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Monitoring Breathing via Signal Strength in
Wireless Networks

Neal Patwari, Joey Wilson, Sai Ananthanarayanan, Sneha K. Kasera, and Dwayne R. Westenskow

Abstract—This paper shows experimentally that standard wireless networks which measure received signal strength (RSS) can be
used to reliably detect human breathing and estimate the breathing rate, an application we call “BreathTaking”. We present analysis
showing that, as a first order approximation, breathing induces sinusoidal variation in the measured RSS on a link, with amplitude a
function of the relative amplitude and phase of the breathing-affected multipath. We show that although an individual link may not
reliably detect breathing, the collective spectral content of a network of devices reliably indicates the presence and rate of breathing.
We present a maximum likelihood estimator (MLE) of breathing rate, amplitude, and phase, which uses the RSS data from many links
simultaneously. We show experimental results which demonstrate that reliable detection and frequency estimation is possible with 30
seconds of data, within 0.07 to 0.42 breaths per minute (bpm) RMS error in several experiments. The experiments also indicate that
the use of directional antennas may improve the systems robustness to external motion.

Index Terms—Wireless sensor networks, health care, sensing, statistical signal processing, radio propagation

1 INTRODUCTION

IN this paper, we explore the ability to detect and monitor
breathing using the changes in received signal strength

(RSS) measured on many links in a deployed wireless net-
work. The ability of a wireless network to make measure-
ments that can monitor a person’s breathing can create new
opportunities for improving patient monitoring in health
care applications. As one example, post-surgical patients
can die from respiratory depression and airway obstruc-
tion, which are unfortunately common after surgery due
the difficulty of correctly dosing sedatives and pain med-
ications administered to a patient [1]. Reliable respiration
monitoring is critical to detection of these conditions [2]–[4].
Breathing monitoring also has application in diagnosis and
treatment for obstructive sleep apnea, in which a person
experiences periods of low breathing rate or long pauses in
breathing while sleeping [5]. Finally, breathing monitoring
may have application in detecting sudden infant death syn-
drome (SIDS), which is one of the largest causes of death
in infants. Parents with a child at high risk for SIDS may
wish to use a baby breathing monitor to alert them in case
their child’s breathing becomes depressed or stops.
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We use of measurements of RSS between many pairs of
wireless devices in a deployed network to non-invasively
detect and monitor a person’s breathing, an application
we call BreathTaking. While severe fading in mobile radio
channels is expected, it is counterintuitive that small
changes in a person’s size as a result of their breathing
could be detected using measurements of RSS. However,
in this paper, we demonstrate that in an otherwise station-
ary environment, when we use the data collected on many
links between static wireless devices, breathing monitoring
is not only possible, but remarkably reliable.

Our research on BreathTaking is motivated by experi-
mental observations. We have observed that when a person
is standing on or near the line-of-sight (LOS) of a static
radio link, the RSS can be changed simply by the person’s
inhaling and exhaling. This change in RSS may be caused,
as we describe in Section 2.2, by the same mechanism that
enables radar systems to be able to measure breathing [6],
that is, a path that interacts with a person’s chest experi-
ences a periodic change in its time delay. In fact, when we
measure the actual breathing rate and analyze the power
spectral density of the RSS link data from the network as a
whole, as shown in Fig. 1, we see a peak very close to the
actual breathing rate.

Our BreathTaking does not provide a direct measure of
breathing. In contrast to End-Tidal CO2 monitoring, for
example, we do not measure the gasses exhaled from a
person’s nose. We simply make an observation about the
presence (or absence) of a strong frequency component in
the measured RSS in the human breathing range. Adults, at
rest, breathe at about 14 breaths per minute (bpm) [7], while
newborns breathe at 37 bpm [8]. To be inclusive, we con-
sider a range of 10 to 40 bpm (0.167 to 0.667 Hz). Few other
objects have cyclic motion with periodicity in this range,
but if there were such an object in the deployment region,
it might cause the same type of observation in the network
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Fig. 1. Normalized averaged power spectral density (PSD) vs. frequency
(Hz). Total PSD is defined as the argument of (8). The peak of the PSD
plot is at 0.253 Hz (15.18 bpm), compared to the actual breathing rate
of 0.250 Hz (15 bpm), shown as a vertical dashed line.

RSS data. Context remains important to interpret results
from the proposed system. In addition, as this paper does
not present a study of a medical device in a patient-trial,
we do not claim that the system has immediate use as a
replacement for other respiration monitors.

In this paper, we make the following important con-
tributions in relation to system design, capabilities, and
limitations of BreathTaking. First, we develop methods to
accurately estimate the breathing rate and reliably detect
breathing of a person in the deployment area of a wire-
less network by considering the RSS measurements on
many links simultaneously. We approximate the breath-
ing signal to be sinusoidal and use the maximum like-
lihood estimation (MLE) to estimate the breathing rate.
Second, we perform extensive experimental evaluation of
BreathTaking in an indoor setting. We demonstrate mon-
itoring the breathing of an otherwise motionless person,
in a hospital room with no other person present. With
thirty seconds of RSS data in a twenty-device network,
we demonstrate (1) breathing rate estimates with RMSE
between 0.07-0.4 breaths per minute (bpm); (2) a breathing
detector without false alarms or missed detections during
experiments performed with devices connected to direc-
tional antennas. We address the performance as a function
of the number of devices in the network, relative position of
the person with respect to the sensors, and actual breathing
rate.

Finally, we quantitatively address the following key
questions that relate to the capability to use RSS measure-
ments from static wireless networks to monitor breathing
for the above-described applications:

1) What is the benefit of using data from multiple links
simultaneously, as opposed to from one link?

2) How accurately can breathing rate be estimated?
3) How long of a measurement duration is required?
4) What is the effect of the directionality of the anten-

nas?
5) How many devices are required for accurate moni-

toring?

6) Is there information in the phase of the breathing
signal?

Breathing monitoring in a wireless network has appli-
cations and implications besides health care. Although we
do not explore in this paper a breathing detection system
for search and rescue teams, such a system could be very
useful. In this system idea, rescue workers would arrive
at a collapsed building and deploy small transceivers into
the collapsed building. When still, the transceivers would
measure RSS between nodes in the network and monitor
for periodic signals which might indicate the breathing of
someone still alive inside. On the other hand, the abil-
ity to measure breathing with a wireless network has
privacy implications. We have shown previously that a net-
work deployed around the external walls of a building
can detect and track a person who is moving or changing
position [9], [10]. If this system can also detect a person’s
breathing, it can also detect people who are sitting or lay-
ing motionless. In fact, research published after submission
of this manuscript shows that breathing can be detected
via RSS on links that cross through walls and furniture
in an apartment, and that the breathing but otherwise sta-
tionary body’s location can be estimated [11]. Such system
ideas and security implications should be explored in future
research.

The rest of the paper is organized as follows. In Section 2
we present the approach we have used for BreathTaking.
Next, we describe the experimental testbed and method-
ology in Section 3. The results of the experiments are
presented and discussed in Section 4. Finally, related work
and conclusions are presented in Sections 5 and 6.

2 METHODS

In this section, we define the measurements, models, and
goals of the BreathTaking system.

2.1 Network
We assume a network in which received power (also called
RSS) measurements can be made on many links between
pairs of wireless devices. We assume these measurements
can be made often, at regular intervals. Specifically, assum-
ing a maximum breathing rate of 40 breaths per minute,
BreathTaking requires RSS measurements to be made at a
rate higher than 4/3 Hz, the Nyquist sampling rate.

We denote yl(i) to be the dBm received power on link
l measured at time index i. Note that link l is an ordered
pair (tl, rl) of the particular transmitter tl and receiver rl
for link l. We do not generally require full connectivity of
the network, and instead, assume that connected links are
numbered from 1 through L, where L is the total number
of measured links. We wish to maximize L and thus use
a wireless sensor network with a mesh topology in our
experiments, although we do not exclude networks with
other topologies.

2.2 Justification of a Sinusoidal Model
We have observed experimentally that breathing causes
sinusoidal changes in the RSS measurements yl(i) on some
links l. In this section, we justify this sinusoidal change
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model as being the result of an existing model for the
changes caused by a breathing person to RF multipath
channels.

Venkatesh et al. propose that, with a breathing subject in
an otherwise static environment, that a multipath compo-
nent reflects from the subjects moving chest cavity, causing
that path to have a propagation delay τb(t) that is sinusoidal
with time t [12],

τb(t) = τ0 + τd sin 2π fbt,

where τ0 is the nominal propagation delay, τd is the maxi-
mum deviation in propagation delay due to chest inhalation
or exhalation compared to the nominal level, and fb is
the breathing frequency. Note that the periodic model for
time delay is commonly observed and used in breathing
detection research and is itself the subject of considerable
research [13]. Also, we use continuous time t to follow
the notation of [12], which is simply t = iTs, where Ts is
the sampling period. From this model, and the assumption
that the rest of the environment is static, the time-varying
channel impulse response is [12] is given by:

h(t, τ ) =
M∑

m=1

αmδ(τ − τm) + α0δ(τ − τb(t)),

where {αm}m are the (complex) amplitudes of the M static
multipath, α0 is the amplitude of the breathing-affected
multipath, and δ() is the Dirac impulse function. Note that
t is the “observation time” [14], which changes very slowly
compared to τ , the time delay. The channel frequency
response at any observation time t is,

H(f ) =
M∑

m=1

αme−j2π f τm + α0e−j2π f (τ0+τd sin 2π fbt).

We can group the terms as:

H(f ) = A + a0e−j�θ sin 2π fbt. (1)

where �θ = 2π f τd, a0 = α0e−j2π f τ0 , and

A =
M∑

m=0

αme−j2π f τm . (2)

We refer to A as the static complex channel gain, as it relates
to the phasor sum of paths not affected by breathing. When
we record the received signal strength (RSS) measurement
for a narrowband device, we make a measurement that is
a function of |H(f )|2, the channel gain. In particular, RSS y
is a quantized measurement of P + 20 log10 |H(f )|, for some
constant P, so

y = P + 20 log10

∣∣∣A + a0e−j�θ sin 2π fbt
∣∣∣ (3)

As the phase of the a0 term changes due to the peri-
odic increase and decrease of the path length, y changes,
as shown in the examples in Fig. 2. The closer |a0| is to |A|,
the larger the change in y. As an example, in Fig. 2(a), for
the given A, a0 and �θ , |H(f )| varies from 4.4 to 5, which
corresponds to a dB change in P of about 1.1 dB. In con-
trast, if |A| is very small, as in Fig. 2(b), the same a0 and
�θ causes |H(f )| to vary from 2.0 to 2.6, which corresponds
to a dB change in P of about 2.3 dB.

Fig. 2. Breathing component, a0e−j�θ sin 2π fbt and static complex chan-
nel gain A add in a phasor sum. The change in 20 log10 |H(f )| is most
dramatic when a0 and A have similar magnitudes and perpendicular
angles, as in (b), and less dramatic in (a).

Using a first-order Taylor series expansion (3) for the
case when �θ is close to zero, as shown in the Appendix,
available online, we can approximate y(t) as,

y(t) ≈ P + 10 log10 |A + α0|2 +
2|A||a0| sin(∠a0 − ∠A)

|A + a0|2 �θ sin 2π fbt, (4)

where ∠· indicates the angle of its complex argument.
Equation (4) shows an additive sinusoidal term at the

breathing frequency. Due to the sin(∠a0 −∠A), when a0 and
A are in the same direction (or 180o apart), the amplitude of
breathing will be small. Further, due to the |A||a0|/|A + a0|2
term, the breathing sinusoid will have highest amplitude
when A and a0 have similar magnitude. In the typical
case in which relatively low-power multipath are affected
by breathing, A and a0 will have similar magnitude pre-
sumably when the phasor sum in (2) that determines
A is a destructive sum. We will demonstrate this idea
experimentally in Section 4.3.

2.3 Signal Model
Based on the analysis in Section 2.2, we have a signal model
for our samples, taken at sample times t = iTs, of the RSS
in two cases, when there is breathing, and when there is
no breathing present in the environment. In this section,
we state the signal model in the presence of noise for these
two cases.

In the absence of any motion in the environment of the
network, we denote

yl(i) = ȳl + εl(i), (5)

where ȳl is the mean RSS for link l and εl(i) is additive
noise. We assume that the noise on link l is i.i.d. zero-mean
Gaussian. We also assume that the noise εl(i) is independent
on different links l. In the presence of a breathing person,
we assume that the link RSS has an additional sinusoidal
term,

yl(i) = ȳl + Al cos(2π fTsi + φl) + εl(i), (6)

where Al, φl, and f are the amplitude, phase, and frequency,
respectively, of the periodic component of the RSS signal on
link l, and Ts is the sampling period. We assume that the
periodic component due to breathing would have the same
frequency on all links l, and that the sampling period is
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made to be identical on all links, thus we do not use a sub-
script l for frequency f . Phase and amplitude are expected
to differ between links.

2.4 Framework
We denote the measured signal on link l as a vector,

yl = [yl(1), . . . , yl(N)]ᵀ

where N is the total number of samples, and ()ᵀ indicates
the vector transpose. Because the sampling period is Ts,
the measurement vector corresponds to what we call the
observation period T,

T = NTs.

The observation period T is related to the latency of breath-
ing monitoring, since we measure RSS for a duration T
before obtaining estimates of breathing rate and detecting
whether or not breathing occurred.

Our objective from the measurements yl, for l = 1, . . . L,
is to detect whether or not a person is breathing within
the network, and to estimate important parameters of the
model, which we denote θ ,

θ = [AT,φT, f ]T

where A = [A1, . . . , AL]T and φ = [φ1, . . . , φL]T. Of most
interest is the frequency f , as human breathing has a char-
acteristic frequency range, from fmin to fmax, as discussed
in the Introduction. In this paper, we detect breathing only
within fmin = 0.167 Hz to fmax = 0.667 Hz, and in general,
we assume that the range is given.

2.5 DC Removal Filtering
When estimating the power spectral density of noisy, finite-
duration yl signals, the mean values ȳl (the DC component)
can “hide” the power of lower-amplitude sinusoidal com-
ponents. Yet the DC component does not hold information
about the presence or absence of breathing. Since we
assume that breathing is not present below a frequency of
fmin, we address this problem simply by using a high pass
filter which strongly attenuates the DC component. We do
not require a linear-phase filter, but we do need a nearly
flat amplitude gain above fmin, since we do not want our
system to bias towards some frequencies because they have
been amplified by a filter ripple. In all results in this paper,
we use a 7th order Chebychev high-pass filter with max-
imum passband ripple of 0.1 dB and passband frequency
fmin = 0.167 Hz. An order of 7 was found to be sufficient to
have at least 40 dB attenuation at frequencies lower than 0.1
Hz. For all further discussion, we assume that each link’s
yl(i) signal has been filtered using this high-pass filter, and
thus ȳl = 0.

2.6 Breathing Estimation
Breathing frequency estimation plays a primary role in
breathing detection, and thus we discuss frequency esti-
mation prior to breathing detection. In this section, we
present the maximum likelihood estimate (MLE) of breath-
ing parameters, including frequency, link amplitudes, and
link phases, given the model presented in Section 2.4.

Maximum likelihood estimation of θ is an extension of
the standard sinusoid parameter estimation problem [15,
p. 193–195] in which there is a single signal composed of
one sinusoid of unknown phase, amplitude, and frequency
in additive white Gaussian noise. In our case, we addi-
tionally have L different link signals, each with its own
amplitude and phase, and we have a frequency limited to
the range [fmin, fmax].

In our case, under the model that the noise is Gaussian
with PSD that is flat in the band of interest in the presence
of breathing1, the likelihood function is maximized when
the following function J is minimized for A, φ, and fmin ≤
f ≤ fmax:

J(θ) =
L∑

l=1

N∑

i=1

[
yl(i) − Al cos(2π fTsi + φl)

]2 (7)

One can modify the derivation of [15, p. 193–195] for this
case, that is, to minimize J(θ) in (7), and show that a good
approximation of the MLE of frequency f̂ is given by

f̂ = argmax
fmin≤f≤fmax

L∑

l=1

∣∣∣∣∣

N∑

i=1

yl(i)e−j2π fTsi

∣∣∣∣∣

2

(8)

The approximation is very good whenever the normalized
frequency, fTs, is not very close to 0 or 1/2. In our case, we
specifically exclude frequencies close to zero, and sample
at a frequency significantly higher than the Nyquist rate.

Note that if one wishes to estimate breathing frequency
from one link alone, one may use (8) with L = 1.

The maximum likelihood link amplitude estimates {Âl}
and phase estimates {φ̂l} are then estimated using f̂ , and
are given by

Âl = 2
N

∣∣∣∣∣

N∑

i=1

yl(i)e−j2π f̂ Tsi

∣∣∣∣∣ (9)

φ̂l = arctan
−∑N

i=1 yl(i) sin 2π f̂ Tsi
∑N

i=1 yl(i) cos 2π f̂ Tsi
.

2.7 Breathing Detection
We consider deciding between two hypotheses:

H0: A breathing person is not present (10)

H1: A breathing person is present (11)

For detection, we study two methods:

1) Single-link breathing detection: Use solely the RSS
measured on one link in order to detect breathing.

2) Network-wide breathing detection: Use the RSS mea-
sured on all L > 1 links in the wireless network to
detect breathing.

By comparing the two methods, we quantify the improve-
ment in breathing detection possible when data from many
links in a network are used.

1. The DC-removal filter makes the PSD non-flat below fmin, how-
ever, we are only interested in the likelihood between fmin and
fmax.
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2.7.1 Single-Link Breathing Detection
Consider one link’s RSS data. Without loss of generality,
assume the link number is l = 1. Then the MLE of f̂ and
Âl are calculated from (8) and (9) using L = 1. Our simple
assumption is that Âl will have higher amplitude when a
breathing person is present. Thus we detect breathing via
the hypothesis test,

NÂ2
l

H1
>
<
H0

γlink (12)

where γlink is a user-defined threshold and N is the total
number of samples.

2.7.2 Network-Wide Breathing Detection
From all L measured links, we must decide between H0
and H1. We do not have a statistical model for Al for the
case of H1, but we have assumed that the values of Al are
higher during breathing. As a first proof of concept, we
study breathing detection based on a normalized sum of
the squared amplitudes Â2

l over all links,

Ŝ � N
L

L∑

l=1

Â2
l

H1
>
<
H0

γnet (13)

where γnet is a user-defined threshold and we call Ŝ the
network-wide breathing statistic. Note that Ŝ is just a scaled
version of the maximum of the sum in (8). Multiplication
of the average squared link magnitude by N helps ensure
a constant threshold as a function of N, since the aver-
age squared link magnitude is approximately inversely
proportional to N under H0.

2.8 Performance Analysis
We study the experimental performance of each detector
via the probability of false alarm, PFA, and the probability
of missed detection, PM. The value PFA is the fraction of
experiments that do not have breathing occurring for which
H1 is decided; and PM is the fraction of experiments that
do have a person breathing in the network for which H0 is
decided. Obviously, we’d like PM = PFA = 0, but there is a
trade-off between the two.

Clearly, each application will have different require-
ments for PM and PFA. For example, in post-surgical breath-
ing monitoring, we will want to have a very low PM, as we
do not want to miss the fact that a patient has stopped
breathing. In contrast, in a search & rescue operation, we
might be very sensitive to PFA, because saying that there is
someone alive in a pile of building rubble when there is not
would cause us to begin a long and fruitless search, when
time should be used elsewhere to find true casualties.

We study the performance of breathing rate estimation
via the RMSE of f̂ , that is,

RMSE =
√√√√ 1

K

K∑

k=1

[f̂ (k) − f (k)]2

where f̂ (k) and f (k) are the frequency estimate and actual
breathing frequency, respectively, during experiment real-
ization k, and there are K total experimental realizations.

3 EXPERIMENTS

Our experiments are designed to test BreathTaking for use
in a medical environment to monitor the breathing of a
sleeping patient. This section describes the network hard-
ware and software, environment, experimental setup, and
actual breathing rate.

3.1 Network
We use a network of twenty MEMSIC TelosB wireless sen-
sors operating the IEEE 802.15.4 protocol on channel 26 (a
center frequency of 2480 MHz). The sensors run TinyOS
and Spin [16], a token passing protocol in which each node
transmits in sequence. When not transmitting, nodes are
in receive mode, and record the RSS and node id for any
received packet. Each transmitted packet includes the most
recent RSS value recorded for each other node. A base sta-
tion sensor, placed in the hallway about 3 meters from the
clinical room door, overhears all of the transmitted packet
data, which is then time-stamped and recorded on a laptop.
A packet is transmitted by some node approximately once
every 12 ms, and thus an individual node transmits once
every 240 ms. Thus each link has its RSS measured at a sam-
pling rate of 4.16 Hz. We note this is more than sufficient to
measure our maximum breathing rate of fmax = 0.667 Hz.

To study the effect of antenna directionality, experi-
ments are conducted with the wireless sensors using one
of two different antennas: (1) a dipole antenna with omni-
directional horizontal pattern with gain of 2.25 dBi; and (2)
a directional patch antenna with a gain of 8.0 dBi.

3.2 Environment and Setup
We deploy the network in a clinical room in the University
of Utah School of Medicine. The clinical room is used
for studies in the Department of Anesthesiology, and is
designed to appear like a standard hospital patient room,
with cabinets for blankets and medical supplies, monitoring
equipment, computer monitors, and a hospital bed in the
center of the room. The hospital bed is a Hill-Rom P1900
bed which automatically changes pressure in different parts
of the bed every 3-4 minutes (and thus prevents bed sores in
immobile patients). We mention this bed movement “fea-
ture” because it means that the person lying in the bed
is not perfectly stationary, even when he does not move
himself.

A diagram of the experimental setup is shown in Fig. 5.
Sensors are placed on the sides of the beds, but not con-
nected in any way to the bed. Several of the sensors are
placed at height of 0.9 meters on adjustable-height tables
positioned at the long sides of the hospital bed. Sensors are
also placed at a height of 0.8 meters on two wheeled carts,
one metal and one plastic, placed at the foot and head of
the bed, respectively. Finally, four sensors are attached to
PVC-pipe stands which hold the sensors at a height of 0.9
meters, and placed on the sides of the bed.

Note that a practical system for use in hospital rooms
would place sensors in the hospital bed or bed rails them-
selves, rather than inches away from the bed. Such a
placement in the bed might ensure that the sensors aren’t
visible, are not in the way, and do not need to be cleaned
as often as equipment exposed to patients. We do not use
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such a setup because we want to ensure that the patient’s
breathing in no way moves the sensors. This is required to
demonstrate that the periodicity we observe in the RSS is
caused by the breathing of the person, not the movement
of the sensors. Embedding sensors in the bed would expose
them to periodic movement, and thus change the RSS due
to sensor movement, in a way that could be beneficial to
breathing rate estimation. However, we did not conduct
any tests with sensors attached to the bed.

3.3 Breathing Rate
During each experiment in which a person is present in
the bed, we must have ground truth knowledge of the per-
son’s breathing rate. In each experiment, the person listens
to a metronome set to a desired breathing rate, and ensures
that they breath at the same rate as the metronome. The
person is also connected to a end-tidal CO2 monitor, which
involves tubes, two to feed oxygen into the person’s nos-
trils, and another two to connect the first tubes to a gas
sensor which measures CO2 and displays it on a screen.
The person breathes through their nose in all experiments
to ensure proper functioning of the end-tidal CO2 moni-
tor. The monitor estimates frequency from the CO2 sensor’s
signal, and displays its estimated breathing rate. We video
record this screen, and in post-processing, ensure that the
person’s breathing was in fact at the desired rate.

4 RESULTS

4.1 Single Link Breathing Monitoring
In this section, we quantify the observation made in the
introduction that detection of breathing on any single link
is unreliable. We compare an experiment run with the patch
antennas on the nodes, with a person lying in the bed with
their chest at a height of 1.01 meters (H1) and without a per-
son in the room (H0). During the H1 condition (person lying
on the bed) the person is using a metronome to breath at a
known rate of 15 bpm. In single-link breathing monitoring,
we first use (8) with L = 1 to estimate frequency f̂ which
represents the breathing rate estimated for an individual
link. As described in Section 2.4, the algorithm limits f̂ to
the range 0.167-0.667 Hz, or 10-40 bpm. Then, we use (9)
to calculate Âl, which represents the RSS signal amplitude
at that breathing rate.

Each link is considered separately, and we estimate
Âl for each T = 30s observation period for the course
of the experiments. We use all the links measured dur-
ing the experiment to obtain an ensemble of results that
characterize the Âl during single-link measurements.

We display the distribution of Âl in Fig. 3. Occurrences
are normalized by the total number of realizations of Âl in
each experiment, and shown on a log scale to emphasize
the tail behavior. From the plots, it is possible to see that Âl
has a heavier tail during H1 compared to H0. However, the
maximum Âl recorded during H0 is 0.72, and only a very
small percentage (62 out of 9120) of realizations during H1
fall above 0.72. That is, a few links, during a few 30-second
periods, measure higher amplitude sinusoidal components
when a person is present in the bed than when no one is
present. If we set a threshold γlink = 0.72 in (12) so that we

Fig. 3. Distribution of Âl for single link breathing monitoring given H0
and H1. (a) Cumulative distribution function (CDF). (b) Complementary
CDF (CCDF) on a log-scale. Single-link amplitudes have a somewhat
heavier tail when a person is breathing (H1) than in the no-person (H0)
case.

have zero false alarms, we would detect breathing only on
0.7% of links.

Despite the low detection rate, do these links’ data
accurately estimate the breathing frequency? Of the 62 real-
izations with Âl > 0.72, 17 provide f̂ estimates within 1 bpm
of the actual breathing rate (15 bpm). However, the other
46 estimates are nearly uniformly distributed on [fmin, fmax].

In sum, one cannot expect to detect breathing or estimate
breathing rate on any single deployed link. Further, even if
one has many links in a network, it would be unreliable, as
a monitoring method, to look at single-link amplitude and
frequency estimates.

4.2 BreathTaking Rate Estimation
Next, we consider at network-wide breathing monitoring.
For the same H1 experiment described in Section 4.1, we
study network-wide breathing rate estimates, which are cal-
culated using (8) with L set to the total number of links in
the network. We calculate rate estimation performance for
a variety of different periods T. The vast majority of breath-
ing rate estimates fall within 5 bpm of the actual rate – a
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Fig. 4. RMSE and bias of valid BreathTaking frequency estimates for
controlled breathing/patch antenna experiment (actual breathing rate of
15 bpm), and percent of rate estimates that are invalid (right y-axis),
vs. observation period T .

small fraction do not. We call these estimates that are more
than 5 bpm from the actual rate “invalid” rate estimates,
and report the percentage of rate estimates that are invalid.
We also calculate the RMSE and bias of the estimates that
are valid, i.e., within 5 bpm of the true rate.

The experimental results, shown in Fig. 4, show that for
T ≥ 30s, less than 2% of rate estimates can be described
as invalid. The RMSE for valid estimates is lower than 0.5
for all observation periods T ≥ 25s. For perspective, current
medical devices typically report breathing rate as an integer
number of breaths per minute, thus rate errors less than 0.5
bpm would be insignificant. The bias is small, on the order
of 0.1 bpm. For T ≥ 50s, there are no invalid breathing rate
estimates.

We note that the overall RMSE, including both valid and
invalid estimates, is significantly higher than the RMSE of
valid estimates. For example, for the same data in Fig. 4 at
T = 30s where the RMSE of valid estimates is 0.42 bpm,
the overall RMSE is 3.16 bpm. However, this statistic is
heavily skewed by one estimation error of 25 bpm (where
the estimate railed to fmax = 40 bpm). We note that the
median, 90th, and 95th percentiles of the absolute value of
the estimation error for this case are 0.18, 0.36, and 0.42
bpm, respectively. When the fraction of invalid estimates is
low, the RMSE of valid estimates is often close to the 95th
percentile of error.

4.3 BreathTaking Amplitude Estimation
Once we obtain the MLE of frequency f̂ using the network
RSS data as in Section 4.2, we can estimate the amplitudes
Âl. Note that there are no “actual” values of Âl; some links
will measure high amplitude, and others will not. We are
particularly interested in the links l with particularly high
Âl. For the same H1 experiment described in Section 4.1,
consider the Âl for T = 30 s. Only 5% of links l have an
amplitude Âl > 0.331, links we refer to as high amplitude
links.

In Fig. 5, we plot the locations of the high amplitude
links by drawing a dashed line between their transmit-
ter and receiver coordinates. We can see that the links

Fig. 5. Experimental layout showing sensors, bed, and person’s approx-
imate position. Dashed lines indicate high amplitude links.

which cross through the chest area are the ones that are
particularly affected by breathing.

Still, only a fraction of the links that cross through the
chest measure high Âl. What other characteristics do these
high amplitude links have? We find that high amplitude
links have unusually low average RSS. Over all links, the
average measured RSS is -39.9 dBm. When considering only
high amplitude links, the average measured RSS is -48.6
dBm, almost 9 dB lower, a very significant difference. This
difference cannot be explained by longer path length – high
amplitude links are only 13% longer, on average, than the
average path length of all links. Since links that in a deep
fade experience greater temporal variations due to changes
in the environment [10], it makes sense that the amplitude
of the breathing-induced change would be more noticeable
for links with lower than average RSS.

The analysis in Section 2.2 also provides explanation for
the effect of lower-RSS links experiencing higher breathing
amplitudes. From (4), the amplitude of the sinusoidal term
is proportional to |A||a0|/|A+a0|2. This term is highest when
A and a0 are similar in magnitude. Note that A is the phasor
sum of multipath defined in (2), and a0 is the amplitude
of a single multipath affected by breathing. Assuming that
more multipath power contributes to A than to a0, then the
|A||a0|/|A + a0|2 term will be highest when the sum in A is
destructive, i.e., the link is in a deep fade.

One lesson is that links in a deep fade are more use-
ful for breathing monitoring. Future work may explore
changing the center frequency on links, or measuring wide-
band frequency response, with the goal of adaptively using
data from links’ frequency nulls. Although we do not
explore this idea in this paper, we would expect to be able
to improve results by taking advantage of “deep fades”
wherever in the frequency spectrum they occur.

4.4 BreathTaking Detection Performance
In the network-wide case, breathing detection is performed
using a normalized sum of the squared amplitudes |Âl|2
over all links l, as given in (13). In this section, we study the
performance of this detector. Using the same experiments
as presented in Section 4.1, we calculate Ŝ from (13) for each
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Fig. 6. Probability density functions for Ŝ given H0 (Empty) vs. given H1
(Person) for the (top) T = 15 and (bottom) T = 30 second observation
periods, for experiments using patch antennas.

T second period, testing detector performance for each T in
the range 15 to 60 seconds, in 5 second increments. Fig. 6
shows the probability density functions (pdfs) of Ŝ for H0
and H1 cases, for T = 15 (top subplot) and T = 30 (bottom
subplot).

We find first that Ŝ in the H0 case always falls in a narrow
range, between 0.98 and 1.45. During H1, the Ŝ value has
a minimum of 1.57 (at T = 15). Further, as T increases, Ŝ
values also increase. For T = 30 and T = 60, the minimum
Ŝ values recorded are 1.63 and 2.03, respectively.

We can conclude that for this experiment, because of the
lack of overlap in value of Ŝ in the two cases, one can build
a reliable detector. For example, we can set γnet = 1.55 in
(13) and perfectly distinguish between no person present
and a breathing person present.

4.5 Antennas
Experiments discussed above use patch antennas with a 8
dBi antenna gain. In this section, we compare the results
when using less directional antennas. We run more experi-
ments with all nodes connected to dipole antennas, which
have a omnidirectional pattern in the horizontal plane. The
first experiment is an H0 experiment, with no person in the
room, and little movement in the hallway outside of the
room. The second experiment is an H1 experiment, with
the person lying in the bed and breathing at a constant
rate of 15 bpm (using a metronome).

The results, shown in Fig. 7, are worse than with
the directional antennas. The values of Ŝ given H0 have
increased regardless of T, to the range from 1.15 to 1.85.
The values of Ŝ given H1 now overlap with those given H0
for T = 15s (and T up to 25 s), so regardless of the threshold
chosen, we cannot have a perfect detector.

We further believe that movement in the hallway out-
side of the room will have a greater impact when using
dipole antennas, as compared to when using patch anten-
nas. To test this, we have an experimenter stand outside of
the (closed) door waving his arms above his head and mov-
ing from side to side. While this motion is occurring, we
run two more H0 experiments, one with dipole antennas,

Fig. 7. Probability density functions for Ŝ given H0 (Empty) vs. given H1
(Person) for the (top) T = 15 and (bottom) T = 30 second observation
periods, for experiments using dipole antennas.

Fig. 8. Probability density functions for Ŝ when T = 30s given H0
(Empty) with motion outside of the door vs. given H1 (Person), for
experiments using (top) patch antennas and (bottom) dipole antennas.

and one with patch antennas. Using this data, we recal-
culate the values of Ŝ given H0. The results are shown in
Fig. 8.

The H0 values for Ŝ change slightly when using patch
antennas, and change significantly with dipole antennas.
With patch antennas, the maximum value of Ŝ given H0
has increased to 1.52 (compared to 1.45 without motion
outside of the door). With dipole antennas, the max has
increased to 2.08 (compared to 1.80 without motion out-
side of the door). In this latter case, even for medium
T (T = 30s is shown in Fig. 8), there is overlap in the
pdfs of Ŝ given H0 and H1, and thus it is impossible to
select a threshold for zero false alarms and zero missed
detections.

Note that for all experiments with patch antennas, a
threshold of γnet = 1.55 results in perfect detection perfor-
mance. Future research must use experimental data from
a variety of different environments to determine how to
optimally set γnet, and if it can be set adaptively for the
environment.
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TABLE 1
Rate Estimation Performance for Three Breathing Rates

TABLE 2
Rate Estimation Performance for Three Bed Heights

4.6 Rate Changes
In this section, we compare frequency estimation perfor-
mance when the actual breathing rate changes. First, we
perform three experiments with sensors using patch anten-
nas in which the person’s breathing rate is either 12.0, 15.0,
or 19.0 bpm. Using the metronome set at different rates,
the person ensures that their breathing follows the desired
breathing rate. We set T = 30s for all results. The results in
Table 1 show best performance at the lowest breathing rate
tested, 12 bpm, but performance does not strictly degrade
with increased actual breathing rate.

4.7 Bed Height
In this section, we analyze three experiments with the bed
(and thus the person) at different heights. In the experi-
ments discussed to this point, the person’s chest is at a
height of 1.01 m above the ground. Here, we raise or lower
the bed height so that the person’s chest is at 0.88 m, 1.01m,
and 1.13m, in three different experiments. At the lowest
height, the sensors are nearly line-of-sight (LOS), that is
the line connecting two sensors are mostly unobstructed
by the person’s body. At the highest height, the sensors are
predominantly at the height of the mattress. In all exper-
iments, the actual breathing rate is 15 bpm, and we use
T = 30s. Table 2 shows the breathing rate estimation per-
formance. We find that the best performance is in the nearly
LOS case, about half the RMSE of the 2nd best height. Note
that all bed heights show acceptable results, with a very
small chance of invalid estimate, and RMSE below 0.5 bpm.

4.8 Fewer Sensors
In this section, we analyze what happens when we use a
smaller number of sensors in the network. Since the num-
ber of links is proportional to the square of the number of
nodes, we expect that having more sensors will dramati-
cally improve performance. In fact, the two sensor case is a
limiting case which we have explored in Section 4.1, which
showed that one link is insufficient to reliably detect and
monitor breathing.

We use the same data collected with the 20-node net-
work and test what would have happened with a smaller
network as follows. Let Y ⊂ {0, . . . , 19} be the subset of
nodes which we use in a particular trial. We run tests with
|Y| = 7, 10, 13, 16, 19. For each subset size, we run 100 trials
and average the results. Subsets are randomly selected in
each trial from the full set of nodes {0, . . . , 19}.

Fig. 9. RMSE and bias of valid BreathTaking frequency estimates for
controlled breathing/patch antenna experiment (actual breathing rate of
15 bpm and person height of 0.88 m), and percent of rate estimates
that are invalid (right y-axis), vs. number of sensors in the network T .
Results are an average over 100 trials using randomly selected subsets
of the given size.

Fig. 9 presents the results for the RMSE, bias, and per-
cent valid of the breathing rate estimates. We can see that
estimates with just seven sensors in the network are poor
– almost one in four breathing rate estimates is invalid
(greater than 5 bpm error). When the number of sensors
is increased to thirteen, the percentage of invalid estimates
is 1.3%, and the RMSE of valid estimates is below 0.3
bpm; and the results improve somewhat as the network
size increases to 16 and 19. Notably, there are zero invalid
frequency estimates with 19 nodes.

4.9 Phase Estimation
Beyond link amplitudes and network-wide frequency esti-
mates, there is also information to be gathered in the phase
of the sinusoidal signal due to the person’s breathing, in
particular, for links which have a high amplitude |Âl|.

We note that our analysis shows that the sinusoidal
breathing signal has a sign that may change from link to
link. We can see in equation (4) that the breathing sig-
nal sin 2π fbt is multiplied by a sin(∠a0 − ∠A) term, which,
depending on the two angles a0 and A, may be positive or
negative. The analysis is also based on the change in time
delay caused by breathing, so if two different links both
have such multipath affected by the same person’s chest,
both links will see the sin 2π fbt term with the same fb and
same phase.

The combination of these two observations is that two
links that measure breathing should be synchronous, that
is, rise or fall at the same times. However, we do not know
whether inhaling will increase or decrease the RSS on any
particular link, so one link may reach a maximum while
another link reaches its minimum. In terms of estimated
phase, the {φ̂l}l might be π radians apart from each other.

To show this effect in the data, we study the φ̂l estimates
for T = 60s observation period. For example, consider what
we label experiment 1, a patch antenna experiment with
the person at height 1.01m breathing at 15 bpm. For this
experiment, we plot φl for links with the highest 5% of
amplitudes Âl in Fig. 10 in the circle with radius 1. One
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Fig. 10. Estimated phases, φ̂l for high-amplitude links l , shown on polar
plots for five different experiments. Each experiment’s φ̂l values, to save
space, are plotted on a different concentric circle labeled by experiment
number ∈ {1, 2, 3, 4, 5}. Within an experiment, phases are seen to be
bimodal, with modes separated by 180o .

may observe from the figure that the phases are bimodal
with two modes at about 90 and 270 degrees. We repeat this
plotting for four other experiments, denoted experiments 2
through 5, on different concentric circles on the same polar
plot to save space. Again, for each experiment, phase esti-
mates for the highest 5% amplitude links have two modes,
in each case, separated by 180o.

These results are promising in the sense that when there
are multiple stationary people breathing in the network, we
might be able to estimate the number of people, even when
the breathing rates are nearly identical, by the number of
modes in the distribution of phase. Further, we may be able
to improve breathing detection and monitoring using the
fact that phase distribution is bimodal. Such methods must
be explored in future work.

5 RELATED WORK

Breathing monitoring via capnography is standard practice
for anesthetized patients in emergency departments and in
intensive care units [17]. The capnometer uses an infrared
absorption gas analyzer to measure the carbon dioxide con-
centration in exhaled air (end-tidal C02). The breathing rate
in this case is determined by finding the frequency content
of the CO2 concentration signal. The exhaled air is mea-
sured using tubes in the nostrils (e.g., nasal cannula), or
from tubes connected to a face mask or tracheal tube, which
are connected to the capnometer. These tubes may become
detached; if so, the capnometer will detect apnea and alarm.
Generally, the mask or nasal cannula may be uncomfort-
able and limit the patient’s movement. We propose a new
non-invasive sensor (i.e., sensor not physically attached to
the patient) for respiratory monitoring, which would allow
a patient to sleep normally while being monitored. We
note that capnography directly measures exhalation, while
our method indirectly measures breathing via the periodic
changes in the patient’s body size.

TABLE 3
Comparison of RF Breathing Rate Estimation Papers

Breathing monitoring can also be performed using
plethysmography (respiratory inductive or thoracic
impedance plethysmography). These methods measure,
using electrodes placed on the body, the change in induc-
tance or impedance caused by inhalation and exhalation.
These electrodes can be contained in a band worn around
the chest. This is a method used in home monitors for
infants at risk of SIDS [18]. In comparison, the proposed
system does not need to be attached to a person’s body or
have wires connected to the person.

Note that at physician’s offices where procedures requir-
ing sedation are performed, capnography and plethys-
mography are not typically used due to equipment costs.
Instead, patients are monitored by a pulse oximeter, which
measures oxygen saturation in blood. If a patient stops
breathing, oxygen saturation decreases; however, the pulse
oximeter will detect this desaturation only minutes after
breathing ceases [19].

Most closely related to the proposed system are
other proposed non-invasive breathing sensors. Microwave
Doppler radar systems have been proposed for breath-
ing rate estimation [20]–[22]. Commercial Doppler radar
systems have been developed by Kai Medical [22], [23]
and BiancaMed [24], although currently neither is available
for sale in the U.S. Ultra-wideband (UWB) radar has also
been proposed for unobtrusive monitoring of patient’s vital
signs [6], [25], or the detection of the presence of a breath-
ing person [26]. Both UWB and Doppler radars may even
be sensitive enough to be able to detect a stationary per-
son’s heart rate [22], [27]. An excellent review of hardware
architectures for UWB and Doppler radar vitals monitoring
is provided in [28].

One means of comparison of these RF-based methods
is their relative accuracies, as summarized in Table 3.
Droitcour et al. 2009 [22] report a breathing rate accuracy
of 3 bpm to 0.9 bpm, as SNR increases from 0 dB to 10 dB,
using 18 seconds of data. Errors are strictly below 0.8 bpm
when SNR > 15 dB. A study on hospitalized patients in [29]
reports 1.4-2.0 RMSE, depending on which other method
is used as a baseline. A study of ten patients at a sleep
clinic in [24] reports RMSE between 0.15 and 0.6 bpm, but
errors are reported only for the 15 minutes of data recorded
during good conditions, selected from a longer recording.
Five experiments in [27], each using 70 seconds of data,
show breathing rate estimation errors from 0.0 to 3.6 bpm,
with the median error being 0.6 bpm. In comparison, the
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system reported in this paper achieves from 0.07 to 0.42
bpm RMS error with 30 seconds of data. Breathing rate data
are reported from three human experiments using impulse
UWB radars in [30] with errors of 0.6, 0.4, and 0.1 bpm,
each experiment using 20 seconds of data. Our experimen-
tal rate estimation error is lower, but using a time duration
in between those used in [22], [24], [30] and [27]. Our study
is not a patient study as in [23], [24], [29], and we enforce a
constant breathing rate during each experiment rather than
use a second reference method for breathing rate moni-
toring. Future patient studies of the proposed system are
necessary for evaluation of its use in a medical device.

Another means of comparison would be to judge the
costs vs. benefits of different RF-based breathing moni-
toring systems. Microwave Doppler and UWB radars are
expensive single devices, on the order of thousands of U.S.
dollars [31]. In comparison, our proposed system uses mul-
tiple off-the-shelf low-cost transceivers which are each very
inexpensive, on the order of a few USD. Having multiple
transceivers may make the system more complicated, how-
ever, it may enable a system to be designed to be more
reliable by not failing when any single transceiver fails.
A single transceiver may be easier to place; however, our
multiple sensors might be embedded in a hospital bed and
therefore completely out of view. We do not compare the
total costs, convenience, or long-term reliability of differ-
ent RF-based breathing monitoring systems in this study.
As such, we cannot currently conclude that the proposed
system is suitable for replacement of existing medical mon-
itoring devices. However, we believe that the proposed
system idea provides a potentially useful trade-off in the
design space of RF-based breathing monitoring systems.
Given the level of academic and industry interest in the
use of RF devices for non-contact vital signal monitoring,
we suggest that the use of signal strength is deserving of
further investigation.

6 CONCLUSION

This paper presents a non-invasive respiration monitoring
technique called BreathTaking which uses signal strength
measurements between many pairs of wireless devices to
monitor breathing of an otherwise stationary person. We
present analysis showing that, as a first order approxima-
tion, breathing induces sinusoidal variation in the mea-
sured RSS on a link, with amplitude a function of the
relative amplitude and phase of the breathing-affected mul-
tipath. We present a maximum likelihood estimator to
estimate breathing parameters, including breathing rate,
using all of the measured links’ RSS data simultaneously.
We present detection algorithms based on those estimated
parameters, and an experimental testbed and procedure to
validate BreathTaking.

Using extensive experimental data collected with a per-
son lying in a hospital bed, we demonstrate the perfor-
mance of BreathTaking. We find breathing rate can be
estimated within 0.1 to 0.4 bpm error using 30 seconds
of measurements. We show that the links most affected
by breathing are the ones which receive low average RSS.
Breathing detection is demonstrated to reliably distinguish
between the breathing and its absence using 15 seconds

of RSS data (in patch antenna experiments) and using 30
seconds of data (in dipole antenna experiments), without
false alarm or missed detection. The experiments also indi-
cate that the use of directional antennas may improve the
systems robustness to external motion. Interestingly, the
estimated phases of links which are affected by breath-
ing distribution have a bimodal distribution with the two
modes separated by 180 degrees.

If BreathTaking is to be used in a medical device, exten-
sive evaluation on many people, and in many settings,
must be performed. While experiments reported here expe-
rienced normal interference with WiFi and other 2.4 GHz
sources, a commercial medical monitoring system must be
tested to be robust to higher levels of interference and
even jamming attacks. If sensors are to be deployed on
walls or embedded in the environment, testing must show
that these alternative deployments can result in reliable
breathing monitoring. In addition, this work explored RSS-
based breathing monitoring using 2.4 GHz 802.15.4 radios –
the system may benefit from transceivers with other phys-
ical layer protocols and center frequencies. Finally, this
sensor may be only one sensor used in a monitoring sys-
tem, and its use with other sensors and sources of context
information should be explored.
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