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ABSTRACT 
 
 
 

The objective of this work is to examine the efficacy of natural language processing 

(NLP) in summarizing bibliographic text for multiple purposes.  Researchers have noted 

the accelerating growth of bibliographic databases.  Information seekers using traditional 

information retrieval techniques when searching large bibliographic databases are often 

overwhelmed by excessive, irrelevant data. 

Scientists have applied natural language processing technologies to improve retrieval.  

Text summarization, a natural language processing approach, simplifies bibliographic 

data while filtering it to address a user’s need.  Traditional text summarization can 

necessitate the use of multiple software applications to accommodate diverse processing 

refinements known as “points-of-view.”   

A new, statistical approach to text summarization can transform this process.  Combo, 

a statistical algorithm comprised of three individual metrics, determines which elements 

within input data are relevant to a user’s specified information need, thus enabling a 

single software application to summarize text for many points-of-view.  In this 

dissertation, I describe this algorithm, and the research process used in developing and 

testing it.  Four studies comprised the research process.  The goal of the first study was to 

create a conventional schema accommodating a genetic disease etiology point-of-view, 

and an evaluative reference standard.  This was accomplished through simulating the task 

of secondary genetic database curation.  The second study addressed the development 
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and initial evaluation of the algorithm, comparing its performance to the conventional 

schema using the previously established reference standard, again within the task of 

secondary genetic database curation.  The third and fourth studies evaluated the 

algorithm’s performance in accommodating additional points-of-view in a simulated 

clinical decision support task.  The third study explored prevention, while the fourth 

evaluated performance for prevention and drug treatment, comparing results to a 

conventional treatment schema’s output. 

Both summarization methods identified data that were salient to their tasks.  The 

conventional genetic disease etiology and treatment schemas located salient information 

for database curation and decision support, respectively.  The Combo algorithm located 

salient genetic disease etiology, treatment, and prevention data, for the associated tasks. 

Dynamic text summarization could potentially serve additional purposes, such as 

consumer health information delivery, systematic review creation, and primary research.  

This technology may benefit many user groups. 
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Objective and Hypothesis 

The objective of this work is to examine the efficacy of natural language processing 

(NLP) in summarizing bibliographic text for multiple purposes.  The central research 

hypothesis is that an NLP text summarization process that transforms bibliographic text 

into a topically filtered, compact form can be used to extract and identify data crucial to 

multiple information needs.  This is dependent on the subhypothesis that, once it is 

transformed into a basic compact form, bibliographic text collectively retains the 

thematic focus that was expressed in the initial search query used to retrieve it.  Because 

it retains this thematic focus, various types of analysis can be used to extract elements 

from the output which are salient to a specific information task.  This can be 

demonstrated through applying text summarization to simulated tasks, and evaluating the 

summarized results with task-oriented methodologies and reference standards.  

 
 

Motivation 

The central motivation to this work is the continuing growth of bibliographic 

databases, and the problematic issues it creates.  Researchers have documented the 

phenomenon of accelerated growth in bibliographic databases [1], which has created 

challenges to users practicing traditional information retrieval (IR) search techniques.  

These techniques, when applied to large bibliographic databases such as MEDLINE, can 

return a large, unmanageable list of citations, providing data that often do not fulfill the 

searcher’s information needs [2].  One potential reason that traditional IR fails to meet a 

user’s needs is because the user brings a “point-of-view” to the search that the IR engine 

either does not know or cannot exploit.  A point-of-view is an additional concept 
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emphasis, such as treatment or diagnosis, which can be applied while locating data.  It 

parallels subheading refinement, an available option in some controlled vocabularies like 

MeSH [3]. 

 
 

Aims 

There are three aims for this research, each examining the use of text summarization 

for a specific task or tasks.  To facilitate this, I performed the work using an information 

processing model called Semantic MEDLINE [4]. 

Aim 1:  Develop and evaluate the effectiveness of Semantic MEDLINE in 

summarizing MEDLINE data for a new point-of-view, genetic etiology of disease, for 

the task of secondary database curation [5]. 

Aim 2:  Develop and test a new algorithm that automatically identifies predications 

salient to a seed topic and the point-of-view expressed in a search query, within the 

domain of secondary database curation using the results of Aim 1[6]. 

Aim 3:  Using the algorithm from Aim 2, create a dynamic summarization application 

and evaluate its performance for two additional points-of-view [7, 8]. 

Although I used Semantic MEDLINE as a test bed for this work, the specific methods 

can likely be applied in any other environment in which (a) initial text is converted to 

subject_predicate_object triplets, and (b) there is a sufficient database of triplets to form 

the general data profiles used in the algorithm computations described in this chapter.  
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Background 

Natural Language Processing and Text Summarization 

Elizabeth Liddy defines Natural Language Processing (NLP) as “a theoretically 

motivated range of computational techniques for analyzing and representing naturally 

occurring texts at one or more levels of linguistic analysis for the purpose of achieving 

human-like language processing for a range of tasks or applications” [9].  It is an 

umbrella term that includes individual functions like part-of-speech tagging and sentence 

parsing, as well as more complex applications like information retrieval, machine 

learning, and information extraction [10].  It emerged as a topic in computer science in 

the years following World War II, through the work of pioneer scientists such as Alan 

Turing [11] and Noam Chomsky [12].  NLP models can often be divided into the two 

theoretical approaches of formal rule systems, and probabilistic models [10].  Formal rule 

systems, such as context-free grammars, model language behavior through rules dictating 

how language units like words and phrases are logically grouped.  Probabilistic models 

like n-grams accomplish this through determining such groupings through statistical 

probabilities.  

Text summarization is a natural language processing subdomain, which emerged in 

the late 1950’s [13].  Its goal is to abstract relevant content from single or multiple 

sources [14].  Text summarization generally uses an extractive or abstractive approach.  

Extractive summarization provides verbatim chunks, or “extracts” of the original 

document(s), by appraising the lexical or statistical value of text units, or matching 

patterns of phrases.  Abstractive methodologies summarize by describing the original 

content through paraphrasing or synthesizing the original text [15].  It usually relies on 
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outside knowledge sources.  Text summarization generally produces indicative, 

informative, or critical summaries.  The intent of indicative summaries is to simply alert 

and guide users to the original source documents, which then can be directly reviewed.  

Informative summaries identify the most salient content in source documents and present 

it in a structured form to the user as a surrogate for the original text.  Critical summaries 

present informative content, along with some sort of a critical appraisal of the original 

documents.  Text summarization can be evaluated using either intrinsic or extrinsic 

methods. In intrinsic evaluation, the quality of output is determined by analyzing the 

summary itself.  Evaluators can appraise the fluency of the summary, compare it to an 

ideal summary of the same original content, or determine if it expresses previously 

chosen “key ideas”.  In extrinsic evaluation, summarization is judged by its value in 

completing a separate task. 

While text summarization has been extensively used in the mass media domain (as 

noted by Zhang [16] and reflected in Inderjeet Mani’s work [17] ),  it has also been 

applied in the biomedical domain.  Yang and his associates clustered gene information 

using free text, MeSH, and Gene Ontology features, and presented summarizes based on 

sentence rankings [18].  Using an application called PERSIVAL, McKeown et al. 

retrieved, ranked, and summarized documents according to a patient’s profile information 

[19].   Yoo et al. used an ontology-enhanced approach to cluster similar documents, then 

summarized the content within document groups by building text semantic interaction 

networks using semantic relationships within the document clusters [20].  Cao and his 

colleagues used a machine learning approach to classify questions, and also utilized a 

clustering technique using query keywords for presenting output, for their AskHERMES 
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system [21].  Text summarization applications such as Semantic MEDLINE that utilize 

semantic predications have the advantage of presenting an abstracted, compact 

expression of the original information that can be filtered according to a user’s specific 

information need.  Semantic predications are succinct subject_verb_object declarations 

that simplify the meaning of the PubMed text from which they are drawn.  Due to their 

structure, they are subject to computational analysis.    

 
 

Semantic MEDLINE 

Semantic MEDLINE [4], developed at the National Library of Medicine (NLM),  is a 

multistage natural language processing model designed to extract meaningful information 

from biomedical bibliographic citations. It is a summarization application in the 

abstraction paradigm, and relies on the Unified Medical Language System (UMLS) [22] 

knowledge source.  The user initiates use of the Semantic MEDLINE application by 

submitting a search query expressing his or her information need.  Semantic MEDLINE 

then relies on the separate, sequential applications of SemRep, Summarization, and 

Visualization to (respectively) transform the citations’ title and abstract text into a 

compact form, identify resulting data which are salient to a specific information need, 

and display the results in a graphic, visual format.  The following text describes these 

processes in detail. 

 
 

SemRep 

SemRep, a rule-based symbolic NLP tool developed by Rindflesch [23], extracts 

meaning from PubMed citations in the form of semantic predications.  Predications are a 
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distillation of information contained in a phrase or a sentence, and they are expressed as a 

triplet: subject_predicate_object.    SemRep tokenizes the input citations’ title and 

abstract text.  It identifies and tags each word’s part-of-speech using the MedPost tagger, 

[24] along with the UMLS SPECIALIST Lexicon to disambiguate vague terms.  It then 

performs an underspecified parsing of the text, and maps nouns phrases using MetaMap 

technology [25].  SemRep uses indicator rules to map syntactic elements to predicates in 

the UMLS Semantic Network.  Using logical constraints within the Semantic Network, 

SemRep builds the output semantic predications by identifying the rational relationship 

or predicate that binds the connected subject and object arguments.  For example, 

SemRep transforms the following title text: 

“Taurolidine is effective in the treatment of central venous catheter-related 

bloodstream infections in cancer patients” [26] 

into the following semantic predication: 

Taurolidine_TREATS_infection 

SemRep identifies “taurolidine” and “infections” as the respective subject and object of 

the text, and maps them to the UMLS [22] Metathesaurus preferred concepts Taurolidine 

and infection.  It also recognizes “treatment” as the relational concept binding the subject 

and object terms, mapping it to the predicate TREATS.  SemRep also identifies the 

logical UMLS semantic group classifications associated with the arguments, which in this 

case are “Pharmacologic Substance” (associated with Taurolidine) and “Disease or 

Syndrome” (associated with infection). 
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Summarization 

The Summarization phase, developed by Fiszman, [27] identifies SemRep output 

which is relevant to a specific, user-indicated topic.  This process begins by prompting 

the user to select a specific UMLS metathesaurus concept from among those occurring in 

the SemRep output which most precisely expresses the topic associated with the user’s 

information need.  Once the user identifies the concept, Summarization processes the 

SemRep output with four sequential filters known as Relevance, Connectivity, Novelty, 

and Saliency:  

Relevance:  Gathers semantic predications containing the user-selected seed topic.  

For example, if the seed topic were Endometrial carcinoma, this filter would 

collect the semantic predication cetuximab-TREATS-Endometrial carcinoma. 

Connectivity:  Augments Relevance predications with those which share a 

nonseed argument.  For example, in the above predication cetuximab-TREATS-

Endometrial carcinoma, this filter would augment the Relevance predications with 

others containing cetuximab. 

Novelty:  Eliminates vague predications, such as pharmaceutical preparation-

TREATS-patients, that present information that users already likely know, and are 

of limited use. 

Saliency:  Limits final output to predications that occur with adequate frequency.  

For example, if cetuximab-TREATS-Endometrial carcinoma occurred enough 

times, all occurrences would be included in the final output. 

In order to process data, the functionality of these four filters is programmed into a 

software application. 
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In this dissertation’s research, I have employed two approaches to Summarization, 

which I will refer to as conventional summarization and dynamic summarization.  

Conventional summarization relies on specified subject_predicate_object patterns to 

identify the optimal predicates and semantic type subject and object arguments allowed 

as final Summarization output, in order to capture data relevant to a given point-of-view.  

For example, note the following named groups of semantic types, and their placement as 

subject or object arguments to specific predicates, which express a genetic etiology of 

disease point-of-view: 

 
 
Named Semantic Type Groups 

Genetic phenomenon:  Amino Acid Sequence; Enzyme; Genetic Function; Nucleic 

Acid, Nucleoside, or Nucleotide; Nucleotide Sequence; Amino Acid, Peptide, or 

Protein; Gene or Genome; and Molecular Sequence. 

Anatomy:  Anatomical Structure; Body Part, Organ, or Organ Component; Cell; Cell 

Component; Embryonic Structure; Fully Formed Anatomical Structure; Gene or 

Genome; and Tissue. 

Disease Process:   Acquired Abnormality; Anatomical Abnormality; Congenital 

Abnormality; Cell or Molecular Dysfunction; Disease or Syndrome; Injury or 

Poisoning; Mental or Behavioral Dysfunction; Neoplastic Process; Pathologic 

Function; Sign or Symptom; Biologic Function; Cell Function; Mental Process; 

Molecular Function; Natural Phenomenon or Process; Organism Function; Organ or 

Tissue Function; Physiologic Function; Behavior; Mental or Behavioral Dysfunction; 

and Finding. 
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Named Groups Serving as Arguments for Specified Predicates 

1) {genetic phenomenon } AFFECTS {disease process} 

2) {genetic phenomenon } AUGMENTS {disease process} 

3) {genetic phenomenon } DISRUPTS {disease process OR anatomy} 

4) {genetic phenomenon } ASSOCIATED_WITH {disease process} 

5) {genetic phenomenon } PREDISPOSES {disease process} 

6) {genetic phenomenon } CAUSES {disease process} 

7) {genetic phenomenon } STIMULATES {genetic phenomenon } 

8) {genetic phenomenon } INHIBITS {genetic phenomenon } 

9) {disease process} COEXISTS_WITH {disease process} 

Conventional summarization requires prior research to determine which predicates 

and semantic type arguments capture salient data for the given point-of-view.  A separate 

software application is required in order to summarize data for each desired point-of-

view. 

Dynamic summarization utilizes a statistical algorithm that analyses the properties of 

each SemRep output dataset it receives as input.  Various metrics calculate term 

frequencies in order to determine which semantic predications are salient to the user’s 

selected UMLS Metathesaurus preferred concept.  This enables Summarization to adapt 

to the characteristics of each dataset it processes, thus enabling summarization for 

multiple points-of-view using a single software application, without relying on restricted 

subject_verb_object patterns.  The concept of dynamic summarization (within the 

Semantic MEDLINE model) and its mechanisms were created as part of this 
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dissertation’s work.  I describe in detail the Combo algorithm, the central point of Aim 

2’s work, later in this chapter. 

Successful summarization can validate the central hypothesis that an NLP text 

summarization process that transforms bibliographic text into a topically filtered, 

compact form can be used to extract and identify data crucial to multiple information 

needs.   Summarization output can be evaluated through simulating human tasks, and 

comparing results to gold standards of desired output.  Successful dynamic 

summarization can validate the subhypothesis that once it is transformed into a basic 

compact form, bibliographic text collectively retains the thematic focus that was 

expressed in the initial search query used to retrieve it.   To test this hypothesis, SemRep 

output originating from PubMed queries expressing multiple topics and points-of-view 

can be processed by the four sequential Summarization filters, with the Combo algorithm 

acting as the operational mechanism in the Saliency filter.  This output can also be 

applied to simulated tasks, using reference standards to evaluate the results. 

 
 

Visualization 

Visualization [4] presents the summarized semantic predications in an interactive 

graph.  The graph’s central node is the seed topic.  Arcs representing predicate 

relationships connect the seed topic node to other argument nodes.  Users may click on an 

arc for information regarding the associated semantic predications.  For example, users 

could click on a TREATS arc connecting the seed topic Endometrial carcinoma node to 

the Laparotomy node to find title and abstract citation text concerning the treatment of 

endometrial carcinoma and laparotomy. Users can also view the citation record in 
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PubMed, and possibly access the fulltext article.  Users may also limit which relational 

arcs the graph displays.  In Figure 1, the user has limited the displayed arcs to the  

TREATS predicate relations, and has clicked on the arc connecting Hysterectomy to the 

central concept node Endometrial Carcinoma in order to review citations addressing 

hysterectomy as a treatment option for endometrial carcinoma. 

 
 

Work to Achieve Each Aim 

Aim 1 

Motivation 

Secondary genetic database curators are challenged by an overabundance of data 

resulting from constantly evolving biotechnologies [28] and the growing volume of 

published findings [1].  Aim 1 was motivated in part by this curation dilemma as well as 

a desire to explore how Semantic MEDLINE, implementing a conventional 

summarization approach, addressed it.  The work of Aim 1 provided a reference standard 

which served to evaluate the work of both Aims 1 and 2, and a conventional 

summarization software application that also served an evaluative purpose in Aim 2.  

 
 
Methods 

As earlier noted, in using a conventional summarization approach in Semantic 

MEDLINE, the user specifies both a seed topic and an explicit point-of-view.  For 

example, a user could seek information addressing the diagnosis (a point-of-view) of 

coronary artery disease (a seed topic).  Using this conventional methodology, there is a 
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Figure 1.  Visualization 
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limited number of points-of-view available to the user. Each software application 

facilitates summarization for a specific point-of-view, and must include a handcrafted set 

of specific, restrictive subject-verb-object patterns, but creating and evaluating such an 

application is nontrivial. Before completing the work of Aim 1, conventional 

summarization point-of-view options consisted of: treatment of disease [29]; substance 

interaction [30]; diagnosis [31]; and pharmacogenomics [32].  

A software application developed in this Aim implemented the point-of-view of “the 

genetic etiology of disease,” and built on the work of Rindflesch [33], Libbus [34], et al.  

Earlier they had identified the predicates expressing genetic disease etiology assertions in 

SemRep output.  With Marcelo Fiszman’s guidance, I assembled groups of semantic 

types which served as subject and object arguments.  The software application I 

developed used these predicates and semantic type arguments, within the four-tiered 

summarization filtering framework, to harvest predications asserting a genetic etiology of 

disease point-of-view.  I developed the software using Perl [35], an interpreted, high-

level programming language.  The other conventional summarization applications (e.g., 

treatment of disease, diagnosis), to which I had access were also developed using Perl.  

The treatment of disease application ably served as a framework and example for 

development of the genetic disease etiology software.  The application also made use of 

the MySQL Semantic MEDLINE database for novelty processing. 

 
 
Evaluation 

To evaluate the new application’s effectiveness we downloaded MEDLINE citations 

for SemRep processing using this query:  
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urinary bladder neoplasms[mh] OR "bladder cancer" OR "cancer of the bladder"  

Search output was limited to citations in English, with abstracts, that represented 

literature which was published from 1 January 2003 to 31 July 2008. 

The citations were sequentially processed with SemRep and the summarization 

software.  From the SemRep output, the summarization software identified semantic 

predications salient to the genetic etiology of bladder cancer, using Carcinoma of bladder 

as the seed topic for summarizing.   

For evaluation, I assembled a reference standard of genes implicated in bladder 

cancer.  I identified genes noted in Genetics Home Reference (GHR) [36] and Online 

Mendelian Inheritance in Man (OMIM)  [37] records, based on source data from our 

study’s timeframe (1 January 2003 to 31 July 2008).  In order to find genes implicated in 

bladder cancer development as reported in OMIM, I retrieved records that were either 

phenotypically relevant to the disease, or provided a clinical synopsis, by executing the 

following search query: 

"bladder cancer"[All Fields] OR "bladder cancers"[All Fields] OR "bladder cancer 

cases"[All Fields] OR "bladder cancer cell"[All Fields] OR "bladder cancer 

patients"[All Fields] OR "bladder carcinoma"[All Fields] OR "bladder 

carcinogenesis"[All Fields] 

The query was executed twice.  For the first execution, limits were adjusted in order 

to retrieve a broad range of genetic information addressing bladder cancer.  The second 

execution focused exclusively on clinical synopses.  Dr. Fiszman guided me in the search 

strategy.  To locate relevant records in GHR, I searched using the keyword “bladder” to 

locate 11 relevant records.  In order to build the reference standard, I manually reviewed 
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the OMIM and GHR records and listed genes with disease implications.  I noted 10 

significant genes in GHR records, and seven in OMIM records (with four of these genes 

present in both sources).  The reference standard genes were compared to genes noted in 

the summarized output as appearing as subject arguments in semantic predications that 

featured the UMLS Metathesaurus concepts Carcinoma of bladder, Bladder Neoplasm or 

Carcinoma, Transitional Cell as object arguments.  The gene subject arguments were 

also compared to their corresponding Entrez Gene record in measuring precision.  If a 

gene argument did not appear in the reference standard, but its Entrez Gene record 

indicated it was implicated in bladder cancer development, it received a true positive 

status for precision.  

The standard metrics of recall, precision, and F-score provided calculations to 

evaluate results.  Recall consisted of the percentage of all reference standard items that 

were found in system output.  Precision consisted of the percentage of system output 

gene arguments that were true positives.  F-score was computed using the following 

function: 

 
 
  f(x)  =  2(recall * precision / recall + precision) 
 
 

Results 

PubMed produced 5606 citations.  Using these as input, SemRep produced 38,498 

semantic predications.  Of these, the summarization software application identified 359 

as salient. The summarization application achieved 0.46 recall, 0.88 precision, and an F-
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measurement of .061 in comparing summarized gene association findings to the reference 

standard, reinforced with Entrez Gene data.   

Chapter 2, which is also the text of an article [5] published by the Journal of the 

Medical Library Association, provides a detailed description of this work.  

 
 

Aim 2 

Motivation 

Work for this aim was motivated by recognizing the need for a more adaptive 

summarization process, one unconstrained by the limited number of static points-of-view 

in Semantic MEDLINE.  I developed and evaluated an algorithm for identifying salient 

semantic predications. It analyzes relevant attributes in SemRep output data with adapted 

statistical methods that have been successfully applied to other natural language 

processing tasks.  I integrated the Kullback-Leibler Divergence (KLD)  [38] and the 

RlogF [39] metrics to assess predicate and nonseed topic semantic type properties in 

SemRep output in order to identify the most significant semantic predications in a 

dataset.  These metrics were combined with a scaling factor to form an algorithm called 

Combo.  The Combo algorithm was evaluated for its effectiveness in identifying salient 

semantic predications, when acting as the computational mechanism in the Saliency filter 

in Semantic MEDLINE’s summarization sequential four-tier architecture.   
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Methods 

Algorithm Development 

I investigated many metrics commonly used in natural language processing in 

developing the algorithm.  This included basic relative frequency assessment [40], 

multiple inverted term frequency metrics [41], and a G2 function used by Mani and 

Bloedorn [42].   After much research, I concluded that the three combined metrics noted 

above provided the most accurate statistical assessment of semantic predications.  The 

following paragraphs give detailed descriptions of these metrics. 

Previous research has noted a primary role of predicates in SemRep data in 

expressing a specific point-of-view [32, 33].  The Kullback-Leibler Divergence (KLD) 

measurement expresses the divergence between a true distribution (P) and an assumed 

distribution (Q).  It has been successfully applied to prior NLP studies analyzing 

predicates [43].  When applied to predicate assessment, KLD accounts for superfluous 

predicates in SemRep output, rewarding the truly informative predicates by assigning to 

them higher scores.  I hypothesized that a properly formed PubMed query contains a seed 

topic and point-of-view focus. The set of predicates from such a query, P, is compared to 

a set of predicates from a naively formed query, Q. The difference between the queries is 

that a properly formed query will include a MeSH subheading and possibly other details 

to adequate specify a point-of-view. For example, a naïve query for breast cancer 

treatment would be “Breast Cancer,” while a properly formed query would be “Breast 

Neoplasms/therapy[majr]”.  The KLD measurement determines the collective difference 

between the two distributions, P and Q: 
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D(P||Q) = Σ P(x)log2(P(x)/Q(x)) 
 
 

The individual KLD calculations (before summing) for shared predicates serve as a 

means to determine which individual predicates are significant in expressing the intended 

point-of-view in SemRep data.  By applying the KLD measurement exclusively to 

compare the relative frequency of individual predicates emerging from the properly 

formed query (distribution P) to their counterparts emerging from the naive query 

(distribution Q), one may calculate a score for each predicate  representative of the proper 

query that indicates its importance in expressing the intended point-of-view.  These 

scores may also be ranked to indicate which predicates are more influential in expressing 

the intended point-of-view initially expressed by the proper query.   

Due to UMLS constraints, SemRep is limited in what concepts (and their matching 

semantic types) can be bound to a given predicate, in forming logical semantic 

predications.  Therefore, semantic types tend to cluster with predicates in SemRep output.  

Such prominent associations express a predominant concept in the data, limited within 

the realm of each individual predicate.  The RlogF measurement was developed by Riloff 

to assess the relevance of extracted patterns consisting of a syntactic constituent (i.e., a 

noun or verb phrase) and their arguments (i.e., a direct or indirect object), in information 

extraction processes.  The RlogF measurement weighs an extracted pattern’s conditional 

probability with the log of its frequency.  I used RlogF to assess the value of a semantic 

type’s “binding” to a given predicate. The RlogF measurement is expressed thus: 

 
 

RlogF(patterni) = log2(semantic type frequency) * P(relevant | patterni) 
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Patterni refers to a given predicate/semantic type binding, and the conditional probability 

(P(relevant | patterni)) is the quotient of the semantic type’s raw frequency as bound to 

the predicate, divided by the raw frequency of all semantic types as bound to the same 

predicate.  Dr. Hurdle suggested the use of this metric. 

In semantic predication analysis, the magnitude of raw RlogF scores can exceed raw 

KLD scores, yet they express a different proportional relationship in SemRep output. 

KLD scores express a proportional relationship among predicates across the entire 

dataset, while RlogF scores express a binding between a single predicate and its 

associated semantic types. I developed a mechanism named PredScal to dynamically 

scale RlogF values according to the spatial proportions of predicates in a given dataset:  

 
 

1 / log2(c)  
 
 

where c represents the count of unique predicates in a dataset. In rare instances where 

there is only one unique predicate, the PredScal defaults to a value of 1.  The three 

metrics are combined into a product called “Combo” to evaluate SemRep data 

distributions:  

 
 

(RlogF * PredScal) * KLD           
 
 

Data 

MEDLINE citations returned by PubMed for the following search query were 

downloaded: 
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Urinary Bladder Neoplasms/genetics[majr] AND Urinary Bladder 

Neoplasms/etiology[majr]  Language:  English.  ("2003/01/01"[Publication Date] 

: "2008/07/31"[Publication Date]) 

 
 

Analysis with Combo Algorithm 

I analyzed the resulting semantic predications, using the Combo algorithm within the 

Semantic MEDLINE four-tier architectural model, with Combo implementation after 

manual Relevance, Connectivity, and Novelty filtering.  To evaluate predications initially 

identified in the Relevance tier, I separated all semantic predications which included the 

UMLS Metathesaurus concept “Carcinoma of bladder” as either a subject or object 

argument.  Semantic predications which were not considered novel were removed from 

this group, thus simulating the Novelty tier functionality in the model.  Combo values 

were calculated as explained above for the semantic predications in this group 

(examining predications containing “Carcinoma of bladder” for KLD assessment).  For 

evaluative purposes, the novel Relevance predications with the top four scores were 

considered salient. 

The Connectivity tier augments novel Relevancy predications with others which share 

a nonseed topic semantic type as an argument.  In order to examine salient Connectivity 

semantic predication identification, we performed a similar analysis on the SemRep 

output which did not include the seed topic “Carcinoma of bladder,” but did share the 

nonseed concept semantic type “gene or genome” of the two highest scoring novel 

Relevancy predications.  Such semantic predications were identified and then filtered so 

that only novel predications were included.  Combo scores were calculated. It should be 
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noted that for calculating the KLD portion of the algorithm for connectivity filtering, 

predications containing the nonseed concept semantic type “gene or genome” were 

compared against their counterparts in the Semantic MEDLINE database.  For evaluative 

purposes, novel Connectivity predications with the top score were considered salient. 

Analysis with Traditional Summarization 

For evaluative purposes, the same SemRep output was also processed with the 

conventional summarization software application created in Aim 1. 

 
 
Evaluation 

To evaluate the algorithm’s performance, I compared the results of the analysis using 

the Combo technique described above, to the conventional genetic disease etiology 

summarization software’s performance, utilizing the reference standard created for Aim 

1.  I measured results in terms of recall, precision, and F-score, using the same definitions 

of these metrics as noted in the work of Aim 1. 

 
 
Results 

The search query yielded 667 citations.  SemRep processing produced 5,421 semantic 

predications.  Summarizing the SemRep output using Combo resulted in 201 salient 

semantic predications, whereas the conventional software application identified 112 such 

predications.  Combo identified 74 genetic entities implicated in bladder cancer 

development; the conventional application identified 10 implicated genetic entities. 

To compare the effectiveness of the two summarization approaches, recall and 

precision values were calculated by comparing each set of genetic entities to the 
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reference standard developed for Aim 1.  Summarization utilizing the Combo algorithm 

resulted in a 0.69 recall rate, whereas the conventional software application achieved a 

0.23 recall rate. The Combo analysis achieved 0.81 precision; the conventional 

application achieved 1.0 precision.  These calculations produced an F-score of 0.75 for 

the Combo method, and an F-score of 0.37 for the conventional application’s output. 

Chapter 3, an article [6] published by BMC Medical Informatics and Decision 

Making, details the work of Aim 2. 

 
 

Aim 3 

Motivation 

A dynamic summarization application utilizing the Combo algorithm could 

potentially serve multiple needs.  Building the application and analyzing its performance 

for a previously unaddressed information need, as well as an additional information need 

served through conventional summarization, would provide further insight to its intrinsic 

generalizability. 

 
 
Methods 

Application Development 

The dynamic summarization software utilizes the same general four-tier architecture 

previously used in summarization.  Figure 2 illustrates data flow within this architecture.  

The new Combo algorithm was incorporated into the final Saliency filter.  This resulted 

in a new dynamic summarization application that transformed Semantic MEDLINE into  
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        Figure 2.  Dynamic Software Architecture 

 
 
 
a generalizable, multipurpose application.  Prior to this, conventional summarization 

allowed Semantic MEDLINE to process SemRep data for only five static points-of-view.  

The new dynamic software enabled Semantic MEDLINE to summarize for potentially 

many information needs. 

The four Novel Relevance and four Novel Connectivity semantic predications with 

the highest Combo scores constituted Saliency output. 

The dynamic software was developed using the Perl programming language.  It 

utilized the MySQL Semantic MEDLINE database for novelty processing and KLD 

computations. 
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Application and Evaluation 

We evaluated the dynamic software’s performance in two additional points-of-view 

domains, specifically treatment and prevention.  This facilitated evaluation for another 

point-of-view which has an established outcome using conventional summarization [29], 

and a point-of-view which is not presently served by conventional summarization.   

A pilot project focused exclusively on prevention examined a hypothesis regarding 

expression of preventive interventions in semantic predications.  This pilot project 

provided foundational work for a larger study exploring dynamic summarization for both 

points-of-view.  We selected suitable disease topics to serve as subjects in each study.  

The pilot project examined the efficiency of dynamic summarization in locating 

preventive interventions for acute pancreatitis, malaria, and coronary artery disease.  The 

second study examined the efficacy of dynamic summarization in locating preventive and 

drug treatment interventions for arterial hypertension, congestive heart failure, diabetes 

mellitus type 2, and pneumococcal pneumonia.  We evaluated the results in both studies 

with reference standards consisting of DynaMed [44] recommendations. We also 

implemented a baseline methodology to evaluate the results of the second study. 

 
 
Study One:  Prevention Decision Support Pilot Project 

Motivation.  Online biomedical databases such as PubMed can be useful for patient 

care, yet users encounter obstacles in their effective use. [45]  Suggested improvements 

include transforming text to provide clarified, explicit information. [46]  Dynamic 

summarization may assist clinicians in identifying recommended disease prevention 

interventions.  Could an NLP application such as Semantic MEDLINE, with the new 
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dynamic summarizing software, identify drug treatment options that are also cited in a 

decision support tool such as DynaMed?  

Methods.  I chose three disease topics:   acute pancreatitis, malaria, and coronary 

artery disease.  I formed and executed PubMed search queries using the following MeSH 

subject headings: 

• Pancreatitis 

• Coronary artery disease 

• Malaria 

combined with the prevention and control subheading.  I processed the PubMed output 

with SemRep, and the dynamic summarizing software, using relevant disease seed topics 

for summarization.  We built a reference standard for each disease by listing its 

recommended preventive interventions as found in DynaMed.   

We assessed summarized output using primary and secondary evaluations.  In the 

primary evaluation, we examined output in the form “Intervention 

X_PREVENTS_Disease Y”, where the object argument was an expression of the topic 

disease.  If the subject argument was one of the reference standard interventions, that 

intervention received a true positive status.  If the subject argument was potentially a 

general expression of a reference standard intervention, we examined the full abstract and 

title text associated with the predication.  If the precise reference standard intervention 

was named in the title or abstract, and the content identified it as a viable preventive 

intervention, it received true positive status. Recall, precision, and F-scores were 

calculated for each disease topic.  Recall consisted of the percentage of reference 

standard interventions found in summarized output.  I computed precision by grouping 
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subject arguments by name, and calculating what percentage was associated with a 

reference standard intervention.  I used the same function used in the work of aims 1 and 

2 to determine F-score. 

In the secondary analysis, we examined all the other semantic predications which 

were not in the form “Intervention X_PREVENTS_Disease Y”.  We had hypothesized 

that preventive interventions could also be expressed in predications of other forms.  The 

purpose of the secondary analysis was to explore this hypothesis.  If additional reference 

standard interventions were found, recall and F-score would be recalculated by adding 

these new findings.  

Results.  The three PubMed search sessions retrieved a total of 3276 citations.  

SemRep produced a total of 19154 semantic predications.  Summarization yielded 1964 

semantic predications.  The primary analysis resulted in 0.70 average recall, 0.45 average 

precision, and an overall F-score of 0.54.  Additional reference standard interventions 

appeared in the secondary analysis, in specific forms such as “Intervention 

_USES_Intervention” (e.g., Prophylactic treatment_USES_Amodiaquine), 

“Intervention_TREATS_Person” (e.g. Malaria Vaccines_TREATS_Child), and 

“Intervention_TREATS_disease” (e.g., Secondary prevention_TREATS_Coronary 

arteriosclerosis, with “Secondary prevention” referencing smoking cessation), thus 

validating the hypothesis.  We recalculated recall, resulting in a modified average recall 

of 0.79 and a recalculated overall F-score of 0.57.  

The details of this study are included in a manuscript accepted by the Journal of the 

Medical Library Association, which also serves as Chapter 4 of this dissertation. 
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Study Two: Preventive and Drug Treatment Intervention  

Decision Support 

Motivation.  As earlier stated, online databases such as PubMed can potentially 

provide decision support information for patient care, yet obstacles render their use 

impractical.  The dynamic summarization software may assist clinicians in identifying 

preventive and drug treatment interventions.  Could an NLP application such as Semantic 

MEDLINE, with the new dynamic software, identify interventions that are also cited in a 

decision support tool such as DynaMed?   

Methods.  We chose four disease topics to serve as subjects for both prevention and 

drug treatment.  These disease topics were arterial hypertension, congestive heart failure, 

diabetes mellitus type 2, and pneumococcal pneumonia.  Dr. Meystre suggested these 

disease topics.  I selected the following MeSH headings for these diseases: 

• Hypertension 

• Diabetes mellitus, type 2 

• Heart failure 

• Pneumonia, pneumococcal 

 I combined these MeSH headings with the subheading drug therapy to retrieve citations 

focused on drug treatment.  I also combined the same MeSH headings with the 

subheading prevention and control to retrieve citations focused on prevention.  The 

resulting citations were processed with SemRep, and then the dynamic summarizing 

software, using relevant seed topics for summarization.  The drug treatment citations 

were also processed with the conventional treatment point-of-view summarization 

software, using the same seed topics.  We built reference standards of drug treatment and 
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preventive interventions by forwarding DynaMed recommendations to two reviewers, 

who highlighted interventions that they thought were credible.  An adjudicator resolved 

disagreements between the two reviewers.  The reviewers and the adjudicator were MDs.   

I also built baselines by processing citation text with MetaMap to extract information 

that a clinician might find if directly reviewing PubMed output.  The baseline 

methodology was based on techniques developed by Fiszman, [29] Zhang, [16]and their 

colleagues.  Citation data were processed with MetaMap, retaining terms from desired 

semantic groups.  Terms whose frequencies exceeded a threshold of the mean of all 

retained topic term frequencies, plus one standard deviation, formed the baseline for each 

disease topic/point-of-view pairing. 

I compared summarization output to the reference standards.  For output originating 

from the citations focused on drug treatment, I only looked at semantic predications in 

the form “Intervention X_TREATS_Disease_Y”, where the object argument was an 

expression of the topic disease.  If the subject argument was one of the reference standard 

interventions, that intervention received a true positive status.  If the subject argument 

was potentially a general expression of a reference standard intervention, I examined the 

span of citation text which the predication captured.  If the reference standard 

intervention was indicated in the span of text, it received a true positive status.  I used the 

same methodology in evaluating the output for prevention, with one exception.  Because 

the pilot project had confirmed that other types of predications in addition to those in the 

form of   “Intervention X_PREVENTS_Disease_Y” could provide relevant data, I 

examined all predications originating from the PubMed queries addressing disease 

prevention. 
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I calculated recall, precision, and F-score using the same procedures used in the pilot 

project addressing disease prevention, with one exception regarding precision.  All 

system output semantic predications were used in calculating precision for disease 

prevention and drug treatment, whereas in the pilot project only predications in the form 

“Intervention X_PREVENTS_Disease Y” were used in computing precision. 

Results.  The PubMed queries produced 19,422 citations focused on drug treatment 

for the four disease topics, and 1735 citations addressing prevention.  SemRep produced 

a total of 162,184 semantic predications from the drug treatment citations, and 10,763 

predications from the prevention citations.  Dynamic summarization yielded a total of 

20,616 semantic predications originating from the drug treatment citations for the four 

disease topics, and 811 citations originating from the prevention citations.  The 

conventional software application produced 13,134 predications originating from the 

drug treatment citations. 

Dynamic summarization drug treatment output produced 0.848 average recall and 

0.377 average precision.  The conventional application produced average recall and 

precision scores of 0.583 and 0.712 for drug treatment.  The baseline methodology 

yielded average recall and precision scores of 0.234 and 0.306.  For prevention output, 

dynamic summarization produced an average recall of 0.655 and an average precision 

rate of 0.329.  The baseline produced an average recall of 0.269 and an average precision 

of 0.247. 

The work for Aim 3 is described in detail, in Chapter 5.  The following four chapters 

provided detailed descriptions of the methods, results, and implications of the work to 

complete each aim 
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Abstract 

Objective: This paper examines the development and evaluation of an automatic 

summarization system in the domain of molecular genetics.  The system is a potential 

component of an advanced biomedical information management application called 

Semantic MEDLINE and could assist librarians in developing secondary databases of 

genetic information extracted from the primary literature .  Methods:  An existing 

summarization system was modified for identifying biomedical text relevant to the 

genetic etiology of disease. The summarization system was evaluated on the task of 

identifying data describing genes associated with bladder cancer in MEDLINE citations. 

A gold standard was produced using Genetics Home Reference and Online Mendelian 

Inheritance in Man (OMIM) records. Genes in text found by the system were compared 

to the gold standard; recall, precision, and F-measure were calculated.  Results: The 

system achieved recall of 46%, and precision of 88% (F-measure = 0.61) by taking 

GeneRIFs into account. Conclusion:  The new summarization schema for genetic 

etiology has potential as a component in Semantic MEDLINE to support the work of data 

curators. 

 
 

Introduction 

Due to evolving technologies and policies, libraries have an increasing interest in the 

process of data curation. As McDonald and Uribe point out [1], the open access 

movement, coupled with ever-increasing volumes of data from current scientific 

investigations, has created a research environment which calls for new management 

strategies for domain-specific data curation, which is defined here as the organization, 
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preservation, and enhancement of the data through value-added features such as 

annotations .  This environment has united traditional academic participants such as 

librarians, researchers, and administrators, who previously worked independently.   

Librarians have the opportunity to take a leadership role in implementing techniques 

and policies for data curation and preservation.  For example, an academic library could 

partner with other campus departments in creating the framework for enhancing and 

preserving the institution’s research, possibly creating unique and priceless resources.  

There are several examples in which librarians have taken the lead in information 

curation, access, preservation, and management, in neuro-ophthalmology [2], institutional 

repositories [3], and other areas. Curators of secondary databases face the demanding task 

of identifying relevant information from primary sources, which are continually 

increasing [4]. The development of curated databases is often based on a complex 

methodology of information discovery, content development, and expert review [5] [6].  

Information discovery for secondary databases may be dependent on traditional 

information retrieval and the meticulous, manual inspection of documents resulting from 

conventional searches of databases such as MEDLINE.  This task can be quite daunting 

and time consuming.  In developing the Human Protein Reference Database (HPRD), for 

example, developers performed extensive searches in PubMed to identify relevant 

literature.  Then, researchers spent over 50,000 hours during an eight-month period 

reading more than 300,000 articles to manually curate HPRD records [7].   

Biomedical information retrieval techniques provide support for secondary database 

curation [8]; however, little research has been published on using automatic 

summarization to augment these techniques and help manage the information contained 
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in the large numbers of MEDLINE citations often returned by PubMed searches. 

Automatic summarization provides the information most relevant to a user’s interest from 

a source in a condensed format. The advanced biomedical information management 

application Semantic MEDLINE [9] (public demonstration interface at 

http://skr3.nlm.nih.gov/SemMedDemo/) integrates automatic summarization with 

information retrieval, semantic processing, and visualization to analyze biomedical text.  

Semantic processing in the application uses SemRep [10] [11] to represent document 

content as semantic relations (e.g. Drug X TREATS Disease Y), also referred to as 

semantic predications.  Automatic summarization [12] further processes these relations to 

identify those that are most relevant to a user’s needs.  The resulting semantic relations 

are then presented to the user in a graph that visually displays the content of retrieved 

documents. Since links are maintained between semantic relations and input text, the 

graph serves as a guide to help users decide what to read.  

The thrust of the research reported here was to extend the use of Semantic MEDLINE 

to the domain of molecular genetics. Librarians maintaining databases in this domain 

must keep pace with the growing amounts of data generated by improved genetic analytic 

technologies [13] and need the ability to easily identify genes associated with a particular 

disease. The authors first describe the technology required to extend Semantic MEDLINE 

and then suggest how the application can serve as an adjunct to traditional information 

retrieval in secondary database curation. In the evaluation, genes extracted by the system 

were compared to those found in two actively curated genetic databases, Genetics Home 

Reference and Online Mendelian Inheritance in Man. 
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Background 

Curated Resources 

Genetics Home Reference [14], hosted by the National Library of Medicine, was 

introduced in 2003 as a consumer-friendly Website for genetic diseases [15].  The site 

implements a content development strategy that combines human effort with select 

complementary automated functions [16].  The Online Mendelian Inheritance in Man 

(OMIM) database [17], a Johns Hopkins University product hosted by The National 

Center for Biotechnology Information at the National Library of Medicine, implements a 

curation strategy in which journal content is daily reviewed by hand [18] [19].  Under 

agreement with publishers, OMIM receives articles from specific journals prior to 

publication.  OMIM staff also read additional publications looking for potential materials 

for manual review.  Genetics Home Reference provides information on a level 

appropriate for patients; OMIM furnishes more technical, detailed genetic disease 

information that is very suited for scientists.  The two databases provide a full landscape 

of online genetics information.  

 
 

Document Source 

The primary document source for this study was MEDLINE, the premier database of 

the National Library of Medicine, which includes over 18 million citations, representing 

the biomedical literature from 1949 to the present [20]. 
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Semantic MEDLINE 

Semantic MEDLINE [9] is a multiple-step tool in development that helps users 

manage the results of PubMed searches. The application extracts the succinct meaning of 

the text it processes and displays the resulting distilled data in an interactive graph that 

maintains links to the original text. Semantic MEDLINE proceeds in four steps: PubMed 

searching, extraction of semantic predications with SemRep, automatic summarization, 

and visualization (Figure 3).  

 
 

SemRep 

At the core of Semantic MEDLINE is SemRep [10][11], a rule-based, symbolic 

natural language processing application that uses the Unified Medical Language System 

(UMLS) [21] to express the meaning of text in a straight-forward and consistent 

representation, called a semantic predication. Such a representation has arguments and a 

predicate. The following illustrates this process: 

Original text: 

“The IGF1R is up-regulated in bladder cancer compared with non-malignant bladder, 

and might contribute to a propensity for invasion [22].” 

Extracted semantic predication: 

IGF1R gene ASSOCIATED_WITH Carcinoma of bladder 

SemRep uses MetaMap [23] to map the text IGF1R and bladder cancer to the  

Metathesaurus concepts “IGF1R Gene” and “Carcinoma of Bladder,” which are 

associated with semantic types (or classes) ‘Gene or Genome’ and ‘Neoplastic Process’, 

respectively. These concepts function as the arguments of the predication. Based on the 
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Figure 3: Semantic MEDLINE 
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semantic types, SemRep then draws upon the Semantic Network to identify the predicate 

(or relation), ASSOCIATED_WITH, that binds these arguments. SemRep extracts 

semantic predications for an array of predicates, including TREATS, LOCATION_OF, 

INHIBITS, INTERACTS_WITH, CAUSES, PREDISPOSES, and 

ASSOCIATED_WITH, among others.  

 
 

Automatic Summarization 

In the summarization phase, a schema filters semantic predications extracted from 

MEDLINE citations according to a user-selected point-of-view and topic concept [12].  

For example, if a user were interested only in information addressing treatment (i.e., the 

point of view) for a particular disease (i.e., the topic concept), summarization would 

collect the best predications that expressed this information. The summarization 

architecture does this by subjecting SemRep predications to four sequential phases of 

filtering, which select only those semantic predications pertinent to the selected point of 

view and topic concept: 

Relevance:  collects predications addressing the user-selected topic concept. 

Connectivity:  augments relevancy predications with others associated with the topic 

concept. 

Novelty:  eliminates predications asserting basic knowledge that users already know. 

Saliency:  limits final output to predications that occur most frequently.  

The current online Semantic MEDLINE prototype includes schemas that summarize for 

treatment [12], substance interactions [24], diagnosis, and pharmacogenomics [25] points 

of view.  
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Methods 

In order to explore Semantic MEDLINE’s ability to assist librarians in curating 

secondary genetics databases, a new summarization schema was first created, targeting 

semantic predications that are relevant to the genetic etiology of disease.  Subsequently, 

documents retrieved from MEDLINE were processed within the Semantic MEDLINE 

model enhanced with this schema. Finally, the genes identified during this processing 

were evaluated by comparing them to a reference standard compiled from Genetics Home 

Reference and OMIM.  

 
 

A Summarization Schema for Genetic Etiology of Disease 

As noted earlier, a schema provides a general means of identifying SemRep 

predications for a particular point of view.  Earlier work [26, 27] had enhanced SemRep 

to extract semantic predications on the genetic etiology of disease, but had not provided a 

summarization schema.  A schema for this purpose has two features: a list of allowable 

predicates, and a list of semantic types which specify which Metathesaurus concepts the 

listed predicates are permitted to have as arguments.  The new schema was designed in 

such a way as to summarize SemRep data for any disease topic the user may choose, 

from the point of view of genetic disease etiology.  

In crafting the schema, allowable semantic types were assembled into three groups:  

genetic phenomenon, anatomy, and disease process.  The following indicates the UMLS 

semantic types included in each of these groups: 
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Genetic phenomenon:  Amino Acid Sequence; Enzyme; Genetic Function; Nucleic 

Acid, Nucleoside, or Nucleotide; Nucleotide Sequence; Amino Acid, Peptide, or 

Protein; Gene or Genome; and Molecular Sequence. 

Anatomy:  Anatomical Structure; Body Part, Organ, or Organ Component; Cell; Cell 

Component; Embryonic Structure; Fully Formed Anatomical Structure; Gene or 

Genome; and Tissue. 

Disease Process:   Acquired Abnormality; Anatomical Abnormality; Congenital 

Abnormality; Cell or Molecular Dysfunction; Disease or Syndrome; Injury or 

Poisoning; Mental or Behavioral Dysfunction; Neoplastic Process; Pathologic 

Function; Sign or Symptom; Biologic Function; Cell Function; Mental Process; 

Molecular Function; Natural Phenomenon or Process; Organism Function; Organ or 

Tissue Function; Physiologic Function; Behavior; Mental or Behavioral Dysfunction; 

and Finding. 

The schema for genetic etiology of disease allows the following predicates: AFFECTS, 

ASSOCIATED_WITH, AUGMENTS, CAUSES, DISRUPTS, COEXISTS_WITH, 

INHIBITS, PREDISPOSES, and STIMULATES. When the arguments of these 

predicates are limited to the semantic types noted above, the schema specifies the 

semantic predications permitted in summarization when generated from the point of view 

of the genetic etiology of disease. The following illustrates the specific semantic types 

(by the previously noted groups) and predicate combinations allowed by the schema:  

{genetic phenomenon} AFFECTS {disease process} 

{genetic phenomenon} AUGMENTS {disease process} 

{genetic phenomenon} DISRUPTS {disease processes OR anatomy} 
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{genetic phenomenon} ASSOCIATED_WITH {disease process} 

{genetic phenomenon} PREDISPOSES {disease process} 

{genetic phenomenon} CAUSES {disease process} 

{genetic phenomenon} STIMULATES {genetic phenomenon} 

{genetic phenomenon} INHIBITS {genetic phenomenon} 

{disease process} COEXISTS_WITH {disease process} 

For example, this schema allows the genetic etiology predication “NAT 2 gene 

PREDISPOSES Carcinoma of Bladder” to be included in the summary because the 

predicate PREDISPOSES matches, and further, the subject argument “NAT 2 gene” has 

semantic type ‘Gene or Genome’, which is included in the “genetic phenomenon” group 

and the object argument has semantic type ‘Neoplastic Process’, which is in the “disease 

process” group. The use of three semantic groups permits predications in the summary 

that do not strictly assert genetic etiology, but rather provide likely valuable additional 

information, such as “{genetic phenomenon} DISRUPTS {anatomy}” and “{disease 

process} COEXISTS_WITH {disease process}.” Finally, the predication 

“Immunotherapy TREATS Carcinoma of Bladder” is not allowed, because the predicate 

TREATS is not in the schema. 

 
 

Input Text Acquisition 

In order to test the efficiency of the Semantic MEDLINE model (enhanced with the 

new schema) in identifying research literature relevant to curation of a secondary 

resource, the team chose bladder cancer, the sixth overall leading form of cancer in the 
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U.S. [28], as a topic of study. To complete the first phase in the Semantic MEDLINE 

model, the project team executed the following PubMed query: 

urinary bladder neoplasms[mh] OR "bladder cancer" OR "cancer of the bladder"  

Limits: Publication Date from 2003/01/01 to 2008/07/31, only items with abstracts, 

English 

Five thousand, six hundred and six citations (titles and abstracts) were retrieved with this 

query and subsequently downloaded from MEDLINE.  

 
 

Document Processing 

All citations were processed by SemRep and the extracted predications were then 

submitted to the new schema for summarization on the topic of bladder cancer according 

to the genetic etiology of disease point of view.   

 
 

Extracting a List of Genes from the Summarized Predications 

A list of genes implicated in bladder cancer was extracted from the predications in the 

summarization schema’s output, subject to the following criteria: 1) the subject concept 

must have a semantic type belonging to the group “genetic phenomenon” and the object 

must be a concept referring to bladder cancer (“Carcinoma of bladder,” "Bladder 

Neoplasm,” and “Carcinoma, Transitional Cell”).  These bladder cancer concepts map to 

the semantic type “Neoplastic Process,” which is in the “disease process” group. For 

example, “FGFR3 gene” is extracted from the “FGFR3 gene ASSOCIATED_WITH 

Carcinoma, Transitional Cell.” 
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Compiling the Reference Standard from 

 OMIM and Genetics Home Reference 

The reference standard for this project consisted of the genes noted as associated with 

bladder cancer in OMIM and Genetics Home Reference. In order to identify valid genes 

in OMIM, we retrieved all records which were either phenotypically relevant to bladder 

cancer, or which provided clinical synopses for this disease, using the following query:  

"bladder cancer"[All Fields] OR "bladder cancers"[All Fields] OR "bladder cancer 

cases"[All Fields] OR "bladder cancer cell"[All Fields] OR "bladder cancer patients"[All 

Fields] OR "bladder carcinoma"[All Fields] OR "bladder carcinogenesis"[All Fields] 

This query was first executed with the OMIM interface limits options manipulated to 

retrieve a broad range of genetic information associated with bladder cancer, varying 

from known genes with known chromosome loci, hypothesized loci only, to a suspected, 

but not ascertained genetic basis. Then, the query was issued a second time after 

modifying the OMIM interface limits options to retrieve only records which included a 

clinical synopsis.  The results of these two queries were then combined, resulting in 14 

records.  In Genetics Home Reference, the query “bladder” retrieved records either 

addressing general phenotype information (with the general label “Genetic Condition”) or 

a gene. Of these, we identified 11 records containing information relevant to the genetic 

basis of bladder cancer.    

The 25 records extracted from OMIM and Genetics Home Reference were then 

examined for specific genes. Records were limited to those based on source literature 

published within the study’s timeframe (January 2003 – July 2008). Genetics Home 

Reference records noted 10 genes with disease implications, while OMIM noted seven; 
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four genes were noted by both databases as relevant to bladder cancer.  Genes noted in 

each record were classified as having a confirmed or possible involvement in bladder 

cancer.  Genes noted in the main phenotype records of each database as implicated in 

bladder cancer were classified as having a confirmed involvement.  To illustrate, the 

FGFR3 gene received a confirmed classification, due to its combination with the phrase 

“implicated in bladder carcinogenesis” in OMIM record #109800 for bladder cancer [29], 

and for its presence in the Genetics Home Reference bladder cancer condition record, 

indicating that it is “associated with bladder cancer” [30].  Genes noted in other records 

in certain explicit contexts (adjacent to survival rates, for example) received a possible 

classification.  For example, Genetics Home Reference notes an “amplification” of the 

possible-classified ERBB3 gene “and/or overexpression of [its] protein” in bladder 

tumors in the ERBB3 gene record [31].  Genes tied to conflicting, uncertain, or undefined 

wording were also classified as possible.  For example, Genetics Home Reference notes 

conflicting evidence defining the ATM gene’s implication in bladder cancer [32]. 

Therefore, it was assigned a possible classification. All genes from GHR and OMIM, 

regardless of classification, were included in the final reference standard as implicated in 

bladder cancer. Using these criteria, 13 genes were included in the reference standard 

(Table 1). 

 
 

Evaluation 

The second author (MF) manually matched the output of the genes extracted from the 

final summarization output against the genes in the reference standard. Based on this 

matching, recall, precision, and F-measure were calculated.  Recall was defined as the  
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Table 1 – Gold standard genes associated with bladder cancer.  
Gene Symbol Source Classification 
FGFR3  Both Confirmed  
XPD OMIM Confirmed   
RAG1 OMIM Confirmed 
TP53 Both Confirmed  
MTCYB OMIM Confirmed 
HRAS Both Confirmed  
NAT2 Both OMIM Confirmed; GHR Possible 
RB1 GHR Confirmed 
TSC1 GHR Confirmed 
ATM GHR Possible 
TGFB1 GHR Possible 
MDM2 GHR Possible 
ERBB3 GHR Possible 

 
 
 
percentage of genes in the reference standard which were found in the summarized 

output.  Precision was measured by determining the percentage of all genes in the 

summarized output that was noted in the reference standard, or in an Entrez Gene [33] 

GeneRIF, as implicated in bladder cancer development. Gene References into Function 

(GeneRIF) annotations [34] in corresponding Entrez Gene records (for Homo sapiens 

only) were consulted for such genes which were not noted in OMIM or Genetics Home 

Reference.  If an explicit GeneRIF annotation noted an association of the gene with 

bladder cancer, it was counted as a true positive in the precision computation.  The F-

measure, which ranges from a high of 1 to a low of 0, expresses a balanced average 

between the recall and precision scores. 

 
 
 
 



50 
 

 
 
 

41 

Results 

Predications and Genes Extracted 

SemRep extracted 38,498 semantic predications from the 5606 citations retrieved 

from MEDLINE. The summarization phase limited these to 359 semantic predications 

relevant to bladder cancer (using the schema for genetic etiology). From these 

predications 17 genes and proteins were extracted based on the criteria noted in section 

3.4. These were normalized to the gene name in Entrez Gene and are shown in Table 2.    

Table 3 shows the results of manually comparing the genes from summarization to 

the reference standard (OMIM and Genetics Home Reference) to compute recall, and to 

Entrez Gene GeneRIFs in addition to the reference standard for computing precision.  Of 

the 13 genes in the reference standard, six were represented in the final summarization 

output. Out of 17 genes in the summarization output, 11 were false positives when 

compared only to the reference standard, while only two were false positives when 

compared to the reference standard and GeneRIFs.  

 
 

Discussion 

The modified summarization system described in this paper and evaluated with 

bladder carcinoma genes obtained moderately good recall when compared to the  

reference standard compiled from OMIM and Genetics Home Reference. Precision 

increased substantially when GeneRIFs were taken into account. GeneRIF annotations 

are routinely added to an Entrez Gene record when the linked PubMed record is indexed, 

as part of an indexer’s work, and can provide additional insight into a gene’s involvement 

in a disease process. 
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Table 2. Genes extracted by the summarization program.  
Summarization Output 
TP53 gene 
 FGFR3 gene* 
 BIRC5 gene 
 Cadherins  (CDh1)** 
 cyclooxygenase 2  (PTGS2) 
 CDKN2A gene 
 CDC91L1 gene  
 Candidate Disease Gene 
 NAT2 gene 
 EGF gene 
 TGFB1 protein, human (TGFB1) 
 MDM2 gene 
 HRAS gene 
 GSTT1 gene 
 GSTM1 gene 
 Gelatinase B  (MMP9) 
 CD82 gene 
**Genes that appear in the reference standard associated with bladder cancer are in bold.  
*Genes normalized from proteins are presented in parentheses 
 
 
 
Table 3. Performance measures* for the summarization system on extracting genes 
related to bladder cancer from MEDLINE.  
Metric 

  Precision 88% 
 Recall 46% 
 F-measure 0.61 
 * The table displays the results with taking GeneRIFs into account for assessing precision 

(as explained in Methods). 
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There are two reasons for the level of current results. SemRep processing contributed 

to some errors, and further development to improve the accuracy of this application is 

part of ongoing research. In addition, genes are noted as implicated in a disease process 

in OMIM and Genetics Home Reference  due to curation decisions which are in part 

independent of what is noted in the collective professional literature (and hence in 

SemRep output). GeneRIFs, on the other hand, are routinely created as part of the 

indexing process for all MEDLINE citations which include gene information. For 

example, the “CDC91L1 gene” was commonly noted as related to bladder cancer in the 

summarized SemRep output, but was not noted in the OMIM and Genetics Home 

Reference records consulted in creating the reference standard, eventhough one of the 

GeneRIFs in Entrez Gene for CDC91L1 in homo sapiens notes the following: “CDC91L1 

(PIG-U) is a newly discovered oncogene in human bladder cancer” (PMID – 15034568, 

published within the time frame of this study). In an actual application, summarized 

output could guide curation, but it would be up to curators to decide what information 

would be included in their secondary databases.  

The Semantic MEDLINE process, implementing SemRep, summarization, and 

visualization, converts large amounts of data into a concise representation of semantic 

predications expressing the data’s meaning, which can then be quickly reviewed and 

traced back to the original text.  This process can potentially save time for database 

curators reviewing large amounts of information (although our project did not test this 

hypothesis).  

Using the modified schema presented in this paper, the genetic summary can be 

displayed in Semantic MEDLINE as an interactive graph [9] (See Figure 4). Arcs (the 
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lines connecting the labeled concepts) represent relations between each argument node 

(the labeled concepts).  The central node in the graph represents the user-determined 

topic of the summary (“Carcinoma of bladder”). The user may select or deselect 

predicates in the upper-right side panel, to focus on specific relationships in the graph.  

By right-clicking on a given arc, the user can access the original text from which a 

semantic predication was extracted.  In Figure 4, the user may right-click the 

“PREDISPOSES” relationship arc between the GSTT1 gene concept node and the central 

concept “Carcinoma of bladder” to view the original text (a MEDLINE citation). 

As noted in the introduction, use of this tool creates the potential for collaborative 

curation work between librarians and researchers.  The following scenario further 

illustrates how this might work in practice: The board that oversees the institutional 

repository at a major university decides to integrate into this repository primary data from 

a university laboratory exploring the genetic etiology of disease.  The librarian in charge 

of repository curation notes that an added-value resource summarizing the published 

findings of the laboratory’s research would assist other campus scientists to appraise the 

data.  The librarian submits a query to Semantic MEDLINE to locate and download all 

relevant citations published by the laboratory’s faculty.  The librarian then uses the 

application to sequentially summarize the MEDLINE data for each disease studied, from 

the point of view of genetic etiology.  To review the summarized results, the librarian 

visualizes the data for each disease, clicking on the arcs within the graph to view citations 

associated with each semantic predication.  Using the summarized data, the librarian 

creates a concise report of the findings associated with the lab’s data.  The report is stored 

in the institutional repository with the lab’s research data, so that users can quickly
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Figure 4: Visualization graph illustrating summarized semantic predications 
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determine its potential relevance in their own endeavors. 

 
 

Limitations of the Study 

The evaluation was performed with one disease and it is hard to predict the 

generalizability of performance when more diseases are taken into account.  However, 

SemRep and the summarization system components of Semantic MEDLINE have been 

proven to be effective in a topic-oriented evaluation study to support evidence-based 

medical treatment of 50 diseases [35]. Performance will likely scale similarly to 

potentially support genetic database curation.  A further limitation is that the natural 

language processing system (SemRep) does not have access to information curators use 

to decide what genes are established markers for diseases. These are curation policies that 

go beyond any language processing system.  

 
 

Conclusions 

Semantic MEDLINE transforms vast amounts of bibliographic text into succinct, 

brief statements.  To place this in a quantitative perspective, in this study Semantic 

MEDLINE reduced 5606 MEDLINE citations to 359 semantic predications.  Curators 

could substantially reduce the amount of time needed to manually review original 

MEDLINE documentation by first processing it with Semantic MEDLINE and then 

reviewing its output.   

This study explored the application of Semantic MEDLINE for a specific task, that of 

database curation.  As noted before, this task is relevant to emerging opportunities for 

librarians to contribute to parent organizations and the scientific community at large, as 
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professional partners.  Other work may also be aided by Semantic MEDLINE 

applications.  For example, librarians could assist patrons in quickly assessing large 

amounts of bibliographic text by first processing it with Semantic MEDLINE, and then 

instructing them on using its interactive visual display.  Outcomes from separate groups 

of research studies, represented as bibliographic text, could be compared.  These services 

could reaffirm the importance of university library services, and strengthen the role of 

librarians as essential partners in the research endeavors of their individual institutions. 

Future work in schema development and domain exploration is needed in order to 

extend Semantic MEDLINE’s capabilities and to measure its effectiveness.  

Summarization which accommodates points of view beyond those currently available 

will enable the system to process data for additional needs.  Assessing Semantic 

MEDLINE’s ability to assist in additional tasks such as point of care information delivery 

and patient education will give further insight to its potential uses. 
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Abstract 

Background:  Traditional information retrieval techniques typically return excessive 

output when directed at large bibliographic databases. Natural Language Processing 

applications strive to extract salient content from the excessive data.  Semantic 

MEDLINE, a National Library of Medicine (NLM) natural language processing 

application, highlights relevant information in PubMed data. However, Semantic 

MEDLINE implements manually coded schemas, accommodating few information 

needs.  Currently, there are only five such schemas, while many more would be needed to 

realistically accommodate all potential users.  The aim of this project was to develop and 

evaluate a statistical algorithm that automatically identifies relevant bibliographic data; 

the new algorithm could be incorporated into a dynamic schema to accommodate various 

information needs in Semantic MEDLINE, and eliminate the need for multiple schemas.  

Methods: We developed a flexible algorithm named Combo that combines three 

statistical metrics, the Kullback-Leibler Divergence (KLD), Riloff’s RlogF metric 

(RlogF), and a new metric called PredScal, to automatically identify salient data in 

bibliographic text. We downloaded citations from a PubMed search query addressing the 

genetic etiology of bladder cancer.  The citations were processed with SemRep, an NLM 

rule-based application that produces semantic predications.  SemRep output was 

processed by Combo, in addition to the standard Semantic MEDLINE genetics schema 

and independently by the two individual KLD and RlogF metrics. We evaluated each 

summarization method using an existing reference standard within the task-based context 

of genetic database curation.  Results:  Combo asserted 74 genetic entities implicated in 

bladder cancer development, whereas the traditional schema asserted 10 genetic entities; 
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the KLD and RlogF metrics individually asserted 77 and 69 genetic entities, respectively.   

Combo achieved 61% recall and 81% precision, with an F-score of 0.69.  The traditional 

schema achieved 23% recall and 100% precision, with an F-score of 0.37.  The KLD 

metric achieved 61% recall, 70% precision, with an F-score of 0.65.  The RlogF metric 

achieved 61% recall, 72% precision, with an F-score of 0.66.  Conclusions:  Semantic 

MEDLINE summarization using the new Combo algorithm outperformed a conventional 

summarization schema in a genetic database curation task.  It potentially could streamline 

information acquisition for other needs without having to hand-build multiple saliency 

schemas. 

 
 

Background 

The continued growth of bibliographic databases creates challenges to users 

practicing traditional information retrieval (IR) techniques. Standard search techniques, 

when applied to large databases such as PubMed, often return large, unmanageable lists 

of citations that do not fulfill the searcher’s information needs [1, 2].  This problematic 

issue impedes many tasks, including secondary genetic database development.  Databases 

such as Online Mendelian Inheritance in Man (OMIM) and Genetics Home Reference 

(GHR) use information from the biomedical literature to develop narrative records 

describing gene involvement in disease processes.  Developers of secondary genetic 

databases built using the professional literature often rely on IR, and must invest much 

time and effort in procuring information [3].  The same problem prevents individuals 

from using IR effectively in other biomedical applications such as clinical decision 

support, [4] systematic review development, [5, 6] and even in Google searches [7]. 
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NLP and Semantic MEDLINE 

Natural language processing (NLP) can address this problem by identifying and 

summarizing text that fulfills a user’s information needs in IR-procurable data.  Examples 

of this approach include document clustering, [8] outcome polarity features in machine 

learning, [9] and content modeling in sentence selection [10].  NLP models leveraging 

transformations known as semantic predications can also address this issue.  Semantic 

MEDLINE [11] is a multistage NLP system designed by researchers at the National 

Library of Medicine (NLM) to extract meaningful information from MEDLINE citations 

in the form of semantic predications, which are succinct declarations capturing the 

meaning of the original text.  Its three core processes (Figure 5), SemRep, 

Summarization, and Visualization, respectively extracts semantic predications capturing 

the citations’ content, identifies predications which are salient to a specific user-indicated 

information need, and displays them in a graphic representation (Figure 6).  Currently, 

Semantic MEDLINE accommodates just a small handful of information needs, due to 

limitations in the Summarization stage.  This problem renders Semantic MEDLINE to be 

an impractical tool for most users.  We began this work intending to create an algorithm 

that would enable Semantic MEDLINE’s Summarization stage to accommodate many 

information needs.  To aid the reader in conceptualizing Semantic MEDLINE and our 

work to improve Summarization, we provide the following detailed description.
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Figure 5.  Semantic MEDLINE.  The adaptive Combo algorithm described in this paper was designed to be incorporated into the 
Summarization process. 
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Figure 6.  Visualized Summarized Results.  This is an image of the Visualization process displaying summarized data addressing the 
genetic etiology of bladder cancer.
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SemRep 

SemRep, [12] an NLM rule-based symbolic natural language processing system, 

extracts meaning from text in citation title and abstract fields and expresses it in the form 

of semantic predications.  For example, if the original text reads: 

“The IGF1R is up-regulated in bladder cancer compared with non-malignant 

bladder, and might contribute to a propensity for invasion” [13].  

SemRep produces this predication: 

IGF1R gene | gngm | ASSOCIATED_WITH | Carcinoma of bladder | neop 

In this example, SemRep, which integrates MetaMap [14] concept mapping functionality, 

has determined that “IGF1R gene” and “Carcinoma of bladder” are the respective subject 

and object arguments in the original text by mapping the original sentence’s terms to 

preferred concepts in the Unified Medical Language System (UMLS) [15] 

Metathesaurus.  These arguments are connected by a predicate, in this case 

“ASSOCIATED_WITH,” indicating the relationship that binds them in the sentence.  

Additionally, SemRep identifies the semantic types within the UMLS Semantic Network 

associated with the arguments.  In this case, IGF1R is associated with the semantic type 

“Gene or Genome,” (abbreviated as gngm) and Carcinoma of bladder is associated with 

the semantic type “Neoplastic Process” (abbreviated as neop). 

 
 

Summarization 

Semantic MEDLINE summarization [16] filters the SemRep output, identifying the 

semantic predications conforming to a conceptual point-of-view, as constrained by a 

UMLS Metathesaurus seed topic indicated by the user.  For example, a user could direct 
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Semantic MEDLINE to summarize for the diagnosis (point-of-view) of coronary artery 

disease (seed topic). Summarization filters the semantic predications from the SemRep 

stage in four sequential steps:     

Relevance:   Collects semantic predications addressing the user-selected seed topic of 

the summary.  For example, if the user chose the UMLS Metathesaurus 

topic “Coronary Arteriosclerosis,” summarization would collect all 

predications that included this seed topic as a subject or object argument. 

Connectivity:  Augments Relevance semantic predications with others which share a 

nonseed topic argument.  In continuing the example, the schema would 

note that the predication “Coronary Arteriosclerosis COEXISTS_WITH 

Inflammation” includes the argument “Inflammation.”  Connectivity 

filtering would identify other predications which also include this 

argument and add them to the Relevance group.      

Novelty:   Eliminates semantic predications declaring basic knowledge which users 

likely know, such as “Coronary Arteriosclerosis ISA Vascular Disease(s),” 

by paring away such predications containing general, higher level UMLS 

Metathesaurus concepts. 

Saliency:   Limits final output to semantic predications that occur most frequently.  

For example, the predication “tomography DIAGNOSIS Coronary 

Arteriosclerosis” would be included in the final output if it occurred a 

sufficient number of times.  

When using the Semantic MEDLINE Web-based interface, users choose the desired 

point-of-view and seed topic from pull-down menus.  Available seed topic choices are 
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automatically determined by mapping UMLS Metathesaurus concepts to the SemRep 

data.  Point-of-view choices are dependent on what individually crafted software 

applications known as schemas have been incorporated into Semantic MEDLINE.  

Within each schema, permitted semantic predications are restricted to a limited number 

of subject_predicate_object patterns, with semantic types serving as predicate arguments.  

For example, the schema designed for a diagnosis point of view permits only semantic 

predications containing CAUSES, DIAGNOSIS, LOCATION_OF, COEXISTS_WITH, 

PROCESS_OF, and ISA as predicates, and limits their arguments to a group of 

specifically named semantic types.  Prior research in determining what predicates and 

semantic types best express a point-of-view enables schema designers to encode which 

specific semantic predication patterns the schema should seek.   

Manually coded schema creation requires significant time and expertise. Research to 

determine relevant predicates and semantic types, plus time to code and test each schema, 

are required.  At this time, there are only four schemas in place in the Semantic 

MEDLINE prototype Website enabling users to summarize according to four points of 

view: treatment of disease; [17] substance interaction; [18] diagnosis; [19] and 

pharmacogenomics [20].  A fifth schema summarizing data for a genetic etiology of 

disease point-of-view has been developed by one of us [TEW], [21] but has not yet been 

incorporated into the Internet version of Semantic MEDLINE.  It is difficult to quantify 

how many points-of-view would be needed in order to satisfy most information needs; 

however, point-of-view refinement is roughly comparable to the conceptual scope of a 

subheading enhancement for MeSH subject headings, and currently there are 83 

subheadings in use [22].  The five points-of-view substantially fall short when compared 
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to subheading availability for basic IR.  It would take schema developers a considerable 

amount of time to create enough conventional schemas to provide such summarization 

potential in Semantic MEDLINE. 

We hypothesize that the MEDLINE output based on a user-generated PubMed query 

that is constrained to the desired topic and point-of-view will generate SemRep output 

that likely contains a semantic profile representative of the same topic and point-of-view 

focus.  Properties of SemRep output, particularly term frequencies, may indicate the topic 

and point-of-view expressed in the original PubMed query.  Prior efforts in leveraging 

term and pattern frequencies have been effective in other summarization applications 

[23].  An algorithm leveraging SemRep output term frequencies could dynamically infer 

a user’s information needs and summarize accordingly.  This adaptive, dynamic 

algorithm would accommodate summarization for diverse points of view and eliminate 

the need for multiple schemas. 

 
 

Project Aim 

The aim of this project was to develop and evaluate an algorithm which utilizes 

statistical metrics to automatically identify predications salient to a seed topic and point-

of-view as expressed in a PubMed search query.  The work started out with the initial 

task of supporting secondary genetic database curation, but the method is general enough 

to apply to other tasks.  The use of SemRep as a semantic predication generator is a 

choice of convenience.  As long as there is a sufficiently representative collection of texts 

available for the algorithm to use in appraising data, the methods described here are 
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sufficiently generalizable to apply to semantic predications produced by other 

applications [24, 25]. 

 
 

Methods 

We developed a new algorithm that dynamically identifies salient SemRep output, 

and then evaluated its utility by comparing its performance to that of a conventional 

summarization schema, as well as two of the individual metrics which form the 

algorithm. MEDLINE data was harvested via PubMed using a query expressing a 

specific topic and point-of-view.  The citations were processed by SemRep.  We 

summarized the SemRep output by applying the new algorithm, guided by the four-filter 

architecture described earlier.  To assess the algorithm’s collective efficiency, we also 

summarized the SemRep data by separately applying the algorithm’s two core metrics. 

We also processed the SemRep output with a conventional summarization schema 

designed to filter data according to a genetic etiology of disease point-of-view.  Bladder 

cancer served as the seed topic in each case.  In order to evaluate outputs, we simulated 

the task of secondary genetic database curation.  In this task, a semantic predication such 

as “TP53 gene | ASSOCIATED_WITH | Carcinoma of bladder” is desirable, because it 

offers data salient to the work of annotating gene and disease process information in a 

database like OMIM or GHR.  The semantic predicate “Excision | TREATS | Carcinoma 

of bladder” is not desirable, because it offers no information addressing gene function in 

disease development for database curators. We extracted genetic entities (e.g., genes, 

proteins) from the outputs of all summarizing methods. Using a reference standard, we 

measured precision, recall, and F-scores for the outputs of all summarization methods. 
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Algorithm Development 

After researching several different approaches, adaptations of the Kullback-Leibler 

Divergence [26] and Riloff’’s RlogF metric [27, 28] demonstrated promising capabilities 

in identifying salient predications in SemRep output. 

 
 
Kullback-Leibler Divergence 

The Kullback-Leibler Divergence (KLD) determines the difference between a true 

distribution (P) and an assumed distribution (Q): 

 
 

D(P||Q) = Ʃ P(x)log2(P(x)/Q(x)) 
 
 

where x represents the relative frequency of each unique predicate in each distribution. In 

our case, we compare the distribution of SemRep predicates resulting from a PubMed 

query that expresses a seed topic and a point-of-view, as distribution P, with a large 

dataset of predicates expressing the seed topic from all of MEDLINE (i.e., representing 

all points of view), as distribution Q. We compare only shared predicates. The individual 

KLD calculation (before summing) assigns a value to each predicate indicating its 

prevalence in distribution P, expressing the single point-of-view.  For example, if the 

predicate ASSOCIATED_WITH had a relative frequency of 0.290 in distribution P and 

0.076 in distribution Q, its KLD value would be 0.5603.  Semantic predications in both 

distributions are limited to those containing a chosen UMLS Metathesaurus seed topic 

before KLD analysis.  A database that contains SemRep output for all MEDLINE 
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citations published between Jan 1, 1999 to August 31, 2009 served as the data source for 

distribution Q. 

 
 
RlogF 

The RlogF metric was designed to assess the relevance of extracted patterns in 

unlabeled text, and was applied to SemRep output to measure the significance of 

semantic types as bound to a single predicate.  Because the semantic type associated with 

the seed topic is so prevalent in the data, RlogF was adapted to assess the significance of 

a nonseed topic semantic type as bound to a predicate in each semantic predication:   

 
 

RlogF(patterni)  =   log2(semantic type frequencyi)*P(relevant | patterni)  
 
 

The conditional probability (P(relevant | patterni)) is the quotient of the raw frequency of 

a specific semantic type as bound to a given predicate, divided by the raw frequency of 

all semantic types as bound to the same predicate: 

 
 

P(relevant | patterni) = semantic type frequencyi 
                                                 total frequency 
 
 

The pattern’s conditional probability is weighted by the log of its frequency, represented 

here as log2(semantic type frequencyi).  For example, if the nonseed topic semantic type 

gngm occurs with the predicate ASSOCIATED_WITH 107 times, and all combined 

nonseed semantic types occur with the same predicate 171 times, the resulting RlogF 

score will be 4.22. The use of the log2() term serves to flatten the dynamic range of the 
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probability space, rewarding semantic types that are very strongly correlated with the 

relevant patterns while still rewarding moderately correlated types that occur very 

frequently. 

 
 
PredScal 

Raw RlogF scores can exceed raw KLD scores, yet they express a different 

relationship in SemRep’s output space.  KLD scores express a proportional relationship 

among predicates across the entire dataset, while RlogF values express a binding between 

a single predicate and its associated semantic types.  Therefore, we created a scaling 

function named PredScal to scale RlogF values according to the spatial proportions of 

predicates in a given dataset:   

 
 

PredScal = 1 / log2(c) 
 
 

In this metric, c represents the count of unique predicates in a dataset.  For example, if 

there were 16 unique predicates in a dataset, PredScal would equal a scaling factor of 

0.25.   

The three metrics were combined to form a new algorithm, called “Combo,” to 

evaluate SemRep data: 

 
 

Combo = (RlogF * PredScal) * KLD    
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Each semantic predication has the form SemanticTypea predicatei SemanticTypeb, so its 

Combo score is calculated by scaling the RlogF metric of the predicate/nonseed topic 

semantic type with the PredScal metric, then multiplying the result with the predicate's 

KLD score.  

 
 

Data 

MEDLINE citations returned by PubMed for the following search query were 

downloaded: 

("2003/01/01"[Publication Date] : "2008/07/31"[Publication Date]) AND (Urinary 

Bladder Neoplasms/genetics[majr] AND Urinary Bladder Neoplasms/etiology[majr])  

AND English[la] 

The search query focuses on the genetic etiology (the point-of-view) of bladder cancer 

(the topic).  In this query, we limited citation output to a five-year span merely as a 

convenience, allowing us to utilize an existing reference standard.  

 
 

Algorithm Application 

We utilized Combo as the operative mechanism in the final Saliency filter in the four-

filter architecture.  To obtain results for the Relevancy filter, we extracted all novel 

semantic predications from the SemRep data which included the UMLS Metathesaurus 

seed topic “Carcinoma of bladder” as an argument.  Then we applied the Combo 

algorithm to derive a score for each semantic predication. The semantic type associated 

with “Carcinoma of bladder” is neop; the nonseed semantic type associated with the 
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opposing subject/object argument in each semantic predication was used in performing 

the algorithm’s RlogF calculation.  

In order to explore salient predications that would result from the Connectivity filter, 

we performed a similar analysis on the novel SemRep output which did not include the 

UMLS Metathesaurus seed topic “Carcinoma of bladder,” but did share the nonseed topic 

semantic type gngm with two of the highly ranked Relevancy predications.  We also 

applied the Combo algorithm to derive a score for each semantic predication in this 

Connectivity group.  We calculated the RlogF scores using the semantic type other than 

the seed gngm in deriving a Combo score for each semantic predication.  In the case of 

these predications sharing the gngm semantic type, if their other semantic type was neop 

it was associated with UMLS Metathesaurus concepts such as “Neoplasm progression” 

and “Carcinoma, Transitional Cell.”   

To reiterate the four-filter architecture application description, we note that in both of 

the above procedures (i.e., Relevance and Connectivity filtering) we included only novel 

predications in our analyses, thus simulating Novelty filtering.  The Saliency filtering 

phase consisted of the Combo algorithm application to identify the most informative 

predications.   

To serve our task-based analysis, we extracted all genetic entities noted as arguments 

in the four top-ranked novel Relevancy semantic predication patterns, and the top-ranked 

novel Connectivity pattern. 
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Individual Metric Application 

To assess the efficiency of the combined metrics in the Combo algorithm, we also 

separately applied the KLD and RlogF metrics in summarizing the SemRep data within 

the four-filter architecture.  To simulate the Relevance stage for KLD summarization, we 

identified the four predicates with the highest KLD scores which included the seed topic 

“Carcinoma of bladder” as a subject or object argument. All novel semantic predications 

including these predicates and the seed topic were extracted as salient output.  To 

simulate the Connectivity stage, we identified the highest scoring predicate, using the 

most prominent shared semantic type argument from the Relevance stage as the shared 

argument seed in KLD computation.  All novel semantic predications containing the top 

Connectivity stage predicate and shared semantic type were also extracted as salient 

output.  We extracted all genetic entities serving as subject or object arguments in the 

salient output. 

To independently apply the RlogF metric in summarizing the SemRep output within 

the Relevance stage, we identified the four top scoring RlogF predicate / nonseed 

semantic type pairings among all semantic predications which included the seed topic 

“Carcinoma of bladder”.  Novel semantic predications which included these top four 

predicate / nonseed semantic type pairs were extracted as salient output.  To simulate the 

Connectivity summarization phase, we identified the predicate / nonseed semantic type 

pair with the highest RlogF score among all semantic predications that contained the 

most prominent shared semantic type from the Relevance phase. Novel semantic 

predications containing this predicate / nonseed semantic type pair were also set aside as 
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salient output.  We extracted all genetic entities serving as subject or object arguments in 

the salient output.   

 
 

Conventional Schema 

A conventional schema designed to summarize for the point-of-view of genetic 

etiology of disease also processed the SemRep data.  Genetic entities serving as 

arguments were also extracted from its output. 

 
 

Evaluation 

To evaluate the four groups of extracted genetic entities, we normalized their names 

to coincide with the associated gene names in Entrez Gene, and compared them to a 

reference standard of genes implicated in bladder cancer development in selected OMIM 

and GHR records, originating from primary literature published between January 1, 2003 

and July 31, 2008.  To normalize protein, peptide, and amino acid terms, we identified 

the gene which exclusively produced the entity according to Entrez Gene records, and 

replaced each term with the matching gene name.  Terms which were too general to be 

matched to a specific gene were discarded.  The reference standard had been assembled 

prior to this study in order to evaluate the conventional schema [21].  One of us (TEW) 

and another colleague reviewed OMIM and GHR records having a major focus on 

bladder cancer and the genes potentially involved in its development.  They identified 13 

genes which had proven secondary genetic database curation appeal because of their 

descriptions in the OMIM and GHR records.  Results for this study were evaluated in 

terms of recall, precision, and F-score. 
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Results 

The base search query provided 667 citations focused on genetic etiology of bladder 

cancer.  Leveraging MeSH indexing (i.e., the use of the [majr] flag in the query above) 

resulted in citations that included both the genetic and the etiologic factors of bladder 

cancer as major themes. SemRep processed the 667 citations, resulting in 5,421 semantic 

predications. 

The four summarization methods provided diverse results in terms of raw and task-

based output.  The Combo summarization method identified 201 salient semantic 

predications, while the KLD metric alone identified 630 salient semantic predications, 

and the RlogF metric alone identified 177 salient semantic predications. The conventional 

schema identified 112 salient semantic predications.  The top-ranking novel Relevance 

and Connectivity predication scores from the Combo, KLD, and RlogF analyses are listed 

in Tables 4 - 6.  There were 74 individual genes identified as implicated in bladder cancer 

development in the Combo output.  The KLD metric alone identified 77 genes, and the 

RlogF metric alone identified 69 genes implicated in bladder cancer development.  The 

conventional schema output included 10 such implicated genes.  

Recall for the four summarization methods was calculated by comparing outputs to 

the reference standard of genes noted in relevant GHR and OMIM records as noteworthy 

in bladder cancer development.  Summarization using the Combo algorithm achieved 

61% recall.  The KLD and Rlogf summarization methods also achieved 61% recall.  The 

conventional schema achieved 23% recall.  The reference standard includes genes 

implicated in bladder cancer development in specific GHR and OMIM records, but 
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Table 4.  . Combo Scores of Top-Ranking Patterns in Novel Relevance and Novel 
Connectivity Analyses; nonseed semantic types are indicated in square brackets. 
Relevancy Analysis 
Seed Topic: Carcinoma of bladder 

Combo 
Score 

[gngm] ASSOCIATED_WITH neop 0.592531 

[gngm] PREDISPOSES neop 0.205778 
[aapp] ASSOCIATED_WITH neop 0.152883 
[aapp] PREDISPOSES neop 0.039868 
Connectivity Analysis 
Shared Semantic Type: gngm Combo Score 

gngm ASSOCIATED_WITH [neop] 0.873016 
 
 
 
Table 5. Kullback-Leibler Divergence Scores of Top-Ranking Predicates in Novel 
Relevance and Novel Connectivity Analysis. 
Relevance Analysis 
Seed Topic: Carcinoma of 
bladder 

KLD Score 

ASSOCIATED_WITH 0.561861059 
PREDISPOSES 0.299181776 
AFFECTS 0.088951936 
PART_OF 0.034851914 
Connectivity Analysis 
Shared Semantic Type: gngm 

 

ASSOCIATED_WITH 0.5553145 
 
 
 
Table 6.  RlogF Scores of Top-Ranking Predicate / Nonseed Semantic Type Pairs in 
Novel Relevance and Novel Connectivity Analysis 
Relevance Analysis 
Seed Topic: Carcinoma of 
bladder 

RlogF Score 

gngm ASSOCIATED_WITH  4.218344839 
topp TREATS  2.96127605 
ISA neop 2.807354922 
gngm PREDISPOSES  2.751207824 
Connectivity Analysis 
Shared Semantic Type:  
gngm 

 

ASSOCIATED_WITH neop 7.208071323 
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likely does not represent a comprehensive list of genes associated with bladder cancer 

development.  The reference standard provides a list of genes whose value has already 

been confirmed within the task of secondary genetic database curation, because GHR and 

OMIM curators have annotated their potential roles in bladder cancer development.  The 

results of the reference standard analysis are listed in Table 7. 

Precision was evaluated by taking the previously established true positive findings 

into account with the additional genes included as arguments in the semantic predications 

identified as salient by the four summarization methods.  To assess validity (true positive 

or false positive status) for the additional genes, Genes into Reference (GeneRIF) 

notations in relevant Entrez Gene records were reviewed for disease process implication, 

thus confirming appeal for the simulated task of genetic database curation.  If the relevant 

Entrez Gene record did not contain applicable GeneRIFs, but otherwise noted bladder 

cancer association, the gene was assigned true positive status.  Summarization with the 

new Combo algorithm achieved 81% precision.  The KLD summarization method 

attained 70% precision, and the RlogF method achieved 72% precision.  The 

conventional schema attained 100% precision.  Table 8 highlights precision scores. 

We calculated F-scores for each method to assess a balance between recall and 

precision.  The Combo summarization method resulted in an F-score of 0.69.  The KLD 

and RlogF methods yielded F-scores of 0.65 and 0.66, respectively.  Summarization with 

the conventional schema produced an F-score of 0.37. 
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Table 7.  Recall Results with Reference Standard (TP=True Positive; FN=False 
Negative) 

Gene Combo 
Analysis 

KLD 
Analysis  

RlogF 
Analysis 

Conventional 
Schema 

FGFR3 TP TP TP TP 
XPD TP TP TP FN 
RAG1 FN FN FN FN 
TP53 TP TP TP TP 
MTCYB FN FN FN FN 
HRAS TP TP TP FN 
NAT2 TP TP TP TP 
RB1 TP TP TP FN 
TSC1 TP TP TP FN 
ATM FN FN FN FN 
TGFB1 FN FN FN FN 
MDM2 TP TP TP FN 
ERBB3 FN FN FN FN 
Recall 61% 61% 61% 23% 

 
 
 
Table 8.  Precision Results (TP=True Positive; FP=False Positive) 

 Combo 
Analysis 

KLD 
Analysis 

RlogF 
Analysis 

Conventional 
Schema 

TP 60 54 50 10 
FP 14 23 19 0 
Total 74 77 69 10 
Precision 81% 70% 72% 100% 
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Discussion 

In this study’s task-based context (i.e., genetic database curation), summarization 

with the new Combo algorithm outperformed the conventional schema in terms of raw 

output and recall, while maintaining reasonable precision.  Combo also produced a higher  

F-score than the separate KLD and RlogF applications, thus attaining a slightly superior 

balance of recall and precision.  All of the five patterns that Combo identified as salient 

(Table 4) yielded semantic predications containing gene arguments, with an average of 

26 separate arguments per pattern.  In the separate KLD application, the predicates 

AFFECTS and PART OF, when paired with the seed topic in the Relevance phase, 

together produced only nine gene arguments while all salient KLD patterns (Table 5) 

produced an average of 32 separate arguments.  The nine arguments produced by 

AFFECTS and PART_OF were duplicated elsewhere in the KLD analysis.   Each RlogF 

pattern (Table 6) produced an average of 22 separate gene arguments.  Semantic 

predications matching the two RlogF salient patterns Therapeutic or Preventive 

Procedure TREATS (topp TREATS) and ISA Neoplasm (ISA neop) in Relevance 

summarization did not have gene arguments, and were therefore unproductive.  The 

Combo, KLD, and RlogF applications performed identically in terms of recall; each 

method produced the same genes from the reference standard.  Combo outperformed the 

separate KLD and RlogF applications in terms of precision.  It produced more genes with 

validated curation potential.   

Because the Combo algorithm is designed to adaptively identify relevant data through 

analysis of a SemRep dataset’s individual properties, its generalizability gives it potential 

to address information needs other than genetic disease etiology.  The algorithm could be 
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encoded into a very flexible schema for integration into the Semantic MEDLINE model.  

The new dynamic schema could potentially enable Semantic MEDLINE to summarize 

for many points of view, thus transforming it into a dynamic NLP application for a 

diverse range of needs.  The Visualization component in Semantic MEDLINE would 

provide a graphical representation of the summarized results (see an example of 

visualized genetic etiology of bladder cancer findings in Figure 6). 

There are several information needs that a dynamic schema could address.  Secondary 

database curators could implement it in order to find additional genes associated with a 

disease process, as recorded in bibliographic text.  Researchers in other fields may also 

benefit from dynamic text summarization.  The following vignettes illustrate Combo’s 

generalizability by exploring how Semantic MEDLINE, empowered by this new 

algorithm, may benefit multiple information needs.  

 
 

Primary Research 

In the initial work of research, scientists usually review prior studies related to a 

planned investigation.  This can be a time-consuming step.  For example, scientists 

exploring the causes of myocardial infarction in humans must review over 17,000 major 

studies found in PubMed.  Semantic MEDLINE with the Combo algorithm could 

facilitate this type of data appraisal. For example, researchers could execute the following 

query: 

myocardial infarction/etiology[Majr] Limits: Humans 

Then, they could choose the UMLS Metathesaurus seed topic(s) addressing their needs.  

Results would then be reviewed using the graphic display, giving an immediate overview 
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of salient content.   The researchers could execute searches limited by time ranges (e.g., 

items published within a three-year period) to simplify the amount of data within the 

Visualization graph, and to note how research chronologically evolved in the field.  

Effective use of Semantic MEDLINE as a research appraisal tool could accelerate 

investigational studies and eventually quicken the bench to bedside process in clinical 

care. 

 
 

Clinical Decision Support 

Online biomedical databases such as MEDLINE can answer clinicians’ questions, but 

are time-consuming to use [29].  Semantic MEDLINE with the Combo algorithm could 

quickly summarize large amounts of citations and provide a graphic representation of 

data addressing many information needs.  Consider the following scenario: a physician 

assistant (P.A.) wants to prevent future injury to an elderly patient experiencing recurrent 

hip fractures. The P.A. submits the search “Hip Fractures[mesh] AND recurrent” and 

then chooses “Hip fractures” as the UMLS Metathesaurus seed topic.  Using the graphic 

display, the P.A. notes that dementia [30] is associated with recurrent hip fracture.  The 

P.A. realizes that addressing this comorbidity may prevent future fractures.  Sorting 

through the citations by hand would have required too much time to be practical; 

acquiring the information using Semantic MEDLINE takes less than a minute. 

 
 

Systematic Reviews 

Evidence-Based Medicine (EBM) is “the conscientious, explicit, and judicious use of 

current best evidence in making decisions about the care of individual patients” [31].  
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Research based on EBM principles provides scientifically grounded information for 

patient care.  Consider the following scenario: a working group within the Cochrane 

Collaboration wishes to update a review offering dietary advice for cardiovascular 

disease reduction [32].  They compose and execute the following PubMed query: 

diet[mesh] AND cardiovascular diseases/prevention and control[mesh] 

The search is limited to Randomized Controlled Trials, which results in 432 citations.   

The group uses Semantic MEDLINE with the Combo algorithm to assess the 

citations, choosing the most relevant seed topics.  This provides them with an immediate 

visual assessment of the randomized controlled trials, giving them a starting point in 

evaluating and selecting research to include in their systematic review. 

 
 

Limitations 

This study compared conventional schema output to the statistical algorithm’s 

performance in the context of the single task of secondary genetic database curation for 

the genetic etiology of bladder cancer.  We cannot quantify its performance in other 

applications until similar research determines it.  However, Semantic MEDLINE with 

conventional summarization has proven to be effective in identifying evidence-based 

treatment of 50 diseases [17].  Considering the overall performance improvement 

demonstrated by the new statistical algorithm over traditional summarization, it also 

holds promise in other applications. In conducting this study, we did not have access to 

curators’ individual protocol and thought processes, which are clearly essential to know 

in a real-world curation application of Combo.  We can, however, speculate on what 

information is valuable in database curation by what is noted in the biomedical literature. 
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We should also note that Summarization performance in the Semantic MEDLINE model 

is dependent on the query results, specifically, the search query’s performance, the 

quality of the citations garnered in IR, and SemRep’s accuracy in capturing the citations’ 

content.   

 
 

Conclusion 

In this paper we described the development of a statistically based algorithm known 

as Combo that automatically summarizes SemRep semantic predications for a topic and a 

point-of-view in the Semantic MEDLINE model. We evaluated summarization utilizing 

Combo by comparing it to conventional summarization, using a previously established 

reference standard, in the task-based context of secondary genetic database curation. We 

also proposed real-world scenarios showing how Semantic MEDLINE, empowered with 

the new Combo algorithm, could benefit additional information needs. Combo is not 

limited to predications generated by SemRep; any predication generator that produces 

subject_predicate_object triplets could benefit from Combo. 
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Abstract 

Objective:  This paper examines the use of Semantic MEDLINE, a natural language 

processing application enhanced with a statistical algorithm known as Combo, as a 

potential decision support tool for clinicians.  Semantic MEDLINE summarizes text in 

PubMed citations, transforming it into compact declarations that are filtered according to 

a user’s information need that can be displayed in a graphic interface.  Integration of the 

Combo algorithm enables Semantic MEDLINE to delivery information salient to many 

diverse needs.  Methods:  The authors selected three disease topics, and crafted PubMed 

search queries to retrieve citations addressing the prevention of these diseases; they then 

processed the citations with Semantic MEDLINE, with the Combo algorithm 

enhancement.  To evaluate the results, they constructed a reference standard for each 

disease topic consisting of preventive interventions recommended by a commercial 

decision support tool.  Results:  Semantic MEDLINE with Combo produced an average 

recall of 79% in primary and secondary analyses, an average precision of 45%, and a 

final average f-score of 0.57.  Conclusion:  This new approach to point-of-care 

information delivery holds promise as a decision support tool for clinicians.  Health 

sciences libraries could implement such technologies to deliver tailored information to 

their users. 

 
 

Introduction 

Clinicians often encounter information needs in their work of caring for patients.  In 

their 2005 study, Ely and his colleagues discovered that physicians developed an average 

of 5.5 questions for each half-day observation, yet could not find answers to 41% of the 
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questions for which they pursued answers [1].  Ely cites time constraints as one of the 

barriers preventing clinicians from finding answers.  In another study, Chambliss and 

Conley also found that answer discovery is excessively time consuming [2].  

Chambliss and Conley determined that MEDLINE data could fulfill or nearly fulfill 

71% of clinicians’ answerable questions; however, PubMed is an impractical tool for 

point-of-care information delivery.  It generally returns excessive, irrelevant data, even 

when implementing diverse search strategies [3].  Clinicians can spend an average of 30 

minutes answering a question using MEDLINE data [4].  This is by and large due to the 

process of literature appraisal, which is naturally lengthened by excessive retrieval [5].   

This information discovery process is not practical for a busy clinical setting [4]. 

 
 

Semantic MEDLINE 

Natural language processing (NLP) applications such as Semantic MEDLINE can 

filter PubMed text for a user’s specific need and summarize it to facilitate literature 

appraisal [6].  Semantic MEDLINE, a resource developed by the National Library of 

Medicine (NLM), if enhanced by an adaptive algorithm known as Combo [7], can 

simplify MEDLINE data for many information needs.  The user activates the Semantic 

MEDLINE application by submitting a search query expressing his or her information 

need to PubMed.  Semantic MEDLINE then uses the individual processes of SemRep, 

Summarization, and Visualization to quickly transform the citations’ title and abstract 

text into a compact form and identify data which is salient to a specific information need, 

which then can be displayed in a visual graph.  The following text describes these 

individual processes.  Currently, NLM hosts the only Semantic MEDLINE application.  
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This study evaluated an enhanced Semantic MEDLINE system that accommodates 

additional information needs; this paper also briefly describes how an organization could 

develop it to serve its own users. 

 
 

SemRep 

SemRep [8], a rule-based NLP application within Semantic MEDLINE, interprets the 

meaning of PubMed title and abstract text, and rephrases it into compact declarations 

called semantic predications.  For example, consider the following citation title text: 

“Taurolidine is effective in the treatment of central venous catheter-related 

bloodstream infections in cancer patients [9].” 

SemRep rephrases the text with this semantic predication: 

Taurolidine_TREATS_infection  

SemRep identifies “taurolidine” and “infections” as the respective subject and object of 

the text, and maps them to the UMLS [10] Metathesaurus preferred concepts Taurolidine 

and infection.  It also recognizes “treatment” as the concept that binds the subject and 

object terms, mapping it to the predicate TREATS, as found in the UMLS Semantic 

Network.  SemRep also identifies the logical UMLS semantic group classifications 

associated with the arguments, which in this case are “Pharmacologic Substance” 

(associated with Taurolidine) and “Disease or Syndrome” (associated with infection). 

 
 

Summarization 

Semantic MEDLINE’s Summarization phase identifies SemRep semantic 

predications that are relevant to a user’s indicated information need.  This process begins 
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by prompting the user to select a topic from a list of UMLS Metathesaurus preferred 

concepts that appear in the SemRep data.  A summarization software application within 

Semantic MEDLINE processes the SemRep output according to the following sequential 

phases:  

Relevance:  Gathers semantic predications containing the user-selected seed topic.  

For example, if the chosen topic were Septicemia, this filter would collect the 

semantic predication Blood culture_DIAGNOSES_Septicemia. 

Connectivity:  Augments Relevance predications with those which share a nonseed 

argument’s semantic type.  For example, in the above predication Blood 

culture_DIAGNOSES_Septicemia, the semantic type of the nonseed argument 

Blood culture is “Laboratory Procedure”.  This filter would augment the Relevance 

semantic predications with others such as Measurement of serum lipid level 

_DIAGNOSES_Sepsis of the newborn, because “Laboratory Procedure” is also the 

semantic type of the subject argument Measurement of serum lipid level. 

Novelty:  Eliminates vague predications, such as pharmaceutical 

preparation_TREATS_patients, that present information that users already likely 

know, and are of limited use. 

Saliency:  Limits final output to predications that occur with adequate frequency.  

For example, if Blood culture_DIAGNOSES_Septicemia occurred enough times, 

all occurrences would be included in the final output. 

To operationalize the final Saliency phase, the summarization software in this study used 

a statistical algorithm known as Combo.  Combo [7] analyzes predicate frequencies using 

an adaptation of the Kullback-Leibler Divergence, [11] and measures the strength of 
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predicate/semantic type pairings with Riloff’s RlogF metric [12] and PredScal, a scaling 

metric developed for the Combo algorithm.  Prior to this approach, summarization was 

dependent on conventional, static applications called schemas limited to specified 

subject_predicate_object patterns.  A different schema was required to summarize for 

each subheading-type refinement, limiting use to five options:  treatment of disease [13], 

substance interaction [14], diagnosis [15], pharmacogenomics [16], and genetic etiology 

of disease [17].  Because of its advanced computational methodology, Combo adapts to 

the properties of each set of SemRep output in determining what is relevant to the user’s 

information need, thus enabling summarization for many subheading concepts. 

 
 

Visualization 

The semantic predications produced by the Summarization phase can be visually 

displayed.  Figure 7 presents an interface used by NLM to display Summarization output.  

Due to the nature of the data’s compact structure, users can quickly focus on desired data.  

For example, in Figure 7 the Summarization seed topic is Septicemia, and the user has 

limited displayed output to items containing the predicate DIAGNOSES.  In Figure 8 the 

user has clicked on the arc connecting Septicemia and blood culture, and is presented 

with the citations addressing blood culture’s use as a diagnostic tool for septicemia.  

 
 

Objective 

The objective of this study was to evaluate the effectiveness of Semantic MEDLINE, 

with the statistical Combo algorithm enhancement, in identifying decision support 
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Figure 7.  Summarization output 
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Figure 8.  Summarization output with citation data 
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information for disease prevention.  The authors wanted to explore its potential use as a 

point-of-care information delivery application.  They wanted to determine if this 

approach could retrieve recommended preventive interventions found in a commercial, 

manually-annotated product.  Prior efforts in applying Semantic MEDLINE, with the 

Combo algorithm, to identify information relevant to genetic disease etiology were 

successful, within a simulated database curation task [7].  The authors wanted to evaluate 

the system within a simulated clinical decision support task.  

The authors wanted to evaluate this system’s performance in retrieving prevention 

information, because the concept is fluid, and especially difficult to capture with such an 

NLP approach.  For example, preventing congestive heart failure includes treating 

hypertension in vulnerable patients.  To prevent lung cancer, clinicians counsel patients 

on smoking cessation.  Therefore, the authors hypothesized that, in addition to finding 

relevant output in the form of “Intervention X _PREVENTS_Disease Y”, they would 

also find relevant semantic predications containing other predicates, such as TREATS.  

Currently, there is no conventional static schema in NLM’s Semantic MEDLINE 

designed to accommodate a disease prevention subheading refinement.  The results of 

this study may offer commentary on the potential enhancement offered by Combo-driven 

Summarization in expanding Semantic MEDLINE’s functionality.  

This study also served as a pilot for a larger project to examine Semantic 

MEDLINE’s efficiency, when enhanced with the Combo algorithm, in aiding decision 

support for disease prevention and drug treatment.  
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Methods 

Disease Topics and Data 

The authors chose the three topic diseases acute pancreatitis, coronary artery 

disease, and malaria.  These three diseases have various etiologies, and call for a variety 

of types of preventive interventions.  These differences in disease characteristics 

motivated their selection.  The authors executed the following PubMed searches and 

downloaded the resulting citations: 

Acute Pancreatitis Search Session: 

#11 Search #8 OR #9  
#9 Search (pancreatitis/prevention and control[mesh] NOT 
Pancreatitis, Chronic[mesh]) AND "systematic review" Limits: 
Review, Publication Date to 2010/08/31  
 #8 Search pancreatitis/prevention and control[mesh] NOT 
Pancreatitis, Chronic[mesh] Limits: Clinical Trial, Meta-Analysis, 
Randomized Controlled Trial, Publication Date to 2010/08/31 
 

Coronary Artery Disease Search Session: 

#13 Search #10 OR #11   
#11 Search coronary artery disease/prevention and control[mesh] 
AND "systematic review" Limits: Review, Publication Date to 
2010/10/31  
#10 Search coronary artery disease/prevention and control[mesh] 
Limits: Clinical Trial, Meta-Analysis, Randomized Controlled Trial, 
Publication Date to 2010/10/31  
 

Malaria Search Session: 

#15 Search #12 OR #13  
#13 Search Malaria/prevention and control[mesh] AND "systematic 
review" Limits: Review, Publication Date to 2010/10/31   
#12 Search Malaria/prevention and control[mesh] Limits: Clinical 
Trial, Meta-Analysis, Randomized Controlled Trial, Publication Date 
to 2010/10/31  
 

The search sessions were conducted February 7th, 2011.  To garner evidence-based 

data, retrieval was focused on clinical trials, meta-analyses, randomized controlled trials, 
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and systematic reviews.  Retrieval was also limited to match the time period represented 

by the study’s evaluative reference standards, as described below.  There were two 

rationales behind the search queries’ structure.  In evaluating Combo-enhanced Semantic 

MEDLINE for other related projects (addressing genetic disease etiology and drug 

treatment) information retrieval for text summarization was based on a single disease 

topic, paired with a subheading-type concept, while drawing on all citations within the 

database (instead of selected intricate subsets).  This provided some standardization 

across all projects.  Researchers accomplished this by combining MeSH terms with 

subheadings, and keyword phrases (e.g., “systematic reviews”) and publication types 

when needed.  Additionally, this specific study simulated a task in which a clinician 

would create the search query.  Realistically, clinicians’ searching skills vary, and one 

could expect to see anything from a very general keyword search to a more sophisticated 

search profiting from many of the PubMed value-added search tools.  The search queries 

employed represented a type of middle ground in this spectrum.  

 
 

Semantic MEDLINE Processing 

The citations were processed with SemRep; SemRep output was processed with the 

Combo algorithm-enhanced Summarization application.  The authors selected the 

following UMLS Metathesaurus preferred concepts as seed topics for the Summarization 

phase: 

• Pancreatitis (for the acute pancreatitis citations) 

• Coronary Arteriosclerosis and Coronary heart disease (for the coronary 

artery disease citations) 
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• Malaria (for the malaria citations) 

 
 

Evaluation 

To evaluate the results, the authors compiled a reference standard for each disease, 

consisting of preventive interventions recommended by DynaMed, a commercial decision 

support product.  The authors chose DynaMed because it was one of three top-ranked 

products in a recent study [18], presented information in a straight-forward bullet 

structure, and was readily available.  Preventive interventions prefaced with text such as 

“controversial or not well established with evidence” were not included in the study’s 

reference standards.  As previously mentioned, the authors noted the most recently 

published primary articles DynaMed used in identifying recommendations and limited 

citation retrieval in order to avoid including data published after DynaMed’s source 

references.  This approach to data acquisition was used in a similar study conducted by 

other investigators [13].  One of the authors (TEW) captured DynaMed data addressing 

prevention of the three disease topics February 6th, 2011. 

The primary analysis examined Semantic MEDLINE output in the general form 

“Intervention X_PREVENTS_Disease Y” for Summarized output for each of the three 

disease topics groups, along with the associated citation from which each semantic 

predication originated.  If a citation’s text confirmed the retrieval of a reference standard 

intervention, it was counted as a true positive.  For example, if the citation included 

wording such as “[the intervention] is recommended for prevention of [the disease]”, the 

intervention received a true positive status.  Knowing the nature of UMLS metathesaurus 

preferred concepts, the authors determined that if a general term was associated with 
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citation text containing a reference standard intervention’s precise wording, the reference 

standard would receive a true positive status (this is also demonstrated in the RESULTS 

section).  The authors limited the primary analysis to examining output in the form of 

“Intervention X_PREVENTS_Disease Y” because if a clinician were to use Semantic 

MEDLINE as a decision support tool for preventive care, he or she would likely begin by 

reviewing data with the PREVENTS predicate.  Findings were measured according to 

recall, precision, and F-score.  Precision scores were calculated in the primary analysis by 

grouping the interventions in the summarized data by name, and assessing what 

percentage of these groups led to related citation text containing a reference standard 

intervention. 

The secondary analysis examined semantic predications which included predicates 

other than PREVENTS.  The authors used the same strategy of using the associated 

citation data to confirm a given reference standard intervention’s true positive status.  

Since the authors’ primary interest was whether this additional data supplied additional 

reference standard interventions, these findings were factored into the final recall 

calculation. 

 
 

Results 

Data Acquisition and Processing 

One of the authors (TEW) performed the information retrieval phase, SemRep 

processing, and Summarization processing using the Combo algorithm-enhanced 

software.  The three PubMed search sessions retrieved a total of 3276 citations; the acute 

pancreatitis session produced 156 citations, while the coronary artery disease and malaria 
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sessions respectively yielded 2440 and 680 citations.  SemRep produced 999 semantic 

predications using the acute pancreatitis citations, 14781 semantic predications from the 

coronary artery disease citations, and 3374 semantic predications from the 680 malaria 

citations.  Using the associated SemRep disease topic outputs, Summarization identified 

1397 unique semantic predications salient to the “Coronary Arteriosclerosis” and 

“Coronary heart disease” seed topics, 178 semantic predications salient to the 

“Pancreatitis” seed topic, and 389 semantic predications salient to the “Malaria” seed 

topic.   

 
 

Evaluation - Primary Analysis 

Semantic MEDLINE with the Combo algorithm enhancement produced an average 

recall of 70% in the initial examination of output in the form of “Intervention 

X_PREVENTS_Disease Y”.  The average precision was 45%, resulting in an F-score of 

0.54.  The primary analysis recall results for each disease topic are listed in Tables 9 - 11.  

Precision results are indicated in Table 12.  

 
 

Evaluation - Secondary Analysis 

Examination of output semantic predications containing predicates other than 

PREVENTS identified additional reference standard interventions, and increased average 

recall to 79%, with an adjusted F-score of 0.57.   Reference standard results for each 

disease topic group are listed in Tables 9 - 11.  Because all reference standard 

interventions for acute pancreatitis appeared in the primary analysis, no secondary 

analysis was necessary for this disease topic. 
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Table 9.  DynaMed Preventive Intervention Reference Standard Recall Results, Acute 
Pancreatitis (TP = True Positive; FN = False Negative; N/A = Not Applicable, Found in 
Primary Analysis) 
Intervention Primary 

Analysis 
Secondary 
Analysis 

guidewire cannulation TP N/A 
nonsteroidal anti-inflammatory drugs 
(NSAIDs)  

TP N/A 

octreotide TP N/A 
prophylactic nitroglycerin   TP N/A 
interleukin 10 (IL-10) TP N/A 
 Recall: 100%  
 
 
 
Table 10.  DynaMed Preventive Intervention Reference Standard Recall Results, 
Coronary Artery Disease (TP = True Positive; FN = False Negative; N/A = Not 
Applicable, Found in Primary Analysis) 
Intervention Primary 

Analysis 
Secondary 
Analysis 

proper diet  TP N/A 
aerobic exercise  FN FN 
smoking cessation FN TP 
modifiable lifestyles TP N/A 
weight loss  TP N/A 
treatment of diabetes FN TP 
treatment of Hypertension TP N/A 
treatment of Hyperlipidemia TP N/A 
prophylactic low-dose aspirin  TP N/A 
use of ACE inhibitors  TP N/A 
complete avoidance of tobacco smoke  FN FN 
angiotensin receptor blockers TP N/A 
aldosterone blockade   FN FN 
beta blockers TP N/A 
influenza vaccine FN FN 
 Recall:  60% Recall:  

73% 
 
 
 
  



107 
 

 

99 

Table 11.  DynaMed Preventive Intervention Reference Standard Recall Results, Malaria 
(TP = True Positive; FN = False Negative; N/A = Not Applicable, Found in Primary 
Analysis) 
Intervention Primary 

Analysis 
Secondary 
Analysis 

long-sleeves FN FN 
long pants FN FN 
window screens FN FN 
mosquito nets  TP N/A 
insecticed-treated clothes FN FN 
insecticed-treated nets TP N/A 
insect repellent TP N/A 
indoor spraying FN FN 
insecticide treatment of livestock  FN FN 
atovaquone/proguanil TP N/A 
trimethoprim-sulfamethoxazole   FN FN 
“antimalarial agents”  TP N/A 
artesunate plus amodiaquine or sulfadoxine-
pyrimethamine 

FN TP 

mefloquine TP N/A 
sulfadoxine-pyrimethamine  TP N/A 
amodiaquine TP N/A 
pyrimethamine plus dapsone  FN TP 
routine malaria chemoprophylaxis (i.e. 
during pregnancy) 

TP N/A 

chloroquine TP N/A 
recombinant vaccine based on fusion of 
circumsporozoite protein and HBsAg  

FN FN 

RTS,S/AS02 (vaccine) FN FN 
RTS,S/ASO2A (vaccine) TP N/A 
RTS,S/AS01E (vaccine) FN TP 
RTS,S/AS02D (vaccine) FN TP 
MSP/RESA (vaccine) TP N/A 
vitamin A supplementation TP N/A 

 
Recall: 50% Recall: 

65% 
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Table 12.  Precision Results by Disease Topic, from Primary Analysis of Data Using 
DynaMed Reference Standards 
Disease Topic Precision 
Acute Pancreatitis 29% 
Coronary Artery Disease 45% 
Malaria 61% 
Average Precision 45% 
 
 
 

Discussion 

Findings of Two Analyses 

Interesting patterns emerged from both analyses.  In the primary analysis (examining 

output in the form “Intervention X_PREVENTS_disease Y”), of the 27 true positive 

findings for all three disease topics, 18 were pharmaceutical-type substances or 

supplements within the associated reference standards.  The additional nine true positives 

consisted of other types of interventions, ranging from behavior issues (e.g., diet) to 

therapeutic technique (e.g., guidewire cannulation).  In this study, Semantic MEDLINE 

with the Combo algorithm enhancement was more efficient at expressing preventive drug 

and supplement interventions with the PREVENTS predicate than for other kinds of 

interventions.   

The secondary analysis confirmed the hypothesis that some reference standard 

interventions would be expressed with predicates other than PREVENTS.  The secondary 

analysis found two of the six interventions not found in the primary analysis for coronary 

artery disease, and four of the 13 interventions not located for malaria.  The relevant 

semantic predications located in the secondary analysis included: 

• Coronary Artery Disease 

Diabetic Care_USES_Glucose Control  



109 
 

 

99 

Secondary prevention_TREATS_Coronary arteriosclerosis (“Secondary 

prevention” referencing smoking cessation) 

• Malaria 

Prophylactic treatment_USES_Amodiaquine 

Prophylactic treatment_USES_artesunate 

Prescription of prophylactic anti-malarial_USES_ Pyrimethamine 

Malaria Vaccines_TREATS_Child 

Malaria Vaccines_TREATS_Infant 

As noted earlier, all reference standard interventions for acute pancreatitis were found in 

the primary analysis. 

As predicted, in some cases in both analyses raw Semantic MEDLINE output did not 

precisely identify a reference standard item, but the associated citation text named the 

specific intervention.  For example, the semantic predication 

“Cannulation_PREVENTS_Pancreatitis”, does not specifically name guidewire 

cannulation for acute pancreatitis; however, the associated citation text “GW [guidewire] 

cannulation is associated with a higher cannulation success rate and less PEP [post-ERCP 

pancreatitis] after pancreatic duct entry [19]” identifies the specific cannulation technique 

corresponding to the reference standard intervention.  Nevertheless, in order for a 

reference standard intervention to receive true positive status, the specific intervention 

had to be named in the citation text.  For example, there were multiple instances where 

“exercise” was mentioned as a preventive intervention in citations associated with the 

system output for coronary artery disease.  Because the precise term “aerobic exercise“ 

did not occur, the reference standard intervention aerobic exercise received a false 
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negative status for recall assessment.  To fully utilize Semantic MEDLINE with the 

Combo enhancement as a decision support tool, a clinician should consult the system’s 

output of semantic predications, plus their associated citation text.  An ideal interface 

would likely combine both, allowing the user to simultaneously review interesting 

semantic predications and their associated citations. 

 
 

Precision and Variety of Output 

The precision scores reflect the percentage of reference standard interventions 

included in output.  However, a clinician may find the additional preventive interventions 

mentioned in Semantic MEDLINE’s output useful.  For example, the reference standard 

for acute pancreatitis prevention included five interventions (see Table 9).  Semantic 

MEDLINE additionally identified antibiotic prophylaxis [20] and ulinastatin [21] as 

potential preventive interventions, based on the findings of randomized controlled trials.  

The associated DynaMed text does not discuss these potential interventions.  However, 

other interventions in Semantic MEDLINE’s output may not suit a clinical need.  For 

example, Semantic MEDLINE also identified nafamostat mesilate [22] as a potential 

preventive intervention; the associated citation text notes that this intervention is 

“partially effective” and highlights independent risk factors associated with the disease.  

It is again recommended that a Semantic MEDLINE user consult the citation text (and 

the original article, if desired) associated with a semantic predication, to assess the 

relevance and strength-of-evidence pertaining to the original information need.  Ideally, 

an interface (such as the one used by NLM) would present citation text with its associated 
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semantic predication, for simultaneous viewing, along with immediate access to the 

original PubMed record, where links to fulltext may be present. 

 
 

Conclusion 

Based on these findings, Semantic MEDLINE with the Combo algorithm 

enhancement may potentially serve as a decision support resource.  It is a flexible 

approach to point-of-care information delivery that could be integrated into multiple 

environments.  The authors developed the summarization software with Perl, an 

interpreted programming language that is compatible with multiple platforms.  This Perl 

application provided adequate computing speeds for this project; however, to increase 

speed, the software could also be coded with a compiled language like Java.  A locally-

accessible database of SemRep output for several years’ worth of MEDLINE data is also 

needed (for a more detailed description of how the system works, please see [7]). 

Libraries could partner with the organizations they serve to customize Combo-

enhanced Semantic MEDLINE for their specific user groups.  For example, a library 

serving a healthcare organization could conduct user studies for various clientele groups 

to determine their information needs and preferences.  The outcomes of these user studies 

would enable a Web designer to tailor a graphic interface for each user group.  The 

designer could create an interface for consumers and patients, using the simplified, 

summarized output as a means to assist users in navigating within and understanding 

PubMed citation text.  Another interface could assist clinicians in executing searches and 

accessing desired data on a single screen, organized according to their collective 

preferences and workflow-driven needs.  Because Semantic MEDLINE, with the Combo 
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algorithm enhancement, is a dynamic application, users would be free to build and 

execute their own searches.  Resources would be needed (e.g., a trained Web designer, 

hardware, software) to create a system customized for an institution’s needs.  A parent 

organization such as a hospital or health care system should contribute these resources if 

the sponsoring library cannot.  

Combo-enhanced Semantic MEDLINE could either complement existing decision 

support products or stand alone.  Because it automatically produces information relevant 

to multiple topics and subheading refinements, this application can potentially address the 

information needs of many individual users.  A technician could implement the 

Summarization software, SemRep semantic predication database, and desired interface to 

freely serve clients’ information needs.  No subscription or licensing fees would be 

required.  Each decision support application contributes point-of-care information in its 

distinctive way.  Each product also has requirements enabling its practical use.  

Commercial products often require payment of very expensive fees, and possibly some 

onsite technical support.  At present, Combo-enhanced Semantic MEDLINE would 

require substantial onsite technical support in order to establish the customized, user-

centered application described in this paper.  Organizations should consider their own 

resources and needs in choosing what value-added products they provide to their 

clientele.   

This is an example of a technology created in part by librarians, and demonstrates a 

new, dynamic approach to information delivery.  It surpasses the functionality of simple 

information retrieval, freeing users from the difficult, unrealistic task of reviewing many 

citations, providing instead compact summarizations of text that have been filtered for 
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individual information needs.  This approach to information delivery could reinforce the 

importance of libraries as vital components in the organizations they serve. 

 
 

Limitations 

There are limitations in this study that warrant mention.  It examined the performance 

of Combo algorithm-enhanced Semantic MEDLINE in terms of three disease topics, for a 

single subheading-type refinement.  However, in an earlier study [7] the application 

demonstrated improved performance for a different disease topic (bladder cancer) and 

subheading-type refinement (genetic disease etiology) over Semantic MEDLINE with 

conventional, static schema summarization.  Additional research is underway to examine 

Combo-enhanced Semantic MEDLINE’s performance while processing data for 

additional disease topics, and an additional subheading refinement.  The authors 

evaluated output using recommendations found in a single product (DynaMed).  Similar 

comparisons using other commercial decision support products may shed additional light 

on the application’s performance.   
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Abstract 

Introduction:  PubMed data potentially can provide decision support information, 

but PubMed is an impractical tool for that purpose.  Natural language processing 

applications that summarize PubMed citations hold promise for unlocking that potential.  

Objective:  The objective of this study was to evaluate the efficiency of a text 

summarization application called Semantic MEDLINE, enhanced with a novel dynamic 

summarization method, in identifying decision support data.  Methods:  We downloaded 

PubMed citations addressing the prevention and drug treatment of four disease topics.  

We then processed the citations with Semantic MEDLINE, enhanced with the dynamic 

summarization method.  We also processed the citations with a conventional 

summarization method, as well as with a baseline procedure.  We evaluated the results 

using clinician-vetted reference standards built from recommendations in a commercial 

decision support product, DynaMed.  Results:  For the drug treatment topic, Semantic 

MEDLINE enhanced with dynamic summarization achieved average recall and precision 

scores of .848 and .377, while conventional summarization produced .583 average recall 

and .712 average precision, and the baseline method yielded average recall and precision 

values of .252 and .277.  In the prevention topic, Semantic MEDLINE enhanced with 

dynamic summarization achieved average recall and precision scores of .655 and .329.  

The baseline technique resulted in recall and precision scores of .269 and .247 (no 

conventional Semantic MEDLINE method accommodating summarization for prevention 

exists).  Conclusion:  Semantic MEDLINE with dynamic summarization outperformed 

conventional summarization in terms of recall, and outperformed the baseline method in 
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both recall and precision.  This new approach to text summarization demonstrates 

potential in identifying decision support data for multiple needs. 

 
 

Introduction 

Clinicians often encounter information needs while caring for patients.  Several 

researchers have studied this issue [1-6].  In their 2005 study, Ely and his colleagues 

discovered that physicians developed an average of 5.5 questions for each half-day 

observation, yet could not find answers to 41% of the questions for which they pursued 

answers [7].  Ely cites time constraints as one of the barriers preventing clinicians from 

finding answers.  Chambliss and Conley also found that answer discovery is excessively 

time consuming; yet they also determined that MEDLINE data could provide answers to 

71% of clinicians’ questions in their separate study [8].  PubMed, the National Library of 

Medicine’s free source for MEDLINE data, is not a practical tool for point-of-care 

information delivery.  It generally returns excessive, often irrelevant data, even when 

implementing diverse search strategies [9].  Clinicians can spend an average of 30 

minutes answering a question using raw MEDLINE data [10].  This is by and large due to 

the process of literature appraisal, which is naturally lengthened by excessive retrieval 

[11].  Thus this information discovery process is not practical for a busy clinical setting 

[10].  Applications that use natural language processing and automatic summarization of 

PubMed and present it in a compact form potentially can provide decision support data in 

a practical manner.  
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Objective 

The objective of this study is to evaluate the performance of a new automatic 

summarization algorithm called Combo in identifying decision support data. To 

operationalize this pursuit, we incorporated the algorithm into Semantic MEDLINE, an 

advanced biomedical management application.  We sought data on drug treatment and 

preventive interventions for four disease topics, and evaluated the results by comparing 

output to a clinician-vetted reference standard based on recommendations from a 

commercial decision support product, DynaMed.  The Combo system was also compared 

to a baseline as well as a schema summarization method within the conventional 

Semantic MEDLINE methodology.  

 
 

Background 

Related Research 

Natural language processing applications that summarize bibliographic text such as 

PubMed citations try to facilitate literature appraisal by providing succinct, relevant 

information suitable for point-of-care decision support.  The objective of automatic text 

summarization is “to take an information source, extract content from it, and present the 

most important content to the user in a condensed form and in a manner sensitive to the 

user’s application’s need” [12].  Automatic text summarization can be applied to multiple 

documents or information sources,  [13] such as bibliographic citations retrieved from 

PubMed.  Researchers have implemented various approaches to summarize PubMed and 

related data.  Using an application called PERSIVAL, McKeown et. al retrieved, ranked, 

and summarized documents according to a patient’s profile information [14].  To operate 
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AskHERMES, Cao and his colleagues used a machine learning approach to classify 

questions, and they utilized query keywords in a clustering technique for presenting 

output [15].  Yang and his associates clustered gene information using free text, MeSH, 

and Gene Ontology features, then presented summarizes based on sentence rankings [16].  

Applications such as Semantic MEDLINE [17] that utilize semantic predications have the 

advantage of presenting a compact expression of the original information that can be 

filtered according to a user’s specific information need.  Semantic predications are 

succinct subject_verb_object declarations that simplify the meaning of the PubMed text 

from which they are drawn [18].  Due to their structure, they are well suited to 

computational analysis [19].   

Semantic MEDLINE is presented to users through a Web portal that combines 

information retrieval, semantic processing, automatic summarization, and visualization 

into a single application. A user activates Semantic MEDLINE by submitting a PubMed-

style keyword or MeSH query.  Semantic MEDLINE’s three individual components -- 

semantic processing (SemRep), Summarization, and Visualization -- transform 

MEDLINE text into concise declarations, filters these according to a user’s needs, and 

present the results in an informative graphic display (Figure 9). 

 
 

SemRep 

SemRep [20] is a rule-based NLP application that interprets the meaning of abstract 

and title text in citations and transforms it into compact, subject_verb_object declarations
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Figure 9.  Semantic MEDLINE Visualized output 
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known as semantic predications.  It draws upon resources within the Unified Medical 

Language System (UMLS) [21] to accomplish this.   For example, if the original text is:  

“These results suggest the possibility of molecular-targeted therapy using cetuximab 

for endometrial cancer” [22] 

SemRep produces:  

cetuximab|phsu|TREATS|Endometrial Carcinoma|neop 

In this example, SemRep identifies the subject and object of the original text as 

cetuximab and endometrial cancer, respectively. Using MetaMap [23] technology, it 

maps these terms to the corresponding UMLS Metathesaurus preferred concept terms 

cetuximab and Endometrial Carcinoma, as indicated in the resulting semantic 

predication. Utilizing the UMLS Semantic Network, SemRep also identifies the most 

likely logical semantic types associated with the subject and object, which in this case are 

pharmacological substance (abbreviated as phsu) and neoplastic process (abbreviated as 

neop). SemRep also utilizes the UMLS Semantic Network to identify the relation, or 

predicate, that binds the subject and object. In this case, it is TREATS. 

 
 

Summarization 

Summarization  in Semantic MEDLINE  [24]  filters SemRep output for a “point-of-

view” and a seed topic concept selected by the user. Semantic MEDLINE currently offers 

four points-of-view: treatment of disease; [25] substance interaction; [26] diagnosis; [27] 

and pharmacogenomics [28]  (an application for a genetic etiology of disease point-of-

view has been developed by one of us [TEW], [29] but has not yet been incorporated into 

the Semantic MEDLINE Web portal). For example, if the seed topic were Endometrial 
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carcinoma and the point-of-view was treatment, Summarization would identify semantic 

predications relevant to these paired concepts.  Point-of-view concepts are similar to 

subheading refinements that can be combined with logical MeSH headings.  For example, 

“Carcinoma, Endometrioid/therapy[MeSH]” could serve as a PubMed query seeking 

citations addressing treatment options for endometrial carcinoma.  Summarization 

accomplishes topic and point-of-view refinements of SemRep output by subjecting it to a 

four-tiered sequential filter: 

Relevance:  Gathers semantic predications containing the user-selected seed 

topic.  For example, if the seed topic were Endometrial carcinoma, this filter 

would collect the semantic predication cetuximab-TREATS-Endometrial 

carcinoma, among others. 

Connectivity:  Augments Relevance predications with those which share a 

nonseed argument.  For example, in the above predication cetuximab-TREATS-

Endometrial carcinoma, this filter would augment the Relevance predications with 

others containing cetuximab. 

Novelty: Eliminates vague predications, such as pharmaceutical preparation-

TREATS-patients, that present information that users already likely know, and are 

of limited use. 

Saliency: Limits final output to predications that occur with adequate frequency.  

For example, if cetuximab-TREATS-Endometrial carcinoma occurred enough 

times, all occurrences would be included in the final output. 

Expanding the points-of-view coverage of the Summarization filter can be done in 

one of two ways.  The conventional approach [28] requires creating separate applications 
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known as schemas for each new point-of-view emphasis. This requires hard-coding 

specific subject_predicate_object patterns into the application, which limits output to 

predications matching the specific patterns for the new point-of-view.  Prior to coding, 

designers must determine which patterns best capture semantic predications relevant to 

the given point-of-view.  Conventional schema output may also be refined using degree 

centrality measurements [30].  The novel approach to summarization that we explore here 

is to produce saliency measurements on the fly, using a dynamic statistical algorithm 

known as Combo.  [19]  Combo adapts to the properties of each individual SemRep 

dataset by weighing term frequencies with three combined metrics.  This flexibility 

enables summarization for multiple points-of-view, eliminates hard-coding schemas, and 

uses a single software application. 

 
 

The Combo Algorithm to Support Summarization 

The Combo algorithm combines three individual metrics to identify salient semantic 

predications. 

 
 

Kullback-Leibler Divergence 

The Kullback-Leibler divergence (KLD) [31], as applied here, assesses the values of 

predicates in SemRep records originating from a search query that expresses a subject 

paired with a point of view, (distribution P) to SemRep data with only the subject focus 

(distribution Q): 
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D(P||Q) = Σ P(x)log2(P(x)/Q(x)) 
 
 

Both distributions P and Q consist of relative frequencies for their respective predicates. 

Each predicate shared by each distribution receives a KLD value (before summing) 

indicating its value in conveying the point-of-view expressed in distribution P’s search 

query.  A database of PubMed citations from the last 10 years processed with SemRep 

provides the distribution Q data. 

 
 
RlogF 

Riloff developed the RlogF metric [32] to assess the relevance of extracted patterns 

consisting of a syntactic constituent (i.e., a noun or verb phrase) and their arguments (i.e., 

a direct or indirect object): 

 
 

RlogF(patterni)  =   log2(semantic type frequencyi)*P(relevant | patterni) 
 
 

We adapted RlogF to assess the value of a semantic type as paired with a predicate.  The 

log of a semantic type’s absolute frequency (semantic type frequencyi) is applied to the 

quotient of dividing that same frequency with the absolute frequency of all semantic 

types that are also paired with the predicate ( patterni).  We use RlogF to appraise 

combinations of predicates and nonseed topic semantic types.  Using the example above, 

in cetuximab-TREATS-Endometrial carcinoma, the seed topic 

“Endometrial carcinoma” has the semantic type “neoplastic process”.  The opposing 

argument, “cetuximab”, in this case has the semantic type “pharmacologic substance”.  
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RlogF would assess the significance of “pharmacologic substance” as bound to the 

predicate TREATS. 

 
 
PredScal 

Because it assesses all predicates, KLD scores express a relative value that spans a 

dataset of SemRep output.  RlogF scores only appraise a semantic type associated with a 

single predicate. Raw RlogF scores often exceed KLD scores, so we created a new metric 

called PredScal to scale and smooth RlogF scores according to the spatial proportions of 

predicates in a given SemRep dataset: 

 
 

1 / log2(c) 
 
 

Here, c represents the count of unique predicates.  In rare cases where there is only one 

unique predicate, PredScal defaults to a value of 1. 

We combine the three metrics to yield a product, which is the final Combo score: 

 
 

KLD * RlogF * PredScal  
 
 

Combo summarization output consists of the four highest scoring semantic 

typea_verb_semantic typeb Relevancy patterns (based on novel predications containing 

the summarization seed topic) and the four highest scoring Connectivity patterns (patterns 

sharing a nonseed topic argument’s semantic type from one of the high scoring Relevancy 

patterns). 
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In the Saliency phase, conventional summarization uses metrics developed by Hahn 

and Reimer [33] which appraise “weights” that are dependent on the predefined 

subject_verb_object patterns.  In contrast, dynamic summarization does not utilize such 

predetermined patterns; instead it applies the Combo algorithm to all novel predications 

in order to determine which are more prominent in the data. 

 
 

DynaMed 

DynaMed is a decision support tool that provides intervention recommendations.  In a 

recent study, it tied with two other products for highest ranked evidence-based decision 

support tool [34].  It draws upon the professional literature using a “Systematic 

literature surveillance” method in evaluating published results, using a tiered-ranking of 

study design types [35].  For example, here is an excerpt of the DynaMed pneumococcal 

pneumonia drug treatment recommendation text that we used: 

Medications:  

• treat for 10 days 

• penicillin 

o aqueous penicillin G 600,000 units IV every 6 hours (2 million units every 

4-6 hours if life-threatening) 

o procainepenicillin G 600,000 units intramuscularly every 8-12 hours 

o penicillin V 250-500 mg orally every 6 hours[36] 

 
 
 
 

http://dynaweb.ebscohost.com/Detail?sid=882cf178-db87-4ca3-8a85-23de08bff87f@sessionmgr12&vid=&db=dme&ss=AN+%22249023%22&sl=ll�
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Methods 

Disease Topics 

In consultation with a clinician, we selected the four following disease topics for data 

acquisition: 

• Arterial hypertension   

• Diabetes mellitus type 2 

• Congestive heart failure  

• Pneumococcal pneumonia 

These disease topics are significant global health concerns, and collectively have a 

variety of treatment options and potential preventive interventions. 

 
 

Data Acquisition 

We executed a single PubMed search query for each disease topic and point-of-view 

pairing, (i.e., drug treatment or prevention), using specific MeSH term and subheading 

combinations.  The following lists indicate the exact MeSH terms and subheadings we 

used in forming these pairings: 

MeSH Terms:  

• hypertension 

• Diabetes Mellitus, Type 2 

• heart failure 

• Pneumonia, Pneumococcal 

Subheadings: 

• drug therapy 
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• prevention and control 

For example, to acquire citations addressing drug treatment options for pneumococcal 

pneumonia, we executed the search phrase “Pneumonia, Pneumococcal/drug 

therapy[Mesh]”.  To provide an evidence-based focus, we first restricted output to the 

publication types “clinical trials,” “randomized controlled trials,” “practice guidelines,” 

and “meta-analyses.” We then acquired citations for systematic reviews, using the 

publication type “review” and the keyword phrase “systematic review.”  Realistically, a 

clinician could engage Semantic MEDLINE using anything from a general keyword 

search to a very sophisticated search utilizing many of PubMed’s search options.  In 

addition to providing the initial topic/point-of-view pairing, this method of forming 

search queries also provided a middle ground within the spectrum of queries a clinician 

might actually use.  We also restricted publication dates to coincide with the most 

recently published source materials DynaMed used in building their recommendations, 

which served as the base for our evaluative reference standards (described in detail 

below).  We restricted the retrieval publication date in order to not retrieve materials that 

DynaMed curators could not have reviewed in creating their own recommendations.  The 

eight total search queries resulted in eight separate citation datasets, each representing a 

pairing of one of the four disease topics with one of the two subheading concepts. 

 
 

Data Processing 

We processed each of the eight citation datasets separately with SemRep, then with 

Semantic MEDLINE utilizing the Combo algorithm.  We also processed the eight 

SemRep output datasets with conventional Semantic MEDLINE utilizing the built-in 
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treatment point-of-view schema (i.e., with predetermined, hard-coded patterns).  We used 

the following UMLS Metathesaurus preferred concepts as seed topics (required by 

Semantic MEDLINE) to summarize SemRep data originating from both disease/drug 

treatment and disease/prevention and control search query pairings: 

• Hypertensive disease  

• Diabetes Mellitus, Non-Insulin-Dependent 

• Congestive heart failure (OR Heart Failure) 

• Pneumonia, Pneumococcal 

 
 

Reference Standard 

We built a reference standard for each disease topic/point-of-view pairing, using 

vetted interventions from DynaMed, a commercial decision support product.  We 

captured the DynaMed text for recommendations on both preventive and drug treatment 

interventions for each disease topic.  We forwarded this text to two physician-reviewers, 

who highlighted the interventions they thought were viable for the associated diseases.  In 

annotating these materials, we instructed the reviewers to ask themselves “What are the 

drugs used to treat this disease?” and “What interventions prevent this disease?”  

Disagreements between the two annotators were forwarded to a third physician 

adjudicator, who made the final decision regarding the conflicting annotations.  The two 

primary reviewers were a cardiologist and a preventive medicine specialist.  The 

adjudicator was a pathologist.  We measured agreement between the two reviewers using 

fundamental interannotator agreement (IAA) where instances of agreement are divided 

by the sum of agreement instances and disagreement instances, or in other words, 
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matches/(matches + nonmatches).  As an example, we list below the final reference 

standard of DynaMed arterial hypertension preventive interventions: 

 
• Maintain normal body weight  
• Reduce sodium intake  
• Increased daily life activity  
• Higher folate intake 
• Regular aerobic physical activity   
• Diet reduced in saturated and 

total fat   
• Walking to work  

• Increased plant food intake 
• Diet rich in fruits, vegetables and 

low-fat dairy products  
• Relaxation  
• Whole-grain intake  
• Regular tea consumption 
• Limit alcohol use  

The final, combined reference standards included a total of 225 interventions, with an 

average of approximately 28 interventions for each disease topic/point-of-view pairing.  

Table 13 lists the totals for all eight reference standards.  The annotations of the two 

reviewers resulted in an average IAA score of 0.54.  Table 14 lists all interannotator 

agreement scores. 

 
 
Table 13.  Reference standard intervention counts. 
 Drug Treatment Prevention 

Arterial Hypertension 27 14 

Diabetes Mellitus Type 2 55 20 

Congestive Heart Failure 59 16 

Pneumococcal 
Pneumonia 
 

31 3 
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Table 14.  Annotator Interrater Agreement 
 Drug Treatment Prevention 

Arterial Hypertension 0.47 0.33 

Diabetes Mellitus Type 2 0.73 0.44 

Congestive Heart Failure 0.76 0.40 

Pneumococcal Pneumonia 
 

0.50 0.66 

 
 
 

Baselines 

We built eight baselines that simulated what a busy clinician might find when directly 

reviewing the PubMed citations.  This is based on techniques developed Fiszman et al. 

[37] and Zhang et al. [30]  To build baselines for the four disease topic/drug treatment 

pairings, we processed their PubMed citations with MetaMap, restricting output to 

UMLS Metathesaurus preferred concepts associated with the UMLS semantic group 

Chemicals and Drugs, and removed vague concepts using Novelty processing.  Threshold 

values were determined by calculating the average mean of term frequencies in a baseline 

group, and then adding one standard deviation to the mean.  In each group, all terms 

whose frequency scores exceeded the threshold value were retained to form the group’s 

baseline.  For example, for the congestive heart failure drug treatment group, the method 

extracted 1784 terms that occurred 63924 times in the MetaMap data, with a mean of 

approximately 35.8 occurrences per term, and a standard deviation of 154.4.  This 

produced a cutoff threshold of 190.3.  Therefore, all MetaMap terms that occurred 190 

times or more were included in the congestive heart failure drug treatment baseline (a 

total of 72 terms). 
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We formed baselines for citations emerging from each disease topic/prevention and 

control pairing in a similar manner.  We extracted the lines from the associated PubMed 

citations that contained the phrases “prevent,” “prevents,” “for prevention of,” and “for 

the prevention of.”  These lines were processed with MetaMap, and all UMLS 

Metathesaurus preferred concepts associated with the UMLS disorders semantic group 

were removed, since the focus was preventive interventions and not the diseases 

themselves.  Threshold values were calculated for the remaining terms, and those whose 

frequencies exceeded their threshold scores were retained as baseline terms. 

 
 

Comparing Outputs to the Reference Standards 

We evaluated outputs for the two summarization methods (Combo algorithm and 

conventional schema summarization) and the baselines by manually comparing them to 

the reference standards for the eight disease topic/subheading pairings. Since the 

reference standard was always a list of interventions, the comparison was 

straightforward. We measured recall, precision, and F1-score (balanced equally between 

recall and precision).   

For both summarization systems, we measured precision by grouping subject 

arguments by name and determining what percentage of these subject groups expressed a 

true positive finding.  For outputs for the four disease topic/drug intervention pairings, 

we limited analysis to semantic predications in the general form of “Intervention 

X_TREATS_disease Y”, where the object argument reflected the associated disease 

concept.  If the subject intervention X argument matched a reference standard 

intervention, that intervention received a true positive status.  In similar predications 
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where the subject argument was a general term, such as “intervention regimes”, we 

examined the original section of citation text associated with the semantic predication.  If 

this citation text indicated a reference standard intervention it received a true positive 

status.  For example, in the dynamic summarization output for arterial hypertension 

prevention, the semantic predication “Dietary Modification_PREVENTS_Hypertensive 

disease” summarized citation text that included advice for dietary sodium reduction [38]; 

therefore, the reference standard intervention “reduce sodium intake” received a true 

positive status. 

Only the combo algorithm summarized output for the four disease topic/prevention 

and control pairings was compared to the reference standard, since there is no 

conventional schema for prevention.  In addition to predications in the form “Intervention 

X_PREVENTS_disease_Y,” other predications where argument concepts had prevention 

terms such as “Exercise, aerobic_AFFECTS_blood pressure” and “Primary 

Prevention_USES_Metformin” were used.  

 We evaluated each baseline by comparing its terms to those of its associated 

reference standard.  If a term in a baseline matched an intervention in the relevant 

reference standard, the baseline term received a true positive status.  We also assigned 

true positive status to less specific baseline terms if they could logically be associated 

with related reference standard interventions.  For example, in the baseline for 

pneumococcal pneumonia prevention the term “Polyvalent pneumococcal vaccine” was 

counted as a true positive, even though it did not identify a specific polyvalent 

pneumococcal vaccine that was on the reference standard.   
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Results 

The PubMed search queries retrieved varying quantities of output, as did SemRep, 

conventional, and dynamic summarization.  Table 15 lists PubMed output citation 

quantities according to disease topic and point-of-view.  Tables 16 - 18 list quantitative 

outputs for the other processes. 

 
 

System Performance 

Performance metric outcomes are listed in Tables 19 - 20.  No conventional schema is 

available in summarizing for a prevention point-of-view; therefore, just the Combo 

algorithm enhanced summarization and the baseline method performance outcomes are 

included. 

 
 
Table 15.  Citation retrieval results 
 Drug Treatment Prevention 

Arterial Hypertension 12335 875 

Diabetes Mellitus Type 2 3716 435 

Congestive Heart Failure 3256 344 

Pneumococcal Pneumonia 
 

115 81 
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Table 16.  SemRep semantic predication outputs 
 Drug Treatment Prevention 

Arterial Hypertension 94353 4836 

Diabetes Mellitus Type 2 37962 2654 

Congestive Heart Failure 28951 2630 

Pneumococcal Pneumonia 918 643 

 
 
 
Table 17.  Combo algorithm-enhanced summarization semantic predication output 
 Drug Treatment Prevention 

Arterial Hypertension 13015 279 

Diabetes Mellitus Type 2 3237 188 

Congestive Heart Failure 4175 207 

Pneumococcal Pneumonia 
 

189 137 

 
 
 
Table 18.  Conventional treatment schema semantic predications output 
 Drug Treatment 

Arterial Hypertension 8052 

Diabetes Mellitus Type 2 2645 

Congestive Heart Failure 2375 

Pneumococcal Pneumonia 
 

62 
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Table 19. Performance Metrics, Drug Treatment Point-of-View, for Combo-enhanced 
dynamic summarization (DS), conventional treatment schema (TS), and baseline (BL) 
methodologies. 
Disease Recall Precision F1-Score 

 DS TS BL DS TS BL DS TS BL 

Arterial 
Hypertension 

0.93 0.82 0.26 0.39 0.73 0.41 0.55 0.77 0.32 

Diabetes 
Mellitus 
Type 2 

0.89 0.56 0.35 0.35 0.68 0.25 0.50 0.62 0.29 

Congestive 
Heart 
Failure 

0.93 0.70 0.13 0.34 0.60 0.25 0.50 0.64 0.17 

Pneumococca
l Pneumonia 

0.65 0.26 0.19 0.43 0.83 0.32 0.51 0.39 0.24 

 
 
 
Table 20. Performance Metrics, Prevention Point-of-View, for Combo-enhanced dynamic 
summarization (DS), and baseline (BL) methodologies. 
Disease Recall Precision F1-Score 

 DS BL DS BL DS BL 

Arterial 
Hypertension 

0.77 0.23 0.13 0.13 0.22 0.17 

Diabetes 
Mellitus Type 
2 

0.68 0.18 0.50 0.33 0.58 0.24 

Congestive 
Heart Failure 

0.50 0.33 0.30 0.31 0.37 0.32 

Pneumococcal 
Pneumonia 

0.67 0.33 0.39 0.22 0.49 0.26 
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Discussion 

The evaluation results imply that dynamic text summarization with the Combo 

algorithm provides a viable alternative to direct review of PubMed citations for locating 

decision support data.  This is encouraging, because dynamic summarization could 

expand the value of Semantic MEDLINE at the point-of-care. Performance 

improvements over the baseline methodology can be seen in both recall and precision 

results.  Including findings from both drug treatment and prevention analyses, Combo 

produced average recall and precision scores of 0.75 and 0.35, while the baseline method 

yielded average recall and precision values of 0.25 and 0.28.  Combo summarization 

outperformed the baseline methodology by an average F1-score margin of 0.21.  The 

Combo algorithm especially performed well in terms of recall for large datasets.  For the 

three disease topic/point-of-view pairings whose initial citation input exceeded 1000 (the 

drug treatment topics of arterial hypertension, diabetes mellitus type 2, and congestive 

heart failure) average recall was 0.916.  

 
 

Drug Treatment Results 

Combo algorithm-enhanced dynamic summarization outperformed conventional 

summarization and the baseline method in recall, but was outperformed by conventional 

summarization in terms of precision.  Combo summarization achieved 0.85 average 

recall, and 0.38 average precision.  The conventional schema produced average recall and 

precision scores of 0.59 and 0.71.  Both dynamic summarization and conventional 

summarization outperformed the baseline method, which produced average recall and 

precision scores of 0.23 and 0.31.  Based on these findings, if a clinical user wished to 
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locate the maximum amount of drug treatment options using one of these three methods, 

Combo would be the better choice.  On the other hand, the new method is less precise, 

but this effect is moderated by the visualization tool that Semantic MEDLINE offers. 

Visualization conveniently presents all citation data (including the text of the abstract 

itself) that are relevant to an Intervention X_TREATS_disease Y relationship in an easily 

viewed, reader-friendly display. Viewed in context, clinicians can quickly discard 

irrelevant treatments. We would argue that recall is more critical in clinical browsing than 

precision. The cognitive load required to dismiss a false positive is lower than trying to 

deduce a missing (false negative) treatment. We chose to use the standard F1-score 

because it is more conventional, but if we weight recall more, in line with the argument 

above, then the Combo summarization would be quite competitive with the conventional 

technique.  

 
 

Prevention Results 

Combo summarization was less effective in identifying preventive interventions in 

the relevant reference standards, producing an average recall of 0.66 and an average 

precision rate of 0.33.  There are two obvious possibilities for this diminished efficiency.  

First, the citation sets were substantially smaller than three of the four drug treatment 

citation sets, thus providing less initial data.  As with most statistical techniques, larger 

sample sizes tend to lead to better performance. Second, preventive interventions 

described in text are often more general than drug therapies.  For example, “lifestyle 

changes” may be more difficult to interpret in the SemRep phase.  Also, the lower 

interannotator agreement scores suggest that clinicians are less apt to agree on prevention 
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standards.  This may also be reflected in the professional literature.  Dynamic 

summarization with the Combo algorithm outperformed the baseline methodology, which 

produced an average recall of 0.27 and an average precision of 0.25.  This suggests that 

dynamic summarization is a superior alternative to directly reviewing PubMed citations 

for identifying preventive interventions. 

 
 

Error Analysis 

We classified false positive findings by type, and false negative findings by the first 

sequential data source (i.e., PubMed, SemRep output, Dynamic Summarization output) 

that did not include them.   

 
 

False Positives 

Most of the false positives for both drug treatment and prevention points-of-view 

could be classified as unproductive general subject arguments; pharmaceuticals or 

supplements not included in the relevant reference standards; or other therapies not 

included in the relevant reference standards.  In the prevention data, pharmaceuticals or 

supplements not included in the relevant reference standards accounted for 62.5% of all 

false positives, while unproductive general subject arguments and other therapies not 

included in the relevant reference standards accounted for 17.5% and 15.5%, 

respectively.  In the drug treatment data, pharmaceuticals or supplements not included in 

the relevant reference standard accounted for an even greater percentage of false positives 

at 73.7%, while unproductive general subject arguments and other therapies not included 

in the relevant reference standard accounted for 14.2% and 12%.   
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There are multiple possible reasons why there was such a high percentage of 

nonreference standard pharmaceutical or supplement false positives.  Initial citation 

retrieval was not limited by a beginning publication date.  In other words, all search 

queries retrieved relevant citations for as far back in time as PubMed makes available.  

Therefore, information retrieval likely included older drugs which had been replaced by 

newer medications as preferred treatments.  Also, we used a single data source in creating 

the reference standard.  If we had included recommendations from other decision support 

tools in addition to those from DynaMed, the final reference standard might have 

included other treatments found within this false positive classification.  Another data 

trend potentially contributed to reduced precision.  Subject arguments that occurred two 

times or less in an output for a given disease topic/point-of-view pairing accounted for 

69.7% of all false positives.  If all such results were removed from the data, precision 

would increase, with a proportionately small effect on recall. 

 
 
False Negatives 

Because Semantic MEDLINE is a pipeline application, data loss can be tracked by 

documenting the first sequential process (among PubMed retrieval, SemRep, and 

Dynamic Summarization) that does not include a reference standard intervention.  We 

applied this method in analyzing false negative interventions to determine which process 

“lost” the desired data.  In tracking the 23 false negatives that addressed a drug treatment 

point-of-view, PubMed retrieval did not garner 43.5% (10 false negatives); SemRep 

output did not include 47.8% (11 false negatives); and dynamic summarization did not 

identify 8.7%  (2 false negatives).  False negatives emerging from the prevention point-
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of-view data were slighted more balanced.  In this case, PubMed retrieval did not include 

41.2% (7 false negatives) while SemRep output did not include 35.3% (6 false negatives) 

and dynamic summarization output did not include 23.5% (4 false negatives).  However, 

in analyses for both points-of-view, dynamic summarization performed better than the 

other two processes.  Visualization output was not included; it was considered irrelevant, 

since it automatically includes all output from summarization. 

 
 

PubMed Retrieval Volume and Performance 

Performance measurements suggest a system preference for larger citation input.  

Among search queries  pairing the disease topics with the drug therapy subheading, the 

only query resulting in a relatively small amount of citations (the pneumonia 

pneumococcal query) also lead to comparatively diminished performance.  System 

performance for pneumococcal pneumonia drug treatment data produced only 0.65 recall, 

while the other disease topic/drug treatment pairings achieved 0.89 or higher recall.  

System performance for prevention had similar results, with recall ranging from 0.50 to 

0.76, with overall fewer citations than the drug treatment data.  However, in a pilot 

project the system produced 100% recall for prevention data on a single disease topic 

(acute pancreatitis), with only 156 citations [39].  We conclude that citation volume can 

be a factor for some clinical topics, but not for all of them. In cases like acute 

pancreatitis, where therapeutic options are narrow, the system can summarize 

successfully despite a relatively sparse citation set. 
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Limitations 

There are limitations in this study.  It explores summarization for only two points-of-

view (prevention and drug treatment) for the single task of decision support. However, an 

earlier study examined Combo-enhanced dynamic summarization for a genetic disease 

etiology point-of-view, within the task of secondary genetic database curation [19].  The 

curation study revealed improved summarization performance for that task.  In this 

current study, we examined dynamic summarization for just four disease topics.  

However, a pilot project [39] featuring three different disease topics (acute pancreatitis, 

coronary artery disease, and malaria), again within the context of preventive intervention 

decision support, produced slightly superior results.  This creates optimism that this text 

summarization method may enable others to locate decision support data.  Finally, we 

evaluated system output with recommendations garnered from a single commercial 

decision support product.  Comparing performance to other decision support sources may 

shed further light on Combo-enhanced dynamic summarization as a potential decision 

support tool. 

 
 

Conclusion 

In order to evaluate the performance of a new dynamic text summarization extension 

(Combo) to Semantic MEDLINE, we applied it, plus conventional Semantic MEDLINE, 

and a baseline summarization methodology (designed to mimic manual clinical review) 

to a clinical decision support task.  We chose four disease topics and processed PubMed 

citations addressing their drug treatment and prevention.  We processed the citations with 

SemRep, an application that transforms PubMed text into semantic predications.  We 
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processed the SemRep output using the three summarization methodologies.  An 

evaluation using reference standards (clinically vetted DynaMed) showed that the new 

summarization method outperformed the conventional application and baseline 

methodology in terms of recall, while the conventional application produced the highest 

precision.  Dynamic and conventional summarization were superior to the baseline 

methodology.  These findings imply that the new text summarization application holds 

potential in assisting clinicians in locating decision support information.  
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Summary 

Hypothesis Validation 

As noted in Chapter 1, the central and subhypotheses can be operationalized and 

validated through simulating human tasks.  The work of Chapters 2 -5 operationalized 

efforts to test the central hypothesis that an NLP text summarization process that 

transforms bibliographic text into a topically filtered, compact form can be used to extract 

and identify data crucial to multiple information needs. The work of Chapters 3 – 5 

operationalized efforts exploring the subhypothesis that once it is transformed into a basic 

compact form, bibliographic text collectively retains the thematic focus that was 

expressed in the initial search query used to retrieve it.  This was demonstrated by using 

the Combo algorithm as the Saliency filtering mechanism (within the four-tier 

summarization framework) to summarize PubMed text focused on multiple disease 

topic/point-of-view pairings, for multiple tasks.  The three tasks: 

• Secondary genetic database curation 

• Identifying clinical decision support for preventive intervention discovery 

• Identifying clinical decision support for drug treatment intervention discovery 

garnered positive results concerning the central hypothesis.  The conventional genetic 

disease etiology summarization software provided data whose curation appeal had 

previously been confirmed, because it was featured in the Genetics Home Reference, 

Online Mendelian Inheritance in Man, and Entrez Gene databases.  The conventional 

treatment summarization software also provided verified data in the form of intervention 

recommendations from a respected decision support product.  The Combo algorithm, 

through manual calculation within the Summarization four-tier filtering framework, also 
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provided validated data for secondary genetic database curation, without explicit point-

of-view constraint, using data originating from a PubMed search which expressed a 

desired disease topic/point-of-view thematic focus.  The Combo algorithm-enhanced 

software also facilitated dynamic summarization by identifying relevant drug treatment 

and preventive interventions, again without explicit point-of-view constraint, using data 

originating from PubMed search queries expressing the desired disease topics/points-of-

view thematic focuses.  The Combo algorithm output validated the subhypothesis. 

 
 

Individual Performance Metrics 

While the work of the three aims resulted in successful information identification, the 

success of completing the three tasks varied.  The conventional genetic disease etiology 

summarization software located a total of six gold standard genes in the first curation 

study, and three in the second.  Dynamic summarization located eight gold standard 

genes in the second curation study (it was not applied in the first study).  In the second 

study, dynamic summarization produced 0.61 recall, 0.81 precision, and an F-score of 

0.69.  Conventional summarization produced 0.23 recall, 1.0 precision, and an F-score of 

0.37.  In the pilot prevention study, after performing the primary and secondary analyses, 

dynamic summarization achieved an average recall of 0.79, average precision of 0.45, 

and an average F-score of 0.57.  In the larger study documented in Chapter 5, dynamic 

summarization achieved 0.656 average recall, 0.329 average precision, and an average F-

score of 0.41.  In drug treatment data performance, conventional summarization produced 

0.583 average recall, 0.712 average precision and an average F-score of 0.60.  Dynamic 

summarization produced 0.848 average recall, 0.377 average precision, and an average F-
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score of 0.51.  Dynamic and conventional summarization outperformed the baseline 

metric where it was applied.   

Discrepancies in dynamic summarization’s performance for the two preventive 

intervention studies have several possible explanations.  In the first study, we evaluated 

general subject arguments for reference standard items by looking at the entire text 

associated with a predication; in the second study, we only examined the span of text a 

given semantic predication summarized.  These different study designs are intentional.  

The first preventive intervention study was done on behalf of the Medical Library 

Association, and our goal for this study was in part to duplicate a user’s actions in 

reviewing all associated citation data (because this is the way Visualization presents 

citation data to a user when a desired arc is clicked).  In the second study, we simply 

observed the connection between the more general semantic predications and the exact 

text they summarized.  In the first study, we only looked at predications in the form 

“Intervention X_PREVENTS _disease Y” to calculate precision.  In the second study, we 

reviewed all predications to calculate the value.  Finally, dynamic summarization 

achieved 1.0 recall for one of the three diseases in the first study; while this is exciting, it 

may have also in a sense skewed the results.  

 
 

Variables Within the Semantic MEDLINE Model 

There are other variables within the Semantic MEDLINE model, (outside of 

Summarization processing), that effect Summarization performance.  I used MeSH search 

strategies for all information retrieval operations in all four separate studies.  The search 

query used in Chapter 2 (evaluating the conventional genetic disease etiology 
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summarization software) implemented a single MeSH term with keyword phrases.  All 

search queries used to evaluate Combo-enhanced summarization implemented MeSH 

terms combined with subheadings, and short keyword phrases when needed.  While 

searching with MeSH terms leverages the work of expert indexers, MeSH term 

representation within PubMed is not consistent, nor does it completely capture 

biomedical concepts [1-3].  While employing simple MeSH term/subheading searches 

enabled validation of the work’s subhypothesis, future search queries that are more 

complex may result in improved information retrieval [4]. 

Due to various limitations, SemRep does not capture all possible semantic 

predications in citation text.  SemRep relies on the UMLS Metathesaurus, which does not 

completely provide correlating terms to multiple types of external terminologies [5-7]. 

SemRep does not accommodate all 54 predications [8] in the UMLS Semantic Network 

[9], which in turn contains inaccuracies [10].  

 
 

Reference Standard Limitations 

The reference standards used in Chapters 3 – 5 should not be considered definitive 

lists of best interventions for their associated diseases and points-of-view.  DynaMed 

served as the exclusive electronic source of these interventions; however, there are other 

well-received decision support products.  In Banzi’s study [11], DynaMed was one of 

three products tied as the top ranked resource.  The other two were EBM Guidelines [12] 

and UpToDate [13].  The University of Utah Health Sciences Center does not subscribe 

to EBM Guidelines.  DynaMed’s presentation format was superior to that of UpToDate, 

in terms of presenting data to reviewers.  For these reasons (accessibility, ranking, and 
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format presentation) I chose DynaMed as the reference standards’ source.  However, by 

Banzi’s own disclosure, no product established itself as “the best” when judged with the 

criteria used in his study.  It is quite possible that other decision support products may 

have suggested other interventions. 

 
 

Significance of This Work to the Field of Biomedical Informatics 

The research in this dissertation points to means in which Summarization may benefit 

many stakeholders in the health science community.  Genetic database curators may save 

much time and effort by subject PubMed search results to Semantic MEDLINE process, 

instead of directly reviewing the citations.  Clinicians may have faster access to decision 

support data and be spared the experience of reviewing large datasets of PubMed 

retrieval.  Semantic MEDLINE also holds potential in assisting health consumers to 

navigate within PubMed retrieval, and understand passages of complicated citation text.  

Because dynamic summarization has a demonstrated capacity to summarize text for 

multiple points-of-view, users can use it in pursuing many different information needs. 

Mechanisms and artifacts in this research have also provided new methodologies that 

may help other biomedical informatics researchers.  The work of Chapter 5 included 

development of a novel evaluative technique.  To evaluate the results for prevention, I 

automatically extracted sections of citation text containing phrases such as “prevents” 

and “for the prevention of” and then processed these sections with MetaMap to find 

preventive data found in the citation text.  I also combined techniques developed by 

Fiszman [14] and Zhang [15] in order to combine an established method of locating 

interventions in citation text along with an automated threshold cutoff calculation to form 
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an evaluative baseline.  These techniques may help other scientists in evaluating NLP 

output or citation analysis in a biomedical informatics context.   

 
 

Future Directions 

Potential users may benefit from interfaces specifically designed for text 

summarization.  A new branch of research focused on text summarization within the 

human/computer interaction paradigm may result in new information systems providing 

new levels of service to their users.  A critical component in this research pursuit would 

be the study of information seeking behavior within text summarization applications.  

Many researchers have laid a foundation in information seeking behavior theory. [16]  

There are several individual schools of thought in this domain.  Theories which model the 

role of affect in user behavior hold potential in leading to text summarization system 

interface design.  For example, the IRU methodology [17] of modeling user behavior, 

designed by Dr. Diane Nahl, documents [18] the role of affect, in addition to cognition 

and sensorimotor function, in human/computer interactions.  Techniques like Nahl’s 

enable observers to model information seeking behavior, and provide cues for developers 

to design more efficient, user-friendly systems.  Affect is important and influential, 

especially in scenarios of stress, where a patient may be seeking information on a 

catastrophic disease, or a clinician may be seeking elusive but crucial information to save 

a patient. 

There are potential new uses for Combo-enhanced Semantic MEDLINE text 

summarization.  Because it can distill and organize large volumes of data, it may serve in 

knowledge discovery, for example, leading scientists to undiscovered connections 
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between diseases and treatments, or disease and genetic mutations.  It may also assist 

universities, health organizations and institutes that fund research in identifying areas 

where there is a need for more research, where the scientific community should 

concentrate new efforts.  Fulltext clinical guidelines could also be processed by Combo-

driven Semantic MEDLINE in order to find data prevalent to a specific health issue, 

expressed as a UMLS Metathesaurus seed concept.  In order to successfully do this, 

SemRep would need modifications to enable it to process fulltext items.  Combo-driven 

Semantic MEDLINE summarization could also be integrated into an electronic medical 

record (EMR) environment, where it could automatically provide information by utilizing 

coded values.  This service could provide information originating from PubMed citations, 

much like MedlinePlus Connect [19] provides consumer-oriented health information by 

drawing on the MedlinePlus pool of consumer resources.  Following the MedlinePlus 

Connect system, such a service could easily provide drug information (using RxNorm 

[20] or NDC coding [21]), information regarding lab tests (using LOINC [22]), or 

diagnoses (using ICD-9-CM coding [23]).  All of the associated codes could be mapped 

to corresponding MeSH terms within the UMLS Metathesaurus, which then would be 

combined with the appropriate subheading to form a PubMed query.  The resulting 

citations would be processed by SemRep.  The associated EMR code(s) would be 

mapped to the closest corresponding Metathesaurus preferred concept.  This preferred 

concept would serve as the seed topic in dynamic summarization.  Summarized results 

would be displayed in an interactive graph, where users could select the semantic 

predications addressing their information needs. 
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Abstracting the Model 

The skeletal framework of the Semantic MEDLINE model pursued in this work can 

potentially be applied to other data types, such as clinical text and Internet data, and other 

kinds of tasks.  For example, the essential pipeline functions of retrieving data with a 

focused search, transforming it into subject_verb_object triplets, and summarizing results 

using a seed topic concept can potentially be applied to clinical text.  This potential can 

be considered sequentially by process.  A researcher wishes to find prominent issues 

expressed in electronic health data for patients diagnosed with fibromyalgia.  She 

retrieves all electronic medical records (EMRs) containing the keyword “fibromyalgia” 

and ICD-9-CM code 729.1, Myalgia and myositis, unspecified, the code associated with 

fibromyalgia, according to 2011 CDC documentation [24]. 

The EMR text  is transformed in subject_verb_object triplets using the next 

application in the pipeline.  SemRep is designed to handle bibliographic citation data.  

Another application may perform better than SemRep.  Recent research provides 

potential direction for developing such an application.  In response to the 2010 i2b2 

challenge [25], de Bruijn and colleagues [26] developed three machine learning 

applications that together identify and classify medical issues in clinical text, and then 

identify the relationships that bind the concepts.  Their system utilizes MEDLINE records 

and UMLS output, in conjunction with cTAKES [27] and MetaMap [28] technologies, to 

complete the three tasks.   This pipeline application performed well in the 2010 i2b2 

challenge (first place in the concept identification and classifications tasks; second place 

in the relation identification task) and could possibly produce triplets for the fibromyalgia 

task.  Rink and his colleagues [29] developed a supervised machine learning application 
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that outperformed de Bruijn’s relation identification application.  Rink’s application 

utilizes WordNet [30] and the General Inquirer lexicon [31] as external knowledge 

sources.  Replacing de Bruijn’s relation extraction method with Rink’s would likely 

improve the pipeline’s performance.   An alternative triplet producing resource might 

function like a system developed by Khoury and his colleagues [32].  Khoury’s 

application only requires an unannotated training corpus of domain-specific text.  It then 

utilizes a fuzzy-logic statistical algorithm to identify concepts and their binding 

relationships.  Khoury’s approach assumes a subject-verb-object concept representation 

in the original text, so it might not detect certain kinds of information, such as that written 

in passive voice. 

The triplet data would then be summarized using Combo-driven software.  This 

software could initially present a list of subject and object arguments, organized in 

descending order by frequency, from which the user would choose a summarization seed 

topic.  To build the Q distribution for Kullback-Leibler Divergence computations, the 

system could build an approximate profile of similar data by retrieving EMR records 

containing all ICD-9-CM codes 710 – 739, representing Diseases of the Musculoskeletal 

System and Connective Tissue and transforming it into subject_verb_object triplets.   

The essential pipeline functions of Combo-driven Semantic MEDLINE could also be 

applied to Internet data.  Assume that a public health officer wants to monitor current flu 

epidemic information as reported in Web-based news stories.  He could harvest Internet 

articles using Google’s news utility [33] using a search such as “flu season” or “flu 

cases” and limit recall to articles from the last 30 days.  These articles could be converted 

into subject_verb_object triplets using an all-purpose application such as Khoury’s.  The 
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triplets could be summarized with the Combo-driven software, using a similar approach 

as the one described for clinical text.  In order to build the Q distribution for Kullback-

Leibler Divergence computations, a more general Google News search such as “disease 

epidemic” could yield appropriate articles for building the Q distribution.  
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