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ABSTRACT 
 
 

 Previous studies have shown that verbalization, in the form of self-guided 

instruction, is an effective cognitive strategy used to enhance motor skill acquisition and 

motor performance.  However, past research has not explicitly examined which aspects of 

motor output are affected (whether beneficially or deleteriously) by verbalization.  In the 

current study, we conducted two separate experiments in which a total of 80 healthy 

participants, ages 18-27, completed a novel motor sequence learning task.  Half of the 

participants in each Experiment were pretrained in the sequence using verbalization, 

while the other half was either trained motorically, or not trained at all.  Rote 

memorization of verbal labels facilitated motor learning, motor control, performance 

speed, and set maintenance, but not motor planning.  Potential underlying mechanisms as 

well as clinical implications are discussed.  
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INTRODUCTION 
 
 

 Over the last several decades much research has been dedicated to understanding 

the various factors that contribute to learning.  While traditionally the majority of the 

literature has focused on either different types of learners within the classroom or 

different cognitive strategies used for acquiring academic or scholastic skills, recently, 

attention has turned to understanding the acquisition of complex motor skills.  This latter 

line of research is broad, encompassing the acquisition of complex motor skills in athletes 

(Anderson, 1997; Landin, 1994), in individuals with movements disorders (i.e., 

developmental coordination disorder (DCD; Mandich, Polatajko, Missiuna & Miller, 

2001)), and in brain-injured (i.e., stroke/traumatic brain injury (TBI)) individuals 

undergoing physical rehabilitation (O'Callaghan & Couvadelli, 1998).  This research has 

begun to promote a “top-down” process of motor learning, one that encourages the use of 

cognitive strategies to enhance complex motor skill acquisition and transfer.   

 Cognitive strategies refer to conscious processes that learners can use as they 

internalize procedures in order to perform a specific task or skill (Anderson, 1997; 

McEwen, Huijbregts, Ryan & Polatajko, 2009).  The literature addresses several different 

types of cognitive strategies that can be used to enhance the acquisition or the 

rehabilitation of motor skills, including mental practice, rehearsal, imagery, goal-setting, 

self-evaluation, and attention focusing.  Such strategies have been shown to improve 

motor learning and overall motor performance, including accuracy and motor skill 
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transfer (McEwen, et al., 2009; O'Callaghan & Couvadelli, 1998).  The current paper 

focuses primarily on the use of verbalization (i.e., verbal self-instruction) as a cognitive 

strategy in motor skill learning (Anderson, 1997; McEwen, et al., 2009; O'Callaghan & 

Couvadelli, 1998). 

 The use of verbalization as a cognitive strategy emerged from the early work of 

Soviet psychologists Vygotsky (1987; 1978) and Luria (1959; 1961; 1964).  Vygotsky, 

using a socio-cultural approach, was the first to theorize the importance, as well as the 

influence, of self-speech in the development and mediation of behavioral control, self-

regulation, and other higher-order cognitive functions.  Luria extended Vygotsky’s work 

by emphasizing the role of self-speech in behavioral activation and impulse control 

(Harris, 1990).  Through several studies utilizing experimenter-induced self-talk, Luria 

(1959; 1961; 1964) concluded that covert or overt vocalization that is paired with an 

action facilitates motor performance and motor skill acquisition, both in young children 

and in patients who have diminished capacity to internally control or regulate behavior.   

 Together these findings were fundamental to the later development of 

interventions utilizing verbalization (Harris, 1990).  Among the first to develop such 

interventions were Meichenbaum and Goodman (1971), who utilized a cognitive-

behavioral intervention that emphasized the use of experimenter-induced or 

experimenter-modeled verbalization to facilitate self-regulation in impulsive children.  

Since Meichenbaum and Goodman’s original publication, the use of verbalization 

interventions has been adapted and used to facilitate the acquisition of complex motor 

skills in athletes (Anderson, 1997; Anderson & Vogel, 1999; Landin, 1994), young 

children (Vintere, Hemmes, Brown & Poulson, 2004), individuals with DCD (Mandich, 
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et al., 2001), and individuals who have sustained a stroke or TBI (O'Callaghan & 

Couvadelli, 1998).   

 Research using verbalization interventions to facilitate motor skill acquisition has 

concluded that the use of verbalization results in faster motor skill acquisition (Anderson 

& Vogel, 1999; Vintere, et al., 2004), enhanced quality or execution of performance 

(Anderson & Vogel, 1999; Janelle, Champenoy, Coombes & Mousseau, 2003; Landin, 

1994; Mandich, et al., 2001), and, in some cases, motor skill transfer from one task to 

another (Anderson, 1997; O'Callaghan & Couvadelli, 1998).  These conclusions were 

drawn based on accuracy (i.e., number of errors) and form (i.e., body position) of 

participants’ motor performances via direct observation (Anderson & Vogel, 1999; 

Janelle, et al., 2003; Vintere, et al., 2004).   

 While the majority of research supports the use of verbalization to facilitate motor 

skill acquisition, there are some inconsistencies within the literature that suggest that the 

use of verbal instructions may interfere with the implicit learning of a motor sequence in 

some populations.  More specifically, Boyd, et al. (2003, 2004) found that individuals 

with focal lesions to the sensorimotor and basal ganglia regions did not benefit from 

explicit verbal information about the motor pattern embedded within an implicit motor 

sequencing task, while healthy controls did.  In contrast, in a similar study with 

individuals with focal cerebellar lesions, Molinari, et al. (1997) found that explicit verbal 

knowledge of the embedded pattern did facilitate motor sequence learning.   

 The inconsistencies in the above findings may be a function of the fact that 

different populations exhibit deficits in different aspects of motor performance.  In fact, 

past research has shown that discrete aspects of motor output are affected differently by 
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different disorders.  For example, research indicates that individuals with Parkinson’s 

disease, Huntington’s disease, or supplementary motor area infarcts have difficulties 

sequencing simple motor movements, despite being able to perform discrete individual 

movements correctly, albeit slowly (Benecke, Rothwell, Dick, Day, & Marsden, 1987; 

Dick, Benecke, Rothwell, Day & Marsden, 1986; Thompson, et al., 1988).  These 

findings suggest that these individuals may have impairment in motor planning or motor 

learning, but not in motor control.  In contrast, individuals with Alzheimer’s disease 

exhibit normal ability to learn complex motor sequences, even though their performance 

speed is slow (Willingham, Peterson, Manning & Brashear, 1997).  Further, there is 

evidence to suggest that there are subtypes of DCD that are characterized by different 

profiles of motor dysfunction.  In particular, while some individuals with DCD exhibit 

impaired motor execution/control (i.e., coordination) in the context of intact motor 

planning, others show the opposite pattern (Cermak, 1985; Dewey, 2002; Dewey & 

Kaplan, 1994).   

 Taken together, these findings suggest that (1) verbalization or explicit verbal 

instruction are facilitative in some, but not all, situations or populations and (2) various 

disorders show impairments in different discrete aspects of motor output.   However, past 

research has not explicitly examined which aspects of motor output are affected (whether 

beneficially or deleteriously) by verbalization.  In other words, it may be that verbal 

instructions facilitate only some specific aspects of motor processing; consequently, only 

individuals with impairments in those particular discrete processes will benefit from the 

use of verbalization.  Better understanding of which specific motor processes improve 
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with the use of verbalization is important, as it would facilitate tailoring of rehabilitation 

or learning strategies towards specific populations that are the most likely to benefit.   

 In order to better understand how verbalization facilitates motor skill acquisition, 

we aimed to examine which discrete components of motor output are affected by 

verbalization.  The components of motor output examined in this study included (1) 

motor learning (M-LRN), reflecting the number of errors made when learning the motor 

sequence, as well as the number of learning trials to criterion; and (2) motor performance, 

which consisted of (a) motor planning (M-PLN), reflecting the time it takes a person to 

plan and initiate a correct motor sequence, (b) motor control (M-CNT), reflecting the 

smoothness, speed, and accuracy of simple discrete movements, (c) motor set-

maintenance (M-SM), reflecting accuracy of movement sequences once the motor 

sequence has been learned, and (d) performance speed (P-SPD), reflecting the overall 

time to completion of a given sequence.  Because this is the first study to examine the 

effects of verbalization on all of these discrete aspects of motor performance 

simultaneously, we chose to first examine this question in healthy college-aged 

individuals, prior to examining these processes in patient populations.       

 To accomplish these goals, we conducted two separate experiments using a 

computerized novel motor sequence learning task that allowed us to assess both motor 

learning (M-LRN) and individual components of motor performance (i.e., M-PLN, M-

CNT, M-SM, and P-SPD).  Experiment 1 compared motor learning and motor 

performance for two conditions: (a) learning motor sequence by motor imitation with 

concurrent  verbal rote memorization of the sequence (i.e., Verbalization+Action 

condition) and (b) learning motor sequence by motor imitation without the use of any 
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language (i.e., Action Only condition).  Experiment 2 examined whether motor learning 

and performance would be facilitated by previous verbal rote memorization of the 

sequence (i.e., verbalization without motor practice). 



 

EXPERIMENT 1 

 
Method 

Participants 

  A total of 40 healthy undergraduate students participated in this study.  

Participants were psuedorandomly assigned (controlling for gender) to one of two groups, 

for a total of 20 participants in the Verbalization+Action group and 20 participants in the 

Action Only group.   Participants were recruited from the University of Utah’s 

Department of Psychology’s subject pool and each participant earned extra credit towards 

a psychology class in exchange for participation.  Participants were right-handed, 

between the ages of 18 and 27, and spoke English as their first or primary language.  To 

ensure that our sample was without any major impairment likely to affect our results, 

participants were screened using self-report measures for level of current depressive 

symptoms, the presence of ADHD symptoms, and executive abilities in everyday tasks.  

No significant differences were found between groups on any of the demographic 

variables.  See Table 1 for detailed sample characteristics.   

 This study was approved by the University of Utah Institutional Review Board.   
 
Written consent was obtained from each participant prior to participation in the study. 
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Table 1.   

Sample Demographics for Participants in Experiments 1 and 2 

 

 

Experiment 1 Experiment 2 

V+A 

(n = 20) 

A  

(n = 20) 

V 

(n = 20) 

Control 

(n = 20) 

Age (yrs) M 

SD 

Range 

20.4 

2.4 

18-27 

19.9 

2.2 

18-26 

19.9 

2.2 

18-25 

19.6 

2.2 

18-26 

Education (yrs) M 

SD 

Range 

13.0 

1.0 

12-15 

12.8 

0.8 

12-14 

12.8 

1.0 

12-15 

12.6 

0.9 

12-15 

Gender (% Male)  50% 45% 55% 40% 

Estimated FSIQ M 

SD 

Range 

105.2 

6.5 

90-117 

102.9 

8.5 

81-117 

106.9 

6.0 

95-116 

105.9 

5.4 

97-116 

BDI-II 

(Total Score) 

M 

SD 

Range 

4.8 

4.1 

0-13 

7.0 

6.4 

0-241 

5.8 

6.5 

0-281 

6.7 

4.0 

0-16 

BRIEF: GEC 

(T-score) 

M 

SD 

Range 

47.0 

6.2 

38-61 

49.6 

7.2 

37-60 

46.6 

6.4 

37-61 

46.0 

6.1 

36-59 

CAARS: ADHD 

Symptom Total 

M 

SD 

47.9 

7.6 

50.7 

11.5 

47.6 

11.9 

45.8 

8.9 
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(T-score) Range 40-64 33-75 32-82 32-63 

Note.  V+A = Verbalization+Action group; A = Action Only group; V = Verbalization 
Only group; Control = Control group; FSIQ = Full Scale IQ; BDI-II = Beck Depression 
Inventory-II; BRIEF = Behavioral Rating Inventory of Executive Functions; GEC = 
Global Executive Composite; CAARS = Conners Adult ADHD Rating Scale 
No significant differences were found between groups across any of the demographic 
variables. 
 

  

Table 1.  Continued 
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Instruments and Materials 

Motor learning task  

 The motor learning task used in this study was based on the Push-Turn-Tap-tap 

(PTT) task from the Behavioral Dyscontrol Scale-Electronic Version (Suchy, Derbidge & 

Cope, 2005).  Participants performed a sequence of five hand movements using the BDS-

EV response console (Figure 1).  The sequence was comprised of three different 

movements: (1) Push, pushing the joystick/lever upward one time, (2) Turn, turning the 

joystick/lever to the right one time, and (3) Tap-tap, tapping a large button two times.  

The sequence was psuedorandomized to control for more than two movements being 

repeated in a row.  The sequence was the same for all participants across both 

experiments.    

 Participants in the Verbalization+Action group were trained in a rote fashion by 

performing the sequence on the BDS-EV response console while observing a model and 

simultaneously vocalizing the verbal labels for each movement (i.e., using verbalization) 

as they performed the action.  Participants in the Action Only group were also trained by 

 

                            

Figure 1.  Behavioral Dyscontrol Scale – Electronic Version Response Console (Suchy, 
Derbidge, & Cope, 2005).  Participants were asked to perform a sequence of five hand 
movements (e.g., “turn,” “push,” “turn,” “taptap,” “push”) using the BDS-EV Response 
Console.   20” 

9” 
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performing the sequence on the BDS-EV response console while observing a model; 

however, in order to suppress verbal encoding, participants were required to vocalize “ba 

ba ba ba” while performing the sequence, similar to procedures used previously by 

Baddeley and colleagues (2001).  It is important to note that for the Action Only group, 

the words “push, turn, tap-tap” were never used to describe the movements being 

completed.   

 Learning trials.  Participants in both groups were trained to a predetermined 

criterion during the Learning Trials using a series of videos in which a model performed 

the sequence of movements with and without verbalization.  The purpose of the Learning 

Trials was to ensure that each participant learned the sequence well enough so that it was 

no longer kept within working or short-term memory.  The criterion was defined as the 

ability to perform the correct movement sequence five consecutive times without error 

following two separate brief distraction periods (see Figure 2 for a flow chart of motor 

learning to criterion).  During each distraction period, participants spent approximately 3 

minutes engaging in performance of paper and pencil tasks that consisted of visual 

scanning, sequencing of numbers or letters, or connecting dots in a certain order as 

quickly as possible.    

 The total number of training trials it took for each participant to reach criterion  
 
was recorded by hand.     
 
 Performance trials.  After being trained to the predetermined learning criterion, 

all participants completed the Performance Trials.  The purpose of the Performance Trials 

was to examine the effect of previous training across the four components of motor  
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Can the participant 

repeat (verbally and/or 

motorically) the 

sequence 5 times 

YES 

Complete 10 

trials with video 

YES 

YES 

Pre-training Complete 

NO 
 

NO 
 

Can the participant 

repeat (verbally and/or 

motorically) the 

sequence 5 times 

Can the participant 

repeat (verbally and/or 

motorically) the 

sequence 5 times 

Distraction Task 

Distraction Task 

NO 

Complete 5 

trials with video 

Complete 5 

trials with video 

Complete 5 

trials with video 

 

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 2. Training to Criterion Flow Chart. Participants in the Verbalization+Action, 
Action Only, and Veberalization Only groups were pretrained in the sequence either 
verbally and/or motorically depending on group assignment.  In order to proceed from the 
training session to performance trials, participants had to perform the correct movement 
sequence, in the method in which they were trained, five consecutive times without errors 
following two separate brief distraction periods.  In the case of the Verbalization Only 
group, participants did not perform the movement sequence, but rather recited the 
sequence verbally (i.e., “push, turn, taptap, etc.”).  During each distraction period, 
participants spent approximately 3 minutes engaging in performance of paper and pencil 
tasks that consisted of visual scanning, sequencing of numbers or letters, or connecting 
dots in a certain order as quickly as possible.  For the participants in the 
Verbalization+Action and Action Only groups (i.e., participants in Experiment 1) training 
to criterion constituted the Learning Trials.  Once training was complete, participants 
proceeded to the Performance Trials.  In contrast, once the participants in the 
Verbalization Only group (i.e., participants in Experiment 2) reached the learning 
criterion they proceeded to the practice trials along with the Control group. 
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performance.  More specifically, the Performance Trials examined whether or not pairing 

verbalization with action facilitated motor performance above and beyond just learning 

the sequence motorically.  The Performance Trials consisted of nine repetitions of the 

five-movement motor sequence.  The four components of motor performance (described 

below; M-PLN, M-CNT, M-SM, and P-SPD) were recorded on the computer.  Errors 

were followed by an audible beep and an “error” screen depicting the correct movement; 

participants were to perform the correct movement and to continue on with the sequence 

like before.   

 Motor learning task variables.  The motor learning task yielded five variables: 

(1) M-LRN, (2) M-PLN, (3) M-CNT, (4) M-SM, and (5) P-SPD.  All variables except for 

M-LRN were recorded via computer during the Performance Trials.    

 Motor learning (M-LRN).  M-LRN reflects the number of trials each participant 

took to learn the movement sequence and to reach the criterion during the Learning 

Trials.       

 Motor planning (M-PLN).  M-PLN refers to the internal model or action plan that 

precedes the correct motor commands in order to achieve the final movement goal 

(Buxbaum, 2005), taking into account both the movement goal and the discrete muscular 

movements that will be required (Keele, 1968).  Following the methodology of Suchy 

and Kraybill (2007), M-PLN was assessed by measuring the amount of time it took each 

participant to plan the complete movement sequence.  Thus, M-PLN time was considered 

to be the latency time between the last movement of the preceding sequence and the first 

movement of the next correct sequence.  Latencies that preceded incorrect sequences 
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were not included because this variable was designed to measure the time to plan correct 

sequences.   

 Motor control (M-CNT).  M-CNT refers to the planning and correct execution of 

discrete movements (Whiting, Vogt & Vereijken, 1992; D. B. Willingham, 1998) and is 

considered a separate and unique construct from both M-SM and M-PLN (Suchy & 

Kraybill, 2007; Whiting, et al., 1992).  Following the methodology of Suchy and Kraybill 

(2007), the speed, accuracy, and smoothness of the double tap, or tap-tap movement, was 

used to examine M-CNT.  If the movement was performed accurately (e.g., there were no 

perseverative responses), the latency time between the first tap and the second tap was 

recorded for each trial/sequence.       

 Motor set-maintenance (M-SM).  M-SM refers to performance accuracy across 

trials once the motor sequence has been learned.  M-SM was assessed by counting the 

total number errors made across each performance trial/sequence.  It should be noted that 

errors made on the tap-tap movement (e.g., conducting a single tap instead of double tap) 

were excluded from this total given that those errors are considered to reflect M-CNT 

rather than M-SM.     

 Performance speed (P-SPD).  P-SPD is directly impacted by how well the 

sequence has been learned and refers to the total amount of time required for completion 

of the entire sequence, measured in ms. P-SPD was calculated for all movement 

sequences regardless of errors made.   

 
Cognitive and Psychiatric Screening 
 
 All participants underwent a brief cognitive exam and completed three 

behavioral/psychiatric inventories.  The Shipley Institute of Living Scale (Zachary, 1986) 
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was used to derive an estimate of Full Scale IQ (FSIQ).  Since depressive symptomology 

is known to correlate with motor performance, we used the Beck Depression Inventory-II 

(BDI-II: Beck, Steer & Brown, 1996) to screen for the presence of moderate to severe 

depression.  Similarly, it is likely that both executive ability and attention also correlate 

both with motor performance and learning; therefore, we used the Behavioral Rating 

Inventory of Executive Functioning-Adult Version (BRIEF-A: Roth, Isquith & Gioia, 

2000) to screen for executive impairment and the Conners Attention Deficit Disorder 

Scale- Self-Report: Long Version (CAARS-S:L: Conners, Erhardt & Sparrow, 1998) to 

screen for attention problems.  Standard administration procedures were followed for all 

screening instruments. 

 
Procedures 
 
 Participants were psuedorandomly assigned (controlling for gender) to one of the 

two learning groups.  Participants first completed the Learning Trials.  Once the pre-

determined learning criterion was reached, participants proceeded to the Performance 

Trials.  There was a short break between the Learning and Performance Trials that lasted 

approximately 1-2 minutes, just long enough for the Performance Trials’ program to be 

started and the instructions given.  Following the motor sequence learning task, 

participants completed the brief cognitive assessment and filled out three 

behavioral/psychiatric inventories.  The total testing session lasted approximately 1 hour.   
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Results 

Preliminary Analyses   

 Zero-order correlations among the dependant variables are shown in Table 2.  As 

expected, M-PLN and M-CNT times are positively correlated with P-SPD.  Additionally, 

analyses indicated a significant correlation between M-LRN and M-CNT, in that the 

more trials it takes to reach criterion the slower the tap-tap movement is executed.  Partial  

correlations were also conducted controlling for Group membership; however, no 

differences were found in the outcome of the results and thus the relationship between the 

variables is not an artifact of Group.  See Table 3. 

 
Principal Analyses 
  
 Learning trials.  Nonparametric tests of the number of learning trials to reach 

criterion found that the Verbalization+Action group took significantly fewer trials to 

 
Table 2.   

Zero Order Correlations Among Dependent Variables in Experiment 1 

 M-PLN 

Time 

M-CNT 

Time 

M-SM 

Errors 

P-SPD    

Time 

M-LRN Total Trials .026      .429** .097 .286 

M-PLN Time  .190 -.198      .638 ** 

M-CNT Time   -.030     .652** 

M-SM Errors   -.136 

Note.  M-LRN = Motor Learning; M-PLN = Motor Planning; M-CNT = Motor Control; 
M-SM = Motor Set Maintenance; P-SPD = Performance Speed   
** indicates a correlation that is significant at the .01 (two-tailed) level. 
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Table 3.   

Partial Correlations Among Dependent Variables Controlling for Group in Experiment 1 

 M-PLN 

Time 

M-CNT 

Time 

M-SM 

Errors 

P-SPD    

Time 

M-LRN Total Trials .030      .321* .031 .194 

M-PLN Time  .180 -.228      .655 ** 

M-CNT Time   -.065     .598** 

M-SM Errors   -.225 

Note.  M-LRN = Motor Learning; M-PLN = Motor Planning; M-CNT = Motor Control; 
M-SM = Motor Set Maintenance; P-SPD = Performance Speed   
* indicates a correlation that is significant at the .05 (two-tailed) level. 
** indicates a correlation that is significant at the .01 (two-tailed) level. 
 
 
reach criterion than the Action Only group (Mann–Whitney U = 128.5, n1 = 20 n2 = 20, 

p = .008 two-tailed).  These findings suggest that the pairing of verbalization with action 

facilitated initial M-LRN of the complex motor sequence above and beyond just learning 

the sequence motorically. 

 Performance trials.  A total of nine sequence trials were completed during the 

Performance Trials.  For the purpose of the statistical analyses, these nine trials were 

grouped into three Blocks, with each Block reflecting a mean performance value of three 

contiguous sequence trials.  These mean values were used as dependent variables, and 

Block (i.e., 1st, 2nd, and 3rd) was used as the within-subjects factor.  For all analyses, 

Group was used as the between-subjects factor.  Statistics of interest included (a) a main 

effect of Group which would indicate an effect of the type of prior training on 

performance (as measured by the motor variables), and (b) a significant interaction 
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between Block and Group, which would reflect that prior training has a differential effect 

on performance across the three Blocks of trials.   

 Motor Planning (M-PLN).  Two-group repeated measures ANOVA of M-PLN 

time across Performance Blocks revealed no significant Group X Block interaction [F(2, 

76) = .278; p = .758, ηp
2=.005] and no significant differences in performance between the 

two Groups [F(1, 38) = .044; p = .835, ηp
2=.001].  These findings suggest that 

verbalization did not facilitate M-PLN above and beyond just learning the sequence 

motorically.  However, there was a significant effect of Block [F(2, 76) = 22.65; p < 

.001, ηp
2=.373], with both groups exhibiting significantly longer M-PLN time during 

Block 1 as compared to Blocks 2 and 3.  It is likely that the longer M-PLN time during 

the initial performance Block is associated with the brief interruption in performance 

when transitioning from the Learning to the Performance Trials.  See Figure 3a.   

 Motor Control (M-CNT).  Two-group repeated measures ANOVA of M-CNT 

time across the Performance Blocks indicated a significant effect of Group [F(1, 38) = 

5.77; p = .021, ηp
2=.132], with the Verbalization+Action group exhibiting significantly 

faster M-CNT time than the Action Only group across all performance Blocks.  In 

contrast, a one-way ANOVA revealed that there were no Group differences in M-CNT 

accuracy [F(1, 38) = .147; p = .703; Cohen’s d = .12].  This suggests that verbalization 

paired with action serves as a useful tool to facilitate smooth and rapid execution of 

discreet movements, but not necessarily the accuracy of the movements. There was no 

significant effect of Block [F(2, 76) = .082; p = .921, ηp
2=.019] or Group X Block 

interaction [F(2, 76) = .149; p = .862, ηp
2=.002].  See Figure 3b.   
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 Motor Set Maintenance (M-SM).  Two-group repeated measures ANOVA of M-

SM across the Performance Blocks yielded a significant Group X Block interaction [F(2, 

76) = 4.90; p = .033, ηp
2=.114], indicating that accuracy was affected differently across 

the Blocks depending on Group.  Follow-up analyses indicated that the interaction was 

primarily accounted for by differences in mean M-SM performance on Block 1, with the 

Action Only group exhibiting significantly more errors than the Verbalization+Action 

group [t(1, 38) = -2.30; p = .027; Cohen’s d = .73].  Similar to M-PLN, this pattern of 

performance suggests that the participants in the Action Only group likely experienced a 

loss of set associated with the brief interruption between the Learning and Performance 

trials.  Overall, these findings suggest that verbalization paired with action facilitates M-

SM across a shift in environment.  No significant main effects of Block [F(2, 76) = .029; 

p = .866, ηp
2=.001] or Group [F(1, 38) = .912; p = .346, ηp

2=.023] were found.  See 

Figure 3c. 

 Performance Speed (P-SPD).  Two-group repeated measures ANOVA of P-SPD 

time across Performance Blocks revealed no significant Group X Block interaction [F(2, 

76) = .165; p = .687, ηp
2=.004] and no significant differences in performance between 

Groups [F(1, 38) = 2.63; p = .113, ηp
2=.065].  As with M-PLN, these findings suggest 

that verbalization did not facilitate P-SPD above and beyond just learning the sequence 

motorically.  However, there was a significant effect of Block [F(2, 76) = 14.38; p = 

.001, ηp
2=.274], with both groups exhibiting significantly slower P-SPD time during 

Block 1 compared to Blocks 2 and 3 (See Figure 3d).  This is consistent with the longer 

planning time exhibited by both Groups during Block 1.   
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Figure 3.  Experiment 1:  Performance on the Discrete Motor Components Across 
Performance Blocks.  Participants in the Verbalization+Action group were pre-trained in 
the motor sequence by simultaneously performing the action sequence and by verbalizing 
the labels of each movement (i.e., “push, turn, taptap”).  Participants in the Action Only 
group were pretrained in the motor sequence by performing the action sequence, and in 
order to suppress verbal encoding of the sequence, they simultaneously performed a  
verbal interference task (i.e., saying “ba, ba, ba” out loud).  All participants completed 
Learning Trials, during which they were trained in the sequence to a predetermined 
learning criterion.  Following the Learning Trials all participants completed the 
Performance Trials, which consisted of a total of nine sequence trials.  For the purpose of 
the statistical analyses, these nine trials were grouped into three Blocks, with each Block 
reflecting a mean performance value of three contiguous sequence trials.  a.   Line graph 

d.  Performance Speed (P-SPD) 

= Verbalization+Action 

= Action Only 

Performance Blocks 

Performance Blocks 

1 2 3 
Performance Blocks 

c.  Motor-Set Maintenance (M-SM) 
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showing mean M-PLN latencies (in ms) across Performance Blocks.  While there was no 
significant interaction or main effect of Group, a significant main effect of Block was 
revealed (p = .001), with both Groups showing significantly longer M-PLN on Block 1 
compared to the later Blocks.  b.  Line graph showing mean M-CNT latencies (in ms) 
across Performance Blocks.  Analyses yielded a significant main effect of Group (p = 
.021).  c.  Line graph showing mean M-SM errors across Performance Blocks.  Analyses 
revealed a significant Group X Block interaction (p = .033).  Follow-up analyses 
indicated that the interaction was driven by a significant group difference on Performance 
Block 1 (p = .027).  d.  Line graph showing mean P-SPD time (in ms) across 
Performance Blocks.  While there was no significant interaction or main effect of Group, 
a significant main effect of Block was revealed (p = .001), with both Groups showing 
significantly slower P-SPD on Block 1 compared to the later Blocks.         
 
Figure 3. Continued

 



22 

 
Discussion 

 
 The findings from Experiment1 suggest that verbalization facilitates some aspects 

of motor performance, but not all.  Participants who learned the motor sequence by 

pairing verbalization with action took significantly fewer trials to learn the motor 

sequence than the group who only learned the sequence motorically.  Similarly, once the 

sequence has been learned, the group that learned the motor sequence using verbalization 

paired with action exhibited better performance on some, but not all, aspects of motor 

output.  In particular, the use of verbalization facilitated M-CNT speed and better 

maintenance of performance accuracy across the Performance Trials, particularly when 

following a brief interruption between Learning and Performance Trials.  Pairing 

verbalization with action did not appear to facilitate the planning of action sequences or 

performance speed above and beyond just learning the sequence motorically.  However, 

both M-PLN and P-SPD seemed to be affected by the brief interruption between the 

Learning and Performance Trials.  More specifically, both groups showed increased 

mean times on Block 1 compared to Blocks 2 and 3 indicating an improvement in 

performance across the Blocks.   



 

 

EXPERIMENT 2 

 
 While Experiment 1 shed some light on the contribution of verbalization to 

discrete components of motor learning, it remained unclear as to whether or not it was the 

pairing of the action and verbalization, or whether or not verbalization alone would be 

sufficient to facilitate certain aspects of motor performance.  Experiment 2 allowed us to 

tease these different mechanisms apart.  In Experiment 2, we examined if over-learning 

the verbal labels of the sequence in a rote fashion prior to actually performing the 

sequence motorically was enough to facilitate motor learning and motor performance. 

 
Method 

 
Participants 

 A separate group of 40 healthy undergraduate students participated in this study.  

Participants in Experiment 2 were pseudorandomly assigned (controlling for gender) to 

one of two groups.  20 participants were assigned to the Verbalization Only group and 20 

participants were assigned to the Control group.  Again, participants were recruited from 

the University of Utah’s Department of Psychology’s subject pool and each participant 

earned extra credit towards a psychology class in exchange for participation.  Participants 

met the same eligibility criteria as described in Experiment 1.  No significant differences 

were found between groups on any of the demographic variables.  See Table 1 for 

detailed sample characteristics. This study was approved by the University of Utah  

Institutional Review Board.  Written consent was obtained from each participant prior to
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participation in the study. 

 
Instruments and Materials 
 
 Motor learning task.  Using the same criterion described in Learning Trials of 

Experiment 1 (see Figure 2), participants in the Verbalization Only group rote-

memorized the verbal labels of the motor sequence.  More specifically, participants were 

trained to vocalize the action labels “push,” “turn,” and “tap-tap,” without having the 

benefit of seeing a model perform the sequence or the BDS-EV response console.  

Additionally, in order to suppress gestural or motoric encoding of the task sequence, 

participants were required to simultaneously pat their hands on the table.  After reaching 

the criterion, participants in the Verbalization Only group proceeded to the practice trials 

(described below).  Participants in the Control group proceeded to practice trials without 

any pretraining of the motor sequence or the verbal labels.  It should be noted that the 

Control group paired action and verbalization from the beginning; however, they did not 

have the opportunity to over-learn the sequence as the other groups did.      

 Practice.  Both the Verbalization Only and the Control group completed three 

practice trials.  The purpose of the practice trials was to introduce the task, providing 

brief exposure to the correct execution of each movement and the correspondence 

between movements and labels.  This was necessary because neither group had any 

previous knowledge of how to execute the sequence.  Following brief instructions on how 

to use the BDS-EV response console, the verbal labels of the five-movement sequence 

were displayed on the computer screen, with the movement that was to be performed 

displayed in capital letters.  If the movement was performed incorrectly, participants 

received an audible beep and an “error” screen that remained until the movement was 
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executed correctly.  The movements of the sequence were presented in this manner until 

the participants complete three trials of the five-movement sequence.    

 Learning and performance trials.  At the end of the practice trials, participants 

immediately proceeded to the Learning and Performance Trials, at which point the verbal 

labels on the screen disappeared and the participants continued to perform the sequence 

of movements from memory for an additional 15 trials.  As with Experiment 1, each trial 

consisted of the five-movement motor sequence.   Participants were told in advance that 

the instructions would disappear, at which point they were to continue to perform the 

sequence from memory.  As with the practice trials, errors were followed by an audible 

beep and an “error” screen that remained until the correct movement was executed.  

Otherwise, the computer screen remained black.       

 As with Experiment 1, after the groups learned the motor sequence, performance 

was assessed.  For the purpose of Experiment 2, the sequence was considered “learned” 

when (1) there no longer was a learning curve (i.e., there were no differences in accuracy) 

from one trial to the next, and (2) the groups exhibited comparable accuracy to (a) each 

other and (b) both Groups from Experiment 1 (i.e., there were no longer any differences 

in the number of errors among the four groups). 

  Motor learning task variables.  As was the case with Experiment 1, the motor 

learning task yielded five variables: (1) M-LRN, (2) M-PLN, (3) M-CNT, (4) M-SM, and 

(5) P-SPD.  M-PLN, M-CNT, M-SM, and P-SPD were measured following the 

methodology described in Experiment 1.  All variables were recorded on the computer. 

M-LRN is described below.        

 Motor learning (M-LRN).  M-LRN refers to an increase in movement accuracy 



26 

with practice over time (Willingham, 1998).  Therefore, we used accuracy to establish 

that adequate learning has taken place.  This construct was assessed by counting the total 

number errors made.  It should be noted that errors made on the second tap of the tap-tap 

movement were excluded from this total given that those errors are associated with motor 

control rather than motor learning.     

 
Cognitive and Psychiatric Screening 
 
 All participants underwent the same brief cognitive exam and completed the same 

three behavioral/psychiatric inventories as described in Experiment 1.   

 
Procedures 
 
 Participants were pseudorandomly assigned (controlling for gender) to one of two 

Groups: (1) Verbalization Only group or (2) Control group.  Participants in the 

Verbalization Only group underwent pretraining to criterion as described in the Learning 

Trials of Experiment 1.  Next, both groups completed three practice trials, which were 

immediately followed, without interruption, by the Learning and Performance Trials.  

Following the motor sequence learning task, participants completed the brief cognitive 

assessment and filled out three behavioral/psychiatric inventories.  The total testing 

session lasted approximately 1 hour.   

 
Results 

 
 The Learning and Performance Trials of Experiment 2 consisted of 15 sequence 

trials.  Similar to Experiment 1, for the purpose of the statistical analyses, the 15 trials in 

Experiment 2 were grouped into five Blocks with each Block consisting of three trials.  

For M-LRN, the total number of errors was calculated across the three sequence trials 



27 

within each Block.  For the four motor performance variables, mean performance was 

calculated across the three sequence trials within each Block.  This allowed for a total of 

five Blocks, which served as the within-subjects factors.  Learning and performance 

values were use as the dependant variables. For all analyses Group was used as the 

between-subjects factor.  Statistics of interest were the same as those described in 

Experiment 1. 

 
Preliminary Analyses 
 
  Zero-order correlations among the dependant variables are shown in Table 4.  As 

expected, all variables are positively correlated with M-LRN.  This suggests that how 

well one learns the motor sequence contributes to all discrete components of motor 

performance.  Also as expected, M-SM, M-PLN, and M-CNT positively correlate with P-

SPD.  Lastly, the analyses revealed that M-PLN is positively correlated with M-SM.  

This correlation suggests that participants may be taking longer to plan the action 

sequence following an error in the preceding trial.  As with Experiment 1, partial 

correlations were also conducted, controlling for group membership.  There were no 

differences in the outcome of the results, with the exception of a slight loss in 

significance on the M-SM and M-PLN correlation, demonstrating that the relationship 

among the variables is not an artifact of Group.  See Table 5. 

 
Principal Analyses 
 
 Learning trials.  In order to fully examine the contribution of verbalization 

training to the discrete motor components, we first separated the learning trials from the  

performance trials.  As described above, the sequence was considered learned when (1) 
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Table 4.   
 
Zero Order Correlations Among Dependent Variables in Experiment 2 

 M-PLN 

Time 

M-CNT 

Time 

M-SM 

Errors 

P-SPD    

Time 

M-LRN Errors .407**      .467** .602** .698* 

M-PLN Time  .153 .355*      .615 ** 

M-CNT Time   -.012     .505** 

M-SM Errors   .518** 

Note.  M-LRN = Motor Learning; M-PLN = Motor Planning; M-CNT = Motor Control; 
M-SM = Motor Set Maintenance; P-SPD = Performance Speed   
* indicates a correlation that is significant at the .05 (two-tailed) level. 
** indicates a correlation that is significant at the .01 (two-tailed) level. 
 

there no longer was a learning curve (i.e., there were no differences in accuracy) from 

one trial to the next, and (2) the groups exhibited comparable accuracy to (a) each other 

and (b) the mean performance of both groups from Experiment 1 (i.e., there were no 

longer any differences in the number of errors among the four groups).   

 First, to determine at which point there no longer was a learning curve, we 

conducted a within-subjects repeated measures ANOVA using accuracy as the dependant 

variables and block as the within subjects factor.  A separate analysis was used for each 

group.  The results indicated that both the Verbalization Only and the Control groups 

exhibited a learning curve across Blocks [F(1, 19) = 4.618; p = .045, ηp
2=.196] and [F(1, 

19) = 9.264; p = .007 , ηp
2=.328], respectively.  Although both groups showed learning 

across Blocks, the Control group exhibited a steeper learning curve than did the  

Verbalization Only group, indicating that the groups learned the motor sequence at 
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Table 5.   

Partial Correlations Among Dependent Variables Controlling for Group in Experiment 2 

 M-PLN 

Time 

M-CNT 

Time 

M-SM 

Errors 

P-SPD    

Time 

M-LRN Total Trials .334*      .396* .572** .654** 

M-PLN Time  .077 .311      .578** 

M-CNT Time   -.086     .452** 

M-SM Errors   .482** 

Note.  M-LRN = Motor Learning; M-PLN = Motor Planning; M-CNT = Motor Control; 
M-SM = Motor Set Maintenance; P-SPD = Performance Speed   
* indicates a correlation that is significant at the .05 (two-tailed) level. 
** indicates a correlation that is significant at the .01 (two-tailed) level. 
 

different rates across the Blocks of trials.  Paired-comparison t-tests revealed that 

although there were differences between blocks 1 and 2, there were no longer differences 

in M-LRN between Blocks 2 and 3 for either Group, with p >.10 and Cohen’s d = .61.  

These findings indicate that there was no learning curve beyond Block 2 for either Group.   

 Next, to determine when performance accuracy was comparable between Groups 

we completed t-tests comparing the two Groups on M-LRN across the Blocks. These 

analyses indicated that the Verbalization Only group made significantly fewer errors than 

the Control group on Blocks 1 and 2, [t(1, 38) = -2.67; p = .011; Cohen’s d = .84] and 

[t(1, 38) = -2.75; p = .009; Cohen’s d = .87], respectively.  However, there was no 

difference between groups in M-LRN on Block 3 [t(1, 38) = .000; p = 1.00; Cohen’s d = 

.00], indicating that after Blocks 1 and 2 (i.e., the first six sequences) both groups had 

learned the sequence of movements comparably.  Lastly, a one-sample t-test comparing 
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the mean accuracy rates of the Verbalization Only and Control groups to the mean 

accuracy rate of the Verbalization+Action group and the Action Only group from 

Experiment 1 indicated that at Block 3, performance was comparable [t(1,39) = .975; p = 

.336; Cohen’s d = .15].  In summary, all three criteria which considered the sequence 

“learned” were met at Block 3 for both groups.  Thus, we considered the trials within the 

first two Blocks as Learning Trials, and those within the latter three Blocks as 

Performance Trials.  

 Performance trials.  As stated above, the Performance Trials consisted of the 

latter three Blocks.  For the four motor performance variables, mean performance was 

calculated across the three sequence trials within each Block.    

 Motor planning (M-PLN).  Two-group repeated measures ANOVA of M-PLN 

time across Performance Blocks revealed a trend towards a significant difference in 

performance between Groups [F(1, 38) = 3.17; p = .083, ηp
2=.077], with the 

Verbalization Only group showing faster mean M-PLN time across all Blocks.  These 

findings suggest that learning the sequence verbally prior to engaging in motor action 

may facilitate the planning of a complex motor sequence. There was no main effect of 

Block [F(2, 76) = 1.19; p = .282, ηp
2=.030] and no significant Group X Block interaction 

[F(2, 76) = .929; p = .341, ηp
2=.024].  See Figure 4a.    

Motor Control (M-CNT).  Consistent with the findings from Experiment 1, two-

group repeated measures ANOVA of M-CNT time across the Performance Blocks 

indicated that there was a trend towards a significant effect of Group [F(1, 38) = 3.66; p = 

.063, ηp
2=.088], with the Verbalization Only group exhibiting faster mean M-CNT time 

than the Control group across all performance trials.  Also consistent with Experiment 1, 
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a one-way ANOVA revealed that there were no differences between Groups on M-CNT 

accuracy [F(1, 38) = 2.54; p = .119; Cohen’s d = .50], indicating that speed, but not 

accuracy, is improved by verbalization. There was no significant main effect of Block 

[F(2, 76) = .217; p = .644, ηp
2=.006] and no significant Group X Block interaction [F(2, 

76) = .005; p = .944, ηp
2=.006].  See Figure 4b.   

 Motor set-maintenance (M-SM).  Two-group repeated measures ANOVA of mean 

M-SM across the Performance Blocks revealed a trend towards a significant Group X 

Block interaction [F(2, 76) = 3.84; p = .057, ηp
2=.092], indicating that M-SM may have 

been affected differently across the trials depending on Group.  Follow-up independent 

sample t-tests yielded a trend towards loss of set-maintenance for the Control group.  

More specifically, the Control group performed significantly worse than the 

Verbalization Only group on performance Block 3 (t(1,38) = -2.17; p = .036; Cohen’s d = 

.69).  This is despite having adequately learned the sequence across the Learning Trials.  

No significant main effects of Block [F(2, 76) = .032; p = .860, ηp
2=.001] or Group [F(1, 

38) = 2.10; p = .156, ηp
2=.052] were found.  See Figure 4c.   

 Performance speed (P-SPD).  Two-group repeated measures ANOVA of mean P-

SPD time across Performance Blocks revealed a significant main effect of Group [F(1, 

38) = 4.49; p = .041, ηp
2=.106] with the Verbalization Only group performing faster 

across all Performance Trials than the Control group.  The findings suggest that 

verbalization training alone facilitates performance speed.  However, there was no 

significant Group X Block interaction [F(2, 76) = .887; p = .352, ηp
2=.023] and no 

significant main effect of Block [F(2, 76) = 1.58; p = .217, ηp
2=.052].  See Figure 4d.     
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Figure 4.  Experiment 2:  Performance on the Discrete Motor Components Across 
Performance Blocks.  Participants in the Verbalization Only group were pretrained in the 
sequence by verbalizing the labels of each movement (i.e., “push, turn, taptap”).  
Participants in the Control group received no pretraining.  After completing Learning 
Trials all participants completed the Performance Trials, which consisted of a total of 
nine sequence trials.  For the purpose of the statistical analyses, these nine trials were 
grouped into three Blocks, with each Block reflecting a mean performance value of three 
contiguous sequence trials.  a.   Line graph showing mean M-PLN latencies (in ms) 
across Performance Blocks.  Analyses indicated a trend towards a significant main effect 
of Group (p = .077) with the Verbalization Only group showing faster mean M-PLN time 
across all Blocks.  b.  Line graph showing mean M-CNT latencies (in ms) across 

1 2 3 
Performance Blocks 

= Verbalization+Action 

= Action Only 

c.  Motor-Set Maintenance (M-SM) d.  Performance Speed (P-SPD) 
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Performance Blocks.  Analyses yielded a trend towards a significant main effect of Group 
(p = .063), with the Verbalization Only group showing faster mean M-CNT time across 
all Blocks.   c.  Line graph showing mean M-SM errors across Performance Blocks.  
Analyses revealed a trend towards a significant Group X Block interaction (p = .057).  
Follow-up analyses indicated that the interaction was driven by a significant group 
difference on Performance Block 3 (p = .036).  d.  Line graph showing mean P-SPD time 
(in ms) across Performance Blocks.  Analyses yielded a significant main effect of Group 
(p = .041), with the Verbalization Only group showing faster P-SPD across all 
Performance Blocks.         
 
Figure 4. Continued. 
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Discussion                                                                                                                   

 The findings from Experiment 2 suggest that the mere rote learning of the verbal 

labels of the action sequence is enough to facilitate, to some degree, all aspects of motor 

performance.  More specifically, participants who had previous knowledge of the verbal 

labels of the action sequence showed a less dramatic learning curve than did the control 

group, indicating that verbalization facilitated the learning of the actual movements of the 

motor sequence.  Examination of the Performance Trials revealed several trends 

suggesting that verbalization facilitated the planning of the action sequences, the speed 

and control at which discrete movements are performed, the maintenance of motor 

performance across trials, and the overall speed at which the movement sequence is 

performed.   

 
Supplementary Analyses 

 Although the findings from Experiments 1 and 2 suggest that over-learning1 the 

verbal labels of a sequence facilitates motor skill acquisition and performance, it remains 

unclear as to how much over-learning the action itself also contributes to improved motor 

performance.  More specifically, both groups in Experiment 1 over-learned the action 

prior to performance, while neither group in Experiment 2 over-learned the action.  Thus, 

in supplementary analyses, we compared performances in Experiment 2 to performances 

in Experiment 1. 

                                                           
1
 The term “over-learning” the sequence refers to the participants having learned the 
sequence well enough that it no longer needs to be held in working or short-term 
memory.  Our learning criterion requires that participant’s perform the correct sequence 
five times consecutively following 2 consecutive brief distraction periods.      
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More specifically, we conducted four repeated measures ANOVAs in which we 

used M-CNT, M-PLN, M-SPD, and M-SM from the performance trials of both 

experiments as the dependant variables.  For these analyses, we created two between 

subjects factors that allowed us to pit Action against Verbalization across both 

experiments.  In particular, the between subjects factors were (1) Action 

(Verbalization+Action and Action Only groups) vs. No Action (Verbalization Only and 

Control groups) and (2) Verbalization (Verbalization+Action and Verbalization Only 

groups) vs. No Verbalization (Action Only and Control groups).  These analyses allowed 

us to determine whether over-learning Action, over-learning Verbalization, or interaction 

between the two facilitated performance.   

 The analyses revealed no significant main effects of Action compared to the No 

Action groups, and no significant interaction effects between the Action and 

Verbalization conditions.  As expected, participants who over-learned the verbal labels of 

the motor sequence (i.e., the Verbalization+Action and the Verbalization Only groups) 

showed better performance across several of the discrete motor components compared to 

the No Verbalization group.  More specifically, our findings suggest that over-learning 

the verbal labels of the motor sequence facilitates M-CNT [F(1, 76) = 9.42; p = .003, 

ηp
2=.110], P-SPD [F(1, 76) = 6..68; p = .012, ηp

2=.081], and to some extent M-SM [F(1, 

76) = 9.42; p = .091, ηp
2=.037].     

Lastly, we compared the number of trials it took the Verbalization Only group to 

reach the learning criterion, as compared to the Verbalization+Action and the Action 

Only groups   There were no significant differences between learning the verbal labels 
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alone (i.e., the Verbalization Only group2) or with actions (Verbalization+Action group) 

(Mann–Whitney U = 179.00, n1 = 20 n2 = 19, p = .504 two-tailed).  However, participants 

who learned the verbal labels learned the sequence in significantly fewer trials than those 

participants who only learned the actions of the sequence (Action Only group), (Mann–

Whitney U = 128.5, n1 = 20 n2 = 20, p = .008 two-tailed) and (Mann–Whitney 

U = 134.00, n1 = 20 n2 = 19, p = .040 two-tailed), respectively.  

                                                           
2
 It should be noted that for the M-LRN supplementary analyses, 1 participant was 
removed from the Verbalization Only group due to being an extreme outlier, taking 
significantly more trials to learn the sequence than the rest of the group.  This participant 
was included in all other analyses. 



 

 

GENERAL DISCUSSION 
 
 

 To our knowledge, this is the first study to explicitly explore which aspects of 

motor performance are affected, whether beneficially or deleteriously, by verbalization.  

Using a novel motor sequence learning task, we conducted two separate experiments that 

allowed us to better understand how verbalization contributed to motor learning, as well 

as to the various aspects of motor performance once a motor sequence had been 

adequately learned.  Experiment 1 compared motor learning and motor performance for 

two conditions: (a) learning motor sequence by imitation of both motor action and 

verbalization and (b) learning motor sequence by motor imitation without verbalization.  

Experiment 2 examined whether motor learning and performance would be facilitated by 

learning a sequence verbally using rote memorization (i.e., verbalization only).   

As expected, the findings from both Experiments indicated that verbalization, in 

particular rote verbal memorization of a sequence, facilitates some aspects of motor 

performance regardless of whether it is combined with action or not.  Interestingly, 

procedural (i.e., motoric) learning alone proved less efficacious than learning of the 

verbal labels alone.  Importantly, not all aspects of motor learning and motor output are 

affected equally by verbalization.  These findings are consistent with the literature, which 

has found that verbalization or explicit verbal instructions are facilitative in some, but not 

all, situations or populations (Anderson & Vogel, 1999; Boyd & Winstein, 2003, 2004; 

Landin, 1994; O'Callaghan & Couvadelli, 1998; Vintere, et al., 2004) and that various 
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disorders show impairments in different discrete aspects of motor output 

(Benecke, et al.,1987; Cermak, 1985; Dewey, 2002; Dick, et al., 1986; P. D. Thompson, 

et al., 1988; Willingham, et al., 1997).  Taken together, these findings underscore the 

importance of examining individual components of motor learning and motor output.  

The findings from both Experiments, as well as from the supplementary analyses, are 

summarized and discussed below.   

 
Motor Learning (M-LRN) 
 
 M-LRN was defined as an increase in movement accuracy with practice over time 

(D. Willingham, 1998).  Overall, the groups that over-learned the verbal labels of the 

sequence learned the motor sequence more quickly than their comparison groups.  While 

this is not surprising for the Groups in Experiment 2, given that the Control group had no 

previous exposure to the motor sequence, it is interesting that within Experiment 1, 

verbalization paired with action facilitated M-LRN above and beyond just learning the 

sequence motorically.  Our findings suggest that verbalization, regardless of whether it is 

paired with action or just learned via rote memorization, facilitates the M-LRN of a 

complex motor sequence. 

 The findings from the current study support previous reports, in that the use of 

verbalization while learning a novel complex action results in faster motor skill 

acquisition (Anderson & Vogel, 1999; Vintere, et al., 2004).  As an extension of prior 

research, our study adds the interesting finding that verbalization doesn’t necessarily have 

to be paired with action for improved motor skill acquisition.  Rather, learning the verbal 

labels of the action sequence via rote memorization is sufficient and facilitates motor skill 
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acquisition.  Thus, verbal rehearsal of the movement prior to even engaging in the actions 

will likely enhance the time in which a motor skill is initially learned.     

 
Performance Speed (P-SPD) 

 Performance speed refers to the overall speed at which the entire motor sequence 

was performed.  While in Experiment 1 there were no significant group differences on P-

SPD, in Experiment 2 the Verbalization Only group performed the sequence significantly 

faster than did the Control group.  Similarly, the supplementary analyses examining the 

results across both experiments indicated that those participants who were trained to use 

verbalization performed the entire sequence significantly faster than those who did not, 

regardless of whether they had the opportunity to practice the task motorically.  These 

findings are not surprising given that P-SPD is highly correlated with the speed of the 

other motor variables, as well as how well the sequence was learned.  More specifically, 

given that the participants in the Control group showed slower M-CNT, somewhat slower 

M-PLN, and increased errors both in the Learning and Performance Trials; it follows that 

their overall speed would also be slower.  Taken together, it appears that P-SPD is 

dependent on how well the motor sequence was learned, and since verbalization appears 

to facilitate learning, it is likely that verbalization contributes, at least in part, to the 

overall speed at which a sequence can be performed. 

 
Motor Control (M-CNT) 
 
 M-CNT refers to the correct execution of discrete movements (Whiting, et al., 

1992; D. Willingham, 1998) and is considered a construct that is separate and unique 

from other motor output variables (Whiting et al., 1992; Suchy and Kraybill, 2007).  We 
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used the simple double tap movement (i.e., tap-tap), that is, an over-learned movement 

that people perform regularly throughout their life, to assess M-CNT.  Despite its 

simplicity, this output variable seemed to be the most affected by the use of verbalization.  

Results from all analyses indicate that it is the memorization of the verbal labels of the 

sequence, rather than procedural learning of the action itself, that facilitates the smooth 

and rapid execution of discrete movements.  These findings corroborate several earlier 

reports that have found that verbalization contributes to enhanced quality or execution of 

motor performance (Anderson, 1997; Anderson & Vogel, 1999; Janelle, et al., 2003; 

Landin, 1994; Mandich, et al., 2001).  Further, these findings support Luria’s (1959; 

1961) early reports that verbalization facilitates motor control in young children, as well 

as in individuals with diminished capacity to internally control or regulate behavior.  

Lastly, these findings also support several studies that conclude that verbalization helps 

to control and execute action plans (Baddeley, et al., 2001; Emerson & Miyake, 2003; 

Goschke, 2000; Miyake, Emerson, Padilla & Ahn, 2004).  

 Although the current findings corroborate several other reports, past research has 

not addressed why verbalization facilitates M-CNT.  Our findings, together with the 

recent findings of Suchy and Kraybill (2007), suggest that as working memory load 

increases, M-CNT is deleteriously affected.    More specifically, in the Suchy and 

Kraybill study, participants, similar to those in our Control group (i.e., briefly exposed to 

verbal labels and action without the opportunity to over-learn the sequence), performed 

four different motor sequences, each of increasing length.  The sequences were 

comprised of the same three movements as described in the current study.  Suchy and 

Kraybill found that as sequence length increased (i.e., as working memory became more 
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taxed by increasingly longer sequences), participants performed the tap-tap movement 

more slowly.  In the current study, we found similar results, not by varying the length of 

the motor sequence, but by varying the access to verbal information about the motor 

sequence via pretraining. Specifically, in our study, those participants who had not had 

the opportunity to over-learn the verbal labels and thereby need to rely on working 

memory for performance exhibited slower M-CNT speeds than those participants who 

had over-learned the verbal labels of the sequence.  The following interpretations can be 

drawn from these two studies: (a) as working memory becomes taxed (either by increased 

sequence length or the lack of opportunity to over-learn verbal labels), M-CNT becomes 

negatively affected, and (b) if the verbal labels of the sequence are over-learned, M-CNT 

performance significantly improves. 

 While more research is needed to better understand exactly how working memory 

contributes to motor control, the most likely explanation is that even simple, over-

practiced and automatized movements require some level of attentional control, and this 

attentional control is allocated or mediated by working memory.  Regardless of the exact 

mechanism, our findings are consistent with other reports that increased cognitive load 

degrades motor performance.  In fact, several other studies have found that simple 

automatized movements (i.e., walking and balance) can be negatively affected by having 

participants simultaneously complete relatively simple cognitive or motor tasks (Abbud, 

Li & DeMont, 2009; Cherng, Liang, Hwang & Chen, 2007; Dubost, et al., 2006; 

Hausdorff, Yogev, Springer, Simon & Giladi, 2005; Swanenburg, de Bruin, Uebelhart & 

Mulder, 2009).   
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Motor Set-Maintenance (M-SM) 
 
 M-SM refers to the ability to maintain accurate performance once the motor 

sequence has been learned.  The results showed that having over-learned the verbal labels 

(whether together with action and prior to action) helped maintain mental set.   

Interestingly, however, the two groups with poorer ability to maintain mental set (i.e., 

participants who had not over-learned the verbal labels) differed from each other in the 

type of set loss they exhibited.  In Experiment 1, participants in the Action Only group 

showed an increase in errors immediately following the brief interruption between the 

Learning and Performance Trials, but then quickly returned to a level of performance that 

was comparable to that of the participants in the Verbalization+Action group (see Figure 

3c).  In contrast, in Experiment 2, the participants in the Control group initially showed 

comparable performance to the participants in the Verbalization Only group, but became 

progressively less able to maintain mental set  (i.e., made more errors) across the 

Performance Trials (see Figure 4c).  Taken together, these findings support the use of 

verbalization to facilitate motor set-maintenance both across a brief interruption and a 

shift in environment, as well as across long series of Performance Trials.  

 The somewhat different patterns of set loss for the two groups who did not over-

learn the labels likely reflect somewhat different mechanisms.  First, with regard to 

poorer performance of the Control group in Experiment 2, it is important to recall that the 

other three groups in the study (i.e., Verbalization+Action, Action Only, and 

Verbalization Only) were exposed to the sequence prior to the Performance Trials.  The 

participants within these groups had the opportunity to over-learn the sequence (either 
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verbally and/or motorically) to the point that it no longer needed to be held in working 

memory, as indicated by accurate performance following several distracter tasks.  In 

other words, the information about the sequence was held in other, more permanent, 

memory store, from which it could be retrieved following distractions or interruptions. 

Since the participants in the Control group did not have the opportunity to over-learn the 

motor sequence (either motorically or verbally) and commit it to more permanent 

memory store, it is likely that they needed to hold the sequence in their working memory 

during execution of the Performance Trials.  If that is the case, then loss of set likely 

reflected momentary distractions that presented themselves as the participants continued 

to execute the sequence.  This interpretation is consistent with the notion that information 

stored in working memory is difficult to maintain and is easily compromised by 

distractions (Baddeley, 1986; Sakai & Passingham, 2004).   

 In contrast to the pattern exhibited by the participants in the Control group, the 

participants in the Action Only group from Experiment 1 showed a decrement in 

performance following a brief interruption in the task.  This decrement occurred despite 

the fact that these participants had previously learned to perform the motor sequence to a 

predetermined learning criterion.  There are several possible explanations for this loss of 

set.  One explanation for this pattern of performance is that the participants in the Action 

Only group may have not automatized the task as completely as those had memorized the 

verbal labels and, as a result, may have been relying, at least in part, on their working 

memory to perform the task.  If this was the case, the brief interruption in the task could 

have distracted the participants enough that they were no longer able to maintain the 

sequence in their working memory, resulting in increased errors on the initial 
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Performance Block.  Interestingly, however, despite the initial loss of set, the participants 

in the Action Only group quickly regained set and performed comparably to their 

comparison group for the remaining trials.  This pattern demonstrates that while they 

were distracted by the brief interruption, there was some indication that they were not 

completely relying on their working memory to perform the motor sequence.  An 

alternative explanation for this pattern of performance may be that the verbal interference 

task performed by the participants in the Action Only group (i.e., saying “ba, ba, ba) put 

an increased load on working memory, above and beyond just learning the actions of the 

sequence.  This would be consistent with the findings of Baddley et al. (2001), which 

showed that simultaneous verbal interference taxes working memory, which in turn slows 

the ability to switch between tasks.  It is possible that this increased load resulted in a loss 

of set following the brief interruption.  Further research is needed to tease these two 

explanations apart.   

 Overall, it appears that verbal rote memorization of the sequence likely facilitates 

the long-term storage of the motor sequence and thus a loss of set does not occur, either 

across performance trials or following a brief interruption in the task.  Again, this 

suggests that over-learning the verbal labels of the sequence serves as a mechanism to 

enhance motor performance.    

 
Motor Planning (M-PLN) 
 
 M-PLN refers to the internal model or action plan that precedes the correct motor 

commands in order to achieve the final movement goal (Buxbaum, 2005), taking into 

account both the movement goal and the discrete muscular movements that will be 

required (Keele, 1968).  For this study, M-PLN was measured as the latency time that 
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preceded the first movement of each correct action sequence.  Overall, our findings 

provide evidence that verbalization does not facilitate M-PLN above and beyond just 

learning the sequence motorically.  However, previous verbal knowledge of the sequence 

(as compared to no prior knowledge of the sequence) does seem to contribute to the 

speed at which a motor sequence can be planned and organized.   

 Although there was no main effect of verbalization (i.e., Group) on M-PLN, there 

was a difference in performance on the initial Performance Block for all participants in 

Experiment 1.  More specifically, both the Verbalization+Action and the Action Only 

groups showed significantly slower M-PLN time in the initial Performance Trials as 

compared to the later trials.  Interestingly, this was not the case for participants in 

Experiment 2.  This effect is most likely associated with the brief interruption that 

occurred between the Learning and Performance Trials.  While this brief interruption was 

not intended to have an effect on performance, the fact that it did provides some insight 

into the construct of M-PLN.   

 It appears that that M-PLN is more affected by task interruption than the other 

motor performance variables, regardless of whether or not the participants were using 

verbalization. In particular, in Experiment 1, the Learning and Performance Trials were 

separated by a brief period of interruption, during which the Performance Trials program 

was started and the instructions given.  Immediately following this brief interruption, 

participants in both groups exhibited M-PLN latencies that were 1.5 to 2 times longer 

than those exhibited during the remainder of their performance.  Given that (a) both 

groups had ample opportunity to practice the task prior to this interruption, and (b) their 

latencies appeared to reach an asymptote immediately following the initial block of 
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Performance Trials, it follows that the longer latencies during the initial block reflected a 

temporary increase in M-PLN time.  This effect parallels the findings of Suchy and 

Kraybill (2008) that M-PLN, assessed in a manner identical to the present study, is 

deleteriously affected by task novelty and task complexity.   

 One explanation for this increase in M-PLN may be that despite the participants 

having over-learned the motor sequence, the task instructions introduced a perceived 

increase in task complexity, which deleteriously affected the M-PLN time in the initial 

Performance Block.  A second explanation is that, perhaps, the interruption caused 

enough of a distraction that the participants needed to retrieve or “reactivate” the motor 

programs which resulted in the prolonged M-PLN time for the initial Performance Block.   

 Although past research has revealed reliable and robust association between M-

PLN and executive functioning (Kraybill & Suchy, 2008; Suchy, et al., 2005; Suchy & 

Kraybill, 2007; Suchy, Kraybill & Gidley Larson, 2009; Wright, Black, Immink, 

Brueckner & Magnuson, 2004), our present results suggest that this association is not 

mediated by working memory.  In particular, in contrast to some of the other motor 

output variables, M-PLN was relatively unaffected by memorization of the sequences 

verbally.  In other words, freeing up working memory by prior memorization did not 

improve the M-PLN time.   Thus, although increases in sequence length have been shown 

to require increases M-PLN latencies (Suchy & Kraybill, 2007), this effect likely cannot 

be explained by increases in working memory load.     

 
Clinical Implications 

 Verbalization has been used across various populations in rehabilitation, despite a 

lack of clear understanding of exactly how it contributes to M-LRN and to the other 
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discrete components of motor performance.  Although the current study provides insight 

into the contributions of verbalization to the discrete components of motor learning and 

performance, which can help inform some aspects of cognitive and motor rehabilitation, 

more research is needed in this area.  The direct implications of the current study to 

clinical populations are summarized and discussed briefly below. 

 First, verbalization does not have to be paired with action in order to facilitate 

some aspects of motor performance.  In fact, verbal rote memorization of the action 

sequence prior to performance appears to be sufficient to improve motor accuracy, 

learning, control, and speed.  This finding is consistent with O'Callaghan and 

Couvadelli’s (1998) report that the memorization of verbal scripts helped ameliorate 

executive and visuomotor impairment, as well as facilitated motor skill transfer in three 

patients with TBI.  Our findings suggest that the use of this declarative cognitive strategy 

may be helpful for individuals who have difficulties with procedural learning, individuals 

who have impairments in the frontal networks which help with the initial learning of 

motor sequences, or those individuals with specific impairments in M-CNT or M-LRN.  

 Second, verbalization may facilitate various aspects of motor output by reducing 

the load placed on the frontal networks, particularly by decreasing the reliance on 

working memory.  This finding is particularly important for individuals with immature or 

damaged frontal brain regions and would be consistent with Luria’s findings that 

verbalization facilitates motor control in young children, as well as in individuals with 

diminished capacity to internally control or regulate behavior (1959; 1961).  Further, 

recent research indicates that individuals with Huntington’s disease have difficulty 

achieving automaticity in their movements, due to increased demands placed on their 
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frontal networks (Thompson, et al., 2009); it is possible that over-learning the verbal 

labels of the action sequence via rote memorization prior to performance may improve 

movement automaticity.  Thus, in a sense the use of verbalization may help those who 

have difficulty encoding information procedurally.     

   Lastly, while not specific to verbalization, our study shows that disruption or 

interruption slows the time in which someone is able to plan and prepare a subsequent 

motor action.  This finding is consistent with a large body of research on switching costs 

incurred during switching from one action to another (Hyafil, Summerfield & Koechlin, 

2009; Monsell, 2003).  Given that these findings were from healthy college-aged adults 

with no apparent weaknesses or impairments, it is likely that interruptions are very costly 

for individuals with limited resources.  Therefore, it is important to limit interruptions 

and distractions when working with clinical populations. 

 



 

 

LIMITATIONS AND FUTURE DIRECTIONS 
 

 
 Although the findings of the current study are interesting and have clinical 

implications, replication of the findings is important, particularly in various patient 

populations.  Given that our findings suggest that verbalization facilitates motor 

performance by decreasing the load on working memory, future studies should include 

populations with executive and attentional impairments as well as various age cohorts.  

Additionally, future research should have an increased number of Performance Trials in 

order to better understand how verbalization contributes to performance over time.  

Lastly, future research should examine the mechanisms by which verbalization, 

particularly verbal rote memorization, facilitates motor performance.  By gaining more 

understanding of these underlying processes we will be able to better inform cognitive 

and motor rehabilitation. 



 

 

SUMMARY 
 
 

 This is the first study to examine the contribution of verbalization to motor 

learning and to the discrete components of motor performance.  Overall, our study 

indicates that verbalization facilitates (1) the initial learning of a complex motor 

sequence, (2) the speed of execution of simple discrete movements, (3) the maintenance 

of performance over time, and (4) to some degree the overall speed at which a motor 

sequence is performed.  While our findings corroborate previous research, our study adds 

to this body of research with the findings that (a) verbalization does not have to be paired 

with action to facilitate performance and (b) that mere rote memorization of the verbal 

labels of the motor sequence facilitates many aspects of performance above and beyond 

learning the sequence motorically.  Further, while much more research is needed to fully 

understand this relationship, our findings suggest that over-learning the verbal labels of 

the sequence serves as a mechanism to enhance motor performance, particularly with 

regard to the speed and control of discrete movements and the maintenance of 

performance overtime.  More specifically, it appears that over-learning the verbal labels 

of the sequence contributes by decreasing the load placed on working memory and by 

initiating a faster transition of the motor sequence from short to long-term memory.  

Lastly, our findings have direct implications for cognitive and motor rehabilitation in 

clinical populations.
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