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Abstract—We present a brute-force ray tracing system for interactive volume visualization. The system runs on a conventional 
(distributed) shared-memory multiprocessor machine. For each pixel we trace a ray through a volume to compute the color for that 
pixel. Although this method has high intrinsic computational cost, its simplicity and scalability make it ideal for large datasets on current 
high-end parallel systems. To gain efficiency several optimizations are used including a volume bricking scheme and a shallow data 
hierarchy. These optimizations are used in three separate visualization algorithms: isosurfacing of rectilinear data, isosurfacing of 
unstructured data, and maximum-intensity projection on rectilinear data. The system runs interactively (i.e., several frames per 
second) on an SGI Reality Monster. The graphics capabilities of the Reality Monster are used only for display of the final color image.

Index Terms—Bay tracing, visualization, isosurface, maximum-intensity projection.
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1 Introduction

Ma n y  applications generate scalar fields p(x,y, z) which 

can be visualized by a variety of methods. These 

fields are often defined by a set of point samples and an 
interpolation rule. The point samples are typically in either 

a rectilinear grid, a curvilinear grid, or an unstructured grid 

(simplical complex). The two main visualization techniques 

used on such fields are to display isosurfaces where 

p{x,y,z) = pisn, and direct volume rendering, where there is 

some type of opacity /emission integration along the line of 

sight. The key difference between these techniques is that 

isosurfacing displays actual surfaces, while direct volume 

rendering displays some function of all the values seen 

along a ray throughout the pixel. Ideally, the display 

parameters for each technique are interactively controlled 

by the user. In this paper, we present interactive volume 

visualization schemes that use ray tracing as their basic 

computation method.

The basic ray-volume traversal method used in this 

paper is shown in Fig. 1. This framework allows us to 

implement volume visualization methods that find exactly 

one value along a ray. Two such methods described in this 

paper are isosurfacing and maximum-intensity projection. 

Maximum-intensity projection is a direct volume rendering 

technique where the opacity is a function of the maximum 

intensity seen along a ray. The isosurfacing of rectilinear 

grids has appeared previously [1], while the isosurfacing of 

unstructured grids and the maximum-intensity projection 

are described for the first time in this paper. More general
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forms of direct volume rendering are not discussed in this 

paper.

The methods are implemented in a parallel ray tracing 

system that runs on an SGI Reality Monster, which is a 

conventional (distributed) shared-memory multiprocessor 

machine. The only graphics hardware that is used is the 

high-speed framebuffer. This overall system is described in 

a previous paper [2], Conventional wisdom holds that ray 

tracing is too slow to be competitive with hardware z- 

buffers. However, when rendering a sufficiently large 

dataset, ray tracing should be competitive because its low 

time complexity ultimately overcomes its large time 

constant [3]. This crossover will happen sooner on a 

multiple CPU computer because of ray tracing's high 

degree of intrinsic parallelism. The same arguments apply 

to the volume traversal problem.

In Section 2, we review previous work, describe several 

volume visualization techniques, and give an overview of 

the parallel ray tracing code that provides the backbone of 

our system. Section 3 describes the data organizational 

optimizations that allow us to achieve interactivity. In 

Section 4, we describe our memory optimizations for 

various types of volume visualization. In Section 5, we 

show our methods applied to several datasets. We discuss 

the implications of our results in Section 6, and point to 

some future directions in Section 7. Some material that is 

not research-oriented but is helpful for implementors is 

presented in the appendices.

2 B ack g ro u n d

Ray tracing has been used for volume visualization in many 

works (e.g., [4], [5], [6]). Typically, the ray tracing of a pixel 

is a kernel operation that could take place within any
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Fig. 1. A ray traverses a volume looking for a specific or maximum value. 

No explicit surface or volume is computed.

conventional ray tracing system. In this section, we review 

how ray tracers are used in visualization, and how they are 

implemented efficiently at a systems level.

2.1 Efficient Ray Tracing
It is well understood that ray tracing is accelerated through 

two main techniques [7]: accelerating or eliminating ray/ 

voxel intersection tests and parallelization. Acceleration is 

usually accomplished by a combination of spatial subdivi­

sion and early ray termination [4], [8], [9],

Ray tracing for volume visualization naturally lends 

itself towards parallel implementations [10], [11]. The 

computation for each pixel is independent of all other 

pixels and the data structures used for casting rays are 

usually read-only. These properties have resulted in many 

parallel implementations. A variety of techniques have been 

used to make such systems parallel, and many successful 

systems have been built (e.g., [10], [12], [13], [14]). These 

techniques are surveyed by Whitman [15].

2.2 Methods of Volume Visualization
There are several ways that scalar volumes can be made 

into images. The most popular simple volume visualization 

techniques that are not based on cutting planes are 

isosurfacing, maximum-intensity projection, and direct volume 
rendering.

In isosurfacing, a surface is displayed that is the locus of 

points where the scalar field equals a certain value. There 

are several methods for computing images of such surfaces,

Fig. 2. The three most common types of point-samples volume data.

including constructive approaches such as marching cubes

[16], [17] and ray tracing [18], [19], [20].

In maximum-intensity projection (MIP), each value in the 

scalar field is associated with an intensity and the 

maximum intensity seen through a pixel is projected onto 

that pixel [21]. This is a "winner-takes-all" algorithm and, 

thus, looks more like a search algorithm than a traditional 

volume color/opacity accumulation algorithm.

More traditional direct volume rendering algorithms 

accumulate color and opacity along a line of sight [4], [5], 

[6], [8], [22]. This requires more intrinsic computation than 

MIP and we will not deal with it in this paper.

2.3 Traversals of Volume Data
Traversal algorithms for volume data are usually custo­

mized to the details of the volume data characteristics. The 

three most common types [23] of volume data used in 

applications are shown in Fig. 2.

To traverse a line through rectilinear data some type of 

incremental traversal is used (e.g., [24], [25]). Because there 

are many cells, a hierarchy can be used that skips 

"uninteresting" parameter intervals, which increases per­

formance [26], [27], [28], [29],

For curvilinear volumes, the ray can be intersected 

against a polygonal approximation to the boundary and, 

then, a more complex cell-to-cell traversal can be used [30].

For unstructured volumes, a similar technique can be 

used [31], [32], Once the ray is intersected with a volume, it 

can be tracked from cell-to-cell using the connectivity 

information present in the mesh.

Another possibility for both curvilinear and unstruc­

tured grids is to resample to a rectilinear grid [33], although 

resampling artifacts and data explosion are both issues.

3 Tra v er sa l  O ptim izations

Our system organizes the data into a shallow rectilinear 

hierarchy for ray tracing. For unstructured or curvilinear 

grids, a rectilinear hierarchy is imposed over the data domain. 

Within a given level of the hierarchy we use the incremental 

method described by Amanatides and Woo [24],

3.1 Memory Bricking
The first optimization is to improve data locality by 

organizing the volume into "bricks" that are analogous to 

the use of image tiles in image-processing software and 

other volume rendering programs [21], [34] (Fig. 3). Our 

use of lookup tables is particularly similar to that of 

Sakas et al. [21],

Effectively utilizing the cache hierarchy is a crucial task 

in designing algorithms for modem architectures. Bricking 

or 3D tiling has been a popular method for increasing 

locality for ray cast volume rendering. The dataset is 

reordered into n x n x n cells which then fill the entire 

volume. On a machine with 128 byte cache lines, and using 

16 bit data values, n is exactly 4. However, using float (32 

bit) datasets, n is closer to 3.

Effective translation lookaside buffer (TLB) utilization is 

also becoming a crucial factor in algorithm performance. 

The same technique can be used to improve TLB hit rates by 

creating m x rn x rn bricks of n x n x n cells. For example, a
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where Nx, Nv, and Nz are the respective sizes of the dataset.

This expression contains many integer multiplication, 

divide and modulus operations. On modem processors, 

these operations are extremely costly (32+ cycles for the 

MIPS R10000). Where n and m are powers of two, these 

operations can be converted to bitshifts and bitwise logical 

operations. However, the ideal size is rarely a power of two, 

thus, a method that addresses arbitrary sizes is needed. 

Some of the multiplications can be converted to shift/add 

operations, but the divide and modulus operations are 

more problematic. The indices could be computed incre­

mentally, but this would require tracking nine counters, 

with numerous comparisons and poor branch prediction 

performance.
Note that this expression can be written as:

Fx(x)

Fu(y)

f -M

Fig. 3. Cells can be organized into “tiles” or “bricks” in memory to 
improve locality. The numbers in the first brick represent layout in 
memory. Neither the number of atomic voxels nor the number of bricks 
need be a power of two.

40 x 20 x 19 volume could be decomposed into 4 x 2 x 2  

macrobricks of 2 x 2 x 2  bricks of 5 x 5 x 5 cells. This 

corresponds to rn =  2 and n =  5. Because 19 cannot be 

factored by mn = 10 , one level of padding is needed. We 

use m. = 5 for 16 bit datasets and m  = 6 for 32 bit datasets.

The resulting offset q into the data array can be 

computed for any a:, y, z triple with the expression:

q = Fx(x) + Fy(y) -H Fz{z)

where

({x -T- n) -r m )n ,!m J ((Ara 4- n) 4- m)((Ny 4- n) 4 m) 

+ ((x 4- n) mod m)riSm2+
(x mod n x n)n2

((y ~ n) ~ m )n?’'rrv‘({Nz 4- n) 4- m)+

((y -r n) mod m)n3m+

(y mod n) x n 

((z ~ n) -r- +

((z ~ ri) mod m)rv1+

(z mod n).

We tabulate Fx, Fy, and Fz and use x, y, and z, respectively, 

to find three offsets in the array. These three values are 

summed to compute the index into the data array. These 

tables will consist of Nx, Ny, and N z elements, respectively. 

The total sizes of the tables will fit in the primary data cache 

of the processor even for very large data set sizes. Using this 

technique, we note that one could produce mappings which 

arc much more complex than the two level bricking 

described here, although it is not at all obvious which of 

these mappings would achieve the highest cache utilization.

For many algorithms, each iteration through the loop 

examines the eight corners of a cell. In order to find these 

eight values, we need to only lookup F,,{x), Fx{x + 1), Fy(y), 

Fy(y + 1), Fz(z), and Fz(z + 1). This consists of six index 

table lookups for each eight data value lookups.

3.2 Multilevel Grid
The other basic optimization we use is a multilevel spatial 

hierarchy to accelerate the traversal of empty cells, as is 

shown in Fig. 4. Cells are grouped divided into equal 

portions and, then, a "macrocell" is created which contains 

the minimum and maximum data value for its children 

cells. This is a common variant of standard ray-grid 

techniques [35] and is especially similar to previous 

multilevel grids [36], [37], The use of minimum/maximum 

caching has been shown to be useful [28], [29], [38], The ray- 

isosurface traversal algorithm examines the min and max at 

each macrocell before deciding whether to recursively 

examine a deeper level or to proceed to the next cell. The 

typical complexity of this search will be 0(^/n ) for a three 

level hierarchy [36] o n a n n x n x t i  dataset. While the worst 

case complexity is still 0(n), it is difficult to imagine an 

isosurface occurring in practice approaching this worst 

case. Using a deeper hierarchy can theoretically reduce the 

average case complexity slightly, but also dramatically 

increases the storage cost of intermediate levels. We have 

experimented with modifying the number of levels in the 

hierarchy and empirically determined that a trilevel 

hierarchy (one top-level cell, two intermediate macrocell 

levels, and the data cells) is highly efficient. This optimum 

may be data dependent and is modifiable at program 

startup. Using a trilevel hierarchy, the storage overhead is 

negligible (< 0.5 percent of the data size). The cell sizes 

used in the hierarchy are independent of the brick sizes 

used for cache locality in the first optimization.

Macrocells can be indexed with the same approach as 

used for memory bricking of the data values. However, in 

this case, there will be three table lookups for each 

macrocell. This, combined with the significantly smaller 

memory footprint of the macrocells made the effect of 

bricking the macrocells negligible.
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Fig. 4. With a two-level hierarchy, rays can skip empty space by 
traversing larger cells. A three-level hierarchy is used for most of the 
examples in this paper.

4 A lg o rit h m s

This section describes three types of volume visualization 

that use ray tracing:

•  isosurfacing on rectilinear grids,

•  isosurfacing on unstructured meshes,

•  maximum-intensity projection on rectilinear grids. 

The first two require an operation of the form: Find a 

specific scalar value along a ray. The third asks: What is the 

maximum value along a ray. All of these are searches that 

can benefit from the hierarchical data representations 

described in the previous section.

4.1 Rectilinear Isosurfacing
Our algorithm has three phases: traversing a ray through 

cells which do not contain an isosurface, analytically 

computing the isosurface when intersecting a voxel contain­

ing the isosurface, shading the resulting intersection point. 

This process is repeated for each pixel on the screen. A 

benefit is that adding incremental features to the rendering 

has only incremental cost. For example, if one is visualizing 

multiple isosurfaces with some of them rendered transpar­

ently, the correct compositing order is guaranteed since we 

traverse the volume in a front-to-back order along the rays. 

Additional shading techniques, such as shadows and 

specular reflection, can easily be incorporated for enhanced 

visual cues. Another benefit is the ability to exploit texture 

maps which are much larger than physical texture memory, 

which is currently available up to 64 MBytes. However, 

newer architectures that use main memory for textures 

eliminate this issue.

If we assume a regular volume with even grid point 

spacing arranged in a rectilinear array, then ray-isosurface 

intersection is straightforward. Analogous simple schemes 

exist for intersection of tetrahedral cells as described below.

To find an intersection (Fig. 5), the ray a + tb traverses 

cells in the volume checking each cell to see if its data range 

bounds an isovalue. If it does, an analytic computation is 

performed to solve for the ray parameter t at the 

iritersection with the isosurface:

Fig. 5. The ray traverses each cell (left) and, when a cell is encountered 
that has an isosurface in it (right), an analytic ray-isosurface intersection 
computation is performed.

p(xa + txb,ya + tyb, za + tzb) - piHO =  0.

When approximating p with a trilinear interpolation 

between discrete grid points, this equation will expand to 

a cubic polynomial in t. This cubic can then be solved in 

closed form to find the intersections of the ray with the 

isosurface in that cell. We use the closed form solution for 

convenience since its stability and efficiency have not 

proven to be major issues for the data we have used in 

our tests. Only the roots of the polynomial which are 

contained in the cell are examined. There may be multiple 

roots, corresponding to multiple intersection points. In this 

case, the smallest t (closest to the eye) is used. There may 

also be no roots of the polynomial, in which case the ray 

misses the isosurface in the cell. The details of this 

intersection computation are given in Appendix A. Note 

that using trilinear interpolation directly will produce more 

complex isosurfaces than is possible with a marching cubes 

algorithm. An example of this is shown in Fig. 6, which 

illustrates case 4 from Lorensen and Cline's paper [17], 

Techniques such as the Asymptotic Decider [39] could 

disambiguate such cases, but they would still miss the 

correct topology due to the isosurface interpolation scheme.

4.2 Unstructured Isosurfacing
For unstructured meshes, the same memory hierarchy is 

used as is used in the rectilinear case. However, we can 

control the resolution of the cell size at the finest level. We 

chose a resolution which uses approximately the same 

number of leaf nodes as there are tetrahedral elements. At 

the leaf nodes a list of references to overlapping tetrahedra 

is stored (Fig. 7). For efficiency, we store these lists as 

integer indices into an array of all tetrahedra.

Rays traverse the cell hierarchy in a manner identical to 

the rectilinear case. However, when a cell is detected that 

might contain an isosurface for the current isovalue, each of 

the tetrahedra in that cell are tested for intersection. No 

connectivity information is used for the tetrahedra; instead, 

they are treated as independent items, just as in a traditional 

surface-based ray tracer.

The 4D isosurface for a tetrahedron is computed 

implicitly using barycentric coordinates. The intersection 

of the parameterized ray and the isoplane is computed 

directly, using the implicit equations for the plane and the 

parametric equation for the ray. The intersection point is 

checked to see if it is still within the bounds of the 

tetrahedron by making sure the barycentric coordinates are 

all positive. Details of this intersection code are described in 

Appendix B,
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(a) (b)

Fig. 6. (a) The isosurface from the marching cubes algorithm, (b) The 

isosurface resulting the true cubic behavior inside the cell.

4.3 Maximum-intensity Projection
The maximum-intensity projection (MIP) algorithm seeks 

the largest data value that intersects a particular ray. It 

utilizes the same shallow spatial hierarchy described above 

for isosurface extraction. In addition, a priority queue is 

used to track the cells or macrocells with the maximal 

values. For each ray, the priority queue is first initialized 

with single top level macrocell. The maximum data value 

for the dataset is used as the priority value for this entry in 

the priority queue. The algorithm repeatedly pulls the 

largest entry from the priority queue and breaks it into 

smaller (lower level) macrocells. Each of these cells are 

inserted into the priority queue with the precomputed 

maximum data value for that region of space. When the 

lowest-level cells are pulled from the priority queue, the 

algorithm traverses the segment of the ray which intersects 

the macrocell. Bilinear interpolation is used at the intersec­

tion of the ray with cell faces since these are the extremal 

values of the ray-cell intersection in a linear interpolation 

scheme. For each data cell face which intersects the ray, a 

bilinear interpolation of the data values is computed, and 

the maximum of these values in stored again in the priority 

queue. Finally, when one of these data maxima appears at 

the head of the priority queue, the algorithm has found the 

maximum data value for the entire ray.

To reduce the average length of the priority queue, the 

algorithm performs a single trilinear interpolation of the 

data at one point to establish a lower-bound for the 

maximum value of the ray. Macrocells and datacells which 

do not exceed this lower-bound are not entered into the 

priority queue. To obtain this value, we perform the 

trilinear interpolation using the t corresponding to the 

maximum value from whatever previous ray a particular 

processor has computed. Typically, this will be a value 

within the same block of pixels and exploits image-space 

coherence. If not, it still provides a bound on the maximum 

along the ray, If this I value is unavailable (due to program 

startup, or a ray missing the data volume), we choose the 

midpoint of the ray segment which intersects the data 

volume. This is a simple heuristic which improves the 

performance for many datasets.

Similar to the isosurface extraction algorithm, the MIP 

algorithm uses the 3D bricking memory layout for efficient 

cache utilization when traversing the data values. Since 

each processor will be using a different priority queue as it

Fig. 7. For a given leaf cell in the rectilinear grid, indices to the shaded 

elements of the unstructured mesh are stored.

processes each ray, an efficient implementation of a priority 

queue which does not perform dynamic memory allocation 

is essential for performance of the algorithm.

5 R esults

We applied ray tracing isosurface extraction to interactively 

visualize the Visible Woman dataset. The Visible Woman 

dataset is available through the National Library of 

Medicine as part of its Visible Human Project [40]. We 

used the computed tomography (CT) data which was 

acquired in 1mm slices with varying in-slicc resolution. This 

rectilinear data is composed of 1,734 slices of 512 x 512 

images at 16 bits. The complete dataset is 910 MBytes. 

Rather than down-sample the data with a loss of resolution, 

we utilize the full resolution data in our experiments. As 

previously described, our algorithm has three phases: 

traversing a ray through cells which do not contain an 

isosurface, analytically computhig the isosurface when 

intersecting a voxel containing the isosurface, and shading 

the resulting intersection point.

Fig. 8 shows a ray tracing for two isosurface values. Fig. 9 

illustrates how shadows can improves the accuracy of our 

geometric perception. Fig. 10 shows a transparent skin 

isosurface over a bone isosurface. Table 1 shows the 

percentages of time spent in each of these phases, as 

obtained through the cycle hardware counter in Silicon 

Graphics' Speedshop.1 As can be seen, we achieve about 10 

frames per second (FPS) interactive rates while rendering 
the full, nearly 1 GByte, dataset.

Table 2 shows the scalability of the algorithm from 1 to 

128 processors. View 2 uses a zoomed out viewpoint with 

approximately 75 percent pixel coverage whereas view 1 

has nearly 100 percent pixel coverage. We chose to examine 

both cases since view 2 achieves higher frame rates. The 

higher frame rates cause less parallel efficiency due to 

synchronization costs and load imbalance. Of course, 

maximum interaction is obtained with 128 processors, but 

reasonable interaction can be achieved with fewer proces­

sors. If a smaller number of processors were available, one

1. Speedshop is the vendor provided performance analysis environment 
for the SGI IRIX operating system.
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Fig. 8. Ray tracings of the bone and skin isosurfaces of the Visible Woman.

could reduce the image size in order to restore the 

interactive rates. Efficiencies are 91 percent and 80 percent 

for view 1 and 2, respectively, on 128 processors. The 

reduced efficiency with larger numbers of processors (> 64) 

can be explained by load imbalances and the time required 

to synchronize processors at the required frame rate. The 

efficiencies would be higher for a larger image.

Table 3 shows the improvements which were 

obtained through the data bricking and spatial hierarchy 

optimizations.

Using a ray tracing architecture, it is simple to map each 

isosurface with an arbitrary texture map. The Visible Man 

dataset includes both CT data and photographic data. Using 

a texture mapping technique during the rendering phase 

allows us to add realism to the resultant isosurface. The 

photographic cross section data which was acquired in

0.33mm slices can be registered with the CT data. This 

combined data can be used as a texture mapped model to 

add realism to the resulting isosurface. The size of the 

photographic dataset is approximately 13 GBytes, which 

clearly is too large to fit into texture memory. When using 

texture mapping hardware, it is up to the user to implement 

intelligent texture memory management. This makes 

achieving effective texture performance nontrivial. In our 

implementation, we down-sampled this texture by a factor 

of 0.6 in two of the dimensions so that it occupied only 5.1 

GBytes. The frame rates for this volume with and without 

shadows and texture are shown in Table 4. A sample image 

is shown in Fig. 11. We can achieve interactive rates when 

applying the full resolution photographic cross sections to

the full resolution CT data. We know of no other work 

which achieves these rates.

Fig, 12 shows an isosurface from an unstructured mesh 

made up of 1.08 million elements which contains adaptively 

refined tetrahedral elements. The heart and lungs shown 

are polygonal meshes that serve as landmarks. The 

rendering times for this data, rendered without the 

polygonal landmarks at 512 x 512 pixel resolution, is shown 

in Table 5. As would be expected, the FPS is lower than for 

structured data, but the method scales well. We make the 

number of lowest-level cells proportional to the number of 

tetrahedral elements, and the bottleneck is intersection with 

individual tetrahedral elements. This dataset composed of 

adaptively refined tetrahedra with volume differences of 

two orders of magnitude.

Fig. 13 shows a maximum-intensity projection of the 

Visible Female dataset. This dataset runs in approximately

0.5 to 2 FPS on 16 processors. Using the "use last t" 

optimization saves approximately 15 percent of runtime. 

Generating such a frame rate using conventional graphics 

hardware would require approximately a 1.8 GPixel/ 

second pixel fill rate and 900 Mbytes of texture memory.

6 D isc u ss io n

We contrast applying our algorithm to explicitly extracting 

polygonal isosurfaces from the Visible Woman data set. For 

the skin isosurface, we generated 18,068,534 polygons. For 

the bone isosurface, we generated 12,922,628 polygons. 

These numbers are consistent with those reported by 

Lorensen given that he was using a cropped version of
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Fig. 9. A ray tracing with and without shadows.

the volume [41], With this number of polygons, it would be 

challenging to achieve interactive rendering rates on 

conventional high-end graphics hardware. Our method 

can render a ray-traced isosurface of this data at roughly ten 

frames per second using a 512 x 512 image on 64 

processors. Table 6 shows the extraction time for the bone 

isosurface using both NOISE [42] and marching cubes [17]. 

Note that because we are using static load balancing, these 

numbers would improve with a dynamic load balancing 

scheme. However, this would still not allow interactive 

modification of the isovalue while displaying the isosurface, 

although using a downsampled or simplified detail volume 
would allow interaction at the cost of some resolution. 

Simplified, precomputed isosurfaces could also yield inter­

action, but storage and precomputation time would be 

significant. Triangle stripping could improve display rates 
by up to a factor of three because isosurface meshes are 

usually transform bound. Note that we gain efficiency for 

both the extraction and rendering components by not 

explicitly extracting the geometry. Our algorithm is there­

fore not well-suited for applications that will use the 

geometry for nongraphics purposes.

The interactivity of our system allows exploration of both 

the data by interactively changing the isovalue or view­

point. For example, one could view the entire skeleton and 

interactively zoom in and modify the isovalue to examine

Fig. 10. Ray tracings of the skin and bone isosurfaces with 

transparency.

the detail in the toes all at about 10 FPS. The variation in 

framerate is shown in Fig. 14.

Brady et al. [43] describe a system which allows, on a 

Pentium workstation with accelerated graphics, interactive 

navigation through the Visible Human data set. Their 

technique is two-fold:

1. Combine frustum culling with intelligent paging 

from disk of the volume data, and

2. Utilize a two-phase perspective volume rendering 

method which exploits coherence in adjacent frames.

Their work differs from ours in that they are using 

incremental direct volume rendering while we are exploit­

ing isosurface or MIP rendering. This is evidenced by their 

incremental rendering times of about 2 seconds per frame 

for a 480 x 480 image. A full (nonincremental) rendering is 

nearly 20 seconds using their technique. For a single CPU, 

our isosurface rendering time is several seconds per frame 

(see Table 2) depending on viewpoint. While it is difficult to 

directly compare these techniques due to their differing 

application focus, our method allows for the entire data set 

to reside within the view frustum without severe perfor­

mance penalties since we are exploiting parallelism.

The architecture of the parallel machine plays an 

important role in the success of this technique. Since any

TABLE 1
Data from Ray Tracing the Visible Woman

Isosurface Traversal Intersec. Shading FPS
Skin (p = 600.5) 55% 22% 23% 7-15

Bone (p =  1224,5) 66% 21% 13% 6-15

The frames-per-second (FPS) gives the observed range for the 
interactively generated viewpoints on 64 CPUs.
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TABLE 2
Scalability Results for Ray Tracng the Bone Isosurface 

in the Visible Human

View 1 View 2

#cpus FPS speedup FPS speedup

1 0.18 1.0 0.39 1.0

2 0.36 2.0 0.79 2.0

4 0.72 4.0 1.58 4.1

8 1,44 8.0 3.16 8.1

12 2.17 12.1 4.73 12.1

16 2.89 16.1 6.31 16.2

24 4.33 24.1 9.47 24.3

32 5.55 30.8 11.34 29.1

48 8.50 47.2 16.96 43.5

64 10.40 57.8 22.14 56.8

96 16.10 89.4 33.34 85.5

128 20.49 113.8 39.98 102.5

A 512 x 512 image was generated using a single view of the bone 
isosurface,

processor can randomly access the entire dataset, the 

dataset must be available to each processor. Nonetheless, 

there is fairly high locality in the dataset for any particular 

processor. As a result, a shared memory or distributed 

shared memory machine, such as the SGI Origin 2000, is 

ideally suited for this application. The load balancing 

mechanism also requires a fine-grained low-latency com­

munication mechanism for synchronizing work assign­

ments and returning completed image tiles. With an 

attached InfiniteReality graphics engine, we can display 

images at high frame rates without network bottlenecks. We 

feel that implementing a similar technique on a distributed 

memory machine would be extraordinarily challenging, 

and would probably not achieve the same rates without 

duplicating the dataset on each processor.

7 Future W o r k  and  C o n clu sio n s

Since all computation is performed in software, there are 

many avenues which deserve exploration. Ray tracers have 

a relatively clean software architecture, in which techniques 

can be added without interfering with existing techniques, 

without re-unrolling large loops and without complicated

TABLE 3
Times in Seconds for Optimizations for Ray Tracing 

the Visible Human

View Initial Bricking Hierarc hy+B ricking

skin: front 1.41 1.27 0.53

bone: front 2.35 2.07 0.52

bone: close 3.61 3.52 0.76

bone: from feet 26.1 5.8 0.62

A 512 x  512 image was generated on 16 processors using a single view 
of an isosurface.

Fig. 11. A 3D texture applied to an isosurface from the Visible Man 

dataset.

state management as are characteristic of a typical polygon 

renderer.

We believe the following possibilities are worth investi­

gating:

•  Exploration of other hierarchical methods in addi­

tion to the multilevel hierarchy described above.

• Combination with other scalar and vector visualiza­

tion tools, such as cutting planes, surface maps, 

streamlines, etc.

•  Using higher-order interpolants. Although numer­

ical root finding would be necessary, the images 

might look better [19]. Since the intersection routine 

is not the bottleneck the degradation in performance 

might be reasonable.

We have shown that ray tracing can be a practical 

alternative to explicit isosurface extraction for very large 

datasets. As data sets get larger and as general purpose 

processing hardware becomes more powerful, we expect 

this to become a very attractive method for visualizing large 

scale scalar data both in terms of speed and rendering 

accuracy.

A ppendix  A 

R a y-Iso su r f a c e  Intersection  for  Trilinear  

B o x es

This appendix expands on some details of the intersection 

of a ray and a trilinear surface. It is not new research, but is 

helpful for implementors.

A rectilinear volume is composed of a three dimensional 

array of point samples that are aligned to the Cartesian axes 

and are equally spaced in a given dimension. A single cell 

from such a volume is shown in Fig. 15. Other cells can be
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Fig. 12. Ray tracing of a 1.08 million element unstructured mesh from 
bioelectric field simulation. The heart and lungs are represented as 
landmark polygonal meshes and are not part of the isosurface.

generated by exchanging indices {i , j ,k ) for the zeros and 

ones in the figure.

The density at a point within the cell is found using 

trilinear interpolation:

p(u,v,w) =(1 - u)(l - u)(l - w)akki+

(1 - «)(1 - v)(w)p001 +

(1 -  «)(u)(l -  w)poin+

(u)(l - v)(l - w)pm +

(u)(l - w)(w)/JlGl +

(1 - (■!̂ )Jp011 +

(«)(«) (1 - w)piw+

[u)[v){w)pnu

w here

I I  =  X  —  X ( ) X  i —  X(j

v =  y -  yoVi - yi) (2)

III =  z  —  Zt)Z-[ —  Z q .

Note that

TABLE 4
Frame Rates Varying Shadow and Texture for the Visible Male 

Dataset on 64 CPUs (FPS)

no shadows, no texture 15.9

shadows, no texture 8.7

no shadows, texture 12.6
shadows, texture 7.5

Fig. 13. A maximum-intensity projection of the Visible Female dataset.

1 —  U  —  X \  —  X X {  —  x o

1 - v = yi - yyv - y0 (3)

1 — W  =  Z \  — Z Z \  —  ZQ.

If we redefine uq =  1 — u and m = u, and similar definitions 

for vq,uj, wo,wi, then we get:

TABLE 5
Data from Ray Tracing Unstructured Grids at 512 x 512 Pixels 

on 1 to 124 Processors

# cpus FPS speedup

1 0.108 1.00
2 0.21 1.97

3 0.32 2.95

4 0.42 3.91

6 0.63 5.86

8 0.84 7.78

12 1.25 11.56

16 1.64 15.20

24 2.44 22.58

32 3.21 29.68

48 4.76 44.07

64 6.46 59.81

96 9.05 83.80

124 11.13 103.06

The adaptively refined dafasef is from a bioelectric field problem.
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TABLE 6
Explicit Bone Isosurface Extraction Times in Seconds

# cpus NOISE build NOISE extract Marching cubes

1 4838 110 627

2 2109 81 324

4 1006 56 171

8 885 31 93

16 437 24 49

32 118 14 26

64 59 12 24

P =  ^ 2  uivjwkPijk 
i jl-0,1

For a given point (x,y, z) in the cell, the surface normal is 

given by the gradient with respect to (x,y, z):

N  = Vjt) = (dpdx, dpdy, dpdz).

So, the normal vector of (NJ:, Ny , N^) = V/j is

N,: = ^ 2  {- iy+lv:jwkx i - p ijk
i,j)k=U. 1

N y  =  I -  W i j k

Nz = ^ 2  {- l)k+1WUjZ[ - ZofHjk- 
i,j,k=0,1

Lin and Ching [18] described a method for intersecting a 

ray with a trilinear cell. We derive a similar result that is 

more tailored to our implementation.

See Fig 16. Given a ray p = a + tb, the intersection with 

the isosurface occurs where p{p) = plm. We can convert this 

ray into coordinates defined by (tin, po — <?o + thi

and a third ray defined by = «i + tb[. These rays po = 

<?o + tba and pi = ai + tbi are now used for the intersection 

computation. These two rays are in the two coordinate 

systems (Fig. 16):

a0 = (m|5,jj0,io“)

=  (Xl -  XaX\ - Xo,Vl - VuVI -  VOi 21 -  Z„Zl -  z0),

and

ba =  (u ba, v l ,  wfj =  {xhx\ - x a,yhy\ -  yn,zhzi - zn).

These equations are different because <5o is a location and b0 

is a direction. The equations are similar for ai and fcj:

a i = (vfv 'lw 'l)

~ (•''cn — ®0'£ i — xq, y„. — 2/o2/ i  -  yu, z„ — znz t — za),

and

bi =  {u^v'^w'D =  ( - .T J X ,  -  xa, -yby-\ -  yn, - zhzx - z{]).

Note that t is the same for all three rays. This point can be 

found by traversing the cells and doing a brute-force 

algebraic solution for t. The intersection with the isosurface 

p{'p) = Pis a occurs where:

Pisv =  J 2  K  +  tU>') ( Vj  +  tvbi)  (Wk +  tW>k)Pvk

This can be simplified to a cubic polynomial in t:

Ati + n t2 + Ct + D =  0,

where

A= J2 vWv̂
i,j,k=B, I

13 = E  ( < ❖ * £ + + t ^ W
i j , k = 0,1

(: - E  U ^ wk + < vj K  + ^ y ^ ) p i j k

D  =  -a -* ,  +  J 2  ui v")wkP^-

The solution to a cubic polynomial is discussed the 

article by Schwarze [44]. We used his code (available on the 

web in several Graphics Gems archive sites) with two 

modifications: special cases for quadratic or linear solutions 

(his code assumes A is nonzero), and the EQN_EPS 

parameter was set to l,e-30 which provided for maximum 

stability for large coefficients.

A ppendix  B

R ay-Is o su rfa c e  Intersection  for  

Barycen tric  Tetrahedra

This appendix is geared toward implementors and dis­

cusses the details of intersecting a ray with a barycentric 

tetrahedral isosurface.
An unstructured mesh is composed of three dimensional 

point samples arranged into a simplex of tetrahedra. A 

single cell from such a volume is shown in Fig. 17, where 

the four vertices are p ; = (xi,yi,Zi).

The density at a point within the cell is found using 

barycentric interpolation:

p(ota, « i i  « 2, a'i) — oopo T  Oi\p\ +  a-iP2 +  otsps,

where

cv o +  « i  +  o 2 +  a3 =  1.

Similar equations apply to points in terms of the vertices. 

For points inside the tetrahedron, all barycentric coordi­

nates are positive.

One way to compute barycentric coordinates is to 

measure the distance from the plane that defines each face 

(Fig. 18). This is accomplished by choosing a plane equation 

/0(p) = 0 such that /o(Po) = 1- Such equations for all four 

plane-faces of the tetrahedron allow us to compute 

barycentric coordinates of a point p directly: rt;(p) = /*(p).

If we take the ray p(f) = a + tb, then we get an equation 

for the density along the ray:

Ptt) =  J 2 ^ a  + t^ P ‘‘
i- 0

If we solve for p(t) = p\m, then we get a linear equation, in t,

PARKER ET AL.: INTERACTIVE RAY TRACING FOR VOLUME- ^4/
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# processors Frame rate /Speedup
1 0.427 /1 .00 0.304 /1.00 0.084 /1.00 0.155 /1.00 0.568 /1.00
2 0.84/1.97 0.60 /1.98 0.17 /1.99 0.31 /2.00 1.13 /1.9S
3 1.26/2.94 0.89 /2.93 0.25 /2.95 0.46 /2.96 1.68 /2.96
4 1,67/3.91 1.19 /3.92 0.33 /3.96 0.62 /3.97 2.24 /3.94
0 2.45 /S.73 1.76 /5.77 0.50 /5.97 0.93 /5.96 3,29 /S.80
8 3.20/7.50 2.32 /7.61 0.67 /7.94 1.23 /7.93 4.36 /7.67

12 4.81 /t i  .ae 3.44 /11.30 1.00 /11.89 1.84 /11.88 6.51 /11.47
16 6.38 /14.93 4.59 /15.08 1.33 /15.84 2.45 /15.80 8.64 /15.21
24 9.54 /22.33 6.84 Z22.48 1.98 /23.54 3.65 Z23.49 12.92 Z22.76
32 12.65 /29.61 9.12 Z29.96 2.63 /31.38 4.88 /31.47 17.09 /30.10
48 18.85/44.13 13.52 /44.39 3.92 /46.72 7.30 /47.02 25.27 /44.50
64 24.73 /57.90 17.72 /58.19 5.18 /61.78 9.64 /62.14 32.25 /56.80
96 35.38 Z82.82 25.04 Z82.23 7,67 /91.38 14.28 /92.02 45.50 /80.14

124 43.06 /100.79 30.28 Z99.45 9.73 /115.8B 18.17 /117.08 57.70 /101.63

Fig. 14. Variation in framerate as the viewpoint and isovalue changes.

so solution is straightforward. If the resulting barycentric 

coordinates of p(t) are all positive, the point is in the 

tetrahedron, and it is accepted. Finding the normal is just a 

matter of taking the gradient:

3

Vp(p) =
i~ 0

Because /,; is just a plane equation of the form H, • (p — q ], 

where q, is a constant point, the normal vector N is simply

N  :

This is a constant for the cell, but we do not precompute it 

since it would require extra memory accesses.

Pon
(W i.Zj)
(0,1.1)

a,cm

Fig. 15. The geometry for a cell. The bottom coordinates are the (u, v, w) 

values for the intermediate point.
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(*<>. yu) (0. 0) “o (1, 1)

Fig. 16. Various coordinate systems used for interpolation and intersection.
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