
238 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 3, JULY-SEPTEMBER 1999

Interactive Ray Tracing
for Volume Visualization
Steven Parker, Member, IEEE C om puter Society,

Michael Parker, Student Member, IEEE Com puter Society,
Yarden Livnat, Student Member, IEEE C om puter Society,

Peter-Pike Sloan, Member, IEEE C om puter Society,
Charles Hansen, Member, IEEE Com puter Society, and Peter Shirley

Abstract—We present a brute-force ray tracing system for interactive volume visualization. The system runs on a conventional
(distributed) shared-memory multiprocessor machine. For each pixel we trace a ray through a volume to compute the color for that
pixel. Although this method has high intrinsic computational cost, its simplicity and scalability make it ideal for large datasets on current
high-end parallel systems. To gain efficiency several optimizations are used including a volume bricking scheme and a shallow data
hierarchy. These optimizations are used in three separate visualization algorithms: isosurfacing of rectilinear data, isosurfacing of
unstructured data, and maximum-intensity projection on rectilinear data. The system runs interactively (i.e., several frames per
second) on an SGI Reality Monster. The graphics capabilities of the Reality Monster are used only for display of the final color image.

Index Terms—Bay tracing, visualization, isosurface, maximum-intensity projection.

-------------------- ♦ --------------------

1 Introduction

Ma n y applications generate scalar fields p(x,y, z) which

can be visualized by a variety of methods. These

fields are often defined by a set of point samples and an
interpolation rule. The point samples are typically in either

a rectilinear grid, a curvilinear grid, or an unstructured grid

(simplical complex). The two main visualization techniques

used on such fields are to display isosurfaces where

p{x,y,z) = pisn, and direct volume rendering, where there is

some type of opacity /emission integration along the line of

sight. The key difference between these techniques is that

isosurfacing displays actual surfaces, while direct volume

rendering displays some function of all the values seen

along a ray throughout the pixel. Ideally, the display

parameters for each technique are interactively controlled

by the user. In this paper, we present interactive volume

visualization schemes that use ray tracing as their basic

computation method.

The basic ray-volume traversal method used in this

paper is shown in Fig. 1. This framework allows us to

implement volume visualization methods that find exactly

one value along a ray. Two such methods described in this

paper are isosurfacing and maximum-intensity projection.

Maximum-intensity projection is a direct volume rendering

technique where the opacity is a function of the maximum

intensity seen along a ray. The isosurfacing of rectilinear

grids has appeared previously [1], while the isosurfacing of

unstructured grids and the maximum-intensity projection

are described for the first time in this paper. More general

• The authors are with the Computer Science Department, University of
Utah, Salt Lake City, UT 84112.
E-mail: fsparker, map, yarden, ppsloan, hanscn, shirleyj@cs.utah.edu.

For information on obtaining reprints of this article, please send e-mail to:
lvcg@computer.org, and reference IEEECS Log Number 109337.

forms of direct volume rendering are not discussed in this

paper.

The methods are implemented in a parallel ray tracing

system that runs on an SGI Reality Monster, which is a

conventional (distributed) shared-memory multiprocessor

machine. The only graphics hardware that is used is the

high-speed framebuffer. This overall system is described in

a previous paper [2], Conventional wisdom holds that ray

tracing is too slow to be competitive with hardware z-

buffers. However, when rendering a sufficiently large

dataset, ray tracing should be competitive because its low

time complexity ultimately overcomes its large time

constant [3]. This crossover will happen sooner on a

multiple CPU computer because of ray tracing's high

degree of intrinsic parallelism. The same arguments apply

to the volume traversal problem.

In Section 2, we review previous work, describe several

volume visualization techniques, and give an overview of

the parallel ray tracing code that provides the backbone of

our system. Section 3 describes the data organizational

optimizations that allow us to achieve interactivity. In

Section 4, we describe our memory optimizations for

various types of volume visualization. In Section 5, we

show our methods applied to several datasets. We discuss

the implications of our results in Section 6, and point to

some future directions in Section 7. Some material that is

not research-oriented but is helpful for implementors is

presented in the appendices.

2 B ack g ro u n d

Ray tracing has been used for volume visualization in many

works (e.g., [4], [5], [6]). Typically, the ray tracing of a pixel

is a kernel operation that could take place within any

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

mailto:shirleyj@cs.utah.edu
mailto:lvcg@computer.org

PARKER ET AL.: INTERACTIVE RAY TRACING FOR VOLUME VISUALIZATION 239

Fig. 1. A ray traverses a volume looking for a specific or maximum value.

No explicit surface or volume is computed.

conventional ray tracing system. In this section, we review

how ray tracers are used in visualization, and how they are

implemented efficiently at a systems level.

2.1 Efficient Ray Tracing
It is well understood that ray tracing is accelerated through

two main techniques [7]: accelerating or eliminating ray/

voxel intersection tests and parallelization. Acceleration is

usually accomplished by a combination of spatial subdivi­

sion and early ray termination [4], [8], [9],

Ray tracing for volume visualization naturally lends

itself towards parallel implementations [10], [11]. The

computation for each pixel is independent of all other

pixels and the data structures used for casting rays are

usually read-only. These properties have resulted in many

parallel implementations. A variety of techniques have been

used to make such systems parallel, and many successful

systems have been built (e.g., [10], [12], [13], [14]). These

techniques are surveyed by Whitman [15].

2.2 Methods of Volume Visualization
There are several ways that scalar volumes can be made

into images. The most popular simple volume visualization

techniques that are not based on cutting planes are

isosurfacing, maximum-intensity projection, and direct volume
rendering.

In isosurfacing, a surface is displayed that is the locus of

points where the scalar field equals a certain value. There

are several methods for computing images of such surfaces,

Fig. 2. The three most common types of point-samples volume data.

including constructive approaches such as marching cubes

[16], [17] and ray tracing [18], [19], [20].

In maximum-intensity projection (MIP), each value in the

scalar field is associated with an intensity and the

maximum intensity seen through a pixel is projected onto

that pixel [21]. This is a "winner-takes-all" algorithm and,

thus, looks more like a search algorithm than a traditional

volume color/opacity accumulation algorithm.

More traditional direct volume rendering algorithms

accumulate color and opacity along a line of sight [4], [5],

[6], [8], [22]. This requires more intrinsic computation than

MIP and we will not deal with it in this paper.

2.3 Traversals of Volume Data
Traversal algorithms for volume data are usually custo­

mized to the details of the volume data characteristics. The

three most common types [23] of volume data used in

applications are shown in Fig. 2.

To traverse a line through rectilinear data some type of

incremental traversal is used (e.g., [24], [25]). Because there

are many cells, a hierarchy can be used that skips

"uninteresting" parameter intervals, which increases per­

formance [26], [27], [28], [29],

For curvilinear volumes, the ray can be intersected

against a polygonal approximation to the boundary and,

then, a more complex cell-to-cell traversal can be used [30].

For unstructured volumes, a similar technique can be

used [31], [32], Once the ray is intersected with a volume, it

can be tracked from cell-to-cell using the connectivity

information present in the mesh.

Another possibility for both curvilinear and unstruc­

tured grids is to resample to a rectilinear grid [33], although

resampling artifacts and data explosion are both issues.

3 Tra v er sa l O ptim izations

Our system organizes the data into a shallow rectilinear

hierarchy for ray tracing. For unstructured or curvilinear

grids, a rectilinear hierarchy is imposed over the data domain.

Within a given level of the hierarchy we use the incremental

method described by Amanatides and Woo [24],

3.1 Memory Bricking
The first optimization is to improve data locality by

organizing the volume into "bricks" that are analogous to

the use of image tiles in image-processing software and

other volume rendering programs [21], [34] (Fig. 3). Our

use of lookup tables is particularly similar to that of

Sakas et al. [21],

Effectively utilizing the cache hierarchy is a crucial task

in designing algorithms for modem architectures. Bricking

or 3D tiling has been a popular method for increasing

locality for ray cast volume rendering. The dataset is

reordered into n x n x n cells which then fill the entire

volume. On a machine with 128 byte cache lines, and using

16 bit data values, n is exactly 4. However, using float (32

bit) datasets, n is closer to 3.

Effective translation lookaside buffer (TLB) utilization is

also becoming a crucial factor in algorithm performance.

The same technique can be used to improve TLB hit rates by

creating m x rn x rn bricks of n x n x n cells. For example, a

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

240 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 5, NO. 3, JULY-SEPTEMBER 1999

0 1 2 3

4 5 6 7

8 9 10 11

<!=(x ~ n) ~ m)n3m3((Nz 4- n) 4- m)((Ny ~ n) -i- m) +

J v) i) t m)n3mi ((Nz -r n) -f- m)+

2 -i- n) m)n'lm3+

x -7- n) mod m)n3m2+

y ~ n) mod m)n'!m+

z 4- n) mod m)n‘i -f

(a; mod n x n)n2 +

(ty mod n) x n+

(a mod n).

where Nx, Nv, and Nz are the respective sizes of the dataset.

This expression contains many integer multiplication,

divide and modulus operations. On modem processors,

these operations are extremely costly (32+ cycles for the

MIPS R10000). Where n and m are powers of two, these

operations can be converted to bitshifts and bitwise logical

operations. However, the ideal size is rarely a power of two,

thus, a method that addresses arbitrary sizes is needed.

Some of the multiplications can be converted to shift/add

operations, but the divide and modulus operations are

more problematic. The indices could be computed incre­

mentally, but this would require tracking nine counters,

with numerous comparisons and poor branch prediction

performance.
Note that this expression can be written as:

Fx(x)

Fu(y)

f -M

Fig. 3. Cells can be organized into “tiles” or “bricks” in memory to
improve locality. The numbers in the first brick represent layout in
memory. Neither the number of atomic voxels nor the number of bricks
need be a power of two.

40 x 20 x 19 volume could be decomposed into 4 x 2 x 2

macrobricks of 2 x 2 x 2 bricks of 5 x 5 x 5 cells. This

corresponds to rn = 2 and n = 5. Because 19 cannot be

factored by mn = 10 , one level of padding is needed. We

use m. = 5 for 16 bit datasets and m = 6 for 32 bit datasets.

The resulting offset q into the data array can be

computed for any a:, y, z triple with the expression:

q = Fx(x) + Fy(y) -H Fz{z)

where

({x -T- n) -r m)n ,!m J ((Ara 4- n) 4- m)((Ny 4- n) 4 m)

+ ((x 4- n) mod m)riSm2+
(x mod n x n)n2

((y ~ n) ~ m)n?’'rrv‘({Nz 4- n) 4- m)+

((y -r n) mod m)n3m+

(y mod n) x n

((z ~ n) -r- +

((z ~ ri) mod m)rv1+

(z mod n).

We tabulate Fx, Fy, and Fz and use x, y, and z, respectively,

to find three offsets in the array. These three values are

summed to compute the index into the data array. These

tables will consist of Nx, Ny, and N z elements, respectively.

The total sizes of the tables will fit in the primary data cache

of the processor even for very large data set sizes. Using this

technique, we note that one could produce mappings which

arc much more complex than the two level bricking

described here, although it is not at all obvious which of

these mappings would achieve the highest cache utilization.

For many algorithms, each iteration through the loop

examines the eight corners of a cell. In order to find these

eight values, we need to only lookup F,,{x), Fx{x + 1), Fy(y),

Fy(y + 1), Fz(z), and Fz(z + 1). This consists of six index

table lookups for each eight data value lookups.

3.2 Multilevel Grid
The other basic optimization we use is a multilevel spatial

hierarchy to accelerate the traversal of empty cells, as is

shown in Fig. 4. Cells are grouped divided into equal

portions and, then, a "macrocell" is created which contains

the minimum and maximum data value for its children

cells. This is a common variant of standard ray-grid

techniques [35] and is especially similar to previous

multilevel grids [36], [37], The use of minimum/maximum

caching has been shown to be useful [28], [29], [38], The ray-

isosurface traversal algorithm examines the min and max at

each macrocell before deciding whether to recursively

examine a deeper level or to proceed to the next cell. The

typical complexity of this search will be 0(^/n) for a three

level hierarchy [36] o n a n n x n x t i dataset. While the worst

case complexity is still 0(n), it is difficult to imagine an

isosurface occurring in practice approaching this worst

case. Using a deeper hierarchy can theoretically reduce the

average case complexity slightly, but also dramatically

increases the storage cost of intermediate levels. We have

experimented with modifying the number of levels in the

hierarchy and empirically determined that a trilevel

hierarchy (one top-level cell, two intermediate macrocell

levels, and the data cells) is highly efficient. This optimum

may be data dependent and is modifiable at program

startup. Using a trilevel hierarchy, the storage overhead is

negligible (< 0.5 percent of the data size). The cell sizes

used in the hierarchy are independent of the brick sizes

used for cache locality in the first optimization.

Macrocells can be indexed with the same approach as

used for memory bricking of the data values. However, in

this case, there will be three table lookups for each

macrocell. This, combined with the significantly smaller

memory footprint of the macrocells made the effect of

bricking the macrocells negligible.

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

PARKER ET AL: INTERACTIVE RAY TRACING FOR VOLUME VISUALIZATION 241

/ \A

Y
/

■v_. _

Fig. 4. With a two-level hierarchy, rays can skip empty space by
traversing larger cells. A three-level hierarchy is used for most of the
examples in this paper.

4 A lg o rit h m s

This section describes three types of volume visualization

that use ray tracing:

• isosurfacing on rectilinear grids,

• isosurfacing on unstructured meshes,

• maximum-intensity projection on rectilinear grids.

The first two require an operation of the form: Find a

specific scalar value along a ray. The third asks: What is the

maximum value along a ray. All of these are searches that

can benefit from the hierarchical data representations

described in the previous section.

4.1 Rectilinear Isosurfacing
Our algorithm has three phases: traversing a ray through

cells which do not contain an isosurface, analytically

computing the isosurface when intersecting a voxel contain­

ing the isosurface, shading the resulting intersection point.

This process is repeated for each pixel on the screen. A

benefit is that adding incremental features to the rendering

has only incremental cost. For example, if one is visualizing

multiple isosurfaces with some of them rendered transpar­

ently, the correct compositing order is guaranteed since we

traverse the volume in a front-to-back order along the rays.

Additional shading techniques, such as shadows and

specular reflection, can easily be incorporated for enhanced

visual cues. Another benefit is the ability to exploit texture

maps which are much larger than physical texture memory,

which is currently available up to 64 MBytes. However,

newer architectures that use main memory for textures

eliminate this issue.

If we assume a regular volume with even grid point

spacing arranged in a rectilinear array, then ray-isosurface

intersection is straightforward. Analogous simple schemes

exist for intersection of tetrahedral cells as described below.

To find an intersection (Fig. 5), the ray a + tb traverses

cells in the volume checking each cell to see if its data range

bounds an isovalue. If it does, an analytic computation is

performed to solve for the ray parameter t at the

iritersection with the isosurface:

Fig. 5. The ray traverses each cell (left) and, when a cell is encountered
that has an isosurface in it (right), an analytic ray-isosurface intersection
computation is performed.

p(xa + txb,ya + tyb, za + tzb) - piHO = 0.

When approximating p with a trilinear interpolation

between discrete grid points, this equation will expand to

a cubic polynomial in t. This cubic can then be solved in

closed form to find the intersections of the ray with the

isosurface in that cell. We use the closed form solution for

convenience since its stability and efficiency have not

proven to be major issues for the data we have used in

our tests. Only the roots of the polynomial which are

contained in the cell are examined. There may be multiple

roots, corresponding to multiple intersection points. In this

case, the smallest t (closest to the eye) is used. There may

also be no roots of the polynomial, in which case the ray

misses the isosurface in the cell. The details of this

intersection computation are given in Appendix A. Note

that using trilinear interpolation directly will produce more

complex isosurfaces than is possible with a marching cubes

algorithm. An example of this is shown in Fig. 6, which

illustrates case 4 from Lorensen and Cline's paper [17],

Techniques such as the Asymptotic Decider [39] could

disambiguate such cases, but they would still miss the

correct topology due to the isosurface interpolation scheme.

4.2 Unstructured Isosurfacing
For unstructured meshes, the same memory hierarchy is

used as is used in the rectilinear case. However, we can

control the resolution of the cell size at the finest level. We

chose a resolution which uses approximately the same

number of leaf nodes as there are tetrahedral elements. At

the leaf nodes a list of references to overlapping tetrahedra

is stored (Fig. 7). For efficiency, we store these lists as

integer indices into an array of all tetrahedra.

Rays traverse the cell hierarchy in a manner identical to

the rectilinear case. However, when a cell is detected that

might contain an isosurface for the current isovalue, each of

the tetrahedra in that cell are tested for intersection. No

connectivity information is used for the tetrahedra; instead,

they are treated as independent items, just as in a traditional

surface-based ray tracer.

The 4D isosurface for a tetrahedron is computed

implicitly using barycentric coordinates. The intersection

of the parameterized ray and the isoplane is computed

directly, using the implicit equations for the plane and the

parametric equation for the ray. The intersection point is

checked to see if it is still within the bounds of the

tetrahedron by making sure the barycentric coordinates are

all positive. Details of this intersection code are described in

Appendix B,

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

242 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 3, JULY’SEPTEMBER 1999

(a) (b)

Fig. 6. (a) The isosurface from the marching cubes algorithm, (b) The

isosurface resulting the true cubic behavior inside the cell.

4.3 Maximum-intensity Projection
The maximum-intensity projection (MIP) algorithm seeks

the largest data value that intersects a particular ray. It

utilizes the same shallow spatial hierarchy described above

for isosurface extraction. In addition, a priority queue is

used to track the cells or macrocells with the maximal

values. For each ray, the priority queue is first initialized

with single top level macrocell. The maximum data value

for the dataset is used as the priority value for this entry in

the priority queue. The algorithm repeatedly pulls the

largest entry from the priority queue and breaks it into

smaller (lower level) macrocells. Each of these cells are

inserted into the priority queue with the precomputed

maximum data value for that region of space. When the

lowest-level cells are pulled from the priority queue, the

algorithm traverses the segment of the ray which intersects

the macrocell. Bilinear interpolation is used at the intersec­

tion of the ray with cell faces since these are the extremal

values of the ray-cell intersection in a linear interpolation

scheme. For each data cell face which intersects the ray, a

bilinear interpolation of the data values is computed, and

the maximum of these values in stored again in the priority

queue. Finally, when one of these data maxima appears at

the head of the priority queue, the algorithm has found the

maximum data value for the entire ray.

To reduce the average length of the priority queue, the

algorithm performs a single trilinear interpolation of the

data at one point to establish a lower-bound for the

maximum value of the ray. Macrocells and datacells which

do not exceed this lower-bound are not entered into the

priority queue. To obtain this value, we perform the

trilinear interpolation using the t corresponding to the

maximum value from whatever previous ray a particular

processor has computed. Typically, this will be a value

within the same block of pixels and exploits image-space

coherence. If not, it still provides a bound on the maximum

along the ray, If this I value is unavailable (due to program

startup, or a ray missing the data volume), we choose the

midpoint of the ray segment which intersects the data

volume. This is a simple heuristic which improves the

performance for many datasets.

Similar to the isosurface extraction algorithm, the MIP

algorithm uses the 3D bricking memory layout for efficient

cache utilization when traversing the data values. Since

each processor will be using a different priority queue as it

Fig. 7. For a given leaf cell in the rectilinear grid, indices to the shaded

elements of the unstructured mesh are stored.

processes each ray, an efficient implementation of a priority

queue which does not perform dynamic memory allocation

is essential for performance of the algorithm.

5 R esults

We applied ray tracing isosurface extraction to interactively

visualize the Visible Woman dataset. The Visible Woman

dataset is available through the National Library of

Medicine as part of its Visible Human Project [40]. We

used the computed tomography (CT) data which was

acquired in 1mm slices with varying in-slicc resolution. This

rectilinear data is composed of 1,734 slices of 512 x 512

images at 16 bits. The complete dataset is 910 MBytes.

Rather than down-sample the data with a loss of resolution,

we utilize the full resolution data in our experiments. As

previously described, our algorithm has three phases:

traversing a ray through cells which do not contain an

isosurface, analytically computhig the isosurface when

intersecting a voxel containing the isosurface, and shading

the resulting intersection point.

Fig. 8 shows a ray tracing for two isosurface values. Fig. 9

illustrates how shadows can improves the accuracy of our

geometric perception. Fig. 10 shows a transparent skin

isosurface over a bone isosurface. Table 1 shows the

percentages of time spent in each of these phases, as

obtained through the cycle hardware counter in Silicon

Graphics' Speedshop.1 As can be seen, we achieve about 10

frames per second (FPS) interactive rates while rendering
the full, nearly 1 GByte, dataset.

Table 2 shows the scalability of the algorithm from 1 to

128 processors. View 2 uses a zoomed out viewpoint with

approximately 75 percent pixel coverage whereas view 1

has nearly 100 percent pixel coverage. We chose to examine

both cases since view 2 achieves higher frame rates. The

higher frame rates cause less parallel efficiency due to

synchronization costs and load imbalance. Of course,

maximum interaction is obtained with 128 processors, but

reasonable interaction can be achieved with fewer proces­

sors. If a smaller number of processors were available, one

1. Speedshop is the vendor provided performance analysis environment
for the SGI IRIX operating system.

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

PARKER ET AL.: INTERACTIVE RAY TRACING FOR VOLUME VISUALIZATION 243

Fig. 8. Ray tracings of the bone and skin isosurfaces of the Visible Woman.

could reduce the image size in order to restore the

interactive rates. Efficiencies are 91 percent and 80 percent

for view 1 and 2, respectively, on 128 processors. The

reduced efficiency with larger numbers of processors (> 64)

can be explained by load imbalances and the time required

to synchronize processors at the required frame rate. The

efficiencies would be higher for a larger image.

Table 3 shows the improvements which were

obtained through the data bricking and spatial hierarchy

optimizations.

Using a ray tracing architecture, it is simple to map each

isosurface with an arbitrary texture map. The Visible Man

dataset includes both CT data and photographic data. Using

a texture mapping technique during the rendering phase

allows us to add realism to the resultant isosurface. The

photographic cross section data which was acquired in

0.33mm slices can be registered with the CT data. This

combined data can be used as a texture mapped model to

add realism to the resulting isosurface. The size of the

photographic dataset is approximately 13 GBytes, which

clearly is too large to fit into texture memory. When using

texture mapping hardware, it is up to the user to implement

intelligent texture memory management. This makes

achieving effective texture performance nontrivial. In our

implementation, we down-sampled this texture by a factor

of 0.6 in two of the dimensions so that it occupied only 5.1

GBytes. The frame rates for this volume with and without

shadows and texture are shown in Table 4. A sample image

is shown in Fig. 11. We can achieve interactive rates when

applying the full resolution photographic cross sections to

the full resolution CT data. We know of no other work

which achieves these rates.

Fig, 12 shows an isosurface from an unstructured mesh

made up of 1.08 million elements which contains adaptively

refined tetrahedral elements. The heart and lungs shown

are polygonal meshes that serve as landmarks. The

rendering times for this data, rendered without the

polygonal landmarks at 512 x 512 pixel resolution, is shown

in Table 5. As would be expected, the FPS is lower than for

structured data, but the method scales well. We make the

number of lowest-level cells proportional to the number of

tetrahedral elements, and the bottleneck is intersection with

individual tetrahedral elements. This dataset composed of

adaptively refined tetrahedra with volume differences of

two orders of magnitude.

Fig. 13 shows a maximum-intensity projection of the

Visible Female dataset. This dataset runs in approximately

0.5 to 2 FPS on 16 processors. Using the "use last t"

optimization saves approximately 15 percent of runtime.

Generating such a frame rate using conventional graphics

hardware would require approximately a 1.8 GPixel/

second pixel fill rate and 900 Mbytes of texture memory.

6 D isc u ss io n

We contrast applying our algorithm to explicitly extracting

polygonal isosurfaces from the Visible Woman data set. For

the skin isosurface, we generated 18,068,534 polygons. For

the bone isosurface, we generated 12,922,628 polygons.

These numbers are consistent with those reported by

Lorensen given that he was using a cropped version of

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

244 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 3, JULY-SEPTEMBER 1999

Fig. 9. A ray tracing with and without shadows.

the volume [41], With this number of polygons, it would be

challenging to achieve interactive rendering rates on

conventional high-end graphics hardware. Our method

can render a ray-traced isosurface of this data at roughly ten

frames per second using a 512 x 512 image on 64

processors. Table 6 shows the extraction time for the bone

isosurface using both NOISE [42] and marching cubes [17].

Note that because we are using static load balancing, these

numbers would improve with a dynamic load balancing

scheme. However, this would still not allow interactive

modification of the isovalue while displaying the isosurface,

although using a downsampled or simplified detail volume
would allow interaction at the cost of some resolution.

Simplified, precomputed isosurfaces could also yield inter­

action, but storage and precomputation time would be

significant. Triangle stripping could improve display rates
by up to a factor of three because isosurface meshes are

usually transform bound. Note that we gain efficiency for

both the extraction and rendering components by not

explicitly extracting the geometry. Our algorithm is there­

fore not well-suited for applications that will use the

geometry for nongraphics purposes.

The interactivity of our system allows exploration of both

the data by interactively changing the isovalue or view­

point. For example, one could view the entire skeleton and

interactively zoom in and modify the isovalue to examine

Fig. 10. Ray tracings of the skin and bone isosurfaces with

transparency.

the detail in the toes all at about 10 FPS. The variation in

framerate is shown in Fig. 14.

Brady et al. [43] describe a system which allows, on a

Pentium workstation with accelerated graphics, interactive

navigation through the Visible Human data set. Their

technique is two-fold:

1. Combine frustum culling with intelligent paging

from disk of the volume data, and

2. Utilize a two-phase perspective volume rendering

method which exploits coherence in adjacent frames.

Their work differs from ours in that they are using

incremental direct volume rendering while we are exploit­

ing isosurface or MIP rendering. This is evidenced by their

incremental rendering times of about 2 seconds per frame

for a 480 x 480 image. A full (nonincremental) rendering is

nearly 20 seconds using their technique. For a single CPU,

our isosurface rendering time is several seconds per frame

(see Table 2) depending on viewpoint. While it is difficult to

directly compare these techniques due to their differing

application focus, our method allows for the entire data set

to reside within the view frustum without severe perfor­

mance penalties since we are exploiting parallelism.

The architecture of the parallel machine plays an

important role in the success of this technique. Since any

TABLE 1
Data from Ray Tracing the Visible Woman

Isosurface Traversal Intersec. Shading FPS
Skin (p = 600.5) 55% 22% 23% 7-15

Bone (p = 1224,5) 66% 21% 13% 6-15

The frames-per-second (FPS) gives the observed range for the
interactively generated viewpoints on 64 CPUs.

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

PARKER ET AL.: INTERACTIVE RAY TRACING FOR VOLUME VISUALIZATION 245

TABLE 2
Scalability Results for Ray Tracng the Bone Isosurface

in the Visible Human

View 1 View 2

#cpus FPS speedup FPS speedup

1 0.18 1.0 0.39 1.0

2 0.36 2.0 0.79 2.0

4 0.72 4.0 1.58 4.1

8 1,44 8.0 3.16 8.1

12 2.17 12.1 4.73 12.1

16 2.89 16.1 6.31 16.2

24 4.33 24.1 9.47 24.3

32 5.55 30.8 11.34 29.1

48 8.50 47.2 16.96 43.5

64 10.40 57.8 22.14 56.8

96 16.10 89.4 33.34 85.5

128 20.49 113.8 39.98 102.5

A 512 x 512 image was generated using a single view of the bone
isosurface,

processor can randomly access the entire dataset, the

dataset must be available to each processor. Nonetheless,

there is fairly high locality in the dataset for any particular

processor. As a result, a shared memory or distributed

shared memory machine, such as the SGI Origin 2000, is

ideally suited for this application. The load balancing

mechanism also requires a fine-grained low-latency com­

munication mechanism for synchronizing work assign­

ments and returning completed image tiles. With an

attached InfiniteReality graphics engine, we can display

images at high frame rates without network bottlenecks. We

feel that implementing a similar technique on a distributed

memory machine would be extraordinarily challenging,

and would probably not achieve the same rates without

duplicating the dataset on each processor.

7 Future W o r k and C o n clu sio n s

Since all computation is performed in software, there are

many avenues which deserve exploration. Ray tracers have

a relatively clean software architecture, in which techniques

can be added without interfering with existing techniques,

without re-unrolling large loops and without complicated

TABLE 3
Times in Seconds for Optimizations for Ray Tracing

the Visible Human

View Initial Bricking Hierarc hy+B ricking

skin: front 1.41 1.27 0.53

bone: front 2.35 2.07 0.52

bone: close 3.61 3.52 0.76

bone: from feet 26.1 5.8 0.62

A 512 x 512 image was generated on 16 processors using a single view
of an isosurface.

Fig. 11. A 3D texture applied to an isosurface from the Visible Man

dataset.

state management as are characteristic of a typical polygon

renderer.

We believe the following possibilities are worth investi­

gating:

• Exploration of other hierarchical methods in addi­

tion to the multilevel hierarchy described above.

• Combination with other scalar and vector visualiza­

tion tools, such as cutting planes, surface maps,

streamlines, etc.

• Using higher-order interpolants. Although numer­

ical root finding would be necessary, the images

might look better [19]. Since the intersection routine

is not the bottleneck the degradation in performance

might be reasonable.

We have shown that ray tracing can be a practical

alternative to explicit isosurface extraction for very large

datasets. As data sets get larger and as general purpose

processing hardware becomes more powerful, we expect

this to become a very attractive method for visualizing large

scale scalar data both in terms of speed and rendering

accuracy.

A ppendix A

R a y-Iso su r f a c e Intersection for Trilinear

B o x es

This appendix expands on some details of the intersection

of a ray and a trilinear surface. It is not new research, but is

helpful for implementors.

A rectilinear volume is composed of a three dimensional

array of point samples that are aligned to the Cartesian axes

and are equally spaced in a given dimension. A single cell

from such a volume is shown in Fig. 15. Other cells can be

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

246 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 3, JULY-SEPTEMBER 1099

Fig. 12. Ray tracing of a 1.08 million element unstructured mesh from
bioelectric field simulation. The heart and lungs are represented as
landmark polygonal meshes and are not part of the isosurface.

generated by exchanging indices {i , j ,k) for the zeros and

ones in the figure.

The density at a point within the cell is found using

trilinear interpolation:

p(u,v,w) =(1 - u)(l - u)(l - w)akki+

(1 - «)(1 - v)(w)p001 +

(1 - «)(u)(l - w)poin+

(u)(l - v)(l - w)pm +

(u)(l - w)(w)/JlGl +

(1 - (■!̂)Jp011 +

(«)(«) (1 - w)piw+

[u)[v){w)pnu

w here

I I = X — X () X i — X(j

v = y - yoVi - yi) (2)

III = z — Zt)Z-[— Z q .

Note that

TABLE 4
Frame Rates Varying Shadow and Texture for the Visible Male

Dataset on 64 CPUs (FPS)

no shadows, no texture 15.9

shadows, no texture 8.7

no shadows, texture 12.6
shadows, texture 7.5

Fig. 13. A maximum-intensity projection of the Visible Female dataset.

1 — U — X \ — X X { — x o

1 - v = yi - yyv - y0 (3)

1 — W = Z \ — Z Z \ — ZQ.

If we redefine uq = 1 — u and m = u, and similar definitions

for vq,uj, wo,wi, then we get:

TABLE 5
Data from Ray Tracing Unstructured Grids at 512 x 512 Pixels

on 1 to 124 Processors

cpus FPS speedup

1 0.108 1.00
2 0.21 1.97

3 0.32 2.95

4 0.42 3.91

6 0.63 5.86

8 0.84 7.78

12 1.25 11.56

16 1.64 15.20

24 2.44 22.58

32 3.21 29.68

48 4.76 44.07

64 6.46 59.81

96 9.05 83.80

124 11.13 103.06

The adaptively refined dafasef is from a bioelectric field problem.

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

TABLE 6
Explicit Bone Isosurface Extraction Times in Seconds

cpus NOISE build NOISE extract Marching cubes

1 4838 110 627

2 2109 81 324

4 1006 56 171

8 885 31 93

16 437 24 49

32 118 14 26

64 59 12 24

P = ^ 2 uivjwkPijk
i jl-0,1

For a given point (x,y, z) in the cell, the surface normal is

given by the gradient with respect to (x,y, z):

N = Vjt) = (dpdx, dpdy, dpdz).

So, the normal vector of (NJ:, Ny , N^) = V/j is

N,: = ^ 2 {- iy+lv:jwkx i - p ijk
i,j)k=U. 1

N y = I - W i j k

Nz = ^ 2 {- l)k+1WUjZ[- ZofHjk-
i,j,k=0,1

Lin and Ching [18] described a method for intersecting a

ray with a trilinear cell. We derive a similar result that is

more tailored to our implementation.

See Fig 16. Given a ray p = a + tb, the intersection with

the isosurface occurs where p{p) = plm. We can convert this

ray into coordinates defined by (tin, po — <?o + thi

and a third ray defined by = «i + tb[. These rays po =

<?o + tba and pi = ai + tbi are now used for the intersection

computation. These two rays are in the two coordinate

systems (Fig. 16):

a0 = (m|5,jj0,io“)

= (Xl - XaX\ - Xo,Vl - VuVI - VOi 21 - Z„Zl - z0),

and

ba = (u ba, v l , wfj = {xhx\ - x a,yhy\ - yn,zhzi - zn).

These equations are different because <5o is a location and b0

is a direction. The equations are similar for ai and fcj:

a i = (vfv 'lw 'l)

~ (•''cn — ®0'£ i — xq, y„. — 2/o2/ i - yu, z„ — znz t — za),

and

bi = {u^v'^w'D = (- .T J X , - xa, -yby-\ - yn, - zhzx - z{]).

Note that t is the same for all three rays. This point can be

found by traversing the cells and doing a brute-force

algebraic solution for t. The intersection with the isosurface

p{'p) = Pis a occurs where:

Pisv = J 2 K + tU>') (Vj + tvbi) (Wk + tW>k)Pvk

This can be simplified to a cubic polynomial in t:

Ati + n t2 + Ct + D = 0,

where

A= J2 vWv̂
i,j,k=B, I

13 = E (< ❖ * £ + + t ^ W
i j , k = 0,1

(: - E U ^ wk + < vj K + ^ y ^) p i j k

D = -a -* , + J 2 ui v")wkP^-

The solution to a cubic polynomial is discussed the

article by Schwarze [44]. We used his code (available on the

web in several Graphics Gems archive sites) with two

modifications: special cases for quadratic or linear solutions

(his code assumes A is nonzero), and the EQN_EPS

parameter was set to l,e-30 which provided for maximum

stability for large coefficients.

A ppendix B

R ay-Is o su rfa c e Intersection for

Barycen tric Tetrahedra

This appendix is geared toward implementors and dis­

cusses the details of intersecting a ray with a barycentric

tetrahedral isosurface.
An unstructured mesh is composed of three dimensional

point samples arranged into a simplex of tetrahedra. A

single cell from such a volume is shown in Fig. 17, where

the four vertices are p ; = (xi,yi,Zi).

The density at a point within the cell is found using

barycentric interpolation:

p(ota, « i i « 2, a'i) — oopo T Oi\p\ + a-iP2 + otsps,

where

cv o + « i + o 2 + a3 = 1.

Similar equations apply to points in terms of the vertices.

For points inside the tetrahedron, all barycentric coordi­

nates are positive.

One way to compute barycentric coordinates is to

measure the distance from the plane that defines each face

(Fig. 18). This is accomplished by choosing a plane equation

/0(p) = 0 such that /o(Po) = 1- Such equations for all four

plane-faces of the tetrahedron allow us to compute

barycentric coordinates of a point p directly: rt;(p) = /*(p).

If we take the ray p(f) = a + tb, then we get an equation

for the density along the ray:

Ptt) = J 2 ^ a + t^ P ‘‘
i- 0

If we solve for p(t) = p\m, then we get a linear equation, in t,

PARKER ET AL.: INTERACTIVE RAY TRACING FOR VOLUME- ^4/

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

248 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 3, JULY-SEPTEMBER 1999

processors Frame rate /Speedup
1 0.427 /1 .00 0.304 /1.00 0.084 /1.00 0.155 /1.00 0.568 /1.00
2 0.84/1.97 0.60 /1.98 0.17 /1.99 0.31 /2.00 1.13 /1.9S
3 1.26/2.94 0.89 /2.93 0.25 /2.95 0.46 /2.96 1.68 /2.96
4 1,67/3.91 1.19 /3.92 0.33 /3.96 0.62 /3.97 2.24 /3.94
0 2.45 /S.73 1.76 /5.77 0.50 /5.97 0.93 /5.96 3,29 /S.80
8 3.20/7.50 2.32 /7.61 0.67 /7.94 1.23 /7.93 4.36 /7.67

12 4.81 /t i .ae 3.44 /11.30 1.00 /11.89 1.84 /11.88 6.51 /11.47
16 6.38 /14.93 4.59 /15.08 1.33 /15.84 2.45 /15.80 8.64 /15.21
24 9.54 /22.33 6.84 Z22.48 1.98 /23.54 3.65 Z23.49 12.92 Z22.76
32 12.65 /29.61 9.12 Z29.96 2.63 /31.38 4.88 /31.47 17.09 /30.10
48 18.85/44.13 13.52 /44.39 3.92 /46.72 7.30 /47.02 25.27 /44.50
64 24.73 /57.90 17.72 /58.19 5.18 /61.78 9.64 /62.14 32.25 /56.80
96 35.38 Z82.82 25.04 Z82.23 7,67 /91.38 14.28 /92.02 45.50 /80.14

124 43.06 /100.79 30.28 Z99.45 9.73 /115.8B 18.17 /117.08 57.70 /101.63

Fig. 14. Variation in framerate as the viewpoint and isovalue changes.

so solution is straightforward. If the resulting barycentric

coordinates of p(t) are all positive, the point is in the

tetrahedron, and it is accepted. Finding the normal is just a

matter of taking the gradient:

3

Vp(p) =
i~ 0

Because /,; is just a plane equation of the form H, • (p — q],

where q, is a constant point, the normal vector N is simply

N :

This is a constant for the cell, but we do not precompute it

since it would require extra memory accesses.

Pon
(W i.Zj)
(0,1.1)

a,cm

Fig. 15. The geometry for a cell. The bottom coordinates are the (u, v, w)

values for the intermediate point.

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

PARKER ET AL.: INTERACTIVE RAY TRACING FOR VOLUME VISUALIZATION

(*<>. yu) (0. 0) “o (1, 1)

Fig. 16. Various coordinate systems used for interpolation and intersection.

A cknow ledgm ents

Thanks to Matthew Bane and Michelle Miller for comments

on the paper. Thanks to Chris Johnson for providing the

open collaborative research environment that allowed this

work to happen. Special thanks to Steve Modica and Robert

Cummins at SGI for crucial bug fixes in support code. This

work was supported by the SGI Visual Supercomputing

Center, the Utah State Centers of Excellence, the U.S.

Department of Energy, and the U.S. National Science

Foundation. Special thanks to Jamie Painter and the

Advanced Computing Laboratory at Los Alamos National

Laboratory for access to a 128 processor machine for final

benchmarks. Ruth Klepfer provide assistance in obtaining

the various unstructured data sets.

R eferen ces

[1] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan,
"Interactive Ray Tracing for Isosurface Rendering," Proc. Visua­
lization '98, Oct. 1998.

[2] S. Parker, W. Martin, P.-P. Sloan, P. Shirley, B. Smits, and C.
Hansen, "Interactive Ray Tracing," Proc. Symp, Interactive 3D
Graphics, Apr. 1999.

[3] J.T. Kajiya, "An Overview and Comparison of Rendering
Methods," A Consumer’s and Developer's Guide to Image Synthesis,

pp. 259-263, 1988.
[4] M. Levoy, "Display of Surfaces from Volume Data," IEEE

Computer Graphics and Applications, vol. 8, no. 3, pp. 29-37, 1988.
[5] P. Sabella, "A Rendering Algorithm for Visualizing 3D Scalar

Fields," Computer Graphics, vol. 22, no. 4, pp. 51-58, July 1988.

P.?
(X j A ’p Z t)

(0,0.0,1)

P;

(0,0,1,0)

(0,1,0,0)

Fig. 17. The geometry for a barycentric tetrahedron. The bottom

barycentric coordinates are the («o, « i ,«2, v a l u e s for the vertex.

6] C. Upson and M. Keeler, "V-Buffer: Visible Volume Rendering,"
Computer Graphics, vol. 22, no. 4, pp. 59-64, July 1988.

7] E. Reinhard, A.G. Chalmers, and F.W. Jansen, "Overview of
Parallel Photo-Realistic Graphics," Proc. Eurographics ’98, 1998.

8] A. Kaufman, Volume Visualization, IEEE CS Press, 1991.

9] L. Sobierajski and A. Kaufman, "Volumetric Ray Tracing," Proc.
1994 Workshop Volume Visualization, pp. 11-18, Oct 1994.

0] K.L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh, "Parallel
Volume Rendering using Binary-Swap Compositing," IEEE
Computer Graphics and Applications, vol. 14, no. 4, pp. 59-68, July
1993.

11] M.J. Muuss, "RT and REMRT-Shared Memory Parallel and
Network Distributed Ray-Tracing Programs," USENJX: Proc.
Fourth Computer Graphics Workshop, Oct. 1987.

12] G. Vezina, P.A. Fletcher, and P.K. Robertson, "Volume Rendering

on the MasPar MP-1," Proc. 1992 Workshop Volume Visualization,
pp. 3-8, Boston, 19-20 Oct. 1992.

13] P. Schroder and G. Stoll, "Data Parallel Volume Rendering as Line
Drawing," Proc. 1992 Workshop Volume Visualization, pp. 25-31,
Boston, 19-20 Oct. 1992.

14] M.J. Muuss, "Towards Real-Time Ray-Tracing of Combinatorial
Solid Geometric Models," Proc. BRL-CAD Symp., June 1995.

15] S. Whitman, "A Survey of Parallel Algorithms for Graphics and
Visualization," Proc. High Performance Computing for Computer
Graphics and Visualization, pp. 3-22, Swansea, 3-4 July 1995.

16] B. Wyvill, G. Wyvill, C. McPheetors, "Data Structures for Soft
Objects," The Visual Computer, vol. 2, pp. 227-234, 1986.

17] W.E. Lorensen and H.E. Cline, "Marching Cubes: A High
Resolution 3D Surface Construction Algorithm," Computer Gra­
phics, vol. 21, no. 4, pp. 163-169, July 1987,

18] C.-C. Lin and Y.-T. Ching, "An Efficient Volume-Rendering

Algorithm with an Analytic Approach," The Visual Computer,
vol. 12, no. 10, pp. 515-526, 1996.

19] S. Marschner and R. Lobb, "An Evaluation of Reconstruction
Filters for Volume Rendering," Proc. Visualization '94, pp, 100-107,
Oct. 1994.

20] M. Sramek, "Fast Surface Rendering from Raster Data by Voxel
Traversal Using Chessboard Distance," Proc. Visualization '94,
pp. 188-195, Oct. 1994.

21] G. Sakas, M. Grimm, and A. Savopoulos, "Optimized Maximum
Intensity Projection (MIP)," Proc. Eurographics Rendering Workshop
1995, June 1995.

22] R.A. Drebin, L. Carpenter, and P. Hanrahan, "Volume Render­
ing," Computer Graphics, vol. 22, no. 4, pp. 65-74, July 1988.

23] D. Speray and S. Kennon, "Volume Probes: Interactive Data
Exploration on Arbitrary Grids," Proc. 1990 Workshop Volume
Visualization, pp. 5-12, San Diego, 1990.

24] J. Amanatides and A. Woo, "A Fast Voxel Traversal Algorithm for
Ray Tracing," Proc. Eurographics '87, 1987.

25] A. Fujimoto, T. Tanaka, and K. Iwata, "Arts: Accelerated Ray-
Tracing System," IEEE Computer Graphics and Applications, pp. 16­
26, Apr. 1986.

26] J. Danskin and P. Hanrahan, "Fast Algorithms for Volume Ray
Tracing," Proc. 1992 Workshop Volume Visualization, pp. 91-98,
1992.

27] M. Levoy, "Efficient Ray Tracing of Volume Data," ACM Trans.
Graphics, vol. 9, no. 3, pp. 245-261, July 1990.

28] J. Wilhelms and A. Van Gelder, "Octrees for Faster Isosurface
Generation," Proc. 1990 Workshop Volume Visualization, pp. 57-62,
San Diego, Calif., 1990.

29] J. Wilhelms and A. Van Gelder, "Octrees for Faster Isosurface
Generation," ACM Trans. Graphics, vol. 11, no. 3, pp. 201-227, July
1992.

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

250 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 3, JULY-SEPTEMBER 1999

P 0

Fig. 18. The barycentric coordinate o0 is the scaled distance d/D. The
distances are d and D are signed distances to the plane containing the
triangular face opposite p0.

[30] J. Wilhelms and J. Challinger, "Direct Volume Rendering of
Curvilinear Volumes," Proc. '1990 Workshop Volume Visualization,

pp. 41-47, San Diego, Calif., 1990.
[31] M. Garrity, "Ray Tracing Irregular Volume Data," Proc. 7 990

Workshop Volume Visualization, pp. 35-40, San Diego, Calif., 1990.

[32] C. Silva, J.S.B. Mitchell, and A.E. Kaufman, "Fast Rendering of
Irregular Grids," Proc. 2996 Volume Visualization Symp., pp. 15-22,

Oct. 1996. '
[33] C.E. Prakash and S, Manohar, "Volume Rendering of Unstruc­

tured Grids—A Voxelization Approach," Computers & Graphics,

vol. 19, no. 5, pp. 711-726, Sept. 1995,
[34] M.B. Cox and D. Ellsworth, "Application-Controlled Demand

Paging for Out-of-Core Visualization," Proc. Visualization '97,

pp. 235-244, Oct. 1997.
[35] J. Arvo and D. Kirk, "A Survey of Ray Tracing Acceleration

Techniques," An Introduction to Ray Tracing, A.S. Glassner, ed. San

Diego, Calif.: Academic Press, 1989.
[36] D, Jevans and B. Wyvill, "Adaptive Voxel Subdivision for Ray

Tracing," Proc. Graphics Interface '89, pp. 164-172, June 1989.

[37] K.S. Klimansezewski and T.W. Sederberg, "Faster Ray Tracing
Using Adaptive Grids," IEEE Computer Graphics and Applications,
vol. 17, no. 1, pp. 42-51, Jan.-Feb. 1997.

[38] A. Globus, "Octree Optimization," Technical Report RNR-90-011,

NASA Ames Research Center, July 1990.
[39] G. Nielson and B. Hamann, "The Asymptotic Decider: Resolving

the Ambiguity in Marching Cubes/' Proc. Visualization '91, pp. 83­

91, Oct. 1991.
[40] Nat'l Library of Medicine (U.S.) Board of Regents, "Electronic

Imaging: Report of the Board of Regents, U.S. Dept, of Health and
Human Services, Public Health Service, Nat'l Inst, of Health,"

N IH Publication 90-2197, 1990.
[41] B. Lorensen, "Marching Through the Visible Woman," http://

www.crd.ge.com/cgi-bin/vw.pl, 1997.
[42] Y. Livnat, H. Shen, and C.R. Johnson, "A Near Optimal Isosurface

Extraction Algorithm Using the Span Space," IEEE Trans.
Visualization and Computer Graphics, vol. 2, no. 1, pp. 73-84, 1996.

[43] M.L. Brady, K.K. Jung, H.T, Nguyen, and T.P.Q. Nguyen,
"Interactive Volume Navigation," IEEE Trans. Visualization and

Computer Graphics, vol. 4, no. 3, pp. 243-256, July-Sept, 1998.
[44] J. Schwarze, "Cubic and Quartic Roots," Graphics Gems, A.

Glassner, ed., pp. 404-407, San Diego, Calif.: Academic Press, 1990.

Steven Parker received a BS in electrical
engineering from the University of Oklahoma in
1992. He will receive a PhD in computer science
from the University of Utah in 1999. He is a
research scientist in the Department of Compu­
ter Science at the University of Utah. His
research focuses on problem solving environ­
ments, which tie together scientific computing,
scientific visualization, and computer graphics.
He is the principal architect of the SCIRun

Software System, which formed the core of his PhD dissertation. He was
a recipient of the Computational Science Graduate Fellowship from the
Department of Energy.

Michael Parker is a PhD student in computer
science at the University of Utah. He received a
BS in electrical engineering from the University
of Oklahoma in 1995. He is interested in
computer architecture and VLSI design. He
has recently concluded his work on a project
to reduce communication latency and overhead
in clusters of workstations. He is currently
involved in the architecture of an adaptable
memory controller. His dissertation deals with

reducing I/O and communication overhead and latency.

Yarden L ivnat received a BSc in computer
science in 1982 from Ben Gurion University,
Israel, and an MSe cum laude in computer
science from the Hebrew University, Israel, in
1 99 1 . He will receive his PhD from the University
of Utah in 1999. He is a research associate in
the Department of Computer Science at the
University of Utah working with the Scientific

wim: Computing and Imaging Research Group. His
J“ "“ i 1 ' ' ” research interests include computational geo­

metry. scientific comDLitation and visualization, and computer generated
holograms.

Peter-Pike Sloan has recently joined the Gra­
phics Research Group at Microsoft as a re­
search SDE. He was previously a student at the
University of Utah and worked in the Scientific
Computing and Imaging Group for Chris John­
son, He also previously worked on a 3D painting

/ product at Parametric Technology in Salt Lake
: i f City. His interests span the spectrum of compu-

' ter graphics and, most recently, he has been
working/dabbling in the areas of interactive

techniques, image-based rendering, surface parameterizations, and
nonphotorealistic rendering.

Charles Hansen received a BS in computer
science from Memphis State University in 1981
and a PhD in computer science from the
University of Utah in 1987. He is an associate
professor of computer science at the University
of Utah, From 1997 to 1999, he was a research
associate professor of computer science at
Utah. From 1989 to 1997, he was a technical
staff member in the Advanced Computing

..... Laboratory (ACL) located at Los Alamos Na­
tional Laboratory, where he formed and directed the visualization efforts
in the ACL. He was a Bourse de Chateaubriand PostDoc Fellow at
INRIA in 1987 and 1988. His research interests include large-scale
scientific visualization, massively parallel processing, parallel computer
graphics algorithms, 3D shape representation, and computer vision.

Peter Shirley received a BA in physics from
Reed College in 1984 and a PhD in computer
science from the University of Illinois at Urbana/
Champaign in 1991. He is an associate profes-

f 4 ■*- ‘•■p sor of computer science at the University of
V " ' l i s — ■ Utah. From 1994 to 1996, he was a visiting

assistant professor at the Cornell Program of
Computer Graphics. From 1990 to 1994, he was
an assistant professor of computer science at
Indiana University. His research interests in­

clude visualization, realistic rendering, and application of visual
perception research in computer graphics.

..

•*s-^

"x

Authorized licensed use limited to: The University of Utah. Downloaded on September 3, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

http://www.crd.ge.com/cgi-bin/vw.pl

