
SCALABLE FORMAL VERIFICATION OF FINITE FIELD

ARITHMETIC CIRCUITS USING COMPUTER

ALGEBRA TECHNIQUES

by

Jinpeng Lv

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

The University of Utah

December 2012

Copyright c© Jinpeng Lv 2012

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of

has been approved by the following supervisory committee members:

, Chair
Date Approved

, Member
Date Approved

, Member
Date Approved

, Member
Date Approved

, Member
Date Approved

and by , Chair of

the Department of

and by Charles A. Wight, Dean of The Graduate School.

Jinpeng Lv

Priyank Kalla 07/28/2012

Ganesh Gopalakrishnan 07/28/2012

Chris Myers 07/28/2012

Kenneth Stevens 07/28/2012

Rongrong Chen 07/28/2012

Gianluca Lazzi

Electrical and Computer Engineering

ABSTRACT

With the spread of internet and mobile devices, transferring information safely

and securely has become more important than ever. Finite fields have widespread

applications in such domains, such as in cryptography, error correction codes, among

many others. In most finite field applications, the field size –and therefore the bit-width

of the operands – can be very large. The high complexity of arithmetic operations

over such large fields requires circuits to be (semi-) customdesigned. This raises the

potential for errors/bugs in the implementation, which canbe maliciously exploited

and can compromise the security of such systems. Formal verification of finite field

arithmetic circuits has therefore become an imperative.

This dissertation targets the problem offormal verification of hardware implemen-

tations of combinational arithmetic circuits over finite fields of the typeF2k . Two

specific problems are addressed: i) verifying the correctness of a custom-designed

arithmetic circuit implementation against a given word-level polynomial specification

over F2k ; and ii) gate-level equivalence checking of two different arithmetic circuit

implementations.

This dissertation proposes polynomial abstractions over finite fields to model and

represent the circuit constraints. Subsequently, decision procedures based on modern

computer algebra techniques – notably, Gröbner bases-related theory and technology

– are engineered to solve the verification problem efficiently. The arithmetic circuit is

modeled as a polynomial system in the ringF2k [x1, x2, · · · , xd], and computer algebra-

based results (Hilbert’s Nullstellensatz) over finite fields are exploited for verification.

Using our approach, experiments are performed on a variety of custom-designed

finite field arithmetic benchmark circuits. The results are also compared against con-

temporary methods, based on SAT and SMT solvers, BDDs, and AIG-based methods.

Our tools can verify the correctness of, and detect bugs in, up to163-bit circuits inF2163 ,

whereas contemporary approaches are infeasible beyond48-bit circuits.

To Ruina, Andrew and Emma.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . viii

ACKNOWLEDGEMENTS . ix

CHAPTERS

1. INTRODUCTION . 1

1.1 Hardware Verification 1
1.1.1 Property Checking 3
1.1.2 Equivalence Checking 4

1.2 Computer Algebra-Based Formal Verification 5
1.3 Objective and Contributions of this Dissertation 6

1.3.1 Contributions of this Dissertation 7
1.4 Thesis Organization 7

2. PREVIOUS WORK AND LIMITATIONS . 9

2.1 BDDs and Their Variants 9
2.2 SAT Solvers and SMT Solvers 11

2.2.1 Circuit-Based Solvers 13
2.3 Computer Algebra-Based Approaches 14
2.4 Verification of Finite Field Applications 15

3. PRELIMINARIES . 17

3.1 Rings, Fields and Polynomials 17
3.2 Finite Fields 20

3.2.1 Construction of Finite FieldsF2k . 21
3.2.2 Hardware Implementations of Arithmetic Operations OverF2k . . 23

4. COMPUTER ALGEBRA FUNDAMENTALS . 30

4.1 Monomials and Their Orderings 30
4.2 Varieties and Ideals 33
4.3 Gr̈obner Bases .. 35
4.4 Hillbert’s Nullstellensatz 39
4.5 Concluding Remarks 41

5. IMPLEMENTATION VERIFICATION USING IDEAL MEMBERSHIP
TESTING . 42

5.1 Problem Statement 42
5.2 Verification Setup and Polynomial Modeling 44
5.3 Verification Formulation as Ideal Membership Testing 47

5.3.1 GeneratingI(VF
2k
(J)) . 47

5.4 Obviating Buchberger’s Algorithm 51
5.5 Our Overall Approach 55
5.6 Experimental Results 56

5.6.1 Evaluation of SAT, SMT, BDD, AIG-Based Methods 57
5.6.2 Evaluation of Our Approach 57

5.7 Conclusions 59

6. GATE-LEVEL EQUIVALENCE CHECKING OF ARITHMETIC CIRCUITS
OVER F2K . 62

6.1 Problem Statement and Modeling 63
6.1.1 Verification Problem Formulation as Weak Nullstellensatz 66

6.2 Verification Using a Minimum Number
of S-polynomial Computations 70

6.3 Improving Polynomial Division UsingF4-style Reduction 73
6.4 Experimental Results 82

6.4.1 Equivalence Checking of Structurally Similar Circuits. 82
6.4.2 Equivalence Checking of Structurally Dissimilar Circuits 84

6.5 Limitation of Our Approach 84

7. VERIFICATION OF COMPOSITE FIELD ARITHMETIC CIRCUITS 87

7.1 Circuit Designs over Composite Fields 87
7.2 Problem Formulation and Hierarchy Verification 93
7.3 Experimental Results 95
7.4 Conclusions 97

8. CONCLUSIONS AND FUTURE WORK . 99

8.1 Computer Algebra-Based Approaches for Equivalence Checking of Arith-
metic Circuit overF2k . 99

8.2 Future Work 100
8.2.1 Speeding up Verification Using a Graphics Processing Unit 100
8.2.2 Extraction of Circuit Abstraction 101
8.2.3 Simulation-Based Verification of Circuits 102

REFERENCES . 103

vi

LIST OF FIGURES

1.1 Typical circuit design and verification flow. 2

2.1 BMD forF = x ∗ y; x, y are 2-bit wide,F is 4-bit wide. 10

2.2 BMD forF = x ∗ y; x, y, F are all2-bit wide. 11

3.1 4-bit adder overF24 . 24

3.2 Mastrovito multiplier overF24 . 25

3.3 Montgomerymultiplier overF2k . 26

3.4 Barrett multiplier overF2k . 27

5.1 The verification setup. 44

5.2 A 2-bit multiplier overF(22). 46

5.3 A 2-bit multiplier overF(22). The gate⊗ corresponds to AND-gate, i.e.,
bit-level multiplication modulo 2. The gate⊕ corresponds to XOR-gate,
i.e., addition modulo 2. 52

6.1 The equivalence checking setup: miter. 65

6.2 Miter for2-bit circuit equivalence. .. 65

6.3 A solution (bug) in(F2k − F2k) is a “don’t care”. 68

7.1 Mastrovito multiplier overF(22)2 . 92

7.2 Mastrovito multiplier overF24 . 93

LIST OF TABLES

3.1 Additive and multiplicative inverses inZ5. 20

3.2 Bit-vector, exponential and polynomial representationof elements inF24 =
F2[x] (mod x4 + x3 + 1) . 22

5.1 Runtime for verification of Montgomery versus Mastrovitomultipliers
overF2k for BDDs, SAT, SMT-solver and AIG/ABC-based methods. TO
= timeout of 10hrs. Time is given in seconds. 58

5.2 Verification of Mastrovito multipliers by computing Gröbner bases using
SINGULAR. MO=out of8G memory. Time is given in seconds. 58

5.3 Runtime for verifying bug-free and buggy Mastrovito multipliers using
our approach. TO = timeout of 10hrs. Time is given in seconds.. 59

5.4 Runtime for verifying bug-free and buggy Montgomery multipliers using
our approach. TO = timeout of 10hrs. Time is given in seconds.. 60

5.5 Runtime for verifying bug-free and buggy Barrett multipliers using our
approach. TO = timeout of 10hrs. Time is given in seconds. 60

5.6 Verification of ECC point addition. Run-time given is seconds. TO =
timeout of 24hrs. 60

5.7 Verification of ECC point doubling. Run-time given is seconds. TO =
timeout of 24hrs. 60

6.1 Matrix representation for polynomials. 75

6.2 Matrix subtraction of polynomials. 75

6.3 Matrix reduction for polynomials: representation. 76

6.4 Matrix reduction for polynomials: subtraction. 76

6.5 Matrix created for polynomial reduction for Example 6.8. 81

6.6 Subtraction result of the matrix created for polynomialreduction. 83

6.7 Verification of Mastrovito multiplier vs. Barrett multiplier. TO=10hrs.
⋆=Out of variable limitation. Time is given in seconds. 85

6.8 Verification of Barrett multiplier vs. Montgomery multiplier. TO=10hrs.⋆=Out
of variable limitation. Time is given in seconds. 85

6.9 Verification of Mastrovito multiplier vs. Montgomery multiplier. TO=10hrs.
Time is given in seconds. 85

7.1 Verification setup overF(22)2 . 96

7.2 Statistics of designs overF2m . 98

7.3 Verification of Mastrovito multiplier overF(2m)n using proposed approach.
All times are given in seconds. 98

ACKNOWLEDGEMENTS

I am grateful to many people, without whose support I could not have completed

this Ph.D. study and dissertation. First and foremost, I would like to thank my advisor,

Professor Priyank Kalla. He has been patient enough to teachme everything I need to

learn. I have learned many things from him, not only the knowledge itself, but also the

way to organize the knowledge and apply it to real-world problems. Moreover, he is

always available to discuss questions with me and provided perspectives based on his

experience. I especially enjoy brainstorming with him. Actually, the most important

result of my Ph.D. research is achieved by brainstorming. Next, I would like to thank

Professor Florian Enescu for his extensive help and contribution to this work. I would

also like to thank the other members of my committee - Ganesh Gopalakrishnan, Chris

Myers, Ken Stevens and Rongrong Chen for their help and support. Finally, I would

like to thank my friends: Arun Jay, Sammer Merchant and BrandtHammer for all the

good times we spent together.

CHAPTER 1

INTRODUCTION

With the rapidly increasing complexity of hardware systems, verification of the cor-

rectness of designs poses serious challenges. Design flaws can be extremely costly. For

example, the Intel Pentium floating point divide bug resulted in 475 million dollars of

extra costs in1993. In many safety-critical applications, such as cryptography systems,

arithmetic bugs can be especially catastrophic. In [10], itis shown that incorrect (buggy)

hardware can lead to full leakage of the secret key, which cancompromise the security

of such systems. Therefore, it is of utmost importance to verify the correctness of

hardware designs.

1.1 Hardware Verification

Today, hardware verification averages about 70 percent of the overall hardware de-

sign effort and is believed to be the largest source of risk and cost. Hardware verification

is becoming even more challenging as the design complexity increases.

The hardware design flow typically starts with a high-level specification or a prop-

erty of the design. This specification is then translated into a register-transfer-level

(RTL) description, which is further optimized and translated to its corresponding netlist

representation. Then, the logic-level netlist is translated to a physical layout, which is

subsequently fabricated into integrated circuits. Fig. 1.1 shows a typical design flow

for realizing a hardware system. The design flow can be automated by Computer-Aided

Design (CAD) tools available from both academia and industry. However, one critical

question emerges: how to prove equivalent functionality between the different levels of

representations. This is the objective of hardware verification. For example, after the

RTL description is transformed into a gate-level netlist, it is important to ensure that its

functionality remains the same. Similarly, after logic optimization is performed on the

gate-level unoptimized netlist, it has to be ensured that the optimization process does

not introduce a bug in the original design. Therefore, as shown in Fig. 1.1, verification

is needed between different levels of abstractions, i.e., between design specification and

2

Un-optimized Netlist

Design Specification

RTL Description

Optimized Netlist

Mapped Netlist

Intergrated Citcuits

Physical Netlist

Property Checking

Property

Equivalence Checking

Figure 1.1. Typical circuit design and verification flow.

the “golden model”, RTL-level model and netlist-level model, and between unoptimized

and optimized netlists, etc.

There are two main methodologies applied to hardware verification: simulation and

formal verification. In a traditional design flow, simulation is the primary methodology

for design validation. The effectiveness of simulation is achieved by exhaustive assign-

ments of inputs to excite all possible behaviors of the system and then by analyzing the

output values. However, the increasing complexity of designs makes it impossible for

simulation to provide complete coverage.

In recent years, formal verification has emerged as an alternative technique to ensure

the correctness of hardware designs, overcoming some of thelimitations of simulation.

Formal verification is the process of utilizing mathematical theory to reason about the

correctness of hardware designs. Formal verification in hardware usually takes one

of two forms: property checking and equivalence checking. Property checking is a

process of checking whether a design conforms to its given behavior or properties.

Equivalence checking is conducted to prove the equivalent functionality of two given

designs. Usually, equivalence checking is applied at various stages of the design cycle

3

to verify correctness of the applied transformations. Figure 1.1 shows the role of

equivalence checking in a typical hardware design flow.

Techniques utilized by property checking include model checking, theorem proving

and approaches that integrate both. Equivalence checking makes use of Binary Decision

Diagrams (BDDs), Satisfiability (SAT) solvers, and And-Inverter-Graph (AIG)-based

reductions, among others. As an emerging technique for equivalence checking, com-

puter algebra-based decision procedures are gaining popularity. This kind of verifica-

tion technique is believed to be more sophisticated in verifying arithmetic hardware

designs in that they exploit the powerful applications of mathematics rather than ad-hoc

techniques.

1.1.1 Property Checking

Property verification refers to proving the correspondencebetween designs and

given properties. Usually, property verification is achieved by two main formal meth-

ods: theorem proving and model checking.

Theorem proving[60] requires the existence of mathematical descriptions for both

the specification and implementation, allowing these descriptions to be manipulated

in a formal mathematical framework. Theorem provers apply primitive proof (math-

ematical) rules to a specification in order to derive new properties of a specification.

Through this method, theorem proving can reduce a proof goalto simpler subgoals that

can be easily proved/disproved automatically by primitiveproof steps. The benefit of

this approach is its generality and completeness. However,despite several advances,

generating the proof requires extensive guidance from the user. As a result, theorem

proving lacks the level of automation that is desirable for aCAD framework to be prac-

tically useful. Theorem proving has gained commercial use in verifying that division

and other operations are correctly implemented in processors at AMD and Intel.

Model checking[21] is an approach to formally verifying finite-state systems. Prop-

erties of the system are modeled as temporal logic formulas,and the model defined

by the system is traversed to check if the properties hold or not. Therefore, model

checking consists of specifying the desired properties of the system and checking if

there are violations of specified properties for all possible behaviors of the system.

Model checkingis one of the most successful approaches for property verification

to date. Model checking tools [12] [63] [40] have achieved a significant level of au-

tomation and maturity and are widely in use in both academia and industry. A good

4

aspect of model checking that is extremely important in practice is the ability to generate

counterexamples. Such counterexamples provide a way to trace the incorrect behaviors

(bugs). However, these tools tend to be memory intensive andare more applicable to at

most medium sized designs or at the block-level, rather thanat the system-level.

1.1.2 Equivalence Checking

Equivalence checking is used to formally prove that two representations of circuit

designs have exactly equivalent functionality. As shown inFig. 1.1, once a high-level

representation is validated (by simulation or property checking), it is transformed into a

gate-level netlist so that logic synthesis tools can be usedto optimize the design accord-

ing to the desired area/delay/power constraints. Then, thedesign proceeds through a

varied set of optimization and transformation operations.During various transformation

stages, different implementations of the design, or parts of the design, are examined de-

pending upon the constraints, such as area, performance, testability, etc. As the design

is modified by replacing one of its components by another equivalent implementation,

it needs to be verified whether or not the modified design is functionally equivalent to

the original one.

Equivalence checking has important applications in arithmetic circuit verification.

Hardware designs contain a large number of custom-designedcircuits such as adders,

multipliers, dividers, and so on. Such circuits are usuallynot synthesized by CAD tools

because of area and performance constraints. Therefore, this raises the potential for

errors/bugs in the implementation. Consequently, it remains a challenge to conduct

equivalence checking for these large-scale arithmetic circuits.

As an intensively investigated topic, techniques and approaches for equivalence

checking have been well established. With various techniques employed for equiv-

alence checking, BDDs and SAT-based techniques are the two dominant approaches

widely used in both academia and industry. BDD-based approaches try to construct

canonical representations of given circuits and conduct a linear comparison to determine

whether they are equivalent or not. SAT-based equivalence checking approaches try to

find the unsatisfiability of a “miter” representing two designs.

There are also many promising generalizations of SAT and BDDs: Binary Moment

Diagrams (BMDs), which have shown their superiority for verifying integer multipliers

[16], and Satisfiability Modulo Theories (SMT) solvers, which are the next generation

of SAT. These approaches, to some extent, have gained some successes in equivalence

5

checking. However, these approaches are beginning to show signs of inadequacy in two

cases. First, large-scale hardware designs still hinder the equivalence checking as the

level of design complexity grows rapidly. For example, the verification of a16-bit

modular multiplier becomes infeasible for the current SAT/BDD-based approaches.

Secondly, for structurally similar circuits, this problemcan be efficiently solved using

the techniques of AIG-based reductions [11] and subsequentuse of circuit-SAT solvers

[53]. However, when the circuits are functionally equivalent but structurally very dis-

similar, none of the contemporary techniques, including BDDs, SAT and AIG-based

approaches, are able to prove equivalence.

Ideally, approaches for equivalence checking should maintain a high-level of ab-

straction while still retaining sufficient information so as to not lose lower-level func-

tional details [37]. For instance, implementing arithmetic functions at bit-level can

provide highly optimized implementations while word-level abstraction usually has

much less structural information for solvers to analyze.

Arithmetic Bit Level (ABL) [85] abstraction techniques come close to achieving

these requirements by extracting an arithmetic bit level representation from a given

circuit. Then, the method can use the ABL information to prunethe search space of

SAT solvers. The drawback of this approach is that it can onlyidentify ABL information

locally when analyzing the given circuit, which results in an exponential blowup when

looking at sophisticated circuits consisting of several arithmetic blocks.

In this dissertation, we focus on equivalence checking problems for finite field arith-

metic circuits. Such circuits are found in many applications such as in cryptography,

coding theory, signal processing, among others. We utilizethe theory of computer-

algebra and algebraic-geometry, notably, Gröbner bases-related theory and technology,

as the underlying verification engines. Our approach is sophisticated enough to take

into account both high-level (word-level) specifications and low-level (bit-level) imple-

mentation details.

1.2 Computer Algebra-Based Formal Verification
The first computer algebra-based verification technique dates back to1996 when

Gröbner bases were utilized for SAT solving and formal verification [23]. Indeed,

there have been many attempts to solve verification problemsusing Gr̈obner basis

formulations [4] [24] [87]. The standard flow of these approaches is:

1. The verification problem is first formulated as a polynomial system.

6

2. The polynomial system is fed into a Gröbner basis engine to check whether the

desired property is satisfied.

The critical step of this approach is the Gröbner basis computation. Unfortunately,

the computation is known to have worst-case double-exponential complexity in the

input data. In practice, Gröbner basis algorithms have not been capable of satisfactorily

solving problems derived from real-world applications. Besides, these methods are

employed for verification by modeling constraints over the Boolean levelZ2; word-level

abstractions, which can be powerfully modeled in algebra, are not utilized.

Recent advances [88] [56] [73] [58] [57] suggest a new direction of utilizing com-

puter algebra theory to conduct hardware verification. These works show that it is fea-

sible to overcome the complexity of Gröbner basis algorithm by efficiently engineering

the integration of Gr̈obner bases theory and circuit analysis techniques.

1.3 Objective and Contributions of this Dissertation

This dissertation focuses on verification of hardware implementations of arithmetic

circuits over finite fields of the typeF2k . Specifically, the following verification prob-

lems are addressed:

1. Formal verification of a custom-designed finite field arithmetic circuit implemen-

tation against its given word-level polynomial specification.

2. Gate-level equivalence checking of two finite field arithmetic circuit implemen-

tations.

Verification of onlycombinational logic circuitsover finite fields is considered in

this work. Sequential circuit verification is a very different problem for arithmetic

circuits – and it is beyond the scope of this dissertation.

Themotivationfor this work stems from applications in cryptography circuits, though

our techniques can be applied to verify arbitrary finite fieldarithmetic circuits. In

cryptosystems, the datapath size (operand size)k in the circuits can be very large. For

example, the U.S. National Institute for Standards and Technology (NIST) recommends

the use of finite fields corresponding to datapath sizes ofk = 163-bit or more. The large

size and high complexity of such circuits makes design verification quite challenging.

Indeed, contemporary combinational verification techniques are unable to verify such

large arithmetic circuits.

7

1.3.1 Contributions of this Dissertation

We propose the application ofcomputer-algebra techniques, notably,Gröbner bases-

related theory and technology [17] [3], as the underlying verification framework for our

applications. The advantage of using computer-algebra techniques is that it allows us

to integrate finite field arithmetic, circuit models and algebraic reasoning in a common

verification framework. The circuits are modeled as a systemof multivariate poly-

nomials in the fieldF2k . The formal verification problem is then formulated using

Hilbert’s Nullstellensatz[25] as ideal membership testing. A Gröbner basis engine is

subsequently employed as a decision procedure to solve thisverification problem.

Gröbner basis theory is very powerful as it enables one to solvemany polynomial

decision questions. Unfortunately, the computational algorithms are known to have

worst-case double-exponential complexity in the input data. Therefore, in order to make

verification practical and scalable, we engineer efficient application of Gr̈obner basis by

integrating it with circuit analysis techniques. Specifically, we analyze the topology

of the given circuit and derive efficientvariable and term ordersto systematically

represent and manipulate the polynomials. Subsequently, using the theory of Gr̈obner

bases over finite fields, we prove that our term orderings impose specific constraints

on the polynomials that canobviate the need to compute a Gröbner basis. Under

this term ordering, either the polynomials themselves constitute a Gr̈obner basis, or

the term ordering allows us to identify a minimum number of computations in the

Gröbner basis algorithm that are sufficient for verification. This significantly scales

verification – we are able to verify circuits for which contemporary verification methods

are infeasible. To further improve our approach, we implement an efficient polynomial

reduction (division) algorithm that operates on a matrix-based representation of the

polynomial system.

Experiments are conducted over various custom-designed arithmetic circuits over

F2k . These include three different modulo-multiplier architectures and point-addition

circuits used in elliptic curve cryptosystems. Using our approach and tools, we can

verify the correctness of, and detect bugs in, up to163-bit finite field arithmetic circuits,

whereas contemporary approaches are infeasible.

1.4 Thesis Organization
The rest of this dissertation is organized as follows. Chapter 2 reviews previ-

ous approaches and highlights their drawbacks with respectto the given verification

8

problem. Chapter 3 briefly describes the construction and properties of finite fields

F2k . Arithmetic circuit design over such fields is also reviewedto shed some light

on the difficulty of the verification problem. Chapter 4 coverspreliminary theoretical

background related to computer-algebra, algebraic-geometry and Gr̈obner bases. Chap-

ter 5 describes our approach to verify a circuit implementation against a word-level

polynomial specification using ideal membership testing. We show how the Gr̈obner

basis computation can be obviated using efficient term orderings derived from the given

circuit. Chapter 6 presents our approach to equivalence checking of two arithmetic cir-

cuit implementations. Efficient term orderings and matrix-based polynomial reduction

procedures are derived. Chapter 7 describes a hierarchical verification methodology

to verify arithmetic circuits over composite fieldsF(2m)n , wherek = m · n. Finally,

Chapter 8 concludes the dissertation with a perspective on current and future research

directions on computer algebra methods for verification.

CHAPTER 2

PREVIOUS WORK AND LIMITATIONS

Equivalence checking has been extensively investigated and many well-developed

theories and techniques have been successfully applied in both academica and industry.

The fundamental techniques used in equivalence checking include BDDs [15] and SAT

solvers [26]. Recently, Gröbner bases-based approaches are also gaining popularity.

This chapter reviews widely used techniques in the equivalence checking domain and

discusses their limitations.

2.1 BDDs and Their Variants

Reduced Ordered Binary Decision Diagrams (ROBDDs or BDDs) are a canonical

Directed Acyclic Graph (DAG) representation of a Boolean function. Circuits are

usually described as a DAG. Two functionally equivalent circuits can be represented by

the same BDDs. Therefore, equivalence checking between two circuits can be simply

achieved by a comparison of their BDDs.

BDDs have found wide applications in many verification problems, including equiv-

alence checking of arithmetic circuits, symbolic model checking [33] [63], among many

others. However, along with the increasing complexity of designs, the size-explosion

problem of BDDs becomes a bottleneck for many applications. This problem becomes

especially serious when applied on designs containing large arithmetic data-path units.

For example, BDD representation of multipliers requires memory that is exponential

in the number of variables. As a result, BDDs fail to representmultipliers beyond

16-bit. As an attempt to control the exponential size, partitioned BDDs [70] introduce

intermediate variables to represent sub-BDDs, thus partitioning the original BDD. Un-

fortunately, it is an intractable problem to find an optimum partition. This issue renders

partitioned ROBDDs impractical for general verification problems.

Other efforts to extend the capabilities of BDDs are derived from generic Word

Level Decision Diagrams (WLDDs), which are graph-based representations for func-

10

tions with a Boolean domain and an integer range. These representations include

ADDs [5], *BMDs [16], etc. A thorough review of WLDDs can be found in [41].

Algebraic decision diagrams (ADDs) [5] provide an efficientmeans for representing

and performing arithmetic operations on functions from thebinary domain ({0, 1}) to

the integer domain, i.e.,{0, 1} → Z. However, the mapping/decomposition at each

node/variable is still binary and leads to exactly two terms. Restricting the decompo-

sition to a binary type limits the abstraction of integer variables, as they have to be

decomposed into their constituent bits. Consequently, ADDsface the same problem

that BDDs do: the exponential size of the number of input bits.

BMDs [16] and their variants, such as HDDs [22], K*BMD [30], among others,

perform a moment-based decomposition of a linear function.BMDs represent binary

variables as(0, 1) integers instead of Boolean variables. Moment diagrams provide a

concise representation of integer-valued functions defined over vectors of bits, or words,

such asX = 2n−1xn−1+ . . .+2x1+x0, for ann-bit wordX, where eachxi is a binary

variable. BMDs are linear in size for integer multiplier circuits, as shown in Figure

2.1. The multiplicative constants of this representation reside in the terminal nodes.

Moreover, the constants can also be represented as multiplicative terms and assigned

to the edges of the graph, giving a rise to the MultiplicativeBinary Moment Diagram

(*BMD) [16]. Several rules for manipulating edge weights areimposed on the graph to

ensure canonicity.

One of the main limitations of BMDs is that performing some arithmetic operations

on functions represented by BMDs is very expensive. For example, for ann-bit vector

X, the BMD forXk requiresO(nk) nodes. In addition, BMDs for modular operations

2

0 1

x0

x1

y0

y1

2

F

X=2x1+x0

Y=2y1+y0

Figure 2.1. BMD for F = x ∗ y; x, y are 2-bit wide,F is 4-bit wide.

11

on bit-vectors are distorted, losing the compactness of word-level expression. One such

example is depicted in Fig. 2.2.

Taylor Expansion Diagrams(TEDs) [20] [19] [45] [44] are derived from Taylor

series and canonical DAG representations for functions that can be abstracted as poly-

nomials. TEDs represent bit-vectors (x0, x1, . . . , xn−1) as algebraic symbols (X[0 :

n− 1]), raising the abstraction from bits (Boolean) to words (integers). Letf(x, y, . . .)

be a real differentiable function. Using the Taylor series expansion with respect to a

variablex, the functionf can be represented as

f(x, y, . . .) = f(x = 0, y, . . .) + x · f ′(x = 0, y, . . .) +

(1/2)x2 · f ′′(x = 0, y, . . .) + · · · (2.1)

The derivatives off atx = 0 are independent ofx, and can be further decomposed w.r.t

the remaining variables, one variable at a time. This resulting recursive decomposition

can be represented using a nonbinary tree called the TED, with memory requirements

much smaller than other representations. TEDs are applicable to modeling, symbolic

simulation and equivalence verification, provided that a polynomial abstraction is feasi-

ble. For binary operations, the diagram reduces to a *BMD, inheriting all its limitations.

Besides, TEDs cannot model modulo operations over bit-vectors. Therefore, TEDs are

incapable of solving the equivalence problems presented inthis dissertation.

2.2 SAT Solvers and SMT Solvers

The SAT problem is a decision-problem. In principle, any decidable decision prob-

lem can be modeled in terms of SAT, and because of this, SAT solvers are used in an

enormous variety of applications.

y0

y1

y0

x1

−2

2

0 1

x0

x1

2

F

Figure 2.2. BMD for F = x ∗ y; x, y, F are all2-bit wide.

12

The objective of SAT solvers is to find variable assignments such that the given

constraints (formulas) can be satisfied. If this is not possible, SAT solvers have to prove

that no assignments satisfy the constraints (UNSAT).

Solving SAT-instances of any useful size was not possible until the introduction

of the Davis-Putnam (DP) [27] algorithm. The DP algorithm works by eliminating

variables through deriving new constraints from the original constraints containing the

variables. Still, this has its limitations: though the variable is eliminated, the cost of

elimination can be large because of the clauses needed to represent the variable in its

absence. As a result, the algorithm did not see much use, but was used as a stepping

stone for a more versatile techniques based on searching.

The foundation of nearly all modern SAT solvers lies in the DPLL approach [26].

The DPLL algorithm adopts a technique called backtracking search, whereby variables

are recursively assigned, simplifying the formula at each step, building candidates to

the solutions, abandoning each partial solution that can not possibly be completed to

a valid solution (backtracking). The DPLL algorithm also utilizes rules such as unit-

propagation and pure-literal elimination to reduce formula size and reduce the number

of decisions needed. However, in essence, the DPLL algorithm is an exhaustive search

for satisfying assignment.

Based on the basic DPLL framework, many improvements have been proposed. A

major advance is conflict driven clause learning [79]. Conflict driven clause learning

takes a strategy that new clauses are learned from conflicts during backtrack search

and the structure of conflicts is exploited during clause learning. With this technique,

the size of problem search space is greatly reduced and SAT solvers achieve the per-

formance improvement by orders of magnitude. However, there are still many prob-

lems that are intractable for SAT solvers, such as problems from cryptography domain

where the designs often involve tens of millions of variables. One major drawback

that limits the capacity of SAT solvers is the lack of abilityfor word-level reasoning.

To resolve this limitation, satisfiability modulo theories(SMT) are proposed and have

gained significant popularity since2003. The SMT problem is to decide the satisfiability

of a formula expressed in a first-order background theory, such as linear inequalities,

bit vectors, linear arithmetic and uninterpreted functions, etc. In fact, SMT can be

considered as an extension of SAT to first-order logic. In other words, SMT solvers

first apply highly optimized decision procedures for different first-order theories and

then check the satisfiability using SAT solvers. For example, X > Y ∧ Y = Z is

13

first interpreted intoX > Z and thenX > Z is fed into a SAT solver to check the

satisfiability.

For our problems of interest, bit-vector (BV) theories have been shown to be useful

and important for hardware equivalence checking. In our case, equivalence checking

problems are first compiled into the formula. Then, decisionprocedures for bit-vector

theories, such as term rewriting techniques, are applied onthe compiled formula to ob-

tain further optimization. Next, the optimized formula is bit-blasted to an equisatisfiable

Boolean formula. Finally, an integrated SAT solver is used toenumerate assignments

to the Boolean formula to find a satisfying assignment.

One advantage of bit-vector theories in SMT is that all problems are described

and operated upon word-level (bit-vector), proving to be effective for computationally

intensive designs, such as arithmetic circuits. For example, at word level, a32-bit

multiplication can be represented as one term with two32-bit words, while at bit-level,

it is represented as thousands of Boolean variables. Moreover, some instances can be

fully decided on the word-level, thus achieving a high performance.

As mentioned above, SMT formulas obviously provide a much richer modeling

language than what is possible with Boolean SAT formulas, even allowing word-level

representations of datapath operations. Solvers based on these theories [31] [14] [13]

[43] have improved abilities to represent arithmetic computations, but ultimately rely on

SAT tools to solve the verification instance, making them prone to the same limitations,

as shown in our experiments. For equivalence checking of gate-level circuits, word-

level information is not available. Then, SMT solvers have no benefits as they have to

rely on SAT solvers to solve the bit-level verification instance.

2.2.1 Circuit-Based Solvers

The above SAT and SMT solvers do not take into consideration circuit topology, so

they are inefficient in verifying circuit designs. Instead,circuit-based solvers, such as

C-SAT [53] [54], focus specifically on the mechanics of checking the equivalence of

pairs of combinational circuits. The main strategy utilized by C-SAT solvers is signal

correlation guided learning, which attempts to identify common subcircuit structure. In

other words, an internal node in the first circuit may be equivalent to an internal node

in the second circuit, thus combining the identical subcircuit as one node. This way,

if two circuits are structurally similar, the original problem becomes a problem with

much smaller space. To identify the common subcircuits, a technique calledstructural

14

hashing[11] is used. This is achieved by random simulation: first sending random

vectors through the two circuits and then collecting pairs of candidate equivalent nodes.

Practical use [11] has shown that this technique can detect potentially many, high

probability, candidate equivalent nodes.

AIG [49], on the other hand, is a pseudo canonical representation of a circuit. One

good property of AIGs is that the operations based on AIG are fast, such as adding

nodes or merging nodes. By representing the circuit with AIGs, many equivalent nodes

over a large circuit can be identified quickly.

When coupled with AIG as the circuit representation and techniques used in C-SAT,

circuit-based SAT solvers can achieve remarkable speedupsin solving a wide variety of

circuit equivalence checking problems.

When two circuits are structurally very dissimilar, structural hashing is able to iden-

tify the common subcircuits, thus reducing the problem size. However, these techniques

are infeasible when verifying structurally dissimilar circuits. For example, in our ex-

periments, we have shown that equivalence checking of Mastrovito versus Montgomery

multipliers using ABC [11] and C-SAT [53] is infeasible beyond16-bit circuits.

2.3 Computer Algebra-Based Approaches

Computer algebra-based approaches were first proposed in1996 for SAT solving

and formal verification [23] [4]. The principle idea of theseapproaches is to reason

about the existence of solutions in the polynomial domain: verification problems are

first formulated as polynomials; then the polynoial system is fed into a Gr̈obner basis

engine to check the existence of solutions. There have been many attempts to solve

verification problems using this Gröbner basis formulation [87]. Instead of analyzing

the entire problem for proof-refutation, the work of [24] utilized Gröbner bases to

preprocess SAT instance to obtain additional information about the problem. This

information is then fed back into the SAT solver, thus benefiting the SAT solving.

One limitation of these approaches is that the Gröbner basis computation is known

to have worst-case double-exponential complexity in the input data. Besides, in prac-

tice, the implementations of Gröbner basis algorithm have not been capable of satisfac-

torily solving problems derived from real-world applications.

Recent advances [88] [73] suggest a new direction of utilizing computer algebra

theory to conduct hardware verification. It is feasible to overcome the complexity of

15

Gröbner basis algorithm by efficiently engineering Gröbner bases theory and integration

of circuit analysis techniques.

The work described in [88] addresses verification of finite precision integer datapath

circuits using the concepts of Gröbner bases over the ringZ2k . They model the circuit

constraints by way of arithmetic-bit-level (ABL) polynomials ({G}), and formulate

the verification test as an equivalent variety subset problem. To solve this, first they

derive a term order that already makes{G} a Gr̈obner basis. Then, they compute a

normal formf of the specificationg w.r.t. {G}. If f is a vanishing polynomial over

Z2k [76], circuit correctness is established. In [73], the authors further show that the

vanishing polynomial test can be omitted by formulating theproblem directly overQ :=

Z2k [X]/〈x2 − x : x ∈ X〉.
However, such approaches are effective only over ringZ2k while our problems are

derived from finite fieldsF2k . The mathematical theories differ significantly in these

two domains. Therefore, these approaches cannot be appliedfor our problems.

2.4 Verification of Finite Field Applications

There has not been much research by the design verification community to verify

finite field applications. The following works specifically targeted automated decision

procedures for verification of finite field applications: [67] [69] [74].

The theorem-proving approach of [67] verifies a finite fieldF2k implementation

against a given polynomial specification. They devise a decision procedure-based on

polynomial division, variable elimination, term rewriting, etc., and demonstrate a cor-

rectness proof of a sub-block of a Reed-Solomon decoder. Their decision procedures

were partly built upon BDDs (requiring decision overF2), and that is infeasible for

large circuits.

The work of [69] solves similar problems as those of [67]. However, they make use

of OKFDDs [29] to canonically represent the circuit constraints. Moreover, instead of

verifying circuit overF2k directly, [69] verifies the circuit over its equivalent composite

fieldF(2m)n representation, where anonprimek = m · n. Their approach has no benefit

if k is prime – say, whenk = 163 for elliptic curves. Moreover, the size-explosion of

FDDs limits their approach to 16-bit (F216) circuits, as shown in their experiments.

MODDs [42] were proposed as a canonical representation of the characteristic

function of a circuit over finite fieldF2k . However, as each node in the DAG may

16

have up tok children, MODDs have been shown to be exponential in the number of

variables, thus infeasible beyond 32-bit circuits.

None of the above approaches provide a scalable and efficientsolution to the prob-

lem of verification of large finite field arithmetic circuits.

CHAPTER 3

PRELIMINARIES

This chapter gives an account of basic communicative algebra objects, such as

modular arithmetic, groups, rings, fields and polynomials.Emphasis is placed on

finite fields and hardware design over such fields as these applications are the focus

of this dissertation. The material is referred from [62] [75] [51] for finite field concepts

and [61] [65] [48] [89] [46] for hardware design over finite fields.

3.1 Rings, Fields and Polynomials

Definition 3.1 Anabelian group is a setS and a binary operation′+′ satisfying:

• Closure Law: For everya, b ∈ S, a+ b ∈ S.

• Associative Law: For everya, b, c ∈ S, a+ (b+ c) = (a+ b) + c.

• Commutativity: For everya, b ∈ S, a+ b = b+ a.

• Existence of Identity: There is an identity element0 ∈ S such that for alla ∈ S;

a+ 0 = a.

• Existence of Inverse: Ifa ∈ S, then there is an elementa−1 ∈ S such thata +

a−1 = 0.

The set of integersZ, for instance, forms an abelian group under addition.

Definition 3.2 Given two binary operations′+′ and ′·′ on the setR as well as two

distinguished elements0, 1 ∈ R, the systemR is called aring if the following properties

hold:

• R forms an abelian group under the ’+’ operation with additive identity element

0.

• Distributive Laws: For alla, b, c ∈ R, a · (b+ c) = a · b+ a · c .

18

• Associative Law of Multiplication: For everya, b, c ∈ R, a · (b · c) = (a · b) · c.

If there is an identity element1 ∈ R such that for alla ∈ R, a · 1 = a = 1 · a, then

R is said to be aring with unity .

The ringR is commutative if the following law also holds:

• Commutative Law of Multiplication: For everya, b ∈ R, a · b = b · a.

Henceforth, we consider only commutative rings with unity,as defined above. The

set of integers,Z, and the set of rational numbers,Q, are examples of commutative

rings with unity.

Definition 3.3 Themodular number systemwith basen is a set of positive integers

Zn = {0, 1, . . . , n − 1}, with the two operations′+′ and ′.′ satisfying the properties

below:

(a+ b) (mod n) ≡ (a (mod n) + b (mod n)) (mod n) (3.1)

(a · b) (mod n) ≡ (a (mod n) · b (mod n)) (mod n) (3.2)

(−a) (mod n) ≡ (n− a) (mod n) (3.3)

Example 3.1 The setZ8 = {0, 1, . . . , 7} denotes the modular number system with base

8. Examples of some operations performed(mod 8) are:

3 + 6 = 9 (mod 8) = 1
5 + 7 = 12 (mod 8) = 4
(−3) = 8− 3 (mod 8) = 5

2 · 4 = 8 (mod 8) = 0
3 · 5 = 15 (mod 8) = 7

3 · (−3) = (3 · 5) (mod 8) = 7

The modular number systemZn = {0, 1, . . . , n − 1}, wheren is a natural number,

forms a commutative ring with the identity elements0 and1. This type of a ring is a

finite integer ring, where addition and multiplication are definedmodulo n (mod n).

Many hardware and software applications perform bit-vector arithmetic. Arithmetic

overk-bit vectors manifests itself as algebra over the finite integer ringZ2k , as ak-bit

vector represents integer values from{0,, 2k − 1}.

Example 3.2 Consider the following hardware description given in Verilog.It takes as

inputs two4-bit vectors, and computes the sum, which is also representedwith a 4-bit

wide vector. Therefore, addition is performed modulo24.

module Adder (A , B , sum) ;

19

i n p u t [3 : 0] A ;
i n p u t [3 : 0] B ;
o u t p u t [3 : 0] sum ;
reg [3 : 0] sum ;

a lways @ (A or B)
beg in

sum <= A + B;
end

endmodule

This code exemplifies arithmetic computations over the ringZ2k implemented at

bit-vector level.

Definition 3.4 A field F is a commutative ring with unity, where every non-zero element

in F has a multiplicative inverse; i.e.,∀ a ∈ F− {0}, ∃ â ∈ F such thata · â = 1.

A field is defined over a ring with an extra condition: the presence of a multiplicative

inverse for all non-zero elements. Therefore, a field must bea ring while a ring is not

necessarily a field. For example, the setZ2k = {0, 1, · · · , 2k − 1} forms a finite ring.

However,Z2k is not a field because not every element inZ2k has a multiplicative inverse.

In general, fields can be infinite, or contain a finite number ofelements. For exam-

ple, fractionsQ, complex numbersC, are infinite fields. In our applications, we focus

on finite fields, which are described later in Section 3.2.

Definition 3.5 Let R be a ring. Apolynomial over R in the indeterminatex is an

expression of the form:

a0 + a1x+ a2x
2 + · · ·+ akx

k =
k

∑

i=0

aix
i, ∀ai ∈ R. (3.4)

The constantsai are the coefficients andk is the degree of the polynomial. For

example,4x2 + 6x is a polynomial inx overZ, with coefficients4 and6 and degree2.

Definition 3.6 The system consisting of the set of all polynomials in the indeterminate

x with coefficients in the ringR, where addition and multiplication are defined accord-

ingly, forms a ring called thering of polynomials R[x]. Similarly,R[x1, x2, · · · , xn]

represents the ring of multivariate polynomials with coefficients inR.

20

For example,Z23 [x] stands for the system of all polynomials inx with coefficients

in Z23; 4x2 + 6x is an instance of a polynomial belonging toZ23 [x].

3.2 Finite Fields

Finite fields find widespread applications in computer engineering, such as in error

correcting codes, elliptic curve cryptography, digital signal processing, testing of VLSI

circuits, among others. We describe the relevant finite fieldconcepts [62] [75] [51] and

hardware designs over such fields [61] [65] [48] [89] [46].

Definition 3.7 A finite field, also called a Galois field, is a field with a finite number

of elements. The number of elementsq of the finite field is a power of a prime integer –

i.e., q = pk, wherep is a prime integer, andk ≥ 1. Finite fields are denoted asFq or

Fpk .

Definition 3.8 Thecharacteristic of a finite fieldF with unity element1 is the smallest

integern such that1 + · · ·+ 1 (n times) = 0.

Lemma 3.1 The characteristic of a finite fieldFpk is the prime integerp.

Lemma 3.2 The finite integer ringZn forms a finite field if and only ifn is prime. Such

fields are customarily denoted asZp = Fp.

Example 3.3 Consider the fieldZ5. The additive and multiplicative inverses of each

element inZ5 (except0) are also elements inZ5, as shown in Table 3.1. In contrast,Z4

is not a field, as2 does not have a multiplicative inverse inZ4.

While Z2k is not a field, there do exist fieldsFpk with nonprime cardinality. Such

fields are called extension fields. We are interested in extension fieldsFpk , wherep = 2

andk > 1. As these are algebraic extensions of the binary fieldF2, they are generally

Table 3.1. Additive and multiplicative inverses inZ5.
element additive inverse multiplicative inverse

0 0 undefined
1 4 1
2 3 3
3 2 2
4 1 4

21

termed asbinary extension fieldsF2k . Such fields are most widely used in digital

hardware applications as the computation can be universally encoded in binary form

for practical reasons.

3.2.1 Construction of Finite FieldsF2k

To construct and describe the properties of finite fieldsF2k , the concept ofirre-

ducible polynomials is required:

Definition 3.9 A polynomialP (x) ∈ F2 [x] is irreducible if P (x) is nonconstant with

degreek and it cannot be factored into a product of polynomials of lower degree in

F2[x].

Therefore, a polynomial with degreek is irreducible overF2 if and only if it has no

roots inF2. For example,x2+x+1 is an irreducible polynomial, becausex2+x+1 = 0

has no roots inF2. Irreducible polynomials of any arbitrary degree always exist inF2[x].

To constructF2k , we take the polynomial ringF2[x] and an irreducible polynomial

P (x) ∈ F2[x] of degreek, and constructF2k ≡ F2[x] (mod P (x)). Let α be a root of

P (x), i.e.,P (α) = 0. Note thatP (x) is irreducible inF2[x]; however, the root lies in

the algebraic extensionF2k . Any elementA ∈ F2k can therefore be represented as:

A =
k−1
∑

i=0

(ai · αi) = a0 + a1 · α + · · ·+ ak−1 · αk−1 (3.5)

whereai ∈ F2 are the coefficients andP (α) = 0. The degree of any elementA in F2k is

always less thank. This is becauseA is always computed moduloP (x), andP (x) has

degreek. The remainder ((mod P (x))) can be of degree at mostk−1. For this reason,

the fieldF2k can be viewed as ak-dimensional vector space overF2. The equivalent bit

vector representation for elementA is given below:

A = (ak−1ak−2 · · · a0) (3.6)

The example below explains the construction of the finite field F24 .

Example 3.4 Let us constructF24 asF2[x] (mod P (x)), whereP (x) = x4+x3+1 ∈
F2[x] is an irreducible polynomial of degreek = 4. Let α be the root ofP (x), i.e.,

P (α) = 0.

Any elementA ∈ F2[x] (mod x4 + x3 + 1) has a representation of the type:A =

a3x
3+a2x

2+a1x+a0 (degree< 4) where the coefficientsa3, . . . , a0 are inF2 = {0, 1}.

22

Since there are only16 such polynomials, we obtain16 elements in the fieldF24 . Each

element inF24 can then be viewed as a4-bit vector overF2: F24={(0000), (0001), . . .
(1110),(1111)}. If α is the root ofP (x), then each element also has an exponential

representation; all three representations are shown in Table 3.2. For example, consider

the elementα12. Computingα12 (mod α4 + α3 + 1) = α + 1 = (0011); hence, we

have the three equivalent representations.

There may exist more than one irreducible polynomials with degreek. In such cases,

any degreek irreducible polynomial can be used for field construction. For example,

bothx3 + x2 + 1 andx3 + x + 1 are irreducible inF2 and either one can be used to

constructF23 . This is due to the following result:

Theorem 3.1 There exists aunique fieldFpk , for any primep and any positive integer

k.

Theorem 3.1 implies that finite fields with the same number of elements are isomor-

phic to each other up to the labeling of the elements.

Lemma 3.3 LetA be any element inFq, thenAq−1 = 1.

As a consequence of Lemma 3.3, the following is a very important result that we

will use to investigate solutions to polynomial equations in Fq.

Theorem 3.2 [Generalized Fermat′s Little Theorem] Given a finite fieldFq, each

elementA ∈ Fq satisfies:

Table 3.2. Bit-vector, exponential and polynomial representation ofelements in
F24 = F2[x] (mod x4 + x3 + 1)

a3a2a1a0 Exponential Polynomial a3a2a1a0 Exponential Polynomial
0000 0 0 1000 α3 α3

0001 1 1 1001 α4 α3 + 1
0010 α α 1010 α10 α3 + α
0011 α12 α + 1 1011 α5 α3 + α + 1
0100 α2 α2 1100 α14 α3 + α2

0101 α9 α2 + 1 1101 α11 α3 + α2 + 1
0110 α13 α2 + α 1110 α8 α3 + α2 + α
0111 α7 α2 + α + 1 1111 α6 α3 + α2 + α + 1

23

Aq ≡ A

Aq − A ≡ 0 (3.7)

As a polynomial extension of the above consequence, letxq − x be a polynomial in

Fq[x]. Every elementA ∈ Fq is a solution toxq − x = 0. Therefore,xq − x always

vanishesin Fq, and such polynomials are calledvanishing polynomialsof the fieldFq.

Example 3.5 GivenF22 = {0, 1, α, α + 1} with P (x) = x2 + x+ 1, whereP (α) = 0.

02
2

= 0

12
2

= 1

α22 = α (mod α2 + α + 1)

(α + 1)2
2

= α + 1 (mod α2 + α + 1)

3.2.2 Hardware Implementations of Arithmetic Operations Over F2k

In some cases, finite field (primitive) computations such asADD , MUL , etc., are

implemented in hardware, and algorithms are then implemented in software (e.g., cryp-

toprocessors [84] [47]). In other cases, the entire design can be implemented in hard-

ware – such as a one-shot Reed-Solomon encoder-decoder chip [66] [50], or the point

multiplication circuitry [38] used in elliptic curve cryptosystems. Therefore, there has

been a lot of research in VLSI implementations of finite field arithmetic. We describe

the design of such primitive computations below to shed somelight on the architectures

and their design and verification complexity.

Addition in F2k is performed by correspondingly adding the polynomials together,

and reducing the coefficients of the result modulo the characteristic2.

Example 3.6 GivenA = α3 + α2 + 1 = (1101) andB = α2 + 1 = (0101) in F24,

A+B = (α3 + α2 + 1) + (α2 + 1) = (α3) + (α2 + α2) + (1 + 1) = α3 = (1000).

Example 3.7 A 4-bit adder inF24 is given in Figure 3.1. It takes as inputs two4-bit

vectors: A = (a3a2a1a0), B = (b3b2b1b0) and computes the resultZ = (z3z2z1z0).

Note, an adder circuit is trivial and only consists of XOR gates.

Conceptually, the multiplicationZ = A × B (mod P (x)) in F2k consists of two

steps. In the first step, the multiplicationA × B is performed, and in the second step,

24

a0

b0

a2

a1

b1

b2

b3

3a

z0

z1

z2

z3

Figure 3.1. 4-bit adder overF24 .

the result is reduced modulo the irreducible polynomialP (x). Multiplication procedure

is shown in Example 3.8.

Example 3.8 Consider the fieldF24. We take as inputs:A = a0+a1 ·α+a2 ·α2+a3 ·α3

andB = b0 + b1 · α + b2 · α2 + b3 · α3, along with the irreducible polynomialP (x) =

x4 + x3 + 1. We have to perform the multiplicationZ = A × B (mod P (x)). The

coefficients ofA = {a0, . . . , a3}, B = {b0, . . . , b3} are inF2 = {0, 1}. Multiplication

can be performed as shown below:
a3 a2 a1 a0

× b3 b2 b1 b0
a3 · b0 a2 · b0 a1 · b0 a0 · b0

a3 · b1 a2 · b1 a1 · b1 a0 · b1
a3 · b2 a2 · b2 a1 · b2 a0 · b2

a3 · b3 a2 · b3 a1 · b3 a0 · b3
s6 s5 s4 s3 s2 s1 s0

The resultSum = s0 + s1 · α + s2 · α2 + s3 · α3 + s4 · α4 + s5 · α5 + s6 · α6,

s0 = a0 · b0
s1 = a0 · b1 + a1 · b0
s2 = a0 · b2 + a1 · b1 + a2 · b0
s3 = a0 · b3 + a1 · b2 + a2 · b2 + a3 · b1
s4 = a1 · b3 + a2 · b1 + a3 · b1
s5 = a2 · b3 + a3 · b2
s6 = a3 · b3

Here the multiply “·” and add “+” operations are performed modulo 2, so they can

be implemented in a circuit using AND and XOR gates. Note that unlike integer mul-

tipliers, there are no carry-chains in the design, as the coefficients are always reduced

25

modulop = 2. However, the result is yet to be reduced modulo the primitivepolynomial

P (x) = x4+x3+1. This is shown below, where higher degree coefficients are reduced

(mod P (x)).
s3 s2 s1 s0
s4 0 0 s4 s4 · α4 (mod P (α)) = s4 · (α3 + 1)
s5 0 s5 s5 s5 · α5 (mod P (α)) = s5 · (α3 + α + 1)
s6 s6 s6 s6 s6 · α6 (mod P (α)) = s6 · (α3 + α2 + α + 1)
z3 z2 z1 z0

The final result (output) of the circuit is:Z = z0 + z1α + z2α
2 + z3α

3; where

z0 = s0 + s4 + s5 + s6; z1 = s1 + s5 + s6; z2 = s2 + s6; z3 = s3 + s4 + s5 + s6.

The above multiplier design is called theMastrovito multiplier[61], which is the

most straightforward way to design a multiplier overF2k . A logic circuit for a4-bit

Mastrovitomultiplier overfinite fieldF24 is illustrated in Fig. 3.2.

Modular multiplication is at the heart of many public-key cryptosystems, such as

Elliptic Curve Cryptography (ECC) [64]. Due to the very large field size (and hence

the datapath width) used in these cryptosystems, the aboveMastrovitomultiplier ar-

chitecture is inefficient, especially when exponentiationand repeat multiplications are

performed. Therefore, efficient hardware and software implementations of modular

a0

b0

a2

a1

b1

b2

b3

3a

z1

z2

a0

b0

a2

a1

b1

b2

b3

3a

z3

a0

b0a2

b1

b2

b3

3a

z0

a0

a1

b1

b0

a1

a2

b2

3a

b3

b3

3a

Figure 3.2. Mastrovito multiplier overF24 .

26

multiplication algorithms are used to overcome the complexity of such operations.

These include the Montgomery reduction [65] [48] and the Barrett reduction [46].

Montgomery Reduction: Montgomery reduction (MR) computes:

G = MR(A,B) = A · B ·R−1 (mod P (x)) (3.8)

whereA,B arek-bit inputs,R = αk, R−1 is the multiplicative inverse ofR in F2k

andP (x) is the irreducible polynomial forF2k . Since Montgomery reduction cannot

directly computeA · B, to computeA · B (mod P (x)), we need to precomputeA · R
andB ·R, as shown in Figure 3.3.

EachMR block in Figure 3.3 represents a Montgomery reduction step,which is a

hardware implementation of the algorithm shown in Algorithm 1.

Algorithm 1: Montgomery Reduction Algorithm [48]
Input : A(x), B(x) ∈ F2k ; irreducible polynomialP (x).
Output : G(x) = A(x) ·B(x) · x−k (mod P (x)).
G(x) :=0
for (i = 0; i ≤ k − 1; ++i) do

G(x) := G(x) + Ai ·B(x) / * Ai is the ith bit of A* /;
G(x) := G(x) +G0 · P (x) / * G0 is the lowest bit of G* /;
G(x) := G(x)/x / * Right shift 1 bit * /;

end

The design of Fig. 3.3 is an overkill to compute justA · B (mod P (x)). However,

when these multiplications are performed repeatedly, suchas in iterative squaring, then

the Montgomery approach speeds-up the computation. As shown in [89], the critical

path delay and gate counts of a squarer designed using the Montgomery approach are

much smaller than the traditional approaches.

Barrett Reduction: Barrett reduction is the other widely used multiplier design

method adopted in cryptography system designs. Similar to Montgomery reduction,

MR

MR

MR

MR
A R

B R

R
2

R
2

A B R

A

B

G=A B (mod P)

"1"

Figure 3.3. Montgomerymultiplier overF2k

27

the traditional Barrett reduction, proposed in [7], needs a precomputed value of the

reciprocal/inverse of modulusP (x). This precomputation requires extra computational

time and memory space. To overcome this limitation, the recent approach of [46] avoids

such a precomputation of inverses and therefore greatly simplifies the hardware design

implementation. This algorithmic computation is shown in Algorithm 2.

Algorithm 2: Barrett Reduction Without Precomputation Algorithm [46]

Input : R(x) ∈ F2k ; irreducible polynomialP (x) = xn +
l

∑

i=0

mi · xi satisfying

l = ⌊n
2
⌋,mi ∈ {0, 1}.

Output : G(x) = R(x) (mod P (x)).
Q1(x) =

R(x)
xn / * Right shift n bit * /;

Q2(x) = P (x) ·Q1(x) ;

Q3(x) =
Q2(x)
xn ;

G1(x) = R(x) (mod xn) / * Keep the lower n bits of R(x)* /;
G2(x) = P (x) ·Q3(x) (mod xn) ;
G(x) = G1(x) +G2(x) ;

Based on Barrett reduction, a multiplier can be designed with two simple steps:

multiplicationR = A × B and a subsequent Barrett reductionG = R (mod P). This

is shown in Figure 3.4. As we can see, a Barrett multiplier is similar to a Mastrovito

multiplier except for the reduction step.

One of the most influential applications of finite fields is in elliptic curve cryptog-

raphy (ECC). ECC is an approach to public-key cryptography based on the algebraic

structure of elliptic curves over finite fields. The main operations of encryption, de-

cryption and authentication in ECC rely onpoint multiplications. Point multiplication

involves a series of addition and doubling of points on the elliptic curve. A drawback

of traditional point multiplication is that each point addition and doubling involves a

multiplicative inverse operation over finite fields. Representing the points in projective

coordinate systems [38] eliminates the need for multiplicative inverse operation and

therefore increases the efficiency of point multiplicationoperation. In our experiments,

BR
A B A

B
G=A B (mod P)

Figure 3.4. Barrett multiplier overF2k .

28

we have verified custom designs based on the López-Dahab (LD) coordinate system

[52].

Example 3.9 Consider point addition in LD projective coordinate. Given an elliptic

curve:Y 2 +XY Z = X3Z + aX2Z2 + bZ4 overF2k , whereX, Y, Z arek-bit vectors

that are elements inF2k and similarly,a, b are constants from the field. Let (X1, Y1, Z1)

+ (X2, Y2, 1) = (X3, Y3, Z3) represent point addition over the elliptic curve. ThenX3,

Y3, Z3 can be computed as follows:

A = Y2 · Z2
1 + Y1

B = X2 · Z1 +X1

C = Z1 · B

D = B2 · (C + aZ2
1)

Z3 = C2

E = A · C

X3 = A2 +D + E

F = X3 +X2 · Z3

G = X3 + Y2 · Z3

Y3 = E · F + Z3 ·G

Example 3.10 Consider point doubling in projective coordinate system. Given an

elliptic curve: Y 2 + XY Z = X3Z + aX2Z2 + bZ4. Let 2(X1, Y1, Z1) = (X3, Y3,

Z3), then
X3 = X4

1 + b · Z4
1

Z3 = X2
1 · Z2

1

Y3 = bZ4
1 · Z3 +X3 · (aZ3 + Y 2

1 + bZ4
1)

In the above examples, polynomoial multiplication and squaring operations are

implemented in hardware using Montgomery or Barrett reductions over finite fields

F2k .

The field size for such applications is generally very large;as discussed before, for

ECC, inF2k , k = 163 or larger. The large size and complicated arithmetic natureof

such circuits clearly shows the complexity of the formal verification problem. Con-

temporary techniques lack the requisite power of abstraction to model and verify such

29

large systems. For this reason, we propose polynomial abstractions over finite fields to

model and verify such circuits using computer algebra techniques. This is the subject

of subsequent chapters of this dissertation.

CHAPTER 4

COMPUTER ALGEBRA FUNDAMENTALS

This chapter reviews preliminary fundamental concepts of commutative and com-

puter algebra that are utilized in our work. The concepts of polynomial ideals, varieties

and Gr̈obner bases are described with regard to their algorithmic computation. Finally,

the results of Hillbert’s Nullstellensatz are described, which are employed for verifica-

tion over finite fields in subsequent chapters. The material is mostly referred from the

textbooks [25] [3].

4.1 Monomials and Their Orderings

Definition 4.1 A monomial in x1, x2, · · · , xd is a product of this form:

xα1

1 · xα2

2 · · · · xαd

d , (4.1)

whereαi ≥ 0, i ∈ {1, · · · , d}. The total degree of the monomial isα1 + · · ·+ αd.

For simplicity, we will denote a monomialxα1

1 · xα2

2 · · · · xαd

d = xα, whereα =

(α1, · · · , αd), i.e.,α ∈ Zd
≥0.

Definition 4.2 A multivariate polynomial f in variablesx1, x2, . . . , xd with coeffi-

cients in any given fieldK is a finite linear combination (with coefficients inK) of

monomials:

f =
∑

α

aα · xα, aα ∈ K

The set of all polynomials inx1, x2, . . . , xd with coefficients in fieldK is denoted

byK[x1, x2, . . . , xd].

Definition 4.3 Letf =
∑

α aαx
α be a polynomial inK[x1, x2, . . . , xd].

1. We refer to the constantaα ∈ K as the coefficient of the monomialaαx
α.

2. If aα 6= 0, we callaαxα a term off .

31

As an example,2x2 + y is a polynomial with two terms,2x2 andy, with 2 and1 as

coefficients, respectively. In contrast,x+ y−1 is not a polynomial because the exponent

of y is less than0.

An important fact of polynomials is that a polynomial is a sumof terms and these

terms have to be arranged unambiguously so that they can be manipulated in a consistent

manner. Therefore, we need to establish the conceptmonomial ordering (or term

ordering). A term ordering, represented by>, defines how terms in a polynomial are

ordered. Term orderings are totally ordered, i.e., antisymmetric, transitive, total, with

constant terms last in the ordering. More formally, we have the following definitions:

Definition 4.4 LetTd = {xα : α ∈ Zd
≥0} be the set of all monomials inx1, . . . , xd. A

monomial order > onTd is a total well-ordering satisfying:

• For anyxα ∈ Td, xα > 1

• For all α, β, γ, xα > xβ ⇒ xα · xγ > xβ · xγ

A total-ordering ensures that there is no ambiguity with respect to where a term is

found in the term ordering. Total-orderings for monomials come in different forms, no-

tably lexicographic orderings (lex), and its variants:degree-lexicographic ordering

(deglex) andreverse degree-lexicographic ordering(revdeglex).

A lexicographic ordering (lex) is a total-ordering> such that variables in the terms

are lexicographically ordered. Higher variable-degrees take precedence over lower

degrees (e.g.,a3 = aaa).

Definition 4.5 Lexicographic order: Letx1 > x2 > · · · > xd lexicographically. Also

let α = (α1, . . . , αd); β = (β1, . . . , βd) ∈ Zd
≥0. Then we have:

xα > xβ ⇐⇒
{

Starting from the left, the first coordinates ofαi, βi

that are different satisfyαi > βi

(4.2)

A degree-lexicographic ordering(deglex) is a total-ordering> such that the total

degree of a term takes precedence over the lexicographic ordering. Adegree-reverse-

lexicographic ordering (degrevlex) is the same as a deglex ordering. However, terms

are lexed in reverse.

32

Definition 4.6 Degree lexicographic order:Let x1 > x2 > · · · > xd lexicographi-

cally. Also letα = (α1, . . . , αd); β = (β1, . . . , βd) ∈ Zd
≥0. Then we have:

xα > xβ ⇐⇒
{

∑d
i=1 αi >

∑d
i=1 βi or

∑d
i=1 αi =

∑d
i=1 βi andxα > xβ w.r.t. lex order

(4.3)

Definition 4.7 Degree reverse lexicographic order:Letx1 > x2 > · · · > xd lexico-

graphically. Also letα = (α1, . . . , αd); β = (β1, . . . , βd) ∈ Zd
≥0. Then we have:

xα > xβ ⇐⇒

∑d
i=1 αi >

∑d
i=1 βi or

∑d
i=1 αi =

∑d
i=1 βi and the first coordinates

αi, βi from the right, which are different, satisfyαi < βi

(4.4)

As a consequence of these term orderings, we have the following relations, where

a > b > c.

lex:a2b > a2 > abc > ab > ac2 > ac > b2c > b2 > bc3 > 1 (4.5)

deglex:bc3 > a2b > abc > ac2 > b2c > a2 > ab > ac > b2 > 1 (4.6)

degrevlex:bc3 > a2b > abc > b2c > ac2 > a2 > ab > b2 > ac > 1 (4.7)

The difference between thelex and twodeg-orderings is obvious, while the differ-

ence between the two degree-based orderings can be seen by considering from which

direction the term is lexed, e.g.,ac2 > b2c (deglex, left-to-right) versusb2c > ac2

(degrevlex, right-to-left).

Example 4.1 Letf = 2x2yz+3xy3− 2x3. Effects of different term orderings onf are

shown below:

• lexx > y > z: f = −2x3 + 2x2yz + 3xy3

• deglexx > y > z: f = 2x2yz + 3xy3 − 2x3

• degrevlexx > y > z: f = 3xy3 + 2x2yz − 2x3

Definition 4.8 Theleading term is the first term in a term ordered polynomial. Like-

wise, the leading coefficient is the coefficient of the leadingterm. Finally, a leading

power product is the leading term lacking the coefficient. We use the following notation:

lt(f) — Leading Term (4.8)

lc(f) — Leading Coefficient (4.9)

lm(f) — Leading Monomial (4.10)

33

Example 4.2

f = 3a2b+ 2ab+ 4bc (4.11)

lt(f) = 3a2b (4.12)

lc(f) = 3 (4.13)

lm(f) = a2b (4.14)

4.2 Varieties and Ideals

In verification applications, it is often required to analyze (the presence or absence

of) solutions to a given system of constraints. In our applications, these constraints are

polynomials and their solutions are described asvarieties.

Definition 4.9 LetK be a field, and letf1, . . . , fs ∈ K[x1, x2, . . . , xd]. We callV (f1, . . . , fs)

theaffine variety defined byf1, . . . , fs as:

V (f1, . . . , fs) = {(a1, . . . , ad) ∈ Kd : fi(a1, . . . , ad) = 0, ∀i, 1 ≤ i ≤ s}. (4.15)

V (f1, . . . , fs) ∈ Kd is the set of all solutionsof the system of equations:f1(x1, . . . , xd) =

· · · = fs(x1, . . . , xd) = 0.

Example 4.3 GivenR [x, y], V (x2+y2) = {(0, 0)}. Similarly, inR [x, y], V (x2+y2−
1) = {all points on the circle : x2+y2−1 = 0}. However, varieties depend on which

field we are operating on. For the same polynomialx2 + 1, we have:

• In R[x], V (x2 + 1) = ∅.

• In C[x], V (x2 + 1) = {(±i)}.

The above example shows the variety can be infinite, finite (nonempty set) or empty.

It is interesting to note that we will be operating over finitefieldsFq, and any finite set

of points is a variety. Consider the points{(a1, . . . , ad) : a1, . . . , ad ∈ Fq} in Fd
q . Any

single point is a variety of some polynomial system: e.g.,(a1, . . . , ad) is a variety of

x1−a1 = x2−a2 = · · · = xd−ad = 0. Moreover,finite unions and finite intersections

of varieties are also varieties. LetU = V (f1, . . . , fs) andW = V (g1, . . . , gt). Then:

• U ∩W = V (f1, . . . , fs, g1, . . . , gt)

• U ∪W = V (figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t)

34

Another important concept related to varieties is that the variety depends not just

on the given system of polynomial equations, but rather on the ideal generated by the

polynomials.

Definition 4.10 A subsetI ⊂ K[x1, x2, . . . , xd] is an ideal if it satisfies:

• 0 ∈ I

• I is closed under addition:x, y ∈ I ⇒ x+ y ∈ I

• If x ∈ K[x1, x2, . . . , xd] andy ∈ I, thenx · y ∈ I as well asy · x ∈ I.

Any ideal is generated by itsbasisor generators.

Definition 4.11 Let f1, f2, . . . , fs be the given elements ofK[x1, x2, . . . , xd]. Let I be

an ideal inK[x1, x2, . . . , xd]. If:

I = {g1f1 + g2f2 + . . .+ gsfs : g1, . . . , gs ∈ K[x1, x2, . . . , xd]} (4.16)

then,f1, . . . , fs are called thebasis (or generators)of the idealI and correspondingly

I is denoted asI = 〈f1, f2, . . . , fs〉.

Example 4.4 The set of even integers, which is a subset of the ring of integersZ, forms

an ideal ofZ. This can be seen from the following;

• 0 belongs to the set of even integers.

• The sum of two even integersx andy is always an even integer.

• The product of any integerx with an even integery is always an even integer.

Example 4.5 GivenR [x, y], I = 〈x, y〉 is an ideal containing all polynomials gener-

ated byx and y, such asx2 + y, x · y + x. J = 〈x2, y2〉 is an ideal containing all

polynomials generated byx2 and y2, such asx2 + y2, x2 · y2 + x10. NoticeI 6= J

becausex+ y can only be generated byI.

Any ideal may have many different bases. For instance, it is possible to have

different sets of polynomials{f1, . . . , fs} and{g1, . . . , gt} that may generate the same

ideal, i.e.,〈f1, . . . , fs〉 = 〈g1, . . . , gt〉. Since variety depends on the ideal, these sets of

polynomials have the same solutions.

35

Proposition 4.1 If f1, . . . , fs andg1, . . . , gt are bases of the same ideal inK[x1, . . . , xd],

so that〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, thenV (f1, . . . , fs) = V (g1, . . . , gt).

Example 4.6 Consider the two basesF1 = {(2x2 + 3y2 − 11, x2 − y2 − 3} andF2 =

{x2−4, y2−1}. These two bases generate the same ideal, i.e.,〈F1〉 = 〈F2〉. Therefore,

they represent the same variety, i.e.,

V (F1) = V (F2) = {±2,±1}. (4.17)

An important fundamental problem that we need to solve is oneof ideal membership

testing.

Definition 4.12 Letf, f1, . . . , fs be polynomials inK[x1, . . . , xd]. Let idealI = 〈f1, . . . , fs〉 ⊂
K[x1, . . . , xd]. If f can be written asf = f1h1 + · · ·+ fshs, then we sayf is a member

of the idealI.

Our verification problems are formulated as ideal membership testing. For this

purpose, we require a decision procedure to unequivocally decide ideal membership.

Gröbner basis provides such a decision procedure, and this is described in the next

section.

4.3 Gröbner Bases
As mentioned above, different generating sets may constitute the same ideal. How-

ever, some generating sets may be better than others – that isthey may be a better

representation of the ideal. AGröbner basisis one such ideal representation that has

many important properties that allow us to solve many polynomial decision questions.

By analyzing the Gr̈obner basis, one can deduce the presence or absence of solutions

(varieties), find the dimension of the varieties and also deduce ideal membership. A

Gröbner basis, in essence, is a canonical representation of anideal. Buchberger’s

work [17] laid the foundation for computing a Gröbner basis of an ideal. This section

provides a synopsis of some of these concepts.

Among many equivalent definitions of Gröbner bases, we start with the definition

that can best describe the properties of Gröbner bases:

Definition 4.13 A set of non-zero polynomialsG = {g1, . . . , gt} contained in an ideal

I, is called aGröbner basisfor I if and only if for all f ∈ I such thatf 6= 0, there

existsi ∈ {1, . . . , t} such thatlm(gi) divideslm(f).

36

G = GröbnerBasis(I) ⇐⇒ ∀f ∈ I : f 6= 0, ∃gi ∈ G : lm(gi) | lm(f) (4.18)

Given a set of polynomialsF = {f1, . . . , fs} that generate idealI = 〈f1, . . . , fs〉,
Buchberger gives an algorithm to compute a Gröbner basisG = 〈g1, . . . , gt〉. This

algorithm relies on the notions ofS-polynomials and polynomial reduction, which are

described below.

Definition 4.14 For a field K, f, g ∈ K[x1, . . . , xd], L = lcm (lt(f), lt(g)), an S-

polynomial Spoly(f, g) is defined as:

Spoly(f, g) =
L

lt(f)
· f − L

lt(g)
· g (4.19)

Note,lcm denotes least common multiple.

Definition 4.15 The reduction of a polynomialf , by another polynomialg, to a re-

duced polynomialr is denoted:

f
g−→ r

Reduction is carried out using multivariate, polynomial long division.

For sets of polynomials, the notation

f
F−→+ r

represents the reduced polynomialr resulting fromf as reduced by a set of non-zero

polynomialsF = {f1, . . . , fs}. The polynomialr is consideredreduced if r = 0 or no

term inr is divisible by alm(fi), ∀fi ∈ F .

For all intents and purposes, the reduction processf
F−→+ r, of dividing a poly-

nomialf by a set of polynomials ofF , can be modeled as repeated long division off

by each of the polynomials inF until no further reductions can be made—the result of

which isr, as shown in Algorithm 3.

The division algorithm keeps cancelling the leading terms of polynomials until no

more leading terms can be further cancelled. So the key step isp = p− lt(p)/lt(fi) · fi,
as the following example shows.

Example 4.7 Givenf1 = y2 − x andf2 = y − x in Q[x, y] with deglex: y > x. Then

f1/f2 = f1 − lt(f1)/lt(f2) · f2 = y2 − x− (y2/y) · (y− x) = y · x− x. Theny · x− x

can be further divided byf2: (y · x− x)/f2 = x2 − x, which is the final result.

37

Algorithm 3: Polynomial Division
Input : f, f1, . . . , fs
Output : r, a1, . . . , as, such thatf = a1 · f1 + · · ·+ as · fs + r.
a1 = a2 = · · · = as = 0; r = 0;
p := f ;
while p 6= 0 do

i=1;
divisionmark = false;
while i ≤ s && divisionmark = falsedo

if fi can dividep then
ai = ai + lt(p)/lt(fi);
p = p− lt(p)/lt(fi) · fi;
divisionmark = true;

else
i=i+1;

end
end
if divisionmark = falsethen

r = r + lt(p);
p = p− lt(p);

end
end

Algorithm 4: Buchberger’s Algorithm
Input : F = {f1, . . . , fs}, such thatI = 〈f1, . . . , fs〉
Output : G = {g1, . . . , gt}, a Gr̈obner basis ofI
G := F ;
repeat

G′ := G;
for each pair{fi, fj}, i 6= j in G′ do

Spoly(fi, fj)
G′

−→+ r ;
if r 6= 0 then

G := G ∪ {r} ;
end

end
until G = G′;

We now present Buchberger’s Algorithm [17] for computing Gröbner bases.

For Gr̈obner basis computation, a monomial (term) ordering is fixedto ensure that

polynomials are manipulated in a consistent manner. Buchberger’s algorithm then takes

pairs of polynomials (fi, fj) in the basisG and combines them into “S-polynomials”

(Spoly(fi, fj)) to cancel leading terms. TheS-polynomial is then reduced (divided)

38

by all elements ofG to a remainderr, denoted asS(fi, fj)
G−→+ r. Multivariate

polynomial division is used for this reduction step. This process is repeated for all

unique pairs of polynomials, including those created by newly added elements, until no

new polynomials are generated, ultimately constructing the Gr̈obner basis.

Example 4.8 Consider the idealI ⊂ Q[x, y], I = 〈f1, f2〉, wheref1 = yx − y, f2 =

y2 − x. Assume a degree-lexicographic term ordering withy > x is imposed.

First, we need to computeSpoly(f1, f2) = x · f2 − y · f1 = y2 − x2. Then, we

conduct a polynomial reductiony2−x2 f2−→ x2−x
f1−→ x2−x. Letf3 = x2−x. Then,

G is updated as{f1, f2, f3}. Next, we computeSpoly(f1, f3) = 0. So there is no new

polynomial generated. Similarly, we computeSpoly(f2, f3) = x · y2 − x3, followed by

x · y2 − x3 f1−→ y2 − x3 f2−→ x− x3 f2−→ 0. Again, no polynomial is generated. Finally,

G = {f1,f2, f3}.

Gröbner basis now gives a decision procedure to test for membership in an ideal.

Theorem 4.1 LetG = {g1, · · · , gt} be a Gr̈obner basis for an idealI ⊂ K[x1, · · · , xd]

and letf ∈ K[x1, . . . , xd]. Then,f ∈ I if and only if the remainder on division off by

G is zero.

In other words,

f ∈ I ⇐⇒ f
G−→+ 0 (4.20)

Example 4.9 Consider Example 4.8. Letf = y2x − x be another polynomial. Note

that f = yf1 + f2, sof ∈ I. If we dividef by f1 first and then byf2, we will obtain

a zero remainder. However, since the set{f1, f2} is not a Gr̈obner basis, we find that

the reductionf
f2−→ x2 − x

f1−→ x2 − x 6= 0; i.e., dividingf by f2 first and then byf1

does not lead to a zero remainder. However, if we compute the Gröbner basisG of I,

G = {x2 − x, yx− y, y2 − x}, dividingf by polynomials inG in any order will always

lead to the zero remainder. Therefore, one can decide ideal membership unequivocally

using the Gr̈obner basis.

Definition 4.16 A minimal Gr öbner basis for a polynomial idealI is a Groebner

basisG for I such that

• lc(gi) = 1, ∀gi ∈ G

39

• ∀gi ∈ G, lt(gi) /∈ 〈lt(G− {gi})〉

A minimal Gröbner basis is a Gröbner basis such that no leading term of any element

in G divides another inG. A minimal Gr̈obner basis can be computed by removing any

polynomial whose leading term can be divided by another in a given Gr̈obner basis.

A minimal Gröbner basis can be further reduced.

Definition 4.17 A reduced Gr̈obner basis for a polynomial idealI is a Gröbner basis

G = {g1, . . . , gt} such that:

• lc(gi) = 1, ∀gi ∈ G

• ∀gi ∈ G, no monomial ofgi lies in 〈lt(G− {gi})〉

G is a reduced Gr̈obner basis when no monomial of any element inG divides the leading

term of another element.

For a given monomial ordering, the reduced Gröbner basis is a canonical represen-

tation of the ideal, as given by Proposition 4.2 below.

Proposition 4.2 Let I 6= {0} be a polynomial ideal. Then, for a given monomial

ordering,I has a unique reduced Gröbner basis.

4.4 Hillbert’s Nullstellensatz

In this section, we further describe some correspondence between ideals and vari-

eties in the context of algebraic geometry. The celebrated results of Hillbert’s Nullstel-

lensatz establish such correspondences, and these results, together with Gr̈obner bases,

provide a basis for our verification solutions.

Definition 4.18 A fieldK is an algebraically closed field if every polynomial in one

variable with degree at least1, with coefficients inK, has a root inK.

In other words, any nonconstant polynomial equation overK [x] always has at least one

root inK. Every fieldK is contained in an algebraically closed oneK. For example,

the field of realsR is not an algebraically closed field, becausex2 + 1 = 0 has no root

in R. However,x2 + 1 = 0 has roots in the field of complex numbersC, which is an

algebraically closed field. In fact,C is the algebra closure ofR. Every algebraically

closed field is an infinite field.

40

Theorem 4.2 [Weak Nullstellensatz] Let I ⊂ K[x1, x2, · · · , xd] be an ideal satis-

fyingV (I) = ∅. Then,I = K[x1, x2, · · · , xd], or equivalently,

V (I) = ∅ ⇐⇒ I = K[x1, x2, · · · , xd] = 〈1〉 (4.21)

Corollary 4.1 LetI = 〈f1, . . . , fs〉 ⊂ K[x1, x2, · · · , xd]. LetG be the reduced Gröbner

basis ofI. Then,V (I) = 0 ⇐⇒ G = {1}.

The Weak Nullstellensatzoffers a way to evaluate whether or not the system of

multivariate polynomial equations (idealI) has common solutions inK
d
. For this

purpose, we only need to check if the ideal is generated by theunit element, i.e.,

1 ∈ I. This approach can be used to evaluate the feasibility of constraints in our

verification problems. Another interesting result that we will employ is one ofStrong

Nullstellensatz, to describe which we need the concepts of “ideals of varieties” and

radicals.

Let K be any field and leta = (a1, . . . , ad) ∈ Kd be a point, andf ∈ K[x1, . . . , xd]

be a polynomial. We say thatf vanishesona if f(a) = 0, i.e.,a is in the variety off .

Definition 4.19 For any varietyV of Kd, the ideal of polynomials that vanish onV ,

called the vanishing ideal ofV , is defined asI(V) = {f ∈ F[x1, . . . , xd] : ∀a ∈
V, f(a) = 0}.

Proposition 4.3 If a polynomialf vanishes on a varietyV , then,f ∈ I(V).

Example 4.10 Let idealJ = 〈x2, y2〉. Then,V (J) = {(0, 0)}. All polynomials in

J will obviously agree with the solution and vanish on this variety. However, the

polynomialsx, y are not inJ but they also vanish on this variety. Therefore,I(V (J)) is

the set of all polynomials that vanish onV (J), and the polynomialsx, y are members

of I(V (J)).

Definition 4.20 Let J ⊂ K[x1, . . . , xd] be an ideal. The radical ofJ is defined as
√
J = {f ∈ K[x1, . . . , xd] : ∃m ∈ N, fm ∈ J}.

Example 4.11 Let J = 〈x2, y2〉 ⊂ K [x, y]. Note, neitherx nor y belongs toJ , but

they belong to
√
J . Similarly,x · y /∈ J , but since(x · y)2 = x2 · y2 ∈ J , therefore,

x · y ∈
√
J .

41

WhenJ =
√
J , thenJ is said to be aradical ideal. Moreover,I(V) is a radical

ideal. The Strong Nullstellensatz establishes the correspondence between radical ideals

and varieties.

Theorem 4.3 (Strong Nullstellensatz [3]) LetK be an algebraically closed field, and

let J be an ideal inK[x1, . . . , xd]. Then, we haveI(VK(J)) =
√
J .

4.5 Concluding Remarks

For verification, we have to analyze constraints corresponding to the circuit func-

tionality. Solutions to these constraints are viewed as varieties and the constraints

themselves are analyzed as polynomial ideals. Since Nullstellensatz defines the cor-

respondences between ideals and varieties, the verification problems are modeled using

Nullstellensatz. These are subsequently solved using Gröbner basis techniques. While

Nullstellensatz applies over algebraically closed fields,and finite fields are not alge-

braically closed, our approach requires modifications to suit our problems, as described

in the subsequent chapters.

CHAPTER 5

IMPLEMENTATION VERIFICATION USING

IDEAL MEMBERSHIP TESTING

This chapter describes our approach to the problem of formalverification of hard-

ware implementations of arithmetic circuits over finite fields of the typeF2k , using a

computer-algebra/algebraic-geometry-based approach. Given a specification polyno-

mial f and a circuitC, we have to prove that the circuitC correctly implementsf .

Otherwise, we have to generate a counter example that excites the bug in the design.

The arithmetic circuit is modeled as a polynomial system inF2k [x1, x2, · · · , xd] and

the verification problem is formulated using Strong Nullstellensatz over finite fields as

a membership test in a corresponding (radical) ideal. This requires the computation

of a Gr̈obner basis, which is computationally expensive. To overcome this limitation,

we analyze the circuit topology and derive a term order to represent the polynomials.

Subsequently, using the theory of Gröbner bases over finite fields, we prove that this

term order renders the set of polynomials itself a Gröbner basis of this (radical) ideal –

thus significantly enhancing verification efficiency. Usingour approach, we can verify

the correctness of, and detect bugs in, up to 163-bit circuits in F2163, corresponding

to the NIST-specified ECC standard. In contrast, contemporary approaches, including

SAT, SMT, BDD and AIG-based techniques, are infeasible.

5.1 Problem Statement

The following is our problem statement:

• Given a finite fieldF2k , i.e., givenk (datapath size), along with the corresponding

irreducible polynomialP (x), letP (α) = 0, i.e.,α be the root ofP (x).

• Given a word-level specification polynomialS = F(A1, A2, . . . , An) (mod P (x)),

where eachAi represents a word-levelk-bit input;S,A1, A2, . . . , An ∈ F2k ; F is

a function describing the input-output relation.

43

• Given a gate-level combinational circuitC, the bit-level primary inputs of the cir-

cuit are{aj0, aj1, . . . , ajk−1}, for j = 1, . . . , n; the primary outputs are{z0, . . . , zk−1} =

Z. Hereaji , zi ∈ F2, i = 0, . . . , k − 1.

• The word-level and bit-level correspondences are the following:

A1 = a10 + a11α + · · ·+ a1k−1α
k−1 = (a1k−1 · · · a11a10),

...

An = an0 + an1α + · · ·+ ank−1α
k−1 = (ank−1 · · · an1an0),

and the primary outputs are related as:

Z = z0 + z1α + z2α
2 + · · ·+ zk−1α

k−1 = (zk−1 · · · z2z1z0).

Our goal is to formally prove that∀Aj, Z ∈ F2k , the circuit outputZ correctly imple-

ments the specificationS = F(A1, A2, . . . , An) (mod P (x)) overF2k . Otherwise, we

have to produce a counter-example that excites the bug in thedesign.

Example 5.1 Consider the verification problem instance for a multiplier circuit over

F2k .

• Given the finite fieldF2k and the corresponding irreducible polynomialP (x), let

P (α) = 0.

• Given a word-level multiplier specification polynomialS = A · B (mod P (x)),

whereA,B, S ∈ F2k (k-bit vectors), functionF corresponds to multiplication

operation:A ·B (mod P)).

• Given a gate-level combinational circuit, the bit-level primary inputs of the circuit

are {a0, . . . , ak−1, b0, . . . , bk−1}, and {z0, . . . , zk−1} are the primary outputs;

hereai, bi, zi ∈ F2, i = 0, . . . , k − 1. Therefore,A = a0 + a1α + a2α
2 + · · · +

ak−1α
k−1,B = b0+b1α+b2α

2+· · ·+bk−1α
k−1 andZ = z0+z1α+· · ·+zk−1α

k−1.

We need to check whether the circuit implementation matches the specification, i.e.,

whetherS = Z, ∀ai, bi.

Our approach is generic enough to verify the implementationof any combinational

finite field arithmetic circuit against the given polynomialspecification. Without loss

of generality and for the purpose of exposition of our proposed approach, we use finite

field multiplier circuits for our verification objective, asthey form the core of most

computations and are notoriously hard to verify.

44

5.2 Verification Setup and Polynomial Modeling
Our verification setup is depicted in Fig. 5.1. Given the specification polynomial

S = A · B (mod P (x)), and the circuit implementation withA,B as inputs andZ as

output, we want to verify the propertyS = Z overF2k .

Specification: Given twok-bit inputs in bit-vector formA = (ak−1ak−2 · · · a1a0)
andB = (bk−1bk−2 · · · b1b0), the specification can be modeled in polynomial forms in

F2k as follows:

A =a0 + a1 · α + · · ·+ ak−1 · αk−1

B =b0 + b1 · α + · · ·+ bk−1 · αk−1

S =A ·B (mod P (x))

Implementation: Given a gate-level circuit netlist, we map the gate-level Boolean

operators (AND, OR, NOT, XOR) to polynomials overF2(⊂ F2k) using the following

one-to-one mapping overB → F2 :

¬a → a+ 1 (mod 2)

a ∨ b → a+ b+ a · b (mod 2)

a ∧ b → a · b (mod 2)

a⊕ b → a+ b (mod 2)

(5.1)

wherea, b ∈ F2 = {0, 1}. Note that the equationc = F(a, b) is written in polynomial

form asc−F(a, b) = c+ F(a, b), as−1 ≡ +1 (mod 2).

Example 5.2 Consider the equation with Boolean operators:

z = a⊕ (b ∨ c).

The equation modeled overF2 is:

z + a+ b+ c+ b · c = 0

B

A

Implementation:

Circuit Equations

Specification:

S=A*B mod P(x)

S

Z

S Z ?

Verification Property

Figure 5.1. The verification setup.

45

The left-hand side expression is a polynomial inF2 [a, b, c, z] ⊂ F2k [a, b, c, z]:

z + a+ b+ c+ b · c

Therefore, we can transform the entire circuit implementation as polynomials over

F2k . LetZ denote the word-level result of the circuit.

The Verification Property: The propertyS = Z is modeled as a polynomial

f : S + Z = 0 overF2k . Overall, our verification constraints can be modeled as a

polynomial system as follows:

f1(x1, x2, · · · , xd) = 0

f2(x1, x2, · · · , xd) = 0

...

fZ : Z + z0 + z1 · α, · · · , zk−1 · αk−1 = 0

Circuit implementation

fA : A+ a0 + a1 · α + · · ·+ ak−1 · αk−1 = 0

fB : B + b0 + b1 · α + · · ·+ bk−1 · αk−1 = 0

fspec : S + A ·B = 0

Word-level specification

f : S + Z = 0
}

Property:S = Z ?

Example 5.3 Consider a 2-bit multiplier overF22 , whereP (x) = x2 + x+ 1, as given

in Figure 5.2. Variablesa0, a1, b0, b1 are primary inputs,z0, z1 are primary outputs and

c0, c1, c2, c3, r0 are intermediate variables. The gate⊗ corresponds to AND-gate, i.e.,

bit-level multiplication modulo 2. The gate⊕ corresponds to XOR-gate, i.e., addition

modulo 2.

The circuit can be described using the following Boolean equations:

c0 = a0 ∧ b0,

c1 = a0 ∧ b1,

c2 = a1 ∧ b0,

c3 = a1 ∧ b1,

r0 = c1 ⊕ c2,

z0 = c0 ⊕ c3,

z1 = r0 ⊕ c3,

46

a�

a�

b �

b �

c
�

c
�

c
�

c
�

r �

�

�

Figure 5.2. A 2-bit multiplier overF(22).

With the mapping rules given in Equation 5.1, the above equations are transformed

into the following polynomials:

c0 + a0 · b0,

c1 + a0 · b1,

c2 + a1 · b0,

c3 + a1 · b1,

r0 + c1 + c2,

z0 + c0 + c3,

z1 + r0 + c3,

Therefore, our overall polynomial system is:

f1 : c0 + a0 · b0
f2 : c1 + a0 · b1
f3 : c2 + a1 · b0
f4 : c3 + a1 · b1
f5 : r0 + c1 + c2

f6 : z0 + c0 + c3

f7 : z1 + r0 + c3

fZ : Z + z0 + z1 · α

Circuit constraints

fA : A+ a0 + a1 · α

fB : B + b0 + b1 · α

fspec : S + A · B

specification

f : S + Z
}

Property to verify:S = Z ?

47

With the polynomial model given above, we formulate our problem as(radical)

ideal membership testing, which is described next.

5.3 Verification Formulation as Ideal Membership Testing

To formulate our verification test, we first analyze the circuit and model the Boolean

gate-level operators as polynomials overF2 (⊂ F2k), as given by the mappings of

Equations 5.1. To this set, we then append the polynomials corresponding to the word-

level specification. Let{f1, f2, . . . , fs} denote this set of polynomials derived from

both specificationand implementation. Let {x1, x2, . . . , xd} denote all the variables

in the polynomial system. As a consequence,{f1, f2, . . . , fs} ∈ F2k [x1, . . . , xd]. Let

J = 〈f1, . . . , fs〉 ⊂ F2k [x1, . . . , xd] denote the ideal generated by these polynomials.

Our verification propertyS = Z is also modeled as a polynomialf : S + Z ∈
F2k [x1, . . . , xd].

To prove that the specification polynomial (f) matches the implementation (J =

〈f1, . . . , fs〉), we need to check whetherf : S + Z = 0 agreeswith all the solutions of

J over the fieldF2k . In computer algebra terminology, we need to checkwhether or not

f vanishes on the varietyVF
2k
(J), whereVF

2k
(J) denotes the variety of idealJ over the

given fieldF2k . This is because for all points (solutions)p ∈ VF
2k
(J), if f(p) = 0, then

f : S + Z = 0 =⇒ S = Z. On the other hand, iff(p) 6= 0 for some pointp, thenp

corresponds to the bug in the design.

Now if f vanishes onVF
2k
(J), according to Proposition 4.3, we know thatf should

be a member of the radical idealI(VF
2k
(J)). Therefore, our verification test can be

modeled as membership testing off in the (radical) idealI(VF
2k
(J)). To solve this

problem, we need to first derive the generators ofI(VF
2k
(J)) (note that we are only

given the generators ofJ), and then perform the ideal membership testing using the

Gröbner basis algorithm.

5.3.1 GeneratingI(VF
2k
(J))

Strong Nullstellensatz establishes correspondences between ideals and their radi-

cals. As given in Theorem 4.3,I(VK(J)) =
√
J , where the varietyV is taken over

the algebraically closed fieldK. Finite fields are, however,not algebraically closed, as

shown by the following result from [62]:

Theorem 5.1 Given finite fieldsF2n andF2m such thatn dividesm. ThenF2n ⊂ F2m .

48

Therefore,F2 ⊂ F22 ⊂ F24 ⊂ F28 ⊂ . . . ; andF2 ⊂ F23 ⊂ F26 . . . ; and so on. The

algebraic closure ofF2k is known to be an infinite field obtained as the union of all such

finite fields.

Therefore, Nullstellensatz needs to be suitably modified for application over finite

fields. We revisit the notion of vanishing polynomials for this purpose.

Over the finite fieldF2k , any elementA satisfies the propertyA2k − A = 0. There-

fore, polynomialx2k−x vanishes at all points inF2k , andx2k−x is called the vanishing

polynomial of the field. As a consequence, the varietyV (x2k − x) = F2k . Over

multivariate polynomial ringF2k [x1, . . . , xd], V (x2k

1 − x1, . . . , x
2k

d − xd) is Fd
2k

.

In the sequel, we use the following notation: LetJ0 = 〈x2k

1 − x1, . . . , x
2k

d − xd〉
denote the ideal of vanishing polynomials overF2k . Also, if J = 〈f1, . . . , fs〉 then,

the sum of idealsJ + J0 = 〈f1, . . . , fs, x2k

1 − x1, . . . , x
2k

d − xd〉. Let F2k denote the

algebraic closure ofF2k .

Lemma 5.1 LetJ ⊂ F2k [x1, . . . , xd] be any ideal and letJ0 = 〈x2k

1 −x1, . . . , x
2k

d −xd〉.
Then,VF

2k
(J) = VF

2k
(J + J0).

Proof. SinceF2k ⊃ F2k , we have :

VF
2k
(J) = VF

2k
(J) ∩ Fd

2k

= VF
2k
(J) ∩ VF

2k
(J0)

= VF
2k
(J) ∩ VF

2k
(J0)

= VF
2k
(J + J0)

As a consequence of the above lemma, variety of any idealJ over a finite fieldF2k

can be equivalently analyzed over its algebraic closureF2k by just appending toJ all

the vanishing polynomialsJ0. These vanishing polynomials do not change the zero-set

of J but allow the same analysis over the algebraic closure.

Lemma 5.2 I(VF
2k
(J)) = I(VF

2k
(J + J0)) =

√
J + J0.

Proof. As shown above,VF
2k
(J) = VF

2k
(J +J0). Therefore,I(VF

2k
(J)) = I(VF

2k
(J +

J0)). According to Strong Nullstellensatz,I(VF
2k
(J + J0)) =

√
J + J0. Thus:

I(VF
2k
(J)) = I(VF

2k
(J + J0)) =

√

J + J0 (5.2)

49

Lemma 5.3 Let J be any arbitrary polynomial ideal inF2k [x1, . . . , xd] andJ0 be the

corresponding vanishing ideal. Then,J + J0 is radical. In other words,
√
J + J0 =

J + J0.

Proof. This is a well-known result, a proof of which is given in [36].

Putting together the above results, we finally arrive at the following application of

Nullstellensatz over finite fields.

Theorem 5.2 [Strong Nullstellensatz in Finite Fields] LetJ ⊂ F2k [x1, x2, · · · , xn]

be an ideal andJ0 be the ideal of vanishing polynomials. Then,

I(VF
2k
(J)) = J + J0 = J + 〈x2k

1 − x1, x
2k

2 − x2, · · · , x2k

d − xd〉 (5.3)

Proof. Combining Lemma 5.2 and Lemma 5.3,

I(VF
2k
(J)) = I(VF

2k
(J + J0)) =

√

J + J0 = J + J0 (5.4)

whereJ0 = 〈x2k

1 − x1, x
2k

2 − x2, · · · , x2k

d − xd〉.
Overall Verification Problem Formulation: Through Strong Nullstellensatz over

finite fields, given an idealJ , we can directly construct idealI(VF
2k
(J)) = J + J0. For

our verification problem, we take the polynomials{f1, . . . , fs} representing the circuit

constraints and the specification polynomials to generate idealJ . Then, we append the

vanishing polynomials{x2k

1 − x1, . . . , x
2k

d − xd} of idealJ0. Our verification problem

can now be formulated as testing whether the verification property polynomialf is in

J + J0. If f ∈ (J + J0), correctness of the circuit is established. Otherwise, there is

a bug in the design. To test iff ∈ (J + J0), it is required to compute a Gröbner basis

G of the idealJ + J0. Then, we reducef w.r.t. G: i.e., f
G−→+ r. If r = 0, then, the

circuit is correct; otherwise, there is a bug in the design.

Example 5.4 Let us reconsider Example 5.3. First, polynomials are extracted from

the circuit implementation and the specification, as shown inExample 5.3. These

polynomials represent the idealJ . Along with the idealJ0 = 〈x2k

1 − x1, . . . , x
2k

d − xd〉,
the following polynomials representJ + J0 for the multiplier circuit.

50

f1 : c0 + a0 · b0
f2 : c1 + a0 · b1
f3 : c2 + a1 · b0
f4 : c3 + a1 · b1
f5 : r0 + c1 + c2

f6 : z0 + c0 + c3

f7 : z1 + r0 + c3

fZ : Z + z0 + z1 · α

implementation (⊂ J)

fA : A+ a0 + a1 · α

fB : B + b0 + b1 · α

fspec : S + A ·B = 0

specification (⊂ J)

a20 − a0, a
2
1 − a1, b

2
0 − b0, b

2
1 − b1

c20 − c0, c
2
1 − c1, c

2
2 − c2, c

2
3 − c3

r20 − r0, z
2
0 − z0, z

2
1 − z1

A4 − A, B4 −B, Z4 − Z, S4 − S

vanishing polynomials(J0)

Now we need to compute the Gröbner basisG of this idealJ + J0. Once the

computation ofG is completed, we simply need a polynomial reduction to test whether

f : S+Z can be reduced byG. In other words, we need to test whetherS+Z
G−→+ 0.

While our approach seems reasonably simple, the complexity of Gröbner basis

computation can make verification infeasible.

Complexity of Gröbner Basis Over Finite Fields: For our specific problem of

computing a Gr̈obner basis forJ + J0 overFq, the following result is known [36]:

Theorem 5.3 Let I = 〈f1, . . . , fs, xq
1 − x1, . . . , x

q
d − xd〉 ⊂ Fq[x1, . . . , xd] be an ideal

over any finite fieldFq. The time and space complexity of Buchberger’s algorithm to

compute a Gr̈obner basis ofI is bounded byqO(d), assuming that the length of input

f1, . . . , fs is dominated byqO(d).

In our caseq = 2k, and whenk andd are large, this complexity makes verification

infeasible. In what follows, we show that a variable/term order can be derived by

analyzing the circuit topology, which makes the set of polynomials{f1, . . . , fs, x2k

1 −

51

x1, . . . , x
2k

d − xd} itself a Gr̈obner basis ofJ + J0, thus obviating the need to apply

Buchberger’s algorithm.

5.4 Obviating Buchberger’s Algorithm
Just as variable orderings play a critical role in constructing BDDs and solving

SAT feasibly, the Gr̈obner basis computation is also highly susceptible to the term

orderings imposed on the polynomials. Therefore, a key stepto improve/avoid the

high complexity of Gr̈obner basis computation is to derive a “good” term order.

Buchberger’s work [17] initially laid the foundation for computing Gr̈obner’s bases.

Subsequently, many improvements were introduced to improve the efficiency of Buch-

berger’s algorithm. Two of the most important improvementsare the chain and product

criteria. For our particular circuit verification application, we exploit the product crite-

ria.

Lemma 5.4 [Product Criterion [18]] Let F be any field, andf, g ∈ F[x1, · · · , xd]

be polynomials. If the equalitylm(f) · lm(g) = LCM(lm(f), lm(g)) holds, then

Spoly(f, g)
G−→+ 0.

The above result states that when the leading monomials off, g are relatively prime,

thenSpoly(f, g) always reduces to 0 moduloG. Thus,Spoly(f, g) need not be con-

sidered in Buchberger’s algorithm. Modern computer algebraengines perform this

check to avoid unnecessarySpoly(f, g) computations. If we could analyze the given

circuit and derive a term order such that every polynomial pair (f, g) in the generating

set has relatively prime leading monomials, then for all S-polynomials, the subse-

quent reduction would not add any new polynomials in the basis. In other words,

Spoly(f, g)
G−→+ 0 for all pairs f, g. Consequently, the polynomials{f1, . . . , fs}

extracted from the circuit (corresponding idealJ) and represented using such a term

order would themselves constitute a Gröbner basis ofJ . In [88], the authors derive

exactly such a term order, and a similar concept can be applied in our case.

Note that in our case:

• since the circuit constraints{f1, . . . , fs} are modeled as polynomials inF2 ⊂ F2k ,

they contain only multilinear monomial terms;

• the output of a gate is uniquely computed, and it always appears as a “single

variable term” in the polynomials;

52

• the circuit is acyclic.

Letxi be the output variable of any gateHi in the circuit, and letxp1 , . . . , xpj denote

variables that are the inputs to the gateHi. If we can represent the polynomialsfi such

that xi > every monomial in the variablesxp1 , . . . , xpj , then all(fi, fj), i 6= j have

relatively prime leading monomials and{f1, . . . , fs} is a Gr̈obner basis.

Proposition 5.1 LetC be any arbitrary combinational circuit. Let{x1, . . . , xd} denote

the set of all variables (signals) in the circuit, i.e., the primary input, intermediate and

primary output variables. Perform areverse topological traversalof the circuit and

order the variables such thatxi > xj if xi appears earlier in the reverse topological

order. Impose a lex term order to represent the Boolean expression for each gate as a

polynomialfi; then,fi = xi + tail(fi). Then, the set of all polynomials{f1, . . . , fs}
forms a Gr̈obner basis, aslt(fi) andlt(fj) for i 6= j are relatively prime.

Example 5.5 Consider the circuit of Figure 5.3. Variablesa0, a1, b0, b1 are primary

inputs,z0, z1 are primary outputs andc0, c1, c2, c3, r0 are intermediate variables.

We perform a reverse topological traversal of the circuit. Starting from the primary

outputs, traverse the circuit to the primary inputs, and order the gates according to the

their (reverse) topological levels. The primary outputsz0, z1 are both at level-0, vari-

ablesr0, c0, c3 are at level-1, c1, c2 are at level-2 and the primary inputsa0, a1, b0, b1

are at level-3. We order the variables{z0 > z1} > {r0 > c0 > c3} > {c1 > c2} >

{a0 > a1 > b0 > b1}. Using this variable order, we impose a lex term order on the

monomials. Then, the polynomials ofJ all have relatively prime leading terms.

a�

a�

b �

b �

c
�

c
�

c
�

c
�

r �

�

�

Figure 5.3. A 2-bit multiplier overF(22). The gate⊗ corresponds to AND-gate, i.e.,
bit-level multiplication modulo 2. The gate⊕ corresponds to XOR-gate, i.e., addition
modulo 2.

53

c0 + a0 · b0, lm = c0;

c1 + a0 · b1, lm = c1;

c2 + a1 · b0, lm = c2;

c3 + a1 · b1, lm = c3;

r0 + c1 + s2, lm = r0;

z0 + c0 · c3, lm = z0;

z1 + r0 · c3, lm = z1

In our overall problem formulation, we also have variablesA,B, S, Z ∈ F2k . They

can also be accommodated in this term order by imposingS > Z > A > B > z0 >

z1 > r0 > c0 > c3 > c1 > c2 > a0 > a1 > b0 > b1.

Thus, using the result of Proposition 5.1, the set of polynomials {f1, . . . , fs} is

a Gr̈obner basis forJ . Note that{x2k

1 − x1, . . . , x
2k

d − xd} is a Gr̈obner basis for

J0. However, we have to compute a Gröbner basis ofJ + J0 = 〈f1, . . . , fs, x2k

1 −
x1, . . . , x

2k

d −xd〉. Not all polynomial pairs in{f1, . . . , fs, x2k

1 −x1, . . . , x
2k

d −xd} have

relatively prime leading monomials.

Consider an arbitrary polynomialfi ∈ J . Using our term order, we havefi =

xi + tail(fi); i.e., the leading monomial offi is a single variable termxi. Clearly, the

pairs(xi+tail(fi), x2k

i −xi), fi ∈ J, x2k

i −xi ∈ J0 do not have relatively prime leading

monomials. In fact, the pairs(xi + tail(fi), x2k

i − xi) are the only ones to be considered

for Gröbner basis computation, as all other pairs have relativelyprime leading terms.

This motivated us to investigate further the question “whatis the result of the reduction

Spoly(xi + tail(fi), x2k

i − xi)
J,J0−→+ r”. We state and prove the following:

Theorem 5.4 Letq = 2k, and letFq[x1, . . . , xd] be a ring on which we have a monomial

order >. Let I be a subset of{1, . . . , d}. For all i ∈ I, let fi = xi + Pi (where

Pi = tail(fi)) such that all indeterminatesxj that appear inPi satisfyxi > xj. Then,

the setG = {fi : i ∈ I} ∪ {xq
1 − x1, . . . , x

q
d − xd} is a Gröbner basis.

Proof. According to Buchberger’s Theorem (Theorem 1.7.4 in [3]), weneed to show

that for allf, g ∈ G, Spoly(f, g)
G→+ 0. LetG1 = {fi : i ∈ I}. Lemma 5.4 shows that

if f, g ∈ G, have relatively prime leading terms, then,Spoly(f, g)
G→+ 0. So the only

case where Lemma 5.4 does not apply is whenf = xi + Pi andg = xq
i − xi. Then,

54

Spoly(f, g) = xq−1
i f − g = Pix

q−1
i + xi. In what follows, it is important to note that

the indeterminates appearing inPi are all less thanxi.

First of all, Pix
q−1
i + xi − Pix

q−2
i (xi + Pi) = P 2

i x
q−2
i + xi, which shows that

Pix
q−1
i + xi

xi+Pi−→ P 2
i x

q−2
i + xi.

Next,P 2
i x

q−2
i +xi−P 2

i x
q−3
i (xi+Pi) = P 3

i x
q−3
i +xi. Continuing in this fashion, we

getP q−1
i xi+xi−P q−1

i (xi+Pi) = xi+P q
i , and finallyxi+P q

i − (xi+Pi) = P q
i −Pi.

Hence,

Pix
q−1
i + xi

xi+Pi−→ P 2
i x

q−2
i + xi

xi+Pi−→ P 3
i x

q−3
i + xi

xi+Pi−→ · · ·

· · · xi+Pi−→ P q
i + xi

xi+Pi−→ P q
i − Pi.

Over the finite fieldFq, P
q
i − Pi is a vanishing polynomial. Therefore,P q

i − Pi ∈
I(V (J0)) = 〈xq

1 − x1, . . . , x
q
d − xd〉. By Lemma 5.4,G0 = {xq

1 − x1, . . . , x
q
d − xd} is

Gröbner basis. Therefore,P q
i − Pi

G0→+ 0, which gives thatP q
i − Pi

G→+ 0, asG0 ⊂ G.

In conclusion,∀f, g ∈ G, Spoly(f, g)
G→+ 0 and hence,G is a Gr̈obner basis.

As a consequence of Theorem 5.4, the Gröbner basisG for our verification instance

(ideal J + J0) can be obtained directly by construction using a reverse topological

traversal of the circuit. WhileG is indeed a Gr̈obner basis, it is neitherminimal nor

reduced. We now show that this basis can actually be mademinimalby considering the

vanishing ideal of only the primary inputs of the given circuit.

Corollary 5.1 Let q = 2k and Fq[x1, . . . , xd] be the ring on which we impose the

monomial order> obtained via Proposition 5.1. LetI be a subset of{1, . . . , d}. For

all i ∈ I, let fi = xi + Pi (wherePi = tail(fi)) such that all indeterminatesxj that

appear inPi satisfyxi > xj. LetXPI denote the set of all primary input variables of

the circuit. Then, the setG = {fi : i ∈ I} ∪ {x2
pi − xpi} is a minimal Gröbner basis,

wherexpi ∈ XPI .

Proof. According to the Definition 4.16 of a minimal Gröbner basis, two conditions

have to be satisfied: i) all polynomials in the basis are monic, i.e., their leading coeffi-

cient is 1; and ii) the leading monomial of any polynomial does not divide the leading

monomial of any other polynomial in the basis. We have already shown thatG is a

Gröbner basis. Moreover, inF2k , the coefficient of every non-zero term is always 1.

Therefore, all polynomials are monic.

Furthermore, our ideal basisG consists of two sets of polynomials: i) polynomials

derived from the circuit, which are of the formfi = xi + tail(fi); and ii) the vanishing

55

polynomialsx2k

i −xi for i = 1, . . . , d. Our term order ensures that infi = xi+tail(fi), xi

corresponds to either the primary output variables or the intermediate variables. Primary

input variables (xi ∈ XPI) will never occur as leading terms offi because a primary in-

put is not an output of any gate in the circuit. Therefore,∀xi ∈ ({x1, . . . , xd}−{XPI}),
there always existsfi with lm(fi) = xi, which will divide the vanishing polynomial

x2k

i − xi. In such cases,x2k

i − xi, xi /∈ XPI can be removed from the basis. By

eliminating all vanishing polynomials corresponding to non-primary-input variables,

we will obtainG = {fi : i ∈ I} ∪ {x2k

pi − xpi} as a minimal Gr̈obner basis, where

xpi ∈ XPI .

Finally, sincexpi ∈ F2 ⊂ F2k , x2
i − xi = 0, we obtainG = {fi} ∪ {x2

pi − xpi} as

the minimal Gr̈obner basis.

While we can obtain a minimal Gröbner basisG directly by construction, un-

fortunately, wecannotobtain areducedGröbner basis without actually performing

the reduction. This is because in a reduced Gröbner basis, the tail (tail(fi)) of every

polynomialfi is also reduced w.r.t.lt(fj), for all i 6= j. However, a reduced Gröbner

basis computation is not necessary for ideal membership testing.

5.5 Our Overall Approach
We set up the verification problem inF2k [x1, . . . , xd], on which we impose the

monomial order> as derived above. We extract the set of polynomialsG1 = {f1, . . . , fs}
from the circuit. We generate the setG0 = {x2k

pi − xpi}∀xpi ∈ XPI . Then, the set

G = G1∪G0 forms a minimal Gr̈obner basis of the idealJ+J0 = 〈f1, . . . , fs, x2k

pi−xpi〉.
We take our specification polynomialf and computef

G→+ r. If r = 0, thenf ∈ J+J0

and the circuit is correct; otherwise, ifr 6= 0, then we have a bug in the design.

Moreover,if r 6= 0, then the monomial order ensures thatr contains only the primary

input variables. To show this, assume thatr 6= 0 andr contains either an intermediate

or a primary output variablexj. As there always exists a polynomialfj in G with

lm(fj) = xj, r can be further reduced byfj. Continuing in this fashion, all the terms

with non-primary-input (intermediate or primary output) variables can be eliminated.

Finally, in the presence of a bug, any assignment to the (primary-input) variables that

makesr 6= 0, provides a counter-example for debugging. A SAT or SMT-solver can

find such an assignment in no time asr is simplified by Gr̈obner basis reduction. Our

results therefore obviate the need to construct a Gröbner basis, and the verification can

be performed only by reduction:f
G→+ r.

56

Our overall approach is described in Algorithm 5. It first inputs the given circuit

implementation as Boolean equations. Each equation then is transformed to polynomi-

alsG1 using Equations 5.1. All polynomials are then normalized into a sum-of-term

form using the distributive law:A · (B + C) = A ∗ B + A ∗ C. Subsequently, our

verification problem is formulated as a radical ideal membership testing. We conduct

a reverse topology traversal of the circuit to generate the variable ordering. Then, we

append vanishing polynomialsG0 = {x2 + x} for all x ∈ primary inputs. Finally, we

compute the reduction off (property polynomial) moduloG1 ∪ G0. If the reduction

result isr = 0, the circuit is correct. If there are bugs in implementation, then the result

r is a polynomial that encodesall input vector assignments that excite the bug(s) in the

design.

Algorithm 5: Proposed Verification Algorithm
Input : Circuit Implementation EquationsZ.

Specification PolynomialS.
Output : True if S = Z. Bug polynomialr if S 6= Z.
for (i=0; i < number of eqns ; i++)do

/ * Each equation is transformed to polynomials * /;
poly[i] = Eqn-to-Poly(eqn[i]);
/ * Each equation is transformed to sum-of-term form

* /;
newpoly[i] = Sum-of-term(poly[i]);

end
/ * Obtain circuit-based variable order * /;
orderedvar=T Traversal(newpoly);
for var∈ {PI} do

/ * appending vanishing polynomials * /;
vanpoly[i]=x2 + x;

end
r=reduce(S,Z,vanpoly,orderedvar);
if r={0} then

return True;
else

return Bug polynomialr;
end

5.6 Experimental Results

Our algorithm is implemented inC + + with calls to the SINGULAR computer

algebra tool [v. 3-1-2] [28] to perform polynomial reductions. Our experiments are

57

conducted on a desktop with2.40 GHz Intel Core(TM)2 Quad CPU and8 GB memory

running64-bit Linux.

We conducted verification experiments on several large custom-designed circuits,

including Mastrovito multipliers, Montgomery multipliers, Barrett multipliers and ECC

point addition and point doubling circuits. The designs aregiven in equation (EQN)

format and then translated to different formats: CNF, SMTLIB,BLIF, Polynomials

that are used by SAT, SMT, BDD/AIG-based solvers, and Singular, respectively. All

our circuit benchmarks have been made available to the larger verification community

through the SMT-LIB benchmark suite [55].

5.6.1 Evaluation of SAT, SMT, BDD, AIG-Based Methods

We evaluated the performance of many SAT solvers [83] [9] [32] [8], SMT solvers

[31] [6] [68] [14] [13] [2] [1] [11] and BDD-based techniques [82], on our benchmarks.

For these experiments, using the conventional equivalencechecking approach, we cre-

ated a “miter” circuit to compare the specification against the implementation. The

implementation was given as a Montgomery multiplier as a gate-level netlist. Since

BDD/SAT/AIG-based approaches cannot operate upon word-level representations di-

rectly, the specification is given as a Mastrovito-style gate-level circuit implementation.

For SMT experiments, the designs were modeled at bit-vectorlevel using quantifier-

free bit-vector (QF-BV) theories, maintaining a bit-vector-level abstraction whenever

possible. Table 5.1 shows that none of the BDDs, AIG/ABC, SAT or SMT solvers can

verify the correctness of circuits beyond16-bit.

5.6.2 Evaluation of Our Approach

Our approach takes as inputs a gate-level circuit implementation and word-level

specification. Note the difference in the input requirements between our approach

and SAT/BDD/SMT/AIG-based approaches. Our approach only requires a word-level

specification while SAT/BDD/SMT/AIG-based approaches require an inherently large

gate-level specification. Therefore, there is an inherent advantage of our method in that

it maintains a high-level abstraction whenever possible.

Verification Using Gröbner Basis Computations inSINGULAR: Conceptually,

our approach requires first computing a Gröbner basis and then conduct a polynomial

reduction (ideal membership testing). If we use SINGULAR to compute a Gr̈obner basis

using our term order derived from Proposition 5.1, but without deducing the results

58

Table 5.1. Runtime for verification of Montgomery versus Mastrovito multipliers over
F2k for BDDs, SAT, SMT-solver and AIG/ABC-based methods. TO = timeout of 10hrs.
Time is given in seconds.

Word size of the operandsk-bit
Solver 8 12 16

MiniSAT 22.55 TO TO
CryptoMiniSAT 7.17 16082.40 TO

PrecoSAT 7.94 TO TO
PicoSAT 14.85 TO TO

Yices 10.48 TO TO
Beaver 6.31 TO TO
CVC TO TO TO
Z3 85.46 TO TO

Boolector 5.03 TO TO
Sonolar 46.73 TO TO

SimplifyingSTP 14.66 TO TO
ABC 242.78 TO TO

BDD 0.10 14.14 1899.69

of Theorem 5.4 and Corollary 5.1, we can verify the correctness of only up to48-bit

multipliers. Beyond that, the Gröbner basis engine runs into memory explosion. This

result is shown in Table 5.2.

Evaluation of Our Approach: Our approach only requires a polynomial reduction

(division) for the verification test:S + Z
G1,G0

−−→+ r and to check ifr = 0. For

this polynomial reduction, we use theREDUCE command in SINGULAR. Results for

verification of Mastrovito multipliers using our term ordering and only this reduction

are shown in Table 5.3. With our approach, we can verify the correctness of up to

163-bit Mastrovito multipliers. We also experimented with bug-catching in incorrect

designs; the bugs were introduced by arbitrarily swapping the wires (variables)xi with

Table 5.2. Verification of Mastrovito multipliers by computing Gröbner bases using
SINGULAR. MO=out of8G memory. Time is given in seconds.

Size 16 32 48 64 96 128 160 163
#variables 323 1155 2499 4355 9603 16899 26243 27224

#polynomials 609 2241 4897 8577 19009 33537 52161 54117
#terms 2415 9439 21071 37311 83615 148351 231519 240261
Time 0.94 93.80 1174.27 MO MO MO MO MO

59

Table 5.3. Runtime for verifying bug-free and buggy Mastrovito multipliers using our
approach. TO = timeout of 10hrs. Time is given in seconds.

method 16 32 48 64 96 128 160 163
#variables 323 1155 2499 4355 9603 16899 26243 27224

#polynomials 291 1091 2403 4227 9411 16643 25923 26989
#terms 1793 7169 16129 28673 64513 114689 179201 185984

Bug-free 0.04 1.41 24.00 112.13 758.82 3054 9361 16170
Bugs 0.04 1.43 25.11 114.86 788.65 3061 9384 16368

xj, for some gatei 6= j. In such cases, we obtained a non-zeror. We used a SAT solver

to find a SAT assignment tor 6= 0. These run times are shown in Table 5.3.

Results of the verification of Montgomery multipliers are shown in Table 5.4. Mont-

gomery multipliers are significantly larger than Mastrovito multipliers. If we represent

a polynomial for every gate in the design, then we create too many variables (d) in the

system, exceeding SINGULAR ’ S capacity (d ≤ 32767). For this reason, we partition

the circuit, and construct the polynomials for each circuitpartition – and we ensure

that our term ordering constraint is not violated. With suchefforts, we are able to

verify Montgomery multipliers up to128-bit datapaths, beyond which we still exceed

SINGULAR’ S capacity. Similarly, results for the verification of Barrettmultipliers are

shown in Table 5.5.

Table 5.6 and Table 5.7 show the results of verifying ECC pointaddition and point

doubling circuits, respectively. There are several representation systems for ECC point

addition and point doubling. We choose the López-Dahab coordinate system [52] to

represent point addition and point multiplication. We custom designed these circuits,

where the polynomial computations were implemented using Mastrovito multipliers.

Our approach is able to verify up to163-bit ECC operations, whereas SAT, SMT, BDD

and AIG-based techniques cannot even verify16-bit ECC circuits.

5.7 Conclusions

This chapter has presented a formal approach to model and verify multiplier circuits

over finite fieldsF2k using a computer algebra-based approach. We show how the veri-

fication test can be formulated as membership testing of the specification polynomialf

in a (radical) idealJ+J0 = 〈f1, . . . , fs, x2k

1 −x1, . . . , x
2k

d −xd〉, whereJ = 〈f1, . . . , fs〉
corresponds to the ideal generated by polynomials extracted from the circuit, andJ0

60

Table 5.4. Runtime for verifying bug-free and buggy Montgomery multipliers using
our approach. TO = timeout of 10hrs. Time is given in seconds.

method 16 32 48 64 96 128
#variables 319 1194 2280 4395 6562 14122

#polynomials 287 1130 2184 4267 6370 13866
#terms 2262 10741 18199 40021 55512 134887

Bug-free 0.03 1.50 11.03 27.70 1802.75 10919.35
Bugs 0.03 1.52 11.10 28.18 1812.15 11047.10

Table 5.5. Runtime for verifying bug-free and buggy Barrett multipliers using our
approach. TO = timeout of 10hrs. Time is given in seconds.

method 16 32 48 64 96 128 160 163
#variables 305 1103 2389 4146 9216 16072 24643 26847

#polynomials 276 1041 2263 4004 8986 15008 24318 25746
#terms 1777 6757 15228 26452 60824 107454 16386 174571

Bug-free 0.03 1.31 22.12 103.30 724.14 2865 9024 14048
Bugs 0.03 1.32 23.06 106.02 734.63 2947 9207 14836

Table 5.6. Verification of ECC point addition. Run-time given is seconds. TO = timeout
of 24hrs.

Size 16 32 48 64 96 128 160 163
#variables 548 1615 3623 6854 13986 28468 30237 31384

#polynomials 10812 30826 86482 123544 288720 509660 604740 646129
Runtime 0.26 4.82 118 557 3598 15346 47290 81016

Table 5.7. Verification of ECC point doubling. Run-time given is seconds. TO =
timeout of 24hrs.

Size 16 32 48 64 96 128 160 163
#variables 528 1598 3321 6409 12230 26493 29015 30442

#polynomials 4640 14523 42324 61274 142733 243452 297465 313145
Runtime 0.10 2.21 54 263 1532 8012 21493 36439

61

= 〈x2k

i −xi〉 corresponds to the ideal of vanishing polynomials of the field. By analyz-

ing the circuit topology, we derive a monomial order that makes the set{f1, . . . , fs, x2k

1 −
x1, . . . , x

2k

d −xd} itself a Gr̈obner basis ofJ +J0. Subsequently, the verification can be

formulated by simply carrying out the reductionf
J,J0→+ r. Using our approach, we are

able to verify the correctness of up to163-bit multipliers and ECC point addition circuits

overF2163 , whereas conventional techniques based on SAT, SMT, BDD and AIG-based

solvers are infeasible. A conference paper based on this approach was presented in [57],

and a journal version of this paper has been submitted for review.

CHAPTER 6

GATE-LEVEL EQUIVALENCE CHECKING OF

ARITHMETIC CIRCUITS OVER F2K

This chapter describes our approach to equivalence checking of two combinational

circuits designed for finite field computations. Combinational equivalence checking is a

fundamental problem in hardware verification, and it has been widely investigated over

the years. Canonical decision diagrams (BDDs and their variants), implication-based

methods, SAT solvers, and And-Invert-Graph (AIG)-based reductions are among the

many techniques employed for this purpose. When one circuit is synthesized from the

other, this problem can be efficiently solved using AIG-based reductions (e.g., the ABC

tool [11]) and circuit-SAT solvers (e.g., CSAT [53]). Synthesized circuits generally

contain many subcircuit equivalences, which AIG- and CSAT-based tools can identify

and exploit for verification. However, when the circuits arefunctionally equivalent but

structurally very dissimilar, none of the contemporary techniques, including ABC and

CSAT, offer a practical solution. Particularly, forcustom-designed arithmetic circuits,

this problem largely remains unsolved today. Since these custom-designed circuits are

prevalent in industry, it is therefore imperative to develop scalable methods to verify

such circuits.

Focusing on finite field arithmetic circuits, we utilize computer algebra techniques

and formulate the equivalence verification problem as aWeak Nullstellensatz proof,

and solve it using Gr̈obner bases. This requires the computation of a reduced Gröbner

basis, which can be expensive for large circuits. To overcome this complexity, we again

wish to exploit the circuit topology-based term orderings (as described in the previous

chapter) for polynomial manipulation. Unfortunately, unlike in the previous case, the

set of polynomials corresponding to this verification instance (the miter circuit) does not

constitute a Gr̈obner basis. However, using Gröbner bases theory, we identifya mini-

mum number of S-polynomial computationsthat are necessary and sufficient to prove or

disprove equivalence. Experiments demonstrate the effectiveness and efficiency of our

63

approach – we can verify128-bit structurally very dissimilar implementations, while

none of the contemporary methods are feasible.

6.1 Problem Statement and Modeling

In this application, we are given two combinational arithmetic circuitsC1 andC2, as

gate-level flattened netlists. We have to prove or disprove their functional equivalence.

Our approach is generic enough to perform equivalence checking of any arbitrary

combinational arithmetic circuit overF2k . However, without loss of generality, we will

again consider finite field multiplier circuits as examples to explain our approach.

Our problem can be formally described as:

• Given a finite fieldF2k , i.e., givenk (datapath size), along with the corresponding

irreducible polynomialP (x), letP (α) = 0, i.e.,α be the root ofP (x).

• Given twok-bit combinational circuitsC1 andC2, the common primary inputs

of both circuits are{a0, . . . , ak−1, b0, . . . , bk−1}. The primary outputs ofC1 are

{x0, . . . , xk−1}; the primary outputs ofC2 are{y0, . . . , yk−1}, whereai, bi, xi, yi ∈
F2, i = 0, . . . , k − 1.

• The word-level representation of inputs isA = a0 + a1α + · · · + ak−1α
k−1,

andB = b0 + b1α + · · · + bk−1α
k−1. Correspondingly, the outputs areX =

x0 + x1α + · · ·+ xk−1α
k−1 andY = y0 + y1α + · · ·+ yk−1α

k−1.

Our goal is to formally prove that∀ai, bi ∈ F2 ⊂ F2k , the outputsX andY of circuits

C1 andC2 are equal to each other, i.e.,X = Y always holds. Otherwise, there must

exist a bug in one of the given circuits.

The equivalence verification setup is shown in Figure 6.1. Given circuitsC1 andC2,

we want to prove that for all possible inputs, the outputX of circuitC1 is always equal

to the outputY of circuitC2 . This can be, conversely, modeled as proving thatX 6= Y

has no solutions. Such a setup is called a “miter” circuit, and proving infeasibility of

the miter is a standard practice in combinational circuit verification. This is mostly

because it enables the use ofconstraint-solvers(such as SAT solvers) to prove/disprove

equivalence.

64

The constraints for circuitsC1 andC2 are modeled as polynomials overF2k using

Equations 5.1. TheX 6= Y constraint corresponding to the miter is also modeled as a

polynomial inF2k as follows:

t(X − Y) = 1,wheret is a free variable inF2k (6.1)

The correctness of the above constraint modeling can be shown as follows:

• WhenX = Y,X−Y = 0, sot·0 = 1 has no solutions, and the miter is infeasible.

• WhenX 6= Y, (X − Y) 6= 0. Over any field, every non-zero element has a

multiplicative inverse. Lett−1 = (X − Y). Then,t · t−1 = 1 will always have a

solution overF2k .

The abovet(X − Y) = 1 model for the miter can also be employed overF2, i.e.,

the Boolean ring. Since1 is the only non-zero element inF2, t = 1, and theX 6= Y

constraint is specified asX + Y + 1 = 0 (mod 2).

Overall, the entire miter circuit can be modeled as a polynomial system overF2k in

Equations 6.2.

f 1
1 (x1, x2, · · · , xd)

...

fA : A+ a0 + a1α + · · ·+ ak−1α
k−1

fX : X + x0 + x1 · α + · · ·+ xk−1 · αk−1

Circuit 1

f 2
1 (x1, x2, · · · , xd) = 0

...

fB : B + b0 + b1α + · · ·+ bk−1α
k−1

fY : Y + y0 + y1 · α + · · ·+ yk−1 · αk−1

Circuit 2 (6.2)

fm : t · (X − Y) + 1 = 0
}

Miter:X 6= Y

Subsequently, we need to check whether or not there are any solutions to the set of

polynomials in Equations 6.2. The following example illustrates our polynomial system

modeling.

Example 6.1 Consider two functionally equivalent circuits overF22 . The miter is

shown in Figure 6.2.

65

B

A

Circuit1:

Circuit Equations

Circuit2:

Circuit Equations

1?

X

Y

X Y

Figure 6.1. The equivalence checking setup: miter.

Figure 6.2. Miter for 2-bit circuit equivalence.

66

The miter is modeled as a system of polynomials, where the outputs ofC1, C2 are

expressed at word-level as:X + x0 + x1 · α andY + y0 + y1 · α.

x0 = a0 ⊕ b0 ⇒ x0 + a0 + b0

c0 = a0 ∧ b0 ⇒ c0 + a0 · b0
c1 = a0 ⊕ b1 ⇒ c1 + a0 + b1

x1 = c0 ⊕ c1 ⇒ x1 + c0 + c1

X + x0 + x1 · α

Circuit 1

d0 = ¬(a0 ∧ b0) ⇒ d0 + a0 · b0 + 1

d1 = ¬(a1 ∧ b1) ⇒ d1 + a1 · b1 + 1

d2 = a0 ∧ b0 ⇒ d2 + a0 · b0
d3 = ¬(a1 ∧ d1) ⇒ d3 + a1 · d1 + 1

d4 = ¬(b1 ∧ d1) ⇒ d4 + b1 · d1 + 1

d5 = ¬(a0 ∧ d0) ⇒ d5 + a0 · d0 + 1

d6 = ¬(b0 ∧ d0) ⇒ d6 + b0 · d0 + 1

d7 = ¬(d3 ∧ d4) ⇒ d7 + d3 · d4 + 1

y0 = ¬(d5 ∧ d6) ⇒ y0 + d5 · d6 + 1

y1 = d2 ⊕ d7 ⇒ y1 + d2 + d7

Y + y0 + y1 · α

Circuit 2

t · (X − Y) + 1 = 0
}

Miter:X 6= Y (6.3)

With the polynomial model given above, we formulate our problem as aWeak

Nullstellensatzproblem, which is described next.

6.1.1 Verification Problem Formulation as Weak Nullstellensatz

As described in Equation 6.2 and Example 6.1, to formulate our verification test, we

first analyze the miter circuit and model the Boolean gate-level operators as polynomials

overF2 – i.e., two sets of implementation polynomials representingC1 andC2, and the

miter polynomials:X 6= Y (X, Y are outputs ofC1 andC2). Subsequently, we can

reason whether or not solutions exist to this polynomial system.

For this purpose, we wish to use techniques from computer algebra and algebraic

geometry to reason about the solutions (variety) to the polynomial equations (ideal).

67

Notation: Let F1, F2 represent the set of polynomials generated from circuitC1

andC2, respectively. Letfm represent the miter polynomial. LetF = {F1, F2, fm} =

{f1, f2, . . . , fs, fm} denote this set of polynomials derived from the miter circuit. Let

{x1, . . . , xd} denote all variables occurring inF . LetJ = 〈F1, F2, fm〉 ⊂ F2k [x1, . . . , xd]

denote the ideal generated by these polynomials. Subsequently, VF
2k
(J) denotes the

variety (solutions) ofJ overF2k .

Our verification problem can be formulated as the evaluation:

VF
2k
(J) = ∅? (6.4)

Weak Nullstellensatz[39] explicitly specifies the condition when a variety is empty.

Theorem 6.1 [Weak Nullstellensatz] Let J ⊂ K[x1, x2, · · · , xd] be an ideal satis-

fyingVK(J) = ∅. Then,I = K[x1, x2, · · · , xn] ⇐⇒ {1} ∈ J .

Recall that a reduced Gröbner basis is a canonical representation of an ideal. We

know that the unit ideal〈1〉 can generate the entire set of polynomials inK[x1, x2, · · · , xn].

Therefore, Weak Nullstellensatz can be further described via Gröbner basis as:

Corollary 6.1 [Weak Nullstellensatz] Let I ⊂ K[x1, x2, · · · , xd] be an ideal satis-

fyingV (I) = ∅. Then the Reduced GröbnerBasis(I)= {1}.

The Weak Nullstellensatznow offers us a way to evaluate whether the system of

multivariate polynomial equations has a common solution inK
d
.

However,Weak Nullstellensatzis stated over an algebraically closed fieldK. Our

problem is modeled overF2k , which is not algebraically closed. Therefore,Weak

Nullstellensatzis bound to fail when applied directly, without modification, to finite

fields.

Let us explain whyWeak Nullstellensatzfails when applying it to the fieldF2 ⊂ F2k

by an example.

Example 6.2 We are given an implementation of a circuit overF2 ⊂ F2k :

x1 = a ∨ (¬a ∧ b) (6.5)

Its corresponding specification is :

y1 = a ∨ b (6.6)

68

wherex1 andy1 are symbolically different but functionally equivalent. Then, we trans-

form the circuit equations into their polynomial forms:

x1 = a ∨ (¬a ∧ b) 7→ x1 + a+ b · (a+ 1) + a · b · (a+ 1) (mod 2)

y1 = a ∨ b 7→ y1 + a+ b+ a · b (mod 2)

x1 6= y1 7→ x1 + y1 + 1 (mod 2)

Then, the reduced Gröbner basis of above polynomials with term orderinglex x1 >

y1 > a > b is:

a2 · b+ a · b+ 1

y1 + a · b+ a+ b

x1 + a · b+ a+ b+ 1

which is not equal to〈1〉, even though their variety is empty. The reason for this can be

explained as follows.

As shown in Figure 6.3,F2k is the algebraic closure ofF2k . If there is no solution

to idealJ in the algebraic closureF2k , then there is no solution inF2k either. However,

what happens when there is a solution inF2k , i.e.,1 /∈ GB(J)? In this case, it means

that there is anonempty set of solutionsto the polynomial system inF2k
d
. There are

two possibilities:

• The solution(s) may lie withinF2k .

• The solution(s) may lie inF2k , but outsideF2k , as depicted in Figure 6.3.

We are interested in finding out whether or notX 6= Y overF2k – i.e., whether the

circuit has bugs over the given fieldF2k . We do not care if the solution is outside

x

Algebraic Closure

Solutions here?

Do not care.

Figure 6.3. A solution (bug) in(F2k − F2k) is a “don’t care”.

69

the fieldF2k , in which case the bug is really a “don’t care” condition (akin to a “false

negative” in design verification parlance).

To address this problem,Weak Nullstellensatzneeds to be suitably modified for

application over finite fieldsF2k .

Theorem 6.2 [Weak Nullstellensatz in F2k]

Givenf1, f2, · · · , fs ∈ F2k [x1, x2, · · · , xd]. LetJ = 〈f1, f2, · · · , fs〉 ⊂ F2k [x1, x2, · · · , xd]

be an ideal. LetJ0 = 〈x2k

1 − x1, x
2k

2 − x2, · · · , x2k

d − xd〉 be the ideal of vanishing

polynomials inF2k . Then,VF
2k
(J) = VF

2k
(J + J0) = ∅, if and only if the reduced

GröbnerBasis(J + J0) = {1}.

Proof. According to the definition of vanishing polynomials overF2k , we haveVF
2k
(J0) =

Fd
2k

. From Lemma 5.1, we know:

VF
2k
(J + J0) = VF

2k
(J). (6.7)

Combining with Corollary 6.1, we conclude:

VF
2k
(J + J0) = ∅ ⇔ reduced Gr̈obnerBasis(J + J0) = {1} (6.8)

Example 6.3 Revisiting Example 6.2, we need to append the vanishing polynomials

a2 − a, b2 − b, x2
1 − x1, y

2
1 − y1 to the given ideal. Now, when we compute the reduced

Gröbner basis, we get: reduced-GB(x1 + a+ b · (a+ 1) + a · b · (a+ 1), y1 + a+ b+

a · b, x1 + y1 + 1, a2 − a, b2 − b, x2
1 − x1, y

2
1 − y1) = {1} which provesx1 = y1.

Verification Problem Formulation: Through Weak Nullstellensatz overF2k , given

an idealJ ∈ F2k [x1, . . . , xd], we can determine whether the variety ofJ is empty by

analyzing the corresponding reduced Gröbner basis ofJ + J0.

For our verification problem, we take the polynomials{F1, F2, fm} = {f1, . . . , fs, fm}
representing the miter circuit constraints to generate ideal J . Then we append the

vanishing polynomials{x2k

1 − x1, . . . , x
2k

d − xd} of idealJ0. We compute the reduced

Gröbner basisG of J + J0 and check ifG equals to the unit ideal{1}. The two circuits

are functionally equivalent if and only ifG = {1}.

The critical issue in the Weak Nullstellensatz formulationis the computational com-

plexity of a Gr̈obner basis (as given in Theorem 5.3). To overcome this complexity, we

again wish to exploit our circuit topology-based term ordering from Proposition 5.1 for

70

polynomial representation. Note that according to the termordering from Proposition

5.1, the set of polynomials in{F1, F2} does constitute a Gröbner basis – asC1 andC2

are independent circuits. However, with the miter polynomialfm, the set of polynomials

F = {F1, F2, fm} does not constitute a Gröbner basis. This is because there always

exists one polynomialfo ∈ F, (fo 6= fm) corresponding to the output of eitherC1 or

C2 with a leading term that is not relatively prime w.r.t. the leading term of the miter

polynomialfm. Their corresponding S-polynomial computation also does not reduce

to zero. This is shown in Example 6.4.

Example 6.4 Let us reconsider Example 6.2. Based on our topological termordering

of the circuit, we impose a lex term order with:

x1 > y1 > d4 > d3 > d2 > d1 > d0 > c1 > c0 > a0 > a1 > b0 > b1,

Then, the set of polynomials of the miter circuit{F1, F2, fm} does not constitute a

Gröbner basis. This is because the miter polynomialfm : tX − tY + 1 and output

polynomialfX of circuit C1, fX : X + x0 + x1 · α, has a common variableX in their

leading termstX andX, respectively. Therefore,lt(fm) and lt(fo) are not relatively

prime. Moreover,Spoly(fm, fX)
F1,F2,fm−→ r, r 6= 0, thus violating the property of a

Gröbner basis that all S-polynomials should reduce to zero.

This suggests that we may have to compute a reduced Gröbner basis. However,

in the next section, we describe our results that can identify a minimum number of

S-polynomial computationsthat are sufficient and necessary to prove equivalence or to

detect bugs.

6.2 Verification Using a Minimum Number
of S-polynomial Computations

To identify a minimum number of S-polynomial computations in Buchberger’s al-

gorithm, we make use of the following lemma.

Lemma 6.1 Let r ∈ F2[x1, . . . , xd] be a multilinear polynomial expression; i.e., r is

a nonconstant polynomial such that every monomial term inr contains variables of

degree1. Then,r has a root inFd
2.

Proof. Let l(r) denote the number of nonzero monomials appearing inr. We will

perform induction onl(r). Note that inF2, the coefficient of all nonzero monomials is

1.

71

The casel(r) = 1 is trivial, asr = x1x2 . . . xt, for somet ≤ d. A polynomial with

one monomial term always has a solution.

For the general case,l(r) ≥ 2. Then, we can always writer = r′ + M whereM

is a product of monomials. After appropriately relabeling the variables, we can assume

thatx1 dividesM , i.e.,x1 appears inM . If x1 dividesr′ too, thenx1 dividesr as well.

As a consequence, we obtainx1 = 0 as a solution forr = 0. So,r has a root inF2.

If x1 does not divider, then it does not divider′. So variablex1 does not appear in

r′. Then, letr” = F(0, x2, . . . , xd). Note thatl(r”) < l(r), as monomialM does not

appear inr”. By induction, there is a solution(x2, . . . , xd) for r” = 0, which also gives

a solution(0, x2, . . . , xd) for r. Thusr always has a root inF2.

Now we state and prove the following theorem.

Theorem 6.3 Let F1, F2 correspond to the set of polynomials derived from circuits

C1, C2, respectively. Letfm be the miter polynomial. LetF = {F1, F2, fm} andJ =

〈F 〉 ⊂ F2k [x1, . . . , xd] be the ideal of polynomials corresponding to the miter circuit.

Impose the circuit topology-based monomial order> from Proposition 5.1. LetF0 =

{x2k

1 − x1, . . . , x
2k

d − xd} be the vanishing polynomials ofF2k ; and J0 = 〈F0〉. Let

fo ∈ F (fo 6= fm) be the only polynomial such that the leading terms offm, fo are not

relatively prime. ThenVF
2k
(J) = ∅ ⇐⇒ r = 1, wherer is computed asSpoly(fm, fo)

F,F0−→+ r.

Proof. Let q = 2k, and letG andGred, respectively, denote the Gröbner basis and the

reduced Gr̈obner basis of(J + J0). LetT represent the set of all variables occurring in

F , and letTpi ⊂ T denote the set of all primary inputs.

Our objective is to deduce whether or not the varietyVF
2k
(J) = ∅, without actually

computing a reduced Gröbner basis. Recall, according to Theorem 6.2,VFq
(J) =

∅ ⇐⇒ Gred = {1}, so we only need to check whetherGred = {1}. Based on our term

ordering, we will try to identify the polynomials that constituteGred.

In the first iteration of Buchberger’s algorithm,Spoly(fm, fo) is the only polynomial

that needs to be computed and reduced to obtainr, as all other S-polynomials reduce to

zero, due to Theorem 5.4. We need to consider three cases:

• Case 1:r = 1.

• Case 2:r = 0.

72

• Case 3:r is a nonconstant multilinear polynomial consisting of onlyprimary

input variables of the circuit.

Case 1is the trivial case: Ifr = 1, then1 ∈ G, soGred = {1} and therefore,

V (J + J0) = ∅. The miter is infeasible and the circuits are equivalent.

Case 2: When r = 0, no new polynomial is created in Buchberger’s algorithm.

Therefore,G = {F, F0}. While the set{F, F0} is itself a Gr̈obner basis, it is not

reduced. So, what is the reduced basisGred? We will show thatGred 6= {1} and this

will imply that V (J + J0) 6= ∅.

To reduce a Gr̈obner basisG, we take all polynomialsf ∈ G and reducef
G−f−→+ f ′.

All such f ′ constituteGred. We will consider such a reduction forG = {F, F0}. For

all fj ∈ F , let fj = xj + Pj, wherePj = tail(fj) andlm(fj) = xj wherexj /∈ Tpi.

This is due to our term order where only gate outputs (xj) appear as leading terms of all

polynomials. Letv be any variable inPj. If v ∈ {T − Tpi} (non-primary-input), then

v = lm(fk) (k 6= j). Thusfj
{F,F0}−fj−−−−−−→ f

′

j , wheref
′

j = xj + P
′

j . In such a case,P
′

j

contains only primary inputs. From a circuit-structure perspective, this reflects that any

internal gate outputxj can be expressed in terms of primary inputs.

Similarly, xq
i − xi with xi ∈ {T − Tpi} will reduce to zero, and only vanishing

polynomials of primary inputs will remain inF0. Moreover, since circuit inputs are

bit-level,x2
pi = xpi; sox2

pi − xpi, xpi ∈ {Tpi}, are the vanishing polynomials remaining

in the reduced basis. LetF
′

= {xj + P
′

j}, wherexj ∈ T . Then, the reduced Gröbner

basisGred of {F, F0} = reducedGB({F} ∪ {xq
i − xi}) = {F ′} ∪ {x2

pi − xpi}. Clearly,

Gred 6= 1. We conclude, ifr = 0, Gred 6= {1}, andV (J + J0) 6= ∅. The miter

constraints are feasible and the circuits are not equivalent.

Case 3: If r is a nonconstant polynomial, then due to our term order and Corollary

5.1, r will contain only the primary input variables of the circuit. Moreover, as these

variables are Boolean,x2
pi = x3

pi = · · · = xpi, all variables in the monomials ofr have

degree 1, andr is multilinear.

After the first iteration of Buchberger’s algorithm, we obtain {F, F0, r} in the basis.

Becauser contains only primary inputs,lt(r) is relatively prime w.r.t. leading terms of

all polynomials inF . Therefore, the Gr̈obner basis of{F, r} is {F, r} itself.

However,{F, r} ∪ {F0} is nota Gr̈obner basis, becauselm(r) andlm(xq
k − xk) are

not relatively prime whenxk ∈ Tpi. Therefore,G = GB({F, r} ∪ {F0}) = {F} ∪

73

GB(r ∪ {F0}). In such a case, if we can show that1 /∈ GB(r ∪ {F0}), then1 /∈
GB({F, F0, r}).

To show1 /∈ GB(r ∪ {F0}), we utilize the Weak Nullstellensatz Theorem 6.2: if

V (r∪{F0}) 6= ∅, then1 /∈ GB(r∪{F0}). In Lemma 6.1, we showed that ifr is a multi-

linear polynomial, it always has a root. This means thatV (r ∪ {F0}) 6= ∅. Therefore,

1 /∈ GB(r ∪ {F0}). This proves Case 3: ifr is not 0 or 1, then{1} /∈ G = GB(F, F0).

So, we conclude that:

VF
2k
(J) = ∅ ⇐⇒ r = 1. (6.9)

Combining with Corollary 5.1, the above theorem can be restated based on a mini-

mum Gr̈obner basis.

Corollary 6.2 Let J = 〈F 〉 ⊂ F2k [x1, . . . , xd] on which we impose our circuit-based

monomial order>. Let JPI
0 = 〈x2

pi − xpi〉, wherexpi ∈ PI. Let fo, fm be the only

polynomial pair such thatlm(fm), lm(fo) are not relatively prime. Then,VF
2k
(J) =

∅ ⇐⇒ r = 1, wherer is computed asSpoly(fm, fo)
J,JPI

0−→+ r.

Theorem 6.3 and Corollary 6.2 provide the foundation of our verification formula-

tion. We only need one S-polynomial computation to identifywhether or not the two

circuits are equivalent. Our overall approach is describedin the following algorithm.

Algorithm 5 first inputs the Boolean expressions of the given circuit implementa-

tion. Each expression is then transformed into a set of polynomialsF using the map-

pings shown in Equation 5.1. All polynomials are then normalized into a sum-of-term

form using the distributive lawA(B + C) = AB + AC. Then, we perform a reverse

topology traversal of the circuit to derive our variable andordering. Then, we append

vanishing polynomialsF0 = {x2 + x} for all x ∈ primary inputs. Subsequently, we

identify the two polynomialsfm andfo that have common variables in their leading

terms. Finally, we conduct a polynomial reduction ofSpoly(fm, fo) modulo{F ∪ F0}.

If the reduction result isr = 1, the two circuits are equivalent. Ifr 6= 1, the circuits are

not equivalent. Again, any assignment to the variables thatmakesr 6= 1 provides an

input vector that can be used as a counter-example for debugging.

6.3 Improving Polynomial Division UsingF4-style Reduction
Through the results described above, the need for Buchberger’s algorithm is obvi-

ated and verification can be performed by analyzing the result of just one S-polynomial

74

Algorithm 6: Our Proposed Equivalence Checking Algorithm
Input : Two Circuit Implementations with outputsX andY (Boolean equations).
Output : 1 if X = Y . Bug polynomialr if X 6= Y .
for (i=0; i < number of eqns; i++)do

/ * Each equation is transformed to polynomials * /;
poly[i] = Eqn-to-Poly(eqn[i]);
/ * Each equation is transformed to sum-of-term * /;
newpoly[i] = Sum-of-term(poly[i]);

end
/ * Obtain circuit-based variable order * /;
orderedvar=T Traversal(newpoly);
for x∈ {PI} do

/ * append vanishing polynomials * /;
vanpoly[i]=x2 + x;

end
/ * Identify polynomials that need to be reduced * /;
fo, fm=Identify(newpoly, vanpoly);
To Be Reduced = Spoly(fo, fm);
r=reduce(ToBe Reduced, vanpoly, orderedvar);
if r={1} then

return1;
else

return Bug polynomialr;
end

reduction. Therefore, the most intensive computational step is that of polynomial divi-

sionSpoly(fm, fo)
F,F0−→+ r. When the two circuitsC1, C2 are very large, the polyno-

mial set{F, F0} also becomes extremely large. This division procedure thenbecomes

the bottleneck in verifying the equivalence. To further improve upon our approach,

we exploit the relatively recent concept ofF4-style polynomial reduction [34], which

implements polynomial division using successive row-reductions on a matrix.

Let us first describe the matrix representation for polynomial algebra operations.

Matrix Representation of Polynomials: Each rowi of the matrixM corresponds

to polynomialfi, whereas each columnj corresponds to monomialmj. If the jth entry

on row i in matrix is1, i.e.,M(i, j) = 1, it means thejth monomial is present in the

ith polynomial. Similarly,M(i, j) = 0 denotes the absence ofmj in fi. Since we

are operating inF2k , coefficients are always{0, 1}, and no specific representation of

coefficients is required. Note, however, that the entries inrows and columns have to

satisfy the imposed term ordering.

75

Example 6.5 Given two polynomials:f1 = a0 + a1 · b1 + 1 andf2 = a0 · b0 + b1 + 1

with term ordering lex witha0 > a1 > b0 > b1. First, we sort all monomials occurring

in f1 andf2 w.r.t. term ordering:a0 · b0 > a0 > a1 · b1 > b1 > 1.

Then, we associate these sorted monomials with the columns of the matrix. The

polynomials are also sorted according to the term order before they are associated with

the rows of the matrix. For example, sincelm(f2) > lm(f1), f2 appears on row1 and

f1 appears on row2. The generated matrix is shown in Table 6.1.

Polynomial reduction requires operations of addition/subtraction and cancellation

of leading terms. We demonstrate how the addition/subtraction and division operations

are implemented on the matrix.

Matrix Subtraction for Polynomials: The subtraction of two polynomials can

be formulated as a row-eduction in the matrix. Since coefficients of polynomials are

computed (mod2) in our case, row-reductions are also performed (mod2).

Example 6.6 Again considerf1 = a0 + a1 · b1 + 1 andf2 = a0 · b0 + b1 + 1 with lex

order: a0 > a1 > b0 > b1. Let us performf1 − f2: f1 − f2 = f2 − f1 (mod 2) =

a0 · b0 + a0 + a1 · b1 + b1. On the matrix, each entry on row2 is subtracted from the

corresponding entry on row1 and the result is stored in row2, as shown in Table 6.2.

Matrix Reduction for Polynomials: Polynomial division is implemented as can-

cellation of leading terms. The reduction step in Algorithm3 that cancels leading terms

is:

f1/f2 = f1 −
lm(f1)

lm(f2)
· f2 (6.10)

Table 6.1. Matrix representation for polynomials.
a0 · b0 a0 a1 · b1 b1 1

f2 1 0 0 1 1
f1 0 1 1 0 1

Table 6.2. Matrix subtraction of polynomials.
a0 · b0 a0 a1 · b1 b1 1

f2 1 0 0 1 1
f2 − f1 1 1 1 1 0

76

In matrix representation, we create two rows, one each forf1 and lm(f1)
lm(f2)

· f2, and

then perform subtraction on the matrix; this is shown in Example 6.7.

Example 6.7 Given two polynomials:f1 = a0 · b1 + a0 + 1 andf2 = a0 + 1 with term

order lex:a0 > a1 > b0 > b1. Consider the polynomial reduction:

f1/f2 = f1 −
a0 · b1
a0

· f2 = f1 − b1 · f2

We create two rows in matrix forf1 and b1 · f2 and insert monomials fromf1 and

b1 · f2 into the matrix columns, as shown in Table 6.3.

Then, we conductf1 − b1 · f2, as shown in Table 6.4.

Finally, row 2 represents the reduction result off1/f2 = a0 + b1 + 1.

With the above basic polynomial operations formulated as matrix operations, we

now describe our algorithm to create the matrix of polynomials corresponding to our

verification instance (miter circuit). The algorithm is shown in Algorithm 7. The main

idea behind this algorithm is to set up the rows of the matrix (polynomials) in a way

that polynomial division can be subsequently performed by subtracting rowi from row

i− 1. In the algorithm, the computationL := L ∪ mon
lm(fk)

· fk in the while-loop actually

corresponds tolm(f1)
lm(f2)

· f2 in Equation 6.10.

To better understand the algorithm, we describe the matrix construction procedure

in Example 6.8.

Example 6.8 Suppose that two functionally equivalent circuits and the miter are rep-

resented by the following polynomials at bit-level (i.e., over F2).

Table 6.3. Matrix reduction for polynomials: representation.
a0 · b1 a0 b1 1

b1 · f2 1 0 1 0
f1 1 1 0 1

Table 6.4. Matrix reduction for polynomials: subtraction.
a0 · b1 a0 b1 1

b1 · f2 1 0 1 0
f1 − bf2 0 1 1 1

77

Algorithm 7: Generating the Matrix for Polynomial Reduction
Input : f, F = {f1, . . . , fs} with f1 > f2 > · · · > fs.

Output : A matrix representingf
f1,...,fs−−−−→+ r

/ * Let L be the set of polynomials corresponding to
rows of matrix * /;
L:={f} ;
/ * The index of polynomials in F * /;
i:=1;
/ * Let ML be the set of monomials * /;
ML:={ monomials of f} ;
mon:= theith monomial ofML;
while mon/∈ PrimaryInputs do

Identify fk ∈ F satisfying:lm(fk) can dividemon ;
/ * add new polynomial to L as a new row in matrix * /;
L := L ∪ mon

lm(fk)
· fk ;

/ * Add monomials to ML as new columns in matrix * /;
ML:=ML ∪ {monomials of mon

lm(fk)
· fk} ;

i := i+ 1;
mon:= theith monomial ofML;

end

Note thati0, . . . , i3 denote the primary inputs of the circuits. The circuit topology-

based monomial order is derived as lex withx > y > n0 > n2 > n10 > n7 > n6 >

n5 > n4 > n3 > i0 > i1 > i2 > i3. All polynomials above have already been sorted

(ordered) according to their leading terms in descending order. All monomials in each

polynomial are also ordered.

fm = x+ y + 1,

fo = x+ n0 + n2,

f1 = y + n10,

f2 = n0 + i2 · i3,

f3 = n2 + i0 · i1,

f4 = n10 + n7,

f5 = n7 + n6 + n4 · i0,

f6 = n6 + n5 + n3 · i1,

f7 = n5 + n4 · n3,

f8 = n4 + i1 + i3,

f9 = n3 + i0 + i2;

78

In this case,f = Spoly(fm, fo) = y + n0 + n2 + 1 andF = {f1, . . . , f9}. We want

to show the algorithm’s operation to construct a matrix for the reductionf
F−→+ r.

Initialization:

L := {f};

ML := {y, n0, n2, 1};

mon := y;

Iteration i = 1:

fk := f1 = y + n10;

L := {f, f1};

ML := {y, n0, n2, n10, 1};

i := 2;

mon := n0

Iteration i = 2:

fk := f2 = n0 + i2 · i3;

L := {f, f1, f2};

ML := {y, n0, n2, n10, i2 · i3, 1};

i := 3;

mon := n2

Iteration i = 3:

fk := f3 = n2 + i0 · i1;

L := {f, f1, f2, f3};

ML := {y, n0, n2, n10, i0 · i1, i2 · i3, 1};

i := 4;

mon := n10

Iteration i = 4:

79

fk := f4 = n10 + n7;

L := {f, f1, f2, f3, f4};

ML := {y, n0, n2, n10, n7, i0 · i1, i2 · i3, 1};

i := 5;

mon := n7

Iteration i = 5:

fk := f5 = n7 + n6 + n4 · i0;

L := {f, f1, f2, f3, f4, f5};

ML := {y, n0, n2, n10, n7, n6, n4 · i0, i0 · i1, i2 · i3, 1};

i := 6;

mon := n6

Iteration i = 6:

fk := f6 = n6 + n5 + n3 · i1;

L := {f, f1, f2, f3, f4, f5, f6};

ML := {y, n0, n2, n10, n7, n6, n5, n4 · i0, n3 · i1, i0 · i1, i2 · i3, 1};

i := 7;

mon := n5

Iteration i = 7:

fk := f7 = n5 + n4 · n3;

L := {f, f1, f2, f3, f4, f5, f6, f7};

ML := {y, n0, n2, n10, n7, n6, n5, n4 · n3, n4 · i0, n3 · i1, i0 · i1, i2 · i3, 1};

i := 8;

mon := n4 · n3

Iteration i = 8:

fk := f8 = n4 + i1 + i3;

L := {f, f1, f2, f3, f4, f5, f6, f7, n3 · f8};

ML := {y, n0, n2, n10, n7, n6, n5, n4 · n3, n4 · i0, n3 · i1, n3 · i3, i0 · i1, i2 · i3, 1};

i := 9;

mon := n4 · i0

80

Iteration i = 9:

fk := f8 = n4 + i1 + i3;

L := {f, f1, f2, f3, f4, f5, f6, f7, n3 · f8, i0 · f8};

ML := {y, n0, n2, n10, n7, n6, n5, n4 · n3, n4 · i0, n3 · i1, n3 · i3, i0 · i1,

i0 · i3, i2 · i3, 1};

i := 10;

mon := n3 · i1

Iteration i = 10:

fk := f9 = n3 + i0 + i2;

L := {f, f1, f2, f3, f4, f5, f6, f7, n3 · f8, i0 · f8, i1 · f9};

ML := {y, n0, n2, n10, n7, n6, n5, n4 · n3, n4 · i0, n3 · i1, n3 · i3, i0 · i1,

i0 · i3, i1 · i2, i2 · i3, 1};

i := 11;

mon := n3 · i3

Iteration i = 11:

fk := f9 = n3 + i0 + i2;

L := {f, f1, f2, f3, f4, f5, f6, f7, n3 · f8, i0 · f8, i1 · f9, i3 · f9};

ML := {y, n0, n2, n10, n7, n6, n5, n4 · n3, n4 · i0, n3 · i1, n3 · i3, i0 · i1,

i0 · i3, i1 · i2, i2 · i3, 1};

i := 12;

mon := i0 · i1

Termination: Becausei0 · i1 contains variables∈ PrimaryInputs only.

Each polynomial inL corresponds to a row in the matrix and each monomial

corresponds to a column. The generated matrix is shown in Table 6.5.

With the generated matrix, the polynomial reduction can be formulated as a series

of matrix subtractions, i.e.,Rowi − Rowi−1. After all row subtractions, the reduction

result corresponds to the polynomial represented in the last row.

Two important points to be noted:

81

Table 6.5. Matrix created for polynomial reduction for Example 6.8.
y n0 n2 n10 n7 n6 n5 n4 · n3 n4 · i0 n3 · i1 n3 · i3 i0 · i1 i0 · i3 i1 · i2 i2 · i3 1

f 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
f1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
f2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
f3 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
f4 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
f5 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
f6 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
f7 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

n3 · f8 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
i0 · f8 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0
i1 · f9 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
i3 · f9 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

82

• All subtractions are computed modulo2.

• If polynomialsfi andfi−1 have no common leading monomials, then they cannot

conduct a reduction. Correspondingly, in the matrix, when conductingRowi −
Rowi−1, if the first non-zero entries ofRowi and Rowi−1 are not in the same

column (leading monomials), then we move on to the next row andperform

Rowi+1 −Rowi−1.

This procedure is shown in Table 6.6 fori1 · f9 − i0 · f8: herelm(i1 · f9) = n4 · n3

while lm(i0 · f8) = n4 · i0. These leading monomials are not equal and they cannot

divide each other. Thus, we skip the current row (i1 · f9). Instead, we move to the next

row (i3 · f9) and computei3 · f9− i0 · f8. Finally, the last entry in Table 6.6 corresponds

to r = 1, and that denotes infeasibility of the miter circuit.

As shown in the above example, the polynomial reduction result r can be computed

by successively subtracting rowsi from rowsi+1. Finally, the last row representsr. If

the last row only contains the monomial1, the two circuits are equivalent. Otherwise,

the polynomial corresponding to the last row represents thebug polynomial.

6.4 Experimental Results
The above verification approach usingF4-style reduction has been implemented in

C + + as an efficient equivalence checking engine. Using this setup, we performed

experiments to verify equivalence between different finitefield multiplier implemen-

tations. Our experiments are conducted on a desktop with2.40GHz Intel Core(TM)2

Quad CPU and8GB memory running64-bit Linux.

6.4.1 Equivalence Checking of Structurally Similar Circuits

To evaluate the performance of structurally similar circuits, we conduct a equiv-

alence check between Mastrovito and Barrett multipliers. Asshown in Chapter 3,

Mastrovito and Barrett multipliers are somewhat structurally similar. Table 6.7 shows

the results of verifying Mastrovito multipliers against Barrett multipliers. SAT solvers,

ABC and CSAT can solve them reasonably fast. Singular can also verify these circuits

within a matter of seconds. However, since Singular has a limitation on the number of

variables it can accommodate (< 65535 variables), it cannot verify circuits larger than

96-bit circuits. The results also show that our approach is themost efficient in verifying

circuit equivalence over finite fields.

83

Table 6.6. Subtraction result of the matrix created for polynomial reduction.
y n0 n2 n10 n7 n6 n5 n4 · n3 n4 · i0 n3 · i1 n3 · i3 i0 · i1 i0 · i3 i1 · i2 i2 · i3 1

f 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
f1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
f2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1
f3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1
f4 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1
f5 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1
f6 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1
f7 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1

n3 · f8 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1
i0 · f8 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
i1 · f9 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

i3 · f9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

84

6.4.2 Equivalence Checking of Structurally Dissimilar Circuits

As the experiments in Table 5.1 depict, given two structurally dissimilar circuits

(such as a Mastrovito versus a Montogmery multiplier), noneof SAT, SMT, BDD and

AIG-based methods are able to verify the equivalence of circuits beyond16-bit. The

reason why ABC and CSAT are infeasible is that the structural hashing utilized by

ABC and CSAT is not beneficial for structurally dissimilar circuits. It is unable to

find common subcircuit nodes as they do not really exist. Without merging internal

subcircuit equivalences, these tools are unable to reduce the size of the verification

instance.

Our experiments perform verification between Montgomery multipliers on one hand,

and Mastrovito and Barrett multipliers on the other hand. Table 6.8 shows the runtimes

of equivalence verification of Barrett versus Montgomery multipliers. Table 6.9 shows

the runtimes for Mastrovito versus Montgomery multiplier verification. Singular can

only verify 64-bit multipliers because of the limit on the number of variables it im-

poses. In contrast, our approach can successfully verify upto 128-bit multipliers with

dissimilar structures. In the tables, note that the verification time for128-bit multipliers

is significantly less than that of96-bit ones. These experimental results are correct: we

reran the experiments and also checked the circuit designs for errors – no errors were

found. The reason for this anomaly may lie in the irreduciblepolynomials we selected

to construct the circuits.

6.5 Limitation of Our Approach
While our approach is efficient verifying modulo-arithmeticcircuits over finite fields

F2k , our approach cannot be applied to verify multiplier circuits over integers or over

the finite ringZ2k . This is due to the polynomial function representation of circuits over

integers. The polynomial representation of circuits over finite fields has a much simpler

form than that over integer rings. For example, circuits over finite fields are mainly

constructed byXORandANDgates which can be transformed into simple polynomials

(mod 2):

a ∧ b → a · b (mod 2)

a⊕ b → a+ b (mod 2)

However, circuits over finite integer rings involve a large number ofORgates which

are transformed into polynomials as:

85

Table 6.7. Verification of Mastrovito multiplier vs. Barrett multiplier. TO=10hrs.
⋆=Out of variable limitation. Time is given in seconds.

Size 8 16 32 64 96 128 163
#variables 412 1445 4587 18953 42576 110543 195124

#gates 1446 6846 25846 101401 227499 403036 653021
MiniSAT 0.02 0.27 0.36 1.60 17.54 5.10 28.97
PicoSAT 0.02 0.15 0.78 3.90 6.58 41.89 130.56
PrecoSAT 0.05 0.40 1.61 22.98 91.90 90.25 187.53

CryptoMiniSAT 0.07 0.82 1.31 4.75 16.81 128.22 42.78
ABC 0.12 1.07 0.82 2.79 5.72 9.79 18.67
CSAT 0.03 3.02 0.58 0.87 1.83 5.97 5.49

Singular 0.03 0.17 0.41 1.12 ⋆ ⋆ ⋆

Ours (correct design) 0.00 0.01 0.01 0.02 0.03 0.05 0.12
Ours (buggy design) 0.00 0.02 0.02 0.02 0.04 0.06 0.13

Table 6.8. Verification of Barrett multiplier vs. Montgomery multiplier.
TO=10hrs.⋆=Out of variable limitation. Time is given in seconds.

Size 8 16 32 64 96 128 163
#variables 942 3426 9478 40059 98452 197841 286357

#gates 1968 8784 23548 86017 188121 330528 528903
Singular 0.05 486.74 3210.30 ⋆ ⋆ ⋆ ⋆

Ours (correct design) 0.00 0.13 3.39 125.88 1407.86 59.18 TO
Ours (buggy design) 0.00 0.13 3.41 127.03 1435.14 59.86 TO

Table 6.9. Verification of Mastrovito multiplier vs. Montgomery multiplier. TO=10hrs.
Time is given in seconds.

Size 8 16 32 64 96 128 163
#variables 934 3387 9346 39654 99163 204972 294578

#gates 1958 8694 23318 86132 188526 331188 530278
Singular 0.05 446.83 3646.12 ⋆ ⋆ ⋆ ⋆

Ours (correct design) 0.00 0.12 3.29 126.01 1463.95 59.37 TO
Ours (buggy design) 0.00 0.13 3.31 127.45 1511.82 60.10 TO

86

a ∨ b → a+ b+ a · b (mod 2)

Polynomial representations forOR-dominated functions include more monomial terms

and also more occurrences of variables among the terms. Thiseventually results in

size-explosion of the intermediate (remainder) polynomials in the reduction. Therefore,

our approach becomes infeasible in verifying integer arithmetic circuits over ringsZ2k .

A conference paper that corresponds to the initial theoretical model for this problem was

published in [58] and a paper describing the efficient implementation of our approach

is under submission [59].

CHAPTER 7

VERIFICATION OF COMPOSITE FIELD

ARITHMETIC CIRCUITS

As an effort to reduce the high implementation costs, a methodology that designs

arithmetic circuits over a composite field is proposed [71],where the finite fieldF2k is

decomposed asF(2m)n, for ak = m·n, and the arithmetic operations are then performed

overF(2m)n . The decomposition introduces a hierarchy (modularity) inthe design by

lifting the ground field fromF2 (bits) toF2m (words). This results in impressive area

and delay savings over large finite fields [71] [72] [86].

The hierarchy of composite field circuits also introduces a challenge to verify such

problems: both word-level and bit-level information are contained in the designs, which

are not able to be solved by any contemporary technique.

This chapter addresses the implementation verification of such arithmetic circuits.

We formulate the verification problem as an (radical) ideal membership test at different

abstraction levels and then apply approaches presented in Chapter 5 to solve it, i.e.,

conducting a polynomial reduction.

Our approach is based on the known field decomposition information and the circuit

hierarchy. We utilize this information to:

• first verify the correctness of lower-level building-blocks (adders and multipliers)

over the ground fieldF2m ;

• then verify the overall function at the higher-level over the extension fieldF(2m)n .

Using our approach, we are able to prove the correctness of finite field circuits for

up to1024-bit with decompositionF(232)32 .

7.1 Circuit Designs over Composite Fields

The finite fieldF2k is a k-dimensional vector space over the subfieldF2. If k =

m · n, the fieldF2k can be decomposed asF(2m)n . Such a field representation is called a

88

composite field, and it is constructed as an-dimensional extension of the subfieldF2m .

The subfieldF2m is called the ground field. Note that we haveF2 ⊂ F2m ⊂ F(2m)n .

According to Theorem 3.1, there exists an unique field of sizepk. This implies

thatF2k is isomorphic toF(2m)n whenk = m · n, and due to this isomorphism, it is

possible to derive one field representation from the other. The principle of constructing

a composite field is described in [71]. Here we derive concrete steps for circuit design

purpose.

Definition 7.1 A primitive polynomial P (x) is a polynomial with coefficients inF2

which has a rootα ∈ F2k such that{0, 1, α, α2, · · · , α2k−2} is the set of all elements in

F2k , whereα is aprimitive element of F2k .

The only difference between primitive polynomials and irreducible polynomials is

whether they can generate all distinct elements of a finite field F2k . Primitive poly-

nomials can generate all elements with a primitive element of F2k while irreducible

polynomials cannot generate all elements ofF2k .

Recall that to construct a finite fieldF2k , we need a primitive polynomialP (x) ∈
F2[x] of degreek. Similarly, to constructF(2m)n , we require a primitive polynomial,

of degreen, with coefficients from the ground fieldF2m . GivenF2k andP (x), the

primitive polynomial of the composite field can be easily derived. We will use the

following notation:

• LetP (x) denote the given primitive polynomial of general fieldF2k , andα be the

primitive root, i.e.,P (α) = 0.

• Let Q(x) denote the primitive polynomial of ground fieldF2m , andβ be the

primitive root ofF2m , i.e.,Q(β) = 0. Note thatQ(x) is a degreem primitive

polynomial overF2 so it is also known.

• LetR(x) denote the primitive polynomial of composite fieldF(2m)n , andγ be the

primitive root, i.e.,R(γ) = 0. This polynomialR(x) has to be derived.

Lemma 7.1 From [86]: Let F2k be decomposed asF(2m)n wherek = m · n. Letγ be

the primitive root of the fieldF(2m)n . Then

R(x) =
i=n−1
∏

i=0

(xi + γ2m·i

) (7.1)

89

SinceF2k is isomorphic toF(2m)n, α andγ are actually the same elements. Now, let

us consider the representation of an elementA in F2k and its corresponding representa-

tion in the composite field.

• Any elementA ∈ F2k is represented as:

A =
i=k−1
∑

i=0

ai · αi, ai ∈ F2, andP (α) = 0 (7.2)

• The same elementA ∈ F(2m)n is represented as:

A =
i=n−1
∑

i=0

Ai · γi, Ai ∈ F2m , andR(γ) = 0 (7.3)

• Now, we have to represent the elementAi from above in the ground fieldF2m :

Ai =

j=m−1
∑

j=0

aij · βj, aij ∈ F2, andQ(β) = 0 (7.4)

Now, we need to find the relationship between the primitive roots α and β (or

betweenγ andβ, sinceα = γ), so as to be able to map the elements fromF2k to

F(2m)n . We have the following result [86]:

Theorem 7.1 For γ ∈ F(2m)n , andβ = γω, whereω = (2m·n − 1)/(2m − 1), then we

haveβ ∈ F2m . In other words:

β = α(2m·n−1)/(2m−1) = γ(2m·n−1)/(2m−1) (7.5)

The above result states the following: Sinceγ is a primitive root, it can be used

to generate all the non-zero elements ofF(2m)n . Moreover,β is a primitive root of the

ground fieldF2m , which is a subfield ofF(2m)n (i.e., F2m ⊂ F(2m)n); soβ ∈ F(2m)n .

Therefore, an exponent ofγ can be used to generateβ asβ = γω, whereω is given in

Theorem 7.1. Now, we know all the relationships betweenα, β, γ, and we are ready to

perform the decomposition.

Example 7.1 As an example, let us reconsider the fieldF24 and decompose it asF(22)2 .

LetP (x) = x4 + x3 + 1 andP (α) = 0. We need to perform the following steps:

90

1. Derivation ofR(x):

R(x) =
i=1
∏

i=0

(x+ γ22·i)

= (x+ γ) · (x+ γ22)

= x2 + (γ4 + γ) · x+ γ5

Notice thatR(γ) = γ2 + (γ4 + γ) · γ + γ5 = 0.

2. Representation of elementA ∈ F(22)2 :

A =
i=1
∑

i=0

Ai · γi, Ai ∈ F22

= A0 + A1 · γ

3. Representation ofA0, A1 in F2m :

A0 = a00 + a01 · β

A1 = a10 + a11 · β

whereaij ∈ F2. Q(x) can be any degreem = 2 primitive polynomial in the

ground fieldF22 . Let us takeQ(x) = x2 + x+ 1.

4. Now, we can substituteA0, A1 intoA as follows:

A =
i=1
∑

i=0

(

j=1
∑

j=0

aij · βj) · γi

= a00 + a01 · β + (a10 + a11 · β) · γ

where eachaij ∈ F2. From Eqn. (7.5), we have:β = α5 = γ5. We then substitute

β andγ with α to obtain:

A =
i=1
∑

i=0

(

j=1
∑

j=0

aij · βj) · γi

= a00 + a01 · α5 + (a10 + a11 · α5) · α

SinceP (x) = x4 + x3 + 1 with P (α) = 0, we have

A (mod P (α)) = a00+a01+a11+(a01+a10+a11)·α+a11 ·α2+(a01+a11)·α3

5. The same elementA ∈ F24 is represented as:

A = a0 + a1 · α + a2 · α2 + a3 · α3

91

6. Since Eqns. 7.6 and 7.6 represent the same element, we can match the coefficients

of the the polynomials to obtain:

a0 = a00 + a01 + a11

a1 = a01 + a10 + a11

a2 = a11

a3 = a01 + a11

This mapping can also be reversed and represented as a matrixT :

a00
a01
a10
a11

=

1 0 0 1
0 0 1 1
0 1 0 1
0 0 1 0

a0
a1
a2
a3

Now, we have successfully derived the composite field representation F(22)2 from

F24 . The elementA ∈ F24 is represented asA = a0 + a1α + a2α
2 + a3α

3, where

P (α) = 0. The same elementA is represented inF(22)2 as:

A = A0 + A1 · α

A0 = a00 + a01 · α5

A1 = a10 + a11 · α5

a00 = a0 + a3

a01 = a2 + a3

a10 = a1 + a3

a11 = a2

In the above equations,α = γ andR(γ) = 0.

Multiplication A · B (mod P (x)) over F24 can now be performed over the de-

compositionF(22)2 , whereA = A0 + A1γ,B = B0 + B1γ and the modulus is taken

overR(γ). Such a design is shown in Figure 7.1, wherea0, a1, a2, a3, b0, b1, b2, b3 are

primary inputs. After a suitable transformation,composite fieldinputs are obtained

asa00, a01, a10, a11, b00, b01, b10, b11. A0, A1, B0, B1 are2-bit buses. Correspondingly,

each block in Figure 7.1 internally represents a2-bit operation: × represents2-bit

multiplication and+ represents2-bit addition over the ground field. A logic circuit

for a4-bit Mastrovitomultiplier overfinite fieldF24 is illustrated in Figure 7.2.

92

(10)

(10)

+

+

+

transfor-

mation

transfor-

mation

a
�

a
�

a
�

a
�

b
�

b
�

b
�

b
�

a
��

a
��

a
��

a
��

b
��

b
��

b
��

b
��

A
�

A
�

B
�

B
�

Z
�

Z
�

a�

a�

b �

b �

c
�

c
�

c
�

c
�

r �

�

�

a�

a�

b �

b �

�

�

Figure 7.1. Mastrovito multiplier overF(22)2

93

a0

b0

a2

a1

b1

b2

b3

3a

z1

z2

a0

b0

a2

a1

b1

b2

b3

3a

z3

a0

b0a2

b1

b2

b3

3a

z0

a0

a1

b1

b0

a1

a2

b2

3a

b3

b3

3a

Figure 7.2. Mastrovito multiplier overF24 .

Its corresponding composite field design with decomposition F(22)2 is shown in

Figure 7.1. Each block in Figure 7.1 represents a2-bit operation internally, where×
represents anm-bit multiplier and+ represents anm-bit adder.

7.2 Problem Formulation and Hierarchy Verification

Let us again take the multiplier verification problem as example. Thespecifica-

tion S = A · B (mod P (x)) is already given in polynomial form (word-level). The

implementationis available at two different abstraction levels: one at thebit-level

(ground fieldF2m adders and multipliers) and one at the higher-level atF(2m)n . Using

this information, we derive constraints (polynomials)Z corresponding to the circuit.

Our verification problem is to prove/disprove that for all values of the inputsA =

{a0, . . . ak−1}, B = {b0, . . . bk−1}, the circuit implementationZ correctly computes

the multiplicationS.

As we can notice from Figure 7.1, the entire composite field circuit is constructed

on lower-level building-blocks (adders and multipliers).Therefore, we have two verifi-

cation objectives: low-level circuits and higher-level interconnection of the lower-level

blocks.

94

Verification of Low-Level Circuits over F2m :

Low-level building-blocks consist of adders and multipliers overF2m . These circuits

are implemented at gate-level and are nothing special as theregular finite field circuits

we verified before. Therefore, we can simply employ the same methods described

in Chapter 5 to formulate the verification test as membership testing of the property

polynomial (S+Z = 0). When the correctness of low-level circuits is certified, wecan

conduct the high-level verification overF(2m)n .

Verification of Higher-Level Interconnection over F(2m)n: The difficulty of veri-

fying the composite field circuits lies in the verification ofhigh-level interconnection of

low-level building-blocks. Specifically, due to the presence of hierarchy of composite

field circuits, the constraints derived from the high-levelinterconnection contain both

gate-level and word-level abstractions. For example, in Figure 7.1, the circuit hierarchy

can be described as follows:

a00 = a0 + a3

a01 = a2 + a3

a10 = a1 + a3

a11 = a2

A0 = a00 + a01 · α5

A1 = a10 + a11 · α5

b00 = b0 + b3

b01 = b2 + b3

b10 = b1 + b3

b11 = b2

B0 = b00 + b01 · α5

B1 = b10 + b11 · α5

C0 = A0 ·B1

C1 = A1 ·B0

C2 = A0 ·B0

C3 = A1 ·B1

C4 = C0 + C1

95

C5 = C3 · α5

C6 = C3 · α5

Z0 = C4 + C5

Z1 = C2 + C6

wherea0, . . . , a3, b0, . . . , b3 are variables inF2 (bits) whileA0, A1, B0, B1, C1, . . . , C6,

Z0, Z1 are variables inF22 (words). Therefore, bit-level variables and word-level vari-

ables co-exist in the design. As far as we know, there are no techniques that can verify

design with different levels of abstraction. This is mainlybecause BDD/SAT/AIG-

based approaches can only handle bit-level problems. SMT solvers, on the other hand,

have no advantages to solve problems at bit-level. Besides, SMT solvers formulate

every problem over rings instead of finite fields. Take Equation 7.6 for example;C0 =

A0 · B1 represents a2-bit finite field multiplication. In SMT,C0 = A0 · B1 represents

a2-bit integer multiplication. As we know, the multiplication over rings and over finite

fields differs significantly.

Fortunately, due to the fact that both bits and words information can be formulated

as polynomials, this verification problem is algebraic in nature and therefore, can be

easily formulated as a system of polynomials and solved by ideal membership testing,

which is described in Algorithm 5.

Example 7.2 Our high-level verification problem is illustrated in Table7.1. LetF

denote all the polynomials representing implementation, specification and vanishing

polynomials. LetF0 denote the vanishing polynomials for primary inputs. Afterall the

polynomials in{F} are available, we just need to check whetherS +Z is a member of

the ideal〈F, F0〉.

7.3 Experimental Results

With the approach presented above, we have conducted experiments to hierarchi-

cally verify Mastrovito multiplier implementationsM against the specificationS =

A · B (mod P (x)). Our verification setup is shown in Table 7.1. The implementation

is given as a circuit overF(2m)n . With the given hierarchy information, we construct the

polynomials representing high-level designsMH overF(2m)n and low-level designsML

overF2m separately.

96

Table 7.1. Verification setup overF(22)2

implementation specification vanishing polynomials
a00 + a0 + a3 A+ a0 + a1 · α + a2 · α2 + a3 · α3 a20 − a0
a01 + a2 + a3 B + b0 + b1 · α + b2 · α2 + b3 · α3 a21 − a1
a10 + a1 + a3 S + A× B a22 − a2

a11 + a2 a23 − a3
A0 + a00 + a01 · x5 b20 − b0
A1 + a10 + a11 · x5 b21 − b1

b00 + b0 + b3 b22 − b2
b01 + b2 + b3 b23 − b3
b10 + b1 + b3

b11 + b2
B0 + b00 + b01 · x5

B1 + b10 + b11 · x5

C0 + A0 ·B0

C1 + A1 ·B0

s2 + A1 ·B1

C3 + A1 ·B1

C4 + C0 + C1

C5 + C3 · α5

C6 + C3 · α5

Z0 + C4 + C5

Z1 + C2 + C6

Z + Z0 + Z1 · α
Property:Z+ S

For high-level designsMH , the specification polynomialS = A · B (mod P (x))

is used. In contrast, for low-level designsML overF2m , the specification polynomial

SL = Am · Bm (mod Q(x)) is used, of whichAm, Bm represents them-bit inputs

for low-level building-block circuits;Q(x) is the primitive polynomial ofF2m . Then

vanishing polynomialsa20 − a0, . . . , a
2
k−1 − ak−1, b

2
0 − b0, b

2
k−1 − bk−1 are appended to

MH andML at different levels of design. We use Singular [28] to conduct polynomial

reduction. When the circuits are correctly designed, we do observe that the reduction

result is0, proving the equivalence.

Our experiments are conducted on a desktop with2.40GHz CPU and8GB memory

running64-bit Linux. The time-out limit is set as24 hours.

The verification of low-level circuits is the same as the one shown in Table 5.3.

The number of low-level design units is shown in Table 7.2. Note that this number is

determined byn, which meansF(2m1)n andF(2m2)n have the same number of low-level

design units, even ifm1 6= m2.

97

Since high-level verification cannot be solved by any other technique, we only

show the results of our approach. Table 7.3 shows the runtimeof high-level designs

verification overF(2m)n for varying word-sizek = m · n. As shown in Table 7.3,

with our approach, we are able to prove the correctness of finite field circuits for up to

1024-bit with decompositionF(232)32 .

7.4 Conclusions

This chapter has targeted the implementation verification of hierarchically designed

composite finite field circuits. Decomposing the finite fieldF2k asF(2m)n introduces a

hierarchical abstraction. Our approach requires that thishierarchy information be made

available. Then, we formulate the verification problem using the polynomial reduction

as a ideal membership testing at different levels of abstraction. First we verify low-level

adders and multipliers atF2m , and then verify the high-level interconnections between

these blocks atF(2m)n . Using our approach, we can verify the correctness of up to

1024-bit multipliers where other contemporary techniquesare not capable of verifying

such circuits. This work was presented in [56].

98

Table 7.2. Statistics of designs overF2m .
n 2 4 8 16 32

#Multipliers 6 36 168 720 2976
#Adders 3 27 147 675 2883

Table 7.3. Verification of Mastrovito multiplier overF(2m)n using proposed approach. All times are given in seconds.
32 64 128 256 512 1024

m n time m n time m n time m n time m n time m n time
2 16 7.55 2 32 879.83 2 64 ∗ 2 128 ∗ 2 256 ∗ 2 512 ∗
4 8 0.12 4 16 10.81 4 32 1619.51 4 64 ∗ 4 128 ∗ 4 256 ∗
8 4 0.01 8 8 0.46 8 16 35.04 8 32 2664.56 8 64 ∗ 8 128 ∗
16 2 0.01 16 4 0.15 16 8 3.25 16 16 147.84 16 32 11510 16 64 ∗
- - - 32 2 0.11 32 4 2.14 32 8 37.71 32 16 1166.10 32 32 75336

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation presents approaches to performing equivalence checking for arith-

metic circuits over finite fieldsF2k . In particular, we target two specific problems: i) ver-

ifying the correctness of a custom-designed arithmetic circuit implementation against

a given word-level polynomial specification overF2k ; and ii) gate-level equivalence

checking of two structurally dissimilar arithmetic circuits. We propose polynomial ab-

stractions over finite fields to model and represent the circuit constraints. Subsequently,

decision procedures based on modern computer algebra techniques – notably Gr̈obner

bases-related theory and technology – are engineered to solve the verification problem

efficiently.

8.1 Computer Algebra-Based Approaches for Equivalence

Checking of Arithmetic Circuit over F2k

The arithmetic circuit is modeled as a polynomial system in the ringF2k [x1, x2, · · · ,
xd], and computer algebra- and algebraic geometry-based results (Hilbert’s Nullstellen-

satz) over finite fields are exploited for verification. Two formulations are presented to

address the implementation verification and the equivalence checking problems.

Using the results of Strong Nullstellensatz over finite fields, the first verification

problem is formulated as an ideal membership testing. For this ideal membership test,

it is required to compute a Gröbner basis. The Gröbner basis computation is known

to have double-exponential worst-case complexity in the input data, which makes this

approach impractical. Therefore, straight-forward use ofGröbner basis engines for

verification is infeasible for large circuits. To overcome this complexity, we analyze the

given circuit topology to get more theoretical insights into the polynomial ideals corre-

sponding to the circuit constraints. Based on this circuit information, we derive efficient

term orderings to represent the polynomials. Subsequently, using the theory of Gröbner

100

bases over finite fields, we prove that our term orderings render the set of polynomials

itself a Gr̈obner basis – thus obviating the need for Buchberger’s algorithm. To fulfill

our verification purpose, we simply conduct a polynomial reduction to test whether the

equality property is a member of the ideal representing the circuit constraints.

The equivalence checking for two structurally dissimilar arithmetic circuits is still

a challenge for contemporary techniques. By utilizing computer algebra theory, we

formulate this problem as a Weak Nullstellensatz proof using Gröbner bases computa-

tion. Once again, this would require the computation of a reduced Gr̈obner basis, which

is expensive for large circuits. To overcome this complexity, we want to exploit our

circuit-based term ordering for polynomial representation. Unfortunately, unlike in the

previous case, the set of polynomials corresponding to thisverification instance does

not constitute a Gr̈obner basis. Instead of computing a Gröbner basis for the the whole

circuit, we identify a minimal number of S-polynomial computations that are sufficient

to prove equivalence or to detect bugs for the whole circuit.

The verification of composite field circuits is a successful application of our com-

puter algebra-based approaches. To construct a composite field circuit overF(2m)n , the

finite fieldF2k is decomposed asF(2m)n , for ak = m · n, and the arithmetic operations

are then performed overF(2m)n. The decomposition introduces a hierarchy (modularity)

in the design by lifting the ground field fromF2 (bits) toF2m (words). We formulate

the verification problem as an (radical) ideal membership test at different abstraction

levels. By combining the circuit hierarchy information, we first verify the correctness

of lower-level building-blocks (adders and multipliers) over the ground fieldF2m , then

we verify the overall arithmetic at the higher-level over the extension fieldF(2m)n .

8.2 Future Work

The approaches and theories presented in this dissertationcan be further extended

to enhance the efficiency of equivalence checking of arithmetic circuits. Some future

research directions are proposed here.

8.2.1 Speeding up Verification Using a Graphics Processing Unit

As shown in Figure 6.2, the equivalence of “CIRCUIT1” and “CIRCUIT2” is for-

mulated as a single miter at word-level. However, since the circuits have multiple

101

outputs (k), we can createk miters for each output bit. In such cases, we will have

to computeSpoly(fm, fo)
F,F0−→+ r for each of thek outputs, and check ifr = 1 in

each case. These are going to ben independent computations. In that regard, they will

immensely benefit from parallelization.

It is desirable to implement this technique on a hardware accelerator - particularly

on a NVIDIA Graphics Processing Unit (GPU). In the Electronic Design Automation

(EDA) community, there has been a lot of interest in exploiting GPU computing to im-

prove synthesis and verification algorithms. Significant speed-ups have been observed

in GPU implementation of circuit simulation algorithms (see for example [35]). It is

needed to further study how to efficiently implement our circuit verification problem

using independentS-polynomial reductions on a general purpose GPU.

8.2.2 Extraction of Circuit Abstraction

Suppose that we are given a circuit that implements a polynomial function over

F2k → F2k , but we do not know what function it implements. Can we identify a

polynomial representation of this function:f(X, Y) whereX represents the input

bit-vector andY the output? This problem is one of hierarchy abstraction andis used

in component matching and resource allocation in high-level synthesis.

To explain this idea, let us revisit the example of Figure 5.2, a 2-bit multiplier. It

implements a polynomial functionZ = A∗B; Z,A,B ∈ F22 . HereA = a0+a1α,B =

b0 + b1α,Z = z0 + z1α. Let us represent a polynomial for each gate in the circuit.

We will impose the following term order:lex term order with “circuit Variables”>

“Inputs, A, B” > “Output Z”. That is, we use lex term order withc0 > c1 > c2 > c3 >

r0 > a0 > a1 > b0 > b1 > z0 > z1 > A > B > Z. If we use this order to compute a

Gröbner basis of the circuit polynomials, then we obtain the following polynomials:

f1 : z0 + z1α + Z

f2 : b0 + b1α + B

f3 : a0 + a1α + A

f4 : c3 + r0 + z1

f5 : c1 + c2 + r0

102

f6 : c0 + c3 + z0

f7 : A ·B + Z

f8 : a1 · b1 + a1 ·B + b1 · A+ z1

f9 : r0 + a1 · b1 + z1

f10 : c2 + a1 · b0

Notice that the polynomialf7 : A ∗ B + Z is indeed the polynomial representation of

the function implemented by the circuit. And we were able to “extract” the polynomial

representation using Gröbner basis.

Polynomial interpolation techniques for this problem werestudied in [80] [81]. Fur-

ther research should be conducted to investigate if we can use Gr̈obner basis techniques

to efficiently interpolate a polynomial representation from a circuit.

8.2.3 Simulation-Based Verification of Circuits

In our group’s previous work [78] [77], we show that given twopolynomial func-

tionsf, g overZ2k , exhaustive simulation is not always necessary to prove their equiv-

alence. We identified an integerλ such that functions (polynomials)f, g need to be

evaluated only forλ inputs vectors:{V1, . . . , Vλ}. If f = g for theseλ vectors, then

f = g over the entire design space. Iff 6= g, then we guarantee to catch the bug within

theseλ vectors. In practice,λ << 2k.

Unfortunately, this result did not find much practical application as it required

that f, g be polynomial functions. Not every function (circuit)f : Z2k → Z2k is a

polynomial function. Instead of modeling ak-input/output circuit as a function from

f : Z2k → Z2k , we conjecture the model can be viewed as a polynomial function

over finite fieldsf : F2k → F2k . This way, we can then prove equivalence of two

polyfunctionsf, g : F2k → F2k without resorting to exhaustive simulation. It is

promising to solve the same problem as in [78] [77], but now over a different domain:

F2k .

REFERENCES

[1] SimplifyingSTP, SMT-COMP2010.http://www.smtcomp.org/2010 .

[2] Sonolar, SMT-COMP2010.http://www.smtcomp.org/2010 .

[3] A DAMS, W. W., AND LOUSTAUNAU, P. An Introduction to Gr̈obner Bases.

American Mathematical Society, 1994.

[4] AVRUNIN , G. Symbolic Model Checking using Algebraic Geometry. InCom-

puter Aided Verification Conference(1996), pp. 26–37.

[5] BAHAR , I., FROHM, E. A., GAONA , C. M., HACHTEL, G. D., MACII , E.,

PARDO, A., AND SOMENZI, F. Algebraic Decision Diagrams and their Applica-

tions. InProceedings of the IEEE/ACM International Conference on Computer-

Aided Design(Nov. 93), pp. 188–191.

[6] BARRETT, C., AND TINELLI , C. CVC3. In Computer Aided Verification

Conference(July 2007), Springer, pp. 298–302.

[7] BARRETT, P. Implementing the Rivest Shamir and Adleman Public Key En-

cryption Algorithm on a Standard Digital Signal Processor.In Proceedings of

Advances In Cryptology(London, UK, UK, 1987), Springer-Verlag, pp. 311–323.

[8] B IERE, A. Picosat Essentials.Journal on Satisfiability, Boolean Modeling and

Computation (JSAT) 4(2008), 75–97.

[9] B IERE, A. SAT 2009 Competition.

[10] BIHAM , E., CARMELI , Y., AND SHAMIR , A. Bug Attacks. InProceedings on

Advances in Cryptology(2008), pp. 221–240.

[11] BRAYTON, R., AND M ISHCHENKO, A. ABC: An Academic Industrial-Strength

Verification Tool. InComputer Aided Verification(2010), vol. 6174, Springer,

pp. 24–40.

104

[12] BRAYTON, R. K., HACHTEL, G. D., SANGIOVANNI -VENCENTELLI, A.,

SOMENZI, F., AZIZ , A., CHENG, S.-T., EDWARDS, S., KHATRI , S., KUKI -

MOTO, Y., PARDO, A., QADEER, S., RANJAN, R., SARWARY, S., SHIPLE,

S. SWAMY, G., AND V ILLA , T. VIS: A System for Verification and Synthesis.

In Computer Aided Verification(1996).

[13] BRUMMAYER , R., AND BIERE, A. Boolector: An Efficient SMT Solver for

Bit-Vectors and Arrays. InTACAS 09, Volume 5505 of LNCS(2009), Springer.

[14] BRUTTOMESSO, R., CIMATTI , A., FRANZEN, A., GRIGGIO, A., AND SE-

BASTIANI , R. The MathSAT 4 SMT Solver. InComputer Aided Verification

Conference(2008), vol. 5123, Springer.

[15] BRYANT, R. E. Graph Based Algorithms for Boolean Function Manipulation.

IEEE Transactions on Computers C-35(August 1986), 677–691.

[16] BRYANT, R. E., AND CHEN, Y.-A. Verification of Arithmetic Functions with

Binary Moment Diagrams. InProceedings of Design Automation Conference

(1995), pp. 535–541.

[17] BUCHBERGER, B. Ein Algorithmus zum Auffinden der Basiselemente des Restk-

lassenringes nach einem Nulldimensionalen Polynomideal. PhD thesis, Univer-

sity of Innsbruck, 1965.

[18] BUCHBERGER, B. A Criterion for Detecting Unnecessary Reductions in the

Construction of a Groebner Bases. InEUROSAM(1979).

[19] CIESIELSKI, M., KALLA , P., ZHENG, Z., AND ROUZYERE, B. Taylor Expan-

sion Diagrams: A New Representation For RTL Verification. InIEEE Interna-

tional High Level Design Validation and Test Workshop(Nov. 2001), pp. 70–75.

[20] CIESIELSKI, M., KALLA , P., ZHENG, Z., AND ROUZYERE, B. Taylor Ex-

pansion Diagrams: A Compact Canonical Representation with Applications to

Symbolic Verification. InIEEE Design, Automation and Test in Europe(2002),

pp. 285–289.

[21] CLARKE , E., GRUMBERG, O., AND PELED, D. The Temporal Logic of Reactive

and Concurrent Systems. The MIT Press, 1999.

105

[22] CLARKE , E. M., FUJITA, M., AND ZHAO, X. Hybrid Decision Diagrams - Over-

coming the Limitation of MTBDDs and BMDs. InProceedings of the IEEE/ACM

International Conference on Computer-Aided Design(1995), pp. 159–163.

[23] CLEGG, M., EDMONDS, J., AND IMPAGLIAZZO , R. Using the Gr̈obner Basis

Algorithm to Find Proofs of Unsatisfiability. InACM Symposium on Theory of

Computing(1996), pp. 174–183.

[24] CONDRAT, C., AND KALLA , P. A Gr̈obner Basis Approach to CNF Formulae

Preprocessing. InInternational Conference on Tools and Algorithms for the

Construction and Analysis of Systems(2007), pp. 618–631.

[25] COX, D., LITTLE , J., AND O’SHEA, D. Ideals, Varieties, and Algorithms: An

Introduction to Computational Algebraic Geometry and Commutative Algebra.

Springer, 2007.

[26] DAVIS , M., LOGEMANN, G., AND LOVELAND , D. A Machine Program for

Theorem Proving. InCommunications of the ACM(1962), vol. 5, pp. 394–397.

[27] DAVIS , M., AND PUTNAM , H. A Computing Procedure for Quantification

Theory.Journal of the ACM 7(1960), 201–215.

[28] DECKER, W., GREUEL, G.-M., PFISTER, G., AND SCHÖNEMANN, H. Sin-

gular 3-1-3 — A Computer Algebra System for Polynomial Computations.

http://www.singular.uni-kl.de.

[29] DRECHSLER, R., SARABI , A., THEOBALD, M., BECKER, B., AND

PERKOWSKI, M. Efficient Representation and Manipulation of Switching Func-

tions based on Ordered Kronecker Functional Decision Diagrams. InDesign

Automation Conference(1994), pp. 415–419.

[30] DRESCHLER, R., BECKER, B., AND RUPPERTZ, S. The K*BMD: A Verification

Data Structure.IEEE Design & Test of Computers 14, 2 (1997), 51–59.

[31] DUTERTRE, B., AND MOURA, L. The Yices SMT Solver. Tech. rep., 2006.

[32] EEN, N., AND SRENSSON, N. An Extensible SAT-Solver.Theory And Applica-

tions of Satisfiability Testing 2919(2004), 333–336.

106

[33] EMERSON, E. A. Temporal and Modal Logic. InFormal Models and Semantics,

vol. B of Handbook of Theoretical Computer Science. Elsevier Science, 1990,

pp. 996–1072.

[34] FAUGÈRE, J. C. A New Efficient Algorithm for Computing Gröbner Bases (F4).

Journal of Pure and Applied Algebra 139(June 1999), 61–88.

[35] FENG, Z., ZENG, Z., AND L I , P. Parallel On-Chip Power Distribution Network

Analysis on Multicore GPU Platforms.IEEE Transactions VLSI(2011).

[36] GAO, S. Counting Zeros over Finite Fields with Gröbner Bases. Master’s thesis,

Carnegie Mellon University, 2009.

[37] GUPTA, A. Formal Hardware Verification Methods: A Survey.Formal Methods

in System Design 1(1992), 151–238.

[38] HANKERSON, D., HERNANDEZ, J., AND MENEZES, A. Software Implementa-

tion of Elliptic Curve Cryptography over Binary Fields, 2000.

[39] HILBERT, D. Über die Theorie der Algebraischen Formen.Math. Annalen 36

(1890), 473–534.

[40] HOLZMANN , G. J. The SPIN Model Checker: Primer and Reference Manual,

First ed. Addison-Wesley Professional, September 2003.

[41] HORETH, S., AND DRECHSLER. Formal Verification of Word-Level Specifica-

tions. InIEEE Design, Automation and Test in Europe(1999), pp. 52–58.

[42] JABIR , A., AND D., P. MODD: A New Decision Diagram and Representation

for Multiple Output Binary Functions. InIEEE Design, Automation and Test in

Europe(2004).

[43] JHA , S., LIMAYE , R., AND SESHIA, S. Beaver: Engineering An Efficient SMT

Solver for Bit-Vector Arithmetic. InComputer Aided Verification Conference

(2009), pp. 668–674.

[44] KALLA , P. An Infrastructure for RTL Validation and Verification. PhD thesis,

University of Massachusetts Amherst, 2002.

107

[45] KALLA , P., CIESIELSKI, M., AND BOUTILLON , E. High-Level Design Verifica-

tion using Taylor Expansion Diagrams: First Results. InIEEE International High

Level Design Validation and Test Workshop(2002), pp. 13–17.

[46] KNEŽEVIĆ, M., SAKIYAMA , K., FAN , J., AND VERBAUWHEDE, I. Modular

Reduction in GF(2n) Without Pre-Computational Phase. InProceedings of the

International Workshop on Arithmetic of Finite Fields(2008), pp. 77–87.

[47] KOBAYASHI , K. Studies on Hardware Assisted Implementation of Arithmetic

Operations in Galois Field. PhD thesis, Nagoya University, Japan, 2009.

[48] KOC, C., AND ACAR, T. Montgomery Multiplication in GF(2k). Designs, Codes

and Cryptography 14, 1 (Apr. 1998), 57–69.

[49] KUEHLMANN , A., PARUTHI , V., KROHM, F., AND GANAI , M. K. Robust

Boolean Reasoning for Equivalence Checking and Functional Property Verifica-

tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 21, 12 (Nov. 2006), 1377–1394.

[50] LEE, Y., SAKIYAMA , K., BATINA , L., AND VERBAUWHEDE, I. Elliptic-Curve-

Based Security Processor for RFID.IEEE Transactions on Computers 57, 11

(Nov. 2008), 1514–1527.

[51] L IDL , R., AND NIEDERREITER, H. Finite Fields. Cambridge University Press,

1997.

[52] LOPEZ, J., DAHAB , R., AND DAHAB , R. Improved Algorithms for Elliptic

Curve Arithmetic in GF(2n). In Proceedings of the Selected Areas in Cryptog-

raphy(London, UK, 1998), Springer-Verlag, pp. 201–212.

[53] LU, F., WANG, L., CHENG, K., AND HUANG, R. A Circuit SAT Solver With

Signal Correlation Guided Learning. InIEEE Design, Automation and Test in

Europe(2003), pp. 892–897.

[54] LU, F., WANG, L., CHENG, K., MOONDANOS, J., AND HANNA , Z. A Signal

Correlation Guided ATPG Solver And Its Applications For Solving Difficult

Industrial Cases. InDesign Automation Conference(2003), pp. 436–441.

108

[55] LV, J. SAT and SMT benchmarks.http://ece.utah.edu/ ˜ lv/uugb.

html .

[56] LV, J., KALLA , P., AND ENESCU, F. Verification of Composite Galois Field

Multipliers over GF((2m)n) using Computer Algebra Techniques. InIEEE High-

Level Design Validation and Test Workshop(2011), pp. 136–143.

[57] LV, J., KALLA , P., AND ENESCU, F. Efficient Groebner Basis Reductions for

Formal Verification of Galois Field Multipliers. InIEEE Design, Automation and

Test in Europe(2012).

[58] LV, J., KALLA , P., AND ENESCU, F. Formal Verification of Galois Field

Multipliers using Computer Algebra. In25th IEEE International Conference on

VLSI Design(2012).

[59] LV, J., KALLA , P., AND ENESCU, F. Scalable Equivalence Checking of Finite

Field Arithmetic Circuits using Gr̈oner Bases and F-4 Style Reduction. InIEEE

Design Automation and Test in Europe, in submission(2013).

[60] MANNA , Z., AND PNUELI , A. The Temporal Logic of Reactive and Concurrent

Systems, First ed. Springer-Verlag, 1991.

[61] MASTROVITO, E. VLSI Designs for Multiplication Over Finite Fields GF(2m).

Lecture Notes in Computer Science 357(1989), 297–309.

[62] MCELIECE, R. J. Finite Fields for Computer Scientists and Engineers. Kluwer

Academic Publishers, 1987.

[63] MCM ILLAN , K. L. Symbolic Model Checking. Kluwer Academic Publishers,

1993.

[64] M ILLER , V. Use of Elliptic Curves in Cryptography. InLecture Notes in

Computer Sciences(New York, NY, USA, 1986), Springer-Verlag New York, Inc.,

pp. 417–426.

[65] MONTGOMERY, P. Modular Multiplication Without Trial Division.Mathematics

of Computation 44, 170 (Apr. 1985), 519–521.

109

[66] MORIOKA, S.,AND KATAYAMA , Y. Design Methodology for A One-Shot Reed-

Solomon Encoder and Decoder. InIEEE International Conference on Computer

Design(1999), pp. 60–67.

[67] MORIOKA, S., KATAYAMA , Y., AND YAMANE , T. Towards Efficient Verifi-

cation of Arithmetic Algorithms Over Galois FieldsGF (2m). Computer Aided

Verification Conference 2102(2001), 465–477.

[68] MOURA, L., AND BJRNER, N. Z3: An Efficient SMT Solver. InTInternational

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(2008), vol. 4963, Springer.

[69] MUKHOPADHYAYA , D., SENGAR, G., AND CHOWDHURY, D. Hierarchical

Verification of Galois Field Circuits.IEEE Transactions on CAD(2007).

[70] NARAYAN , A., JAIN , J., FUJITA, M., AND SANGIOVANNI -V INCENTELLI , A.

Partitioned ROBDDs: A Compact Canonical and Efficient Representation for

Boolean Functions. InProceedings of the IEEE/ACM International Conference

on Computer-Aided Design(1996), pp. 547–554.

[71] PAAR , C. Efficient VLSI Architecture for Bit-Parallel Computation inGalois

Fields. PhD thesis, University of Essen, Germany, 1994.

[72] PAAR , C. A New Architecture for A Parallel Finite Field Multiplier with Low

Complexity Based on Composite Fields.IEEE Transactions on Computers 45, 7

(July 1996), 856–861.

[73] PAVLENKO , E., WEDLER, M., STOFFEL, D., KUNZ, W., DREYER, A., SEEL-

ISCH, F.,AND GREUEL, G.-M. STABLE: A New QBF-BV SMT Solver for Hard

Verification Problems Combining Boolean Reasoning with Computer Algebra. In

IEEE Design, Automation and Test in Europe Conference(2011), pp. 155–160.

[74] RAJAPRABHU, T. L., SINGH, A. K., JABIR , A. M., AND PRADHAN , D. K.

MODD for CF: A Compact Representation for Multiple Output Function. In IEEE

International High Level Design Validation and Test Workshop (2004).

[75] ROMAN , S. Field Theory. Springer, 2006.

110

[76] SHEKHAR, N., KALLA , P., AND ENESCU, F. Equivalence Verification of

Polynomial Datapaths using Ideal Membership Testing.IEEE Transactions on

CAD (July 2007), 1320–1330.

[77] SHEKHAR, N., KALLA , P., MEREDITH, M. B., AND ENESCU, F. Simulation

Bounds for Equivalence Verification of Arithmetic Datapathswith Finite Word-

Length Operands. InFormal Methods in Computer Aided Design(November

2006), pp. 179–186.

[78] SHEKHAR, N., KALLA , P., MEREDITH, M. B., AND ENESCU, F. Simulation

Bounds for Equivalence Verification of Polynomial Datapathsusing Finite Ring

Algebra. IEEE TransactionsVLSI 16, 4 (2008), 376–387.

[79] SILVA , J., AND SAKALLAH , K. GRASP: A New Search Algorithm for Satis-

fiability. In Proceedings of IEEE/ACM International Conference on Computer-

Aided Design(1996), IEEE Computer Society, pp. 220–227.

[80] SMITH , J.,AND DEM ICHELI , G. Polynomial Methods for Component Matching

and Verification. InProceedings of the IEEE/ACM International Conference on

Computer-Aided Design(1998).

[81] SMITH , J., AND DEM ICHELI , G. Polynomial Methods for Allocating Complex

Components. InIEEE Design, Automation and Test in Europe(1999).

[82] SOMENZI, F. CUDD: CU Decision Diagram Package Release, 1998.

[83] SOOS, M. Cryptominisat-a SAT Solver for Cryptographic Problems.http:

//www.msoos.org/cryptominisat2/ , 2009.

[84] ST MICROELECTRONICS. ST23YLxx series Microcontroller for Smart Cards.

[85] STOFFEL, D., AND KUNZ, W. Verification of Integer Multipliers On the Arith-

metic Bit Level. InProceedings of the IEEE/ACM International Conference on

Computer-Aided Design(Piscataway, NJ, USA, 2001), IEEE Press, pp. 183–189.

[86] SUNAR, B., SAVAS , E., AND KO, C. Constructing Composite Field Repre-

sentations for Efficient Conversion.IEEE Transactions on Computers 52, 11

(November 2003), 1391–1398.

111

[87] WATANABE , Y., AND et al. Application of Symbolic Computer Algebra to

Arithmetic Circuit Verification. InIEEE International Conference on Computer

Design(October 2007), pp. 25–32.

[88] WIENAND , O., WEDLER, M., STOFFEL, D., KUNZ, W., AND GRUEL, G. An

Algebraic Approach to Proving Data Correctness in Arithmetic Datapaths. In

Computer Aided Verification Conference(2008), pp. 473–486.

[89] WU, H. Montgomery Multiplier and Squarer for a Class of Finite Fields. IEEE

Transactions On Computers 51, 5 (May 2002).

