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ABSTRACT

We examine optimal patch allocation strategies in a population structured by size or some other 
characteristic. By treating size-specific differences among patches as limiting factors, we create a 
single framework to analyse foraging for two resources, foraging in the presence of predators 
and foraging in the presence of competition. The ideal free distribution or size segregation are 
optimal only in restricted circumstances, among a range of other intermediate patterns of patch 
rejection. The predicted pattern can shift from an ideal free distribution to various forms of size 
segregation as resource renewal rates in patches become more different.

Keywords: foraging-predation trade-off, ideal free distribution, optimal foraging, size 
structure.

INTRODUCTION

When a population of foragers redistributes optimally among patches with different levels 
of resource availability, we might expect a correlation between the number and character of 
foragers present and the available resource. Under simple conditions, optimal foragers are 
predicted to redistribute themselves among patches so that no consumer would receive 
a different payoff if it moved to another patch, the ideal free distribution (IFD) (Fretwell 
and Lucas, 1970). When foragers differ in competitive ability, size or some other aspect of 
their state, the IFD is optimal only under particularly simple assumptions; for example, if 
foragers diffef only in the rate at which they collect food (Parker and Sutherland, 1986; 
Sutherland and Parker, 1992). Ideal free distributions permit patches to be shared by all 
sizes of forager. Other differences among foragers can lead to segregation of foragers into 
different patches (Parker and Sutherland, 1986; Sutherland and Parker, 1992). For example,
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if some foragers are more susceptible to predation than others, they should often reject 
dangerous patches even if they are highly productive.

The distribution of organisms ean be summarized in patterns of patch rejection. Some 
patches of poor quality might be rejected by all foragers, which we term universally rejected 
patches. In this case, the rejection pattern is not state-dependent. We refer to-patches used 
by one or more foragers as accepted patches. In the ideal free distribution, no accepted 
patch is rejected by any state (Fig. la). At the other extreme, as in the predation example, 
different states reject different patches and thus segregate by state (Fig. lb). In a mddel of 
dominance, Holmgren (1995) found an intermediate pattern he termed the semi-truncated 
distribution, where the most dominant foragers reject the poor patches, while the most 
subordinate foragers use all acceptable patches (Fig. Ic).

The risk of predation that leads to state segregation and the dominance hierarchy that 
leads to the semi-truncated distribution can both be thought of as limiting factors for the 
population in addition to the food resource itself (Levin, 1970). Many limiting factors, 
other than food, have been considered in models of patch selection, including predation 
(Ward et al., 2000), competitive ability (Spencer et al., 1995), interference (Moody and 
Houston, 1995) and dominance (Holmgren, 1995). In addition, a population could have 
two foods as limiting factors.

Some limiting factors, such as food, specialist predators and competition, respond 
to forager distribution. Others, such as generalist predators, available cover, optical clarity 
and temperature, may be fixed. We will show that the way that limiting factors respond to 
foraging determines the patterns of patch rejection, ranging from the IFD to segregation via 
several intermediate distributions.

We begin by reviewing models with a single limiting factor (thought of as a food), 
reiterating the conditions under which size-specific differences lead to segregation (Parker

Fig. 1. Patterns of patch rejection illustrating the ideal free distribution, complete size segregation 
and the semi-truncated distribution. The letters S, M and L represent small, medium and lsjF 
foragers respectively.
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and Sutherland, 1986; Sutherland and Parker, 1992). For convenience, we discuss differ­
ences in size rather than state in general, although our results apply directly to the more 
general case. We then treat cases with two limiting factors: one a food and the other either 
fixed at different levels in different patches or responsive to forager number or size. Specific­
ally, we consider the following cases:

1. Two food resources.

(a) Filter feeders eat both foods upon encounter.
(b) Perfect-preference feeders choose a single food in a given patch.
(c) Optimal foragers choose the single food or combination of foods that maximizes 

intake rate.

2. One food resource and predation.

(a) Generalist predators that do not respond to forager size and number.
(b) Specialist predators that respond to forager size and number.

3. One food resource and competition.

(a) Exploitation, where the interaction is mediated solely through food.
(b) Interference, where the interaction depends on the ratio of sizes of foragers.
(c) Dominance, where large individuals suppress small ones.

Our aims are to predict optimal patterns of patch rejection in these cases and to find 
commonalities among apparently different types of limiting factor.

MODELS WITH ONE LIMITING FACTOR

Although the case of one food resource has been modelled in detail (Parker and Sutherland, 
1986; Sutherland and Parker, 1992), we include the analysis to introduce notation and to 
emphasize critical assumptions. Our models assume simple dynamics of the resources and 
track the standing crop (equilibrium level) of a resource rather than the input rate (Lessells, 
1995; Frischknecht, 1996). We suppose that foragers redistribute quickly among patches 
relative to the speed of resource dynamics and ignore dynamical feedback (Kacelnik et al., 
1992; Abrams, 1999). Furthermore, we treat foragers as a density rather than as individuals, 
thus neglecting finite population size effects (Houston and McNamara, 1988; Ruxton and 
Humphries, 1999).

The basic model tracks a population of foragers that differ in size or some other state, 
indexed by s, which choose among a set of patches indexed by The total number (or 
density) of foragers of size s is a fixed function N{s), meaning that the models treat foraging 
redistribution as fast relative to changes in population or forager size.

The forager strategy N^s) is the number of foragers of size s foraging in patch i. 
Resources in patch / obey

cLR
- J  = p i -(Ja (s)N ,(s)d s)R 1 - d iR i . . ( 1)
at

where />, is the renewal rate and S, is the decay rate (see Table 1 for a complete description of 
notation). A non-zero decay rate guarantees that the resources will not increase without
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Table 1. Variables, param eters and  functions in
the single-resource model

s size (or state) of forager
N(s) density of foragers of a given size
a(s) rate of resource collection by size s
i index for patches
Ri resource level in patch i
Pi resource renewal rate in patch i
<5, resource decay rate in patch i
N,(s) number of foragers of size s in patch i

bound even in the absence of foragers. The collection function a(s) describes the per capita 
rate of resource capture by foragers of size s. In the simplest model, this function does not 
depend on the patch i.

We suppose that foragers prefer patches where they can collect more resources. Becausc 
the collection function a(s) does not depend on the patch, foragers of all sizes prefer the 
patch with the highest resource density. Thus, they deplete all patches to the same equi­
librium (patches with a sufficiently low equilibrium in the absence of foragers are uni­
versally rejected).

More formally, resources in patch i reach an equilibrium of R* given by

R *  = -------------—-------------
' f  a(s)N,(s)ds + <5,

This equilibrium is evolutionarily stable if R* = R* in each accepted patch. Such a solution 
does not uniquely determine the values of Nt(s). Many distributions result in identical! 
consumer pressure and resource densities in each patch (Houston and McNamara, 1988; 
Hugie and Grand, 1998; Ruxton and Humphries, 1999). The model makes no specific 
prediction about the distribution of size classes among patches because no size class il 
predicted to reject certain patches.

MODELS WITH TWO LIMITING FACTORS

The model with a single limiting factor can modify the ideal free distribution, but canno! 
lead to size-dependent patterns of patch rejection. In this section, we introduce two models 
that include two limiting factors, and show the patterns of size-dependent patch rejection 
that can occur. In the first, foragers cope with a depletable food resource and with a 
fixed limiting factor that does not change in response to forager pressure (e.g. a generalist 
predator, temperature or optical clarity). This fixed limiting factor acts as a patch-specific 
difference. In the second, foragers cope with two depletable food resources, each of which 
has its own dynamics.

One food and one fixed lim iting factor

Foragers may segregate by size if patches differ in some way other than resource density. 
For example, some patches may have higher levels of predation on small foragers, or some 
may have resources that are easier for large foragers to collect. We generalize the banc
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model (equation 1) by making the collection function a(s) a function of the patch i with a 
subscript, «,($).

Foragers of sizes prefer patch i to patch j  if

a,(s)R, > aj(s)Rj

and are indifferent if

a;(s)R, = aj(s)Rj

For a set of sizes to be indifferent to patches i and j  (and to follow an IFD), all sizes j  in that 
set must satisfy

«,(■?) Rj
aj(s) R,

This implies that the ratio of at(s) to a;(.v) must be size-independent. This is possible only 
if the functions a^s) and aj(s) are proportional to each other, which we term perfect size 
scaling (Fig. 2).

If the curves a fa) are not proportional, the model predicts size-dependent patterns of 
patch rejection. Figure 3 shows segregation of size classes into three patches, where large 
foragers are relatively best at foraging in patch 3, and choose that patch even though it has 
the lowest resource renewal rate. This reproduces the results of Parker and Sutherland (1986) 
and Sutherland and Parker (1992), except that we consider a continuum of size classes.

Two foods

Suppose patches contain two food resources, R  and Q, which obey

^ T  = P i - CTa(s)Nw(s)ds)Ri -  SiR l 
df

^  = a, -  ( /^ ) A ^ ) d .v )  Q, -  CS, (2)

where a, is the renewal rate and £, is the decay rate of resource Q in patch i (see Table 2 for 
a description of new parameters). N iR(s) and N iQ(s) represent the number of foragers of size 
j in patch i eating resources R  and Q respectively, without excluding the possibility that 
some foragers consume both resources. The collection function b(s) describes the per capita 
rate of capture of resource Q by foragers of size s and does not depend on the patch i 
because there are no other implicit limiting factors in the model.

Table 2. Additional variables, parameters and functions in the 
two-resource model

. Q>
b{s)
a,
c,
u(s) 
a(j, s’)

level of resource Q in patch i
rate of collection of resource Q by size s
rate of renewal of resource Q in patch i
rate of decay of resource Q in patch i '
vulnerability of size s to predation
interference by one forager of size s' on one of size s
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Fig. 2. (a) Perfect size scaling with proportional collection functions = 0.8s, OjM = 1 
and a3(s) = 2.4s in patches 1, 2 and 3 respectively, (b) Imperfect size scaling with non-proportional 
collection functions ai(s)= 1.0 + 0.4s, a2(s) = 1.0 + 0.8s and a3(s) = 1.0+ 1.2s in patches 1, 2 and 3 
respectively.

Foragers favoured with two food resources must make two choices: where to forage and
what to eat. We consider three types of forager (as in Krivan and Sikder, 1999).

1. Filter feeders eat both resources simultaneously at rates proportional to resource 
densities.

2. Perfect-preference foragers consume only one resource at any one time, but can switch 
between resources.

3. Optimal foragers adjust their effort to consume either the single resource or the 
combination of resources that maximizes intake.
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Fig. 3. Results of simulation of size segregation in three patches with non-proportional collection 
functions. The smallest foragers use patch 1 (solid line), the medium foragers use patch 2 (dashed line) 
and the largest use patch 3 (dotted line). The 21 size classes are evenly spaced and equally abundant,
ranging from = 0 to j = l .  The functions a:(s) are 0,(5) = 1.0 + 0.4s, a2(s) = 1.0 + 0.8j and
a2(s) = 1 .0+  1.2?, as in Fig. 2b. The parameter values are p. = 1, p2 = 2, p } = 3 and <5, = 1. Simulations 
are done by allowing foragers of each size and strategy (here a patch choice) to reproduce at rates 
proportional to collection rates, normalizing the total population of each size class to its initial value 
after each time step, and repeating until values converge within a given tolerance.

Filter-feeders
Suppose that the profitability of patch i is a function of a(s)Ri + b(s)Q„ the per capita rate 
of energy intake if R and Q are both measured in the same units. In this case, the resources 
are said to be perfectly substitutable (Tilman, 1982). Patch i is preferred over patch j  if

a{s)Ri + b(s)Qi > a(s)Rj + b(s)Qj

When the collection functions a(s) and b(s) are proportional, all size classes share the same 
preference for the most resource-rich patch -  that with the largest weighted sum of R  and Q 
-  and thus an IFD is the prediction.

There are two possible outcomes of the dynamics when a(s) and b(s) are not pro- 
portional.*Patches might arrive at different equilibrium values of R  and Q, resulting in size 
segregation of foragers. Alternatively, patches could achieve equal equilibria of R  and equal 
equilibria of Q, which we term resource convergence.

To give some idea of how similar the input and decay rates must be for resource con­
vergence to occur, we find the criteria for two patches. We find the set of input and decay 
parameters for which an equilibrium exists where R* = R * = R *  and Q* = Q * - Q * -  The 
detailed calculations are presented in Appendix 1. Patches become identical if they are 
relatively similar to begin with, and remain different if they are somewhat more different 
(Fig. 4). One patch is universally rejected if it is too inferior. The region of resource 
convergence is larger when a(s) and b(s) are close to being proportional.
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Fig. 4. Conditions under which a range of foragers in two patches achieve resource convergence | 
(shaded region), universally reject one patch, or size-segregate into both patches. The axes show the 
proportion of total resource renewal rate in patch 1, given by pxl{p\ + p2) for resource R and by 

+ O2) for resource Q. Foragers are distributed uniformly over the size range from s = 0 to 
s = 1; a(i) = 1, b(s) -  2s and <5, = = 1 (see Appendix 1 for details).

With multiple patches, some pairs of patches converge to be identical, others remain 
unique and some are universally rejected. An example with five patches is depicted in Fig. 5. 
Patch 1 is universally rejected, patches 2 and 3 become identical, patch 4 is used exclusively 
by the smallest size classes, which are relatively most efficient at collecting resource R, and 
patch 5 is used exclusively by the largest size classes, which are relatively most efficient at 
collecting resource Q. The irregular lines for the intermediate size classes that use patches! 
and 3 result from the indeterminacy of the ideal free distribution, and depend on the 
particular choice of initial conditions. The equilibrium densities R *  and Q* in accepted 
patches lie along a curve (Fig. 5b).

Perfect-preference foragers
These foragers consume only one food resource at a time, and must choose both a patch aodj 
a resource to consume. Resource R  in patch i is preferred by size j if

a(s)Rj > a(s)Rj for all j  *  i

and

a(s)Rj > b(s)Qj for all j

With a single patch, this model is formally identical to a two-patch version of the model 
with one food and one fixed limiting factor (see pp. 808-809).

As long as some foragers consume R  and some consume Q, all accepted patches mud 
achieve equal equilibria R *  and Q*. Patches break into four categories:
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Fig. 5. Results of simulation with the filter-feeding strategy, (a) Distribution of foragers in five 
patches. Patch 1 is universally rejected and does not appear, foragers of intermediate size use patches 2 
(solid line) and 3 (dashed line), the largest foragers use patch 4 (dashed line) and the smallest use patch 
5 (dot-dashed line), (b) Equilibrium levels R  and Q with and without foragers in the five patches. 
Boxes show the equilibrium without foraging; crosses show the equilibrium with foragers. The param­
eters values are: p5 = 2, 3, 4, 2, 4; <t,, , <t5 = 2, 3, 4, 4, 2; a(s) = 1, b(s) = 2s and 5, = = 1.

1. Those with Rt-  R* and Q,
2. Those with /?, < R* and Q
3. Those with R ~  R* and Q
4. Those with Rt < R* and Q

= Q* are used for both resources. 
= Q* are used for Q only. 
< Q* are used for R only.
< Q* are used for neither.

Typically, size classes specialize on a food resource but not on a single patch, which 
we refer to as a dual IFD. In Fig. 6, large foragers specialize on resource Q, and 
reduce equilibria of that resource to equal values in patches 2, 3 and 4, rejecting 
patches 1 and 5. Small foragers specialize on resource R, and reduce equilibria of that



814 Adler et al.

o
03
CL

co
o03

3

O 2 

1

size

patch 4 patch 3
I-l

patch 2.
/I;-""x

SO
patch 1

---Fl 
patch 5

R

Fig. 6. Results of simulation with the perfect-preference strategy (parameters and methods as in 
Fig. 5). (a) Distribution of foragers in five patches. Patch 1 is universally rejected and does not appear. 
Small foragers use resource R  (solid symbols) in patches 2 (solid line, squares), 3 (dashed line, circles! 
and 5 (dot-dashed line, inverted triangles). Large foragers use resource Q (open symbols) in patches 2, 
3 and 4 (dashed line, triangles). Simulations done as in Fig. 3 except that strategies now include a 
resource in addition to a patch choice, (b) Equilibrium levels of R  and Q with and without foragers in 
the five patches (as in Fig. 5b).

resource to  equal values in patches 2, 3 and 5, rejecting patches 1 and  4. As before, 
the irregular lines result from  the indifference foragers have am ong accepted patches 
The equilibrium  densities R *  and  Q* in accepted patches lie along a com er rather than 
a curve (Fig. 6b).

O p tim a l foragers

A detailed model of optim al foragers would include handling times, encounter rates and the 
energy values of the two resources as functions o f  forager size (Stephens and Krebs, 1986).
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To indicate the qualitative results, we present a simple scenario where foragers choose a 
patch-specific parameter y that represents their specialization on resource Q in that patch.

In particular, we set the total resource collection in patch i to be

a ( s ) f ( \ - y ) R i+b(s) f (y)Qi

where f (y)  = (1 + 0)y -  6y2. The function /  describes the trade-off between collection of the 
two resources. When y = 0, collection of resource R ceases, corresponding to a perfect 
preference for resource Q. When y = 1, collection of resource Q ceases, corresponding to 
a perfect preference for resource R. The optimal value of y depends on the ratio of the 
abundances of the resources and the efficiencies of resource collection (Fig. 7a). When one 
resource is much more common, the optimal strategy is to reject the other. The parameter 6 
controls the benefit of using an intermediate strategy. If 6 = 0, there is no incentive to use an 
intermediate strategy, and foragers always pick y = 0 or y = 1. For other values of 0, some 
foragers choose to utilize both resources when the two resources are roughly comparable in 
profitability for their size class (Fig. 7b).

Depending on the initial distribution of patch parameters and on the value of 0, results 
can resemble those with filter feeders (if all foragers choose intermediate values of y), those 
with perfect preference (if all foragers choose y -  0 or y -  1), or a combination of the two. 
Figure 8 shows an example where some patches are occupied by specialists (patch 5 used for 
resource R by small foragers and patch 4 used for resource Q by large foragers), and patches
2 and 3 are used by generalists of intermediate size.

APPLICATION TO OTHER TYPES OF LIMITING FACTOR

Limiting factors that differ in their dynamics (fixed or responsive) or in how they are 
encountered (filter feeders, etc.) create different patterns of patch rejection. We now apply 
these methods to predation and competition, finding that the patterns found in models with 
two food resources often, but not always, carry over to these biologically distinct situations.

Predation

Predation risk may also be thought of as a limiting factor. Suppose prey seek to minimize 
the ratio of predation risk to food resource encountered (Gilliam and Fraser, 1987). In our 
notation, foragers minimize

vQ)8 .
• - * •' ... ......’........  ■ . a(s)Ri ■ ■

where v(.s’) is the rate at which size s individuals succumb to predation, and Q, is the predator 
abundance in patch We now consider two types of predator, generalists and specialists.

Generalist predators may not respond to forager abundances and the Q, may be thought 
of as fixed. On the other hand, specialist predators may respond to forager abundances, 
and Q, responds to patch rejection decisions made by foragers. For both generalists and 
specialists, nonetheless, the patches exhibit perfect size scaling and the prey are predicted to 
obey an IFD. However, perfect size scaling may not occur if predators respond differently to 
prey of different sizes, in which case we predict size segregation. Moody et al. (1996) provide
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y, Degree of specialization on resource R

Y, Degree of specialization on resource R

Fig. 7. Effects o f parameters on simple model of optimal foraging, (a) Behaviour of the function 
a(s)/ (  1 -  y)R + b(s)f(y)Q for three different values o f (a(s)R, b(s)Q): resource R  more common 
(0.85, 0.15), resource Q more common (0.15, 0.85), resources R  and Q equally common (0.55, 0.55). 
The optimal value o f y produces the maximum on the curve. The parameter 0 is set to 0.75 in each 
case, (b) Behaviour of the function / ( I  - y )  + 2f(y) for three different values o f 6: 0.25 (solid line), 
0.75 (dotted line) and 1.25 (dashed line). Small values o f 6 tend to produce optima at the endpoints, 
while large values tend to produce optima at intermediate values of y.

a discussion o f  state-based approaches to  deriving fitness functions from  the tw o currencies 
o f  food and predation, n ot all o f  which lead to  perfect size scaling as in this example.

C om petition as a  lim iting fac to r

Forager size can also influence patch selection through various m odes o f  competition, 
which also acts as a lim iting factor. Suppose that the rate at w hich a forager o f  size s collects 
resources in  patch i is
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Fig. 8. Results of simulation with the optimal foraging strategy (other parameters and methods as in 
Fig. 5). (a) Distribution of foragers in five patches. Patch 1 is universally rejected and does not appear, 
foragers of intermediate size use resources R  and Q in patches 2 (solid line) and 3 (dashed line), the 
largest foragers use resource Q in patch 4 (dashed line) and the smallest use resource R  in patch 5 (dot- 
dashed line). Simulations done as in Fig. 3 except that strategies now include a value of y (degree of 
specialization on resource Q) in addition to a patch choice, (b) Equilibrium levels of R  and Q with and 
without foragers in the five patches (as in Fig. 5b).

: " • a(s)R j
. '• 1 + /  a(i-, s')Nj(s')ds'

where the function a(s, s ')  describes the per capita interference created by a forager of size 
s ' (the interferer) on one of size s  (the recipient). This is a simple treatment of a time 
budget analysis (Ruxton e t al., 1992; Vandermeer and Ens, 1997). We consider three 
cases: competitive weights (Parker and Sutherland, 1986), interference (Ruxton e t a l., 1992; 
Vandermeer and Ens, 1997) and dominance (Korona, 1989; Holmgren, 1995).
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Competitive weights
First, suppose that the amount of interference depends only on the interferer and is 
independent of the size of the recipient. Mathematically, a(s, s') = c(s') for some function e' 
depending only on s '. The rate of resource collection in patch i is then

a(s)R, a(s)R, a(s)R,
1 + /  a (s, s 'W iis ')ds ' 1 + /  c is 'W is 'W  1 + N,

where 7V,= /  c{s')N j(s')ds'. Whatever the size scaling of resource collection or competitive­
ness, foragers of all sizes share the same ranking of patch quality and the same patch 
rejection strategy. These results match those in the original model with competitive weights 
(Parker and Sutherland, 1986).

Size-ratio dependent competition
Second, suppose that the amount of interference is given by the ratio

c(s')
a(s, s') =

c(s)

for some function c(s). Time wasted depends on the ratio of the competitiveness of the 
interferer to that of the recipient. Therefore,

a(s)Ri _  a(s)Ri _  a(j)c(j)/?, J
1 + /  a(s, s')N,(s')ds' /  c(.s'')yV,(.y')d.s'' c(s) + N;

c(s)

where TV, = /  c(s')Nfeeds' as before. This resembles the filter-feeder example (see pp. 811­
812). As long as the function c(s) is not constant, the evaluation of a patch with particular 
values of R, and Ni depends on the size of the forager. Foragers of different sizes may ranlc 
patches differently.

Alternatively, patches may converge to have identical values of both R and N. Using the 
functional form c(.s) = 1 + ks, we can find criteria for when two patches converge (as in 
the filter-feeder case illustrated in Fig. 4). We find parameters for which a solution exists 
of R*t = R% and N, = N2. The detailed calculations are presented in Appendix 2. Patches 
become identical if they are relatively similar to begin with, and remain different if they 
are somewhat more different. In that case, the superior patch is used by the superior com­
petitors. One patch is universally rejected by all sizes if it is too inferior (Fig. 9). With more 
than two patches, similar patches can still converge to have identical values of R and R, \ 
although the algebraic conditions are not identical.

Dominance
A simple model of dominance sets

if j  > s' 
if j  < s' 
if j  = s'

This model is akin to models of seed competition, where larger seeds dominate smaller 
seeds (Geritz et al., 1998). Because each size experiences a different level of net interference.
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Fig. 9. Conditions under which a range o f foragers in two patches achieve resource convergence, 
universally reject one patch or size-segregate into both patches when there is interference competition 
given by the ratio a(s, s') = c(s')lc(s) with c(s) = 1 +ks. The horizontal axis gives the value of 
the parameter k and the vertical axis shows the proportion of total resource renewal rate in patch 1, 
ptl(p\ + pi). Foragers are distributed uniformly over the size range from s = 0 to s = 1; a(s) = 0.5 + 4.55 
and <S, = C, = 1 (see Appendix 2 for details).

size

Fig. 10. Distribution of foragers in three patches with dominance (equation 4). Parameter values for 
p and d as in Fig. 3. The equilibrium resource levels in the three patches are 0.89, 1.09 and 1.24 
respectively. The curves are averaged to eliminate a sawtooth pattern generated by discretization of

some size segregation must occur. We observe what Holmgren (1995) calls a semi-truncated 
distribution. The most dominant foragers use the patch with the highest equilibrium of 
resources, leaving subordinates to choose between a low equilibrium or high competition 
(Fig. 10).
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DISCUSSION
In this paper, we provide a framework -that unifies models of patch choice and patch 
rejection by foragers structured by size (the results apply equally well to other differences in 
state). We do so by considering size-specific differences among patches as limiting factors. 
Limiting factors fall naturally into two classes: those that are fixed (like optical clarity 
or generalist predators) and those that respond to the forager distribution (like food or 
specialist predators). If only one limiting factor is responsive, different levels of the fixed 
limiting factor act like differences between patches. With'perfect size scaling (parallel 
response of different sizes to the non-responsive limiting factor in different patches), an 
IFD of foragers is optimal and the model makes no predictions as to which size classes 
occupy particular patches. If size scaling is not perfect, then we predict size segregation and 
a unique optimal distribution of foragers in patches.

When both limiting factors are responsive, foragers are predicted to exhibit patch rejec­
tion strategies between the IFD and complete size segregation. Some size classes reject all 
but one patch, while others accept several patches, meaning that the distribution of foragers 
can only be partially predicted. The details of the interaction between foragers and the two 
limiting factors determine the precise pattern of patch rejection.

When both limiting factors are food resources, the way that foragers gather food in a 
patch determines optimal patch rejection strategies. Filter feeders that consume both 
resources in proportion to encounter rate achieve an ideal free distribution only if the 
collection functions for the two resources are proportional. Otherwise, we predict truncated 
distributions with foragers of different sizes segregated into different patches. The 
equilibrium levels of the two resources follow a trade-off curve, with a high equilibrium of 
one implying a low equilibrium of the other. However, resource convergence, where some 
subsets of patches achieve equal equilibria of both resources, is possible when patches have 
sufficiently similar resource input or decay rates (Fig. 5). In particular, segregation might 
not be observed between two sufficiently similar patches even when collection functions are 
not proportional (Fig. 4).

Perfect-preference foragers can choose to consume one, but not both, of the resources 
in a given patch. In general, they achieve a dual ideal free distribution, with sharp size 
segregation by resource type consumed. Patches that are used by foragers consuming one 
particular resource have matching equilibria of that resource (Fig. 6). As with filter feeders, 
pairs of patches can have matching equilibria of both resources. We observe similar results 
when foragers may choose to eat one or both resources to maximize their consumption rate. 
In this case, foragers tend to size segregate by diet. Those patches used by perfect-preference 
foragers follow a dual ideal free distribution, those used by foragers with a mixed diet follow 
a trade-off (as with filter feeders) and sufficiently similar patches can show resource con­
vergence (Fig. 8).

We also treat predation as a limiting factor. Generalist predators (modelled as a patch- 
specific vulnerability to predation) act like patch-specific differences, and produce size 
segregation when the functions relating vulnerability to size are not proportional in 
different patches. Specialist predators respond to the availability of their forager prey and 
create a model similar to that of filter feeders because prey cannot choose whether to eat 
or be eaten (Levin et al., 1977).

Finally, we consider interference competition as a limiting factor, finding that the results 
depend on the mechanism of competition. If the effect of one competitor on another
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depends only on the size of the first, then competition can be modelled using ‘competitive 
weights’ (Parker and Sutherland, 1986). In this case, there is perfect size scaling because 
patches with different numbers of foragers have proportional consumption functions. 
This leads to an ideal free distribution where competitive weights adjust to equalize the 
equilibrium level across patches. If the effect of one competitor on another depends on the 
ratio of the competitive weights (a simple model of interference), the results are similar to 
those with two food resources, non-proportional consumption functions and filter feeding 
foragers. Sizes segregate with more competitive foragers in the superior patch, unless 
patches are sufficiently similar to show resource convergence (Fig. 9). Finally, if the effect of 
one competitor on another depends on an interaction between sizes, as in a dominance 
hierarchy, then we observe the semi-truncated distribution (Holmgren, 1995) where the 
most competitive foragers deplete the best patch, leaving the least competitive foragers to 
choose between low resource patches and patches with severe competition (Fig. 10).

The models presented here are highly simplified and ignore many of the factors that 
Kennedy and Gray (1993) hypothesized lead to deviations from the ideal free distribution. 
Missing components of forager behaviour include explicit modelling of decision rules 
(Cezilly and Boy, 1991; Houston et al., 1995; Farnsworth and Beecham, 1997; Hugie and 
Grand, 1998; Abrams, 1999; Bernstein et al., 1999), the effects of history and settlement 
order (Spencer et al., 1995; Houston and Lang, 1998), imperfect perception (Gray and 
Kennedy, 1994; Spencer et al., 1996; Cartar and Abrahams, 1997), memory (Milinski,
1994) and exploitation of heterogeneity within the patch (Brown and Mitchell, 1989). 
In addition, we consider only a snapshot, thus ignoring resource dynamics (Abrams, 1999; 
Van Baalen and Sabelis, 1999) and growth (Tyler and Rose, 1997). Finally, we ignore any 
effects of finite population size (Houston and McNamara, 1988; Ruxton and Humphries, 
1999).

Even with these many simplifications, the modelling approach presented here has the 
potential to unify studies of rather different systems. Here we categorize studies where there 
are at least two limiting factors, one of which is a food resource, and say whether ideal free 
distributions are predicted by our modelling approach.

Abiotic factors. Abiotic factors, or other fixed patch differences, are expected to lead to 
size segregation if there is non-proportional scaling of effects. Tyler and Gilliam (1995) 
found that the energy costs of foraging in different flow regimes have important effects 
on distributions of fish, but that there is no apparent interaction of energy costs with size, 
and thus no reason to expect size segregation. Hughes and Grand (2000) did find size 
segregation when temperature affected different sizes differently.

Predation and cover. Grand and Dill (1999) present a special case of the results in this 
paper? showing that size segregation is expected when predation risk does not scale identi­
cally in different patches. Earlier results (Grand and Dill, 1997) indicated that predation risk 
scaled nearly, but not exactly, with competitive weight. Utne et al. (1997) found that fish of 
different sizes evaluate predation risk differently and thus might be expected to segregate by 
size. Predation can interact with crowding through a selfish herd mechanism (Krause, 1994), 
where foragers of distinctive size are at higher risk, or foragers of smaller size are forced to 
the edges of the shoal. Alternatively, dilution of predation risk can lead to segregation 
(Grand and Dill, 1999). Both of these cases would be thought of as models of three limiting 
factors (food, predation and crowding) within the framework of this paper. Giannico 
and Healey (1999) explored the effects of cover on ideal free distributions. Interestingly,
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they found ideal free distributions only when patches were similar, in accord with 
the predictions made here regarding resource convergence in the presence of interference 
competition. . - .

Competitive ability. Sutherland et al. (1988) provided the original test, showing that 
competitive weights predict the distribution of foragers more accurately than simple 
numbers. Other studies have found that the situation is more complicated. Tregenza and 
Thompson (1998) found that competitive weights are unstable over time, a situation not 
considered in our models. Grand (1997) found some evidence that competitive weights 
are patch-dependent, and might thus be predicted to produce some degree of siie segrega­
tion. Krause (1994) found an interaction between crowding and size, with the competitive 
effect of large fish depending on the number of fish in the shoal. Tregenza et al. (1996) 
hypothesized that there is a switch from contest competition at low density to scramble 
competition at high density, leading to different patterns of size-dependent success.

Testing the predictions

The field implications of different mechanisms of competition have been reviewed by 
Dolman and Sutherland (1997). Our explicit consideration of multiple limiting factors leads 
to the following specific predictions in a controlled two-patch experiment.

1. If patches differ in predation risk or some other fixed effect, we predict size segregation 
if the effects on different sizes are not proportional.

2. For foragers with two foods, one could manipulate the fraction of renewal of the two 
resource types in the two patches. We make the following predictions:

(a) If foragers are filter feeders and eat both resources in proportion to encounter rates, 
we predict an ideal free distribution of foragers when patches are very similar, size 
segregation when patches are less similar, and the use of a single patch when patches 
are very different.

(b) If foragers feed on only a single resource at a time, we predict size segregation 
onto different food types, but equal equilibria of the two resources in the two 
patches.

(c) If foragers choose an optimal diet, consisting of one or both resources, we predict 
size segregation by diet. If patches have similar input rates, we predict resource 
convergence and no segregation by size class or patch. As input rates become more 
different, we predict size segregation into different patches and different diets.

3. If foragers compete for a single food resource, we treat competition as another limiting 
factor. Depending on the mechanism of competition, we predict different patterns as the 
fraction of input into one of the patches increases.

(a) In scramble competition, where foragers interact only through their ability to deplete 
the resource (competitive weights), we predict an ideal free distribution.

(b) When interference decreases foraging efficiency by a ratio of a function of the sizes 
(large foragers affect small foragers a lot, but small foragers still affect large foragers 
a bit), we predict an ideal free distribution when patches have similar input rates. 
When input rates are more different, we predict segregation, with larger individuals 
in the patch with a higher equilibrium level of resources.
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(c) When interference decreases foraging efficiency through a dominance hierarchy 
(large foragers affect small foragers, small foragers do not affect large foragers), we 
predict a semi-truncated distribution (Holmgren, 1995) with the largest foragers 
using the patch with higher equilibrium and small foragers using both patches.
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APPENDIX 1: CONDITIONS FOR TW O PATCHES TO BECOME IDENTICAL 
WITH FILTER FEEDERS

The total resource collection abilities for resources R and Q are

AT = f  a(s)N(s)ds 

Bt = f  b(s)N(s)ds

where the integrals are taken over all values of s. Let fi, be the sets of sizes of foragers using patch 
The fractions of foraging pressure At on resource R and B; on resource Q in patch i are

. Xv, a, a(s)N(s)ds

A'= Tt .

„ J"s 6 n, b(s)N(s)ds 
‘ ‘ ----------- B ,

Suppose two patches follow the dynamics in equation (2). We can solve for the equilibrium resource 
level in terms of Ah B, and the other parameters. The conditions that R *=  R*  and Q* = Q* can be 
solved for Ax and B t, respectively, as

......... ..... ...................B ,= S (  l + Q - d - %

where * . ■

. ■ .  pi f <5,- .  <*1 Ci■ » p = -------- <). = —  a —--------  q. = —
pl+p2 A T 01+02  BT

Given all the parameters, we can find the fraction of foraging pressure consistent with equality of 
the resources in the two patches. We need only find values o f A, and 5 , that can be achieved 
simultaneously. A given fraction of foraging pressure on resource R in patch 1 can be achieved in 
many different ways, which produce different fractions of foraging pressure on resource Q in patch 1
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(unless the collection functions a(s) and b(s) are proportional). Let F^A^) be the smallest and Fb(A ,) be 
the largest possible value of B t. Then

F](A\) < 5, < Fh(A,)

gives the condition on the parameters for the existence of an equilibrium where both patches match. If 
the collection functions a(s) and b(s) are proportional, then F, = Fh and convergence is impossible 
unless the parameters are perfectly balanced.

For example, suppose N(s) = 1 for 0 < s < 1, a(s) = 1 and b(s) = 2s. Then, AT = BT = 1. The minimum 
foraging pressure on resource Q consistent with a given pressure on resource R  occurs when the 
smallest foragers with 0 < 5 < ^ [ are in patch 1, implying that F}{A\) = A], The highest foraging 
pressure on resource Q consistent with a given pressure on resource R  occurs when the largest foragers 
with 1 -  A x < s<  1 are in patch 1, implying that Fh(A{) = 1 - (1  -  A ,)2. Therefore, the condition for 
equalization becomes

A ]< B \<  1 -(1  - A f

If, furthermore, <5, = £, = 1, we can solve for A l in terms of p and Bl in terms of a. The condition 
simplifies to

(3/5 -  l ) 2 + 1 _ 2 -  (2 -  3 p f
----------------< a < ----------------

Only when the fraction of resource Q renewal in patch 1 lies between these bounds can the two patches 
become identical (Fig. 4).

Outside the region of resource convergence, either one or both patches are used. Patch 1 is universally 
rejected if it is inferior to patch 2 for all sizes even when all foragers are active in patch 2. Formally, 
patch 1 is universally rejected if

p j  (Tj p \  (J \
a(s) + b(s)~---- — > a(s)— + b(s)—

°2 + A t C2 + Bt d , Cl

for all 5. The condition for universally rejecting patch 2 is similar.
In the example, the absolute levels of p and a matter in addition to the fraction in each patch. With 

Pi -  ai~  1, we find that patch 1 is universally rejected if

1 3 - 5  p
p < -  and a < -------

3 l - 9p

and patch 2 is universally rejected if

These are the curves shown in Fig. 4.

. 2  . _ 6-7/5
p > -  and a  > -------

3 8 - 9 p

APPENDIX 2: CO N D ITIO N S FOR TW O PATCHES TO BECOME IDENTICAL 
W ITH INTERFERENCE COMPETITION

As in Appendix 1, let fl, be the set of sizes of foragers using patch i. We require that A', = Nlt 
or that
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n, c(s)pi(s)N(s)ds = n2 c(j)/?2(j)JV(j)ds 

For the equilibria to be equal, we require that R  * = R  f , where

R* = --------------------- —----------------------
' Si + L  e n, (a(s)c(s)N,(s))Kc(s) + A',)ds

(from equation 3).
As in Appendix 1, the extreme values of /;, and 3, occur when either the smallest foragers or the 

largest foragers are in patch 1 (£2, = [0, sf] or fl, = 1] for the value of sc determined by A', = N 2). 
When c(s) = 1 + ks and N(s) = 1 for 0 < 5 < 1, N ,, = 1/2 + k/4, so sc solves

ks^ 1 k  
Sc+ 2 _ 2 + 4

Substituting the form for c(s) and this value of sc into the equation R* = R*  gives a complicated (but 
analytically computable) form for p. This is the case shown in Fig. 9. As in Appendix 1, a patch is 
universally rejected if it is inferior even in the absence of foragers.


