
P e r s i s t e n c e i s H a r d , T h e n Y o u D i e !

o r

C o m p i l e r a n d R u n t i m e S u p p o r t f o r a P e r s i s t e n t

C o m m o n L i s p

J. H. Jacobs

M. R. Swanson

R. R. Kessler

U U C S - 9 4 - 0 0 3 '

Department of Computer Science

University of Utah

Salt Lake City, UT 84112 USA

January 26, 1994

A b s t r a c t

Integrating persistence into an existing programming language is a serious undertaking. Pre

serving the essence of the existing language, adequately supporting persistence, and main

taining efficiency require low-level support from the compiler and runtime systems. Pervasive,

low-level changes were made to a Lisp compiler and runtime system to introduce persistence.

The result is an efficient language which is worthy of the name Persistent Lisp. 1

1This research was sponsored by the Advanced Research Projects Agency (DOD), monitored by the
Department of the Navy, Office of the Chief of Naval Research, under Grant number N00014-91-J-4046. The
views and conclusions contained in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Advanced Research Projects Agency
or the US Government.

1 Introduction

Integrating persistence (i.e. long-lived values) into an existing programming language is a

formidable undertaking. Introducing persistence forces fundamental and far reaching changes

into the persistent language implementation. The issues which necessitate these changes very

often have no equivalent in the simpler world of volatile-value languages. So why even venture

into the strange world of persistent programming?

Programming has always been about manipulating information and the volume of in

formation has been steadily increasing. Computer aided design and expert systems all use

data with life spans much longer than a couple of program executions (perhaps even outliving

some programmers). Thus, constructing programs to manipulate long lived data is becoming

an important task for software engineers. The tools available to programmers run from the

I/O facilities of general purpose programming languages, through hybrid programs utiliz

ing embedded database query language functions, on to persistent programming languages.

Using general purpose programming languages requires the programmer to be intimately

concerned with the low-level details of data access. Writing hybrid programs using a general

purpose programming language to host queries in a database query language (e.g. embed

ded SQL [5]) allows the designer to escape some of the lower-level details of data access.

However, data must be explicitly brought in from the store and explicitly saved; also the

data must be translated between the representations of the database and the programming

language. For general purpose problems, the solution is a persistent programming language.

Only persistent programming languages provide a single, high-level tool for processing both

volatile and persistent data.

1.1 D es ign G oa ls fo r P e rs is ten t Languages

Shoehorning a few persistent features into an existing language does not produce a persistent

language, though it is a simpler and well travelled path. When introducing persistence into

a language we believe there are three guiding principles: conforming to the definition and

spirit of the base language, adequately supporting persistence and maintaining reasonable

performance.

1.1.1 C o n fo rm ity

The resulting language should have the look and feel of the original; otherwise a new language

has been created, not a persistence-enhanced version of the original. Meeting this criteria

requires that persistence be integrated into the language as transparently as possible. First,

orthogonal persistence should be provided so that any data types a programmer would use

in the base language are available in the persistent language. Second, the value management

model of the language must guide the design of the persistent value management schema;

1

for example, languages with automatic storage management must support the automatic

creation/destruction of persistent values. Third, the language must automatically detect the

mutation of persistent values so that the changes will be properly persisted; relying on the

programmer to explicitly flag all changes will lead to a lot of buggy programs.

1.1.2 A d e q u acy

Adequate support for persistent values must be provided. This includes atomic transac

tions, for maintaining the consistency of persistent values. W ithout them a properly written

program cannot guarantee that only consistent sets of changes are allowed to persist, nor

can multiple programs concurrently share persistent values. Since the persistent store might

become quite large over time, a mechanism must be provided to allow a program to access

reasonably-sized subsets of the stored values without requiring huge virtual address spaces.

Lazy (demand) loading is one way to accomplish this. Failure to provide these will hamper

the programmer trying to create well-crafted persistent programs.

1.1.3 E ffic iency

Finally, the implementation must produce programs which are reasonably efficient and com

pact. If programs written in the persistent language are too slow or large, it may often benefit

the programmer to use the original language and produce an ad hoc persistent program.

1.2 E x is t in g Pe rs is ten t Languages

Many well known programming languages have been enhanced with the ability to manipulate

persistent data: Algol [4], C++ [9] [13] [1], Smalltalk [8], ML [11], and Lisp [12] [10] [2] [3]

[6]. The C++ based implementations of persistence have been reasonably successful from

a language design viewpoint. Their successful implementations have been due to the very

explicit nature of value management in C++ . C++ variables are all strongly and statically

typed; dynamically created values are explicitly allocated. C++ functions are second-class

values and are not persisted, eliminating the difficult chore of persisting code. However,

the language features which allow the easy introduction of persistence into C++ may also

make the acceptance of persistent C++ more difficult. Many programmers attracted to the

low-level of operations in C++ tend to pinch their bytes and cycles and are not willing to

tolerate any extra resource consumption.

Languages which provide automatic storage management and other high-level features

have a more difficult time introducing persistence. To conform to the spirit of automatic

storage management, these languages must undertake automatic management of persistent

values. In both ML and Lisp, the first-class nature of functions require that they too be

2

persistable. The Lisp symbol data type is another source of difficulty because of the variety

of roles it serves.

None of the Lisp systems mentioned above conform to the three principles. W ith the

exception of Lisp02 [2] all of the systems forsake orthogonal persistence and limit persistence

to an object data type; one even requires that updated values be explicitly marked by the

programmer. Lisp02 provides a very limited transaction capability. Restricting the number

of persistent data types, or weakening the transaction construct greatly simplifies the task of

the language implementor, but dilutes the power or performance of the resulting persistent

language.

1.3 U C L + P

UCL+P (Utah Common Lisp + Persistence) takes these problems “head-on” to solve all

of the difficulties inherent in the three guiding principles presented above. A compilable,

persistent Lisp was designed and then major low-level modifications were made to the UCL

compiler and run time systems to efficiently support it. We believe that we have produced

a language which is both persistent and still Common Lisp. We believe that our result is

significant in and of itself, but also that our experiences will be helpful for others seeking to

craft persistent languages.

The remainder of this article is broken into three parts. The first presents the design

issues that necessitated modifications to the compiler, runtime system and data represen

tations. The second part examines the changes made in those three areas. Finally, we

conclude with a size and performance comparison between a corresponding set of persistent

and volatile Lisp programs.

UCL+P is a large project and, while we would like to discuss all the interesting features,

it is not possible in the space allowed. We will provide enough detail about the overall

project so that the design and implementation can be put in context. However, we will not

be discussing the design of the persistent store, nor the details of the Lisp interface to it,

since they do not greatly affect the design and implementation of the language. Also missing

will be a fuller discussion of writing and using UCL+P programs. We hope to focus on these

areas in other forums.

2 D es ign o f a P e rs is ten t L isp

Before we can look at the compiler and runtime changes made to support UCL+P, we must

first look at the design that resulted from applying the three principles defined above. The

design of an efficient Persistent Lisp requires that we address several sometimes conflicting

concerns. First and foremost, Persistent Lisp must produce programs that are fairly resource

efficient, or else no one will use it. We must also preserve both Lisp semantics and the

essence of the Lisp programming style; after all this is a Persistent Lisp. We provided

UCL+P with very transparent persistent value manipulation features to accommodate the

Lisp programming spirit. To support persistence itself, the atomic transaction was provided

so that correct programs will be assured of leaving the persistent store in a consistent state,

even in the event of system failure. In addition, since a set of persistent data can often

be quite large, the language should permit a program to access as much persistent data as

possible, within the constraints of the program’s virtual address space. Finally, the symbol

data type and the first class nature of functions require special attention. We will look at

each of these issues in detail as we describe the design of UCL+P.

2.1 P ra c tic a lity , L ispness, a nd T ransactions

Persistent Lisp programs must make efficient use of both the CPU and memory if they are

to be practical. To accomplish this, production Lisp programs need to be compiled and so

the compiler must support persistence. In addition, the compiled code produced should be

as fast as possible so that resident values, both volatile and persistent, can be manipulated

at speeds comparable to volatile Lisp programs.

The software development process needs to be efficient as well. By conforming to Lisp

semantics we make it easy for programmers to write persistent programs. The most impor

tant semantic issue raised by the introduction of persistence is the preservation of sharing

since value sharing is pervasive in Lisp, occurring both intentionally and unintentionally.

Sharing occurs whenever a value is referenced by two or more other values. Maintaining

sharing semantics requires that all sharable data types be persistable (i.e. orthogonal persis

tence). Implementations which limit sharing to objects or another subset of sharable values

cannot be faithful to the semantics of sharing.

Persistence introduces a semantic issue of its own: correct programs should always leave

the store in a correct state. Since stored values will outlive the execution of the program

an inconsistent result will have a very long lifetime (one might say it becomes a persistent

problem). A mechanism is needed so that minor system failures do not permanently corrupt

the store values. For example, an accounting program might need to transfer funds from one

account to another. This involves two steps: decrementing the first account and incrementing

the second account. If the store is to stay consistent, the updates to both accounts must be

stored, or neither. We have adopted a database construct, the atomic transaction, which is

used to collect a set of operations and make them all-or-nothing. When the transaction is

completed the changes are committed (sent) to the store.

4

2.2 Transparency and Packages

A truly persistent language should provide transparent fetch and store of values so the

programmer and the code need not be conscious of whether a value is persistent or volatile.

UCL+P assures that all values are automatically present when needed. All mutated or

created values are stored at commit time. The detection of values that need to be written

back is performed implicitly by UCL+P; therfore, the programmer need not specifically mark

a value as “dirty” which is akin to explicit storage management and can be a source of subtle

and insidious bugs.

Requiring the programmer explicitly confer persistence on each value is also not compat

ible with the philosophy of automatic storage management. The method most compatible

with Lisp is to dynamically confer persistence by reachability: all values (except symbols

which are a special case) are initially volatile and become persistent when referenced by

a persistent value. W ithout this approach, unusable values containing dangling references

could be stored. Of course, some root values are required and Lisp symbols fill this function.

In Common Lisp, symbols are associated with packages, a very simple container object.

UCL+P extends the package facility to allow the user to define packages which are persis

tent; any symbols contained within a persistent package are persistent and any nonsymbolic

values reachable from them are also persistent. Symbols are handled differently than other

values. In Lisp, symbols allow for dynamic binding to values and functions. Conferring

persistence by reachability onto symbols would constrain the late binding nature of symbols

and would not be consistent with the spirit of Lisp.

The package mechanism also partitions the persistent values into semi-independent en

tities. A program can use any number of packages simultaneously and the packages may be

shared concurrently with other programs. Even though the persistent values may be parti

tioned into separate packages, a single persistent package may be arbitrarily large, possibly

larger than the virtual address space of the program. This would make the package useless,

except that a program is unlikely to simultaneously (within a single transaction) access the

entire contents of a large package. We have incorporated a lazy (demand) loading mechanism

into UCL+P, thus enabling persistent programs to handle large packages.

2.3 F unc tion s

Functions are first-class values in Lisp: they may be passed, stored, and evaluated. In

addition, Lisp provides for a special type of function, the closure. Closures are the pairing of

a function and a set of bindings. The first-class nature of functions requires that a persistent

compiled Lisp be able to store and restore compiled code. Because the compilation and

load process usually embeds information directly into machine instructions, persisting code

is more difficult than saving the other data types.

5

9

The design of UCL+P required significant modifications to the compiler and runtime system.

The representation of data values had to be fundamentally altered, which in turn, necessi

tated changes to the code generator and the runtime system. The need to persist compiled

code also required changes to the compiler.

3.1 D a ta R e p re se n ta tio n C hanges '

The data area of UCL (original version) is broken up into three areas: the symbol table, the

heap and the function area. Most values reside in the heap which is garbage collected as

needed. Heap resident values are accessed via pointers contained in the symbol table, other

values, stack frames, or function bodies. UCL+P adds two more data areas: the persistent

heap and the persistent symbol table. All UCL+P values begin their lifetimes as volatile,

heap-resident values. When values become persistent they must be moved out of the volatile

heap and onto the persistent heap when the transaction completes. This is necessary so

that newly persistent values cannot be accessed when the program is not inside the scope of

a transaction; accessing mutable persistent values outside the body of a transaction would

violate the conditions necessary for correct transaction semantics. When the program is

not executing within the body of a transaction, the persistent heap and symbol table are

protected against access via operating system memory protection facilities (e.g. MMAP on

BSD Unix). 0 /S facilities are also used to implement lazy loading: the runtime system uses

page faults on persistent heap accesses to trigger the loading of needed persistent values.

Because the newly persistent value might be referenced by other values, the relocation

of the value must not leave any existing references dangling. To support this, the direct

pointer reference mechanism was replaced with an indirect pointer reference (i.e. pointer

to a pointer). Reference slots in values now contain pointers to an entry in the Indirection

Vector (IV). The IV contains an entry for each heap resident value. Each IV entry contains

access flags and the heap address of the value. W ith the IV mechanism a value can be

safely relocated by changing its heap address in the IV. W ithout this, the entire data area

would have to be searched so that all relevant pointers could be adjusted to follow the newly

persistent value, an operation equivalent in cost to performing a garbage collection. Another

approach would have been to keep the direct reference mechanism and perform a garbage

collection at the end of each transaction. The choice between the two methods is a tradeoff

between the time required to perform a garbage collection and the impacts of adding the IV

into the system. We selected our approach because it supports smaller grained transactions

than the “commit and garbage collect” approach.

Access detection is necessary to implement transaction semantics. The runtime system

must detect and record read and write accesses to all persistent values so that this information

3 Compiler and Runtime Support

6

can be passed on to the transaction validator at commit time. Part of the IV entry contains

a read flag and a write flag which are set if the value is read or written. When the transaction

commits, the IV and persistent symbol table are scanned to construct the access sets for the

transaction. An alternative implementation would be to make the access flags a part of the

values themselves, but then it would be necessary to scan the entire heap for updated values,

which would be less efficient.

When symbols are created, they are permanently contained in a single package. There

fore symbols never change from volatile to persistent, so we can to use direct pointers to

access them. Because named functions are accessed through the function slot of the naming

symbol, using another level of indirection to get to the symbol would inevitably slow down

the function calling process. The symbol table already held slots for the attributes of a sym

bol: value, function, property list, print-name, and package. Because symbols are directly

accessed a slot was added to the symbol itself to hold the access flags.

Function references still use direct pointers, preserving the efficiency of function calling.

Unlike other values, functions do not need to be relocated when the function completes.

This can be done while preserving transaction semantics because functions are immutable

and so do not produce inconsistent results when they are called outside a transaction. When a

function with state, a closure, is made persistent, its data part is relocated into the persistent

heap, but its code part is not.

3.2 C hanges to C ode G e n e ra t io n

Three major changes were made to the code generation portion of the UCL compiler. The

instructions generated by the compiler needed to support both the extra level of indirection

introduced by the IV and the access marking needed for transactions. The other change was

to enhance the compiler to produce position independent code when compiling application

functions.

3.2.1 S u p p o r t in g In d ire c t io n a n d Access D e te c tio n

The UCL compiler uses a set of opencodes. These are effectively macros that expand into as

sembly code during the code generation process. Among these opencodes are the instructions

for low-level Lisp primitive functions such as car, cdr, array access, etc. All of the opencodes

that access heap resident entities needed to be changed to use the IV and to record accesses.

The symbol accessing opencodes were modified to incorporate access marking. The changes

were done in two steps. First the opencodes were modified to use the IV and in the second

step the opencodes were changed to set the appropriate read or write bit for the value.

The UCL+P prototype system currently outputs 680x0 machine code. The 680x0 is a

CISC style processor with a large set of addressing modes. Most of the opencodes required

7

the addition of two instructions. The first instruction sets the appropriate read or write bit

associated with the value or symbol. The second instruction dereferences the first pointer

and leaves the heap address available for the rest of the opencode. Figure 1 shows the

UCL and UCL+P opencodes for car. If a RISC style processor had been the compiler

target it would have taken more instructions per opencode to support persistence, but the

opencodes themselves would also be longer, so the relative increase in opencode size should

be comparable to the CISC case.

UCL

moveal dl,a3 ; move first arg to address register

movel a3Q(-1),dl ; move CAR value to result register

UCL+P

moveal dl,a3

moveb #l,a3®(-5)

moveal a3Q(-l),a3

movel a3ffl(-l),dl

move first arg to address register

set read access flag in IV

get heap pointer

move CAR value to result register

Figure 1: UCL and UCL+P opencodes for car.

3.2.2 P e rs is tab le C o m p ile d C ode

Because UCL+P needs to store compiled code, it was necessary to modify the compiler to

optionally produce position independent code (PIC). PIC output has been prototyped on the

UCL compiler and we are in the process of integrating the PIC into the persistent compiler.

In our new PIC scheme a header was added to the compiled code for a function. The

header contains constants referenced by the function and references to symbols. By placing

the constants and symbol references in a linkage table, the task of storing and reloading

compiled functions became feasible. The cost for this capability is an increase in code size

and a decrease in performance. The performance decrease is due to the extra indirection

required for accessing symbols; a non-PIC symbol reference would use an immediate instruc

tion to access the needed slot while the PIC code must indirect through the function header.

Fortunately, only application functions will need to be compiled with PIC; most runtime

system functions already “persist” as part of Lisp and need not be made storable.

W ith the changes to the data representation, both the allocation routines and the garbage

collector had to be enhanced. The allocators now have to provide both an IV entry for each

new value created, as well as heap space. If either is unavailable, the garbage collector needs

to be activated.

Adding the IV mechanism to UCL required that the garbage collector be modified.

Since some Lisp programs can spend a considerable amount of time, perhaps as much as

one third [14], performing garbage collection, changes to the garbage collector can greatly

impact program performance. UCL uses a two-space, copying garbage collector; the collector

copies live values from the current half-heap to the spare half-heap. In UCL+P the collector

also reclaims dead IV entries. Since collection can be triggered by exhausting the IV table,

the collector must perform the copying without consuming any IV entries. This required

considerable care. Additionally, the collector must not leave any trace of its actions on the

access flags of the values. If the collector were to leave any “fingerprints” on the values, the

transaction commit mechanism would be forced to deal with a large number of false accesses.

4 S ize and P e rfo rm ance o f U C L + P p rog ram s .

After looking at the low-level modifications used to introduce persistence, we can look at how

they affected the programs produced by UCL+P. We compared the performance of programs

produced by UCL and UCL+P. The same source code was compiled by both compilers and

executed using the corresponding runtime system. The test programs did not actually use

the persistence mechanism, since we wanted to focus on the effects of the low-level changes

and not on the performance of the backing store.

4.1 C ode S ize

As described above, some of the opencodes used for code generation had two instructions

added to them. In the worst cases, this doubled the number of instructions. However, only a

third of the opencodes needed to be changed. To get a feel for how the modified opencodes

affect the size of the compiler output we compiled and loaded a large Lisp program (4400

lines) using the UCL and UCL+P compilers. UCL produced 155KB of application code while

UCL+P output 170KB, a 9% increase. The prototype version of the UCL PIC compiler

increases the code size by 7% and is likely to have a similar effect when integrated with the

UCL+P compiler.

3.3 Runtime System Modifications

9

4.2 D a ta S ize Im p a c ts

The changes made to the data representation left the sizes of all stored values unchanged.

However, the data size has been increased by the introduction of the indirection vector.

Although each entry in the IV is very small (8 bytes), one entry is required for every heap

resident value. The smallest heap allocated value in UCL is the cons cell, which takes 8

bytes, while vectors, matrices and strings can be very large. By examining the heaps of the

runtime system, with and without the compilation routines, we get an average value size of

about 20 bytes. (The average value size depends heavily on the relative mix of data types

used in the program.) Based on this average value size and the fact that each IV entry takes

8 bytes, the IV size should be about 40% of the half heap size (active allocation occurs in

only one half of the heap at a time). Therefore, the addition of the IV increases the storage

needed for heap resident values by about 20%.

Besides increasing the size of the program, the IV also alters the data reference patterns.

The IV entry must be touched before the value can be accessed which reduces the data

reference locality. Although we have not directly measured the effect, the loss of locality

likely impacts both virtual memory and cache performance.

4.3 P e rfo rm ance

As expected, adding support for transparent persistence slows down program execution. To

measure the change in code performance we utilized the Gabriel benchmark set [7] which

is tailored for Lisp programs; the results are shown in Table 1. When the tests were run,

the runtime system used an IV that was 100% of the half heap size. The table also reports

the average of the CPU-time ratios over all tests (Gabriel did not define a single metric).

One disadvantage with the Gabriel benchmark set is its lack of programs that a modern

Lisp programming style might produce. Newer programs would make fairly extensive use of

structures and objects and would be less list intensive. We will extend the benchmark set

to include these programming styles.

The CPU-time ratios range from 1.0 and 1.8. Programs which make extensive use of

lists (e.g. Boyer, Browse) suffer from the higher slowdowns. If the persistent and volatile

opencodes for a representative list operation, car, are examined (Figure 1) it is no surprise

that list intensive programs are the most affected by the compiler changes. Integer and

array intensive programs such as Puzzle and Triangle are the least affected by the changes.

Floating point intensive tests such as FFT and Frpoly are between the two extremes.

Fortunately, further performance optimizations are possible. For floating point opera

tions it should be possible to avoid marking them and bypass the IV since floating point

numbers are immutable. For most other values, whenever a function accesses a single value

repeatedly, redundant pointer dereferences and access marking can be eliminated.

10

Our results do not include PIC coded routines. When PIC code is used throughout

the UCL runtime system and the application code, performance slowed down by about

10%. However, there is no need for most runtime system functions to be PIC because they

are always present as part of the runtime system. Since 75-90% [14] of functions called

are runtime functions, very little of the PIC slowdown should show up in overall program

performance.

5 C onc lu s ions

Producing a transparently persistent Lisp required fundamental changes to the UCL compiler

and runtime system. Any system which attempts to introduce persistence into Lisp without

resorting to such low-level changes must either sacrifice language semantics, or suffer severe

performance penalties. After the changes were made the performance of the resulting system

showed that 20% more space was needed for storing data and 9% more space was required,

overall, for storing application code. Program performance also suffered with the language

enhancement. Volatile-value-only programs saw CPU times increase by about 18% for integer

intensive programs to around 43% for list intensive benchmarks, though we have identified

some future enhancements to the compiler’s optimizer which should reduce the slowdown.

We have produced a Persistent Common Lisp which adheres to the three principles

defined in the introduction. While the efficiency of UCL+P is currently less than we wanted,

the language conformity and adequacy of persistence goals have been unequivocably been

met. As it stands, the transparent integration of powerful persistent value support makes

UCL+P an optimal solution for constructing persistent programs using Common Lisp though

it is unlikely to become a general purpose replacement for UCL.

References

[1] R. Agrawal and Gehani N. H. ODE (Object Database and Environment): The language and

data model. In Proc. In t ’l. Conf. on Management of Data, pages 36-45, Portland, Oregon,

May-June 1989. ACM-SIGMOD.

[2] Gilles Barbedette. Lisp02: A persistent object-oriented LISP. In F. Bancilhon, C. Delobel,

and P. Kanellakkis, editors, Building an Object-Oriented Database System: The Story of O2 ,

chapter 10, pages 215-233. Morgan Kaufmann, 1992. Also in Proceeding of the 2nd EDBT.

[3] P. Broadbery and Burdorf C. Applications of Telos. Lisp and Symbolic Computation,

6(1 /2):139—158, August 1993.

[4] W . P. Cockshott. PS-ALGOL Implementations: Applications in Persistent Object-oriented

Programming. Ellis Horwood, 1990.

[5] C. J. Date. An Introduction to Database Systems, Volume I, Fifth Edition. Addison Wesley,

1990.

11

[6] S. Ford, J. Joseph, Langworthy D., D. Lively, G. Pathak, E. Perez, R. Peterson, D. Sparacin,

S. Thatte, Wells D., and S. Agarwala. Zeitgeist: Database support for object-oriented pro

gramming. In K. R. Dittrich, editor, Advances in Object-Oriented Database Systems. Springer-

Verlag, 1988.

[7] R. P. Gabriel. Perfomance and Evaluation of Lisp Systems. MIT Press, 1985.

[8] A. L. Hosking, J. E. B. Moss, and C. Bliss. Design of an object faulting persistent Smalltalk.

Technical report, Univerity of Massachusetts, 1990. UM-CS-1990-045. .

[9] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The ObjectStore database

system. Communications of the ACM , 34(10):50-63, Oct 1991.

[10] Arthur H. Lee. The Persistent Object System MetaStore: Persistence via Metaprogramming.

PhD thesis, University of Utah, Aug 1992.

[11] S. M. Nettles and Wing J. M. Persistence + undoability = transactions. In Proceedings

of the Hawaii International Conference on Systems Science 25, 1992. See also tech-report

CMU-CS-91-173.

[12] A. Paepcke. PCLOS: A flexible implementation of CLOS persistence. In S. Gjessing and

K. Nygaard, editors, Proceedings of the European Conference on Object-Oriented Programming.

Springer-Verlag, 1988.

[13] Joel E. Richardson, Michael J. Carey, and Daniel T. Schuh. The design of the E programming

language. Technical report, University of Wisconsin, 1989. Tech Report 824.

[14] Robert A. Shaw. Empirical Analysis of A Lisp System. PhD thesis, Stanford University,

February 1988.

12

Name With IV With IV
& Marking

Boyer 1.3035 1.4261

Browse 1.3720 1.5750

CTAK 1.0738 1.4180

Dderiv 1.4958 1.5805

Deriv 1.3333 1.4932

Destructive 1.2343 1.3829

Div-iter 1.5854 1.8780

Div-rec 1.4082 1.6327

Fact 1000 1.0698 1.1358

FFT 1.3750 1.4632

Fprint 1.1203 1.3354

Fread 1.1012 1.1994

Frpoly Power=2 r=x+y+z+l 1.0000 1.0000
Frpoly Power=2 r2=1000r 1.5000 1.5000

Frpoly Power=5 r=x+y+z+l 1.0000 1.5000

Frpoly Power=5 r2=1000r 1.1071 1.1429

Frpoly Power=5 r3=r in flonums 1.2500 1.5000

Frpoly Powers 10 r=x+y+z+l 1.1905 1.4286
Frpoly Power=10 r2=1000r 1.1096 1.1790

Frpoly Power=10 r3=r in flonums 1.3023 1.4419

Frpoly Power=15 r=x+y+z+l 1.1673 1.3271

Frpoly Power=15 r2=1000r 1.1084 1.1686
Frpoly Power= 15 r3=r in flonums 1.2715 1.3952

Puzzle 1.0855 1.1765
STAK 0.9903 1.1456

TAK 1.0000 1.0000
TAKL 1.1500 1.3833

TAKR 0.9615 1.0000
Tprint 1.1842 1.3333

Traverse-init 1.1250 1.2436
Traverse 1.5263 1.7368

Triangle 1.0202 1.2245

Average of Ratios 1.0866 1.2378

Table 1: Results of running the Gabriel benchmarks. Shown are the ratios of CPU time used

relative to UCL program after adding indirection vector and after the addition of both IV

and access marking.

13

