
P r o g r a m S p e c i a l i z a t i o n U s i n g t h e O M O S S y s t e m

Douglas B. Orr Jay Lepreau Jeffrey Law

Department o f Computer Science
University o f Utah

Salt Lake City, UT 84112
{ d b o , l e p r e a u , l a w } @ c s . U t a h . edu

Technical Report UUCS-95-016
March, 1995

Abstract

Abstraction and modularity provide many software engineering benefits. Hiding details o f module inter
nals can, however, prevent system implementors from being able to provide anything but a highly general
implementation o f a given module. We describe OMOS, a programmable linker/loader and system server
that manages module implementations. OMOS allows system builders to describe system architectures in
high-level terms, via a module construction scripting language. Using scripts, system implementors can pro
vide modules that can test and react to both their static and run time environments. These modules, which
we refer to as electric libraries, can produce implementations that are optimized at link or run time, with
out sacrificing modularity, expanding interfaces, or requiring changes in client programs. We identify and
implement three types o f specializations that OMOS can perform, and quantify the impact o f two o f them on
a few standard Unix utilities: performance improvements ranged from 6% to 4 7% }

1 Introduction

In software engineering terms, a module is an independently developed unit o f software with a well-
defined visible interface and an opaque implementation. The uses o f abstraction and modularity relieve
programmers of the burden o f understanding the details o f the implementations o f the software components
they use. By restricting access to software modules through well-defined interfaces, many possible sources
o f programming error are eliminated. In modular software, the internal workings o f the module are not ac
cessible, so the implementor is free to change those specifics as needed without affecting its clients. The use
o f general, abstract notions in software permits development o f flexible and reusable modules.

While the mechanisms of abstraction and modularity are a boon to software engineering, they also have
some drawbacks. The same barriers that protect clients from relying on particular details o f an implementa
tion also constrain the effective use o f that implementation. An interface that is too rich in detail is difficult
to fully implement. In addition, clients o f such an interface could be difficult to port to less rich environ
ments. An interface low in detail is easier to implement, but provides less explicit information that can be
used to guide selection o f appropriate algorithms within its implementation.

1This research was supported in part by the Advanced Research Projects Agency under grant numbers DABT63-94-C-0058
and N00014—91-J-4046, and by the Hewlett-Packard Research Grants Program.

One approach to solve the above problems is open implementations — systems whose implementations
are customizable via external means — is an active area o f research[15, 7, 21]. Different approaches to
customization have been taken. Customizing an open implementation can involve such diverse tradeoffs as
whether to build implementation-specific information into clients or service providers, expand interfaces, or
perform customizations statically or dynamically. Two important parameters are whether implementation
information is couched in imperative or declarative form, and whether that information is directive or merely
informative, i.e., whether the application is telling the system what to do to support its needs, or just disclos
ing what the application is doing[13]. Patterson and Gibson[21] make a strong argument that disclosure is
superior in the operating system environment. '

Our approach to solve the problems is OMOS, a fully programmable linker/loader and persistent server,
that fills the roles taken by the linker, loader, shared library support, and e x e c operating system service
in a traditionally structured system[20, 19, 18]. OMOS also provides the means to construct programs that
are specialized to their expected operational conditions. This is done in two ways: by inferring operational
characteristics from the symbolic names found in modules, or absent from them (implicit disclosure), and
by explicit disclosure through annotations. OMOS provides a mechanism to annotate program components,
and to examine and respond to those annotations. Through this mechanism OMOS provides a simple way
to negotiate an appropriate implementation, without adulterating or complicating module interfaces.

OMOS modules use disclosing annotations. Rather than requesting specific support from the underlying
system, a module makes general statements about its operating properties, in a declarative fashion. These
statements can then be interpreted by service providers. In contrast, in a directive approach, a module that
expects to do large amounts o f I/O, for example, could express that it wishes to use virtual memory oper
ations on buffers greater than a particular size. While that mechanism might be appropriate for one set of
operating conditions, it could be completely inappropriate for another. So, instead, an OMOS module will
disclose its general behavior (do large I/O, for example), and it is left to the discretion o f the system how
to best provide service for that behavior. The system might choose a different scheduling algorithm for that
task, choose to implement its I/O using an implementation weighted towards VM techniques, or ignore it
entirely.

Since these annotations describing properties o f a module are advisory, it is up to the system to decide how
best to use this information to provide better services. Since it is not built into any client-visible interfaces,
the system has the ability to completely change its approach without the burden o f maintaining backwards
compatibility. Furthermore, the client of the service is not burdened with the portability limitations inherent
in importing extended interfaces to influence system behavior. In this system, implementation is not destiny.

In Section 2 we discuss the difficulties constructing simple, expressive interfaces. In Sections 3,4, and 5
we discuss the OMOS server, its approach to specialization, and active electric libraries. In Sections 6 and
7 we demonstrate several uses o f OMOS and a sample I/O library to optimize program execution.

2 Problems with System Interfaces

2.1 The Evolution of Operating System Interfaces

Some operating system interfaces exemplify the problems o f poor modularity and poor encapsulation.
Early IBM operating systems such as EDX on the Series-1 provided very little encapsulation; later IBM op
erating systems (OS/360, MVS) evolved to support many different interfaces, highly specific to the different
services they provided. Different file access methods (e.g., ISAM, VSAM, myriad tape routines, etc.) were
required to process different forms of data. These interfaces required the application programmer to specify
a great deal about the data to be used by their program, rendering it difficult to take advantage o f underlying

2
9

Focus changed as operating systems evolved. The Unix[23] operating system was an example o f a signif
icant departure in the nature o f interfaces, due, in part, to its use o f a simple, universal I/O interface. Under
Unix, files and devices are both assigned entries in a common namespace and accessed via a small set of
operations. In Unix programs there tends to be little information encoded in a program relating to I/O that
would impede its portability. For the most common operations (e.g., rea d , w r it e , seek), Unix provides
a uniform mechanism over a wide variety o f data types. Programs that use these simple I/O primitives can
be applied to many different types o f data, and tend to be portable to many different variants o f Unix.

Unfortunately, simple interfaces provide little information for the system to use in order to guide its op
eration. If, for example, a program is to plan to read entire files sequentially, this knowledge is very helpful
for an operating system planning its caching strategy. With little or no information about the nature o f each
client they service, operating systems must often restrict themselves to algorithms that provide reasonable
performance for the majority. For example, the LRU caching algorithm works quite well in the general case
and disastrously in the case where a large amount o f data (greater than the cache capacity) is scanned se
quentially.

The intended use o f an interface by a program can sometimes be intuited or derived by the operating
system, but this process can be expensive or error-prone. Others have discovered, for example, that one of
the strengths o f the Unix re a d call is that its code path is very short in the case where small amounts of
data are being read from the Unix buffer cache. Inserting code in this path (such as would be required for
monitoring or metering to intuit application intent) risks significantly affecting the performance o f programs
that work within the common-case parameters o f read[24].

2.2 Example: Memory Allocation Interfaces

Storage allocators are also good examples o f facilities that must strike a delicate balance. In most im
plementations o f the Unix library storage allocator (m a llo c), the operation to allocate storage (m a llo c),
takes just a few instructions when an appropriately-sized block is available. The operation to release storage
(f r e e) , takes just a few instructions. The only work done is to derive the freed block’s size and thread it
onto a linked list; blocks are never coalesced and memory is never returned to the system.

Weighting allocations towards commonly used block sizes, or towards coalescing, or towards deallocat
ing free blocks, are all examples of optimizations important to some applications. We have found, as have
others[10], that adding just a little code to choose effective strategies for m a llo c clients that don’t fit the
common case, expands the simple code path and significantly hurts the performance o f all other applica
tions. An extreme case of this sort o f “program slowdown through optimization” comes with short-running
programs that allocate a lot o f space, and then exit. For these programs, any effort to anticipate clever reuse
o f storage, or, in general, any investment in speeding up the program later in its run, is wasted.

The most frustrating aspect of this tradeoff is that the application developer typically knows in advance
how the program is going to use its resources. However, there is usually no means to communicate this
information to the system.

An ad hoc compromise is sometimes struck whereby interfaces are extended to include operations that,
effectively, specialize the implementation of that interface at run time. The HP-UX implementation o f the
Unix routines m a llo p t and, to some extent, m a d v ise in several Unix systems, are examples o f this
sort o f compromise. M a llo p t can be used to specify the application’s preferred bucket sizes, whether
malloc should lock out signal handlers while manipulating sensitive data structures, rounding criteria, etc.
M advise is used to control the paging style to be used (m advise is not entirely applicable since it works
on a per-region basis).

commonalities in different data types.

3

The approach of providing extensions to interfaces is not satisfactory, however, since it pollutes the appli
cation program with information about library implementations. Moreover, applications that take advantage
o f m a llo p t must be conditionally compiled on systems where it is not available, m a d v ise is not imple
mented on many systems, yet it is part o f most library interfaces.. .just in case. In addition, systems that use
extended interfaces to specialize service implementations are forced to respond to these service requests at
run time2, when the information could be used at compile or link time to generate a better application. As it
stands, unless the implementation uses dynamic linking, all possible code paths must be present within the
application. Specialization can reduce the number o f code paths present in an application in many cases.

A better approach to the problem of bridging the gap between clients and their service providers is to give
clients the means to describe relevant attributes o f their program, without exposing details o f system imple
mentation or complicating interfaces. One crude means o f partially attaining this goal is the use o f multiple
libraries. Users specify, at the level o f the application build environment, what functionality they want, by
choosing implementations from different libraries. HP-UX does this with m a llo c : they offer an alternate
b s d m a llo c library which attains speed at the expense o f space[ll]. On the SunOS and VR4 operating
systems, some crude run time control is available by modifying the LDPATH and LD-PRELOAD environ
ment variables to modify the order in which libraries are searched [9]. The problems with these approaches
are two fold: (i) they offer only a coarse granularity o f control, and (ii), the system has been forced to export
some knowledge o f its implementation to application builders, setting their expectations and constraining
system development. While applications would not have the knowledge o f system implementation built into
them, proper, it would be littered throughout their build and execution environments.

3 The OM OS Approach to Specialization

OMOS provides another way to solve these problems, putting more of the burden and control in the hands
of those providing system services. The approach taken within the OMOS system is threefold:

• OMOS allows modules to be active entities (referred to as electric libraries) that abstract over their
implementation, capable o f making decisions on their own. Rather than using dead, lifeless archive
files for libraries, OMOS libraries are implemented as functions. The client module needing a library
is given to the OMOS electric library as an argument. The service provider (as represented by the
library) can then provide different implementations, based on computations it performs.

• OMOS provides a means o f annotating modules, so that application developers have a way to disclose
what a client does— its high-level semantic attributes— rather than just how it does it (how it operates
is determined by the interfaces it imports).

• OMOS provides a run time connection to the underlying Unix operating system, so that static infor
mation (inferred and disclosed) about the application can be used for additional specialization at run
time.

Specialization involves developing an implementation tailored to a given set o f operating conditions; the
application, libraries, and even operating system services can be specialized using the OMOS approach.

In all cases, OMOS can specialize services that would otherwise either be specialized at a later binding
time (e.g., run time) or that could not be specialized at all, forcing the application to use a more general, less
efficient implementation.

2In the case of m allopt, calls to it must be made before the first “small block” is allocated.

4

When specializing programs, OMOS plays either a direct or supporting role, depending on the type of
transformation indicated. OMOS directly implements link-time specializations, such as the m a llo c spe
cialization described below in Section 6.1. For other types o f specialization, OMOS generates a description
o f the program’s properties and introduces code to transmit, at program startup time, that description to the
Unix server. The Unix server makes use o f the information, together with its knowledge of the actual run
time environment, to guide its own run time decisions on providing services to the program.

As mentioned above, OMOS clients structure annotations such that they remain advisory only. Which
set o f annotations to recognize and what effect this recognition will have is entirely at the discretion o f the
service implementor. It is assumed that annotations will signal opportunities to specialize a generic service,
narrowing its focus or redefining the expected common case. But the service is always free to ignore the
annotations and produce a generic implementation.

OMOS does not define the particular attributes that are covered by module annotations; instead, OMOS
provides enabling technology. In order to make effective use o f this technology, it is still necessary that
clients and service providers agree on a common vocabulary for describing and responding to important
modes o f operation (e.g., “runs a long time,” “does I/O in large chunks,” “does sequential I/O,” “does ran
dom I/O,” “is a filter,” etc.). Individual decisions a service provider may make, in responding to a client’s
annotations, may have the implementation-specific flavor found in extended interfaces such as m a llo p t .
But, this detail is maintained internal to the service provider and does not soil the pristine client. Should
m a llo p t , or the equivalent, cease to be the correct approach to optimize a service, the provider is free to
change its approach as needed.

4 The Design of OM OS

The work described in this paper used OMOS running on a Mach 3.0[17] system which provides Unix
emulation through a Unix server process. OMOS is used by the Unix server to load programs and shared
libraries. OMOS has also run on standard Unix systems, such as HP-UX, where we studied more conven
tional aspects o f OMOS’s shared-library service[18].

OMOS provides a level of indirection between a module name and its implementation. In most operating
systems, programs or dynamically loaded modules are implemented using files. As a result, the system has
little or no control over their implementation: their nature is fixed at install time. In contrast, OMOS exports
a fine-grained module namespace. Clients, such as the Unix e x e c routine, that obtain program code from
OMOS, request that code by name. OMOS determines the specifics o f what code the client receives.

The OMOS namespace includes elements such as code fragments (e.g., Unix “dot-o” format files), and
module specifications (historically referred to as meta-objects). Module specifications are small extension
language programs whose execution results in the generation o f code fragments. As a result, all elements
in OMOS’ name space are modules o f one form or another.

In order to translate a module name into an implementation, a client (e.g., the Unix server) asks OMOS
to resolve the module name. OMOS evaluates the associated module specification to produce an imple
mentation which is then cached (to disk). Further requests for the same module name will be satisfied from
OMOS’ cache.

If the name is the name of a code fragment, or, as is usually the case, it names a module specification for
which a cached copy of its implementation exists, OMOS returns a pointer to that fragment immediately. If
not, OMOS evaluates the module specification, producing an implementation; typically, it caches the result
(on disk) and returns a pointer to that implementation.

OMOS uses the STk[8] implementation of Scheme[6] as an extension/scripting language. Low level

5

PSEUDOCODE VERBATIM SCHEME CODE

/* crtO Sc libc happen to be FUNCTIONS */

startup = l o a d ("/lib/crtO")

clibrary = l o a d ("/lib/libc")

/*
Apply the functions (libraries) to our

module. I.e., first resolve ls.o's
external references from the C library,

and then resolve any more external

references from the startup library.

* /
startup (clibrary (l o a d (11 /obj / Is . o ")))

;; lookup and load library implementatioi

(let ((crtO (resolve "/lib/crtO"))

(libc (resolve "/lib/libc")))

;; apply them to our module

(crtO (libc (resolve "/ o b j / I s .o ")))

Figure 1: Sample Module Specification: /bin/ls

object-file manipulation and other primitive OMOS operations are implemented in C and C++ We have ex
tended STk with datatypes that represent OMOS module specifications and code fragments, and with a set o f
operations designed to manipulate object file symbols and interfaces. These operations are based on a formal
model described in the Jigsaw language[l, 2], that provides a basis for relating modularity and inheritance.
Higher-level (and more sophisticated) module manipulation, such as is done in a module specification, are
implemented with Scheme scripts.

With its extension language, OMOS can perform arbitrary transformations on modules. The system can
use these module operations to wrap procedures (in order to augment procedure functionality), to replace
procedures, to unbind or to overload procedure names. OMOS also provides operations that allow users to
generate modules on the fly from source, and manipulate groups o f defined or undefined symbols, specified
using regular expressions. Using these operations, the standard Scheme facilities, and the persistence o f its
store, OMOS can perform conditional linking and adaptive transformations on modules.

Figure 1 demonstrates a simple module specification that links a Unix application (I s) with implemen
tations o f the system electric libraries cr tO (the standard “C Run Time” startup code) and l i b c (the stan
dard C library). In this example, c r tO and l i b c are both functions (lambda expressions); / o b j / I s . o
is an code fragment. The l i b c function is invoked on / o b j / I s . o, causing the unresolved symbols in
o b j / I s . o to be searched for in the l i b c code fragment, and, to whatever extent possible, resolved. The
result of that operation (a module) is passed to crtO , which completes the link.

5 O M O S Electric Libraries and M odule Annotation

As was mentioned above, OMOS libraries are often implemented as functions: Scheme lambda expres
sions known as electric libraries. One o f the principal advantages o f this technique is that libraries may shift
their content, based on the module against which they are being linked.

Electric libraries can infer substantial semantic information simply from symbolic names. For example,
if neither o f the symbols “fork” or “exec” is referenced by the target program, then the program will not
spawn a child process. The library can then use that information to select specialized implementations of
its routines. (Section 6.2 discusses specializations based on the usage o f “ fork/exec” .)

There are other kinds of module attributes that are not evident based only on the module’s interface.
Therefore, OMOS supports module properties. Properties are simply a list o f attributes that can be declared

6

(let ((crtO (resolve "/lib/crtO"))
(libc (resolve "/lib/libcsmart")) ; a smart version

(cat (properties ' (big-io) ;; THIS IS THE ANNOTATION

(resolve "/obj/cat.o ")))))

(crtO (libc cat))) ;;actually link them

Figure 2: Annotated Unix “cat” Program: /bin/cat

(lambda (m) ;this whole script returns a function taking one arg (m)

;; name our modules and libs
(let* ((common-list '("/obj/printf.o" "/obj/scanf.o" "/obj/stat.o" ...))

(kern-fds '("/obj/open.o" "/obj/read.o" "/obj/write.o" ...))
(user-fds '("/obj/u_open.o" "/obj/u_read.o" "/obj/u_write.o " ...))
(spawn-syms '("fork" "exec" "system"))
(no-spawn (or (has-property? 'no-spawn m)

(not (sym-referenced spawn-syms m)))))

(merge m ;construct the libc function

(ar-project m ; 'ar' as in Unix .a "archive" file

;; merge "m" with the modules it references, special casing a few

(map resolve

(append common-list ;start appending to the common .o modules

(if no-spawn ;if can append a special user i/o lib

user-fds ;then user i/o

kern-fds) ;else kernel i/o
(if (has-property? big-io m) ;if does big-io

'("/obj/page_malloc.o") ;then page-aligned malloc
'("/obj/malloc.o")))))))) ;else normal malloc

Figure 3: Simple Libc Transformation: /lib/smartlibc

when the module is defined, and tested wherever a module is referenced. Properties are typically semantic
attributes disclosing information about the expected behavior o f the module. Figure 2 shows a version of
the Unix c a t program that has been annotated to include one property: that it does I/O in large chunks.

In a more complex example, figure 3 shows a version of the Unix C library that has been programmed to
respond to the properties no-spaw n, and b ig -io . The standard operation of the C library is to extract the
closure o f modules that m references; the module m is then merged with that list, resolving those symbols.
In this example, the functionality is extended so that if m has either o f the properties n o -sp aw n (does not
fork: either inferred or disclosed) or b ig - io, this results in being merged with different versions of the I/O
and storage allocation routines.

Properties are currently defined to be inherited across all operations; merging two modules results in a new
module that reflects the union o f the properties found in the two component modules. We envision the need
for a richer set of rules for combining and inheriting properties, resolving conflicting property values, and
associating more semantic attributes with properties. Eventually we will develop those, but for the moment,
this simple definition provides reasonable functionality.

7

6 Program Specialization Using OM OS

In the next sub-sections we describe several specific specializations within the context o f the Mach-based
OSF/1 Unix system. We report on the performance results o f some o f these specializations later, in sec
tion 7.1.

6.1 Configuration Management

Often, a given interface can face a range of operating conditions, each o f which requires a different imple
mentation to function both correctly and efficiently. If a library developer can’t accurately predict or detect
those operating conditions, the developer needs to produce an implementation that works in all cases. This is
frequently more complex, and almost always less efficient. On the other hand, if a range o f implementations
do exist, having the application developer specify the appropriate version “by hand” is an error-prone pro
cess, due to semantic subtleties and, especially, program evolution. By contrast, libraries developed within
OMOS can use properties and symbol values to simplify this process.

For example, in multi-threaded systems, programs that use multiple threads require special versions of a
number o f standard routines (e.g., m a llo c) in order to avoid corruption due to locking omissions. Under
typical Mach implementations, the Unix f o r k routine generates a single-threaded child. As a result, f o r k
is implemented using a special pre-fork and post-fork that seize and release all malloc locks (respectively)
in order to assure that the child process’s storage allocation state is known on startup.

Programs that do not make use o f multiple threads, including the vast majority of Unix programs, should
not have to concern themselves with such details. Figure 4 demonstrates a version of an OMOS library
exporting m a llo c that automatically produces the correct version of m a llo c and f o r k depending on
whether the client being linked into it is multi-threaded or not.

In addition, if the program is declared to have the property lo n g -r u n n in g , this malloc library will
automatically link in routines that will periodically compact and deallocate unused memory, reducing the
virtual memory size o f the program. This feature is unneeded and wasteful in programs that run for a short
time and exit, but is very valuable in long-running programs, such as servers, that allocate and free substan
tial quantities of memory. Using a compacting allocator reduces the consumption of swap and address space
and increases locality.

We have implemented these versions o f malloc, have found find substantial performance differences be
tween them. For example, our malloc/free package for single-threaded programs achieves a factor of nine
speedup over the vendor-provided HP-UX and SunOS malloc routines, while our multi-threaded version is
successful in reducing VM consumption, but is not as fast as the single-threaded version. [Note to review
ers: we are currently choosing long-running programs in which to evaluate this tradeoff. For the final paper
we will have performance results for OMOS-specialized servers and non-servers. In particular, we will try
specializing OMOS itself, and report not only on the results o f specialization, but on OMOS’s own memory
allocation behavior.]

6.2 I/O Specialization

The Unix I/O interface falls into the category o f an interface that often forces its implementors to produce
sub-optimal instances. As we shall see, it is desirable to be able to implement portions o f the Unix I/O system
in user-space libraries. Some optimizations are facilitated if I/O is implemented in user space, such as the
use of VM primitives to supplant I/O, reducing the amount of time applications spend interacting with the
operating system.

The heart o f the Unix I/O mechanism is the file descriptor table. It serves as a switch that converts a

8

(lambda (m) ;this whole script returns a function taking one arg (m)

(if (sym-referenced "cthread_init" m) ;if multi-threaded

; ; then select a multi-threaded malloc, and check more t h i n g s

(merge

(resolve "/obj/mthr-malloc.o ")

;; if we are long-running,

(if (has-property? 'long-running m) ■
(resolve 11/obj/mthr-compact .o") ;add compaction module

'()) ;else do nothing

; ; if we reference fork,
(if (sym-referenced m "fork")

; ; then redirect calls to fork to its multi-threaded version

(merge (rename '("fork") '("m_fork") m)

(resolve "/obj/mthr-fork.o"))

m) ; else return module we've built: 'm'

;; else not multi-threaded, so select non-threaded malloc

(merge m (resolve "/obj/malloc.o ")))

Figure 4: Program Configuration: / lib/malloc

small integer handle into an object descriptor on which various I/O methods are defined. The semantics of
the Unix process spawn operations, f o r k and e x e c , significantly complicate implementation o f user-space
versions o f these operations, however.

The f o r k operation, which creates a duplicate child address space is defined as establishing a shared copy
o f the parent’s I/O state in the child. Operations on one process’s file descriptors are expected to change
the state (in particular, the file offset location) o f the other process’s file descriptors. In order to maintain
full Unix file descriptor semantics after a fo r k , either the file descriptor table needs to be maintained by
a common third party (such as the Unix kernel or server process), or there needs to be a complicated state
transferral and shared state update mechanism.

The Unix load primitive e x e c is defined as wiping out the child process’s memory and replacing it with a
new program image. The child’s I/O state is expected to remain across the e x e c , however. If that I/O state
is implemented as a naive user-space library it will be wiped out along with the rest o f the previous occu
pant’s state. Certain portions o f memory may be marked to be preserved across e x e c , which alleviates the
direct impact o f this problem. However, all components o f the I/O system must only use memory resources
that are maintained across exec; any I/O manager that uses the system m a llo c routine to allocate memory
risks having that memory wiped out at the next e x e c ; any I/O manager that uses resources that, in turn use
m a llo c , such as the standard I/O library, are at risk; and so on.

The vast majority o f Unix programs do not spawn other processes, however, so it is pessimal to restrict
the implementation o f an I/O subsystem to the needs o f those that do spawn. In keeping with the OMOS
philosophy of picking specialization opportunities prudently, OMOS permits using a specialized user-space
I/O subsystem (and, in turn, specialized I/O streams), only with those programs that cannot, even potentially,
make use o f the f o r k or e x e c system services. As was mentioned earlier, Figure 3 is an example o f a
version o f the Unix C library that has been programmed to provide different implementations o f the standard

9

file descriptor operations, depending on whether a user-space implementation is possible or not.
Given a user-space implementation of I/O operations, many optimizations o f existing I/O operations are

enabled or facilitated. In the server-based versions o f Unix implemented on top o f Mach, there is a penalty
that is paid for accesses to the Unix server; it has been demonstrated that, on average, system calls in a server-
based world require more processing than equivalent system calls in traditional in-kemel implementations^].
Passing information between protection domains in messages involves additional work than when using
straightforward trap-based system calls. So, to improve performance, we seek out mechanisms that, among
other things, permit us to circumvent the Unix server. A number o f variants are explored in the next section.

6.3 Specialized User-space I/O Managers

Part o f our user-space I/O implementation is a user-space file descriptor table; each valid file descriptor
points to an instance of a given I/O class. The system supports several different I/O classes, each o f which
is derived from an abstract base class that defines Unix I/O operations, rea d , w r it e , seek , etc.

The various derived classes implement strategies appropriate to different performance tradeoffs. The sim
plest I/O class passes its operations through to the Unix server; this class provides the default behavior for
cases where there is no straightforward optimization. More sophisticated I/O classes perform I/O using VM
operations or other strategies that perform well under specific, commonly occurring conditions.

The I/O classes used by a program are chosen based on the nature o f the data being accessed and properties
o f the application accessing them. For example, our results detailed in Section 7.1 show that for programs
that tend to do small sequential reads from small files, it is advantageous to map the entire file into memory
and perform memory-to-memory copies from the mapped area into the user’s buffer. By contrast, for small
reads from tiny files, it may be advantageous to do I/O via a buffer that is shared with the Unix server, so that
the overhead o f mapping the file and doing page-at-a-time I/O do not overshadow the benefits gained from
avoiding Unix system calls and working out o f the memory system’s page cache. For large sequential reads
from large files, it is advantageous to use VM operations to map pages of file data directly into the user’s
read buffer; particularly in the case where the user’s buffer is page-aligned and the reads are done in even
page multiples. In cases where I/O is done in large chunks, it helps to further specialize the application to
use a special storage allocator that returns page-aligned buffers.

Neither the core operating system nor OMOS can know, a priori, what kinds o f I/O an application will
tend to do, even though that behavior may well be identical across all invocations o f a given application.
For example, the standard version o f the OSF/1 c a t program (which reads and concatenates the contents
o f a number of data sources) has a fixed buffer size. The read requests it issues are always for 8192 bytes.
While this information may vary from application to application, or even version to version, if there are
cases where it is consistently applicable, this is information that can be used to produce a better read path.

However, even if information such as this is known ahead of time, it is possible the actual run time en
vironment may not allow such specialization. For example, the I/O may be directly from a device such as
a serial line, where VM mapping will not work. When such a possibility exists, the ultimate specialization
decision must be deferred to run time. The program still needs to disclose its expected behavior, however. In
order to communicate this behavioral information between the application and the operating system, OMOS
encodes into a string some o f the application’s operational properties, both inferred and disclosed (e.g., does-
big-io, no-spawn,. . .) . OMOS also arranges for the application’s startup code automatically to register that
string with the Unix server (at exec-time). In this way, the application can guide the Unix server’s treatment
o f its subsequent open requests.

For example, OMOS may arrange for a program to register itself as an application that does sequential (or
random) I/O, or as an application that typically does I/O in small (or large) chunks. When the Unix server
receives a request to open a file or device, it uses this application-provided information to guide its choice o f

10

I/O object to return. Figure 5 shows the algorithm our modified Unix server uses to choose the appropriate
type o f I/O object to return for file read operations3. Section 7 will discuss how we arrived at that algorithm.

The decision as to which I/O object type to return is centralized in the Unix server, rather than built into the
user-space library. In this way, the decision is made at the location where the most information is available
(e.g., file/device attributes, past process behavior, etc.)

7 Results and Status

7.1 Results

All performance results were gathered on a 67Mhz HP 730 (PA-RISC architecture), with 64 megabytes
o f main memory and a 256K split I/D cache, running Mach 3.0 and an OSF/1 1.0 server. Each test was
repeated three times, and exhibited negligible variance.

I/O Managers: We evaluated some o f the tradeoffs involved in different I/O types, under different pat
terns o f use. The results are summarized in Tables 1 and 2. The results demonstrate that, depending on
conditions, different I/O strategies are optimal. A single strategy was not always superior, offering the op
portunity to profit from intelligent specialization. The I/O strategies we implemented included:

1. Kernel I/O: This strategy, the default, passes all operations through to the Unix server, performing
no local processing.

2. Small I/O: This strategy is optimized to work best with small I/O transfers, which re-read, or ran
domly read, the data within a given block. It takes advantage o f a block o f memory shared between
the application and the Unix server. The Unix server services small I/O requests by copying its buffer
cache into the shared area, reducing the cost o f transferring the data by avoiding transmitting the data
through the kernel in a message.

3. Page I/O: This strategy uses VM operations to reduce message traffic to the kernel. For each read
request, Page I/O maps the appropriate region into the user’s address space. If the user’s buffer is
page-aligned, the Unix server performs a virtual copy operation, using the data pages underlying the
mapped region to back the memory in the user’s buffer. In the best case, this operation permits data
transfer without actual copying. In the case where the user’s buffer is not page aligned or if some
portion o f the copy is less than a page in length, the data are copied directly from the mapped region
into the user’s buffer (which, while not as efficient as the ideal VM copy, still avoids userf^kemel
message traffic. Since this strategy does not map the whole file, for very large files it avoids what
would otherwise be excessive use of address space.

4. Whole File I/O: This strategy maps the entire file into memory and physically copies the requested
portion from the mapped region to the user’s buffer. This strategy avoids the overhead of remapping
the buffer and works well when there are large numbers of random or small I/O operations.

The data in Tables 1 and 2 were produced by running a program that does variable sized input on files of
specific sizes.

3File write operations involve a set o f interesting tradeoffs on their own. We have not yet begun to experiment with I/O objects
to specialize file write operations.

Table 1: Simple Read: Seconds for 10000 Iterations of open/read/close

1 byte file 8k byte file 32k byte file 128k byte file
read size lk 8k wf lk 8k wf lk 8k wf lk 8k wf
Kernel I/O 11 10 10 32 14 14 103 34 58 432 154 224
Small I/O 10 10 10 31 14 14 100 33 58 418 153 223
Page I/O 11 11 11 32 16 15 103 36 10 391 115 34
Whole-map I/O 11 11 11 24 15 15 68 34 35 246 106 91

Table 2: Reread: Seconds for open/10000 reads/close

1 byte file lk byte file 8k byte file 32k byte file
read size lk 8k wf lk 8k wf lk 8k wf lk 8k wf
Kernel I/O 3 3 3 3 4 4 4 24 7 7 96 26
Small VO 3 3 3 4 3 3 7 23 7 52 92 26
Page I/O 3 3 3 3 4 4 7 24 7
Whole-map I/O 3 1 1 4 1 1 7 12 6

Each entry in table 1 represents the time in sections to complete 10,000 iterations o f an open/read-to-
completion/close loop. Additionally tests with a lk byte file were also run but always produced the same
result (11 seconds) regardless of the read size and I/O strategy. Each entry in table 2 represents the time in
seconds to complete a single open, followed by 10,000 read/re-read iterations and a single close. The tests
were run with a hot cache; kernel I/O uses the Unix buffer cache directly, while VM operations work from
the Mach memory object cache.

The highlighted entries represent the I/O strategy(s) that performed best for a specific file size and read
size. The data clearly shows the size o f the read and the size o f the input file has a dramatic effect on the
utility o f a given strategy. Based on this data, we programmed the Unix server as shown in Figure 5, so that
it returns, on open, an appropriately specialized I/O object.

If the module indicated in an annotation that it did “big I/O,” this indication is transmitted to the Unix
server at startup time. The information is used in subsequent open requests to guide the decision o f the
Unix server when choosing the user’s I/O strategy. Selection o f the VM-based I/O methods also results in
the application being linked with a version o f m a llo c that, when possible, returns page-aligned buffers.

The parameters we selected in this I/O strategy are approximate. They primarily serve to demonstrate an
example o f the fine-tuning that is available to the system implementor who has OMOS at his or her disposal.

Automatic specialization: To demonstrate that OMOS and the Unix server can successfully choose spe
cializations, and that they can succeed in improving performance, we tested this approach on a few small
Unix programs, g rep , which searches for string patterns in files, was run over 57 files ranging in size from
13K to 3MB, totaling 42MB of data searching for the string “ foobar” in each file. When g r e p was anno
tated and run under OMOS (Page-IO was chosen by the Unix server), its elapsed time was reduced by 6%.
Using the same input files, a similar test was run on the wc program, which counts bytes, words and lines
in files. The elapsed time for wc improved by 27%, in large part due to reduced copying by the operating
system. Our final test was to run c a t to concatenate a numerous input files (618 files with approximately

12

medium_big = 32 * 1024; /* 32K is max file size using small i/o */

max_whole_map = 128 * 1024; /* 128K is max file size that maps whole */

if (file_size < page_size)
return opentype_small_io;

else if (file_size <= medium_big) {

if (user_does_big_io)

return opentype_whole_map;

else .

return opentype_small_io;

} else if (file_size <= max_whole_map) {
if fuser_does_big_io)

return opentype_page_io; '

else
return opentype_whole_map;

} else /* very big file */
return opentype page io;

Figure 5: Open-time I/O Strategy Selection

Table 3: Utility Timing Breakdowns (average time in seconds over three runs, hot cache)

application user application system server user server system wall clock
Standard grep 2.9 0.1 2.1 0.2 5.4
Specialized grep 3.3 1.6 0.1 0.1 5.1
Standard wc 9.2 0.9 1.9 2.5 14.6
Specialized wc 9.0 1.5 0.1 0.1 10.6
Standard cat 0.8 0.1 3.1 1.6 20.6
Specialized cat 0.6 0.8 1.2 0.7 11.0

17MB of data). After annotation c a t ’s elapsed time improved by 47%. More detailed breakdowns o f the
test results can be found in Table 3.

The very large improvements c a t seems to indicate that programs which perform minimal processing
on large amounts o f input data benefit the most from the current I/O specializations. [The final paper will
include study of more programs o f this nature.]

This approach has the weakness that it is applied to all I/O a program does through this mechanism. Al
though I/O can be customized on a module-by-module basis, potentially providing each module with a dif
ferent implementation o f the basic I/O primitives, interaction between modules usually precludes this in a
practical sense (e.g., if file descriptors are implemented to mean different things in different modules, passing
file descriptors between modules via other (uncontrolled) parts of a module’s interface becomes problem
atic). Despite this weakness, this I/O implementation does demonstrate the potential o f producing significant
speedups and provides a useful starting point for experimenting with user-space I/O optimization strategies.

13

7.2 OMOS Status

As indicated, OMOS is a server written in C and C++, incorporating STk as its extension/scripting lan
guage. OMOS runs on Mach 3.0, with both the OSF/1 and CMU server-based Unix implementations, and
on both the HP PA-RISC and Intel x86 platforms. To manipulate object files, OMOS uses the GNU BFD[4]
object file library to provide it with a high degree of independence from low level object format details.
OMOS’s abstract persistent store, used to cache linked modules, is currently implemented using the Unix
file system. In addition to the server reported here, we also have a non-server variant o f OMOS that provides
its linking, module, and object file symbol management functions as a normal Unix application. We have
found this highly useful for a variety o f everyday uses. OMOS currently consists o f approximately 17,000
lines of code, excluding STk (11,000 lines) and the BFD library.4

In prior work in an earlier version o f OMOS that lacked a full scripting language, we demonstrated that
OMOS’s shared library services are fast and flexible[18]. Other work demonstrated that OMOS could pro
vide transparent call-graph profiling and re-ordering o f executables at the granularity o f functions, providing
speedup due to improved code locality [20]. OMOS could do this quite easily, due to its mediating role in
program invocation, its active nature, its detailed knowledge o f object files, and its powerful module ma
nipulation primitives.

8 Related W ork

The approach o f using “ open implementations” [15] to avoid the performance and flexibility limitations of
so-called “black-box abstractions” has recently received a lot o f attention. Meta-object Protocols[14] take an
imperative, directive approach to customizing implementations. That work was first applied in the compiler
domain, where the compiler implementation was customizable by users. The approach has been applied in
the operating system domain as well; user customization o f virtual memory management is an area that has
historically received a lot of attention. Some of the most recent VM work, which takes a more incremental
approach than, for example, external pagers, is that by Anderson et al[12]: the OS makes upcalls to user
code which directs the OS how to manage individual pages on its behalf.

By contrast, in the I/O domain, the work on Transparent Informed Prefetching[21] uses disclosure of
information about an application’s pattern o f I/O use to allow the underlying system to pre-fetch file data.

The majority of the OS open implementation research has been focused on the operating system proper
itself. We believe our approach of specializing the user-space library, extracting semantic information from
application’s symbolic names, and adding external annotations to the application when needed, is unique.

Maeda’s work[16] on user-space implementation o f network protocols is related to our I/O library ex
amples, in that responsibility is shared with the kernel. The Apollo type manager implementation[22] is an
example o f a file descriptor-based system for doing Unix I/O, implemented largely in user-space, commu
nicating to the OS only when security requirements dictated.

9 Future W ork

We plan to apply our work to other domains besides reducing copying by user space I/O libraries. In par
ticular, in Cao’s work[3] on informing the OS so it can use more appropriate buffer management strategies,
we have an area where our transparent approach will likely apply and show significant performance benefits.

4The entire source and binaries for a stable version o f OMOS, running on the Mach kernel and Lites Unix server, on both Intel
x86 and PA-RISC platforms, will be packaged and available for anonymous ftp by December 1st, 1995.

14

In prior work we demonstrated OMOS doing static call graph analysis. This can be used to determine the
call chain o f particular service invocations, and allowing us to avoid the weakness of this current work, that
all I/O through a particular interface is treated identically.

10 Conclusion

The OMOS linker/loader system provides an intelligent mechanism for communicating information from
an application to its imported libraries and to the operating system. This information is crucial for driving ap
plication, library and operating system service specializations to improve application runtime performance.
We have improved some small UNIX programs by 6% to 47% in a Mach/OSF-1 environment without pol
luting applications.

While the oddities and weaknesses we have chosen to attack are specific to this application and/or en
vironment, they are analogous to attributes and tradeoffs found in other applications and/or environments.
These oddities and weaknesses are also representative of the gaps between what we say, what we are al
lowed to say, and what we mean, when constructing a system. By creating a mechanism that allows passing
detailed description o f intent between a client application and the services it uses, we provide the means to
build better, more efficient systems without losing the benefits o f abstraction and modularity.

Elevating the system linker/loader to be a first class member of, and fully integrated with, the operat
ing system, gives a powerful tool. Together with the level o f indirection provided by having all executable
programs be scripts, we have a system which is more flexible and extensible than existing systems.

Acknowledgem ents

We are grateful to Guru Banavar for his contribution to the Scheme support, our understanding o f module
manipulation, and his help in reviewing this document.

References

[1] G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance. PhD
thesis, University o f Utah, March 1992. 143 pp.

[2] G. Bracha and G. Lindstrom. Modularity meets inheritance. In Proc. International Conference on
Computer Languages, pages 282-290, San Francisco, CA, April 20-23 1992. IEEE Computer Society.

[3] P. Cao, E. W. Felten, and K. Li. Implementation and performance o f application-controlled file caching.
In Proc. o f the First Symposium on Operating Systems Design and Implementation, pages 165-177,
Monterey, CA, Nov. 1994. USENIX Assoc.

[4] S. Chamberlain. The Binary File Descriptor Library. Cygnus Support, Palo Alto, CA, 1992. InFSF
b i n u t i l s distribution; Copyright Free Software Foundation.

[5] J. B. Chen and B. N. Bershad. The impact o f operating system structure on memory system perfor
mance. In Proc. o f the 14th ACM Symposiumon Operating Systems Principles, pages 120-133,1993.

[6] W. Clinger and J. Rees. Revised4 report on the algorithmic language Scheme. ACM Lisp Pointers,
4(3), 1991.

15

[7] P. Druschel. Efficient support for incremental customization o f OS services. In Proc. Third Interna
tional Workshop on Object Orientation in Operating Systems, pages 186-190, Asheville, NC, Dec.
1993.

[8] E. Gallesio. Embedding a Scheme interpreter in the Tk toolkit. In L. A. Rowe, editor, First TcUTk
Workshop, Berkeley, pages 103-109, June 1993. Included in ftp://kaolin.umce.fr/pub/STk-2.1.6.tar.gz.

[9] R. A. Gingell, M. Lee, X. T. Dang, and M. S. Weeks. Shared libraries in SunOS. In Proc. o f the Summer
1987 USENIX Conference, pages 131-145, Phoenix, AZ, June 1987.

[10] D. Grunwald and B. Zorn. Customalloc: Efficient synthesized memory allocators. Software — Prac
tice and Experience, pages 851-869, Aug. 1993.

[11] Hewlett-Packard. HP-UX Release 8.x Manual Set, 1990.

[12] A. V. K. Krueger, D. Loftesness and T. Anderson. Tools for the development o f application-specific
virtual memory management. In Proc. o f ACM Conf. on Object-Oriented Programming Systems, Lan
guages and Applications, Oct. 1993.

[13] G. Kiczales. Foil for the workshop on open implementation. http://www.xerox.com/PARC/spl/eca/-
oi/workshop-94/default.html, 1994.

[14] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art o f the Metaobject Protocol. The MIT Press,
Cambridge, MA, 1991.

[15] G. Kiczales and J. Lamping. Operating systems: Why object-oriented? In Proc. Third International
Workshop on Object Orientation in Operating Systems, pages 25-30, Asheville, NC, Dec. 1993.

[16] C. Maeda and B. N. Bershad. Protocol service decomposition for high-performance networking. In
Proceedings o f the Fourteenth ACM Symposium on Operating Systems Principles, pages 244-255,
1993.

[17] Open Systems Foundation and Carnegie Mellon Univ. OSF MACH Kernel Principles, 1993.

[18] D. B. Orr, J. Bonn, J. Lepreau, and R. Mecklenburg. Fast and flexible shared libraries. In Proc. o f the
Summer 1993 USENIX Conference, pages 237-251, June 1993.

[19] D. B. Orr and R. W. Mecklenburg. OMOS — an object server for program execution. In Proc. Second
International Workshop on Object Orientation in Operating Systems, pages 200-209, Paris, France,
September 1992. IEEE Computer Society.

[20] D. B. Orr, R. W. Mecklenburg, P. J. Hoogenboom, and J. Lepreau. Dynamic program monitoring and
transformation using the OMOS object server. In Proc. o f the 26th Hawaii International Conference
on System Sciences, pages 232-241, January 1993.

[21] R. H. Patterson and G. A. Gibson. Exposing I/O concurrency with informed prefetching. In Proc.
Third Intl. Conference on Parallel and Distributed Information Systems, pages 28-30, Austin, TX,
Sept. 1994.

[22] J. Rees, P. Levine, N. Mishkin, and P. Leach. An extensible I/O system. In Proc. o f the Summer 1986
USENIX Conference, pages 114-125, June 1986.

[23] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. The Bell System Technical Journal,
57(6): 1905-1930, July/August 1978.

16

ftp://kaolin.umce.fr/pub/STk-2.1.6.tar.gz
http://www.xerox.com/PARC/spl/eca/-

[24] M. T. Stolarchuk. Faster AFS. In Proc. o f the Winter 1993 USENIX Conference, pages 67-75, San
Diego, CA, 1993.

17

