided continuous

support for my research. His enthusiasm on a variety of exciting and challenging

topics kept me moving ahead. He recommended many good materials to me and

kept track of my progress. He helped me establish connections to the formal

methods community. With his strong recommendation, I was able to work with

researchers in some world-renowned research labs as a summer intern, including

Fujitsu Labs of America and NEC Labs of America.

I am deeply indebted to my previous advisor, Dr. Konrad Slind, for his

contribution in the development of my research. He taught me a lot about theorem

proving, especially how to master the HOL theorem prover. He also introduced

me to an exciting project about constructing and verifying a compiler for logic

specifications in HOL. This project constitutes one of the main parts of this thesis.

I also want to thank my supervisory committee members: Professors John

Regehr, Matthew Flatt, and Mary Hall. They helped me to improve my research

using their expertise in embedded systems, functional languages, parallel pro-

gramming, and compilers. Their insightful comments helped me to find the right

research directions and enabled me to have a broad vision of the studied problems.

Special thanks to Sreeranga P. Rajan, Indradeep Ghosh, Oksana Tkachuk,

Aarti Gupta, Nishant Sinha, and Chao Wang. My collaboration with them during

my terrific internships with them strengthened my background on model checking,

symbolic analysis, and system software development.

Many thanks to my labmates: Robert Palmer, Subodh Sharma, Alan Humphrey,

and other members in the Formal Verification group. Many thanks to my class-

mates and friends: Junxing Zhang, Lu Zhao, Jianjun Duan, and Yu Yang. I really

enjoyed and benefited from the discussions with them. I really appreciate Lu

Zhao’s effort on proof reading this thesis. I am deeply grateful to Karen Feinauer.

She patiently and meticulously handled all my paperwork. It is a blessing to have

her as the graduate coordinator during my Ph.D. career.

xi

CHAPTER 1

INTRODUCTION

Formal verification is an act of using formal methods to check the correctness

of intended programs. The verification is done by providing a formal proof on

an abstract mathematical model of the program, with respect to a certain formal

specification or property. After the formal model of a program is built, we can

validate a variety of properties over the model.

Users often define certain properties to express the correctness of their pro-

grams. For example, the user can specify the functional correctness of a sorting

program to be “the elements in the output array are sorted.” For a cryptographic

program performing encryption and decryption, the user may want to make sure

that the decryption of the ciphertext will return the original plaintext.

Besides, some correctness properties are intrinsic to the programs. For ex-

ample, data races are usually considered errors for concurrent programs running

on shared memory multiprocessors; barrier mismatches will lead to deadlocks in

Single Program Multiple Data (SPMD) programs.

We present three formal verification tools which check both intrinsic and user-

defined properties for sequential and concurrent programs. In particular, we are

interested in checking the correctness of program translation and transformation.

In program translation, a program written in one language is translated into

another language. For example, a high-level language program is translated into

a low-level format ready for execution by a compiler. During this process, the

program may be simplified to a canonical form which is easier to analyze and

optimize. In program transformation, a program is converted to another in the

same language. A typical example is a source-to-source transformation, and a

typical reason for transformation is optimization.

Formally verifying a program semantically equivalent to another is a very

difficult task in general, because a program may be processed by a number of

translations and transformations, resulting in a significantly different format. For

2

example, the resultant program may not have the same variables and structures

as the original program, or the resultant program uses many threads and can run

in parallel while the original program is sequential.

We want to ensure that the resultant program is provably equivalent to the

original program in its semantics, and this thesis presents some techniques to

attack this problem in different settings ranging from developing a compiler that

compiles a simple yet expressive programming language into ARM assembly code

with theorems justifying the correctness of compilation to verifying the correctness

of practical C parallel programs.

1.1 Compiling Sequential Functional Programs

In imperative languages such as C and Java, the meaning of language con-

structs depends heavily on the state of computation. Since the state is only exactly

known at runtime, it is nearly impossible to apply equational reasoning to parts of

programs. In contrast, (pure) functional programs are regarded as mathematical

functions whose meaning is independent of runtime states. Therefore, it is possible

to apply equational rewriting and reasoning to them. We aim at compiling a

language embedded in the HOL theorem prover [44]—the specification language

of HOL, which is a ML-style pure functional language, into ARM assembly code.

Programs written in HOL are also logic specifications which can be reasoned about

directly in the prover, since their semantics is given by the prover. We define the

syntax and semantics of the target language using datatypes and evaluation rules.

We construct an end-to-end compiler that carries out a series of translations, each

of which is accomplished by term rewriting, and we prove their correctness by

directly utilizing the prover’s reasoning facilities.

1.2 Analyzing Parallel Programs with Message
Passing Communications

Application Programming Interfaces (API) (also known as libraries) are an

indispensable part of modern concurrent programming. Message Passing Inter-

ferace (MPI) [111] has become a de facto standard in High Performance Com-

puting (HPC). MPI calls are traditionally described in natural languages, and

such descriptions are prone to misinterpretation. We define a formal syntax and

operational semantics for a majority of MPI 2.0 functions in the TLA+ language

3

[112], and we devise a compiler to translate C programs containing MPI calls to

their TLA+ models, which can be examined in the TLC model checker [112]. The

model checker requires concrete values on the inputs and explores all interleavings

and computation paths in a search for possible property violations. This way we

can formally analyze C MPI programs and their properties. For example, we are

able to check whether a program using broadcasting is equivalent to one using

nonblocking point-to-point operations. Moreover, we may transform a program in

runtime, as in just-in-time (JIT) compilers, by modifying its concurrent behaviors

with respect to the semantics. Particularly, we verify the correctness of dynamic

partial order reduction (POR) algorithms.

1.3 Verifying Parallel Programs with Shared
Memory Communications

Interest in Graphical Processing Units (GPUs) is skyrocketing due to their

potential to yield spectacular performance on many important computing appli-

cations. Unfortunately, writing efficient GPU kernels requires painstaking man-

ual optimization effort. For example, there exist heroic acts of programming:

(i) keep all the fine-grained GPU threads busy; (ii) ensure coalesced [53] data

movements from the global memory (accessed commonly by CPUs and GPUs) to

the shared memory (accessed commonly by the GPU threads); and (iii) minimize

bank conflicts when the GPU threads step through the shared memory. These

manual manipulations are very error prone, and data races and incorrect barrier

placements are frequently introduced during CUDA programming. Furthermore,

since a lot of optimizations may be performed on a kernel, the equivalence of

the optimized program with the original one is not obvious. We present the

first comprehensive symbolic verifier for kernels written in CUDA [23] C. In this

verifier, we model program semantics with symbolic relational constraints, and

the constraint formulea capture all possible (concurrent) behaviors of a kernel

running in multiple threads. We then dump the conjunction of the model and the

negation of properties to a Satisfiability Modulo Theories (SMT) solver [107] for

satisfiability check. We are able to check races, barrier mismatches, and functional

correctness. Notice that it does not check a transformation directly; instead, it uses

the translation validation [91] technique to prove the equivalence by comparing

the symbolic models of the source and transformed kernels.

4

1.4 Discussions

We summarize the methods and their settings in Table 1.1. Programs written

in HOL are logic specifications which can be reasoned about directly in the prover.

The syntax and semantics of the target language, e.g. ARM, are defined using

datatypes and evaluation rules. We construct an end-to-end compiler by applying

a series of transformations, each of which is accomplished by term rewriting. The

correctness proof utilizes the prover’s reasoning facilities, e.g. we apply syntax

directed tactics to compose reasoning rules.

The syntax and the operational semantics of MPI calls are specified in the

TLA+ language. We devise a compiler to translate C programs containing MPI

calls to their TLA+ models, which can be examined in the model checker TLC

[112]. This explicit model checker requires concrete values on the inputs. It

explores all the interleavings and computation paths in search for possible property

violations. Although this framework can be used to analyze source-to-source trans-

formations on MPI programs, we are mainly interested in the dynamic behaviors of

an MPI program, e.g. the soundness of dynamic partial order reduction (DPOR)

algorithms.

A CUDA kernel is modeled by a symbolic formula depicting its operational

semantics. This formula captures all possible (concurrent) behaviors of this kernel

running in multiple threads. To detect property violations, we dump the conjunc-

tion of the model and the negation of the property to the constraint solver (e.g. a

SMT solver) for satisfiability check. It is able to check races, barrier mismatches,

and functional correctness. Note that it does not check a transformation directly;

instead, it uses the translation validation [91] technique to prove the equivalence

by comparing the symbolic models of the source and transformed kernels.

Our contributions include:

• We show how to use pure term rewriting to mechanically construct a compiler

from an advanced functional language (HOL functions) to assembly code.

Table 1.1: Summary of methods presented in the thesis.

Program Program Semantics Properties Methodology
HOL logic specifications translation correctness theorem proving
MPI TLA+ specifications dynamic reduction model checking
CUDA symbolic formulas races, deadlocks, etc. constraint solving

5

• We show how to build a reasoning mechanism (a program logic) for imper-

ative languages modeled formally in HOL by “decompiling” an imperative

program into a HOL function with correctness proof.

• We use the HOL logic to model various intermediate representations of a

compiler. This technique dramatically reduces the burden of constructing

and validating nontrivial compilers.

• We present the first formal specification for a comprehensive set of message

passing APIs. The semantics is not only formal (described in a mathematical

language) but also “executable” (running in a model checker).

• We present the first formal symbolic checker for GPGPU kernel programs.

Novel techniques include encoding all interleavings in a formula, handling

loops through loop normalization and customized over-approximation, and

so on.

• We propose a novel method to perform parameterized verification of GPGPU

kernel programs. Only one parameterized thread is investigated regardless

of the number of threads.

• We demonstrate that it is elegant and practical to use formal methods to

check programs with various computation and communication models.

These practices represent substantial advances in the relevant areas; more

details can be found in the respective chapters. The organization of this thesis

is as follows. We first describe the construction and validation of the compiler

from HOL specifications to ARM code (Chapters 2, 3, and 4). This compiler

consists of a front-end (Chapter 3), a middle-end (Chapter 3), and two back-ends

(Chapter 4). Then, we show how to formalize and analyze MPI programs using

TLA+/TLC (Chapter 5). Next, we depict a symbolic checker for CUDA kernel

programs (Chapter 6), with emphasis on giving formal semantics and checking

essential properties such as races, barrier mismatches (deadlocks), and functional

correctness. Then, we illustrate a parameterized method to check a kernel’s func-

tional correctness as well as the equivalence of a CUDA kernel and its optimized

versions (Chapter 7). Finally, we conclude and discuss the future work (Chapter

8).

CHAPTER 2

COMPILING LOGIC SPECIFICATIONS:

OVERVIEW

Guaranteeing the correctness of a system implementation is not straightfor-

ward. A high level of assurance may be achieved by formally verifying these

implementations. However, it is impractical at present to verify implementations

written in industry standard high-level languages because these languages are too

complex to have tractable formal definitions (i.e. definitions which can be reasoned

about easily), making it impossible to rigorously prove properties about designs

expressed in them. What is worse, the properties proven on a high-level program

may not hold on the binary form anymore since compilers may introduce bugs,

and users often make over-simplifying assumptions on the machine model.

A possible solution is to reason directly about low-level programs, like JVM or

MC68020 [97] instructions, which can be given an accurate formal semantics via a

formal model of the machine on which they run. This approach gives the highest

assurance, since what is verified is what is executed. However, programming

in machine code is expensive and slow. We prefer a high-level programming

language with a tractable semantics (i.e. a semantics that supports nontrivial

reasoning) together with an implementation method guaranteeing that the se-

mantics corresponds exactly to the actual behaviors when programs are run.

Unfortunately, existing high-level languages have neither a tractable semantics

nor formally verified implementations.

Giving realistic programming languages like C a correct semantics is difficult.

It is even more so to make such semantics tractable so that we can reason about

nontrivial programs in a formal setting. Some widely used functional languages

have been given a formal semantics, e.g. Scheme has a denotational semantics [51]

and ML has a formal operational semantics [74]. However, these semantics do

not as yet provide a practical basis for formal reasoning about programs, although

they are extremely valuable as reference documents and for proving meta-theorems

7

(like type preservation).

A grand challenge would be to design a high-level programming language

that realistically competes with C++, C# and Java for implementing industrial

strength systems, and which has (i) a tractable semantics, (ii) a highly assured

implementation guaranteeing that the semantics is correct, and (iii) a value propo-

sition that ensures it gets used in the real world. This challenge is too grand —

it is probably impossible.

As a partial solution to this challenge, we can program some practically useful

systems directly in logic, and then compile these logical specifications to realistic

platforms for execution. This method allows formal reasoning to the maximum

extent since applications are modeled directly in logic. Particularly, we can

specify both the algorithms and the mathematics needed for their verification in

higher-order logic, and then compile the verified algorithms to low-level platforms

modeled in the same logic.

Furthermore, we may translate programs written in (a subset of) a realistic

high-level language such as ML or C to equivalent logic specifications, then prove

properties about them, and then reuse the compiler for logic to obtain trusted

machine code.

2.1 A Trusted Compiler for HOL Specifications

In this thesis, we present a software compiler [63,66,67] which produces assem-

bly code for a subset of the specification language of the HOL theorem prover —

Total Functional Language (TFL) [106] — a pure, total functional programming

layer built on top of higher-order logic and implemented in both the HOL-4 [44]

and Isabelle [83] systems. TFL enables abstract algorithms to be specified in

a mixture of mathematics and programming idioms and then reasoned about

using theorem proving. Roughly speaking, this language comprises ML-style

pure terminating functional programs, i.e. those (computable) functions that can

be expressed by well-founded recursion in higher-order logic. Features like type

inference, polymorphism, higher-order functions and pattern matching make it a

comfortable setting in which to program. It can express a very wide range of

algorithms. The trade-off is that the compilation of logic specifications written

in this language is fairly complicated. As far as we know, this compiler is the

first validated compiler that compiles logic specifications coded in such advanced

8

functional languages as TFL.

The front-end of our compiler [67] translates a source program into a simpler

intermediate format LF1 (for Logic Form 1) by compiling away many advanced

features, e.g. it performs monomorphisation and defunctionalization to eliminate

polymorphism and higher-order functions.

The mid-end [66] of the compiler further simplifies LF1 programs into LF2

forms which are close to assembly code. Specifically, since there is still a big

gap between the front-end output LF1 and the back-end input LF2, the mid-end

bridges this gap by adopting plenty of transformations and optimizations such as

code motion and register allocation.

The back-end of the compiler (Chapter 4) generates from a LF2 form either (1)

an equivalence imperative program, e.g. a Heap and Stack Level (HSL) program,

which will be translated to other imperative IRs and finally to the machine code;

or (2) an abstract structured assembly (SAL) code, which can be used to generate

machine code for various architectures such as ARM.

Figure 2.1 shows the relation between the main components of the compiler.

All the transformations in the front-end and mid-end are implemented as rewrite

rules. The correctness of each transformation is proven on the fly: after a program

is translated, a theorem is given as by-product that states the equivalence of

the produced code and this program. Although standard compilation techniques

developed for functional programming may be applied here, new challenges are

posed due to the fact that (i) the source language is not visible in the logic —

it is the logic itself that is taken as the source language; (ii) TFL programs have

a set-theoretic semantics rather than an operational or denotational semantics;

and (iii) all transformations must be formalized and verified in the logic that is

compiled. Since TFL programs are not given in terms of datatypes and do not

have an evaluation semantics, widely-used techniques [10,20,21,58] that are based

on structural induction over syntax datatypes and rule-induction over evaluation

relations cannot be applied here.

Our compiler demonstrates the first attempt to unite most of the phases of

an optimizing compiler together at the logic level: both the source language

and most of the IRs (e.g. LF1 and LF2) are represented directly in the logic;

all transformations and optimizations are performed and verified directly in the

logic.

9

HSL CFL

TFL LF1 LF2 ARM

C0 SAL

-

@
@
@
@@R

-
front−end

-mid−end �
�
�
���

back−end 1

@
@
@
@@R

back−end 2
6

��
�
��

�
��

��*

Figure 2.1: Main phases of the HOL compiler.

2.2 Motivating Example

Consider a program shown in Figure 2.2 which first calculates the factorial of

x then switches on whether this factorial is greater than y. We show below its ML

(or TFL) version and C version.

A compiler may generate the following ARM-style assembly code csex. This

code first sets register r1’s value to 1. It then checks whether r0 is 0; if yes, then

it jumps to label l+5 by increasing the program pointer by 4. In this case, the

instructions at l+5 – l+9 are executed, producing the output in r1. Otherwise, r1 is

multiplied by r0 and r0 is decreased by 1. Then, the code jumps back to label l+1

by decreasing the pc by 3. Obviously, the instructions from l+1 to l+4 constitutes

a loop.

MLex Cex

fex (x, y)
.
=

let ffact (x, a) =
(if x = 0 then (x, a)
else ffact (x− 1, x ∗ a))

in

let (v0, v1) = ffact (x, 1) in
if v1 ≥ y then v1 − y
else v1 + 2 ∗ y

fex (int x, int y) {
int a = 1;
while x 6= 0
{a = x ∗ a;x = x− 1; }

if a ≥ y
return a− y;

else

return a+ 2 ∗ y;
}

Figure 2.2: A motivating example fex.

10

l : mov r1 1
l+1 : beq r0 0 (+4)
l+2 : mul r1 r1 r0
l+3 : sub r0 r0 1
l+4 : b (−3)

l+5 : blt r1 r2 (+3)
l+6 : sub r1 r1 r2
l+7 : b (+3)
l+8 : mul r2 2 r2
l+9 : add r1 r1 r2
l+10 :

Our goal is to not only produce the assembly code, but also prove the com-

pilation correct. Specifically, the relation between the input in (r0, r2) before the

execution and the output in r1 after the execution shall be represented by fex. Let

σ[v] denote reading v’s value from state σ, and run cs σ denote the execution of

cs starting from state σ until cs terminates. The correctness theorem claims that

∀σ. (run csex σ)[r1] = fex (σ[(r0, r2)]).

Our front-end is able to translate the C version Cex to the ML version MLex,

which is written in the term language of the HOL logic. The mid-end transforms

fex into simpler formats, as shown in Figure 2.3. The one on the left is in an

ANF [31]+SSA format. It can be transformed to the one on the right by converting

the tail recursive function into a loop and performing register allocation. The

definition of “while” is given by while c f
.
= λx. if ¬ c x then x else while c f (f x).

It is not very difficult to produce code csex from function fex2 . The main

challenge, however, is to prove the equivalence of their semantics. We might take

another look at the relation between the code and the function. Suppose we are

given the code csex, can we “decompile” it to a function like fex2? If yes, then

fex1 (v0, v1)
.
=

let f(v0, v1) =
if v0 = 0 then (v0, v1)
else
let v2 = v1 ∗ v0 in
let v3 = v0 − 1 in

f (v3, v2)
in

let v2 = 1 in

let (v3, v4) = f(v0, v2) in
if v4 < v1 then
let v5 = 2 ∗ v1 in
let v6 = v1 + v5 in v6

else

let v5 = v4 − v1 in v5

fex2 (r0, r2)
.
=

let r2 = 1 in

let (r0, r1) =
while (λ(r0, r1). r0 6= 0)

(λ(r0, r1).
let r1 = r1 ∗ r0 in
let r0 = r0 − 1 in

(r0, r1))
(r0, r1)

in

if r1 < r2 then
let r2 = 2 ∗ r2 in
let r1 = r1 + r2 in r1

else

let r1 = r1 − r2 in r1

Figure 2.3: Two intermediate forms of the fex example.

11

we obtain a logic model for csex. Essentially, the function derived from the code

“recovers” the code’s control flow structure, and interprets the code in a more

functional manner by abstracting away the imperative features of the code. This

method brings another advantage: we may decompile a piece of code cs′ex produced

by a third-party code generator, and prove that this code also implements the

source program correctly by comparing the derived function and fex2 .

However, the decompilation from assembly code often requires discovering the

control flow of a program, while we already have this information at the immediate

format level! Thus, it may be more convenient to record the control flow structure

and other information (e.g. heap and stack information) of a piece of code using

imperative intermediate formats. We introduce the intermediate languages HSL

and Control Flow Level (CFL) to achieve this goal. In order to prove a program

in these formats is equivalent to a corresponding LF2 function, we decompile them

to obtain equivalent LF2 functions.

Another approach is to directly model the heap and stacks in the logic level,

and devise a way to connect logic expressions with low-level code. We introduce an

abstract structured assembly language (SAL) and define its semantics according

to LF2. This provides another elegant way to manage the translation between LF2

and machine code.

In sum, our logic-based compiler is able to translate (or model) both the source

program and the target code (or the IR close to target code) into logic, and perform

all the transformations and optimizations at the logic level. This facilitates greatly

the construction and validation of nontrivial compilers because it makes full use of

the prover HOL. For example, the prover guarantees the preservation of scoping,

and it automates many frequently-occurring tasks, including scoping, substitution,

and rewriting strategies. And, in most cases, the correctness of the compilation

depends solely on a small set of rewrite rules that are written in the language of

formal mathematics, whose correctness proof is performed directly in the logic.

2.3 Related Work

The notion of compiler verification dates back to McCarthy and Painter [72].

Their mathematical paradigm for verified compilation, such as abstract syntax of

languages, abstract mathematical definitions of compilation, and correctness proof

based on structural induction, has been adopted by most subsequent researchers.

12

Over more than 40 years, there have been a lot of attempts to develop trusted

compilers for various source and target languages. Dave’s bibliography [25] gives

a list of publications on compiler verifications.

2.3.1 What is a Verified Compiler?

In this section, we introduce Leroy’s classification of trusted compilers [58] and

characterize our compiler in terms of his categories.

The correctness of a compiler is often specified by a correctness property

Prop(S,C) between a source program S and its compiled code C. Examples

of such properties include: (1) S and C are observationally equivalent; (2) if S is

well-defined (does not go “wrong”), then S and C are observationally equivalent;

(3) if S is well-defined and P (S) holds, then P (C) holds; (4) if S is type- and

memory-safe, then so is C. Property (1) requires C to go wrong whenever S

does; this restriction is released in property (2). Property (2) implies (3) if P

depends only on the observable behavior of the program. Property (4) is typical

of a type-preserving compiler. Our compiler falls into the third category.

A compiler Comp is a total function from source programs to either compiled

code (written Comp(S) = Some(C)) or an error (written Comp(S) = None).

This requires that an error will occur when a compiler fails to produce code.

Leroy specifies three kinds of verification:

• Certified compilers. A certified compiler is any compiler Comp accompa-

nied with a formal proof of a theorem: ∀S C. (Comp(S) = Some(C)) ⇒

Prop(S,C). In other words, either the compiler reports an error or produces

code that satisfies the desired correctness property. It is warranted that the

compiler never silently produces incorrect code.

• Translation validation. In this approach [80, 91], the standard compiler

Comp is complemented by a verifier Verif (S,C) such that ∀S C.Verif (S,C)⇒

Prop(S,C). The advantage is no formal verification of the compiler itself is

needed.

• Proof-carrying code. In Proof-carrying code [4,81] and credible compilation

[96], the compiler either fails or returns both a compiled code C and a proof

π of the property Prop(S,C) (i.e. Comp(S) = SOME(c, π)). The proof π

13

can be checked independently by the code user. It is sufficient to generate

enough hints so that such a full proof can be reconstructed cheaply by a

specialized prover.

Roughly, our work falls into the translation validation category. In particular,

we perform per-run correctness checks by comparing S and C only; thus, no

verification of the compiler itself is needed. However, since the verifier Verif is the

proof system of HOL, it turns out that our compiler behaves like certified compilers.

That is, we guarantee that ∀S C. (Comp(S) = Some(C))⇒ Prop(S,C). We have

to point out that so far, there has been no consensus on the terminology; thus,

we use general terms “ad hoc certified compilation” and “incremental translation

validation” to characterize our compiler.

2.3.2 Correctness Statement

The correctness of the compilation Comp from source language Ls to target

language Lt is specified by relating a source program p ∈ Ls to its target program

Comp(p) ∈ Lt with respect to their semantics [[p]]Ls
and [[Comp(p)]]Lt

. Typically,

the correctness of Comp is expressed by the following commutative diagram.

p ∈ Ls [[p]]Ls

Comp(p) ∈ Lt [[Comp(p)]]Lt

-semantics

?

Comp ?

-
semantics

[[p]]Ls
and [[Comp(p)]]Lt

can be compared in terms of their denotational se-

mantics which use mathematical objects to denote the meaning of programs. For

instance, the semantics of these two programs can be functions that map input into

output. In contrast, the operational semantics of a language is typically modeled

by a function mapping program states (which map variables to values) σ ∈ Σ

to program states. For example, in the following diagram, p’s semantics [[p]]Ls
is

captured by the function f mapping from state σ1 to σ′1. An abstraction function

h “constructs” program states from machine states by extracting values from

concrete machine representations. The strongest correctness statement, which

establishes strong semantical equivalence of source and target program, is specified

as h ◦ g = f ◦ h.

14

σ1 ∈ ΣLs σ′1 ∈ ΣLs

σ2 ∈ ΣLt σ′2 ∈ ΣLt

-
f = [[p]]Ls

-
g= [[Comp(p)]]Lt

6
h

6
h

Weaker commutativity of the diagram is possible [35]: (1) h ◦ g ⊆ f ◦ h. The

target program terminates; (2) f ◦ h ⊆ h ◦ g. The source program is well-defined;

(3) (f ◦ h) σ = (f ◦ h) σ for every σ ∈ ΣLs if both sides are well-defined. Our

approach belongs to the strongest case because the compiler accepts only well-

defined programs and always generates terminating target code.

2.3.3 Literature Review : Compiler Verification

2.3.3.1 Certified Compilers

In the late 1980s, Computational Logic, Inc (CLI) built and verified the “CLI

stack” using the Boyer-Moore theorem prover [77]. This stack formalizes a register

transfer level (RTL) design for a microprocessor, a machine code instruction set

architecture, the stack-based assembly language Piton [76], two simple high-level

languages (derived from Gypsy and Lisp, respectively), and a simple operating

system. Compilers from high-level languages to assembly language and then to

RTL were constructed and verified. Later on, this group investigated the JVM

runtime system and compilers for JVM byte code. This project is close to ours

except that it targets different source and target languages; in fact, they do not

compile logic specifications.

In the CLI stack, a compiler for a simple subset of Gypsy (Micro-Gypsy) to the

Piton assembly language was constructed by Young [125]. Gypsy is a combined

programming and specification language descended from Pascal. In his work, those

features difficult to represent within the Boyer-Moore logic, such as unbounded

quantification, dynamic data types, type abstraction, and so on, are discarded.

The semantics of Micro-Gypsy and the target language are defined explicitly as

interpreter functions, which are executable in the Boyer-Moore logic. The correct-

ness proof goes by relating the Micro-Gypsy interpreter and the target language

interpreter. This approach defines operational semantics for all languages, thus is

different from our declarative approach where no semantics is needed to be defined

for the logic specification language. In this aspect, the related work mentioned

15

below is akin to Young’s.

The ProCos approach [35] embedded source languages in a refinement algebra

and expresses the semantics of target languages by interpreters written in the

source languages. In the PVS prover [85], a specialized bootstrapping and double

checking technique was used to verify the compilation from COMLISP to hardware

platforms. This group also verified in PVS a compiler translating a basic block

oriented intermediate language with expressions to target language based on the

DEC-Alpha processor family [26]. They used abstract state machines (ASM) to

formalize the operational semantics of the languages and proved the correctness

of single transformations by symbolic execution of program pieces. In addition,

they decomposed the construction of compiler back-ends into single term-rewrite

rules, and reduced the correctness of the back-ends to the local correctness of these

rules [128].

Hannan and Pfenning [40] constructed a verified compiler in LF for the untyped

λ-calculus. The target machine is a variant of the CAM runtime and differs greatly

from real machines. In their work, programs are associated with operational

semantics, and both compiler transformation and verifications are modeled as

deductive systems.

Chlipala [20] further considered compiling a simply-typed λ-calculus to assem-

bly language. He proved semantics preservation based on denotational semantics

assigned to the intermediate languages. Type preservation for each compiler pass

was also verified. The source language in these works is the bare lambda calculus

and is thus much simpler than TFL; thus, their compilers only begin to deal

with the high-level issues we discuss in this thesis. Chlipala [21] further con-

sidered translating a simple impure functional language to an idealized assembly

language. One of the main points is to avoid binder manipulation by using a

parametric higher-order abstract syntax to represent programs; while in our case,

this is automatically taken care of by the prover. Its representative optimization,

common subexpression elimination, is accomplished in our compiler by a single

rewrite rule.

Broy et al. [18] proved in the Isabelle theorem prover the partial and total

correctness of an interpreter for a small first-order functional language with de-

notational semantics. The interpreter, which generates normal forms, is given as

a recursively defined function. The correctness of the interpreter, which specifies

16

that a program terminates with the same value as the denotational semantics of

this program, is proved using structural induction.

A purely operational-semantics-based development is that of Klein and Nipkow

[54] which gives a thorough formalization of a Java-like language. A compiler

from this language to a subset of the Java Virtual Machine is verified using

Isabelle/HOL. Strecker [109] verified a compiler from a subset of Java source

language to Java bytecode in Isabelle/HOL. In this work, the behavior of Java

programs is defined by a big-step (natural) operational semantics in the form of

an evaluation relation; and the correctness proof is by mutual induction on the

evaluation relation.

The Isabelle/HOL theorem prover is also used to verify the compilation from a

type-safe subset of C to DLX assembly code [57], where a big-step semantics and

a small-step semantics for this language are defined. Meyer and Wolff [73] derived

in Isabelle/HOL a verified compilation of a lazy language (called MiniHaskell) to

a strict language (called MiniML) based on the denotational semantics of these

languages.

Leroy [15, 58] verified a compiler from a subset of C, i.e. Clight, to PowerPC

assembly code in the Coq system. The semantics of Clight is completely deter-

ministic and specified as big-step operational semantics. The proof of semantics

preservation for the translation proceeds by induction over the Clight evalua-

tion derivation, while our proofs proceed by verifying the rewriting steps. As

demonstrated in [117], his compiler needs extensive manual effort to verify new

optimizations, while our rewriting-based approach is very flexible and easy to

accommodate nontrivial optimizations. In fact, our modeling of IRs directly in

the logic is intended to mitigate the burden of manual proof.

Benton and Zarfaty [11] interprets types as binary relations. They proved a

semantic type soundness for a compiler from a simple imperative language with

heap-allocated data into an idealized assembly language. Similar interpretation

[10] is used to connect the denotational semantics of a simply typed functional

language and the operational behavior of low-level programs in a SECD machine.

This allows, as we did, the modeling of low-level code using a mathematical,

domain-theoretic functions, as well as the proof of a simple compiler. But we do

not need to define the semantics in terms of tricky and customized interpretations.

17

2.3.3.2 Translation Validation

The notion of translation validation was first introduced by Pnueli et al. in

1998 [91]. They validated a translation from the synchronous multiclock data-flow

language SIGNAL to asynchronous (sequential) C code. Rather than proving

in advance that the compiler always produces target code correctly, translation

validation warrants that the code generated by each individual run of the compiler

correctly implements the submitted source program. They reduce the correctness

of the translation to verification conditions that can be solved by model checkers.

Necula [80] built a translation validation infrastructure for many intra-procedural

optimizations performed in the GNU C compiler. During the compilation the

infrastructure compares the intermediate form of the program before and after

each compiler pass and verifies that the executions of these two forms lead to the

same sequence of function calls and returns (which is an approximation to semantic

equivalence). Symbolic evaluation is used to compute the effect of basic blocks,

and an inference algorithm is devised to collect the constraints representing the

correctness of translation. However, Necula’s method does not utilize any rigorous

prover to guarantee that the infrastructure itself is sound.

Tristan and Leroy [117] developed translation validators and Coq proofs of

correctness for two instruction scheduling optimizations: list scheduling and trace

scheduling. The validation algorithm is based on symbolic execution of the original

and transformed codes at the level of basic blocks; and the correctness of the

validators is proved against an operational semantics in a combination of small-

step and big-step styles.

2.3.3.3 Proof-carrying Code

In the practice of proof-carrying code (PCC) [4, 81], the compiler produces

annotations about the correctness of the translations so that a full proof can be

reconstructed on these annotations using specialized provers. Specifically, the code

producer creates a proof, then the code consumer generates verification conditions

and checks whether the proof proves the verification conditions. In other words,

some proof validators are used to check whether such conditions are valid and

hence the code is safe to execute. Thus, the crucial part of the correctness proof,

namely, the generation and validation of verification conditions, is not performed

automatically by the compiler.

18

2.3.4 Rewriting-based Compilation

Term rewriting is commonly used in compiler construction for the specification

of transformations, especially in back-end generators. The basic idea is that an

(intermediate) form can be viewed as a term, and this term can be reduced to

simpler form in a reduction step. Many transformations in our compiler are

implemented as term rewriting rules [66,67].

There are some systems that use rewrite rules to specify program transfor-

mations. For instance, in the ASF+SDF environment [119], transformations

and evaluation can be specified as rewrite rules. There is also some work that

uses logical frameworks to simplify the construction of compilers. For instance,

Liang [68] implemented a compiler for a simple imperative language using a

higher-order abstract syntax representation in λ-Prolog. Boyle, Resler, and Winter

[48] proposed using rewrites that model code transformation to build trusted com-

pilers. They also introduced a transformation grammar to guide the application

of rewrites [123]. Similarly, Sampaio [101] used term rewriting to convert source

programs to their normal forms, which represent object code. However, these

works do not address the issue of validation of the rewrite rules.

Hickey and Nogin [43] worked in the MetaPRL logical framework to construct

a compiler from a full higher-order, untyped, functional language to Intel x86 code,

based on higher-order rewrite rules. A set of rewriting rules are used to convert a

high-level program to a low-level program. They use higher-order abstract syntax

to represent programs and do not define the semantics of these programs. Thus,

no formal verification of the rewriting rules is done.

2.3.5 Related Work in Cambridge

The back-ends presented in this thesis have the same purpose as [79] does, but

uses a different reasoning method. That method relies on a Hoare Logic built for

ARM or X86, and composes reasoning rules in a bottom-up style to obtain LF2

functions. Note that it uses a more detailed and more faithful ARM model. It

can be regarded as an extension of our back-end for more target architectures. An

interesting point is to reuse our front-end and mid-end to generate LF2 programs

as the inputs of that (back-end) compiler.

19

2.4 Source Language TFL

TFL is a subset of the higher-order logic built in HOL; thus, their syntax and the

semantics have already been defined in the logic. So do the IRs in the front-end and

the mid-end. That is, programs written in TFL or IRs are simply mathematical

functions defined in the HOL logic. It is this feature that enables us to use standard

mathematics to reason about these languages. This supports much flexibility and

allows the meaning of a program to be transparent. In particular, two programs

are equivalent when the mathematical functions represented by them are equal.

Many front end tasks are already provided by the HOL-4 system: lexical

analysis, parsing, type inference, overloading resolution, function definition, and

termination proof (needed to admit recursive functions, since HOL is a logic of

total functions). TFL is a polymorphic, higher-order and terminating functional

language supporting algebraic datatypes and pattern matching. Its syntax is

shown in Figure 2.4, where [term]separator denotes a sequence of term’s separated

by the separator.

We make an extension to TFL by having it handle (functional) arrays. An

array is declared using the new operator. It is modeled as a function mapping

τ ::= T | t primitive type, type variable
| τ D algebraic type
| τ # τ | τ → τ tuple and arrow (function) type

atc ::= id | id of [τ]⇒ algebraic datatype clause
at ::= datatype id = [atc]| algebraic datatype

| [at]; mutually recursive datatype

pt ::= i | v | c −→pt pattern
e ::= i : T | v : τ constant and variable

| −→e | (e, e) tuple
| p e primitive application
| c e constructor application
| new (τ, i) array declaration
| v[e] array access
| fid function identifier
| e e composite application
| if e then e else e conditional
| case e of [(c e) e]| case splitting

| let v = e in e let binding
| [λ v]. e anonymous function

fdecl ::= fid ([pt],) = e pattern matching clause
| [fdecl]∧ function declaration
| v = e top level variable declaration

Figure 2.4: The syntax of the total function language TFL.

20

natural numbers to values; initially, it maps each index to an arbitrary number

ε. Notation a[i] is used to access the ith element in array a. For example, the

semantics of let a = new (int, 2) in let a[i] = 10 in a[j] is let a = λi. ε in let a =

(λk. if k = i then 10 else ε) in a j. This extension supports writing elegant and

efficient programs, while TFL is still pure since an array is nothing but a function

with array-like syntactic sugars.

new (τ, n)
.
= λi. ε

a[i] = e
.
= a = λj. if j = i then e else a j

2.4.1 Notational Conventions

We use f x1 . . . xn to represent the application of f to x1, . . . , xn. From another

perspective, f is a term containing free variables x1, . . . , xn. For example, x + y

is the same as (λv. x+ v) y.

A rewrite rule is of format [name] redex ←→ contractum⇐ cond. It specifies an

expression that matches the redex can be replaced with the contractum provided

that the side condition cond over the redex holds. The side condition is encoded

at the meta-level such that we need not formalize it in HOL.

2.5 From Imperative Language C0 to TFL

Importing terminating ML programs into TFL is easy due to the high similarity

in their syntaxes and semantics. One of the main issues — termination proof —

is handled by proving that the generated TFL function is total. Moreover, the

imported programs will be type checked by the prover.

It is also possible to import programs written in an imperative language such

as a small subset of C. As a demonstration, we have developed a method to for

such a subset C0. The syntax of C0’s control flow structures is shown below. Note

that variable v may be a tuple or an array.

e C style expressions
s ::= v := e assignment

| return v return
| s; s sequential statement
| IF e THEN s ELSE s conditional jump
| WHILE e s loop
| v := pid s procedure call

p ::= [pid v = s]; programs

21

We first define an operational semantics (omitted here due to lack of space)

for C0 and then derive an axiomatic semantics from it. Each axiomatic semantics

rule is specified as a Hoare triple {precondition} structure {postcondition}:

{P} S1 {Q} {R} S2 {T} Q⇒ R

{P} (S1 ; S2) {T}
{P} S {P}

{P} (WHILE C S) {P ∧ ¬C}
{P ∧ C} St {Q} {P ∧ ¬C} Sf {Q}
{P} (IF C THEN St ELSE Sf) {Q}

{P} St {Q} {P} Sf {R}
{P} (IF C THEN St ELSE Sf) {if C then Q else R}

In order to connect the semantics of a C0 structure S to a TFL function f ,

we introduce the following judgment to characterize S’s axiomatic semantics as

a predicate, where σ[x] returns the value of variable x in state σ; and eval S σ

returns the new state after S’s execution. Notation (i, f, o) specifies that: if

the initial value of input i is v, then in the state after the execution of S, the

value left in output o is equal to applying the function f to the initial value v.

Basically, a judgment can be obtained by instantiating the P and Q in a Hoare

triple {P} s {Q} to λσ. σ[i] = v and λσ. σ[o] = f v, respectively. If a judgment

synthesizes f with respect to the input i and output o, then we claim that S

correctly implements function f .

S ` (i, f, o)
.
= ∀σ∀v. (σ[i] = v)⇒ ((eval S σ)[o] = f v)

We derive a couple of rules (see Figure 2.5) to synthesize a function by com-

posing the judgments. A judgment may contain an extra field ex, which will be

explained later. Notation v̂ generates a TFL variable for a C0 variable v, and

ê returns the TFL expression corresponding to a C0 expression e. Notation fv

returns the free variables in an expression. We use
.
= to introduce abbreviations.

Rule assgn builds a judgment for a C0 assignment v := e. The input consists of

all the free variables in e and the output is v; the synthesized function calculates the

expression e. For example, the judgment x := y+z+1 ` 〈(y, z), (λ(y, z). y+z+1), x〉

synthesizes a function λ(y, z). y + z + 1 for input (y, z) and output x. Rule return

synthesizes an identity function for the same input and output v.

22

i
.
= fv e

v := e ` 〈i, λî. ê, v〉
assgn

return v ` 〈v, λv̂. v̂, v〉
return

S1 ` 〈i1, f1, o1〉 ↓ ex1 S2 ` 〈o1, f2, o2〉 ↓ ex2
S1; S2 ` 〈i1, f2 o f1, o2〉 ↓ (ex1 ∪ ex2)

seq

S1 ` 〈i, f1, o〉 ↓ ex1 S2 ` 〈i, f2, o〉 ↓ ex2
IF e THEN S1 ELSE S2 `
〈i, (λî. if ê then f1 î else f2 î), o〉 ↓ (ex1 ∪ ex2)

cond

S ` 〈i, f, i〉 ↓ ex
WHILE e S ` 〈i, while (λî. ê) f, i〉 ↓ ex

while

pid i := S S ` 〈i, f, o〉 ↓ ex
w := pid v ` 〈v, f, w〉 ↓ {v ∈ ex | v is global}

call

S ` 〈i, f, o〉 ↓ ex
S ` 〈i, λî. let (ô1, ô2) = f î in ô1, o1〉 ↓ (ex ∪ {o2})

shrink

S ` 〈i, f, o〉 ↓ ex v /∈ ex v /∈ o
S ` 〈(i, v), (λ(̂i, v̂). (f î, v̂)), (o, v〉) ↓ ex

frame

Figure 2.5: Compositional rules for converting C0 to TFL.

Rules seq, cond, while, and call are used to synthesize functions for sequential

structures, conditional structures, loops, and procedure calls, respectively. Most

of them are self-explanatory. Recall that the “while” in rule while is defined by

while c f
.
= λx. if ¬ c x then x else while c f (f x).

An important rule, frame, is used to match the inputs and outputs of different

judgments. For instance, suppose we want to use the seq rule to compose judg-

ments S1 ` 〈i1, f1, o1〉 and S2 ` 〈i2, f2, o2〉. If o1 6= i2, we must adjust the judgments

to make o1 = i2. This is accomplished by the frame rule which allows adding extra

variables into the input and output.

Since all the variables updated in a structure will appear in the output, we

might safely assume that those not in the output are unchanged. As in separation

logic [95], we can add these unchanged variables into the input/output using the

frame rule if needed. On the other hand, as in the shrink rule, we may remove

from the output those variables which will not be referenced anymore. Since these

variables may be updated by the execution, we record them in an exception set

ex so that the application of frame will rule them out. When the exception set is

empty we do not present it.

23

The application of the composition rules is syntax directed, and proceeds in

a bottom-up manner. For illustration, consider the C version of the running

example. The judgments for the two statements within the loop are as follows.

a := x ∗ a ` 〈(x, a), λ(x, a). x ∗ a, a〉
x := x− 1 ` 〈x, λx. x− 1, x〉

Since the output of the first judgment is not the same as the input of the second

judgment, we apply the frame rule to adjust them, then these two judgment can

be composed.

a := x ∗ a ` 〈(x, a), λ(x, a). (x, x ∗ a), (x, a)〉
x := x− 1 ` 〈(x, a), λ(x, a). (x− 1, a), (x, a)〉
a := x ∗ a; x := x− 1 `
〈(x, a), λ(x, a). (x− 1, x ∗ a), (x, a)〉

Let g1 be an abbreviation of λ(x, a). (x−1, x∗a). Next, we apply the while rule

to get a judgment for the loop. The composition of this judgment and the one for

a := 1 yields a new judgment, where g2
.
= while (λ(x, a).x 6= 0) g) o (λx.(x, 1)).

WHILE (x 6= 0) {a := x ∗ a; x := x− 1; } `
〈(x, a), while (λ(x, a).x 6= 0) g, (x, a)〉

a := 1; WHILE (x 6= 0) {a := x ∗ a; x := x− 1; } ` 〈x, g2, (x, a)〉

Similarly we obtain the judgment for the conditional statement.

if (a ≥ y) return a− y; else a+ 2 ∗ y; `
〈(a, y), λ(a, y). if a ≥ y then a− y else a+ 2 ∗ y, (a, y)〉

Since variable x is not used in this judgment, we can eliminate it (through rule

shrink) from the judgment for the loop. Then we add the y into the input and

output through the frame rule.

a := 1; WHILE (x 6= 0) {a := x ∗ a; x := x− 1; }
` 〈x, λ(x, a). let (x, a) = g2 (x, a) in a, a〉 ↓ {x}
` 〈(x, y), (λ((x, a), y). (let (x, a) = g2 (x, a) in a, y), (a, y))〉 ↓ {x}

Finally we synthesize a function for the entire program

(λ(a, y). if a ≥ y then a− y else a+ 2 ∗ y) o
(λ((x, a), y). (let (x, a) = g2 (x, a) in a, y))

24

which can be rewritten to MLex by using the definition of “while” and some rewrite

rules about “let” expressions such as:

(λy. f1 y) o (λx. f2 x) ←→ let y = f2 x in f1 y
let (x, y) = (e, y) in f x y ←→ let x = e in f x y .

After a C0 program is converted to an equivalent TFL program, we can reason

about it directly in the prover and reuse the TFL compiler to produce assembly

code. Note that the C0 language is still very simple; we leave its extension to

larger subsets of C (e.g. supporting structures and pointers) to further work.

CHAPTER 3

COMPILING LOGIC SPECIFICATIONS :

FRONT-END AND MID-END

In this chapter, we present the main conversions in the front-end [67] and the

mid-end [66].

3.1 Main Conversions in the Front-end

Given a TFL program, the front-end performs transformations that are familiar

from existing functional language compilers [115] except that it does so by proof.

TFL’s high-level features such as polymorphism, higher-order functions, pattern

matching, and composite expressions need to be expressed by more lower-level

structures:

• The translator removes polymorphism from TFL programs by making dupli-

cations of polymorphic datatype declarations and functions for each distinct

combination of instantiating types.

• The translator applies defunctionalization to remove higher-order functions

by creating algebraic datatypes to represent function closures and type-based

dispatch functions to direct the control to top-level function definitions.

• The translator converts pattern matching first into nested case expressions,

then into explicit conditional expressions.

All intermediate forms are still mathematical functions. The correctness proof

of a transformation on a source program p proceeds, in a translation validation

[91] style, by showing the generated program q computes the same mathematical

function as p.

3.1.1 Monomorphisation

This transformation eliminates polymorphism and produces a simply-typed

intermediate form that enables good data representations. The basic idea is to

26

duplicate a datatype declaration at each type used and a function declaration

at each type used, resulting in multiple monomorphic clones of this datatype

and function. This step paves the way for subsequent conversions such as the

type-based defunctionalization. Although this seems to lead to code explosion in

theory, it is manageable in practice (MLton [75], a fancy ML compiler, uses similar

techniques and reports maximum increase of 30% in code size).

The first step is to build an instantiation map that enumerates for each datatype

and function declaration the full set of instantiations for each polymorphic type.

A TFL program will be type checked by the HOL system and be annotated with

polymorphic type identifiers such as ′a,′ b, . . . when it is defined. In particular, type

inference has been done for (mutually) recursive functions. The remaining task is

to instantiate the generic types of a function with the actual types of arguments

at its call sites.

The notation used in this section is as follows. A substitution rule R = (t ↪→

{T}) maps an abstract type t to a set of its type instantiations; an instantiation

set S = {R} is a set of substitution rules; and an instantiation map M = {z ↪→ S}

maps a datatype or a function z to its instantiation set S. We write M.y for the

value at field y in the map M ; if y /∈ Dom M then M.y returns an empty set. The

union of two substitution sets S1∪sS2 is {t ↪→ S1.t∪S2.t | t ∈ Dom S1∪Dom S2}.

We write
⋃
s {S} for the combined union of a set of substitution rules. The union

of two instantiation maps M1

⋃
mM2 is defined similarly. The composition of

two instantiation sets S1 and S2, denoted as S1 or S2, is {t ↪→
⋃
{S2.t | t ∈

Dom S1} | z ∈ Dom S1}. And, the composition of an instantiation map M and a

set S is defined as M om S = {z ↪→ M.z or S | z ∈ Dom M}.
The instantiation information of each occurrence of a polymorphic function and

datatype is coerced into an instantiation map during a syntax-directed bottom-up

traversal. The main conversion rules Γ and ∆ shown in Figure 3.1 build the

instantiation map by investigating types and expressions, respectively. The rule

for a single variable/function declaration is trivial and omitted here: we just need

to walk over the right hand side of its definition. If a top-level function f is

called in the body of another function top level g, then g must be visited first to

generate an instantiation map Mg, and then f is visited to generate Mf ; finally

these two maps are combined to a new one, i.e. ((Mf ◦Mg.f)∪mMg). The clauses

in mutually recursive functions can be visited in an arbitrary order.

27

Γ[[τ]] = {}, for τ ∈ {T, t}
Γ[[τ D]] = {D ↪→ match tp (at tp D) τ}
Γ[[τ1 opt τ2]] = Γ[[τ1]] ∪m Γ[[τ2]], for opt ∈ {#,→}
∆[[i]] = {}
∆[[v : τ]] = Γ[[τ]]
∆[[[e],]] =

⋃
m{Γ[[e]]}

∆[[p e]] = ∆[[e]]
∆[[(c : τ) e]] = {con2tp c ↪→ match tp (con2tp c) τ}

∪m Γ[[τ]] ∪m ∆[[e]]
∆[[(f : τ) e]] = {fid ↪→ match tp fid τ} ∪m Γ[[τ]] ∪m ∆[[e]]
∆[[if e1 then e2 else e3]] = ∆[[e1]] ∪m ∆[[e2]] ∪m ∆[[e3]]
∆[[case e1 of [((c : τ) e2) e3]|]] = ∆[[e1]] ∪m

⋃
m{{con2tp c ↪→ match tp (con2tp c) τ}

∪m ∆[[e2]] ∪m ∆[[e3]]}
∆[[let v = e1 in e2]] = (∆[[e1]] om ∆[[e2]].v) ∪m ∆[[e2]]
∆[[[λ v.]∗e]] = ∆[[e]]

Figure 3.1: Build instantiation maps for polymorphic components.

This algorithm makes use of a couple of auxiliary functions provided by the

HOL system. Function con2tp c maps a constructor c to the datatype to which it

belongs; at tp D returns σ if there is a datatype definition datatype σ = D of . . .;

when x is either a function name or a constructor, match tp x τ matches the

original type of x (i.e. the type when x is defined) with τ and returns a substitution

set.

After the final instantiation map is obtained, we duplicate a polymorphic

datatype / function for all combinations of its type instantiations, and replace

each call of the polymorphic function with the call to its monomorphic clone with

respect to the type. The automatic correctness proof for the transformation is

trivial: each duplication of a polymorphic function computes the same function

on the arguments of the instantiating types.

Now, we give a simple example to illustrate the transformation.

datatype σ = C of ′a# ′b f (x :′ a) = x
g (x :′ c, y :′ d) = let (h :′ d→ (′c# ′d) σ) = λz :′ d.

(C : (′c# ′d)→ (′c# ′d) σ) ((f :′ c→′ c) x, (f :′ d→′ d) z) in h y
j = (g (1 : num,⊥ : bool), g (⊥ : bool,> : bool))

The algorithm builds the instantiation maps shown in Figure 3.2. Then, for

datatype σ, function f , and function g, a monomorphic clone is created for each

combination of instantiating types. Calls to the original functions are replaced

with the appropriate copies of the right type. For example, function j is converted

to j = (gnum#bool (1,⊥), gbool#bool (⊥,>)), where gnum#bool and gbool#bool are

28

Investigate j : Mj = {g ↪→ {′c ↪→ {bool, num},′ d ↪→ {bool}}}
Investigate g : Mg = {f ↪→ {′a ↪→ {′c,′ d}}, σ ↪→ {′a ↪→ {′c},′ b ↪→ {′d}}}
Compose Mg and Mj: Mg◦j = Mg ◦Mj.g =
{ f ↪→ {′a ↪→ {bool, num}}, σ ↪→ {′a ↪→ {bool, num}, ′b ↪→ {bool}} }

Union Mg and Mg◦j: M{g,j} = Mg ∪mMj =
{ f ↪→ {′a ↪→ {bool, num}}, g ↪→ {′c ↪→ {bool, num}, ′d ↪→ {bool}},
σ ↪→ {′a ↪→ {bool, num}, ′b ↪→ {bool}} }

Investigate f : no changes, M{f,g,j} = M{g,j}

Figure 3.2: An example set of instantiation maps.

the two clones of g. The correctness of j’s conversion is proved based on the

theorems showing that g’s copies compute the same function as g with respect to

the instantiating types:
thm gnum#bool = g ∧ gbool#bool = g.

3.1.2 Defunctionalization

In this section, we convert higher-order functions into equivalent first-order

functions and hoist nested functions to the top level through a type-based closure

conversion. After the conversion, no nested functions exist, and function call is

made by dispatching on the closure tag followed by a top-level call.

Function closures are represented as algebraic data types in a way that, for

each function definition, a constructor taking the free variables of this function is

created. For each arrow type, we create a dispatch function, which converts the

definition of a function of this arrow type into a closure constructor application.

A nested function is hoisted to the top level with its free variables to be passed as

extra arguments. After that, the calling to the original function is replaced by a

calling to the relevant dispatch function passing a closure containing the values of

this function’s free variables. The dispatch function examines the closure tag and

passes control to the appropriate hoisted function. Thus, higher-order operations

on functions are replaced by equivalent operations on first-order closure values.

As an optimization, we first run a pass to identify all ‘targeted’ functions which

appear in the arguments or outputs of other functions and record them in a side

effect variable Targeted. Nontargeted functions need not be closure converted,

and calls to them are made as usual. During this pass, we also find out the

functions to be defined at the top level and record them in Hoisted. Finally,

Hoisted contains all top-level functions and nested functions to be hoisted.

29

The conversion works on simple typed functions obtained by monomorphi-

sation. We create a closure datatype and a dispatch function for each of the

arrow types that targeted functions may have. A function definition is replaced

by a binding to an application of the corresponding closure constructor to this

function’s free variables. Suppose the set of targeted functions of type τ is

{fi xi = ei | i = 1, 2, . . . }, then the following algebraic datatype and dispatch

function are created, where tp of and fv return the type and free variables of a

term, respectively (and the type builder Γ will be described below):

closτ = consτf1
of Γ[[tp of (fv f1)]] | consτf2

of Γ[[tp of (fv f2)]] | . . .
(dispatchτ (cons

τ
f1
, x1, y1) = (f1 : Γ[[τ]]) (x1, y1)) ∧

(dispatchτ (cons
τ
f2
, x2, y2) = (f2 : Γ[[τ]]) (x2, y2)) ∧

. . .

As shown in Figure 3.3, the main translation algorithm inspects the references

and applications of targeted functions and replaces them with the corresponding

closures and dispatch functions. Function Γ returns the new types of variables.

When walking over expressions, ∆ replaces calls to unknown functions (i.e. those

not presented in Hoisted) with calls to the appropriate dispatch function, and

calls to known functions with calls to hoisted functions. In this case, the values of

free variables are passed as extra arguments. Function references are also replaced

with appropriate closures. Finally, Redefn contains all converted functions, which

will be renamed and redefined in HOL at the top level.

Now, we show the technique to prove the equivalence of a source function

f to its converted form f ′. We say that a variable v′ : τ ′ corresponds v : τ

iff: (1) v = v′ if both τ and τ ′ are closure type or neither of them is. (2)

∀x∀x′. dispatchτ ′(v′, x′) = v x if v′ is a closure type and v is an arrow type, and x′

corresponds to x; or vice versa. Then f ′ is equivalent to f iff they correspond to

each other. The proof process is simple, as it suffices to simply rewrite with the

old and new definitions of the functions.

As an example, the following higher-order program

f (x : num) = x ∗ 2 < x+ 10
g (s : num→ bool, x : num) =

let h1 = λy. y + x in if s x then h1 else let h2 = λy. h1 y ∗ x in h2
k (x : num) = if x = 0 then 1 else g (f, x) (k (x− 1))

30

Γ[[v : T]] = T
Γ[[v : τ1 → τ2]] = if v ∈ Targeted then closτ1→τ2 else τ1 → τ2
Γ[[v : τ D]] = Γ[[τ]] D
Γ[[[v],]] = [Γ[[v]]],
∆[[v : τ]] = if v ∈ Targeted then consτv else v : closτ
∆[[[e],]] = [∆[[e]]],
∆[[p e]] = p (∆[[e]])
∆[[c e]] = c (∆[[e]])
∆[[(f : τ) e]] = if f ∈ Hoisted then (new name of f) (∆[[e]], fv f)

else dispatchτ (f : closτ ,∆[[e]])
∆[[if e1 then e2 else e3]] = if ∆[[e1]] then ∆[[e2]] else ∆[[e3]]
∆[[case e1 of [c e2 e3]|]] = case ∆[[e1]] of [(∆[[c e2]]) ∆[[e3]]]|
∆[[let f = λ−→v . e1 in e2]] = (Φ[[f−→v = e1]] ; ∆[[e2]])
∆[[let v = e1 in e2]] = let v = ∆[[e1]] in ∆[[e2]] when e1 is not a λ expression
Φ[[fid (−→v : τ) = e]] =

let e′ = ∆[[e]] in
Redefn := Redefn + (fid ↪→ Redefn.fid ∪ {(fid : τ → Γ[[tp of e′]]) −→v = e′}

Φ[[[fdecl]∧]] = [Φ[[fdecl]]];

Figure 3.3: Remove higher-order functions through closure conversion.

is closure converted to

datatype closτ1 = consτ1f
datatype closτ2 = consτ2h1

of num | consτ2h2
of num

dispatchτ1 (consτ1f : closτ1 , x : num) = f ′ x ∧ f ′ x = x ∗ 2 < x+ 10

dispatchτ2 (consτ2h1
y : closτ2 , x : num) = h′1 (y, x)) ∧

dispatchτ2 (consτ2h2
y : closτ2 , x : num) = h′2 (y, x)) ∧

h′1 (y, x) = y + x ∧ h′2 (y, x) = h′1(y, x) ∗ x
g′ (s : closτ1 , x : num) = if dispatchτ1(s, x) then consτ2h1

x else consτ2h2
x

k′ (x : num) = if x = 0 then 1 else g (consτ1f , x), (k′ (x− 1))

where τ1 and τ2 stand for arrow types num→ bool and num→ num, respectively

And the following theorems (which are proved automatically) justify the cor-

rectness of this conversion:

thm f = f ′
thm k′ = k

thm (∀x. dispatchτ1 (s′, x) = s x)⇒ ∀x∀y. dispatchτ2 (g′ (s′, x), y) = (g (s, x)) y

3.1.3 Lightweight Closure Conversion

In many cases, we found that the defunctionalization was more complicated

and inefficient than necessary; thus, we develop a lightweight closure conversion.

This conversion captures the free variables for nested functions in an envi-

ronment as passed to the function as an extra argument. The function body is

modified so that references to free variables are now references to the environment.

31

When a function is referenced, the function is paired with the environment as a

closure.

The clos init rule creates a closure for closing the first free variable v in the

body of function f . Administrative term clos is used to record the transformed

function and the environment. By definition ∀c. clos (f, c) = f . We uses tactics

(at the meta-level) to control the application of this rule such that it will not

be applied to functions without free variables. Rule clos one handles extra free

variables and builds the environment as a tuple. It is applied repeatedly until no

free variable remains in the function body.

[clos init] let f = g v in e f ←→
let f = clos (g, v) in e (f v)

[clos one] let f = clos ((λc. g v c), c) in e (f c) ←→
let f = clos ((λ(c, v). g v c), (c, v)) in e (f (c, v))

We show below a simple example, where f ′ is an abbreviation of λx. x+ y+ z.

We explicitly write out the g and e for clarity. The final step performs explicit

tuple allocation, where #1 and #2 take the first and second components of a

tuple, respectively.

let f = λx. x+ y + z in f 1 =
let f = (λy. f ′) y in (λf. f 1) f ←→
let f = clos ((λy. f ′), y) in (λf. f 1) (f y) =
let f = clos ((λy. (λz. λy. f ′) z y), y) in (λf. f 1) (f y) ←→
let f = clos ((λ(y, z). f ′), (y, z)) in (λf. f 1) (f (y, z)) =
let f = λ(y, z). λx. x+ y + z in f (y, z) 1 =
let f c x = let y = #1 c in let z = #2 c in x+ y + z in
f (y, z) 1

3.1.4 Pattern Matching

This conversion to nested case expressions is based on Augustsson’s original

work [7], which was adapted by Slind [106] for function description in HOL. A

preprocessing pass is first performed to deal with incomplete and overlapping

patterns: incomplete patterns are made complete by adding rows for all missing

constructors, and overlapping patterns are handled by replacing a value with pos-

sible constructors. Note that this approach may make the pattern exponentially

larger because no heuristics are used to choose the “best” order in which subterms

32

of any term are to be examined.

The translation rule ∆ shown below converts patterns [pati rhsi]| into a

nested case expression. It takes two arguments: a stack of variables that are yet

to be matched, and a matrix whose rows correspond to the clauses in the pattern.

All rows are of equal length, and the elements in a column should have the same

type.

Conversion ∆ proceeds from left to right, column by column. At each step,

the first column is examined. If each element in this column is a variable, then the

head variable z in the stack is substituted for the corresponding vi for the right

hand side of each clause. If each element in the column is the application of a

constructor for type τ , and τ contains constructor C1, . . . , Cn, then the rows are

partitioned into n groups of size k1, . . . , kn according to the constructors. After

partitioning, a row (C(p̄) :: pats; rhs) has its lead constructor discarded, resulting

in a row expression (p̄@ pats; rhs). Here :: is the list constructor, and @ appends

the second list to the first one. If constructor Ci has type τ1 → · · · → τj → τ ,

then a set νi of new variables v1, . . . , vj are pushed onto the stack. Finally, the

results for all groups are combined into a case expression on the head of the stack.

∆


z :: stack
v1 :: pats1 rhs1,
. . .
vn :: patsn rhsn

 = ∆


stack
pats1 rhs1[z ← v1],
. . .
patsn rhsn[z ← v2]

 , and

∆



z :: stack
C1 p11 :: pats11 rhs11,
. . .
Cn p1k1 :: pats1k1 rhs1k1

Cn pn1 :: patsn1 rhs11,
. . .
Cn p1kn :: patsnkn rhsnkn


= tp case (λν1.M1) . . . (λνn.Mn) z

where Mi = ∆


ν1 :: stack
pi1 @ patsk1 rhsk1,
. . .
piki @ patsiki rhsiki

 for i = 0, . . . , n

When a datatype tp with n constructors is declared, a case expression theorem

∀x. tp case f1 . . . fn (Ci x) ≡ fi x for i = 1, . . . , n is stored in HOL. For

example, the case expression for natural number is (num case b f 0 = b) ∧

(num case b f (Suc n) = f n).

33

For example, this step translates the Greatest Common Divisor function gcd

to a form taking only one argument:

gcd (0, y) = y gcd (Suc x, 0) = Suc x
gcd (Suc x, Suc y) = if y ≤ x then gcd (x− y, Suc y) else gcd (Suc x, y − x)

⇒
gcd z = pair case (λv v1. num case v1(λv2. num case (Suc v2)

(λv3. if v3 ≤ v2 then gcd (v2 − v3, Suc v3) else gcd (Suc v2, v3 − v2)) v1) v) z

In the next step, case expressions are interpreted as conditional expressions

based on the following theorem:

tp case (λx.f1 x) (λx.f2 x) . . . z =
if is C1 z then f1 (destructC1 z) else if is C2 z then f2 (destructC2 z) else . . .

Here, operator is Ci tells whether a variable matches the ith constructor Ci,

i.e. is Ci (Cj x) = > iff i = j; and operator destructCi
is the destructor function

for constructor Ci. For example, destructSuc (Suc x) = x. These operators will

be implemented as datatype access operations in later compilation phases. In

addition, an optimization is performed to tuple variables: if an argument x has

type τ1# . . .#τn, then it is replaced by a tuple of new variables (x1, . . . , xn).

Superfluous branches and ‘let’ bindings are also removed. In this manner, the gcd

function is converted to

gcd (z1, z2) = if z1 = 0 then z2
else let v2 = destructSuc z1 in
if z2 = 0 then Suc v2 else let v3 = destructSuc z2 in

if v3 ≤ v2 then gcd (v2 − v3, Suc v3) else gcd (Suc v2, v3 − v2)

3.2 Main Conversions in the Mid-end

The mid-end converts LF1 functions to LF2 functions; it contains most of the

optimizations of the entire compiler. As an illustration, we show some intermediate

forms of a simple program f1 in Figure 3.4.

3.2.1 Normalization

We may normalize a program to a certain format to make subsequent transfor-

mations easier. For example, we simplify conditional expressions whose conditions

can be evaluated to > (true) or ⊥ (false), and apply De Morgan laws to move

34

fact i =def

if i = 0 then 1
else i ∗ fact (i− 1)

f1 (k0, k1, k2) =def

let y = k2 + 100 in

let g (x, y) = y − (x ∗ k0) in
let z =
if fact 3 < 10 ∧ y + 2 ∗ k1 > k0
then g (k1, k2) else y

in z ∗ y
(a)

fact =
λv1.
if v1 = 0 then 1
else

let v2 = v1 − 1 in

let v3 = fact v2 in
let v4 = v1 ∗ v3 in v4

(b)

f1 =
letrec v4 = (
λv11λ(v12, v13).
let v14 = v11 ∗ v12 in
let v15 = v13 − v14
in v15)

in

λ(v1, v2, v3).
let v5 = v3 + 100 in

let v6 = 2 ∗ v2 in
let v7 = v5 + v6 in
let v8 = (
if v7 ≤ v1 then v5
else

let v10 = v4 v1 (v2, v3)
in v10)

in

let v9 = v5 ∗ v8 in v9
(c)

Figure 3.4: (a) Source programs fact and f1; (b) fact’s intermediate form before
register allocation; (c) f1’s intermediate form after closure conversion.

negations in over the conjunction, disjunction, and conditional expressions. Note

that the default implication set includes rewrites rules for Boolean operations

(e.g. e ∧ ⊥ = ⊥) and Presburger arithmetic (e.g. b+ a− b = a) such that relevant

optimizations are performed automatically. To facilitate rewriting, we introduce

administrative term atom to mark a constant or single variable. By definition

atom = λx. x.

[if and] if c1 ∧ c2 then e1 else e2 ←→
let x = e2 in (if c1 then (if c2 then e1 else x) else x)

[if or] if c1 ∨ c2 then e1 else e2 ←→
let x = e1 in (if c1 then x else (if c2 then x else e2))

[if gt] if a > b then e1 else e2 ←→ if a ≤ b then e2 else e1
[if ge] if a ≥ b then e1 else e2 ←→ if b ≤ a then e1 else e2
[if true] if > then e1 else e2 ←→ e1
[if false] if ⊥ then e1 else e2 ←→ e2

In a high-level program, the value of a compound expression is computed

by a sequence of low-level instructions. By defining every intermediate result

of computation as a variable, we can convert such compound expressions into

sequences of let-expressions corresponding to assembly instructions. This leads to

one IR that is a combination of K-normal forms [12] and A-normal forms [31],

where intermediate computations and their results are made explicit. The core

35

of the transformation is to remove compound expressions so that every target of

basic operations such as arithmetic operations and function applications is now a

variable.

The first step is to perform a continuation-passing style (CPS) transformation.

It repeatedly rewrites with the following theorems in a syntax-directed manner

to transform a program into its continuation form. Here, C e k denotes the

application of the continuation k to an expression e, and its value is equal to k e.

[C intro] e ←→ C e (λx.x)
[C binop] C (e1 opb e2) k ←→

C e1 (λx.C e2 (λy.C (x opb y) k))
[C pair] C (e1, e2) k ←→

C e1 (λx.C e2 (λy.C (x, y) k))
[C array] C (e1[e2]) k ←→ C e2 (λx.C (e1[x]) k)
[C let ANormal] C (let v = e in f v) k ←→

C e (λx.C (f x) (λy. k y))
[C let KNormal] C (let v = e in f v) k ←→

C e (λx.C x (λy.C (f y) (λz. k z)))
[C abs] C (λv. f v) k ←→ C (λv. (C (f v) (λx. x))) k
[C app] C (f e) k ←→

C f (λg.C e (λx.C (g x) (λy. k y)))
[C cond] C (if (c1 opr c2) then e1 else e2) k ←→

C c1 (λp.C c2 (λq.C (if (p opr q) then
C e1 (λx. x) else C e2 (λy. y)) (λz. k z)))

The next step converts the continuation form into a readable, ‘let‘-based nor-

mal form using the following rewrite rules. Since the logical framework takes

care of program scoping and substitution implicitly, during the rewriting, fresh

variables are generated and bound to the results of intermediate computations

automatically.

[C atom] C (atom v) k ←→ atom v
[C to let] C e k ←→ let x = e in k x

The following example illustrates this transformation, where c1 and c2 are the

two constructors of a datatype.

Original: f (x, y, z) = case x− y − z of c1 a⇒ f(x− 1, a, y) | c2 b⇒ b+ y
Converted: f (x, y, z) =

let v1 = x− y − z in
case v1 of c1 a⇒ let v2 = x− 1 in f(v2, a, y) | c2 b⇒ b+ y

36

3.2.2 Optimizations

3.2.2.1 Dead Code Elimination

When a variable will not be referenced anymore, its assignment can be removed.

Rule elim let eliminates unused variable/function definitions. It requires that x

does not appear free in e2 (note that x’s appearing in e2 is denoted by e2 x).

[elim let] let x = e1 in e2 ←→ e2

3.2.2.2 β Conversion and Constant Folding

It is often useful to reduce let v1 = v2 in e v1 to e v2 when v2 is a single

variable or a constant. Note that, after some optimization, an expression may

include only constant values, thus creating an opportunity for constant folding.

This is accomplished by the built-in decision procedure for integer and real number

arithmetic.

[β reduct] let x = atom v in e x ←→ e v

3.2.2.3 Common Subexpression Elimination

This optimization avoids redundant evaluation of the same expression by reusing

the result of the first evaluation.

[cse] let x = e in f e ←→ let x = e in f x x

3.2.2.4 Tail Recursion

As discussed before, we convert tail recursive functions to while loops, which

may create opportunities for loop optimizations.

3.2.2.5 Code Motion

Instruction scheduling may be used to maximize the throughput of a processor

pipeline by reordering unrelated statements. Loop hoisting is another example of

code motion which lifts code out of a loop. Before applying the loop hoist rule, we

will apply instruction scheduling on the loop body to move those “let” expressions

not referring to y to the beginning of the body. For example, while c (λy. let z =

y + 2 in let x = e in x + z) is converted to let x = e in while c (λy. let z =

y + 2 in x+ z).

37

[inst schd]
let x = e1 in let y = e2 in f x y ←→
let y = e2 in let x = e1 in f x y

[loop hoist]
while c (λy. let x = e in f x y) ←→
let x = e in while c (λy. f x y)

3.2.2.6 Inline Expansion

This transformation replaces calls to small functions with their bodies. If the

size of the body e in a function f is less than a specific threshold t, f will be

expanded. The prover will take care of variable name conflicts introduced by the

inlining by capturing program scopes and renaming variables automatically. For

a recursive function, we avoid code explosion by expanding its body for only a

certain number of times. The resulting expression is further simplified by other

transformations like constant folding until no more simplications can be made.

Here, fun is an administrative term marking a small function.

[mark fun] let f = λx.e1 x in e2 f ←→
let f = fun (λx.e1 x) in e2 f ⇐ size e1 < t

[inline fun] let f = fun e1 in e2 f ←→ e2 e1

3.2.2.7 SSA (Static Single-Assignment) Form

In the SSA format, each variable has only one definition in the program text.

This format paves the way for our register allocation algorithm. The core is to

rename all bound variables of a program to fresh names. Initially, all free variables

in a function are replaced with fresh variables beginning with a “v”. Then any

variable in the left-hand side of a let-expression is substituted by a fresh new

variable. As a result, an α-equivalent expression is returned. Note that HOL

regards α-equivalent expressions to be the same expressions.

3.2.3 Register Allocation

One of the most sophisticated processes in the compiler is register allocation.

Our rewriting-based algorithm is a simple greedy algorithm with backtracking for

early spilling.

The basic policy of register allocation is to avoid registers already assigned to

live variables. Variables live at the same time should not be allocated to the same

38

register. We adopt a naming convention: variables yet to be allocated begin with

v, variables spilled begin with t (temporary in the stack), and those in registers

begin with r (register variable). Notation matches a variable of any of these

kinds. Notations v̂, r̂, and t̂ stand for a fresh variable, a unused register, and a

new stack location, respectively. avail e returns the set of available registers after

allocating e. Administrative terms app, save, and restore are all defined as λx.x.

app is used to mark function applications. Finally, to (v, l) = l indicates that

variable v is allocated to resource l.

When variable v in expression let v = e1 in e2 v is to be assigned a register, the

live variables to be considered are just the free variables in e2 excluding v. If live

variables do not use up all the machine registers, then we pick an available register

and assign v to it by applying rule assgn reg. Otherwise, we spill to the memory

a variable consuming a register, and assign this register to v. In some cases, we

prefer to spill a variable as early as possible: in the early spill rule, variable w’s

value is spilled from r for future use; but r may not be allocated to v in the

subsequent allocation. When encountering a memory variable in later phases, we

need to generate code that will restore its value from the memory to a register

(the v̂ in rule restore will be assigned a register by the subsequent application of

rule assgn reg).

[assgn reg] let v = e1 in e2 v ←→
let r̂ = e1 in e2 to(v, r̂) ⇐ avail e2 6= {}

[spill] let v = e1 in e2 v to(w, r) ←→
let t̂ = save r in let r = e1 in
e2 to(v, r) to(w, t̂) ⇐ avail e2 = {}

[early spill] let v = e1 in e2 v to(w, r) ←→
let t̂ = save r in let v = e1 in e2 v to(w, t̂)
⇐ avail e2 = {}

[restore] e to(v, t) ←→ let v̂ = restore t in e v̂
[caller save] let = app f in e to(w, r) ←→

let t̂ = save r in let = app f in e to(w, t̂)
[spill if] let = if e1 then e2 to(w, r1)

else e3 to(w, r2) in e4 to(w, r0) ←→
let t̂ = save r0 in
let = if e1 then e2 to(w, t̂) else e3 to(w, t̂)
in e4 to(w, t̂) ⇐ ¬(r0 = r1 = r2)

Saving is necessary not only when registers are spilled, but also when functions

are called. Our compiler adopts the caller-save convention, so every function call

39

is assumed to destroy the values of all registers. Therefore, we need to save the

values of all registers that are live at that point. In addition, as we allocate the

two branches of a conditional expression separately, a variable may be assigned

different registers by the branches. This will contradict the convention that a

variable should be assigned only one register. In this case, we will early spill it

through the spill if rule.

In the final step, all save, store, and to in an expression are eliminated, resulting

in an equivalent expression containing only register variables and stack variables.

In practice, in order to improve the performance, we do not have to perform

equivalence check for every rewrite step. Instead, after all the rewrites are done,

we apply the following rules to obtain an expression that is α-equivalent to the

original expression. We call such methods, which performs the proof a posteriori,

offline methods.

[elim save] let t = save r in e t ←→ e r
[elim store] let r = store t in e r ←→ e t

3.2.3.1 Offline Register Allocation

We may use an offline (third-party) algorithm, e.g. a graph coloring allocation

algorithm, to produce an allocation scheme. Interestingly, the algorithm itself does

not have to be verified; instead, the computed coloring can be taken and used to

build a term incorporating the required spilling, and this term can be shown to

be α-equivalent to the one before allocation. This nice trick was first noticed by

Hickey and Nogin [43] and is also used by Leroy [58]. In [63] we also used a graph

coloring allocation algorithm without having to verify its correctness.

3.2.3.2 Example

In order to see the effect of spilling and restoring, we specify the number of

available registers to be 3 when running the allocator for the example function f1.

The resulting intermediate form is shown at the left of Figure 3.5.

3.2.4 Exposing Heap and Stack

This phase places heap objects and stack objects in the memory. To model the

memory, we introduce a function m mapping addresses to values. Heap variables

and stack variables are indexed indirectly through the heap register hp and frame

40

f1 =
λ(r0, r1, r2).
let m1 = r2 in let m2 = r0 in
let r0 = m1 in let r0 = r0 + 100 in

let m3 = r0 in let r0 = 2 ∗ r1 in
let r2 = m3 in let r0 = r2 + r0 in
let r2 = m2 in

let r0 = (
if r0 ≤ r2 then let r0 = m3 in r0
else

let r0 = r2 ∗ r1 let r1 = m1 in

let r0 = r1 − r0 in r0)
in

let r1 = m3 in let r0 = r1 ∗ r0
in r0

program: f1
input: (r0, r1, r2)
output: r0
(l1 {m1 := r2}] {m2 := r0}]

{r0 := m1}] {r0 := r0 + 100}]
{m3 := r0}] {r0 := 2 ∗ r1}]
{r2 := m3}] {r0 := r2 + r0}]
{r2 := m2}

l2)]
(l2 ifgoto (r0 ≤ r2) l3 l4)]
(l4 {r0 := r2 ∗ r1}] {r1 := m1}]

{r0 := r1 − r0}
l5)]
(l3 {r0 := m3} l5)]
(l5 {r1 := m3}] {r0 := r1 ∗ r0} l6)

Figure 3.5: f1’s FIL (left) and SAL (right)

register fp, respectively. Stack register sp is also used to keep track of the current

stack pointer. They are global variables whose initial values satisfying fp = hp−1 ∧

sp = fp− 1, e.g. the heap space (with increasing addresses) and stack space (with

decreasing addresses) are adjacent. As the first slot in the frame is reserved for the

return address, the stack space of a function starts from fp− 1. A stack variable

ti is represented by m[fp − i − 1]; and a heap variable a[ri] is by m[hp + â + ri]

where â is the starting address of heap object a. Here, we assume variable values

are integers for simplicity.

Consider the following (unoptimized) example. We introduce an administrative

term letm whose semantics is the same as let to mark the “let” expressions

involving memory access.

f1 (r0, r1) =
letm t0 = r0 in let r1 = r0 ∗ r0 in
letm a1 = new (int, 3) in letm a2 = new (int, 2) in
let r2 = 0 in let r0 = r1 + 10 in

letm a1[r2] = r1 in letm a2[r2 + 1] = r0 in
letm r1 = f2 (r0, a2) in
let r2 = a1[2] in letm r0 = t0 in
(r0, r1, r2)

f2 (r0, a) =
let r1 = r0 ∗ 5 in letm a[0] = r0 + r1 in (r0, r1)

We use an offline analysis to allocate the heap for the arrays and calculate the

start addresses of the arrays, then generate a term representing the allocation. We

can prove that this term equals the above one by eliminating all the “letm”s in

41

the two terms, e.g. ∀m. f1 (r0, r1) = (let (v,m) = f ′1 (r0, r1,m) in v).

f ′1 (r0, r1,m) =
letm m[fp− 1] = r0 in let r1 = r0 ∗ r0 in
letm a1 = 0 in letm a2 = 3 in

let r2 = 0 in let r0 = r1 + 10 in

letm m[hp+ a1 + r2] = r1 in
letm m[hp+ a2 + r2 + 1] = r0 in
letm (r1,m) = f ′2 (r0, a2,m) in
letm r2 = m[hp+ a1 + 2] in letm r0 = m[fp− 1] in
(r0, r1, r2,m)

f ′2 (r0, a,m) =
let r1 = r0 ∗ 5 in letm m[hp+ a] = r0 + r1 in
(r0, r1,m)

If the offline allocator makes a mistake and produces letm a0 = 0 in let a1 =

0 in . . . , then the correctness proof will fail since the address spaces of the two

arrays overlap and a write to the second array may pollute the content of the first

one. The rewrite rules for heap allocation include the following, where ph marks

the starting address of the available heap space.

[heap alloc]
letm a = new (τ, n) in e (a[i]) ←→
letm ph = ph + n ∗ (size τ) in
letm a = ph in e (m[hp+ a+ i ∗ (size τ)])

We may implement a garbage collector in a similar manner. This requires more

advanced data structures (e.g. a table recording the liveness information of the

heap objects) and some collection algorithms (e.g. the mark-and-sweep algorithm).

The core is to model the collector as an offline algorithm in the logic. We leave

its implementation to further work.

Note that this conversion is only needed in back-end II since back-end I uses

an imperative language HSL to handle the heap and stacks.

CHAPTER 4

COMPILING LOGIC SPECIFICATIONS :

BACK-END

In this chapter, we describe two methods to construct the back-end. The first

method [63] introduces an imperative language HSL to model the heap and stack

information, and another language CFL to model the control flow. As shown

in Figure 4.1, we define the operational semantics of two imperative languages

explicitly. The translation from HSL to CFL then to ARM is validated in a

Compiler Verification manner. The second approach [66] models the heap and

stacks directly in the logic level (see Section 3.2.4), and generates structured

abstract assembly (SAL) programs. Producing ARM code from SAL programs

is trivial.

4.1 Back-end I

We first refine the LF2 form slightly by introducing combinators for sequential

composition (sc), conditionals (cj), and tail-recursion (tr). This makes it more

succinct to represent the control flow of a LF2 function.

`def sc f1 f2
.
= f1 ø f2

`def cj e f1 f2
.
= λx. if e x then f1 x else f2 x

`def tr f1 f2
.
= λx. if f1 x then x else tr f1 f2 (f2 x)

`thm (f x = if f1 x then f2 x else f (f3 x))⇔ (f = sc (tr f1 f3) f2)

4.1.1 Imperative Languages

HSL is a simple imperative language that supports various structured control

statements including blocks (BLK), sequential composition (SC), conditionals (CJ),

and tail recursion (TR), plus an important structure for function call — FC. Figure

4.1 shows its syntax and semantics. Variables are divided into register variables,

heap (global) variables, and stack (local) variables. A BLK structure is just a

list of atomic instructions. An FC structure consists of an argument passing pair

43

opb ::= add | sub | mul | ror | lsr | asr |
| lsl | and | orr | eor | rsb | mla , . . . arithmetic and bitwise operators

r ::= r0 | r1 | . . . | r8 register variable
v ::= r | sk[.] register and stack variable
y ::= w | r word constant and register
x ::= w | v constant and variable
inst ::= opb r y y arithmetic and bitwise operation

| ldr r (hp[i] | sk[.]) | str (hp[i] | sk[.]) r access to heap and stack

s ::= BLK ĩnst basic block containing an instr. list
| CJ (x, opr, x) s s conditional jump
| TR (x, opr, x) s tail recursion (loop)
| FC (x̃, ṽ) s (ṽ, x̃) function call

p ::= (−→v , s,−→x) programs

rd ::= HSL.r data register
rb ::= hp | fp | ip | sp | lr base (pointer) register
r ::= rd | rb register
m ::= m[rb,+i] | m[rb,−i] memory location
v, y, x, p ::= similar to v, y, x, p in HSL
inst ::= opb r y y | ldr r m | str m r | push r̃ | pop r̃ single instruction

s ::= BLK ĩnst | CJ (x, opr, x) s s | TR (x, opr, x) s control flow structures

BLK [] ` σ� σ
eval inst inst σ = σ1 BLK instL ` σ1� σ2

BLK (inst::instL) ` σ� σ2
S1 ` σ� σ1 S2 ` σ1� σ2

SC S1 S2 ` σ� σ2

S1 ` σ� σ1 is true (eval cond cond σ)
CJ cond S1 S2 ` σ� σ1

S2 ` σ� σ1 is false (eval cond cond σ)
CJ cond S1 S2 ` σ� σ1

is true (eval cond cond σ)
TR cond S ` σ� σ

S ` σ� σ1 is false(eval cond cond σ) TR cond S ` σ1� σ2
TR cond S ` σ� σ2

copy (σε,σ) (callee.~i,caller.~i) = σ1 S ` σ1� σ2 copy (σ,σ2) (caller.o,callee.i) = σ3
FC (caller.~i,callee.~i) S (caller.~o,callee.~o) ` σ� σ3

Figure 4.1: Syntax for HSL (top) and CFL (middle), and evaluation rules
(bottom). (Note: FC structures only appear in HSL)

(the first component is for the caller, the second component for is the callee),

a body statement, and a result passing pair. Heap variables are not allowed in

parameters or results since their values are not transferred through the stack. A

HSL program will never contain any comparison or jump instructions. Variables

are divided into register variables, heap variables, and stack variables. Variables

in LF2 format have been mapped to either register, heap, or stack variables by

register allocation and interprocedural analysis.

CFL explicitly lays out the heap and stacks for function calls. It specifies

machine registers and memory locations for the variables in HSL. A function

call in HSL is implemented by dividing the processing into three phases: precall

processing, function body execution and postcall processing. Pointer registers hp

(heap pointer), fp (frame pointer), ip (intra-procedure register pointer), sp (stack

44

pointer), and lr (link register) are used to control the layout of the heap and

stack frames for functions. CFL works over machine registers and memory; thus,

a (one-to-one) mapping from HSL variables to them is required.

The translation from CFL to the object code simply performs the linearization

of control-flow structures. The format of an ARM instruction is: op{cond} d1 d2.

The cond field controls conditional execution of the instruction, it is omitted

for unconditional execution; d1 and d2 are the destination operand and source

operands, respectively. Figure 4.2 gives the syntax and semantics of the machine

language.

In our machine model, the data memory is separated from instruction memory

(also known as the instruction buffer, which is modeled as a function mapping an

address to an instruction). At each step, the instruction pointed to by the pc is

executed. A program is executed until the first position beyond the code area is

reached.

4.1.2 From LF2 to HSL

To support reasoning about HSL programs, we use the following Hoare triples:

{P} S {Q} .= ∀σhsl.P σhsl ⇒ Q(runhsl S σhsl)

We first derive standard Hoare rules. Then, to bridge the semantic gap between

an LF2 function g with inputs~i and outputs ~o, and the HSL structure S built from

g’s LF2, we specialize the axiomatic semantics to obtain a refined set of Hoare

r ::= CFL.r | pc machine register
m, v, y, x ::= similar to m, v, y, x in CFL
inst ::= b{opr} + k | b{opr} − k branch instruction

| cmp y y | tst y y comparison instruction
| CFL.inst operation instruction

p ::= (−→v , ĩnst,−→x) programs

eval op (op y ~x) ω = ω1

op y ~x ` (pc,cpsr,ω)� (pc+1,cpsr,ω1)
update cpsr cpsr d1 d2 = cpsr1

cmp d1 d2 ` (pc,cpsr,ω)� (pc+1,cpsr1,ω)

is true (eval cpsr cpsr rop)
b{rop} (+/−) k ` (pc, cpsr, ω)� (pc (+/−) k, cpsr, ω)

is false (eval cpsr cpsr rop)
b{rop} (+/−) k ` (pc, cpsr, ω)� (pc+ 1, cpsr, ω)

Figure 4.2: Syntax and evaluation rules of the machine language

45

rules—dubbed the projective Hoare rules. A projective Hoare rule says: provided

that inputs~i have initial values ~v, and any variable x in the live variable set ξ has

value k, then in the state σ′ after the execution of S, the values left in outputs ~o

are equal to applying the function f to the initial values ~v, and x’s value is still k:

S ` ξ ↑ (~i, f, ~o)
.
=

∀x ∈ ξ ∀~v∀k∀σhsl.(~if σhsl = ~v) ∧ (σhsl[[x]] = k)⇒
let σ′hsl = runhsl S σhsl in ∧ (~of σ

′
hsl = f ~v) ∧ (σ′hsl[[x]] = k)

where functions if and of project from a data state the values of vector~i and ~o. If

the judgement embodied by a projective Hoare rule holds on the S derived from

g, then the synthesized function f should be equivalent to g and, indeed, this is

easy to prove automatically since they are quite similar.

The projective Hoare rules utilize the following definitions. Operator mk cnd

turns a condition into a condition function. Suppose
−→
ξ turns a set ξ into a

vector, and
←−
~v turns a vector ~v into a set, then the product of a vector and a set

makes a new vector that comprises ~v1 and all elements in ξ, ~v1 × ξ
.
= (~v1,

−→
ξ).

The dot product of a function and a set gives a new function: (λ~x.f ~x) � ξ
.
=

λ(~x,
−→
ξ).(f ~x,

−→
ξ). A vector and a projective function are interchangeable.

s1 ` ξ1 ↑ (~i1,f1, ~o1) s2 ` ξ2 ↑ (~o1,f2, ~o2)

SC s1 s2 ` ξ1 ∩ ξ2 ↑ (~i1,sc f1 f2, ~o2)
sc rule

s1 ` ξ1 ↑ (~i,f1,~o) s2 ` ξ2 ↑ (~i,f2,~o)

CJ cnd s1 s2 ` ξ1 ∩ ξ2 ↑ (~i,(cj (mk cnd cnd) f1 f2),~o)
cj rule

s ` ξ ↑ (~i,f,~i)

TR cnd s ` ξ ↑ (~i,(tr (mk cnd cnd) f),~i)
tr rule

s ` ξ ↑ (~i,f,~o) g ~i′=f ~i

s ` ξ ↑ (~i′,g,~o)
shuffle rule

s ` ξ ↑ (~i,f,~o) ξ′⊆ ξ
s ` ξ ↑ (~i×ξ′,f � ξ′,~o×ξ′) pick rule

s ` ξ ↑ (~i,f,~o) ξ′⊆ ξ
s ` ξ′ ↑ (~i,f,~o)

shrink rule

s ` ξ ↑ (callee.~i,f,callee.~o)
←−−−−−
caller.~o ∩ ξ′ = φ

FC (caller.~i,f,callee.~i) s (caller.~o,f,callee.~o) ` ξ′ ↑ (caller.~i,f,caller.~o)
fc rule

These rules are used to keep track of how the relation between specific inputs

and outputs change during the execution. Rules sc rule, cj rule, and tr rule are

control flow rules and their meaning is self-explanatory. The live variable set ξ

stores the variables that are still live but not modified by the current statement.

In other words, when the value of a live variable is not altered by the current

statement, it is stored in ξ for future use. A live variable is either in ξ, or in

46

the outputs ~o. When it becomes not live any more, it should be removed from ξ.

Maintaining a ξ helps to reduce the number of variables in the inputs and outputs.

Rule pick rule is for extracting variables from the live variable set, while shrink rule

is used to discard variables not live any more from the set. Rule shuffle rule is to

restructure the input vector. Restructuring the ouput vector is accomplished by

appending an empty block and applying the shuffle rule to it. A basic block is

simulated as a whole as it is a macro instruction; thus, there exists no rule for it.

Application of projective rules is controlled by an annotated structure with

inputs, outputs, and context information, which guides the symbolic simulation

and the application of rules. Control flow rules sc rule, cj rule, and tr rule are

applied on structures SC, CJ, and TR, respectively. For instance, when reasoning

about a (CJ cond S1 S2) structure, we first reason about S1 and S2 separately,

then apply the cj rule rule. The application of data flow rules pick rule,

shrink rule, and shuffle rule are guided by the “use” and “def” information

of a structure maintained by the compiler.

4.1.3 From HSL to CFL

The main task for this translation is to implement function calls and map

heap variables and stack variables to memory (for wider application we handle

heap variables here although they are replaced with stack variables during closure

conversion). Obviously the mapping function, %, shall be a one-to-one function.

The storage for local (stack) variables is allocated on function entry and

released on function exit. In particular, local variables are held in a stack frame

that will be “destroyed” on function exit, and the storage for its stack can be

“collected” and reused for other function calls. The memory is modelled as a

finite map with addresses ranging from 0 to 232 − 1.

We introduce an injection relation w% to relate the states occurring during the

execution of HSL code and that of the translated CFL code, where % consists of

three injective functions %rg, %hp and %sk that map logical registers, heap variables,

and stack variables to machine registers and memory locations. Of course, all

procedures use the same %hp as they share the global heap. The correctness

statement amounts to showing that the execution of a HSL statement Shsl has the

same effect on a HSL state as the execution of its corresponding CFL statement

Scfl (notation Dσ and DS return the domains of the finite maps in σ and the

47

variables accessed by the instruction in S).

`def one one inj σhsl % σcfl

.
= ∀v1, v2 ∈ Dσhsl

. addr σcfl v
%
1 6= addr σcfl v

%
2

`def σhsl w% σcfl

.
= ∀v ∈ Dσhsl

. σhsl[[v]] = σcfl[[v%]]
`def (Shsl ≡% Scfl)

.
=

∀σhsl∀σcfl. (DShsl
= Dσhsl

∧ σhsl w% σcfl)⇒ (runhsl Shsl σhsl w% runcfl Scfl σcfl)

The function addr returns the address of a mapped variable. An address is

parameterized by a state containing the values of base registers (e.g. fp and sp).

Given an injection %, the translation from HSL to CFL for most structures is

simple and we just need to replace HSL variables with their mapped machine

registers and memory locations. A FC structure will be converted to the sequential

composition of precall processing, callee’s body, and postcall processing:

r%
i
.
=%rg ri hp[i]%

.
= m[%hp i] sk[i]%

.
= m[%sk i] S% .

= ∀v ∈ DS. S[v ← v%]
Γhsl S

.
= S% when S is a BLK,SC,CJ or TR structure

Γhsl (FC (caller.~i, callee.~i) S (caller.~o, callee.~o))
.
=

SC (SC pre (Γhsl S)) post for valid pre, post and %′ described below

When %sk maps different stack variables to different memory locations, the

translation for BLK, SC, CJ, and TR structures guarantees semantics preservation.

The translation for FC is more complicated: we require that the precall processing

and postcall processing fulfill the parameter passing and result returning task;

and the execution of the precall processing, function body and postcall processing

should not modify the values of the caller’s register and stack variables except for

those set to receive results (we name this the value recovering property). Assuming

that % is an one-to-one injection, we have:

(BLK S) ≡% (BLK S%)
Shsl 1 ≡% Scfl 1 Shsl 2 ≡% Scfl 2

SC Shsl 1 Shsl 2 ≡% SC Scfl 1 Scfl 2

Shsl 1 ≡% Scfl 1 Shsl 2 ≡% Scfl 2

CJ cond Shsl 1 Shsl 2 ≡% CJ cond% Scfl 1 Scfl 2

Shsl ≡% Scfl

TR cond Shsl ≡% TR cond% Scfl

∀σ.σ[[caller.~i%]] = (runcfl pre σ)[[callee.~i%
′
]] Shsl ≡%

′
Scfl

∀σ.σ[[callee.~o%
′
]] = (runcfl post σ)[[caller.~o%]]

∀σ.∀v ∈ (Drg,sk
Scaller

\
←−−−−−
caller.~o). σ[[v%]] = (runcfl (SC (SC pre Scfl) post) σ)[[v%]]

FC (caller.~i,callee.~i) Shsl (caller.~o,callee.~o) ≡% SC (SC pre Scfl) post

There are many ways to guarantee that the value recovering property holds.

One of them is to layout the frames of the caller and callee in such a way that

their domains do not intersect with each other, and the values of register variables

48

modified by the callee’s execution are recovered on the function entry. This leads

to a valid implementation of a frame layout and a function call procedure. The

areas in the memory devoted to stack frames (i.e. the activation record) are marked

by the ip, fp, and sp. When the callee is called, space for results are reserved by

growing the stack, then the caller pushes all parameters into the stack, and then

the frame for the callee is created. Specifically, when a callee is called, its stack

frames shall not be overlapped with the callee’s frame.

As indicated by the following rule, an implementation is valid if it ensures

that: (1) the parameter/result passing and the body execution do not change the

values of stack variables in the caller’s frame except those for receiving results

(i.e. caller.~o); (2) all register variables are pushed into memory before parameter

passing on function entry and then popped from memory before result passing on

function exit. In the following rule, σ〈v〉 represents reading the value at concrete

address v from state σ, and Dr is the abbreviation of DScaller
.

σ1 = runcfl pre σ σ2 = runcfl Scfl σ1 σ3 = runcfl post σ2
∀v ∈ (Dsk

r)%.σ〈v〉 = σ1〈v〉 ∃xi. σ1〈xi〉 = σ[[ri]] for i ∈ Drg
Scallee

∀v ∈ (Dsk
r)% ∪ {xi | i ∈ Drg

Scallee
}.σ2〈v〉 = σ1〈v〉

∀v ∈ (Dsk
r \
←−−−−−
caller.~o)%. σ3〈v〉 = σ2〈v〉 ∀ri ∈ (Drg

r \
←−−−−−
caller.~o). σ3[[ri]] = σ2〈xi〉

∀σ.∀v∈(Drg,sk
r \

←−−−−−
caller.~o). σ[[v%]]=(runcfl (SC (SC pre Scfl) post) σ)[[v%]]

Complying with these requirements, our implementation compiles function

calls into a callee-save style calling convention. Specifically, %sk=%′sk= λi.(fp,−(i+

12)), %rg=%′rg= λr.r and %hp=%′hp= λi.(hp,−i). By carefully moving the pointers

fp, ip, and sp, we keep the caller’s frame and callee’s frame located in separate

areas in the memory (see Figure 4.3). All parameters and results are passed

through the stack, and the callee saves all data registers (i.e. r0 − r8) in all

cases. This solution is suboptimal but easier to verify. In particular, it allows us,

while performing colouring register allocation, not to add interferences between

caller-save registers and temporaries that are live across a call.

One subtlety appearing in proofs is that the initial values of hp, sp, ip, and fp

must be greater than specific values so that the memory can accomodate all stack

frames and the areas consumed by preprocessing and postprocessing.

Both the heap and the stacks are simply finite maps; thus, we do not formalize

and rely on any heap management and stack property. In [16] a block-base memory

model between a machine memory and a high-level view is introduced to manage

49

higher address (32-bit word based address) lower address
← . . . global heap previous frame current frame next frame . . .→

Memory Addr Memory Addr

caller’s ip reserved for pc i
caller’s fp saved lr i-1 stack variable n j

save ip i-2 caller’s sp parameter/result k j-1
save fp i-3

stored reg 8 i-4 parameter/result 0 k
. . . . callee’s ip reserved for pc k-1

stored reg 0 i-12 callee’s fp saved lr k-2
stack variable 0 i-13

pre = BLK [sub sp sp (max(#caller.~i,#caller.~o)−#caller.~i); push caller.~i;
mov ip sp; sub fp ip 1; sub sp sp 1; push {r0, . . . , r8, fp, ip, lr};
add sp sp 12; pop callee.~i; sub sp fp (12 + #stack variables)]

post = BLK [add sp ip #callee.~o; push callee.~o; sub sp fp 12;
pop {r0, . . . , r8, fp, ip, lr}; mov sp ip; pop caller.~o;
sub sp fp (12 + #stack variables)]

Figure 4.3: Memory layout in HSL.

frame stacks. As in our method, separation is enforced between stack blocks

belonging to different function activation records.

4.1.4 From CFL to ARM

The translation from CFL to ARM proceeds by linearizing the SC, CJ, and

TR structures. The instructions in basic blocks are already in the right format.

Our translation always generates flat code satisfying good properties including:

(1) any execution of the translated code will not access beyond its own area in

the instruction buffer; (2) the data state after an execution is independent of the

initial values of pc and cpsr; (3) all executions terminate.

The translation verification for CJ proceeds by case analysis on the condition,

while that for TR by the induction on the number of rounds the body is executed.

This linearization scheme turns out to be most succinct in terms of the length of

generated code. One optimization is performed at the flat code level for function

calls: all occurrences of a callee are moved to the same area in the code so that only

one copy is left. Unconditional jumps are inserted appropriately. The correctness

proof for this relocation is straightforward because the adjusted code runs in the

same way as its old version.

Γcfl (BLK (inst :: instL))
.
= inst :: Γcfl(BLK instL)

Γcfl (BLK [])
.
= []

50

Γcfl (SC s1 s2)
.
= (Γcfl s1)] (Γcfl s2)

Γcfl (CJ (v1, rop, v2) st sf)
.
= let (ρt ρf) = (Γcfl st,Γcfl sf) in

(cmp v1 v2) :: (b{rop} + ‖ρf‖+ 2) ::
ρf] [bal + ‖ρt‖+ 1]] ρt

Γcfl (TR (v1, rop, v2) s)
.
= let ρ = Γcfl s in

(cmp v1 v2) :: (b{rop}+ ‖ρ‖+ 2) :: ρ] [bal− (|ρ|+ 2)]

Note that ‖ρ‖ returns the number of instructions in ρ, and ρ1] ρ2 appends ρ2

to ρ1.

Now, we consider a simple example. With the following abbreviations,

body
.
= BLK [msub r3 r0 1w; mmul r2 r0 r1; mmov r0 r3; mmov r1 r2]

blk1
.
= BLK [mmov r2 r1] snd

.
= λ(v0, v1).v1

f1
.
= λ(v0, v1).(v0 − 1w, v0 + v1) f2

.
= tr (λ(v0, v1).v0 = 0w)〉) f1

the intermediate forms of the factorial function and the derivation of the specifica-

tion connecting the facthsl and factacf (where Axiom1 = blk1 ` {} ↑ ((r0, r1), snd, r2))

are:

TFL: fact (x, a)
.
= if x = 0w then a else fact (x− 1w, x× a)

LF2: factacf
.
= sc (tr (λ(v0, v1).v0 = 0w) f1) snd

HSL: facthsl
.
= SC (TR (r0, eq, 0w) body) blk1

CFL: fact cfl
.
= Γhsl facthsl = facthsl

ARM: factarm
.
= Γcfl fact cfl = [cmp r0 r1; beq + 6; sub r3 r0 1w; mul r2 r0 r1;

mov r0 r3; mov r1, r2; bal − 6; mov r2, r1]

body ` {} ↑ ((r0, r1), f1, (r0, r1))
tr rule

TR (r0, ne, 0w) body ` {} ↑ ((r0, r1), f2, (r0, r1)) Axiom1
sc rule

SC (TR (r0, ne, 0w) body) blk1 ` {} ↑ ((r0, r1), factacf , r2)

4.2 Back-end II

This back-end admits only tail recursive programs. For those nontail recur-

sive programs, we rely on a third party translator to turn them into equivalent

tail recursion. A preliminary tool linRec has been developed to translate linear

recursions to tail recursions [36].

As in the first back-end, we convert a tail recursive program into the sequential

composition of its body loop (represented by a tr structure) and its basic base

through theorem conv tr. Theorem tr ind enables us to reason about tr structures

through induction. At the next step, this tail recursive equation is translated to

abstract assembly code.

51

def tr c f
.
= λx.if c x then x else tr c (f x) [tr def]

thm (f x = if c x then f1 x else f (f2 x))⇔ (f x = let v = tr c f2 x in f1 v) [conv tr]

thm ∀P. (∀x. (¬c x =⇒ P (f x)) =⇒ P x) =⇒ ∀v. P v [tr ind]

4.2.1 Structured Assembly Language

Validation of the translation from high-level language programs to low-level

codes is believed to be difficult due to inherent nonmodularity the of low-level

programs. This is attributed to low-level code being flat and to the prominent

presence of unrestricted jumps.

Fortunately, although low-level code seems to be just flat finite sets of in-

structions, it is structured by finite unions naturally: a compilation produces

code structurally by combining smaller pieces of code together to generate larger

code. Technically, we can formulate a structured version for a piece of low-level

instructions and develop compositional natural semantics for it. With this spirit,

Saabas and Uustalu [99] propose a compositional natural semantics and a Hoare

logic for a structured low-level language. Siminarly, Tan and Appel [110] propose

a continuation-style compositional logic with a rather sophisticated interpretation

of Hoare triples involving explicit fix-point approximations.

We introduce a structured assembly language (SAL) with a compositional

(natural) semantics as the next intermediate representation. The translation from

FIL to SAL is shown to be correct with respect to this compositional semantics.

This language has the following grammar. For optimization purpose, some of the

labels in a code may be omitted when the control flow is clear (see section 4.2).

sc ::= (` {v := e} `) | l ifgoto cond ` ` | ` goto ` | sc] sc

The natural semantics of SAL is specified as evaluation rules which relate a

piece of code (with entry label and exit label) with the functional expression it

implements. Rule ` 〈l1〉 S 〈l2〉 ⇒ (w, v) indicates: (1) Structure S computes a

FIL expression w and stores the result of computation in v; (2) The control flow

starts at label l1 and ends at label l2 (by convention li 6= lj if i 6= j). In this case,

we say S is reducible to (w, v). Roughly (w, v) can be understood as C w (λv. . . .)

where C is the CPS combinator defined in Section 3.2. A code being reducible

to (v, v) means that it computes nothing but moving the control flow. Actually

(v, v) is often abbreviated to be (). If a piece of SAL code c is reducible to (e, v),

52

then we claim that c implements FIL expression let v = e in v, and the translation

from this expression to c is correct.

The idea behind this natural semantics is that an assembly program can be

structured as a union of labeled structures such that the control flow is represented

by the jumps between labels of these structures. Since the composition of these

labeled structures is flat and the only connection between them is labels, the gap

between high-level programs (which exhibit complicated control flow structures)

and low-level assembly code (which is flat) is met.

As shown in Figure 4.4, a SAL program is built by composing labeled struc-

tures according to their entry labels and exit labels. Most of these rules are

self-explanatory. Rule loop says if a round of computation of the body of a loop

returns value e[v], and subsequent rounds takes e[v] as arguments and computes

f [e[v]], then the effect of these rounds together is to compute f [v]. Clearly this

rule characterizes the behavior of tail recursions.

Based on the basic rules, we derive some advanced rules for more complicated

control flow structures such as conditional jumps, tail recursions, and function

calls. The proof of rule conditional goes by case analysis on the condition c; so

does the proof of rule tr. The proof of rule fun call is based on the fact that the

preprocessing and postprocessing for a function call take care of argument passing

` 〈l1〉 l1 {v := w} l2 〈l2〉 ⇒ (w, v) inst

` 〈l1〉 S1 〈l2〉 ⇒ () ` 〈l2〉 S2 〈l3〉 ⇒ e
` 〈l1〉 S1] S2 〈l3〉 ⇒ e nop

` 〈l1〉 S1 〈l2〉 ⇒ e1 ` 〈l3〉 S2 〈l4〉 ⇒ e2
` 〈l1〉 S1] S2 〈l2〉 ⇒ e1

skip

` 〈l1〉 S1 〈l2〉 ⇒ (e, v) ` 〈l2〉 S2 〈l3〉 ⇒ (f v, w)
` 〈l1〉 S1] S2 〈l3〉 ⇒ (let v = e in f v, w) seq

` 〈l1〉 ifgoto > l2 l3 〈l2〉 ⇒ () ift ` 〈l1〉 ifgoto ⊥ l2 l3 〈l3〉 ⇒ () iff

` 〈l1〉 l1 goto l2 〈l2〉 ⇒ () goto

` 〈l1〉 S 〈l1〉 ⇒ (e[v], v) 〈l1〉 S 〈l2〉 ⇒ (f [e[v]], v)
` 〈l1〉 S 〈l2〉 ⇒ (f [v], v) loop

Figure 4.4: Compositional semantics of SAL.

53

and result passing, respectively.

` 〈l2〉 S1 〈l4〉 ⇒ (e1, v) ` 〈l3〉 S2 〈l4〉 ⇒ (e2, v)
` 〈l1〉 (l1 ifgoto c l2 l3)] S2] S1 〈l4〉 ⇒ (if c then e1 else e2, v) conditional

¬c v =⇒ 〈l3〉 S 〈l4〉 ⇒ (f v, v)
` 〈l1〉 (l1 ifgoto (c v) l2 l3)] S] (l4 goto l1) 〈l2〉 ⇒ (tr c f v, v) tr

` 〈l2〉 S 〈l3〉 ⇒ (f w1, v1)
` 〈l1〉 (l1 {w1 := w2} l2)] S] (l3 {v2 := v1} l4)⇒ (f w2, v2) fun call

The detailed derivation of these advanced rules is shown in Figure 4.5.

These rules immediately validate the following rewrites whose repeated appli-

cation will convert a FIL program to an equivalent SAL program. Notation l+i

stands for the ith new label introduced during the conversion.

[conv exp] conv (l (e, v) l′) ←→ (l, {v := e}, l′)
[conv let] conv (l (let v = e in f v, w) l′) ←→

(conv (l (e, v) l+1))] conv (l+1 (f v, w) l′)
[conv cond] conv (l (if c then e1 else e2, v) l′) ←→

(l ifgoto c l+1 l+2)] conv (l+2 (e2, v) l′)] conv (l+1 (e1, v) l′)
[conv tr] conv (l (tr c f v, v) l′) ←→

(l ifgoto c l′ l)] conv (l (f v, v) l+1)] (l+1 goto l)
[conv app] conv (l (f w2, v2) l

′) ←→
(l {w1 := w2} l+1)] (conv (l+1 bd l+2))] (l+2 {v2 := v1} l′)
where v1, bd, and w1 are the input, body,
and output of f , respectively.

4.2.2 Machine Code Generation

This phase pretty-prints SAL programs into assembly code with respect to the

instruction set of the target machine. Since we do not specify the semantics of

the machine language, this conversion does not go by proof. However, the high

similarity between SAL and realistic assembly language makes the correctness of

this conversion easy to check (e.g. by hand).

One optimization in this phase is to eliminate labels that are not the targets of

existing jumps. For instance, internal labels within a block consisting of sequential

assignment instructions can be removed safely. And, the exit label of a structure

is superfluous when the control flow after its execution goes directly to the next

structure. Furthermore, since a ifgoto instruction is always followed immediately

by its false block, it is safe to remove its exit label pointing to the false block.

54

Derivation of rule conditional

asm1 = ` 〈l1〉 l1 ifgoto > l2 l3 〈l2〉 ⇒ () asm2 = ` 〈l3〉 S2 〈l4〉 ⇒ (e2, v)
asm3 = ` 〈l2〉 S1 〈l4〉 ⇒ (e1, v) asm4 = ` 〈l1〉 l1 ifgoto ⊥ l2 l3 〈l3〉 ⇒ ()
lem1 = 〈l1〉 (l1 ifgoto > l2 l3)] S2 〈l2〉 ⇒ ()
thm1 = ` 〈l1〉 (l1 ifgoto > l2 l3)] S2] S1 〈l4〉 ⇒ (e1, v)
lem2 = ` 〈l1〉 (l1 ifgoto ⊥ l2 l3)] S2 〈l4〉 ⇒ (e2, v)
thm2 = ` 〈l1〉 (l1 ifgoto ⊥ l2 l3)] S2] S1 〈l4〉 ⇒ (e2, v)

asm1 asm2 skip
lem1 asm3 nop

thm1

asm4 asm2 nop
lem2 asm3 skip

thm2

〈l1〉 (l1 ifgoto c l2 l3)] S2] S1 〈l4〉 ⇒ (if c then e1 else e2, v)

Derivation of rule tr

body = 〈l1〉 (l1 ifgoto (c v) l2 l3)] S] (l4 goto l1) 〈l2〉
asm1 = ` 〈l1〉 l1 ifgoto > l2 l3 〈l2〉 ⇒ () asm2 = ` 〈l3〉 S 〈l4〉 ⇒ (e, v)
asm3 = ` 〈l4〉 l4 goto l1〈l1〉 lem1 = ` 〈l1〉 (l1 ifgoto > l2 l3)] S 〈l2〉 ⇒ ()
thm1 = ` c v =⇒ body ⇒ () thm2 = ` c v =⇒ body ⇒ (tr c f v, v)
asm4 = ` ¬c v =⇒ body ⇒ (tr c f (f v), v)
asm5 = ` ¬c v =⇒ 〈l1〉 (l1 ifgoto (c v) l2 l3)] S] (l4 goto l1) 〈l1〉 ⇒ (f v, v)
thm3 = ` ¬c v =⇒ body ⇒ (tr c f v, v)

asm1 asm2 skip
lem1 asm3 nop

thm1
tr def

thm2

asm4 asm5 loop, tr def
thm3 case

` body ⇒ (tr c f v, v)

Derivation of rule fun call

pre = l1 {w1 := w2} l2 post = l3 {v2 := v1} l4

` 〈l1〉 pre 〈l2〉 ⇒ (w2, w1) ` 〈l2〉 S 〈l3〉 ⇒ (f w1, v1)
seq

` 〈l1〉 pre] S 〈l3〉 ⇒ (let w1 = w2 in f w1, v1)

〈l3〉 post 〈l4〉 ⇒ (v1, v2)
seq

` 〈l1〉 pre] S] post 〈l4〉 ⇒ (let v1 = (let w1 = w2 in f w1) in v1, v2)
let def` 〈l1〉 pre] S] post 〈l4〉 ⇒ (f w2, v2)

Figure 4.5: Derivation of composite rules.

55

[elim blk lab] (l1 {v1 := w1} l2)] (l2 {v2 := w2} l3) −→
l1 ({v1 := w1}] {v2 := w2}) l3

[elim seq lab] (l1 S1 l2)] (l2 S2 l3) −→ (l1 S1)] (l2 S l3)
[elim ifgoto lab] (ifgoto c l2 l3)] (l3 S l4) −→ (ifgoto c l2)] (l3 S l4)

The process of producing assembly from an optimized SAL program is trivial:

(1) An assignment instruction with a single variable as target is replaced with

a corresponding machine instruction; (2) A goto instruction is inserted for the

exit label of a structure; (3) An ifgoto instruction is replaced with a comparison

instruction followed by a jump. When both the target and source of an assignment

are tuple and the machine model does not support parallel move, this assignment

can be implemented by first pushing the value of source into the stack and then

loading it back from the stack. Clearly, this process can be used to generate ARM

assembly code.

4.3 Examples

4.3.1 Compilation of TEA

The TFL function of the TEA [122] block cipher includes the following first

order logic functions:

ShiftXor (x,s,k0,k1) =

((x << 4) + k0) # (x + s) # ((x >> 5) + k1)

Round ((y,z),(k0,k1,k2,k3),s):state =

let s’ = s + DELTA in

let y’ = y + ShiftXor(z, s’, k0, k1)

in ((y’, z + ShiftXor(y’, s’, k2, k3)), (k0,k1,k2,k3),s’)

Rounds (n,s:state) =

if n=0w then s else Rounds (n-1w, Round s)

TEAEncrypt (keys,txt) =

let (cipheredtxt,keys,sum) = Rounds(32w,(txt,keys,0w))

in cipheredtxt

Our compiler generates the following validated object code (pretty-printed to

be in conventional ARM format).

Name : TEAEncrypt

Arguments : r0 r1 r2 r3 r4 r5

Modified Registers : r0 r1 r2 r3 r4 r5 r6

Returns : r6 r5

Body:

0: mov ip, sp

1: stmfd sp!, {fp,ip,lr,pc}

2: sub fp, ip, #1i

3: sub sp, sp, #7i

4: mov r10, #0iw

5: str r10, [sp]

6: sub sp, sp, #1i

56

7: stmfd sp!, {r4,r5,r0,r1,r2,r3}

8: mov r10, #32iw

9: str r10, [sp]

10: sub sp, sp, #1i

11: bl + (6)

12: add sp, sp, #8i

13: ldmfd sp, {r6,r5,r4,r3,r2,r1,r0}

14: add sp, sp, #7i

15: sub sp, fp, #3i

16: ldmfd sp, {fp,sp,pc}

17: mov ip, sp

18: stmfd sp!, {r0,r1,r2,r3,r4,r5,r6,r7,

r8,r9,fp,ip,lr,pc}

19: sub fp, ip, #1i

20: sub sp, sp, #7i

21: ldmfd ip, {r0,r8,r5,r4,r3,r2,r6,r7}

22: add ip, ip, #8i

23: cmp r0, #0iw

24: beq + (37)

25: sub r1, r0, #1iw

26: str r1, [fp, #~11]

27: add r1, r7, #2654435769iw

28: str r1, [fp, #~12]

29: sub sp, sp, #1i

30: stmfd sp!, {r4,r3}

31: ldr r10, [fp, #~12]

32: str r10, [sp]

33: str r5, [sp, #~1]

34: sub sp, sp, #2i

35: bl + (32)

36: add sp, sp, #4i

37: ldr r1, [sp, #1]

38: add sp, sp, #1i

39: add r9, r8, r1

40: sub sp, sp, #1i

41: stmfd sp!, {r2,r6}

42: ldr r10, [fp, #~12]

43: str r10, [sp]

44: str r9, [sp, #~1]

45: sub sp, sp, #2i

46: bl + (21)

47: add sp, sp, #4i

48: ldr r1, [sp, #1]

49: add sp, sp, #1i

50: add r1, r5, r1

51: ldr r10, [fp, #~12]

52: str r10, [sp]

53: sub sp, sp, #1i

54: stmfd sp!, {r9,r1,r4,r3,r2,r6}

55: ldr r10, [fp, #~11]

56: str r10, [sp]

57: sub sp, sp, #1i

58: ldmfd sp, {r0,r8,r5,r4,r3,r2,r6,r7}

59: add sp, sp, #8i

60: bal - (37)

61: mov r1, r6

62: mov r0, r7

63: add sp, fp, #16i

64: stmfd sp!, {r8,r5,r4,r3,r2,r1,r0}

65: sub sp, fp, #13i

66: ldmfd sp, {r0,r1,r2,r3,r4,r5,r6,r7,

r8,r9,fp,sp,pc}

67: mov ip, sp

68: stmfd sp!, {r0,r1,r2,r3,r4,fp,ip,lr,pc}

69: sub fp, ip, #1i

70: ldmfd ip, {r0,r1,r2,r3}

71: add ip, ip, #4i

72: lsl r4, r0, #4i

73: add r2, r4, r2

74: add r1, r0, r1

75: eor r1, r2, r1

76: asr r0, r0, #5i

77: add r0, r0, r3

78: eor r0, r1, r0

79: add sp, fp, #6i

80: str r0, [sp]

81: sub sp, sp, #1i

82: sub sp, fp, #8i

83: ldmfd sp, {r0,r1,r2,r3,r4,fp,sp,pc}

4.3.2 A Detailed Example

We show below the real ouput in HOL-4 of the correctness statement for the

simple factorial function.

fact (x, a)
.
= if x = 0w then a else fact (x− 1w, x× a)

|- !st.

(get_st (run_arm

[((CMP,NONE,F),NONE,[REG 0; WCONST 0w],NONE);

((B,SOME EQ,F),NONE,[],SOME (POS 6));

((SUB,NONE,F),SOME (REG 3),[REG 0; WCONST 1w],NONE);

((MUL,NONE,F),SOME (REG 2),[REG 0; REG 1],NONE);

((MOV,NONE,F),SOME (REG 0),[REG 3],NONE);

((MOV,NONE,F),SOME (REG 1),[REG 2],NONE);

((B,SOME AL,F),NONE,[],SOME (NEG 6));

((MOV,NONE,F),SOME (REG 2),[REG 1],NONE)]

((0,0w,st),{}))<MR R2> = fact(st<MR R0>,st<MR R1>)

We show here how our mechanical verifier (associated with Back-end I) applies

symbolic simulation and projective Hoare rules to compile the factorial function.

An annotated ir tree for this function is generated during the compilation.

57

SC(TR((REG 0, eq, WCONST0i),

\konst{BLK}([{dst = [REG 3], oper = msub, src = [REG 0, WCONST1i]},

{dst = [REG 2], oper = mmul, src = [REG 0, REG 1]},

{dst = [REG 0], oper = mmov, src = [REG 3]},

{dst = [REG 1], oper = mmov, src = [REG 2]}],

{context = [], fspec = |- T, ins = PAIR(REG 0, REG 1),

outs = PAIR(REG 0, REG 1)}),

{context = [NA], fspec = |- T, ins = PAIR(REG 0, REG 1),

outs = PAIR(REG 0, REG 1)}),

BLK([{dst = [REG 2], oper = mmov, src = [REG 1]}],

{context = [], fspec = |- T, ins = PAIR(REG 0, REG 1),

outs = REG 2}),

{context = [], fspec = |- T, ins = PAIR(REG 0, REG 1), outs = REG 2})

The verifier applies rules according to the structure of this annotated ir.

At first, it descends to the body of the TR structure and simulates this block

symbolically to get a specification:

|- let ir = BLK [MSUB R3 (MR R0) (MC 1w); MMUL R2 (MR R0) (MR R1);

MMOV R0 (MR R3); MMOV R1 (MR R2)]

in

PSPEC ir ((\st. T),(\st. T)) (\st. T)

((\st. (st<MR R0>,st<MR R1>)), (\(v0,v1). (v0 + 4294967295w,v0 * v1)),

(\st. (st<MR R0>,st<MR R1>))) /\ WELL_FORMED ir : thm

Then, the tr rule is applied to obtain the following:

|- let ir = TR (REG 0,EQ,WCONST 0w)

(BLK [MSUB R3 (MR R0) (MC 1w); MMUL R2 (MR R0) (MR R1);

MMOV R0 (MR R3); MMOV R1 (MR R2)])

in

PSPEC ir ((\st. T),(\st. T)) (\st. T)

((\st. (st<MR R0>,st<MR R1>)),

WHILE ($~ o (\(v0,v1). v0 = 0w))

(\(v0,v1). (v0 + 4294967295w,v0 * v1)),

(\st. (st<MR R0>,st<MR R1>))) /\ WELL_FORMED ir : thm

Next, the block following the TR structure is simulated to generate another

specification.

|- let ir = BLK [MMOV R2 (MR R1)] in

PSPEC ir ((\st. T),(\st. T)) (\st. T)

((\st. (st<MR R0>,st<MR R1>)),(\(v0,v1). v1),(\st. st<MR R2>)) /\

WELL_FORMED ir : thm

And then, the sc rule is applied to get the final specification.

|- let ir = SC

(TR (REG 0,EQ,WCONST 0w)

(BLK [MSUB R3 (MR R0) (MC 1w); MMUL R2 (MR R0) (MR R1);

MMOV R0 (MR R3); MMOV R1 (MR R2)]))

(BLK [MMOV R2 (MR R1)])

in

PSPEC ir ((\st. T),(\st. T)) (\st. T)

((\st. (st<MR R0>,st<MR R1>)), (\(v0,v1). v1) o

58

WHILE ($~ o (\(v0,v1). v0 = 0w))

(\(v0,v1). (v0 + 4294967295w,v0 * v1)),(\st. st<MR R2>)) /\

WELL_FORMED ir : thm

Finally, the semantics function contained in this specification is proved to be

equal to the source function with the assistance of preproved theorems about the

WHILE combinator.

|- (\(v0,v1). v1) o WHILE ($~ o (\(v0,v1). v0 = 0w))

(\(v0,v1). (v0 + 4294967295w,v0 * v1)) =

fact : thm

CHAPTER 5

ANALYZING PARALLEL PROGRAMS:

MPI PROGRAMS

Application Programming Interfaces (API) (also known as libraries) are an

important part of modern programming – especially concurrent programming.

APIs allow significant new functionality (e.g. communication and synchronization)

to be provided to programmers without changing the underlying programming

language. APIs such as the Message Passing Interface (MPI, [78]) have been in

existence for nearly two decades, adapting to the growing needs of programmers for

new programming primitives, and growing in the number of primitives supported.

The immense popularity of MPI is attributable to the balance it tends to achieve

in terms of portability, performance, simplicity, symmetry, modularity, compos-

ability, and completeness [38]. While MPI itself has evolved, its basic concepts

have essentially remained the same. This has allowed the creation of important

long-lived codes — such as weather simulation codes [33]. Despite these successes,

MPI does not have a formal specification. In this chapter, we present the first

formal specification for a significant subset of MPI 2.0.

5.1 Motivation and Background

MPI [111] has become a de facto standard in High Performance Computing

(HPC) and is being actively developed and supported through several implemen-

tations [32, 37, 108]. However, for several reasons, even experienced programmers

sometimes misunderstand MPI calls. First, MPI calls are traditionally described in

natural languages. Such descriptions are prone to being misinterpreted. Another

common approach among programmers is to discover MPI’s “intended behavior”

by conducting ad hoc experiments using MPI implementations. Such experiments

cannot reveal all intended behaviors of an MPI call, and may even be misleading.

A formalization of the MPI standard can potentially help avoid these misunder-

standings, and also help define what is an acceptable MPI implementation.

60

Engineering a formal specification for a nontrivial concurrency API requires the

right combination of rigor, executability, and traceability. A formal specification

must also be written as an elaboration of a well-written informal specification. It

must also be as direct and declarative in nature, i.e. it must not be described in

terms of what a specific scheduler might do or rely upon detailed data structures

that suggest an actual implementation. Our formal semantics for MPI is written

with these goals in mind. At first glance, it may seem that creating a formal

specification for MPI which has over 300 fairly complex functions is almost an

impossible task. However, as explained in [38], the large size of MPI is somewhat

misleading. The primitive concepts involved in MPI are, relatively speaking,

quite parsimonious. Our formal specification attempts to take advantage of this

situation by first defining a collection of primitives, and then defining MPI calls

in terms of these primitives.

Besides contributing directly to MPI, we hope that our work will address the

growing need to properly specify and validate future concurrency APIs. In a

modern context, APIs allow programmers to harness the rapidly growing power

and functionality of computing hardware through new message transfer protocols

such as one-sided communication [78] and new implementations of MPI over

modern interconnects [52]. Given the explosive growth in concurrency and mul-

ticore computing, one can witness a commensurate growth in the number of

concurrency APIs being proposed. Among the more recently proposed APIs

are various Transactional Memories [42], OpenMP [19], Ct [47], Thread Building

Blocks [94], and Task Parallel Library [56]. There is also a high degree of interest

in light weight APIs such as the Multicore Communications API (MCAPI) [71]

intended to support core-to-core communication in a systems-on-chip multicore

setting. One could perhaps draw lessons from exercises such as ours and ensure

that for these emerging APIs, the community would create formal specifications

contemporaneously with informal specifications. As opposed to this, a formal

specification for MPI has been late by nearly two decades in arriving on the scene,

because none of the prior work meets our goals for a rigorous specification for

MPI.

Besides developing formal specifications, we must also constantly improve the

mechanisms that help derive value from formal specifications. For instance, formal

61

specifications can help minimize the effort to understand an API. Concurrency

APIs possess many nonintuitive but legal behaviors: how can formal specifications

help tutor users of the API as to what these are? Second, it is quite easy

to end up with an incorrect or incomplete formal specification. How do we

best identify the mistakes or omissions in a formal specification? Third, it is

crucial that formal specifications offer assistance in validating or verifying API

implementations, especially given that these implementations tend to change much

more rapidly than the API semantics themselves change. While we only provide

preliminary answers to these issues in this chapter, our hope is that the availability

of a formal specification is the very first step in being able to approach these more

formidable problems. Last but not least, many scientists believe that the growth in

complexity of APIs can have undesirable or unexpected consequences with respect

to the more tightly controlled growth of programming language semantics; see [17]

for related discussions. We strongly believe that these discussions point to an even

stronger need for formal specifications of concurrency APIs, and as a next step

to our work, they suggest examining how API formal specifications interact with

language and compiler semantics.

5.1.1 Background

The work by Palmer et al. [86] presented the formal specification of around

30% of the 128 MPI-1.0 functions (mainly for point-to-point communication) in

the specification language TLA+ [112]. TLA+ enjoys wide usage in industry by

engineers (e.g. in Microsoft [113] and Intel [9]), and is relatively easy to learn.

Additionally, in order to help practitioners access our specification, They built a

C front-end in the Microsoft Visual Studio (VS) environment, through which users

can submit and run short MPI programs with embedded assertions (called litmus

tests). Such tests are turned into TLA+ code and run through the TLC model

checker [112], which searches all the reachable states to check properties such as

deadlocks and user-defined invariants. This permits practitioners to play with (and

find holes in) the semantics in a formal setting. [86] shows that this rather simple

approach is surprisingly effective for querying a standard and obtaining all possible

execution outcomes (some of which are entirely unexpected), as computed by

the underlying TLC model checker. In comparison, a programmer experimenting

with an actual MPI implementation will not have the benefit of search that a

62

model checker provides, and be able to check assertions only on executions that

materialize in a given MPI implementation along with its (fixed) scheduler.

This chapter extends the work reported in [59, 86], and in addition covers

considerably more ground. In particular, we now have a formal specification for

nearly 200 MPI functions, including point-to-point calls, MPI data types, collective

communication, communicators, process management, one-sided communication,

and IO.

Space restrictions prevent us from elaborating on all these aspects: this chapter

covers the first three aspects as in a more detailed journal version [65], and a

companion technical report [64] covers the rest. (Note: We have not extended the

C front-end described in [86] to cover these additional MPI functions.) We have

extensively tested our formal specification, as discussed in Section 5.3. Using our

formal specification, we have justified a tailored Dynamic Partial Order Reduction

algorithm (Section 5.4).

In order to make our specification faithful to the English description, we (i)

organize the specification for easy traceability: many clauses in our specification are

cross-linked with [111] to particular page/line numbers; (ii) provide comprehensive

unit tests for MPI functions and a rich set of litmus tests for tricky scenarios;

(iii) relate aspects of MPI to each other and verify the self-consistency of the

specification; and (iv) provide a programming and debugging environment based

on TLC, Phoenix, and Visual Studio to help engage expert MPI users (who may

not be formal methods experts) into experimenting with our semantic definitions.

5.1.2 Related Work

The IEEE Floating Point standard [46] was initially conceived as a standard

that helped minimize the danger of nonportable floating point implementations,

and now has incarnations in various higher-order logic specifications (e.g. [41]),

finding routine applications in formal proofs of modern microprocessor floating

point hardware circuits. Formal specifications using TLA+ include Lamport’s

Win32 Threads API specification [113] and the RPC Memory Problem specified

in TLA+ and formally verified in the Isabelle theorem prover by Lamport, Abadi,

and Merz [1]. In [49], Jackson presents a lightweight object modeling notation

called Alloy, which has tool support [50] in terms of formal analysis and testing

based on Boolean satisfiability methods. The approach taken in Alloy is extremely

63

complementary to what we have set out to achieve through our formal specifica-

tions. In particular, their specification of the Java Memory Model is indicative of

the expressiveness of Alloy. Abstract State Machines (ASMs) [6] have been used

for writing formal specifications of concurrent systems, for instance [55].

Bishop et al. [13, 14] formalized in the HOL theorem prover [44] three widely-

deployed implementations of the TCP protocol: FreeBSD 4.6-RELEASE, Linux

2.4.20-8, and Windows XP Professional SP1. Analogous to our work, the speci-

fication of the interactions between objects are modeled as transition rules. The

fact that implementations other than the standard itself are specified requires

repeating the same work for different implementations. They perform a vast

number of conformance tests to validate the specification. Test programs in a

concrete implementation are instrumented and executed to generate execution

trances, each of which is then symbolically executed with respect to the formal

operational semantics. Constraint solving is used to handle nondeterminism in

picking rules or determining possible values in a rule. We also rely on testing for

validation check. As it is the standard that we formalize, we need to write all the

test cases by hand.

Norrish [84] formalized in HOL [44] a structural operational semantics and a

type system of the majority of the C language, covering the dynamic behavior of

C programs. Semantics of expressions, statements, and declarations are modeled

as transition relations. The soundness of the semantics and the type system is

proved formally. In addition, a set of Hoare rules are derived from the operational

semantics to assist property verification. In contrast, our specification defines

the semantics in a more declarative style and does not encode the correctness

requirement into a type system.

Two other related works in terms of writing executable specifications are the

Symbolic Analysis Laboratory (SAL) approach [100] and the use of the Maude

rewrite technology [70]. The use of these frameworks may allow us to employ

alternative reasoning techniques: using decision procedures (in case of SAL), and

using term rewriting (in case of Maude). These will be considered during our

future work.

Georgelin and Pierre [34] specify some of the MPI functions in LOTOS [27].

Siegel and Avrunin [104] describe a finite state model of a limited number of

MPI point-to-point operations. This finite state model is embedded in the SPIN

64

model checker [45]. They [105] also support a limited partial-order reduction

method – one that handles wild-card communications in a restricted manner, as

detailed in [87]. Siegel [103] models additional ‘nonblocking’ MPI primitives in

Promela. None of these efforts: (i) approach the number of MPI functions we

handle, (ii) have the same style of high-level specifications (TLA+ is much closer

to mathematical logic than finite-state Promela or LOTOS models), (iii) have

a model extraction framework starting from C/MPI programs, and (iv) have a

practical way of displaying error traces in the user’s C code.

5.2 Specification

TLA+ provides built-in support for sets, functions, records, strings, and se-

quences. To model MPI objects, we extend the TLA+ library by defining advanced

data structures including maps and ordered sets (oset). For instance, MPI groups

and I/O files are represented by ordered sets.

The approximate sizes (excluding comments and blank lines) of the major

parts in the current specification are shown in Table 5.1, where #funcs and

#lines give the number of MPI primitives and code lines, respectively. We do

not model functions whose behavior depends on the underlying operating system.

For deprecated items, we only model their replacement.

5.2.1 Data Structures

The data structures modeling explicit and opaque MPI objects are shown in

Figure 5.1. Each process contains a set of local objects such as the local memory

Table 5.1: Size of the MPI 2.0 specification (excluding comments and blank
lines).

Main Module #funcs(#lines)

Point-to-point Communication 35(800)
Userdefined Datatype 27(500)
Group and Communicator Management 34(650)
Intracollective Communication 16(500)
Topology 18(250)
Environment Management in MPI 1.1 10(200)
Process Management 10(250)
One-sided Communication 15(550)
Intercollective Communication 14(350)
I/O 50(1100)
Interface and Environment in MPI 2.0 35(800)

65

Figure 5.1: MPI objects and their interaction

object mems. Multiple processes coordinate with each other through shared objects

rendezvous, wins, and so on. The message passing procedure is simulated by the

MPI system scheduler (MSS), which matches requests at origins and destinations

and performs message passing. MPI primitive calls at different processes make

transitions nondeterministically.

Request object reqs is used in point-to-point communications. A similar file

request object freqs is for parallel I/O communications. Objects groups and

comms model the groups and (intra- or inter-) communicators, respectively. In

addition to the group, a communicator also includes virtual topology and other

attributes. Objects rendezvous and frend objects are for collective communica-

tions and shared file operations, respectively. Objects epos and wins are used in

one-sided communications.

Other MPI objects are represented as components in a shared environment

shared envs and local environments envs. The underlying operating system is

abstracted as os in a limited sense, which includes the objects visible to the MPI

system such as physical files on the disk. We define a separate object mems for the

physical memory at processes.

5.2.2 Notations

Our presentation uses notations extended and abstracted from TLA+. The

basic concept in TLA+ is functions. We write f [v] for the value of function f

applied to v; this value is specified only if v is in f ’s domain DOM f . Notation

[(rendezvo~ (frend) (wins) (files) (shared envs)

process~ p~
(datatypes) (envs) (datatypes) (envs)

(groups) 0 (groups) 0
(mems)

...
(mems)

.

: (reqs) (freqs)(eps): : (reqs) (freqs) (~):
. '.

(MPI System Scheduler)

66

[S → T] specifies the set of all functions f such that DOM f = S and f [v] ∈ T for

all v ∈ S. For example [int→ nat] denotes all functions from integers to natural

numbers. This notation is usually used to specify the type of a function.

Functions may be described explicitly with the construct [x ∈ S 7→ e] such

that f [x] = e for x ∈ S. For example, the function fdouble that doubles input

natural numbers can be specified as [x ∈ nat 7→ 2x]. Obviously, fdouble[1] = 2 and

fdouble[4] = 8. Notation [f EXCEPT ![e1] = e2] defines a function f ′ such that f ′ is

the same as f except f ′[e1] = e2. An @ appearing in e2 represents the old value

of f [e1]. For example, [fdouble EXCEPT ![3] = @ + 10] is the same as fdouble except

that it returns 16 for input 3.

Tuples, arrays, records, sequences, and ordered sets are special functions with

finite domains. They differ mainly in the operators defined over these data

structures. An n-tuple is written as 〈e1, . . . , en〉, which defines a function f with

domain {1, . . . , n} such that f [i] = ei for 1 ≤ i ≤ n. Its ith component is given

by 〈e1, . . . , en〉[i]. An array resembles a tuple except that its index starts from 0

rather than 1 so as to conform to the convention of the C language. Records can be

written explicitly as [h1 7→ e1, . . . , hn 7→ en], which is actually a function mapping

field hi to value ei. For instance tuple 〈1, 4, 9〉, record [1 7→ 1, 2 7→ 4, 3 7→ 9],

and function [x ∈ {1, 2, 3} 7→ x2] are equivalent. Similar to function update,

[r EXCEPT !.h = e] represents a record r′ such that r′ is the same as r except

r′.h = e, where r.h returns the h-field of record r.

A (finite) sequence is represented as a tuple. Operators are provided to obtain

the head or tail elements, append elements, concatenate two sequences, and so on.

An ordered set is analogous to a usual set except it consists of distinct elements.

It may be interpreted as a function too: its domain is [0, n − 1] where n is the

number of elements (i.e. the cardinality), and its range contains all the elements.

The basic temporal logic operator used to define transition relations is the next

state operator, denoted using ′ or prime. For example, s′ = [s EXCEPT ![x] = e]

indicates that the next state s′ is equal to the original state s except that x’s value

is changed to e.

For illustration, consider a stop watch that displays hour and minute. A typical

behavior of the clock is a sequence [hr 7→ 0,mnt 7→ 0], [hr 7→ 0,mnt 7→ 1], . . . , [hr 7→

0,mnt 7→ 59], [hr 7→ 1,mnt 7→ 0], . . ., where [hr 7→ i,mnt 7→ j] is a state with hour i

and minute j. Its next-state relation is a formula expressing the relation between

67

the values of hr and mnt. It asserts that mnt equals mnt+ 1 if mnt 6= 59. When

mnt is 59, mnt is reset to 0, and hr increased by 1.

time′ = let c = (time[mnt] 6= 59) in
[time EXCEPT ![mnt] =
if c then @ + 1 else 0, ![hr] = if ¬c then @ + 1 else @]

To make the specification succinct, we introduce some other commonly used

notations. Note that > and ⊥ denote Boolean value true and false, respectively;

and ε and α denote the null value and an arbitrary value, respectively. Notation

Γ1 � xk � Γ2 specifies a queue where x is the kth element, Γ1 contains the elements

before x, and Γ2 contains the elements after x. When it appears in the precondition

of a transition rule, it should be interpreted in a pattern-matching manner such

that Γ1 returns the first k − 1 elements, x is the kth element, and Γ2 returns the

rest elements.

Γ1 � Γ2 the concatenation of queue Γ1 and Γ2

Γ1 � xk � Γ2 the queue with x being the kth element
Γ1 v Γ2 Γ1 is a sub-queue (sub-array) of Γ2

>,⊥, ε and α true, false, null value and arbitrary value
f1 = f] (x, v) DOM(f1) = DOM(f) ∪ {x} ∧ x /∈ DOM(f) ∧ f1[x] = v

∧ ∀y ∈ DOM(f) : f1[y] = f [y]
f |x the index of element x in function f, i .e. f [f |x] = x
c ? e1 : e2 An abbreviation for if c then e1 else e2
size(f) or |f | the number of elements in function f

Similar to the separating operator ∗ in separation logic [95], operator] divides

a function into two parts with disjoint domains. For example, function [x ∈

{1, 2, 3} 7→ x2] can be written as [x ∈ {1, 2} 7→ x2]] (3, 9) or [x ∈ {1, 3} 7→ x2]] (2, 4).

This operator is especially useful when representing the content of a function.

TLA+ allows the specification of MPI primitives in a declarative style. For

illustration we show below a helper (auxiliary) function used to implement the

MPI COMM SPLIT primitive, where group is an ordered set of processes, colors and

keys are arrays. Here, DOM, RNG, CARD return the domain, range, and cardinality of

an ordered set, respectively. This code directly formalizes the English description

(see page 147 in [111]): “This function partitions the group into disjoint subgroups,

one for each value of color. Each subgroup contains all processes of the same

color. Within each subgroup, the processes are ranked in the order defined by

68

key, with ties broken according to their rank in the old group. When the process

supplies the color value MPI UNDEFINED, a null communicator is returned.” In

contrast, it is impossible to write such declarative specification in the C language.

Comm split(group, colors, keys, proc)
.
=

1 : let rank = group|proc in
2 : if (colors[rank] = MPI UNDEFINED) then MPI GROUP NULL

3 : else

4 : let same colors = {k ∈ DOM(group) : colors[k] = colors[rank]} in
5 : let sorted same colors =
6 : choose g ∈ [DOM(same colors)→ RNG(same colors)] :
7 : ∧ RNG(g) = same colors
8 : ∧ ∀i, j ∈ same colors : g|i < g|j ⇒
9 : (keys[i] < keys[j] ∨ (keys[i] = keys[j] ∧ i < j))
10 : in [i ∈ DOM(sorted same colors) 7→ group[sorted same colors[i]]]

After collecting the color and key information from all other processes, a

process proc calls this function to create the group of a new communicator. Line

1 calculates proc’s rank in the group; line 4 obtains an ordered set of the ranks

of all the processes with the same color as proc; lines 5-9 sort this rank set in the

ascending order of keys, with ties broken according to the ranks. Specifically, lines

6-7 pick an ordered set g with the same domain and range as same colors; lines

8-9 indicates that, in g, rank i shall appear before rank j (i.e. g|i < g|j) if the key

at i is less than that at j. This specification may be a little tricky as we need

to map a process to its rank before accessing its color and key. This merits our

formalization which explicitly describes all the details. For illustration, suppose

group = 〈2, 5, 1〉, colors = 〈1, 0, 0〉, and keys = 〈0, 2, 1〉, then the call of this

function at process 5 creates a new group 〈1, 5〉.

5.2.2.1 Operational Semantics

The formal semantics of an MPI primitive is modeled by a state transition. A

system state consists of explicit and opaque objects mentioned in 5.2.1. An object

may involve multiple processes; we write objp for the object obj at process p. For

example, reqsp refers to the request object (for point-to-point communications)

at process p.

We use notation $ to define the semantics of an MPI primitive, and
.
= to

introduce a helper function. The precondition cond of a transition, if exists,

is specified by “requires {cond}.” An error is reported if this precondition is

69

violated. The body of a transition is expressed by a rule of format guard
action

, where

guard specifies the requirement for the transition to be triggered, and action

defines how the MPI objects are updated after the transition. When the guard

is satisfied, the action is enabled and may be performed. Otherwise, the rule is

blocked and the action will be delayed. A true guard will be omitted, meaning

that the transition is always enabled.

For instance, the semantics of MPI Buffer detach is shown below. A buffer

object contains several fields: buff and size record the start address in the

memory and the size, respectively; capacity and max capacity record the available

space and maximum space, respectively. The values of these fields are set when

the buffer is created. The precondition of the MPI Buffer detach rule enforces

that process p’s buffer must exist; the guard indicates that the transition will

block until all messages in the buffer have been transmitted (i.e. the entire space

is available); the action is to write the buffer address and the buffer size into p’s

local memory, and deallocate the space occupied by the buffer.

MPI Buffer detach(buff, size, p) $
requires {bufferp 6= ε}

bufferp.capacity = bufferp.max capacity
mems′p = [memsp EXCEPT ![buff] = bufferp.buff, ![size] = bufferp.size] ∧ buffer′p = ε

It may be desirable to specify only the objects and components that are affected

by the transition such that those not appeared in the action are assumed to be

unchanged. Thus, the action of the above rule can be written as follows. We will

use this lighter notation throughout the rest of Section 5.2.

mems′p[buff] = bufferp.buff ∧ mems′p[size] = bufferp.size ∧ buffer′p = ε

5.2.3 Quick Overview of the Methodology

We first give a simple example to illustrate how MPI programs and MPI

primitives are modeled. Consider the following program involving two processes:

P0 : MPI Send(bufs, 2, MPI INT, 1, 10, MPI COMM WORLD)
MPI Bcast(bufb, 1, MPI FLOAT, 0, MPI COMM WORLD)

P1 : MPI Recv(bufr, 2, MPI INT, 0, MPI ANY TAG, MPI COMM WORLD)
MPI Bcast(bufb, 1, MPI FLOAT, 0, MPI COMM WORLD)

70

This program is converted by our compiler into the following TLA+ code

(i.e. the model of this program), where the TLA+ code of MPI primitives will be

presented in subsequent sections. An extra parameter is added to an MPI primitive

to specify the process it belongs to. In essence, a program model is a transition

system consisting of transition rules. When the guard of a rule is satisfied, this

rule is enabled and ready for execution. Multiple enabled rules are executed in a

nondeterministic manner. The control flow of a program at process p is represented

by the pc values: pc[p] stores the current values of the program pointer. The pc

values are integer-value labels such as L1, L2, and so forth. A blocking call is

modeled by its nonblocking version followed by a wait operation, e.g. MPI Send $

(MPI Isend; MPI Wait). The compiler treats request0 and status0 as references

to memory locations. For example, suppose reference request0 has address 5, then

the value it points to is memsp[request0] (i.e. memsp[5]). As all variables in the source

C program are mapped to memory locations.

p0’s transition rules

∨ ∧ pc[0] = L1 ∧ pc′[0] = L2

∧ MPI Isend(bufs, 2, MPI INT, 1, 10, MPI COMM WORLD, request0, 0)
∨ ∧ pc[0] = L2 ∧ pc′[0] = L3 ∧ MPI Wait(request0, status0, 0)
∨ ∧ pc[0] = L3 ∧ pc′[0] = L4 ∧ MPI Bcastinit(bufb, 1, MPI FLOAT, 0, MPI COMM WORLD, 0)
∨ ∧ pc[pid] = L4 ∧ pc′[0] = L5 ∧ MPI Bcastwait(bufb, 1, MPI FLOAT, 0, MPI COMM WORLD, 0)

p1’s transition rules

∨ ∧ pc[1] = L1 ∧ pc′[1] = L2

∧ MPI Irecv(bufr, 2, MPI INT, 0, MPI ANY TAG, MPI COMM WORLD, request1, 1)
∨ ∧ pc[1] = L2 ∧ pc′[1] = L3 ∧ MPI Wait(request1, status1, 1)
∨ ∧ pc[1] = L3 ∧ pc′[1] = L4 ∧ MPI Bcastinit(bufb, 1, MPI FLOAT, 0, MPI COMM WORLD, 1)
∨ ∧ pc[1] = L4 ∧ pc′[1] = L5 ∧ MPI Bcastwait(bufb, 1, MPI FLOAT, 0, MPI COMM WORLD, 1)

An enabled rule may be executed at any time. Suppose the program pointer

of process p0 is L1, then the MPI Isend rule may be executed, modifying the

program pointer to L2. As indicated below, it creates a new send request of format

〈destination, communicator id, tag, value〉request id, and appends it to p0’s request

queue reqs0. Value v is obtained by read data(mems0, bufs, 2,MPI INT), which

reads from the memory two consecutive integers starting from address bufs.

process p0 process p1

reqs . . . � 〈1, cid, 10, v〉request0 . . .

Similarly, when the MPI Irecv rule at process p1 is executed, a new receive

request of format 〈buffer, source, communicator id, tag, 〉request id is appended to

71

reqs1, where indicates that the data value is yet to be received.

p0 p1

reqs . . . � 〈1, cid, 10, v〉request0 . . . � 〈bufr, 0, cid,ANY TAG, 〉request1

The MPI System Scheduler matches the send request and the receive request,

and transfers the data value v from p0 to p1. After the transferring, the value

fields in the send and receive requests become and v, respectively.

p0 p1

reqs . . . � 〈1, cid, 10, 〉request0 . . . � 〈bufr, 0, cid,ANY TAG, v〉request1

If the send is not buffered at p0, then the MPI Wait call will be blocked until

the data v is sent. After that, the send request is removed from the queue.

Analogously, the MPI Wait rule at p1 is blocked until the incoming value arrives.

Then, v is written into p1’s local memory and this request is removed.

p0 p1

reqs

In our formalization, each process divides a collective primitive call into two

phases: an “init” phase that initializes the call, and a “wait” phase that syn-

chronizes the communication with other processes. Processes synchronize with

each other through the rendezvous (or rend for short) object which records

the status of the communication (denoted by Ψ) and the data sent by the pro-

cesses (denoted by Sv). For a communicator with context ID cid, there exists

an individual rendezvous object rend[cid]. In the “init” phase, process pi is

able to proceed only if it is not in the domain the status component (i.e. pi is

not participating the communication). It updates its status to “e” (“entered”)

and stores its data in the rendezvous. In the given example, after the “init”

phases of the broadcast at process 0 and 1 are over, the rendezvous pertaining to

communicator MPI COMM WORLD becomes 〈[0 7→ “e”, 1 7→ “e”], [0 7→ val]〉, where

val = read data(mems0, bufb, 1, MPI FLOAT).

syninit(cid, val, pi)
.
= process pi joins the communication and stores data v in rend

pi /∈ DOM(Ψ)

rend′[cid] = 〈Ψ] (pi, “e”), Sv] (pi, val)〉

72

In the “wait” phase, if the communication is synchronizing, then process pi has

to wait until all other processes finish their “init” phases. If pi is the last process

that leaves the communication, then the rend object will be deleted; otherwise,

pi just updates its status to “l” (“left”).

before wait after wait
Ψ Ψ

rend[cid]
“l” . . . “l” “e” “l” . . . “l”

p1 . . . pi−1 pi pi+1 . . . pn

synwait(cid, pi)
.
= process p leaves the synchronizaing communication

rend[cid] = 〈Ψ] (pi, “e”), Sv〉 ∧ ∀k ∈ commspi [cid].group : k ∈ DOM(Ψ)

rend′[cid] = if ∀k ∈ commspi [cid].group : Ψ[k] = “l”
then ε else 〈Ψ] (pi, “l”), Sv〉

These simplified rules illustrate how MPI point-to-point and collective com-

munications are modeled. The standard rules are given in Section 5.2.4 and 5.2.5.

5.2.4 Point-to-point Communication

The semantics of core point-to-point communication primitives are shown in

Figures 5.2, 5.3 and 5.4. Figure 5.5 gives an example illustrating the “execution”

of point-to-point communication primitives. Readers should refer to the semantics

when reading through this section.

New send and receive requests are appended to the request queues. A send

request contains information about the destination process (dst), the context ID

of the communicator (cid), the tag to be matched (tag), the data value to be

send (value), and the status (omitted here) of the message. This request also

includes Boolean flags indicating whether the request is persistent, active, live,

canceled, and deallocated or not. For brevity, we do not show the last three flags

when presenting the content of a request in the queue. In addition, in order to

model the ready send, we include in the send request a field prematch of format

〈destination, request index〉 which points to the receive request matching this

send request. A receive request contains similar fields plus the buffer address and

a field to store the incoming data. Initially, the data value is missing (represented

by the “ ” in the data field); an incoming message from a sender will replace the

“ ” with the data it carries. Notation v denotes either data value v arrives or

the data is still missing. For example, 〈buf, 0, 10, ∗, ,>,>, 〈0, 5〉〉recv2 is a receive

73

Data Structures

send request : important fields + less important fields

〈dst : int, cid : int, tag : int, value, pr : bool, active : bool, prematch〉mode +
〈cancelled : bool, dealloc : bool, live : bool〉

recv request : important fields + less important fields

〈buf : int, src : int, cid : int, tag : int, value, pr : bool, active : bool, prematch〉recv
+ 〈cancelled : bool, dealloc : bool, live : bool〉

ibsend(v, dst, cid, tag, p) $ buffer send

requires {size(v) ≤ bufferp.vacancy} check buffer availability

reqs′p = reqsp � 〈dst, cid, tag, v,⊥,>, ε〉bsend ∧ append a new send request

buffer′p.vacancy = bufferp.vacancy − size(v) allocate buffer space

(〈p, dst, tagp, ωp, kp〉 P 〈src, q, tagq, ωq, kq〉)
.
= match send and receive requests

if ωp = ε ∧ ωq = ε then tagq ∈ {tagp, ANY TAG} ∧ q = dst ∧ src ∈ {p, ANY SOURCE}
else ωp = 〈q, kq〉 ∧ ωq = 〈p, kp〉 prematched requests

irsend(v, dst, cid, tag, p) $ ready send

requires { ∃q : ∃〈src, cid, tag1, , pr1,>, ε〉recvk ∈ reqsq :
〈p, dst, tag, ε, size(reqsp)〉 P 〈src, q, tag1, ε, k〉

} a matching recv exists?

reqs′p = reqsp � 〈dst, cid, tag, v,⊥,>, 〈q, k〉〉rsend ∧ reqs′q.ω = 〈p, size(reqsp)〉

isend $ if use buffer then ibsend else issend standard mode send

irecv(buf, src, cid, tag, p) $ reqs′p = reqsp � 〈buf, src, cid, tag, ,⊥,>, ε〉recv

MPI Isend(buf, count, dtype, dest, tag, comm, request, p) $ standard immediate send

let cm = commsp[comm] in the communicator
∧ isend(read data(memsp, buf, count, dtype), cm.group[dest], cm.cid, tag, p)

∧ mems′p[request] = size(reqsp) set the request handle

MPI Irecv(buf, count, dtype, source, tag, comm, request, p) $ immediate receive

let cm = commsp[comm] in the communicator
irecv(buf, cm.group[dest], cm.cid, tag, p) ∧ mems′p[request] = size(reqsp)

wait one(request, status, p)
.
= wait for one request to complete

if reqsp[memsp[request]].mode = recv

then recv wait(request) for receive request

else send wait(request) for send request

MPI Wait(request, status, p) $ the top level wait function

if memsp[request] 6= REQUEST NULL then wait one(request, status, p)

else mems′p[status] = empty status the handle is null, return an empty status

Figure 5.2: Modeling point-to-point communications (I)

74

transfer(p, q) $ message transferring from process p to process q

∧ reqsp = Γp1 � 〈dst, cid, tagp, v, prp,>, ωp〉sendi � Γp2
∧ reqsq = Γq1 � 〈buf, src, cid, tagq, , prq,>, ωq〉recvj � Γq2 ∧
∧ match the requests in a FIFO manner

〈p, dst, tagp, ωp, i〉 P 〈src, q, tagq, ωq, j〉 ∧
@〈dst, cid, tag1, v, pr1,>, ω1〉sendm ∈ Γp1 :
@〈buf, src2, cid, tag2, , pr2,>, ω2〉recvn ∈ Γq1 :
∨ 〈p, dst, tag1, ω1,m〉 P 〈src, q, tagq, ωq, j〉
∨ 〈p, dst, tagp, ωp, i〉 P 〈src2, q, tag2, ω2, n〉
∨ 〈p, dst, tag1, ω1,m〉 P 〈src2, q, tag2, ω2, n〉

∧ reqs′p = send the data
let b = reqsp[i].live in
if ¬b ∧ ¬reqsp[i].pr then Γp1 � Γp2
else Γp1 � 〈dst, cid, tagp, , prp, b, ωp〉send � Γp2

∧ reqs′q = receive the data
let b = reqsq[j].live in
if ¬b ∧ ¬reqsq[j].pr then Γq1 � Γq2
else Γq1 � 〈buf, p, cid, tagq, v, prq, b, ωq〉recv � Γq2

∧ ¬reqsq[j].live⇒ mems′q[buf] = v write the data into memory

recv wait(request, status, p) $ wait for a receive request to complete

let req index = memsp[request] in

∧ reqs′p[req index].live = ⊥ indicate the wait has been called
∧
∨ (¬reqsp[req index].active⇒ mems′p[status] = empty status)

∨ the request is still active

let Γ1 � 〈buf, src, cid, tag, v , pr,>, ω〉recvreq index � Γ2 = reqsq in

let b = pr ∧ ¬reqsp[req index].dealloc in
let new reqs =

if b then Γ1 � 〈buf, src, cid, tag, v , pr,⊥, ω〉recv � Γ2 deactivate the request

else Γ1 � Γ2 remove the request

in

let new req index = if b then req index else REQUEST NULL in handle update

if reqsq[req index].cancelled then
mems′p[status] = get status(reqsp[req index]) ∧
reqs′p = new reqs ∧ mems′p[request] = new req index

else if src = PROC NULL then

mems′p[status] = null status ∧ reqs′p = new reqs ∧
mems′p[request] = new req index

else

v 6=
mems′p[status] = get status(reqsp[req index]) ∧ mems′p[buf] = v ∧
reqs′p = new reqs ∧ mems′p[request] = new req index

Figure 5.3: Modeling point-to-point communications (II)

75

send wait(request, status, p) $ wait for a receive request to complete

let req index = memsp[request] in

∧ reqs′p[req index].live = ⊥ indicate the wait has been called
∧
∨ (¬reqsp[req index].active⇒ mems′p[status] = empty status)

∨ the request is still active

let Γ1 � 〈dst, cid, tag, v , pr,>, ω〉modereq index � Γ2 = reqsq in

let b = pr ∧ ¬reqsp[req index].dealloc ∨ v 6= in

let new reqs =

if ¬b then Γ1 � Γ2 remove the request

else Γ1 � 〈buf, src, cid, tag, v , pr,⊥, ω〉recv � Γ2 deactive the request

in

let new req index = if b then req index else REQUEST NULL in

let action = update the queue, the status and the request handle

∧ mems′p[status] = get status(reqsp[req index])
∧ reqs′p = new reqs ∧ mems′p[request] = new req index

in

if reqsq[req index].cancelled then action
else if dst = PROC NULL then mems′p[status] = null status ∧

reqs′p = new reqs ∧ mems′p[request] = new req index

else if mode = ssend then synchronous send requires a matching receive

∃q : ∃〈src1, cid, tag1, , pr1,>, ω1〉recvk ∈ Γ1 : 〈dst, p, tag, ω, req〉 P 〈src1, q, tag1, ω1, k〉
action

else if mode = bsend then
action ∧ buffer′.capacity = buffer.capacity − size(v)

else if no buffer is used then wait until the value is sent
¬use buffer ⇒ (v =)

action

has completed(req index, p)
.
= whether a request has completed

∨ ∃〈buf, src, cid, tag, v, pr,>, ω〉recv = reqsp[req index] the data v have arrived

∨ ∃〈dst, cid, tag, v , pr,>, ω〉mode = reqsp[req index] :

∨ mode = bsend the data are buffered

∨ mode = rsend ∧ (use buffer ∨ (v =)) the data is out

∨ mode = ssend ∧ there must exist a matching receive

∃q : ∃〈buf1, src1, cid, tag1, , pr1,>, ω1〉recvk ∈ reqsq :
〈dst, p, tag, ω, req〉 P 〈src1, q, tag1, ω1, k〉

wait any(count, reqarray, index, status, p) $ wait for any request in reqarray

if ∀i ∈ 0 .. count− 1 : reqarray[i] = REQUEST NULL ∨ ¬reqsp[reqarray[i]].active
then mems′p[index] = UNDEFINED ∧ mems′p[status] = empty status

else
∃ i : has completed(reqarray[i], p)

mems′p[index] = choose i : has completed(reqarray[i], p) ∧
mems′p[status] = get status(reqsp[reqarray[i]])

Figure 5.4: Modeling point-to-point communications (III)

76

MPI calls at processes p0, p1 and p2:

p0 p1 p2
Issend(v1, dst = 1, cid = 5, Irecv(b, src = 0, cid = 5, Irecv(b, src = ∗, cid = 5,

tag = 0, req = 0) tag = ∗, req = 0) tag = ∗, req = 0)
Irsend(v2, dst = 2, cid = 5, Wait(req = 0) Wait(req = 0)

tag = 0, req = 1)
Wait(req = 0)
Wait(req = 1)

Execution states at processes p0, p1 and p2:

step reqs0 reqs1 reqs2
1 〈1, 5, 0, v1,⊥,>, ε〉ss0
2 〈1, 5, 0, v1,⊥,>, ε〉ss0 〈b, 0, 5, ∗, ,⊥,>, ε〉
3 〈1, 5, 0, v1,⊥,>, ε〉ss0 〈b, 0, 5, ∗, ,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, ,⊥,>, ε〉rc0
4 〈1, 5, 0, v1,⊥,>, ε〉ss0 � 〈b, 0, 5, ∗, ,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, ,⊥,>, 〈0, 1〉〉rc0

〈2, 5, 0, v2,⊥,>, 〈2, 0〉〉rs1
5 〈1, 5, 0, ,⊥,>, ε〉ss0 � 〈b, 0, 5, ∗, v1,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, ,⊥,>, 〈0, 1〉〉rc0

〈2, 5, 0, v2,⊥,>, 〈2, 0〉〉rs1
6 〈2, 5, 0, v2,⊥,>, 〈2, 0〉〉rs1 〈b, 0, 5, ∗, v1,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, ,⊥,>, 〈0, 1〉〉rc0
7 〈2, 5, 0, ,⊥,>, 〈2, 0〉〉rs1 〈b, 0, 5, ∗, v1,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, v2,⊥,>, 〈0, 1〉〉rc0
8 〈b, 0, 5, ∗, v1,⊥,>, ε〉rc0 〈b, ∗, 5, ∗, v2,⊥,>, 〈0, 1〉〉rc0
9 〈b, 0, 5, ∗, v1,⊥,>, ε〉rc0
10

The execution order:

1 : issend(v1, 1, 5, 0, p0) 2 : irecv(b, 0, 5, ∗, p1)
3 : irecv(b, ∗, 5, ∗, p2) 4 : irsend(v2, 2, 5, 0, p0)
5 : transfer(p0, p1) 6 : wait(0, p0)
7 : transfer(p0, p2) 8 : wait(1, p0)
9 : wait(0, p2) 10 : wait(0, p1)

Figure 5.5: A point-to-point communication program and one of its possible
executions.
Process p0 sends messages to p1 and p2 in synchronous send mode and ready send
mode, respectively. The scheduler first forwards the message to p1, then to p2. A
request is deallocated after the wait call on it. Superscripts ss, rs, and rc represent
ssend, rsend, and recv, respectively. The execution follows from the semantics
shown in Figures 5.2, 5.3, and 5.4.

77

in the request queue is 2.

MPI offers four send modes. A standard send may or may not buffer the outgo-

ing message (represented by a global flag use buffer). If buffer space is available,

then it behaves the same as a send in the buffered mode; otherwise, it acts as a

synchronous send. We show below the specification of MPI IBsend. As dtype and

comm are the references (pointers) to datatype and communicator objects, their

values are obtained by datatypesp[dtype] and commsp[comm]. Helper function

ibsend creates a new send request, appends it to p’s request queue, and puts the

data in p’s send buffer bufferp. The request handle points to the last request in

the queue.

MPI IBsend(buf, count, dtype, dest, tag, comm, request, p) $ top level definition

let cm = commsp[comm] in the communicator
∧ ibsend(read data(memsp, buf, count, datatypesp[dtype]), cm.group[dest], cm.cid, tag, p)

∧ mems′p[request] = size(reqsp) set the request handle

MPI Recv is specified in a similar way. The MPI System Scheduler transfers

values from a send request to its matching receive request. Relation P defines the

meaning of matching. Two cases are considered:

• The send is in ready mode. When a send request reqs is added into the

queue, it is prematched to a receive request reqr such that the prematch field

(abbreviated as ω) of reqs stores the tuple 〈destination process, destination

request index 〉, and reqr’s prematch field stores the tuple 〈source process,

source request index 〉. reqs and reqr match iff these two tuples match.

• The send is in other modes. The send request and receive request are

matched if relevant information (e.g. source, destination, context ID and tag)

matches. The source and tag in the receive request may be MPI ANY SOURCE

and MPI ANY TAG, respectively.

It is the transfer rule (see Figure 5.3) that models message passing. Messages

from the same source to the same destination must be matched in a FIFO order:

only the first send request in the send queue and the first matching receive request

in the receive queue will participate in the transferring. The FIFO requirement is

enforced by the following predicate which indicates that there exist no prior send

requests and prior receive requests that match.

78

@〈dst, cid, tag1, v, pr1,>, ω1〉sendm ∈ Γp1 : @〈buf, src2, cid, tag2, , pr2,>, ω2〉recvn ∈ Γq1 :
∨ 〈p, dst, tag1, ω1,m〉 P 〈src, q, tagq, ωq, j〉 ∨ 〈p, dst, tagp, ωp, i〉 P 〈src2, q, tag2, ω2, n〉
∨ 〈p, dst, tag1, ω1,m〉 P 〈src2, q, tag2, ω2, n〉

When the transfer is done, the value field in the receive request reqj is filled

with the incoming value v, and that in the send request reqi becomes to indicate

that the value has been sent out. If the request is not persistent and not live (i.e.

the corresponding MPI Wait has been called), then it will be removed from the

request queue.

The MPI Wait call returns when the operation associated with request request

is complete. If request is a null handle, then an empty status is returned; other-

wise, the helper function wait one is invoked to pick the appropriate wait function

according to the request’s type.

Let us look closer at the definition of recv wait (see Figure 5.3). First of all,

after the call, the request is not “live” any more; thus, the live flag becomes false.

When the call is made with an inactive request, it returns immediately with an

empty status. If the request is persistent and not marked for deallocation, then the

request becomes inactive after the call; otherwise, it is removed from the request

queue and the corresponding request handle is set to MPI REQUEST NULL.

If the request has been marked for cancellation, then the call completes without

writing the data into memory. If the source process is a null process, then the

call returns immediately with a null status where source = MPI PROC NULL, tag =

MPI ANY TAG, and count = 0. Finally, if the value has been received (i.e. v 6=),

then the value v is written to process p’s local memory and the status object is

updated accordingly.

The completion of a request is modeled by the has completed predicate. A

receive request completes when the value has been received. A send request in

the buffer mode completes when the value has been buffered or transferred. This

function is used to implement multiple communication primitives. For instance,

MPI Waitany blocks until one of the requests completes.

5.2.5 Collective Communication

Collective communications are based on a protocol shown in Figure 5.6. An

example illustrating the “execution” of these primitives is shown in Figure 5.7.

79

Data Structures

rendezvous for a communication :
〈status : [int→ {“e”, “l”}], sdata, data : [int→ value]〉 array

process p joins the communication and stores vs and v in the rendevous

synput(cid, vs, v, p)
.
=

if cid /∈ DOM rend then rend′[cid] = 〈[p 7→ “e”], vs, [p 7→ v]〉
else if ∀slot ∈ rend[cid] : p ∈ DOM (slot.status) then

rend′[cid] = rend[cid] � 〈[p 7→ “e”], vs, [p 7→ v]〉
else

rend[cid] = Γ1 � 〈Ψ, α, Sv〉 � Γ2 ∧ p /∈ DOM Ψ ∧ ∀slot ∈ Γ1 : p ∈ DOM (slot.status)

rend′[cid] = Γ1 � 〈Ψ] (p, “e”), vs, Sv] (p, v)〉 � Γ2

syninit(cid, p)
.
= syn put(cid, ε, ε, p) no data are stored

synwrite(cid, v, p)
.
= syn put(cid, ε, v, p) no shared data are stored

synwait(cid, p)
.
= process p leaves the synchronizaing communication

rend[cid] = Γ1 � 〈Ψ] (p, “e”), vs, Sv〉 � Γ2 ∧
∀k ∈ commsp[cid].group : k ∈ DOM Ψ ∧ ∀slot ∈ Γ1 : slot.status[p] 6= “e”

rend′[cid] = if ∀k ∈ commsp[cid].group : k ∈ DOM Ψ ∧Ψ[k] = “l” then Γ1 � Γ2

else Γ1 � 〈Ψ] (p, “l”), vs, Sv〉 � Γ2

asynwait(cid, p)
.
= process p leaves the nonsynchronizaing communication

rend[cid] = Γ1 � 〈Ψ] (p, “e”), vs, Sv〉 � Γ2 ∧ ∀slot ∈ Γ1 : slot.status[p] 6= “e”

rend′[cid] = if ∀k ∈ commsp[cid].group : k ∈ DOM Ψ ∧Ψ[k] = “l” then Γ1 � Γ2

else Γ1 � 〈Ψ] (p, “l”), vs, Sv〉 � Γ2

Figure 5.6: The basic protocol for collective communications

p0 p1 p2
synput(cid = 0, sdata = vs, data = v0) syninit(cid = 0) synwrite(cid = 0, data = v2)
asynwait(cid = 0) synwait(cid = 0) synwait(cid = 0)
syninit(cid = 0)

step event rend[0]
1 synput(0, vs, v0, p0) 〈[0 7→ “e”], vs, [0 7→ v0]〉
2 syninit(0, p1) 〈[0 7→ “e”, 1 7→ “e”], vs, [0 7→ v0]〉
3 asynwait(0, p0) 〈[0 7→ “l”, 1 7→ “e”], vs, [0 7→ v0]〉
4 syninit(0, p0) 〈[0 7→ “l”, 1 7→ “e”], vs, [0 7→ v0]〉 � 〈[0 7→ “e”], ε, ε〉
5 synwrite(0, v2, p2) 〈[0 7→ “l”, 1 7→ “e”, 2 7→ “e”], vs,

[0 7→ v0, 2 7→ v2]〉 � 〈[0 7→ “e”], ε, ε〉
6 synwait(0, p2) 〈[0 7→ “l”, 1 7→ “e”, 2 7→ “l”], vs,

[0 7→ v0, 2 7→ v2]〉 � 〈[0 7→ “e”], ε, ε〉
7 synwait(0, p1) 〈[0 7→ “e”], ε, ε〉

Figure 5.7: An example using the collective protocol (with cid = 0).

80

Processes participating in a collective communication coordinate with each

other through rendezvous objects. Each communicator with context id cid is

associated with object rend[cid], which consists of a sequence of communication

slots. In each slot, the status field records the status of each process: “e”

(“entered”) or “l” (“left”); the shared data field stores the data shared among

all processes; and data stores the data sent by each process. We use notation Ψ

to represent status’s content.

Many collective communications are synchronizing, while the rest (such as

MPI Bcast) can be either synchronizing or nonsynchronizing. A collective primi-

tive is implemented by a loose synchronization protocol: in the first “init” phase

synput, process p checks whether there exists a slot such that p has not participated

in. A negative answer means that p is initializing a new communication; thus, p

creates a new slot, sets its status to be ‘e’, and stores its value v in this slot. If

there are multiple slots that p has not joined into (i.e. p is not in the domains of

these slots), then p registers itself in the first one. This phase is the same for both

synchronizing and nonsynchronizing communications. Rules syninit and synwrite

are the simplified cases of synput.

After the “init” phase, process p proceeds to its “wait” phase. Among all the

slots, p locates the first one it has entered but not left. If the communication

is synchronizing, then p has to wait until all other processes finish their “init”

phases; otherwise, it proceeds. If p is the last process that leaves, then the entire

collective communication is over and the communication slot can be removed from

the queue; otherwise, p just updates its status to ‘left’.

These protocols are used to specify collective communication primitives. For

example, MPI Bcast is implemented by two transitions: MPI Bcastinit and MPI Bcastwait.

The root first sends its data to the rendezvous in MPI Bcastinit, then it calls

either the asynwait rule or the synwait rule depending on whether the primitive is

synchronizing. In the synchronizing case, the wait returns immediately without

waiting for the completion of other processes. On the other hand, a nonroot

process always calls the synwait rule because it must wait for the data from the

root to “reach” the rendezvous.

bcastinit(buf, v, root, comm, p) $ the root broadcasts data to processes

(comm.group[root] = p) ? synput(comm.cid, v, ε, p) : syninit(comm.cid, p)

81

bcastwait(buf, v, root, comm, p) $
if comm.group[root] = p then

need syn is a global flag whose value is set by the user

need syn ? synwait(comm.cid, p) : asynwait(comm.cid, p)
else synwait(comm.cid, p) ∧ mems′p[buf] = rendp[comm.cid].sdata

MPI-2 extends many MPI-1 collective primitives to intercommunicators. An

intercommunicator contains a local group and a remote group. To model this, we

replace commsp[cid].group with commsp[cid].group ∪ commsp[cid]. remote group in the

rules shown in Figure 5.6.

5.3 Evaluation and Program Verification

How to ensure that our formalization is faithful with the English description?

To attack this problem, we rely heavily on testing in our formal framework.

We provide comprehensive unit tests and a rich set of short litmus tests of the

specification. Generally it suffices to test local, collective, and asynchronous MPI

primitives on one, two, and three processes, respectively. These test cases, which

include many simple examples in the MPI reference, are hand-written directly in

TLA+ and modeled checked using TLC. Although typically, test cases are of only

dozens of lines of code, they are able to expose most of the formalization errors.

Another set of test cases are built to verify the self-consistency of the speci-

fication modeled after [116] where self-consistency rules are used as performance

guidelines. It is possible to relate aspects of MPI to each other, e.g. explain certain

MPI primitives in terms of other MPI primitives.

For example, a message of size k × n can be divided into k submessages sent

separately; a collective primitive can be replaced by the combination of several

point-to-point or one-sided primitives. We introduce relation MPI A ' MPI B to

indicate that A and B have the same functionality. This relation helps us to

design test cases to test the specification of some MPI primitives. To verify these

relations, we design test cases with concrete inputs and run the TLC to make

sure that the same outputs are obtained. We plan to prove them formally in the

Isabelle/TLA tool.

MPI A(k× n) ' (MPI A(n)1; · · · ; MPI A(n)k)
MPI A(k× n) ' (MPI A(k)1; · · · ; MPI A(k)n)

MPI Bcast(n) ' (MPI Send(n); · · · ; MPI Send(n))
MPI Gather(n) ' (MPI Recv(n/p)1; · · · ; MPI Recv(n/p)p)

82

It should be noted that we have not modeled all the details of the MPI standard,

which include:

• Implementation details. To the greatest extent, we have avoided asserting

implementation-specific details in our formal semantics. One obvious exam-

ple is the info object is ignored.

• Physical Hardware. The underlying physical hardware is invisible in our

model. Thus, we do not model hardware related primitives like MPI Cart map.

• Profiling Interface. The MPI profiling interface is to permit the implemen-

tation of profiling tools. It is irrelevant to the semantics of MPI primitives.

5.3.1 Issues Raised by Modeling

While creating the model, we become aware of some specific issues that have

not been discussed in the standard. For example, MPI Probe on process j be-

comes enabled when there is a matching request posted on process j; MPI Cancel

attempts to cancel the corresponding communication. The standard says the

message may still complete, and it is up to the user to program appropriately. In

this context, we identify some specific issues: (i) There are numerous ways that

MPI Probe and MPI Cancel can interact, resulting in an undefined system state.

In particular, any time a message is probed successfully, it is not specified whether

it is still possible for the message to be canceled or if the message must at that

point be delivered. (ii) MPI Cancel also creates an undefined state when used

with ready mode send. Consider an execution trace: MPI Irecv; MPI Irsend;

MPI Cancel; · · · . If the ready send is successful, can the receive still be canceled?

and (iii) Continuing with Cancel, what happens if the null request is canceled?

5.4 An Application: Soundness Proof

The main problem of model checking MPI programs is the state space explo-

sion problem. This problem may be mitigated by using partial order reduction

techniques. A sound partial order reduction guarantees that if there is a property

violation in the full state space, that violation will be discovered by the model

checker while enumerating a subset of the state space.

The Verification Group in Utah has developed several partial order reduction

(DPOR) algorithms [87,88,118] to model check MPI programs. For instance, the

83

ISP checker [118, 121] exploits the out-of-order completion semantics of MPI by

issuing MPI calls according to match-sets which are ample ‘big-step’ moves. The

core of a DPOR algorithm is to base on an dependence analysis to determine

when it is safe to execute only a subset of the enabled calls. Such dependence

information is computed based on the semantics of MPI calls. In this section, we

show how to justify the dependence definition in these DPOR algorithms.

The goal is to prove the soundness of the complete-before relation ≺ defined

in [118]. Relation ≺ specifies the order enforced on the completion of MPI calls.

An MPI immediate send Si,j(k, 〈i, j〉, . . .), where k is the process targeted, i, j

is the request handle used to track the processes of this send, completes when

it matches a receive (e.g. by the MPI System Scheduler). An MPI immediate

receive Si,j(k, 〈i, j〉, . . .), where k is the process from which the message is sent

(k = ∗ means a ‘wildcard receive’), completes when it receives the message. A

barrier operation Bi,j completes when all participants exit the synchronization. A

wait operation Wi,j〈i, j〉 completes when the corresponding send (receive) opera-

tion completes and the data has been sent out (copied into the target process’s

memory).

The formal definition of the completes-before relation is given as eight rules:

(Css-kk) ∀i, j1, j2, k : j1 < j2 ⇒ Si,j1(k, . . .) ≺ Si,j2(k, . . .)

(Crr-kk) ∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(k, . . .) ≺ Ri,j2(k, . . .)

(Crr-*k) ∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(∗, . . .) ≺ Ri,j2(k, . . .)

(Crr-**) ∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(∗, . . .) ≺ Ri,j2(∗, . . .)
(Csw) ∀i, j1, j2, k : j1 < j2 ⇒ Si,j1(k, 〈i, j1〉) ≺Wi,j2(〈i, j1〉)
(Crw) ∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(k, 〈i, j1〉) ≺Wi,j2(〈i, j1〉)
(Cb) ∀i, j1, j2, k : j1 < j2 ⇒ Bi,j1 ≺ anyi,j2(. . .)

(Cw) ∀i, j1, j2, k : j1 < j2 ⇒Wi,j1(. . .) ≺ anyi,j2(. . .)

Now, we proceed to prove the correctness of these rules with respect to our

formal semantics. As in [118], we abstract away such fields as communicator

ID, tag, prematch, value, and flags. First of all, rule Csw and rule Crw are valid

because a blocking send or receive operation is modeled by a nonblocking operation

followed by a wait operation. As indicated in the semantics, a nonblocking

operation sets the active flag of the request, and the corresponding wait operation

can return only if this flag is set. Hence, these two operations cannot execute out

of order.

84

5.4.1 Send and Receive

Consider the Css-kk rule, which specifies the order of two immediate sends

from process i to process k. Assume that the request queue at process i contains

two active send requests Si,j1(k, . . .) and Si,j2(k, . . .):

〈k, . . .〉sendj1
� 〈k, . . .〉sendj2

Suppose for contradiction that request j2 may complete before request j1. In

order for j2 to complete, there must exist a receive request 〈buf, i, . . .〉recvn at process

k that matches this send request, and the following condition specified in the

transfer rule must hold (note that the first request 〈k, . . .〉sendj1
is in Γi1):

@〈k, . . .〉sendm ∈ Γi1 : 〈i, k, . . . ,m〉 P 〈i, k, . . . , n〉

However, if m equals to j1, then this condition is false immediately because

request j1 matches the receive request. This contradiction implies the correctness

of rule Css-kk. Rule Crr-kk can be proved in a similar way.

Let us look at rule Crr-*k and rule Crr-**, where the first receive is a wildcard

receive. Assume that the request queue at process i contains two active receive

requests Ri,j1(∗, . . .) and Ri,j2(k∗, . . .). In the second receive, either k∗ = k (i.e.

the source is process k) or k∗ = ∗ (i.e. it is a wildcard receive):

〈buf1, ∗, . . .〉recvj1
� 〈buf2, k∗, . . .〉recvj2

If request j2 completes before request j1, then there must exist a send request

〈i, . . .〉sendn at a process p (which may be k) that matches this receive request, and

the FIFO condition in the transfer rule must hold. In other words, we have

〈p, i, . . . , n〉 P 〈k∗, i, . . . , j2〉 ∧
@〈buf, q, . . .〉recvm ∈ Γi1 : 〈p, i, . . . , n〉 P 〈q, i, . . . ,m〉

Letm equal to j1, then the second condition requires us to prove that 〈p, i, . . . , n〉 P

〈∗, i, . . . , j1〉 is false. Using the definition of P (where the prematch fields are

empty),

(〈p, dst, . . . , kp〉 P 〈src, q, . . . , kq〉)
.
=

q = dst ∧ src ∈ {p, ∗} the source and target must match

85

after simplification we have

k∗ ∈ {p, ∗} ∧ ¬(∗ ∈ {p, ∗}),

which is obviously false. Thus, request j2 cannot complete before j1, which implies

the correctness of these two rules.

On the other hand, the rule ∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1(k, . . .) ≺ Ri,j2(∗, . . .) is

invalid. If we perform the same contradiction proof as shown above, then finally,

we will get a predicate not leading to a contradiction: ∗ ∈ {p, ∗} ∧ ¬(k ∈ {p, ∗}).

This predicate is true when k 6= p, i.e. a process other than k sends the message.

5.4.2 Barrier

Rule Cb specifies that any MPI call starting after a barrier operation will

complete after the barrier. This rule is valid because the barrier function has

blocking semantics: the “wait” phase of a barrier operation Bi,j1 at process i will

be blocked until i leaves the synchronizing communication. Thus, only after Bi,j1

returns will a subsequent MPI call anyi,j2 start and then complete. Similarly, rule

Cw is valid because Wait also has blocking semantics.

On the other hand, the rule {∀i, j1, j2, k : j1 < j2 ⇒ anyi,j1(. . .) ≺ Bi,j2} is

invalid. This can be explained easily with the formal semantics. Recall that

Bi,j2 is implemented as Bi,j2 init followed by Bi,j2 wait. Suppose anyi,j1 is a send

operation, as the barrier and send operate on different MPI objects (i.e. rend

and reqs respectively), the Bi,j2 wait needs not to wait for the completion of the

send. Hence, the following sequence is possible, implying that sendi,j1(. . .) ≺ Bi,j2

is false.

sendi,j1 starts < Bi,j2 init < Bi,j2 wait < sendi,j1 completes

CHAPTER 6

VERIFYING PARALLEL PROGRAMS:

CUDA KERNELS

There is an explosive growth of interest in Graphical Processing Units (GPU)

for speeding up computations occurring at all application scales [30, 53]. GPUs

are used in iPhones for video processing, and on desktop computers for extracting

features from medical images. All future supercomputers will employ GPUs.

The main attraction of GPUs is that when properly programmed, they can yield

anywhere from 20 to 100 times more performance compared to standard CPU

based multicores. Unfortunately, obtaining this performance requires heroic acts

of programming; to name a few: (i) one must keep all the fine-grained GPU

threads busy; (ii) one must ensure coalesced [53] data movements from the global

memory (that is accessed commonly by CPUs and GPUs) to the shared memory

(that is accessed commonly by the GPU threads); and (iii) one must minimize

bank conflicts when the GPU threads step through the shared memory. Data

races and incorrect barrier placements are frequently introduced during CUDA

programming. Few tools are available to verify CUDA programs. The emulator

that comes with GPUs assumes concrete inputs and executes only a miniscule

fraction of all possible schedules. Bugs often escape, either crashing or deadlocking

the GPU hardware, often requiring a hardware reboot.

GPU kernels are comprised of light-weight threads. Their Single Instruction

Multiple Data (SIMD) organization bears little resemblance to thread programs

written in C/Java with their heterogeneous and heavy-weight threads, and use of

synchronization primitives such as locks/monitors. This requires a fundamentally

new approach for analyzing CUDA kernels. This chapter’s main result is that

while Satisfiability Modulo Theories (SMT [107]) techniques are a natural choice

for analyzing CUDA kernels, many innovations are essential before such analysis

can scale. Efficient techniques for encoding concurrent interleavings and analyzing

barrier placement must be developed. One must try to exploit the “mostly

87

deterministic” style of programming and avoiding interleaving generation. It is

efficient to divide up the analysis over barrier intervals. Finally, techniques for

efficiently handling loops (rather than simply unrolling them) must be developed.

We now begin with a few CUDA examples and elaborate our innovations.

6.1 Overview

6.1.1 Illustration of CUDA

A CUDA kernel is launched as a 1D or 2D grid of thread blocks. The total size

of a 2D grid is gridDim.x × gridDim.y. The coordinates of a (thread) block are

〈blockIdx.x, blockIdx.y〉. The dimensions of each thread block are blockDim.x

and blockDim.y (assuming 1D or 2D blocks in this thesis). Each block con-

tains blockDim.x × blockDim.y threads, each with coordinates 〈threadIdx.x,

threadIdx.y〉. These threads can share information via shared memory, and

synchronize via barriers (syncthreads()). Threads belonging to distinct blocks

must use the much slower global memory to communicate. This chapter focuses

on shared memory races. Consider a simple example of a CUDA kernel to add b

to all the elements of a shared array a of size N:

void __global__ kernel (int *a, int b) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < N) a[idx] = a[idx] + b;}

Basically, each thread accesses a different array location and adds b to it in

parallel; there are no data races. Now imagine the programmer wanting to update

each array location with b added to the previous array location. The programmer

may not simply change the last line to a[idx] = a[idx-1] + b; because there

will be data races between adjacent threads. The programmer may, however,

change the code to the following:

void __global__ kernel1 (int *a, int b) {

__shared__ int temp[N];

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < N) temp[idx] = a[idx-1] + b;

__syncthreads(); // A barrier

if (idx < N) a[idx] = temp[idx];}

What if the barrier is removed from this code? Obviously, the accesses of a[idx]

and a[idx − 1] by different threads may cause a race. This can be detected by

examining the symbolic models of two threads as following, where private variables

88

in a thread are superscripted by the thread id, bid and bdim are the short hands

for blockIdx and blockDim, respectively. Threads t1 and t2 are assumed to be in

the same block. Formally, a race occurs if predicate t1.x 6= t2.x ∧ idt1 < N ∧ idt2 <

N ∧ idxt1 − 1 = idxt2 holds. As all variables have symbolic values, we can consult

with a constraint solver to determine whether this predicate is satisfiable. If so,

then the solver would return a concrete counter example. If the barrier is present,

then we only need to check whether the writes to a[idxt1] and a[idxt2] conflict.

Since t1.x 6= t2.x implies idxt1 6= idxt2 for t1.x < bdim.x and t2.x < bdim.x, these

two writes will not result in a race.

thread t1 thread t2

idxt1 = bid.x ∗ bdim.x+ t1.x idxt2 = bid.x ∗ bdim.x+ t2.x
if (idxt1 < N) read a[idxt1 − 1] if (idxt2 < N) read a[idxt2 − 1]
if (idxt1 < N) write a[idxt1] if (idxt2 < N) write a[idxt2]

As another example, the scalarProdGPU (Figure 6.1) kernel computes the

scalar product of vN pairs of vectors with eN elements in each vector (both sequen-

tial and CUDA parallel versions are shown). This kernel coalesces global memory

accesses, minimizes bank conflicts, avoids redundant barriers, and reduces serial

penalties through tree summation. Without such hand-crafting steps, kernels such

as this will perform poorly. In this chapter, we present our tool, Prover for User

GPU Functions (PUG, see Figure 6.2), which helps detectbugs introduced during

kernel design.

6.1.2 Internal Architecture of PUG

PUG takes a kernel program written in C (called Kernel C) as input. It first

uses the Rose Compiler [98] to parse the kernel and generates an immediate format,

then produces an SMT expression according to the configuration information

supplied (e.g. the properties to be checked or the number of threads). We consider

only two threads with symbolic identifiers (IDs) for race and synchronization

checking. Users must specify the number of threads for assertion (user-defined

property) checking. The PUG generated SMT expressions are processed by an

SMT solver (currently Yices [124]) for satisfiability checking. If the expression is

satisfiable, the solver will return a concrete counter-example; otherwise, the kernel

is deemed free of the bugs targeted by our analysis.

89

void scalarProdSeq // Sequential version

(float *d_C, float *d_A, float *d_B, int vN, int eN) {

1: for(int vec = 0; vec < vN; vec++){

2: int vBase = eN * vec; int vEnd = vBase + eN;

3: double sum = 0;

4: for(int pos = vBase; pos < vEnd; pos++)

5: sum += d_A[pos] * d_B[pos];

6: d_C[vec] = (float)sum;

7: }}

// Parallel version: Nvidia CUDAZone site

__global__ void scalarProdGPU (float *d_C, float *d_A,

float *d_B, int vN, int eN) {

1: __shared__ float acc[ACC_N];

2:

3: for(int vec = blockIdx.x; vec < vN; vec += gridDim.x) {

4: int vBase = eN * vec; int vEnd = vBase + eN;

5:

6: for(int i = threadIdx.x; i < ACC_N; i += blockDim.x){

7: float sum = 0;

8: for(int pos = vBase + i; pos < vEnd; pos += ACC_N)

9: sum += d_A[pos] * d_B[pos];

10: acc[i] = sum;

11: }

12:

13: for(int stride = ACC_N / 2; stride > 0; stride >>= 1) {

14: __syncthreads();

15: for(int i = threadIdx.x; i < stride; i += blockDim.x)

16: acc[i] += acc[stride + i];

17: }

18:

19: if(threadIdx.x == 0) d_C[vec] = acc[0];

20: }}

Figure 6.1: Scalar product: sequential and CUDA parallel versions.

Figure 6.2: The internal architecture of PUG.

90

6.1.3 Organization

We now list some of our novel contributions, each of which is later elaborated

in its own section.

• PUG employs a C front-end based on the LLNL Rose [98] framework (with

customized extensions). It handles many CUDA C features including: (i) arrays

and records, (ii) loops, conditional statements, and function calls, (iii) variable

aliases due to pointer expressions, and (iv) lexical scopes. Many features such

as heap allocation and recursive calls are not allowed in CUDA, simplifying our

translation. See Section 6.2.

• We contribute a novel approach to capture all possible interleavings between

CUDA threads as compact SMT formulae. In practice, working with this SMT

representation is far more efficient than explicitly enumerating all schedules. See

Section 6.3.

• We propose a way to model the semantics of barriers exactly. We generate

SMT formulae that help verify that despite the presence of branches and loops,

all barriers are well synchronized. See Section 6.4.

• While we have the ability to model all possible concurrent interleavings, it is

preferable to avoid resorting to this approach whenever possible. Our observation

that enables this optimization is based on the fact that in many cases, the existence

of races between a given pair of variables is predicated on the existence of conflicts

on other variables. The existence of conflicts can be checked over just one canonical

interleaving – say the one that simply runs one thread till it blocks and then

switching over to another. This helps dramatically improve the overall efficiency.

We propose a way to further scale up this approach by analyzing one barrier

interval (the portion before and after syncthreads()) at a time. This divide-

and-conquer approach also helps boost efficiency. See Section 6.5.

• The translation of loops can become extremely involved – especially if the

loops are nested and they employ nonlinear strides. Our multipronged attack

is as follows: (i) we normalize loops through program transformation into a

unit-stride loop; (ii) we over-approximate loop computations; and (iii) we can

automatically discover compensating invariants that compensate for nonlinear loop

strides frequently found in practice. See Section 6.6.

• For many kernels, an SMT tool may generate a false alarm (false bug report)

when it cannot determine how the kernel formal parameters are constrained by the

91

main program (caller). For example, PUG assures that the matrix multiplication

kernel in the CUDA Programming Guide [24] works only when the size of matrix

B is greater or equal to the block size. PUG is able to reveal such undocumented

assumptions.

• We have obtained very encouraging results using PUG on real examples. As

one example of its multiple uses, with respect to scalarProdGPU, we could obtain

many valuable analysis results using PUG: (i) One may not remove the barrier

on line 14 (it will result in a data race), but this single barrier suffices to remove

all races with respect to the variables d A, d B, d C, and acc. (ii) It is formally

guaranteed that no bank conflicts (by different threads) occur in this example

for all possible values of vN , eN , and ACC N ; (iii) Analysis by PUG helped

us confirm the assumption that ACC N must be a power of two; (iv) We could

establish the equivalence of this kernel to scalarProdSeq for small instances of

the problem parameters.

• We have also encountered examples where some kernels have benign races; i.e.

they are still functionally correct. PUG has caught some serious (but nonobvious)

bugs in beginner examples. It has also handled many large examples from the

CUDA SDK site. All these examples and PUG itself are freely downloadable [60].

See Section 6.7.

This section describes the encoding of serial constructs; it gives the formal

semantics of a kernel assuming no concurrency. Concurrency is handled in the

next section.

The main syntax of Kernel C is given in Figure 6.3, and are illustrated by

the kernel examples given so far. The notation 〈term〉separator (used in fun decl ,

block , etc.) denotes a sequence of term’s separated by separator. Expression

exp represents usual C expressions including assignments. Identifiers idf and

idv represent names of functions and variables, respectively. Shared and global

variables reside in the GPU and the CPU, respectively. A variable declared

without modifier is local to each thread.

6.2 SMT-Encoding Sequential Constructs

We now present the encoding of sequential program structures. The encoding

of concurrency will be presented in the next section.

92

prog ::= 〈var decl | fun decl〉; program
var decl ::= [mdv] ty idv[= exp] variable
fun decl ::= ty idf (〈ty idv〉,) = block function
block ::= {〈stmt〉;} basic block
stmt ::= if exp block [else block] conditional

| for(exp; exp; exp) block loop
| block
| var decl
| exp expression
| idf (〈exp〉,) function call

ty int | ty ∗ | ty[] | type
mdv shared | global modifier

Figure 6.3: Summary syntax of Kernel C

6.2.1 Basic Statements

Our encoding assigns SSA indexes to variables. Specifically, the following

translation function Γ constructs a logical formula from single statements and

expressions, where next and cur return the next and the current SSA indices of

a variable, respectively, and v] ([i] 7→ x) denotes the update of array v by setting

the element at i to x. We also give below a simple example of applying Γ.

Γ(e1 op e2)
.
= Γ(e1) op Γ(e2)

Γ(v := e)
.
= vnext(v) = Γ(e)

Γ(v[e1] := e2)
.
= vnext(v) = vcur(v)([Γ(e1)] 7→ Γ(e2))

Γ(v)
.
= vcur(v)

int k = 0;
int a[3];
int i = a[1] + k;
a[0] = i * k;
i++;

Γ→

k1 = 0 ∧
i1 = a0[1] + k1 ∧
a1 = a0([0] 7→ i1 ∗ k1) ∧
i2 = i1 + 1

6.2.2 Branches

The SSA indices of the variables updated in the two clauses of a conditional

statement “if c blk1 else blk2“ should be synchronized so that subsequent state-

ments have a consistent view of their values. The following example gives an

illustration: i1 = i0 is added into the first clause so that later on, i0 is invisible

and only variable i1 will be referred. Here, notation ite stands for “if then else”.

93

if i > 0 {
j = i ∗ 10;
k = j − i;
}
else

i = j + k;

Γ→

ite (i0 > 0,
j1 = i0 ∗ 10 ∧ k1 = j1 − i0 ∧
i1 = i0,
i1 = j0 + k0 ∧
j1 = j0 ∧ k1 = k0

)

Such synchronization is done at the join node by inserting the following formula

into Γ(blk1) (and similarly to Γ(blk2)), where cur(blk, v) returns v’s last SSA index

in blk.

vj = vi for i = cur(blk1, v), j = cur(blk2, v)
such that i < j

6.2.3 Variable Aliasing

Variables may be aliased due to the use of pointers or references. Typically,

when the formal parameters of a function are of pointer or reference types, the

parameters are the aliases of the incoming actual arguments. When converting

the programs, we map an alias to its corresponding variable and use the variable

rather than the alias. For the alias updated in different paths, we add an ite

expression at the join. Note that most aliases in CUDA kernels occur at function

entry.

int a[3]; int *i = a;
int j = i[1] + a[2];
i[0]++;

Γ→ j1 = a0[1] + a0[2] ∧
a1 = a0([0] 7→ a0[0] + 1)

However, we do not model complicated pointer operations (e.g. pointer deref-

erence) although it can be implemented by using a global array to represent

the shared memory. Since typical CUDA programs exhibit very limited pointer

arithmetic operations, PUG does not encounter this problem in practice.

6.2.4 Scopes and Function Calls

Each basic block has its own scope. A variable should be distinguished from

another one with the same name but in a different scope. For this, a variable

is prepended by its scope number: nv indicates that v is in scope n. The scope

numbers of top-level variables are skipped. When a function is inlined, its body

constitutes a new scope. In the following example, the top-level code consists of

94

an “if” statement, whose left clause (a basic block) contains a call to f . Note that

j is passed as a pointer.

int f (int i, int* j) {
int k = i - j;
return (i * k);
}

if (i > 10) {
int i = 2;
int j = f(i, j);
}

Γ→

¬(i0 > 10) ∨
1i1 = 2 ∧ 2i1 = 1i1 ∧
2k1 = 2i1 − 1j1 ∧
1j1 = 2i1 ∗ 2k1

6.3 Encoding Concurrency

A variable with modifier shared is “shared” for all threads within a block.

Private variables have no modifiers. We now illustrate the translation of shared

variable updates.

6.3.1 2-thread Translation of Shared Updates

Suppose we have to translate a shared assignment v = 1. Note that two threads

are being allowed to concurrently perform this assignment. Our approach is to

treat v as an array indexed by Schedule IDs (SID∈ {0, 1, 2, . . .}). (If v were an

array, we would simply add one more dimension to v indexed by SID.) An SID has

the same root name as the variable, but has a subscript and a superscript. It is like

a timestamp and combines two pieces of information: which thread is accessing

it (superscript), and where in the code the access is occurring (subscript, forming

the single static assignment or SSA index [82]). With these, the translation of

v = 1 is as follows:

v = 1 v[vt11] = 1 ∧ v[vt21] = 1

Here, the SIDs vt11 and vt21 range over {0, 1}. To say that t1 accesses (writes)

into v first, we can throw in the constraint vt11 < vt21 . To say that either access order

is possible, we do not throw in any constraint. Now, things get more interesting

when we translate v = v + 1:

v = v + 1;
Γ→

v[vt12] = v[vt11] + 1 ∧ v[vt22] = v[vt21] + 1
∧ (vt12 > vt11) ∧ (vt22 > vt21)∧
v[vt11] = v[vt11 − 1] ∧ v[vt21] = v[vt21 − 1]

and further vt11 , vt21 , vt12 , and vt22 should be pairwise distinct and must belong to

the set {0, . . . , 3}.

95

First, let us look at the “pairwise distinct” requirement. This can be elegantly

modeled by using an uninterpreted function f . More specifically, consider two

variables l and m that range over vt11 , vt21 , vt12 , and vt22 . Then, we can say f(l) 6=

f(m). Since f is a function, this forces l 6= m.

Now, what about the rest of the constraints? It is clear that v[vt12] = v[vt11] + 1

and v[vt22] = v[vt21]+1 model how “assignment works.” It is also clear that vt12 > vt11

and vt22 > vt21 model that the L-value is updated only after the R-value is obtained.

Now, what about the R-value itself? This depends on “who wrote v last.” This is

precisely why we include v[vt11] = v[vt11 − 1] and v[vt21] = v[vt21 − 1]. It is interesting

that this system, in one fell swoop, models all the six schedules possible.

Suppose vt11 = 0, vt12 = 3, vt21 = 1, and vt22 = 2. Then we have expressed

these constraints: v[3] = v[0] + 1 ∧ v[2] = v[1] + 1 ∧ v[1] = v[0]. In this

example, we are modeling the following schedule that, overall, increments v by 1,

and not 2: (i) v[1] = v[0] models that thread t2 also “enjoys” the initial value of

v in addition to t1 (we take v[−1] to be the initial value of v, which is what t1

gets); (ii) v[2] = v[1] + 1 models that thread t2 now does the update of this v;

(iii) finally, v[3] = v[0] + 1 models that t1 now takes the value it had read “long

ago,” is incrementing that value, and depositing it into v.

6.3.2 An Advanced Example Showing Barrier Encoding

In Figure 6.4 we illustrate the advanced features of our encoding scheme

through an example (details in [60]). In this kernel, k is allocated in the shared

memory.

• To capture the semantics of barriers, we assign them a single SID (e.g. bar0 in

our example) and constrain them with respect to SIDs of all threads.

• Each thread t has a private copy of local variables like v. They are referred to

by vt. Since its value is independent of the schedule, there is no SID associated

with it.

•We can now derive inequalities to model all these facts (the cases under ORDER

are the numbers we refer to here): (1) the program order within each thread must

be respected; (2) all the SIDs of all threads constitute a natural number interval

[0, 4n+1] where n is the number of threads, and (3) all the SIDs must be distinct.

A valid schedule of the given example for two threads is depicted below (note

that k is the only shared variable):

96

__global__ kernel (unsigned int* k) {
unsigned int s[2][3] = {{0,1,2},{3,4,5}};
unsigned int i = threadIdx.x;

unsigned int j = k[i] - i;

if (j < 3)

{ k[i] = s[j][0]; j = i + j; }
else

s[1][j && 0x11] = k[i] * j;

__syncthreads();

k[j] = s[1][2] + j;

}

TRANS(t) ≡
st1[0] = λi ∈ {0, 1, 2}.i ∧ st1[1] = λi ∈ {0, 1, 2}.i+ 3) ∧
it1 = t ∧ jt1 = k[kt0][i

t
1]− it1 ∧

ite(jt1 < 3, k[kt1] = k[kt1 − 1]] ([it1] 7→ st1[j
t
1][0]) ∧ jt2 = it1 + jt1

∧ st2 = st1,
st2 = st1] ([1][jt1#0x11] 7→ k[kt2][i

t
1]× jt1) ∧

jt2 = jt1 ∧ k[kt1] = k[kt1 − 1])
k[kt2] = k[kt2 − 1] ∧ k[bar0] = k[bar0 − 1] ∧
k[kt3] = k[kt3 − 1]] ([jt2] 7→ st2[1][2] + jt2)

TRANS(t1, · · · , tn) ≡
∧
i∈[1,n] TRANS(ti)

ORDER(t1, · · · , tn) ≡
(1)

∧
i∈[1,n](k

ti
0 < {kti1 , k

ti
2 } < bar0 < kti3)

(2) bar0 < l ∧
∧
i∈[1,n], j∈[0,3](k

ti
j < l) where l = 4n+ 1.

(3) rank(bar0) = 0 ∧
∧
i∈[1,n], j∈[0,3](rank(ktij) = 4i+ j)

Figure 6.4: An advanced example illustrating the encoding of concurrency.

kt10 = 0 ∧ kt11 = 1 ∧ kt20 = 2 ∧ kt21 = 3 ∧ kt22 = 4 ∧
kt12 = 5 ∧ bar0 = 6 ∧ kt23 = 7 ∧ kt13 = 8

In [60], we present an approach to detect races by encoding Access IDs into the

formulas. It guarantees that all valid schedules are investigated; a race exhibiting

in any particular schedule will not be missed. However, it does not scale well [62];

thus, we have replaced it with the method described in Section 6.4, which needs

to consider only one schedule as Feng and Leiserson [29] did for multithreaded

programs represented by series-parallel DAGs.

6.4 Conditional Barriers and Conflicts

The presence of conditional statements makes it imperative that we have the

precision of the SMT technology when we check whether all barriers are well-

synchronized. It also influences the determination of whether races occur. Work

97

such as [2] which rely purely on static analysis can generate too many false alarms

in codes where there are many conditionals.

To illustrate these ideas, consider the control-flow graph (CFG) given in Figure

6.5(a). This diagram shows how statements s1 through s4 are situated in some

example program (in (a), s2 itself is shown expanded in terms of write k[i]

followed by the barrier bar). At first glance, this appears ill-synchronized: one

thread may take the s1 to s4 path encountering no barriers while another may take

the path through p1 encountering a barrier. Our SMT techniques can determine

whether these paths are feasible, and flag an error if so. PUG’s approach to

checking for well-synchronized barriers is as follows: either (i) two branches must

execute the same number of barriers; or (ii) all threads must make the same

decision on the condition.

In Figure 6.5(a), if all threads make the same decision on condition p1 ,

i.e. ∀t1, t2 : pt11 = pt21 , then all threads will execute the same branch, which is

synchronization safe even if the two branches contain different numbers of barriers.

In Figure 6.5(b), both the left and the right branch contains only one barrier; thus,

they are considered well-synchronized.

Now, assume that all barriers are well synchronized. We must now check for

conflicting accesses that occur in programs involving conditionals. If, for instance,

the formula (it1 = it2)∧ pt11 ∧ p
t2
1 is true in Figure 6.5(a), both threads can take the

p1 branch and conflict on the same k location, causing a race.

A more general analysis is captured by the CFG in Figure 6.5(b). The conflict

s1

write k[i];
bar;

s3

s4 · · ·
?

¬p1

@
@
@R

p1

?

�
�

�
�	

¬p2

?

p2

s0

s1;
bar;

s2;
bar;
s3;

s4;

�
�	

p
@@R
¬p

@@R ��	

(a) (b)

Figure 6.5: Example CFGs.

98

check includes the following expressions (here 6∼ denotes nonconflicting). Also let

us use p ? s to denote an expression s guarded by path condition p. Now, this CFG

may be regarded as consisting of two barrier intervals: the first one containing s0,

p ? s1 and ¬p ? s2, and the second one containing s4 and ¬p ? s3. Conflict freedom

requires the pairwise comparison of the elements in each barrier interval:

pt2 ⇒ st10 6∼ st21 ¬pt2 ⇒ st10 6∼ st22
pt1 ∧ ¬pt2 ⇒ st11 6∼ st22 ¬pt2 ⇒ st14 6∼ st23

6.5 Serial Checking, Exploiting Barrier Intervals

CUDA programmers often intend to write deterministic programs whose final

results are independent of the concurrent schedule. Thus, it is natural to seek

analysis methods that also try to avoid having to generate schedules. Our insights

are explained with respect to a simple example:

thread t1 thread t2
write k[i]; read v;
. . . ; . . . ;
write v; read k[j];

Let us ignore write v and read v for the moment. Suppose k is the only

shared variable. Now, if both i and j are (control- and data-) dependent only on

thread-local variables, then their values are the same in all schedules. In that case,

in order to check whether write k[i] and read k[j] conflict, it suffices to examine

only one arbitrary schedule that respects program order.

Suppose j depends on a shared variable v. Then, j’s value in thread t2 may be

different in different schedules. However, in this case, there exists a conflict on v.

Furthermore, this conflict can be detected by executing v’s accesses according to

one schedule (any schedule) that simply respects the program order. If we find two

accesses within the same barrier interval that conflict, we are done detecting the

conflict. This conflict does not go away under another schedule. For this reason,

we say that k’s conflict is reduced to v’s.

Theorem 1 (Serializability) Consider each pair of accesses to shared variables

where one access in the pair is a write. Suppose these access pairs can be shown

99

to be nonconflicting. Then, the entire code containing these accesses is race free

and can be serialized.

PUG implements such conflict checks and is able to eliminate generating

concurrency schedules in our realistic examples. We now show how the ideas in

this theorem apply to programs that are decomposed in terms of barrier intervals.

6.5.1 Barrier Intervals (BI) and Incremental Modeling

CUDA intrablock thread executions exhibit a regular pattern: {t1, · · · , tn}

execute → barrier → {t1, · · · , tn} execute → · · · . Since an access before a bar-

rier will never conflict with an access after this barrier, we may focus on the

accesses between two consecutive barriers (so called a barrier interval or BI).

If the accesses in a BI are nonconflicting, we build a transition constraint by

serializing (sequentializing) them; then, we move on to the next BI and hope to

repeat this treatment. This approach also goes hand in hand with our SMT solver

Yices’s [124] incremental SMT solving facility that reuses existing conflict clauses

in the context when checking new expressions. As an illustration, we consider the

following program where shared variables are marked with a hat for readability.

1 : jt := ît + t+ 1; 2 : synthreads; 3 : e1 = k̂t [̂it];

4 : k̂t[jt] = e2; 5 : synthreads; 6 : write ît

Let us consider the case of two threads t1 and t2. The first BI consists of

statement 1. Since there are no writes to shared variables, accesses to î at t1 and

t2 are nonconflicting. Both of them can be set to i[0], i.e. their SIDs can both be

forced to be 0. Using this approach, the transition relation up to statement 2 can

be simplified and rewritten as follows (the js are private variables):

TRANS(t1, t2)2 ≡ jt11 = i[0] + t1 + 1 ∧ jt21 = i[0] + t2 + 1

Now, the second BI consists of a read and a write to shared variable k̂. We need

to determine whether their addresses may overlap for different threads. Given

TRANS(t1, t2)2 ∧ t1 6= t2, expression jt1 = i[0] is unsatisfiable for t ∈ {t1, t2}.

Therefore, the read and write of k̂ do not conflict. Also, we have jt11 = jt21 .

Therefore, even the writes to k̂ are nonconflicting. We can follow the approach

100

used before and (re-)use the SIDs 0 and 1 for î and ĵ, respectively, and write the

translation up to statement 4 as:

TRANS(t1, t2)4 ≡
TRANS(t1, t2)2 ∧

∧
t∈{t1,t2}(Γ(et1) = k[0][jt1])

∧ k[1] = k[0]] ([jt11] 7→ Γ(et12))] ([jt21] 7→ Γ(et22))

Things are fine if we keep the barrier (syncthreads) at statement 5. Let us

remove it and see what happens. Then, the second BI includes statement write ît.

Now, we do not know what write ît will write into ît. It is possible that expression

jt1 = î can be satisfied. The key observation is that the conflict between statements

3 and 4 is reducible to a conflict between statements 3 and 6.

The key point here is that we can keep building constraints without considering

interleavings (just by following a canonical interleaving). If there is any race at all

in the program, we will reach a point where there will be one conflict somewhere.

Since we assume conflicts are rare, this optimistic approach has the ability to

process many CUDA kernels successfully without finding any conflicts (and hence

races).

In practice, instead of coalescing the SIDs among multiple threads, PUG

builds the transitions in a thread modular manner: after constructing one single

parameterized transition TRANS(t), it instantiates the SIDs with concrete values

so as to serialize the concurrent execution of all threads.

We give in Figure 6.6 the entire model of the example kernel in Section 6.3

for n threads. There are two BIs each of which contains only one write. The

serialization makes ti happen before tj for i < j for each BI. Hence, the SIDs of

the writes in t1, t2, . . . , tn in the first BI are 1, 2, . . . , n; and those in the second

BI are n+ 1, n+ 2, . . . , 2n. Clearly, this enforces that (1) within a BI, accesses in

thread ti happen before those in tj for i < j; and (2) in a thread, accesses in BI i

happen before those in BI j for i < j.

6.6 Loop Abstraction

While it is possible to unroll loops for precise checking, loop unrolling may

not scale, especially with nested loops. Also, the loop bounds may involve sym-

bolic values, making it impossible to perform loop unrolling. Consider the scalar

product example shown in Figure 6.1. The outermost loop iterates through every

101

TRANS(tx, n) ≡
st1[0] = λi ∈ {0, 1, 2}.i ∧ st1[1] = λi ∈ {0, 1, 2}.i+ 3) ∧
it1 = t ∧ jt1 = k[x− 1][it1]− it1 ∧
ite(jt1 < 3, k[x] = k[x− 1]] ([it1] 7→ st1[j

t
1][0]) ∧

jt2 = it1 + jt1 ∧ st2 = st1,
st2 = st1] ([1][jt1#0x11] 7→ k[x− 1][it1]× jt1) ∧
jt2 = jt1 ∧ k[x] = k[x− 1])

k[n+ x] = k[n+ x− 1]] ([jt2] 7→ st2[1][2] + jt2)

TRANS(t1, · · · , tn) ≡
∧
x∈[1,n] TRANS(tx, n)

Figure 6.6: A serialized model of an example kernel.

pair of vectors. Each iteration first cycles through vectors with stride ACC N, then

performs tree-like reduction of the results. In practice, the grid size, the block

size and the stride are large numbers, making it impractical to unroll, particularly

the nested loops. One solution is to downscale the problem size by reducing these

sizes to small numbers while preserving the program’s behaviors (this is tedious if

done manually). Another solution – the focus of this section – is to perform loop

abstraction to reduce or even eliminate loop unrolling.

6.6.1 Loop Normalization

A standard result in program analysis [3] is that if the stride part of a loop is a

linear function of the loop index i i.e. of format i = i±e where e is an expression),

then we can normalize such loops so they have a stride of one. For example, the

loop header

for (int i = lb; i ≤ ub; i += stride)

can be normalized to

for (int i = 0; i ≤ (ub - lb) / stride; i++),

and each reference to i within the original loop is replaced by i ∗ stride+ lb. After

normalization, the precise value range of the loop index is [0, (ub − lb)/stride].

When the stride is not a linear function on the loop index, we do not perform

normalization to avoid making the range imprecise. Consider lines 13-17 of the

example in Figure 6.1. Since the stride of the loop at line 13 is nonlinear, we

102

leave it alone. Since the stride of the loop at line 15 is linear, we change it. The

transformation results in this code:

for(int stride = ACC_N/2; stride > 0; stride >>= 1) {
__syncthreads();

for(int i’ = 0; i’ < (stride-threadIdx.x)/blockDim.x; i’++) {
int i = i’ * blockDim.x + threadIdx.x;

acc[i] += acc[stride + i];

}}

To determine whether this code is conflict-free (no race on acc on line 16), we

need to check, for threads t1 and t2, two cases:

• Whether (it1 = it2). Luckily, this is false because i is initialized to threadIdx.x

(different for different threads) and stays different.

• Or, whether (it1 = stridet2 + it2). This is also false because it1 < stridet2 holds.

The logical formula for conflict checking incorporates all this knowledge and

also that stride ∈ (0, ACC N/2] and i ∈ [0, (stride− threadIdx.x)/blockDim.x);

it also emerges unsatisfiable:

∧
t∈{t1,t2}

 stridet > 0 ∧ stridet ≤ ACCN/2 ∧
i′t ≥ 0 ∧ i′ < (stridet − t)/blockDim.x
∧ it = i′t ∗ blockDim.x+ t


∧ (t1 6= t2) ∧ (it1 = it2 ∨ it1 = stridet2 + it2)

Similar analysis can also be applied to the loop at lines 6-11.

6.6.2 Automatic Refinement

In addition to the loop index, we need to handle the variables in the loop body.

Consider the following example; the constraints generated for j, l, n, and k depend

on whether they are loop carrying.

int m = 0; int k = a;

for(int i = lb; i < ub; i++)

{ int j = i * 2; int l = j + i;

int n = m - l; k = j * k; ... }

A variable is non-loop-carrying if (1) it is the loop index variable, or (2) it is

not updated in the loop, or (3) any of its updates (if there is any) involves only

non-loop-carrying variables. We simplify our analysis by generating constraints

only for non-loop-carrying variables, and over-approximate loop-carrying variables

to have range (−∞,+∞). In this example, i, j,m, n are non-loop-carrying while k

103

is loop-carrying. The formula i ∈ [lb, ub) ∧ j = i∗2 ∧ l = j+i ∧ n = m−i accurately

specifies the value ranges of i, j, l, and n, while k (because it is loop-carrying) is

over-approximated by leaving it unconstrained.

Sometimes, over-approximating the range of a loop-carrying variable may lead

to false alarms. If j below is unconstrained, then a false race will be reported on

s[threadIdx ∗ n+ j].

int j = 1; int n = blockDim.x;

for(int i = n; i > 0; i >>= 1)

{ s[threadIdx * n + j] = ...; j = j * 2; }

To overcome this, PUG incorporates simple rules for syntactically deriving

common invariants safely, and automatically adds them to the constraints. For the

above example, PUG derives an invariant i∗j = n, which follows from the relation

between ∗2 and right shift (� 1). This implies j < n and threadIdx ∗ n + j are

different in different threads. PUG derives invariants for similar simple patterns

involving + and −, ∗ and /, and so on, but only for the variables used in the

addresses of shared variables.

As another example, invariant j = v + i ∗ k can be derived for the following

loop since j can be normalized to have the same stride as loop index i does.

int j = v;

for (int i = 0; i < ub; i++)

{ ...; j += k;}

6.6.3 Interiteration Race Checking

Within a loop, accesses to shared variables may conflict with themselves in

previous iterations, thus causing interiteration conflicts. For example, in the

following loop,

for(int i = lb; i < ub; i++)

{ __syncthreads(); acc[i+1+tid] += acc[i]; }

access acc[i + 1 + tid] may not conflict with acc[i + 1 + tid] and acc[i] in the same

iteration. However, if the barrier is removed, then acc[i+ 1 + tid] may conflict with

acc[(i − 1) + 1 + (tid + 1)], i.e. the access by a neighboring thread in the previous

iteration.

PUG considers two cases:

104

• The loop body is not barriered. Different threads may be in different

iterations, i.e. i’s values in different threads may be regarded to be unrelated.

If the barrier is removed in the above example, the constraint for conflict

checks is as follows, which is clearly satisfiable for t1 6= t2.

it1 ∈ [lb, ub] ∧ it2 ∈ [lb, ub] ∧
(it1 + 1 + t1 = it2 ∨ it1 + 1 + t1 = it2 + 1 + t2)

• The loop body is barriered (e.g. ends with a barrier). If the body satisfies

the synchronization correctness requirement described in Section 6.4, then

all threads will always be in the same iteration. In other words, loop index

variable i should have the same value at all threads (i.e. it1 = it2) (we say i

is single valued); and the following constraint is unsatisfiable for t1 6= t2.

i ∈ [lb, ub] ∧ (i+ 1 + t1 = i ∨ i+ 1 + t1 = i+ 1 + t2)

Even after i is set to single valued, we may still need to consider two

consecutive iterations. For the following code, PUG considers the possibility

that accesses in s2 at iteration i conflict with those in s1 at iteration i+ 1.

for(int i = lb; i < ub; i++)

{ s1; __syncthreads(); s2; }

In the scalar product example, the loop in lines 6-11 belongs to the first case,

while the loop in lines 13-17 belongs to the second case. If the barrier at line 14 in

the second loop is removed, then accesses on acc[i] and acc[stride+ i] may conflict

when stridet1 6= stridet2 .

6.7 Implementation and Experimental Results

As described earlier, PUG is based on the Rose framework for C program

analysis. The user may input a file containing multiple kernels together with the

main (CPU side) program. The kernel to be analyzed is syntactically flagged,

and this kernel alone will be analyzed. Within the kernel of interest, the user

may place assert assertions anywhere in the code, which will be checked during

analysis.

Given an annotated program, PUG works in a push-button fashion and is

totally syntax driven (similar to a precise type checker, more details in [60]). It

first parses the program and triggers rules for each syntactic category, building

105

constraints in an intermediate format. For instance, for handling loops, it first

checks if whether the loop body contains barriers. It then performs loop nor-

malization and loop refinement, and analyzes the loop body which may contain

multiple BIs. For a BI, PUG first checks whether there is a race (conflict); if so,

it then reports the bug and terminates. Otherwise, it serializes all the accesses to

shared variables and moves to the next BI.

Expressions in the intermediate language (IL) are converted to Yices’ ex-

pressions for satisfiability checking. Yices’ expressions are based on bit vectors

(bounded integers). We found that the correctness of most CUDA kernels relied

on the assumption that no overflows will occur in arithmetic operations. To

model this, the user has the ability to request (through the “+O” flag) whether

nonoverflow constraints must be incorporated (for unsigned bit vectors). Setting

the +O flag causes PUG to generate and incorporate these additional constraints

for + and ∗:

IL Expr. Yices Expr. Constraint
e1 + e2 e1 + e2 e1 < 2n − 1 ∧ e2 < 2n − 1
e1 ∗ e2 e1 ∗ e2 e1 < 2n/2 ∧ e2 < 2n/2

e1 / e2 q e2 ∗ q + r = e1 ∧ r < e2
e1 % e2 r e2 ∗ q + r = e1 ∧ r < e2

In addition, since Yices does not provide the “div” and “mod” operator di-

rectly, we implement them using multiplication and addition. Some optimizations

are performed when e1 or e2 are constants. For example, 2m ∗ e2 and e1 / 2m are

converted to e2 � m and e1 � m, respectively (� is a shift operator).

The user may further use two more types of annotations within the kernel of

interest:

• An assume that defines the problem configuration parameters and input con-

straints (e.g. whether a matrix is assumed to be square or what the input data

constraints are). We capture this assume class as if it were a flag, “+C”.

• In some examples, the user has to help PUG out by providing simple loop

invariants or simple predicates on shared variables. These are assumed to be

true (for now; future work will try to semi-automate their formal verification).

These are shown as the “+R” flag. We do not include the syntactic invariants

automatically generated by PUG into +R (these are guaranteed to be correct

invariants).

106

We performed experiments using PUG on a machine with a single CPU (Intel

Pentium-4 3.60 GHz processor with only 1 GB of memory). Our table of results in

Table 6.1 shows which examples required these flags for verification to succeed, and

not fail through false alarms. All the examples in this table are widely cited kernels

from the CUDA SDK, and naturally, PUG found them all to be correct. “Pass”

in this table asserts that (i) All barriers were found to be well-synchronized, and

(ii) No races were found. When a benchmark program (e.g. Reduction) contains

multiple kernels, we invoke them one by one – but in a single run – and report the

total time of this run.

PUG has checked many more CUDA SDK kernels than shown in Table 6.1.

While the computation of a large application is usually broken into multiple

kernels, we have successfully checked some very large kernels (e.g. Eigenvalues, at

2,200 LOC). The translation time into IL and to the Yices constraints is negligible,

and not counted in.

PUG is able to check most programs smoothly. The radix sort kernel is the

most difficult one to analyze since the addresses of a few shared variable accesses

cannot be resolved locally, i.e. they are control-dependent on the shared arrays

which may be updated by multiple threads. This makes the checking difficult. In

our present attack, we added +C constraints indicating the the shared arrays are

(partially) sorted to overcome this limitation.

Table 6.1: Experimental results of checking some SDK kernel programs for
synchronization errors, races, and bank conflicts.

Kernels loc +O +C +R B.C. Time(pass)

Bitonic Sort 65 LO 2.2
MatrixMult 102 * * HI <1
Histogram64 136 LO 2.9
Sobel 130 * HI 5.6
Reduction 315 * HI 3.4
Scan 255 * * * LO 3.5
Scan Large 237 * * LO 5.7
Nbody 206 * HI 7.4
Bisect Large 1,400 * * HI 44
Radix Sort 1,150 * * * LO 39
Eigenvalues 2,200 * * * HI 68

107

6.7.1 Bank Conflict Checking

A fascinating direction to evolve PUG is in giving designers feedback on perfor-

mance metrics. Thanks to our use of SMT, we can use the infrastructure for race

checking to check for bank conflicts also. Specifically, access k[i] and k[j] incurs a

race when i = j, and incurs a bank conflict when i%16 = j%16. Column “B.C.”

indicates how serious the bank conflict is, which is measured by the percentage

of the barrier intervals (BI) containing bank conflicts: HI (High) and LO (Low)

denote ≥ 50% and < 50%, respectively. Since only two threads are considered and

the loops are not unrolled, these results are quite preliminary; yet, the promise is

clear. We plan to give more accurate measurement in the future work.

6.7.2 Road-Testing PUG

We took 57 assignment submissions from a recently completed graduate GPU

class taught in our department. The “Defects” column in Table 6.2 indicates how

many kernels were found to be not well-parameterized — i.e. work only in certain

configurations (e.g. the grids and blocks must have specific sizes). We had to

manually find this out by guessing and trying different +C settings. This is a

promising way to reverse-engineer unstated assumptions and provide feedback to

a programmer to improve their kernel.

There were three benign races and two fatal races in these (presumably tested)

codes. These fatal races can be attributed to missing barriers in the loop body or

incorrect indexing at the boundary between two thread data spaces.

While PUG always does its set of automatic loop refinements, we were curious

as to how many of these cases could have passed through without them. When

we turned off automatic refinements, we found that only 17.5% of the kernels

(measured in terms of loops, only 10.5% of the total number of loops) would have

failed (by giving false alarms). Thus, it appears that for small to medium kernels

represented by a class, about 90% of the kernels can be verified even without loop

refinements.

Table 6.2: Experimental results of running PUG on class examples.

Defects Race Refinement

benign fatal over #kernel over #loop

13 (23%) 3 2 17.5% 10.5%

108

6.7.3 Assertion Checking (Functional Correctness)

Users can specify the properties to be checked using our assume and guarantee

directives. If a precondition assume(P) and a postcondition guarantee(Q) are

specified, formula P ∧ ¬Q is added into the constraint. For example, we can

specify the correctness of the bitonic sort kernel

__global__ bitonic (int vals[]) {
...

guarantee(i < j =⇒ vals[i] ≤ vals[j]);

}

Functional correctness check requires accurate models of the programs. PUG

translates the program into a bounded one by unrolling the loops dynamically

in the incremental modeling phase. The number of threads must be specified

explicitly. Since CUDA programs are highly symmetric, we only need to consider

a few threads.

Table 6.3 shows the SMT solving time in seconds. To speed up the checking

we turn off the overflow detection, assign small values to the loop bounds, and

use smaller bitvectors. Here, n denotes the number of threads; T.O denotes Time

Out (> 5 minutes). Correctness is proven for bug-free programs, and bugged

programs are obtained by disabling some required constraints or specifying false

assertions. Correctness check takes much longer time since the solver needs to

prove unsatisfiability (i.e. absence of bugs) for all cases. In general, the degree

of loop unrolling needed is proportional to the number of threads n, making the

solving time blow up on n.

This checker identifies several “bugs” in these programs: (i) the “bitonic sort”

is incorrect when the number of threads is not the power of 2; (ii) the “scalar

product” is incorrect when ACCN is not the power of 2; and (iii) the “matrix

tranpose” is incorrect when the sizes of two input matrixes are smaller than the

block size.

Table 6.3: Experimental results of property checking.

Kernels n = 2 n = 4 n = 8

Corr. Bug Corr. Bug Corr. Bug

simple reduct. < 1 < 1 2.8 < 1 T.O 4.42
matrix transp. < 1 < 1 1.9 < 1 28 6.5
bitonic sort < 1 < 1 3.7 < 1 T.O 255
scalar product < 1 < 1 6.9 2 T.O 137

109

As the property checker does not scale well with respect to the number of

threads, it is intended to be used as a unit tester/verifier for functional correctness.

6.7.4 Performance Improvement

PUG utilizes Yices’s incremental SMT solving technique to avoid evaluating

an expression multiple times. This technique is primarily used to manage the built

transitions. For example, when the solver is called for evaluating e over transitions

E provided that path condition C holds, we first assert E and push the context

containing E into Yices’ context stack, then assert C and e to evaluate the entire

expression. After that, when we want to evaluate e1 on E and C1, we pop the

context stack so as to restore the context containing the existing clauses for E,

then we assert C1 and e1. This enables us to avoid evaluating E again.

We also apply a simple slicing algorithm to exclude useless transitions from the

transition stack. A use-def analysis is performed to identify the variables which

will be used by the addresses of shared variables. We do not build transitions

for the assignments involving other variables. For instance, in the scalar product

example of Figure 6.1, no transitions corresponding to the assignments on line 9

and line 16 will be added into the transition stack.

6.7.5 Some Limitations of PUG

Present day SMT solvers provide limited support for real numbers. PUG

cannot prove the functional correctness of many CUDA applications that operate

on float or double numbers. Fortunately, this does not limit PUG’s conflict

checking power because the addresses of shared variables involves only unsigned

integers.

PUG may report false alarms if it fails to derive loop invariants for complicated

program patterns. In this case, the user is required to provide sufficient invariants.

PUG cannot handle kernels containing complicated pointer arithmetic opera-

tions. In addition, PUG requires manual transformation of the source programs to

Kernel C format (e.g. by converting “while” loops to “for” loops and eliminating

advanced C++ features).

Although focusing on CUDA kernels, PUG can be easily extended to other

domains such as lock based multithreaded programs. It is particularly suitable for

checking such programs over relaxed memory models: we just need to loosen the

110

constraint on the accesses orders w.r.t the memory model. The main challenge,

however, is to model involved APIs and system calls. One solution is to build

light-weight models or abstract interpretations for these APIs as we did for MPI

2.0 [65].

6.8 Appendix: Details of the Static Checker

In this section, we present PUG’s static checker. Only synchronization safe

and conflict free programs can pass the checker (i.e. without causing the checking

to be stuck). A (logical) expression refers to the expression built by converting

a syntactic fragment in the source program. Generally, we write L, S, and M to

represent a list, set, and map, respectively; we also write > and ⊥ for Boolean

value true and false, respectively.

6.8.1 Data Structures

The checker uses an analysis state σ = (E,C, I,R,W, b, n) where

• transition stack E is a list of sets of expressions recording the transitions built

so far;

• path condition C is a list of expressions recording the current path condition;

• SSA map I is list of maps recording the SSA indices and scope numbers of

variables;

• read pattern R is a list of sets of guarded accesses recording the reads to shared

variables;

• write pattern W is a list of sets of guarded accesses recording the writes to

shared variables;

• flag b is a Boolean flag indicating whether the syntactic fragment under consid-

eration is in a branch of a s ingle valued condition (i.e. all threads make the same

decision on the condition); and

• flag n is an integer recording the current scope number.

6.8.1.1 List, Transition Stack and Path Condition

We use the notation 〈e1 ‡ . . . ‡ en〉 to represent a n-element list; we also use L ‡ e

for a list where e is the last element and L contains the rest elements. Although

represented as a list, transition stack E is operated in a stack style (e.g. using

push and pop operations). In addition, we write L] e for adding expression e

111

into L such that (1) if the elements of L are sets, then e is inserted into the last

set of L; and (2) otherwise, e becomes the last element. Operator
∧

depicts the

conjunction of all the expressions in M or C, and size gives the length of a list.

6.8.1.2 SSA Map

An item in the map M is represented by a 7→ v, where a and v are the address

and value, respectively. We use I[a] for a’s value in I, and I[a 7→ v] for the update

of the element at a to v.

To resolve the name conflict on variables in multiple scopes, an SSA map

contains a list of maps, each of which corresponds to the variables declared in a

scope. To handle variable aliasing such as variable v is an alias of v′, an item in the

map is specified as v 7→ (v′, k, i), where k is the scope index and i is the SSA index.

The read operation is actually defined as follows. The last map M is searched

first; if v is not in M, then the search goes into prior maps I. Otherwise, if v is

not an alias of another variable v′, then indices k and i are returned; otherwise, v′

indices are returned. The update operation is defined similarly.

(I ‡M)[v]
.
=

if v 7→ (v′, k, i) ∈M then (if v = v′ then (k, i) else (I ‡M)[v′])
else I[v]

6.8.1.3 Access Pattern and Flag b

An access may be guarded by a path condition. We write c ? v for the access

v guarded by path condition c, and simply v if there is no path condition.

Pattern 〈S1 ‡ S2 ‡ S3〉 denotes that the accesses in S1 and S2 are separated

by a barrier, so do those in S2 and S3. For example, for the CFG in Figure

6.5(b), the access patterns of the left and right branch are Al = 〈{p ? s1} ‡ {}〉

and Ar = 〈{¬p ? s2} ‡ {¬p ? s3}〉, respectively. The pattern for the entire CFG is

〈{s0, p ? s1, ¬p ? s2} ‡ {s4, ¬p ? s3}〉. We write c ?A for the prepending of condition

c to the path conditions of all the accesses in A; and A1 ∪ A2 for the union of A1

and A2.

c ? 〈{p1 ? s1, . . . , pn ? sn} ‡ . . .〉 ‡ {p′1 ? s′n}
.
=

〈{(c ‡ p1) ? s1, . . . , (c ‡ pn) ? sn} ‡ . . . ‡ {(c ‡ p′1) ? s′n}〉
〈S1 ‡ . . . ‡ Sn〉 ∪ 〈S′1 ‡ . . . ‡ S′n〉

.
= 〈(S1 ∪ S′1) ‡ . . . ‡ (Sn ∪ S′n)〉

112

Flag b is set when a condition is not single valued. If it is false, then all threads

will enter the same branch; thus, there is no need to compare the accesses in the

different branches. Otherwise, accesses in the left branch may conflict with those

in the right branch, which requires us to maintain and compare the access patterns

of the two branches.

In the initial analysis state, E, R, and W contain an empty set, I contains an

empty map, C is empty, flag b is false, and scope number n is 0. Note that only

shared memory access is modeled in this paper; global memory access is handled

similarly. Since there exists no global barrier, we only need to maintain access

sets rather than access patterns.

6.8.2 Main Rules

We use relation σ � p → σ′ to depict how an analysis state is updated when

we examine a syntactic program fragment p. Figures 6.7 and 6.8 show a subset of

the relation rules. Here, ∩ means does not intersect. To distinguish an expression

in the source language and a generated logical expression, we often write e to

emphasize that e is a generated expression. Note that operator
.
= is for introducing

the abbreviation for a long expression.

6.8.2.1 Expression Evaluation

We write Et1 ;Et2 for the conjunction of the transitions in E in thread t1 and

t2; and Et1 ;Et2 ` e for the evaluation of e upon Et1 ;Et2 . The indices of shared

variables in t2 should be adjusted in the conjunction. Specifically, there are three

types of variables: local variables, which are private to threads; single value

variables, which have the same values among all threads (used for synchronizing

loop iterations); and shared variables. We denote their types as τpr, τsv and τsh,

respectively. Only local variables need to be superscripted by the thread id. The

following example shows that zi in thread t2 should be adjusted to zi+1, where 1

is actually z’ maximum index in thread t1.

source
x : τpr = 1;
y : τsv = 2;
z : τsh = x+ z − y;

E
x1 = 1 ∧
y1 = 2 ∧
z1 = x1 + z0 − y1

Et1 ;Et2
xt11 = 1 ∧ y1 = 2 ∧
z1 = xt11 + z0 − y1 ∧
xt21 = 1 ∧ y1 = 2 ∧
z2 = xt21 + z1 − y1

113

Expression Evaluation:

t1 6∼ t2 Et1 ;Et2 ` (
∧
Ct1 ∧

∧
Ct2 ∧ (et1 = et2))

E,C ` ↓ e
SINGLE VALUE

t1 6∼ t2 Et1 ;Et2 ` (
∧
Ct1 ∧

∧
Ct2 ∧

∧
v1∈S,v2∈S′(v

t1
1 6∼ v

t2
2))

E,C ` S ∩ S′
DISJOINTset

∀i ∈ [1, n] : E,C ` Si ∩ S′i
E,C ` 〈S1 ‡ . . . ‡ Sn〉 ∩ 〈S′1 ‡ . . . ‡ S′n〉

DISJOINTpat

Expressions and Statements:

I[v] = (k, i) R1
.
= if v : τsh then R] {kvi} else R
I,R, v ` kvi,R1

VREF

I,R, e1 ` e1,R1 I,R, e2 ` e2,R2

I,R, op e1 e2 ` op e1 e2,R1 ∪ R2
EXP

(E,C, I ‡M,R,W, b, n) � ty v → (E,C, I ‡ (M[v 7→ (v, n, 0)]),R,W, b, n)
DECL

I[v] = (k, i) I,R, e ` e,R1 W1
.
= if v : τsh then W else W] {kvi+1}

E1
.
= if is lc(v) then E else E] (kvi+1 = e)

(E,C, I,R,W, b, n) � v := e→ (E1,C, I[v 7→ (k, i+ 1)],R1,W1, b, n)
ASSIGN

E,C ` Sr ∩ Sw E,C ` Sw ∩ Sw R1
.
= if b then R ‡ Sr ‡ {} else 〈{}〉

W1
.
= if b then W ‡ Sw ‡ {} else 〈{}〉

(E,C, I,R ‡ Sr,W ‡ Sw, b, n) � barrier→ (E,C, I,R1,W1, b, n)
BARRIER

Control Flow Structures:

(E,C, I ‡ {},R,W, b, n + 1) � s→ σ

(E,C, I,R,W, b, n) � {s} → σ
BLOCK

σ � s1 → σ1 σ1 � s2 → σ2
σ � s1; s2 → σ2

SEQ

¬contain barrier(s)
(E] (n+1i0 ∈ [0, (ub− lb)/sd])] (n+1i1 = n+1i0 ∗ sd+ lb),C,

I ‡ {i : τpr 7→ (n+ 1, 1)},R,W, b, n + 1) � s→ σ1

(E,C, I,R,W, b, n) � for (int i = lb, i ≤ ub, i += sd) {s} → σ1
LOOPasync

E,C ` ↓ (ub− lb)/sd
(E] (n+1i0 ∈ [0, (ub− lb)/sd])] (n+1i1 = n+1i0 ∗ sd+ lb),C,

I ‡ {i : τsv 7→ (n+ 1, 1)},R,W,>, n + 1) � s→ σ1

(E,C, I,R,W, b, n) � for (int i = lb, i ≤ ub, i += sd) {barrier; s} → σ1
LOOPsync

Figure 6.7: Representative rules used by the static checker (I).

114

BRANCH (Control Flow):

d
.
= E,C ` ↓ c

(E ‡ {},C ‡ c, I, 〈Sr〉, 〈Sw〉, d, n) � s1 → (E ‡ S1,C1, I1,R1,W1, d, n1)
(E ‡ {},C ‡ ¬c, I, 〈Sr〉, 〈Sw〉, d, n) � s2 → (E ‡ S2,C2, I2,R2,W2, d, n2)

R′1
.
= c ?R1 R′2

.
= ¬c ?R2 W′1

.
= c ?W1 W′2

.
= ¬c ?W2

¬d ⇒ (size(R)′1 = size(R)′2) ∧
(E,C ` R′1∩W′2 ∧ E,C ` R′2∩W′1 ∧ E,C `W′1∩W′2)

e
.
= ite(b,

∧
S1 ∧

∧
I(I2 − I1),

∧
S2 ∧

∧
I(I1 − I2))

I′ .= I[∀v ∈ DOM(I) : v 7→ if I1[v] > I2[v] then I1[v] else I2[v]]
R′ .= R ‡ (R′1 ∪ R′2) W′ .= W ‡ (W′1 ∪W′2)

(E,C, I,R ‡ Sr,W ‡ Sw, b, n) � if c s1 else s2 → (E] e,C, I′,R′,W′, b, max(n1, n2))

Function Call:

Function f’s declaration: int f(int v) {body; return e1}

I,R, e ` e,R1

(E] (n+1v1 = e),C, I ‡ {v 7→ (n+ 1, 1)},R1,W, b, n+ 1) � body → (E1,C, I1,R2,W1, b, n1)
(E1,C, I1,R2,W1, b, n1) � w = e1 → (E2,C, I2,R3,W2, b, n2)

(E,C,I,R,W,b,n)�w = f(e)→(E2,C2,I2,R3,W2,b,n2)

Function f’s declaration: int f(int* v) {body; return e1}

(E,C, I[v 7→ (x, I[x])],R,W, b, n+ 1) � body → (E1,C, I1,R1,W1, b, n1)
(E1,C, I1,R1,W1, b, n1) � w = e1 → (E2,C, I2,R2,W2, b, n2)

(E,C,I,R,W,b,n)�w = f(x)→(E2,C2,I2,R2,W2,b,n2)
FUNC CALLptr

Figure 6.8: Representative rules used by the static checker (II).

115

Rule SINGLE VALUE checks whether an expression e is single valued (denoted

by ↓ e). Rule DISJOINTset checks whether the accesses in S and S′ conflict.

Two accesses to the same variable v conflicts iff both their addresses and their

path conditions agree, e.g. c1 ? v[e1] ∼ c2 ? v[e2]
.
=

∧
c1 ∧

∧
c2 ∧ (e1 = e2). Rule

DISJOINTpat performs a similar check on access patterns.

6.8.2.2 Expressions and Statements

Rule VREF creates a corresponding SSA variable when a variable is referred.

The generated variable is attached with the scope index k. If the variable is a

shared variable, then this access is recorded into R. Rule EXP converts an effect-free

expression in the source program; it also records all the reads from shared variables.

Rule DECL handles variable declaration by registering the variable in the last map

of I. These rules are for variables of nonpointer types.

Rule ASSIGN handles an assignment to a variable (of nonpointer type). It

increases the SSA index of the variable by one, records this write reference into

W if the variable is a shared variable, and inserts the transition representing this

assignment into the transition stack if the variable is not loop carrying (predicate

is lc tells whether a variable is loop carrying).

One of the most important rules, BARRIER, is applied when a barrier is encoun-

tered. It takes the last access sets in R and W and compares the accesses in them

upon the current E and C. If there is a conflict, then the rule is inapplicable and

no new analysis state is produced, indicating the checking is stuck. Otherwise,

two kinds of actions may be performed depending on the flag b:

• If b is false, then R and W are cleared since the accesses in them will never

be used again. Note that the accesses after this barrier will not conflict with

those before the barrier, e.g. the accesses in R and W.

• If b is true, then we are in a branch of a non-single-valued condition. The

accesses in R and W must be kept since they will be compared with those

in the other branch.

In both cases an empty access set is appended to the patterns.

116

6.8.2.3 Control Flow Structures

Rules BLOCK and SEQ deal with basic blocks and the sequential composition

of two statements, respectively. They are self-explanatory. When entering a new

block, we increase the scope index n by 1.

Rules LOOPasync and LOOPsync are examples of loop abstraction described in

Section 6.6. After the normalization, the constraint on i’s new value range along

with an expression for the substitution of i is added into the transition stack. If the

body contains no barriers, then interiteration checking is turned on by marking i’s

type to single valued. Otherwise, we first make sure that all threads execute the

same number of loops; then, mark i to be single valued to enforce that different

threads will be always in the same iteration. For brevity, we only present the

simplified version of the actual LOOPsync rule — here, a barrier is assumed to locate

at the beginning (or end) of the body. The actual rule makes no assumption on the

position of the barrier and checks possible conflicts in two consecutive iterations.

See Section 6.6 for more details. There is a possible refinement on i: for statement

sequence “s1; for(int i = lb; i ≤ ub, i++) body; s2”, statment s1 and s2 may conflict

with the body only if i = lb and i = ub, respectively; thus, the checker uses these

constraints to replace i ∈ [lb, ub] accordingly.

Rule BRANCH, the most sophisticated one, examines individually two branches

of a conditional statement and combines the two post states. For each branch,

the initial access pattern contains the last access set of the pattern before the

branching. After a branch returns the update pattern, we prepend the condition

c (or its negation) to all the accesses in this pattern.

If the condition is not single valued, we first check whether the two branches

contain the same number of barriers (i.e. the left and right patterns are of the

same size); if not, then a synchronization error is found. Otherwise, we check

whether the left access pattern will conflict with the right access pattern. If no

conflict is found, then the two post states are combined:

• As described before, an ite expression combining the left transition set S1

and right transition set S2 is added into the combined transition stack, where

∧
I(I2 − I1) =

∧
v∈DOM(I){vj = vi | I1[v] = i ∧ I2[v] = j ∧ i < j}.

117

• The two SSA maps are combined. Note that only the variables in I need to

be merged since the variables in the scopes of the two branches will not be

used anymore.

I1[v] > I2[v]
.
= i1 > i2 for I1[v] = (k1, i1) ∧ I2[v] = (k2, i2)

• The two access patterns are combined and appended to the original pattern.

The two rules for function calls are self-explanatory. For brevity, we only

present the case of one argument. Note that when a variable is passed into the

function body as a pointer, the variable aliasing mechanism described on Page 93

is used.

This checker is able to prove absence of conflicts efficiently. However, it may

generate false alarms due to over-approximations of the loops, in which case

refinement discussed in Section 6.6 is used to rule out false alarms.

CHAPTER 7

PARAMETERIZED VERIFICATION:

CUDA KERNELS

The property (assertion) checker presented in the previous chapter can handle

large kernels – but for a fixed number (e.g. two or three) of threads. It builds a

symbolic model (as transition relation) according to the operational semantics of

a kernel. Despite being very general, it suffers from the problem of blowing-up on

the number of threads when checking functional correctness. In fact, the checking

times out easily when the number of threads is greater than 4. This makes it

very difficult to check the properties of CUDA kernels which are usually run in

hundreds of threads. While two threads are often sufficient for conflict checking,

functional correctness requires more threads.

We show in this chapter that by taking a different approach to SMT-encoding,

we can obtain parameterized verification for an important class of kernels. We

show that for many kernels, this method outperforms greatly our previous method

in Chapter 6 which runs out of capacity when we scale the number of threads.

This parameterized method builds the symbolic model according to data dependency

on shared arrays. It tracks how data flow through the threads in consecutive

computation rounds. Since only one (parameterized) thread is considered, this

method is highly scalable. From one perspective, it implicitly implements the

Omega Test [93] using SMT techniques. This checker ensures that no false alarms

will be reported. Although sometimes constrained by the capacity of SMT solvers

and under-approximation is employed, it is able to locate bugs very fast.

One of the main applications of our method is to check the equivalence of

a kernel and its optimized version. This parameterized equivalence checker is

particularly suitable for handling typical optimizations for CUDA kernels such as

memory coalescing and bank conflict elimination.

We organize this chapter by first presenting the generic, nonparameterized ap-

proach extended from Chapter 6, then the parameterized one, and then comparing

119

their performance on realistic CUDA programs.

7.1 Background and Motivating Examples

Recall that a CUDA kernel is launched as a 1D or 2D grid of thread blocks.

The total size of a 2D grid is gridDim.x × gridDim.y. The coordinates of a

(thread) block are 〈blockIdx.x, blockIdx.y〉. The dimensions of each thread block

are blockDim.x and blockDim.y. Each block contains blockDim.x × blockDim.y

threads, each with coordinates 〈threadIdx.x, threadIdx.y〉.

The values of gridDim and blockDim determines the configuration of the system,

e.g. the sizes of the grid and each block. For a thread, blockIdx and threadIdx

give its block index in the grid and its thread index in the block, respectively. For

brevity purposes, we use gdim, bid, bdim, and tid for gridDim, blockIdx, blockDim,

and threadIdx, respectively. Clearly constraints bid.∗ < gdim.∗ for ∗ ∈ {x, y} and

tid.∗ < bdim.∗ for ∗ ∈ {x, y, z} always hold.

Consider the following simple example with 2D blocks, which is a slightly

simplified version of the “transpose” kernel in CUDA SDK 2.0 [23].

void naiveTranspose (int *odata, int* idata, int width, int height) {

int xIndex = bid.x*bdim.x + tid.x; int yIndex = bid.y*bdim.y + tid.y;

if (xIndex < width && yIndex < height) {

int index_in = xIndex + width * yIndex;

int index_out = yIndex + height * xIndex;

odata[index_out] = idata[index_in];

}

int i, j; // for the postcondition

postcond(i < width && j < height =>

odata[i * height + j] == idata[j * width + i]);

}

The threads transpose the array in parallel: each thread reads idata at location

(bid.x ∗ bdim.x+ tid.x) +width ∗ (bid.y ∗ bdim.y+ tid.y) and writes it to odata at the

location (bid.y ∗ bdim.y + tid.y) + height ∗ (bid.x ∗ bdim.x + tid.x). The functional

correctness of this kernel is specified in the postcondition: the element at location

j ∗ width+ i in the input array idata is put at location i ∗ height+ j in the output

array odata. This property should hold for all valid configurations as well as all

possible input values.

This naive kernel suffers from completely noncoalesced writes, and can be more

than 10x slower than the following optimized kernel for large matrices. The kernel

below is optimized to ensure all global reads and writes are coalesced, and to avoid

120

bank conflicts in shared memory. The computations between two consecutive

barriers constitute a barrier interval (BI) or round. This example contains two

rounds of computations.

void OptimizedTranpose (int *odata, int *idata, int width, int height) {

__shared__ float block[bdim.x][bdim.x+1];

// read the matrix tile into shared memory

int xIndex = bid.x*bdim.x + tid.x; int yIndex = bid.y*bdim.y + tid.y;

if((xIndex < width) && (yIndex < height)) {

int index_in = yIndex * width + xIndex;

block[tid.y][tid.x] = idata[index_in];

}

__syncthreads();

// write the transposed tile to global memory

xIndex = bid.y * bdim.y + tid.x; yIndex = bid.x * bdim.x + tid.y;

if ((xIndex < height) && (yIndex < width))

{ int index_out = yIndex * height + xIndex;

odata[index_out] = block[tid.x][tid.y]; }

}

We may use the same postcondition as the above one to specify the functional

correctness of this optimized kernel. Moreover, the equivalence of these two kernels

can be specified as: suppose the two kernels take the same inputs, i.e. the same

idata, width, and height, then after execution, they produce the same outputs

(in odata) for all possible configurations. The main challange here is to meet the

requirement of being parameterized and symbolic: the result should hold for any

number of threads and any input value.

7.1.1 Related Work

7.1.1.1 Parameterized Verification

Some techniques [22, 92] reduce the problem of verifying parameterized sys-

tem with infinite states to that with finite-state abstractions. They use counter

abstraction [92], which abstract process identities, or environmental abstraction

[22], which give abstract counting for the number of processes satisfying a given

predicate. Typically, these techniques either require manual effort to obtain

the appropriate abstraction or are applicable to certain restricted systems and

properties.

Some others [5,90] apply automatic induction to generate and verify invariants

of the parameterized systems. In most cases, manual effort is required to obtain the

invariant generation; however, Pnueli et al. [90] presented a way to automatically

121

compute the invariants given an appropriate abstraction relation.

The reduction from infinite states to equivalent finite states is based on finding

an appropriate cut-off k of the parameter of the system. The goal is to establish

that a property is satisfied by k processes if and only if it is so by any number

(> k) processes. Emerson and Namjoshi [28] provided such cut-off values for

parameterized systems with ring topology. A similar technique [39] is proposed to

obtain tighter bounds of the cut-off for parameterized systems independent of the

communication topology. Our technique considers only one parameterized thread

and requires no symmetry reduction.

7.1.1.2 Equivalence Checking

Many approaches have been proposed for checking the equivalence of two

sequential programs. For instance, equivalence checkers [102, 120] perform a de-

pendence graph abstraction of programs containing affine loops. The basic idea is

to match the dependence graphs by checking the associated relations using Omega

test. Unfortunately, Omega test only supports linear arithmetic; and the lack of

a powerful decision procedure makes them unable to handle trivial arithmetic

transformations such as 2 ∗ k[i] = k[i] + k[i]. They can only handle programs with

high similarities.

TVOC [8] first verifies loop transformations using a specific proof rule Per-

mute, then verifies structure-preserving optimizations using some validation rules.

It relies on extra information supplied by the compiler to generate verification

conditions, which are dumped to an SMT solver for satisfiability check. Zaks and

Pnueli [127] also used SMT solving to check structure-preserving optimizations.

Their verifier attempts to find invariants (to match the variables in the source

and target programs) over the conjunction of the models of the two programs.

However, it is hard to identify sufficient invariants for aggressive optimizations.

These checkers work on sequential programs. An equivalence checking method

for CUDA kernels is discussed in [69]. As mentioned before, it makes many

assumptions on the input programs; it is not parameterized; and and no im-

plementation of the checker is reported.

122

7.2 Nonparameterized Checking

Although CUDA kernels are concurrent programs executing in parallel, CUDA

programmers often intend to write deterministic programs whose final results are

independent of the concurrent schedule. We have presented the static checker

[61] to determine whether a program is deterministic; and also proved that a

deterministic program could be serialized such that the accesses on shared variables

are executed in a sequential order. In this section, we give a different (and slightly

better) order to sequentialize the shared variable accesses. Unlike the one in

Chapter 6, this order requires only local information of the accesses.

7.2.1 Serializing Concurrent Executions

We now illustrate the translation of shared variable updates in concurrent

executions. Suppose we have to translate a global assignment v[tid.x] = tid.x +

1 where v is a shared array. Note that n threads are being allowed to concurrently

perform this assignment. On the other hand, since no data race exists and the

program is deterministic, we can specify an order in which the assignments are

executed by assigning SSA indexes to v. A typical order is to have the threads

execute the assignments with respect to their thread ids: thread 0 executes first,

then thread 1 executes, . . . , finally thread n− 1 executes. Such order is called the

natural order.

v1[0] = 0 + 1 ∧ v2[1] = 1 + 1 ∧ . . . ∧ vn[n− 1] = n− 1 + 1

Now consider a more complicated example where v is the only shared variable.

As usual, we assume that no data races occur on v. In the first round, all threads

execute v[i] = v[j] + tid.x. After all threads finish this assignment, the second

round containing v[k]++ starts execution.

v[i] = v[j] + tid.x; syncthreads(); v[k]++;

The natural order generates the following constraint.

Thread t0 . . . Thread tn−1
v1[i] = v0[j] + 1 . . . vn[i] = vn−1[j] + n
vn+1[k] = vn[k] + 1 . . . v2n[k] = v2n−1[k] + 1

Formally, the combined transition system for n threads is

123

trans(tx, n) ≡ vx+1[i] = vx[j] + 1 ∧ vn+x+1[k] = vn+x[k] + 1
TRANS(t, n) ≡

∧
x∈[0,n−1] trans(tx, n) .

In Figure 7.1 we give the model of the naiveTranpose kernel. Each thread has

a private copy of local variables such as xIndex. They are referred to by xIndexsi

in each thread si. Similarly, we can obtain the model TRANSt(t, n) for the optimized

kernel (we use s and t to refer to the source (naive) and target (optimized) kernel,

respectively). The encoding of the postcondition is trivial and not shown here.

7.2.1.1 Equivalence Checking and Property Checking

Given the models TRANSs and TRANSt for two kernels with inputs ~i and output

~o, the kernels are equivalent if and only if the following constraint holds. We

subscript the variables in the source and target kernel with s or t, respectively.

∀n. TRANSs(s, n) ∧ TRANSt(t, n) ∧ (~is =~it)⇒ (~os = ~ot) .

Unfortunately, an SMT solver is unable to handle this quantified formula since

the definition of TRANS is recursive over the number of threads and the solver

requires a concrete n to unroll the recursion. This also forbids using induction

(e.g. k-induction [89]) to to perform the proof. Moreover, the fact that it conjuncts

the models of n threads makes it suffer from the blow-up problem.

In addition to equivalence checking, PUG also checks the properties specified

as assertions (e.g. in the postconditions). The assertion language supports the

definition of Boolean formula using C’s syntax. Moreover, one of its main features

is to allow the definition of loops so as to handle recursive properties and variables

with symbolic values. For instance, consider a reduction kernel which computes

trans(si, n) ≡
xIndexsi1 = bidsi .x ∗ bdim.x+ si.x ∧ yIndexsi1 = bidsi .y ∗ bdim.y + si.y ∧
ite(xIndexsi1 < width0 ∧ yIndexsi1 < height0,

index insi1 = xIndexsi1 + width0 ∗ yIndexsi1 ∧
index outsi1 = yIndexsi1 + height0 ∗ xIndexsi1 ∧
odatasi+1 = odatasi] ([index outsi1] 7→ idatas0[index insi1]),
odatasi+1 = odatasi)

TRANSs(s, n) ≡
∧
i∈[0,n−1] trans(si, n)

Figure 7.1: A unparameterized model of the naiveTranpose kernel.

124

the sum of the elements in the input array idata and store this sum in odata

after the computation. A postcondition specifying the functional correctness is as

following, where n is the number of elements in idata.

for (i = 1; i ≤ n; i++) {odata += idata[i];}

In some cases, the functional correctness can be specified recursively. Consider

a scan kernel which computes the parallel prefix sum of the input elements. We

show below a valid postcondition.

g_odata[0] = 0 ∧
(0 < i < n - 1 ⇒ g_odata[i+1] = g_odata[i] + g_idata[i])

7.3 Parameterized Checking

This section describes how to perform parameterized encoding. The key is to

calculate the value of an output element regardless of the number of threads.

7.3.1 Single Conditional Assignment

Our method builds a symbolic model according to the accesses on shared

arrays. We first present a method which eliminates all the intermediate variables

so that only the accesses on shared arrays are left (an optimization is presented

in Section 7.3.3). For example, the body of the naiveTranspose contains a

conditional assignment (CA) to odata as follows.

if (bid.x * bdim.x + tid.x < width && bid.y * bdim.y + tid.y < height)

odata[(bid.y * bdim.y + tid.y) + height * (bid.x * bdim.x + tid.x)] =

idata[(bid.x * bdim.x + tid.x) + width * (bid.y * bdim.y + tid.y)];

This can be interpreted by a mapping from odata to idata. Let c(tid), addrd(tid)

and addrs(tid) denote the condition bid.x∗ bdim.x+ tid.x < width ∧ bid.y ∗ bdim.y+

tid.y < height, the destination address (bid.y∗bdim.y+tid.y)+height∗(bid.x∗bdim.x+

tid.x), and the source address (bid.x∗ bdim.x+ tid.x)+width∗ (bid.y ∗ bdim.y+ tid.y),

respectively. This CA can be denoted as c ? odata[addrd] := idata[addrs], where

odata[addrd] and idata[addrs] are called the range and domain of the CA, respec-

tively. Now, consider the kth element in the output array, odata[k]. Its value

comes from either (1) idata[addrs(si)] for some si provided that k = addrd(si) and

the guard holds (there is only one such si since no race occurs on idata); or (2)

125

the old value of odata[k] if @si : k = addrd(si) ∧ c(si). For brevity, we write p(si)

for the predicate (k = addrd(si)) ∧ c(si). The following diagram indicates how

odata[k] is computed: if p holds for thread s1, then odata[i] = idata[addrs(s1)],

otherwise thread s2 is investigated, and so on. Here, we use the “xor” operator ⊕

to emphasize that at most one thread satisfies p. If no thread satisfies p, then the

old value of odata[k] is used. As before we will use SSA indices to subscript the

accesses, e.g. odata1 denote the first write to odata.

odata[k] =
p(s1) p(s2) . . . p(sn) else
◦ ⊕ ◦ . . . ◦ ⊕ ◦

idata[addrs(s1)] idata[addrs(s2)] . . . idata[addrs(sn)] odataold[k]

This seems to require the enumeration of n threads. However, since there exists

no conflict, at most one thread will satisfy p. Therefore, we can build an SMT

constraint considering only one thread (with symbolic ID si).

(∃si : p(si))⇒ odata1[i] = idata0[addrs(si)] for that si
(∀si : ¬p(si))⇒ odata1[k] = odata0[k]

Note that, for a given si, ¬p(si) does not necessarily indicates that odata[k]

takes its old value — only if there exists no such si will the value of odata[k] be un-

changed. Thus, we cannot conclude that odata1[k] = ite(p(si), idata0[addrs(si)], odata0[k]).

Instead, odata1[k] = odata0[k] only if p does not hold for all si.

Unfortunately, existing SMT solvers often fail to handle quantified formulas

(they return an inconclusive answer “unknown”). To overcome this limitation

and make sure that our verifier gives conclusive answers, we derive unquantified

formulas from the quantified ones and use them as the constraints. From the first

formula, we can derive p(si) ⇒ odata1[k] = idata0[addrs(si)] for a fresh variable

si, which indicates that, for any si, if p(si) is true then odata[k]’s value comes

from idata0[addrs(si)]. The absence of conflicts enables us to eliminate the ∃

quantifier by introducing the fresh variable si. For the second formula, we apply

the approach detailed in section 7.3.4. It should be noted that such conversions

are under-approximations: if PUG reports a bug, then this bug is real; if a kernel

is correct, then PUG will not report a bug. However, PUG may fail to reveal some

bugs in a kernel. We call the derived formulas Verification Conditions. Section

7.3.4 gives more discussions.

126

7.3.2 Instantiation of Conditional Assignments

Now consider a more complicated case where an expression contains multiple

instances of an shared variables. For example, v[a1] op v[a2], where op is a binary

operator, reads variable v twice at addresses a1 and a2, respectively. Right before

these reads there exists a CA p ? v[e] := w. The question is: what is the value

of v[a1] op v[a2] in terms of w? Or more specifically, suppose P is a predicate on

v[a1] op v[a2]; what is its value in terms of w?

p(s1) ? v[e(s1)] := w(s1) p(s2) ? v[e(s2)] := w(s2)

P (v[a1] op v[a2])
H

HH
H

HH
HHY

p(s1) ∧ a1=e(s1)
��

��
�
��
�*

p(s2) ∧ a2=e(s2)

For the first read v[a1], we introduce a fresh variable s1 to denote the ID of the

thread writing the value to v[a1]. In other words, (p(s1) ∧ a1 = e(s1)) ⇒ v[a1] =

w(s1). For the second read v[a2], note that we cannot use the same s1 because the

write may come from another thread. Thus, we introduce another fresh variable

s2 for the thread writing to v[a2] such that (p(s2) ∧ a2 = e(s2)) ⇒ v[a2] = w(s2).

These two formulas connect expression v[a1] op v[a2] with w such that the value of

this expression can be obtained from two instantiations (one for s1 and the other

for s2) of w. In general, if an expression contains n reads from variable v, then n

fresh variables and n formulas are created.

Considering only these two formulas, one verification condition for P (v[a1] op v[a2])

is shown below. It reduces the checking on v[a1] and v[a2] to that on w1(s1) and

w2(s2).

p(s1) ∧ a1 = e(s1) ∧ p(s2) ∧ a2 = e(s2) ⇒ P (w(s1) op w(s2))

For instance, consider the optimized Transpose kernel. Let X(i) and Y (i) be

bid.x ∗ bdim.x + i and bid.y ∗ bdim.y + i, respectively. This kernel contains two

CAs.

if (X(tid.x) < width && Y(tid.y) < height)

block[tid.y][tid.x] = idata[Y(tid.y) * width + X(tid.x)];

if (Y(tid.x) < height && X(tid.y) < width)

odata[X(tid.y) * height + Y(tid.x)] = block[tid.x][tid.y];

127

The value of the ith output element odata[i] may be tracked back to an element

in the block first, then to an element in the idata. That is, it can be obtained by

the sequential composition of the two CAs. We instantiate the tids in the first

and second assignments to be t1 and t2, respectively (recall that we use t rather

than s for this optimized kernel). An important point here is to match the first

CA’s range blockt1[t2.x][t2.y] and the CA’s domain blockt1[t1.y][t1.x] using constraint

t2.x = t1.y ∧ t2.y = t1.x.

i = X(t2.y) ∗ height+ Y (t2.x) ∧ (Y (t2.x) < height ∧X(t2.y) < width) ⇒
odatat1[i] = blockt1[t2.x][t2.y]

(t2.x = t1.y ∧ t2.y = t1.x) ∧ (X(t1.x) < width ∧ Y (t1.y) < height) ⇒
blockt1[t2.x][t2.y] = idatat0[Y (t1.y) ∗ width+X(t1.x)]

We may dig deeper into these formulas. Suppose X(t.x), Y (t.y) < min(width, height)

holds for any t, i.e. thread t accesses data within the bounds of the 2-D input array

with height height and width, then the above two formulas become

i = X(t2.y) ∗ height+ Y (t2.x) ⇒ odatat1[i] = blockt1[t2.x][t2.y]
(t2.x = t1.y ∧ t2.y = t1.x) ⇒

blockt1[t2.x][t2.y] = idatat0[Y (t1.y) ∗ width+X(t1.x)] .

If each block of threads is a square such that bdim.x = bdim.y, then we can

derive the following formula justifying the correctness of the optimized kernel –

the input array is correctly transposed no matter how many threads are consid-

ered. Note that this kernel is designed with implicit assumptions that (1) each

block is square; and (2) only those threads with tid t satisfying X(t.x), Y (t.y) <

min(width, height) should participate in the computation. Our encoding models

exactly this design and reveals hidden assumptions. For example, PUG reports the

bugs when the block is not square; and passes the checking for valid configurations.

odatat1[X(t1.x) ∗ height+ Y (t1.y)] = idatat0[Y (t1.y) ∗ width+X(t1.x)]

The equivalence of the two example kernels requires odatas1[i] = odatat1[i] pro-

vided that all above constraints hold and idatas0 = idatat0. Note that only odata[i]

is instantiated only once for each kernel. We need to reducing the checking on

odatas1[i] and odatat1[i] to that on the elements in the input array idata.

128

7.3.3 Barrier Interval and Control Flow

The statements between two consecutive barriers are within a Barrier Interval

(BI). Since there are no conflicts in a BI, the writes to the same shared variable

will not be on the same address. We may use this fact to simplify the generated

constraints. Consider the following diagram where BI 1 contains multiple writes

to v and in BI 2 property P reads v.

p1 ? v[e1] := w1

BI 1 p2 ? v[e2] := w2

. . .
pn ? v[e2] := wn

BI 2 P (v[a])

The nonconflicting assumption indicates that there exists at most one v[ei]

which would match v[a]. Thus, instead of writing a pair of constraints for each

CA, we can combine all the CA constraints to be an embedded ite expression

(here, v1 and v0 represent v’s value right before BI 1 and BI 2, respectively). The

main benefit is now we have only one quantified formula rather than n ones. In

some cases (e.g. the two Transpose kernels), the quantified formula is not needed

at all because v[a]’s value comes from one of the writes in BI 1.

ite(a = e1 ∧ p1, P (w1),
ite(a = e2 ∧ p2, P (w2),

. . .)) and
(@i ∈ [1, n] : a = ei ∧ pi)⇒ P (v0[a])

A further optimization we employed is to keep the control flow of the BI and

not eliminate all intermediate variables. The program below (the left column)

contains two conditional jumps. Instead of flattening this program to generate

three CAs: c1 ∧ c2 ? v[e1] = w1, c1 ∧ ¬c2 ? v[e2] = w2 and ¬c2 ? v[e3] = w3, we keep

this control flow structures and generate the constraint as shown on the right.

This representation, which mimics those in Chapter 6, reduces substantially the

size of the constraints and make them much more readable.

if (c1) {
if (c2) v[e1] = w1;
else v[e2] = w2;
}
else v[e3] = w3;

ite(c1,
ite(c2,

a = e1 ⇒ P (w1),
a = e2 ⇒ P (w2),

a = e3 ⇒ P (w3)))

129

7.3.4 Quantified Formulas

We try to convert a quantified formula into an equivalent quantifier-free formula

whenever possible. The quantified formulas we encounter so far are of the following

format, where t is the thread id with domain [1..n], f is a function of t, c is the

guard on t, a is an expression not involving t, and P is a predicate indicating the

value of a variable is unchanged.

(∀t ∈ [1..n] : ¬(a = f(t) ∧ c(t))) ⇒ P

We introduce a function g : int → int by defining g(t) = a if (a = f(t)) ∧ c(t)

and g(t) = undefined otherwise. That is, g(t) returns the address a satisfying

(a = f(t)) ∧ c(t). Let the integer space S be {g(t) | t ∈ [1..n]}, i.e. the set

of all addresses obtained by applying g on the thread IDs. In a typical CUDA

kernel, function g is often an increasing or decreasing function. Without loss of

generality we assume g is increasing. Usually the space S is discrete such that

∀t ∈ [1..n) : ∃v : a(i) < v < a(i + 1). The fact that there exists no t satisfying

a = g(t) is equivalent to there exists a t such that a falls between g(t) and g(t+ 1)

(here we need to extend g’s definition to t = 0 and t = n+ 1).

(∀t ∈ [1..n] : ¬(a = g(t)))⇐⇒ (∃t ∈ [0 .. n] : g(t) < a < g(t+ 1))

Moreover, there exists at most one such t since g is an increasing function. In

order to obtain an unquantified verification condition, we can introduce a fresh

variable t to eliminate the ∃ quantifier to obtain the final verification condition.

t ∈ [0 .. n] : g(t) < a < g(t+ 1) ⇒ P

It is not hard to see that the g functions for the two Transpose kernels are

increasing and their quantified formulas can be converted in this manner. In fact,

under valid configurations (e.g. the block is of square size), their spaces S are

continuous over the thread IDs; thus, the quantified formulas will never be used

and can be safely removed.

7.3.4.1 Fast Bug Hunting

On the other hand, if the quantifier elimination is impossible, then we will

further loose the requirement of proving the properties: our goal is to locate

130

the property violation quickly by ignoring the quantified formula. Of course, the

checker must be trustworthy such that if it reports a bug, then the kernel is indeed

buggy.

Consider the following sequence. Even the quantified formulas are unconvert-

ible, we know conclusively that P (f(w)) should be true if both e3 = e4 ∧ p2 and

e2 = e1 ∧ p1 hold. Thus, any violation of the predicate (e3 = e4 ∧ p2 ∧ e2 =

e1 ∧ p1) ⇒ P (f(w)) reveals a real bug. PUG is able to find such bugs fast.

p1 ? v[e1] := w; p2 ? v[e3] := f(v[e2]); assert P (v[e4])

7.3.4.2 Coverage

One may complain that our parameterized method suffers from under-approximation

due to the insufficient handling of quantified formulas. Yet our encoding ensures

that all (conditional) assignments are covered. With the quantifier elimination

technique and those described in Section 7.3.3, all combinations (as conjunctions)

of the CAs in different BIs are encoded. In practice PUG will miss none or only

very few bugs of many kernels.

7.3.4.3 Omega Test

Omega Test [93] may be used to match the address of a read and the range

of a CA by building a relation (over the thread IDs) from the address to the

range {address → range | cond}. The main advantage is that it will not generate

quantified formulas. However, Omega Test only supports linear expressions while

nonlinear expressions prevail in CUDA kernels (e.g. in the two Transpose kernels).

Our SMT-based method can be regarded as an alternative to Omega Test to handle

nonlinear expressions.

7.3.5 Loops

So far, our method works well for kernels containing no loops. When a loop

is present, a naive solution is to fully unroll the loop. However, loop unrolling

may not scale, especially with nested loops. Also, the loop bounds may involve

symbolic values, making it impossible to perform loop unrolling without assigning

concrete values to relevant inputs. Our solution is to align the loops or down-size

the iteration space.

131

The loop problem becomes much less severe in equivalence checking. Typical

CUDA optimizations often preserve the loop structures of the source kernel such

that we may just need to compare the bodies of the loops. Similar assumption is

made in [127]. For example, we can optimize the following loop where sdata is a

shared array

for(unsigned int k = bdim.x / 2; k > 0; k >>= 2) {

if ((tid.x % (2*k)) == 0)

sdata[tid.x] += sdata[tid.x + k];

__syncthreads();

}

to the one below by eliminating the slow modulo arithmetic.

for(unsigned int k = 1; k < bdim.x; k *= 2) {

int index = 2 * k * tid.x;

if (index < bdim.x)

sdata[index] += sdata[index + k];

__syncthreads();

}

Since the operator + in the body is commutative and associative, the two loop

headers can be normalized to be the same. Then, the two respective CAs are as

follows, which will be used for equivalence checking discussed in previous sections.

s.x % (2 ∗ k) = 0 ? s.x := s.x+ k
2 ∗ k ∗ t.x < bdim.x ? 2 ∗ k ∗ t.x := 2 ∗ k ∗ t.x+ k

When the loop alignment fails, we unroll the loops fully. This happens when

optimizations other than memory coalescing and bank conflict elimination are

applied. We plan to port the method in [8] to deal with other typical loop

transformations.

7.3.5.1 Symmetry Reduction

In many cases, the loop bounds in a CUDA kernel depends on the size of a

block. Since the principle [24] of designing a CUDA kernel is to have it run on an

arbitrary block size (or with little restriction), we are able to reduce the block size

to a reasonable value and then run PUG. Currently, finding the appropriate size

is done manually. We plan to develop an automatic symmetry reduction approach

to identify, for a property p, the minimum number of threads n for which p should

be checked. When p holds on n, then p holds on all n′ such that n′ > n.

132

7.4 Experimental Results (Equivalence Checking)

The parameterized checker uses Z3 [126] as the SMT solver. Z3’ expressions

are based on bit vectors (bounded integers); thus, the solving time depends on the

number of bits.

We performed experiments on a laptop with an Intel Core(TM)2 Duo 1.60GHz

processor and 2GB memory to check some representative kernels in CUDA SDK

2.0 Suite [23], each of which contains both unoptimized and optimized kernels.

Table 7.1 shows the SMT solving time in seconds. Here n denotes the number of

GPU threads. The Transpose kernels are not equivalent when n is not a square

of a number; we mark these cases with the ∗. The reduction kernels contains

loops whose upper bounds depend on n, making the generic method blow up on

n. Notation 16b indicates that 16-bit bit-vectors are used; T.O denotes Time

Out (> 5 minutes). These benchmark programs contains intensive multiplication

operations, thus are quite sensitive to the size of bit-vectors. This may cause even

the parameterized method to time out. In this case, we concretize some symbolic

variables (i.e. give them concrete values, indicated by the “+C.” flag) and then

compare the results.

Our testing addresses two kinds of bugs. The first kind is due to incorrect

configurations for running the kernels. For example, the block size for the Tranpose

kernel is not square; or the value of ACCN is not the power of 2 in the Scalar

Product kernel. PUG is able to reveal these hidden implications by reporting the

bugs. The second kind is the bugs we introduce intentionally to the correct kernels,

e.g. by modifying the addresses of accesses on shared variables or the guards of

conditional statements.

Table 7.2 compares the two approaches on finding the bug taken the longest

time to locate. Not surprisingly, the parameterized method shows dramatic im-

provements.

Table 7.1: Comparing the two methods in equivalence checking.

Kernel Nonparameterized Parameterized
n = 4 8 16(+C.) 32(+C.) -C. +C.

Transpose (8b) <1 <1∗ 7.3 15.4∗ T.O <0.1
Transpose (16b) 28 <1∗ T.O(1.2) 37(14.3)∗ T.O <0.1
Transpose (32b) T.O 1.5∗ T.O(4.3) T.O(31) T.O 0.16
Reduction (8b) 1 41 T.O(T.O) T.O(T.O) 0.2 0.2
Reduction (12b) 21 T.O T.O T.O 15 11

133

Table 7.2: Comparing the two methods in bug finding.

Method / Kernel Transpose Reduction
16b 32b 8b 16b 32b

Nonparam.(n = 4) 0.16 0.54 0.2 0.3 0.8
Nonparam.(n = 8) 0.53 1.8 3.4 7 9.2
Nonparam.(n = 16) 2.7 7.9 T.O T.O T.O
Parameterized <0.1 0.26 <0.1 <0.1 0.1

PUG has checked more kernels than shown in above tables, some of which come

from a GPGPU class recently taught in the University of Utah. Although they

are small-medium size programs (typically 50-200 lines of code), it is nontrivial

to verify these highly optimized parallel programs. Furthmore, even for a small

kernel, loop unrolling often results in many CAs to be checked. Encouragingly,

PUG is able to identify the bugs (if any) within few seconds. For kernels involving

floating-point operations, we plan to extend PUG by incorporating SMT solver’s

support for real numbers.

7.5 Discussions

Our checker presented in this chapter is the first parameterized checker for

GPGPU kernels. Particularly, the parameterized method is highly scalable for

identifying the semantics discrepancy between kernels. In addition to finding

better ways to handle quantified formulas, we plan to extend PUG to dealing

with more complicated programs. For equivalence checking, we plan to deal with

nontrivial loop transformations.

CHAPTER 8

SUMMARY AND FUTURE WORK

We have demonstrated how to model and formally validate programs with

various computation and communication models. The techniques we use for formal

analysis include theorem proving, model checking, and constraint solving.

8.1 Comparing Formal Analysis Techniques

In Table 8.1, we give a coarse comparison (which may be biased) of these

techniques based on our experience so far.

Each method requires building a model of the program to be analyzed. Since

we can define almost everything in the higher-order logic of HOL, theorem proving

is the most general one. A model checker usually provides a specification language

expressive enough to model a variety of systems; however, it often scarifies expres-

siveness for better performance. SMT solvers only support a few theories such

as those for integers, arrays, and uninterpreted functions; and they have great

difficulty in dealing with quantified formulas.

A theorem prover like HOL contains a tiny kernel consisting of only a few

inference rules; this kernel is ensured to be sound with respect to the logic. When

modeling a system, a user gives a small set of axioms, from which all formal

statements are derived. To guarantee the accuracy of the model of the entire

system, one just needs to examine these basic axioms. For example, in order

to reason about ARM programs, we first define the operational semantics of the

ARM assembly language, then derive from this semantics a large set of rules (e.g.

Table 8.1: A comparison of involved formal analysis techniques.

Method Theorem Proving Model Checking Constraint Solving

Generality Good Fair Poor
Rigidity Good poor Fair
Productivity Poor Fair Good
Automation Poor Good Good

135

composition rules for control flow structures) to facilitate the reasoning.

Model checking and constraint solving, on the other hand, require defining the

entire model explicitly. No derivation is needed to obtain higher level views of

the programs. For example, we can encode all concurrent behaviors of a CUDA

kernel into a single formula, then perform all subsequent analyses on this formula.

Unfortunately, building the model for a large system is tedious and error prone.

As a compensation, constraint solvers can check self-consistency properties by

modeling all possible cases with a symbolic formula and solving this formula in

one go, while (explicit) model checkers can investigate only a subset of test cases.

From a user’s perspective, theorem proving is notoriously tedious and time

consuming: one not only needs to derive a sufficient set of theorems / rules

from the axioms, but also has to manually take care of the solving procedure.

The decision procedure in a theorem prover is weak and slow because it relies

mainly on term rewriting, e.g. reducing a predicate to true or false. What is

worse, the prover has to pick the right rules and apply them in the right order to

obtain meaningful results. Because of these limitations, our trusted compiler is

incapable of handing large and complex programs. In contrast, model checkers and

constraint solvers are designed for automated checking and reasoning, and they

also allow the users to define simple heuristics to guide the solving procedure.

Since model checking suffers more from the space space blow-up problem, it

requires more user intervention in order to search the state space wisely. In fact,

partial order reduction along with symmetric reduction is a must for scaling model

checking to large systems.

8.2 Future Work

There are plenty of possibilities to augment our work on building trusted

compilers. For instance, it is desirable for the front-end to accept more advanced

language features such as modules and objects. As some transformations are

verified in a transition validation style, it is better to prove them once and for

all in a verifying compiler manner. Furthermore, we would like to move from

handling sequential programs to concurrent programs, e.g. construct and verify

parallelizing compilers for shared memory architectures.

As for MPI programs, while we have been relatively happy with TLA+ as

a specification language, much of the value we derived from TLA+ is from the

136

accompanying model checker TLC which uses the explicit state enumeration tech-

nology to calculate reachable states. Such tools cannot be used to calculate the

outcome of general scenarios such as these: “what will happen if we initialize

an MPI runtime to a state satisfying a high-level predicate and some partially

specified symbolic inputs are applied?” Therefore, it would also be of interest

to explore the use of symbolic reasoning capabilities in conjunction with API

specifications. For example, we may use theorem proving to reason about MPI

programs in the Isabelle/TLA+ setting [114].

Our focus in the near future is to improve the symbolic checker for GPU

programs. First of all, we need to overcome the limitations pertaining to the

calling context of CUDA kernels. Any method for obtaining automatically the

constraints on calling context can help improve the degree of automation. And,

loop invariant discovery methods that determine the loop refinement annotations

will also enhance the usability of PUG.

Although traditional testing methods are ineffective at locating CUDA bugs

because they assume concrete input values, they are extremely valuable in mea-

suring the performance (e.g. the exact measurement of bank conflicts and global

memory coalesce) and helping users to debug the programs interactively. We

are developing a dynamic symbolic executor which executes the code directly

rather than applying static analysis. It contains light-weight runtime code to check

properties and measure the performance. In contrast to traditional testing tools,

it allows program inputs to have symbolic values, and extends the memory model

and the execution model to support symbolic values. This symbolic executor is

able to automatically generate test cases with high coverage guarantee.

REFERENCES

[1] Abadi, M., Lamport, L., and Merz, S. A TLA solution to the RPC-
memory specification problem. In Formal System Specification: The RPC-
Memory Specification Case Study (1996), M. Broy, S. Merz, and K. Spies,
Eds., vol. 1169 of LNCS, Springer-Verlag, pp. 21–66.

[2] Aiken, A., and Gay, D. Barrier inference. In Symposium on the
Principles of Programming Languages (POPL) (1998), pp. 342–354.

[3] Allen, R., and Kennedy, K. Optimizing Compilers for Modern Archi-
tectures: A Dependence-based Approach. Morgan Kaufmann, 2001.

[4] Appel, A. W. Foundational proof-carrying code. In Proc. 16th IEEE
Symposium on Logic in Computer Science (LICS) (2001), IEEE Computer
Society, p. 247.

[5] Arons, T., Pnueli, A., Ruah, S., Xu, J., and Zuck, L. D. Param-
eterized verification with automatically computed inductive assertions. In
Computer Aided Verification (CAV) (2001), pp. 221–234.

[6] Abstract State Machines. http://www.eecs.umich.edu/gasm/.

[7] Augustsson, L. Compiling pattern matching. In Conference on Func-
tional Programming Languages and Computer Architecture (1985), pp. 368–
381.

[8] Barrett, C. W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., and
Zuck, L. D. TVOC: A translation validator for optimizing compilers. In
Computer Aided Verification (CAV) (2005), pp. 83 – 94.

[9] Batson, B., and Lamport, L. High-level specifications: Lessons from
industry. In Formal Methods for Components and Objects (FMCO) (2002),
pp. 242–261.

[10] Benton, N., and Hur, C.-K. Biorthogonality, step-indexing and com-
piler correctness. In ACM SIGPLAN International Conference on Func-
tional programming (ICFP) (2009), pp. 97–108.

[11] Benton, N., and Zarfaty, U. Formalizing and verifying semantic
type soundness of a simple compiler. In 9th ACM SIGPLAN International
Symposium on Principles and Practice of Declarative Programming (PPDP)
(2007), pp. 1 – 12.

[12] Birkedal, L., Tofte, M., and Vejlstrup, M. From region inference
to von neumann machines via region representation inference. In Symposium
on Principles of Programming Languages (POPL) (1996), pp. 171 – 183.

138

[13] Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M.,
and Wansbrough, K. Rigorous specification and conformance testing
techniques for network protocols, as applied to TCP, UDP, and sockets. In
SIGCOMM (2005), pp. 265–276.

[14] Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M.,
and Wansbrough, K. Engineering with logic: HOL specification and
symbolic-evaluation testing for TCP implementations. In Symposium on
the Principles of Programming Languages (POPL) (2006), pp. 55–66.

[15] Blazy, S., Dargaye, Z., and Leroy, X. Formal verification of a C
compiler front-end. In 14th International Symposium on Formal Methods
(FM), Hamilton, Canada (2006).

[16] Blazy, S., and Leroy, X. Formal verification of a memory model
for C-like imperative languages. In International Conference on Formal
Engineering Methods (ICFEM), Manchester, UK (2005).

[17] Boehm, H.-J. Threads cannot be implemented as a library. In Program-
ming language design and implementation (PLDI) (2005), pp. 261 – 268.

[18] Broy, M., Hinkel, U., Nipkow, T., Prehofer, C., and Schieder,
B. Interpreter verification for a functional language. In Foundations of
Software Technology and Theoretical Computer Science (FSTTCS) (1994),
pp. 77–88.

[19] Chapman, B., Jost, G., and Pas, R. v. Using OpenMP. MIT Press,
2008.

[20] Chlipala, A. A certified type-preserving compiler from lambda calculus
to assembly language. In Conference on Programming Language Design and
Implementation (PLDI) (2007).

[21] Chlipala, A. A verified compiler for an impure functional language. In
Symposium on the Principles of Programming Languages (POPL) (2010),
pp. 93–106.

[22] Clarke, E. M., Talupur, M., and Veith, H. Proving ptolemy right:
The environment abstraction framework for model checking concurrent sys-
tems. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (2008), pp. 33–47.

[23] CUDA Zone. http://www.nvidia.com/object/cuda_home.html.

[24] CUDA Programming Guide Version 1.1, http://developer.download.
nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.
pdf.

[25] Dave, M. A. Compiler verification: a bibliography. ACM SIGSOFT
Software Engineering Notes 28, 6 (2003), 2.

[26] Dold, A., Gaul, T., Vialard, V., and Zimmermann, W. ASM-based
mechanized verification of compiler back-ends. In Workshop on Abstract
State Machines (1998), pp. 50–67.

139

[27] Eijk, P. V., and Diaz, M., Eds. Formal Description Technique Lotos:
Results of the Esprit Sedos Project. Elsevier Science Inc., New York, NY,
USA, 1989.

[28] Emerson, E. A., and Namjoshi, K. S. Reasoning about rings. In
Symposium on the Principles of Programming Languages (POPL) (1995),
pp. 85–94.

[29] Feng, M., and Leiserson, C. E. Efficient detection of determinacy races
in Cilk programs. In Parallel Algorithms and Architectures (SPAA) (1997),
pp. 1–11.

[30] Next Generation CUDA Architecture (Fermi), http://www.nvidia.com/
object/fermiarchitecture.html.

[31] Flanagan, C., Sabry, A., Duba, B. F., and Felleisen, M. The
essence of compiling with continuations. In Conference on Programming
Language Design and Implementation (PLDI) (1993), pp. 237 – 247.

[32] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra,
J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B.,
Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham, R. L.,
and Woodall, T. S. Open MPI: Goals, concept, and design of a next
generation MPI implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting (PVM/MPI) (2004), pp. 97–104.

[33] Geist, A., 2008. MPI Must Evolve or Die. Invited Talk Given at Eu-
roPVM/MPI 2008.

[34] Georgelin, P., Pierre, L., and Nguyen, T. A formal specification of
the MPI primitives and communication mechanisms. Tech. rep., LIM, 1999.

[35] Goerigk, W., Dold, A., Gaul, T., Goos, G., Heberle, A., von
Henke F., U., H., Langmaack, H., Pfeifer, H., Ruess, H., and
Zimmermann, W. Compiler correctness and implementation verification:
The verifix approach. In Poster Session of CC’96. IDA Technical Report
LiTH-IDA-R-96-12, Linkoeping, Sweden (1996).

[36] Gordon, M., Iyoda, J., Owens, S., and Slind, K. Automatic
formal synthesis of hardware from higher order logic. In Proceedings of
Fifth International Workshop on Automated Verification of Critical Systems
(AVoCS) (2005), vol. 145 of ENTCS, pp. 27–43.

[37] Gropp, W., Lusk, E. L., Doss, N. E., and Skjellum, A. A high-
performance, portable implementation of the mpi message passing interface
standard. Parallel Computing 22, 6 (1996), 789–828.

[38] Gropp, W. D. Learning from the success of MPI. In 8th International
Conference High Performance Computing (HiPC) (2001), pp. 81–92.

[39] Hanna, Y., Basu, S., and Rajan, H. Behavioral automata composition
for automatic topology independent verification of parameterized systems.
In 7th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE) (2009), pp. 325–334.

140

[40] Hannan, J., and Pfenning, F. Compiler verification in LF. In Proceed-
ings of the 7th Symposium on Logic in Computer Science (LICS) (1992).

[41] Harrison, J. Formal verification of square root algorithms. Formal
Methods in System Design 22, 2 (Mar. 2003), 143–154.

[42] Herlihy, M., and Shavit, N. The Art of Multiprocessor Programming.
Morgan Kauffman, 2008.

[43] Hickey, J., and Nogin, A. Formal compiler construction in a logical
framework. Journal of Higher-Order and Symbolic Computation 19, 2-3
(2006), 197–230.

[44] The HOL-4 Theorem Prover. http://hol.sourceforge.net/.

[45] Holzmann, G. The model checker SPIN. IEEE Transactions on Software
Engineering 23, 5 (May 1997), 279–295.

[46] IEEE. IEEE Standard for Radix-independent Floating-point Arithmetic,
ANSI/IEEE Std 854-1987, 1987.

[47] Ct: C for Throughput Computing. http://techresearch.intel.com/
articles/Tera-Scale/1514.htm.

[48] J. Boyle, R. R., and Winter, K. Do you trust your compiler?
applying formal methods to constructing high-assurance compilers. In
High-Assurance Systems Engineering Workshop (1997).

[49] Jackson, D. Alloy: A new technology for software modeling. In Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (2002), vol. 2280 of LNCS, pp. 175–192.

[50] Jackson, D., Schechter, I., and Shlyahter, H. Alcoa: the ALLOY
constraint analyzer. In ICSE ’00: Proceedings of the 22nd international
conference on Software engineering (2000), pp. 730–733.

[51] Jaffer, A., 2007. A Formal Semantics of Scheme. http://swissnet.ai.
mit.edu/~jaffer/r5rs-formal.pdf.

[52] Jiuxing Liu, Jiesheng Wu, D. K. P. High performance RDMA-based
MPI implementation over infiniband. International Journal of Parallel
Programming 32, 3 (2004), 167–198.

[53] Kirk, D. B., and mei W. Hwu, W. Programming Massively Parallel
Processors. Morgan Kauffman, 2010.

[54] Klein, G., and Nipkow, T. A machine-checked model for a Java-like lan-
guage, virtual machine and compiler. ACM Transactions on Programming
Languages and Systems (TOPLAS) 28, 4 (2006), 619–695.

[55] Kuchera, W., and Wallace, C. Toward a programmer-friendly formal
specification of the UPC memory model. Tech. Rep. 03-01, Michigan
Technological University, 2003.

[56] Leijens, D., and Schulte, W., 2008. The Design of a Task Paral-
lel Library. http://research.microsoft.com/apps/pubs/default.aspx?
id=77368.

141

[57] Leinenbach, D., Paul, W., and Petrova, E. Towards the formal ver-
ification of a C0 compiler: Code generation and implementation correctnes.
In 4th IEEE International Conference on Software Engineering and Formal
Methods (SEFM) (2005), pp. 2 – 12.

[58] Leroy, X. Formal certification of a compiler backend, or: programming
a compiler with a proof assistant. In Symposium on the Principles of
Programming Languages (POPL) (2006), ACM Press, pp. 42 – 54.

[59] Li, G., DeLisi, M., Gopalakrishnan, G., and Kirby, R. M. Formal
specification of the MPI-2.0 standard in TLA+. In 13th ACM SIGPLAN
Symposium on Principles and Practices of Parallel Programming (PPoPP)
(2008), pp. 283–284.

[60] Li, G., and Gopalakrishnan, G. Technical Report and PUG Tool
Download: http://www.cs.utah.edu/fv/PUG.

[61] Li, G., and Gopalakrishnan, G. Scalable SMT-based verification
of GPU kernel functions. In 18th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (SIGSOFT FSE) (2010).

[62] Li, G., Gopalakrishnan, G., Kirby, R. M., and Quinlan, D. A
symbolic verifier for CUDA programs. In 15th ACM SIGPLAN Sympo-
sium on Principles and Practices of Parallel Programming (PPoPP) (2010),
pp. 357–358.

[63] Li, G., Owens, S., and Slind, K. Structure of a proof-producing
compiler for a subset of higher order logic. In 16th European Symposium
on Programming (ESOP) (2007), pp. 205–219.

[64] Li, G., Palmer, R., DeLisi, M., Gopalakrishnan, G., and Kirby,
R. M. Formal specification of MPI 2.0: Case study in specifying a prac-
tical concurrent programming API. Tech. Rep. UUCS-09-003, University
of Utah, 2009. http://www.cs.utah.edu/research/techreports/2009/
pdf/UUCS-09-003.pdf.

[65] Li, G., Palmer, R., DeLisi, M., Gopalakrishnan, G., and Kirby,
R. M. Formal specification of MPI 2.0: Case study in specifying a prac-
tical concurrent programming API. Science of Computer Programming 75
(2010).

[66] Li, G., and Slind, K. Compilation as rewriting in higher order logic. In
21th Conference on Automated Deduction (CADE-21) (2007), pp. 19–34.

[67] Li, G., and Slind, K. Trusted source translation of a total function
language. In 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) (2008), pp. 471–485.

[68] Liang, C. C. Compiler construction in higher order logic programming. In
4th International Symposium on Practical Aspects of Declarative Languages
(PADL) (2002), pp. 47 – 63.

[69] Lublinerman, R., and Tripakis, S. Checking equivalence of SPMD
programs using non-interference. Tech. Rep. UCB/EECS-2009-42, EECS,
Berkeley, Mar 2009.

142

[70] The Maude System. http://maude.cs.uiuc.edu/.

[71] Multicore Communications API. http://www.multicore-association.
org.

[72] McCarthy, J., and Painter, J. Correctness of a compiler for arithmetic
expressions. In Symposium in Applied Mathematics (1967), vol. 19.

[73] Meyer, T., and Wolff, B. Tactic-based optimized compilation of
functional programs. In Types for Proofs and Programs Workshop (TYPES)
(2004), pp. 201–214.

[74] Milner, R., Tofte, M., Harper, R., and MacQueen, D. The
Definition of Standard ML, Revised Edition. MIT Press, 1997.

[75] The MLton Standard ML Compiler. http://mlton.org.

[76] Moore, J. S. Piton: A verified assembly level language. Tech. rep., CLI-
22, CLInc, 1988.

[77] Moore, J. S. A grand challenge proposal for formal methods: A verified
stack. In 10th Anniversary Colloquium of UNU/IIST (2002), pp. 161–172.

[78] MPI: A Message-Passing Interface Standard Version 2.1 Up to date specifi-
cations are at http://www.mpi-forum.org.

[79] Myreen, M. O., Slind, K., and Gordon, M. J. C. Extensible
proof-producing compilation. In 18th International Conference on Compiler
Construction (CC) (2009), pp. 2–16.

[80] Necula, G. C. Translation validation for an optimizing compiler. In
Conference on Programming Language Design and Implementation (PLDI)
(2000), pp. 83–94.

[81] Necula, G. C., and Rahul, S. P. Oracle-based checking of untrusted
software. In Symposium on the Principles of Programming Languages
(POPL) (2001), pp. 142–154.

[82] Nielson, F., Nielson, H. R., and Hankin, C. Principles of Program
Analysis. Springer-Verlag, 1999.

[83] Nipkow, T., Paulson, L. C., and Wenzel, M. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, vol. 2283 of LNCS. Springer, 2002.

[84] Norrish, M. C formalised in HOL. PhD thesis, University of Cambridge,
1998. http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-453.pdf.

[85] Owre, S., Rushby, J. M., and Shankar, N. PVS: A prototype
verification system. In 11th International Conference on Automated Deduc-
tion (CADE-11) (1992), vol. 607 of Lecture Notes in Artificial Intelligence,
pp. 748–752.

[86] Palmer, R., Delisi, M., Gopalakrishnan, G., and Kirby, R. M.
An approach to formalization and analysis of message passing libraries. In
Formal Methods for Industry Critical Systems (FMICS) (2007), pp. 164–181.

143

[87] Palmer, R., Gopalakrishnan, G., and Kirby, R. M. Semantics
Driven Dynamic Partial-order Reduction of MPI-based Parallel Programs.
In ACM workshop on Parallel and Distributed Dystems: Testing and Debug-
ging (PADTAD) (2007), pp. 43 – 53.

[88] Pervez, S., Gopalakrishnan, G., Kirby, R. M., Thakur, R.,
and Gropp, W. Formal methods applied to high-performance computing
software design: a case study of mpi one-sided communication-based locking.
Softw., Pract. Exper. 40, 1 (2010), 23–43.

[89] Pike, L. Real-time system verification by k-induction. Tech. Rep. TM-
2005-213751, NASA Langley Research Center, May 2005. Available at http:
//www.cs.indiana.edu/~lepike/pub_pages/reint.html.

[90] Pnueli, A., Ruah, S., and Zuck, L. D. Automatic deductive verifica-
tion with invisible invariants. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS) (2001), pp. 82–97.

[91] Pnueli, A., Siegel, M., and Singerman, E. Translation validation. In
4th International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS) (1998), pp. 151 – 166.

[92] Pnueli, A., Xu, J., and Zuck, L. D. Liveness with (0, 1, infty)-counter
abstraction. In Computer Aided Verification (CAV) (2002), pp. 107–122.

[93] Pugh, W. The omega test: a fast and practical integer programming
algorithm for dependence analysis. In ACM/IEEE conference on Supercom-
puting (SC) (1991), pp. 4 – 13.

[94] Reinders, J., 2008. Intel Thread Building Blocks.

[95] Reynolds, J. C. Separation logic: A logic for shared mutable data
structures. In IEEE Symposium on Logic in Computer Science (LICS)
(2002), pp. 55–74.

[96] Rinard, M., and Marinov, D. Credible compilation with pointers. In
Proc. FLoC Workshop on Run-Time Result Verification (1999).

[97] Robert S. Boyer, Y. Y. Automated proofs of object code for a widely
used microprocessor. Journal of the ACM (JACM) 43, 1 (1996), 166 – 192.

[98] The ROSE Compiler. http://www.rosecompiler.org/.

[99] Saabas, A., and Uustalu, T. A compositional natural semantics and
hoare logic for low-level languages. Theoretical Computer Science 373, 3
(2007), 273–302.

[100] Symbolic Analysis Laboratory (SAL), http://sal.csl.sri.com/.

[101] Sampaio, A. An Algebraic Approach to Compiler Design, volume 4 of
AMAST Series in Computing. World Scientific, 1997.

[102] Shashidhar, K. C., Bruynooghe, M., Catthoor, F., and Janssens,
G. Verification of source code transformations by program equivalence
checking. In 14th Conference on Compiler Construction (CC) (2005),
pp. 221–236.

144

[103] Siegel, S. F. Model Checking Nonblocking MPI Programs. In 8th
International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI) (2007), pp. 44–58.

[104] Siegel, S. F., and Avrunin, G. Analysis of MPI programs. Tech.
Rep. UM-CS-2003-036, Department of Computer Science, University of
Massachusetts Amherst, 2003.

[105] Siegel, S. F., and Avrunin, G. S. Modeling wildcard-free MPI pro-
grams for verification. In Principles and Practices of Parallel Programming
(PPoPP) (2005), pp. 95–106.

[106] Slind, K. Reasoning about Terminating Functional Programs. PhD thesis,
Institut für Informatik, Technische Universität München, 1999. http://
tumb1.biblio.tu-muenchen.de/publ/diss/in/1999/slind.html.

[107] Satisfiability Modulo Theories Competition (SMT-COMP). http://www.
smtcomp.org/2009.

[108] Squyres, J. M., and Lumsdaine, A. A Component Architecture
for LAM/MPI. In Proceedings, 10th European PVM/MPI Users’ Group
Meeting (PVM/MPI) (2003), pp. 379–387.

[109] Strecker, M. Formal verification of a Java compiler in isabelle. In
18th International Conference on Automated Deduction (CADE-18) (2002),
pp. 63–77.

[110] Tan, G., and Appel, A. W. A compositional logic for control flow. In
17th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI) (2006), LNCS, pp. 80–94.

[111] The Message Passing Interface Forum, 1995. MPI: A Message-
Passing Interface Standard. http://www.mpi-forum.org/docs/.

[112] TLA - The Temporal Logic of Actions. http://research.microsoft.com/
users/lamport/tla/tla.html.

[113] Leslie Lamport, The Win32 Threads API Specification. http://research.
microsoft.com/users/lamport/tla/threads/threads.html.

[114] TLA+ as an Isabelle object logic. http://www.loria.fr/~merz/stages/
InternshipIsabelleTLA.html.

[115] Tolmach, A., and Oliva, D. P. From ML to Ada: Strongly-typed
language interoperability via source translation. Journal of Functional
Programming 8, 4 (1998), 367 – 412.

[116] Träff, J. L., Gropp, W., and Thakur, R. Self-consistent MPI
performance requirements. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface (PVM/MPI) (2007), pp. 36–45.

[117] Tristan, J.-B., and Leroy, X. Formal verification of translation valida-
tors: A case study on instruction scheduling optimizations. In Symposium
on the Principles of Programming Languages (POPL) (2008), pp. 17–27.

145

[118] Vakkalanka, S., Gopalakrishnan, G., and Kirby, R. M. Dynamic
verification of MPI programs with reductions in presence of split operations
and relaxed orderings. In 20th International Conference on Computer Aided
Verification (CAV) (2008), pp. 66–79.

[119] van den Brand, M., Heering, J., Klint, P., and Olivier, P. A.
Compiling language definitions: The ASF+SDF compiler. ACM Transac-
tions of Programming Language Systems 24, 4 (2003), 334–368.

[120] Verdoolaege, S., Janssens, G., and Bruynooghe, M. Equivalence
checking of static affine programs using widening to handle recurrences. In
Computer Aided Verification (CAV) (2009), pp. 599–613.

[121] Vo, A., Vakkalanka, S. S., Delisi, M., Gopalakrishnan, G.,
Kirby, R. M., and Thakur, R. Formal verification of practical mpi
programs. In 14th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP) (2009), pp. 261–270.

[122] Wheeler, D., and Needham, R. TEA, a tiny encryption algorithm. In
Fast Software Encryption: Second International Workshop (1999).

[123] Winter, V. L. Program transformation in hats. In Proceedings of the
Software Transformation Systems Workshop (1999).

[124] Yices: An SMT Solver. http://yices.csl.sri.com.

[125] Young, W. D. Verified compilation in micro-Gypsy. In International
Symposium on Software Testing and Analysis (ISSTA) (1989), Springer-
Verlag, pp. 20 – 26.

[126] Z3: An SMT solver. http://research.microsoft.com/en-us/um/
redmond/projects/z3.

[127] Zaks, A., and Pnueli, A. CoVaC: Compiler validation by program
analysis of the cross-product. In 15th International Symposium on Formal
Methods (FM) (2008), pp. 35–51.

[128] Zimmermann, W., and Gaul, T. On the construction of correct compiler
back-ends: An ASM-approach. Journal of Universal Computer Science 3, 5
(1997), 504–567.

