
Using a Functional Language
And Graph Reduction

To Program Multiprocessor Machines
Or

Functional Control of Imperative Programs

Lai George1
Gary Lindstrom2

UUCS-91-020

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

October 9, 1991

Abstract
This paper describes an effective means for programming shared memory multipro­

cessors whereby a set of sequential activities are l inked together for execution in parallel.
The glue for this linkage is provided by a functional language implemented via graph
reduction and demand evaluation. The full power of functional programming is used to
obtain succinct, high level specifications of parallel computations. The imperative proce­
dures that constitute the sequential activities facilitate efficient utilization of individual
processing elements, while the mechanisms inherent in graph reduction synchronize and
schedule these activities.

The main contributions of this paper are: 1) an evaluation of the performance im­
plications of parallel graph reduction; 2) a demonstration that the mechanisms of graph
reduction can obtain multiprocessor performance uniformly surpassing the best unipro­
cessor implementation of sequential algorithms running on a single node of the same
machine, and 3) an illustration of our method used to program a real world fluid flow
simulation problem.

K ey w o rd s: Functional programming, lazy evaluation, graph reduction, Standard
ML, type checking, parallel languages.

Supported in part by the National Science Foundation under Grant CCR-8704778 and an IBM
Fellowship Award.

2Supported in part by the National Science Foundation under Grants ASC-9016131 and CCR-8920971.

1

1 Introduction

The benefits of using a functional language to program multiprocessor machines have
long been heralded [18]; however, such claims remain largely unsubstantiated in practi­
cality. We investigate the factors posing the principal challenges in the use of a functional
language to program multiprocessor machines. Our particular domain of interest is the so­
lution of large engineering problems such as seismic wave simulations, weather prediction
and fluid flow problems.

There are several strategies for evaluating functional programs. ' We will adopt normal
order evaluation since graph reduction, its most widely used implementation technique,
molds well on a parallel machine. Parallelism under normal order is obtained from (i) the
parallel evaluation of arguments to strict operators such as , x , . . . , and (ii) option­
ally, the speculative evaluation of expressions whose value may eventually be required.
Together, normal order and speculative evaluation elegantly encompass a wide variety of
multiprocessing effects such as the overlapped generation and consumption of data.

Functional languages evaluated by graph reduction offer the promise of high level
control of multiprocessors. A programmer is freed from the direct orchestration of parallel
evaluation, and may succinctly express complex asynchronous algorithms through the use
of powerful abstractions such as higher order functions and polymorphic types. This is in
contrast to languages based on low level primitives such as channels, or parallel control
constructs like fork-join or forall.

However, fulfillment of the promises of graph reduction has not been immediately
forthcoming. It is difficult for graph reduction to compete in speed with traditional m eth­
ods for programming von Neumann machines, which form the processing units of today’s
multiprocessor architectures. The performance of parallel graph reduction is limited by
the fine granularity of tasks that seems inherent in such systems when implemented in
their purest forms. Further, the side-effect free nature of functional languages usually
entails unacceptable copying and recycling overheads on store management.

2 E xp erim enta l S ettin g

2.1 Language

We have developed a programming system called TML (tam-Il) for Tiny ML. This may
be thought of as a functional subset of SML [10] evaluated using normal order reduction.
The syntax is identical to that of SML, with the addition of one construct - the familiar
spark [2], used to spawn the speculative evaluation of expressions. The spark construct is
similar in syntax to a let declaration, e.g.:

spark val x = e l val y = e2 in e3 end

2

This expression spawns the speculative evaluation of e l and e2, binding their results to x
and y, respectively. The value returned is that of e3, which may contain x and y as free
variables.

2.2 M ultiprocessor

All of our experiments were conducted on the BBN GP1000 Butterfly - a MC68020 based
non-uniform access, shared memory multiprocessor running an early version of the MACH
operating system. Each node has 4 Mbytes of local memory and is connected to other
nodes by a delta switching network. W ith no other traffic on the switch a remote reference
is five times slower than a local reference. Each node runs at the maximum clock rate of
16MHz. The nodes do not possess data caches.

2.3 C om pilation

Our compilation scheme is based on the G-machine [11], which is generally regarded as one
of the more efficient implementations of normal order evaluation. We have extended this
com pilation scheme to allow for efficient parallel evaluation using strictness information.
The details of the compilation method have been previously reported [6, 15, 7], and
will be om itted here. We will merely highlight some pertinent properties: i) a task is
represented at runtime by a pointer to a graph to be reduced; ii) when the machine is
heavily loaded parallel tasks are evaluated in line thus mimicking sequential execution; iii)
if a task blocks a continuation is built and attached to the graph responsible for providing
the awaited value, permitting the processor executing the blocked task to be reassigned
to other work, and iv) strictness information is used to avoid context switching by pre­
evaluating arguments that are guaranteed to be required. This increases the average basic
block size and dramatically improves speed.

2.4 R untim e Support

It is important in any parallel processing implementation to provide high quality support
for scheduling, memory allocation and garbage collection. Poor implementations of sup­
port facilities can dramatically affect performance and radically distort speedup effects.
A novel scheduling structure was developed [8] for this system, along with a conventional
concurrent stop and copy garbage collector. All quantitative measures reported in later
sections include garbage collection time. For debugging purposes the runtime system was
conditionally linked to the X I 1 window system library, and provided a graphical display
of the activities on each processor.

In summary, we believe that we have implemented an efficient parallel graph reduction
system.

3 P arallel G raph R ed u ction in P ractice

We investigated the performance of several functional programs. In most cases the speed
in comparison to the best sequential programs (usually written in C or SML) was poor.
It will be difficult to persuade a scientist or engineer to recode his or her applications in a
functional language only to be rewarded by a marginal speedup or even a substantial loss
in performance. The reasons for this (and possible remedies) are dramatically illustrated
by the fib l (Fibonacci) function shown in Figure l 3.

24
21

S 18
P 15 - fun fib l n =
f i o . if n < 2 then 1

else spark val f l = f ib l(n - l)
u 9 ■ in f l + fib l(n -2)
P 6 v '

3-1 8
0

Number of Processors

end

Processors 1 4 8 16 24 32
centralized queue (sec)
clu ster= l, queue=8 (sec)
Avg. tasks dequeued
ATG (sec / task)
Blocked computations

99.1

1
99.1
0

27.5

2023
1.4e-2
568

14.19

3344
4.2e-3
705

8.9
9.05
5693
1.5e-3
998

10.55
8.72
4346
1.7e-3
627

16.8
8.03
4521
1.8e-3
689

Figure 1: Performance of fibl 25 function application

The function was written using the spark construct as shown in order to generate par­
allel tasks. Having carefully designed our compilation strategy and runtime system, we
expected this com putation to perform well. We conjectured that, after the initial flurry
of parallel activity, the execution on each processor would default to in line execution and
execute sequentially. This is clearly not the case as seen from the extremely large number
of tasks dequeued, i.e. 2000-6000. For each of these tasks, scheduling and memory alloca­
tion overheads are incurred which directly impacted the average task granularity (ATG in
units of seconds/task) of the program. Furthermore, the number of times a computation

3The figure show the performance of the centralized task queue structure and a distributed task queue
structure [8].

4

is blocked and a continuation built was also high — 500-1000. This exacerbated con­
text switching overhead. W hile the speedup was quite impressive, the maximum speed
attained came nowhere near the sequential speed of SML or C. This example may be
contrived but its characteristics are representative of a larger set of programs which we
analyzed with similar results.

We draw the following insights from our experience in using parallel graph reduction
(only some of which are illustrated by the particular example of the Fibonacci function):

1. Functional programming is an excellent vehicle for expressing parallel algorithms.
Being relieved of the tedium of expressing communication, synchronization and
scheduling constraints is a major benefit.

2. Parallel functional programs can easily be composed to produce larger parallel pro­
grams. Higher order functions and polymorphism are convenient for defining general
parallel processing abstractions that can be reused in a variety of situations.

3. One pays a severe price for using graph reduction. Basic blocks are usually quite
small, since primitive operators (e.g. + , x ...) must system atically check the
evaluation status of their operands.

4. Graph reduction as a model of evaluation is not well matched to the basic processing
elements on most multiprocessors, which are von Neumann machines rather than
specialized or dedicated graph reduction processors.

5. The functional style can be quite clumsy when expressing solutions that involve
opportunist ic communication as found in parallel branch-and-bound algorithms, or
manipulate large data structures such as arrays.

6. For good parallel performance, merely specifying the parallel computation is not
enough. Granularity considerations are crucial.

In the subsequent sections we attem pt to ameliorate these difficulties by restricting
the use of graph reduction to what it does best: parallel task coordination.

4 Increasing th e G ranularity

By rewriting the fib l function so that no parallelism is generated if the task granularity
is sufficiently small, we notice a dramatic improvement in performance as illustrated in
Figure 2. There are improvements in speed, the number of tasks dequeued, the number
of blocked computations and the average task granularity. Speedup is sustained for well
over 24 processors.

We can go one step further by performing the sequential tasks using applicative order
evaluation, which is better suited to von Neumann processors. That is to say, the sequen­
tial tasks are executed as ordinary (call-by-value) ML functions. This suggests a model in
which a functional language evaluated using graph reduction serves as the glue combining
a set of sequential computations. The mechanisms of graph reduction are used to initiate
tasks (demand values), notify recipients of results and handle the underlying concerns of
parallel evaluation. We call the sequential tasks functional processes. They are bona fide
functions taking inputs and producing answers — i.e., there are no side effects.

We carried this idea through to an implementation in which the functional processes
were coded in C. This has the added benefit of making meaningful timing comparisons
with sequential algorithms written in C. The main idea is illustrated using a matrix
multiplication program where each row of the result matrix is computed in parallel. The
core of the functional specification is:

fun matmult A B n = le t v a l Bt = transpose B n
in pmap (compute_row A Bt n) (from 0 (n-1))
end

fu n pmap f [] = []

| pmap f (x::xs) = spark val fx = f x in fx :: pmap f xs end

fun from n m = if n>m then [] else from (n + 1) m

The function compute_row (of arity 4) computes a row of the result matrix C (= A x B) of
dimension n x n, the last argument being the row to compute. The function pmap forks
off parallel activity. Note:

• The task granularity is that of a single row. It is trivial to extend this to two or
more rows thereby adjusting the granularity of the computation.

• Although not evident in the program provided above, the function compute_row is
executed imperatively in C. Its definition should be obvious.

• During execution, the application compute_row A B n is represented in the graph
in the same manner as any other function application node, except that its code
pointer invokes imperative code.

• We assume that all functional processes such as compute_row are strict in all their
arguments, so the call to compute_row is only made when all its arguments are fully
evaluated. The necessary control (scheduling, blocking, resumption etc.) required
in the generation of these arguments is provided via the basic mechanisms of graph
reduction. This is essential, since the functional processes cannot reasonably be
designed to deal with delayed values.

6

• If each matrix were allocated on a single memory module then this implementation
could perform very badly due to memory contention. The absence of processor data
caches on our machine, the BBN GP1000, causes nonlocal memory references to
result in accesses across the communication switch. For good performance, a local
copy of the row being accessed should be made. This illustrates the fact that the
programmer can utilize his or her knowledge of the machine (e.g. no data cache)
and the algorithm (e.g. frequent access to certain structures) for better performance
in specific cases.

Using the code exactly as written above (with the addition that each functional pro­
cess made copies of the rows involved in the computation) we obtained the performance
shown in Figure 3. We compared this with the sequential execution of a matrix m ulti­
plication routine written exclusively in C. The latter was not subject to the overheads of
parallel processing support, and used the same algorithm as the parallel program. This
convincingly outperforms both the GNU gcc and Green Hill C compilers executing the
uniprocessor version of matrix multiplication, starting with 2 processors and obtaining 3
times the speed with 8 processors.

5 C ontrolling Im p erative Program s

Using the above model we were able to program several interesting applications which
in each case convincingly outperforms the gcc C language compiler. We conjecture that
a large majority of actual parallel applications can be programmed under the model
described. This is extremely beneficial, since parallel programs in this model are easily
composable and amenable to proofs of correctness. In addition, portability is enhanced: (i)
the functional specification acts as the machine independent part of the parallel program,
and (ii) the functional processes are no harder to port to multiprocessor machines than
ordinary sequential programs, which, indeed, is exactly what they are.

However, there remain certain applications that are troublesome in this model, such
as the parallel manipulation of a single array data structure in seismic wave simulations
or weather prediction programs. Existing functional languages fail to address such appli­
cations adequately, due to the latter’s reliance on repeated parallel updates of a shared
data structure.

We extend our computation model once more to allow functional processes to modify
their inputs, resulting in imperative processes. The burden of respecting data dependence
is assumed by the programmer. Most imperative languages like the IBM 3090 Parallel
Fortran provide a p a rb e g in /p a re n d or fo rk /join construct that lets a programmer or
autom atic parallelizer ensure desired evaluation orders. We can provide a similar facility
by defining the function forkjoin of two arguments f and g. These arguments are functions,
where f () is forked on a different processor and g () is performed asynchronously.4

4The parentheses represent an argument of type unit in SML.

fun forkjoin(f, g) = spark val f_proc = f ()

in g () ; f-proc ; ()
end

The join operation is performed by the sequencing operator5 that ensures the neces­
sary barrier synchronization of the two processes. We have expressed a large number of
parallel constructs used in imperative languages including the fairly complex version of
the fo rk /join construct described by Almasi and Gottlieb [1]. '

Using the idea behind the fork/join construct we can now write a quicksort program
that modifies a single array as:

fun qsort A m n =
if m > = n then A
else let val mid = partition A m n

in
spark val q l = qsort A (mid + 1) n

in (qsort A m (mid - 1); q l; A)
end

end

The function partition is implemented as an imperative process. It takes an array and
index range and partitions the array in place. Using a slightly modified version of qsort
and sorting a 10,000 element array, the parallel execution was just barely able to surpass
the speed of the sequential C compiler. Although quicksort may not be the best way to
sort a list of elements in a functional language, the demonstration is an important one.
Given an existing algorithm and associated data structures with potential for parallelism,
it is essential to be able to realize that potential by evolution into a parallel program.
Better results can reasonably be expected on problems such as weather prediction where
the granularity is significantly larger.

6 TM L in P ractice

In practice, respecting data dependencies does not seem to be a difficult issue. Like SML,
one is encouraged to program in a largely functional style, and data dependencies, where
inescapable, are localized. When constructing a parallel algorithm one has a good idea
of the computations that can be performed in parallel. These are exactly the functional
or imperative processes. The power of functional programming is used to specify the

5Note that: e l ; e2 = case e l of _ = > e2

8

scheduling, synchronization and notification involved in the execution of these parallel
tasks, which we feel is the most error prone aspect. This is also a popular approach
in other languages where the algorithm design revolves around data decomposit ion and
parti t ioning of data across the machine [22, 19].

The functional or imperative processes are viewed as black boxes that are called upon
to perform a specific task. Hence the programmer has a clean separation and a clear view
of how various parallel programs are composed and used. In this manner it is possible to
evolve existing sequential code to run on a parallel machine.

7 A R eal D em on stration

7.1 CML

We are extending the ideas reported in the previous paragraphs to the production quality
Standard ML of New Jersey compiler. We have implemented our lazy functional frame­
work in SML using the concurrency extensions provided by CML [20, 21]. CML provides
two asynchronous communication primitives called transmit and receive that return a value
of type a event. These represent a promise to perform the communication requested. The
primitive sync of type (a event —> a) is used to perform the actual synchronization. For
example, accepting a message is equivalent to:

sync o receive

Using these dictions, it is possible to represent futures and delayed computations. In
particular, the following module implements our lazy evaluation primitives:

signature LAZY =
sig

typ e 'a lazy
val apply :(’a — > ’2b) - >

>a - > ’2b lazy
val delay :(’a — > ’2b) - > ’a - > ’2b lazy
val spark :(’a — > ’2b) - >

ja - > ’2b lazy
val force : ’a lazy - > ’a
val strict : ia lazy - - > ’a
val seq : ('} a lazy * ’b lazy) — > ’b

end

The module LAZY specifies a type ’a lazy which represents a potentially unevaluated
object. The construct for spark is no longer a let-like construct; rather, is a function of
two arguments f and x. The spark function spawns the application of the function f to x,
returning a lazy value. It is easy to guess the purpose of the other functions from their

types and names, except to remark that strict is identical to force and apply is identical
to delay.

In this m a n n er it is possible to implement an environment of lazy operators, part of
which is shown below:

signature LAZYINT =
sig

infix 7 | * | ..

infix 4 | < | ..

val op | * | : int lazy * int lazy — > int
val op | < | : int lazy * int lazy — > bool

end
signature LAZYLISTS =

sig
d a ta ty p e ’a Llist = NIL | CONS of 'a lazy * ’a Llist lazy
exception Hd
exception Tl
val hd : 'a Llist — > ’a
val tl : ’a Llist — > ’a Llist
val cons : ’a lazy * ’a Llist lazy — > ’a Llist
val printLlist: (’a — > string) * ’a Llist — > unit

end

Operators over numbers are surrounded by |, such as | | W ith this framework
one can define whatever data structures are of particular interest, e.g. lazy trees:

d a ta ty p e ’a tree = LEAF of 'a lazy | TREE of ’a tree lazy * ’a lazy * 'a tree lazy

A major benefit of this approach is that the strong typing of SML ensures that all the
force or demand operations are placed where required. Therefore, it is not possible to use
a value of type int lazy where an value of type int is required. This approach is similar to
that pursued by Mishra and Kuo [14] in relating strictness analysis to type inference. The
burdensome tagging and untagging of data between the lazy functional language and the
functional processes is now handled by the data destructuring of SML. Garbage collection
is no longer a perplexing issue as the model does not use two distinct languages. This
was a major concern in some of our earlier experiments.

7.2 SIM PLE

We have coded the SIMPLE [4, 3] benchmark (a fluid flow simulation program) using the
concurrent model described above. A brief outline will be sketched here. The state of the

1 0

simulation is a set of arrays representing physical properties like the velocity, pressure,
and viscosity of the fluid in a sphere. These are used in a loop to generate the next set
of arrays for the next tim e step. Each of the functions that generate these arrays is fairly
heavy weight and requires embodies considerable computation.

There are several ways to implement this benchmark in our model. The main loop of
one such approach is shown below: •

fun runit () =

let fun iter (i,state) = if i = 0 then strict state
else iter (i-1, spark compute_next ̂ state state)

in iter (step_count, apply computeJnitiaLstate ())

end

Note that because the application of compute_next_state to state is evaluated specu­
latively, we get the effect of several iterations being executed together. This is similar
to software pipelining, except that we are not pipelining instructions but rather coarse
grained functions. The state itself is represented as a set of lazy objects that may be in
any state of evaluation. The function that computes the next state is shown below:

fun compute_next-state state =
let

val (v,x,alpha,s,rho1p,q,epsilon,theta,deltat,c) = strict state

val v’ = spark make_velocity (v, x, p, q, alpha, rho, deltat)

val x' = spark make_position (x, deltat, v’)

in
(v ’ ,x’,alpha',s',rho’,p’,q’, epsilon’,theta’,deltat’,c’)

end

Each component of the new state is created using speculative evaluation, manifested
by calls such as spark make_velocity(...). The result of compute_next_state is a set of arrays
where each array may be partially evaluated. Most of the functions like make_velocity
use fo rk - jo in parallelism while generating their results. This is done in a fashion similar
to that illustrated in the quicksort example. The application strict state merits some
explanation. The function strict performs only one level of evaluation, and the call returns
a set (or more precisely a tuple) of arrays that may be partially evaluated. This is essential
for the pipelining effect of several iterations.

An implementation of CML on a Silicon Graphics multiprocessor is in progress and
we expect to be able to report performance results in a final paper on this work.

11

8 R ela tion to O ther W ork

These ideas originated from a classical paper by Kahn on the semantics of a simple lan­
guage for parallel processing [12]. This framework was later demonstrated in the language
POP-2 by Kahn and MacQueen [13]. The language was emulated using coroutines and
no performance results were reported. .

Lucassen and Gifford describe a language F X for parallel computers that uses an effect
system to discover expression scheduling constraints [16, 9]. If an expression performs no
side effect operations to the store then it can be executed in parallel with other such
expressions. Furthermore, if two expressions perform side effects to two different stores,
then they too can be done in parallel. In our view, this sort of parallelism is limited. It
excludes a large class of parallel algorithms that manipulate large arrays where concurrent
threads operate on an independent segment of the same array. Some index range analysis
in some form is required to make this parallelism possible which is beyond the scope of
their current type system.

A bilingual form of evaluation exists in the language Strand [5] based on logic pro­
gramming. The distinguishing feature of our approach is that it is based on a functional
language where the full power of higher order functions can be used.

Our work is very similar to Delirium [17]. Here a programmer must learn two languages
- Delirium which is a functional language and another language like C that serves as
the main computing elements of the parallel program. The main drawback with this
arrangement (which we discovered from our own experiments) is that the communication
of data between the two languages becomes problematic. Indeed Delirium restricts this
to be integers or arrays.

9 F uture W ork

As mentioned in §7.1, the incorporation of these ideas into the Standard ML of New
Jersey are already under way. The major goals are:

• Parallel processing runtime support facilities in ML. Some work has already been
done in the context of SML Threads.

• Implementation of graph reduction facilities as basic primitives in the compiler.

• For the present we will be satisfied with surrounding expressions with appropriate
force and delay functions. However, there as been much work in the area of type
theory on autom atic coercions. We feel that these results can be applied to autom ate
this process and are carrying such out an investigation.

• We hope to experiment with the Splash benchmarks [23], which must first be recoded
in ML.

1 2

10 C onclusions

This paper describes an effective means of programming shared memory multiprocessors
by linking together a set of sequential activities to be executed in parallel. The glue for
these sequential activities is provided by a functional language implemented using graph
reduction and demand evaluation. The full power of functional programming, is used
to succinctly specify parallel computations at a high level. Imperative procedures that
constitute the sequential activities make it possible to effectively program the individual
processing elements of the machine. The mechanisms inherent in graph reduction are
reserved for the production of arguments and the notification of results. To a degree the
resulting parallel programs are easily composable and are amenable to proofs of correctness
which are becoming increasingly important at a tim e when programs must withstand
rigorous analysis, particularly for safety critical operations.

We have outlined a new implementation under development in Standard ML of New
Jersey and demonstrated how the strong typing can be used to ensure the correct inter­
action between the lazy functional language and the functional or imperative processes.

13
r

R eferences

[1] G. S. Almasi and A. Gottlieb. Highly Parallel Computing. The Benjam in/Cum m ings
Publishing Company, Inc., 1989. ISBN 0-8053-0177-1.

[2] Chris Clack and S. L. Peyton Jones. The four-stroke reduction engine. In Conf. on
Lisp and Functional Programming , pages 220-232. ACM, August 1986.

[3] W.P. Crowley, C.P. Hendrickson, and T.E. Rudy. The SIMPLE code. Technical
Report UCID 17715, Lawrence Livermore Laboratory, February 1978.

[4] K. Ekanadham and Arvind. SIMPLE: An exercise in future scientific programming.
Technical Report Computation Structures Group Memo 273, MIT, July 1987. (Simul­
taneously published as IB M /T .J. Watson Research Center Research Report 12686).

[5] I. Foster and S. Taylor. Strand, New Concepts in Parallel Programming. Prentice
Hall, 1990.

[6] L. George. Efficient normal order evaluation through strictness information. M aster’s
thesis, University of Utah, March 1987.

[7] L. George. An abstract machine for parallel graph reduction. In David MacQueen,
editor, Proc. Sympos ium on Functional Languages and Computer Architecture , pages
214-229, London, September 11-13, 1989. Springer-Verlag.

[8] L. George. A scheduling strategy for nonuniform access shared memory multiproces­
sors. In Proc. o f International Conference on Parallel Processing. IEEE Computer
Society, August 1990.

[9] D.K. Gifford, P. Jouvelot, J.M. Lucassen, and M.A. Sheldon. F X -8 7 Reference M a n ­
ual. MIT, Laboratory for Computer Science, 1.0 edition, 1987. Tech. Report Number
M IT/LC S/TR -407.

[10] R. Harper, R. Milner, and M. Tofte. The definition of Standard ML. Technical
Report ECS-LFCS-88-62, Dept, of Computer Science, Univ. of Edinburgh, Aug. 1988.
Version 2.

[11] T. Johnsson. Efficient compilation of lazy evaluation. In Proc. Symp. on Compiler
Construction, Montreal, 1984. ACM SIGPLAN.

[12] G. Kahn. The semantics of a simple language for parallel programming. Information
Processing 74, pages 471-475, 1974. North-Holland.

[13] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. I n ­
formation Processing 77, pages 993-998, 1977. North-Holland.

14

[14] Tsung-Min Kuo and P. Mishra. Strictness analysis: A new perspective based on type
inference. In Functional Programming Languages and Computer Architecture, pages
260-272. ACM, September 1989.

[15] G. Lindstrom, L. George, and D. Yeh. Generating efficient code from strictness an­
notations. In T A P S O F T ’87: Proc. Second International Jo in t Conference on The­
ory and Practice o f Software Development, pages 140-154, Pisa, Italy, March 1987.
Springer Lecture Notes in Computer Science No. 250.

[16] J.M. Lucassen and D.K. Gifford. Polymorphic effect systems. In Fifteenth A n ­
nual A C M S I G A C T - S I G P L A N Symposium on Principles of Programming Languages.
ACM, Jan 1988.

[17] S. Lucco. Parallel programming with coordinating structures. In Conf. Record of
the Eighteenth A nnua l A C M Symposium on Principles o f Programming Languages,
pages 197-208. ACM, January 1991.

[18] S. L. Peyton Jones. Parallel implementations of functional programming languages.
The Computer Journal , 32(2):175—186, 1989.

[19] K. Pingali and A. Rogers. Compiler parallelization of SIMPLE for a distributed
memory machine. Technical Report TR 90-1084, Cornell University, January 1990.

[20] J.H Reppy. First-class synchronous operations in Standard ML. In Proc. o f the
S I G P L A N ’88 Conf. on Prog. Language Design and Implementation, pages 250-259.
ACM, June 1988.

[21] John H. Reppy. CML: A higher-order concurrent language. In A C M S I G P L A N ’91
Conference on Programming Language Design and Implementation, pages 293-305.
ACM, June 1991.

[22] A. Rodgers and K. Pingali. Process decomposition through locality of reference. In
Proc. of the 1989 A C M S I G P L A N Symposium on Programming Language Design
and Implementation. ACM, June 1989.

[23] Jaswinder P. Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford
parallel applications for shared-memory. Technical Report CSL-TR-91-469, Stanford
University, April 1991.

15

£
P-
.
CD

CD

lT3

C
O

24

21 H

18

15

12 H

9

6 -

3 -

12 16 20 24 28 32

Number of Processors

Processors 1 4 8 16 24 32
centralized queue (sec) 80.0 20.6 10.3 5.7 4.38 4.05
c lu ster= l, queue=8 (sec) - - - 5.7 4.23 3.74
cluster=2, queue=8 (sec) - - - 5.8 4.41 3.92
Avg. tasks dequeued 1 161 178 318 437 555
ATG (sec / task) 80.0 1.2e-l 5.8e-2 1.7e-2 1.0e-2 7.7e-2
Blocked computations 0 95 111 198 288 324

Figure 2: Performance of f ib 2 25 function application

o

*
*
<
>

ideal speedup
centralized queue
clusters=l, queue size
clusters=l, queue size
clusters=2, queue size
clusters=2, queue size

16

0 ”1-------- 1-------- 1-------- 1-------- 1-------- 1--------
0 2 4 6 8 10 12

Number of Processors

Figure 3: Performance of matrix multiplication on 256x256

17

