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ABSTRACT

We develop m athem atical models relating m easured biological markers to  how animals 

process nutrients and toxins. Our models track molecules as they  are ingested, transform ed 

through m etabolic processes, and excreted, and relate m easurem ents of biological markers 

to  these processes. We focus on specific problems of practical interest. We begin by 

developing a model of acetam inophen m etabolism  and use our model to  estim ate outcome of 

acetam inophen overdose patients. A cetam inophen overdose increasingly occurs as a result 

of chronic use. We analyze the dynamics of chronic use and find threshold dynamics th a t 

result from the structure  of acetam inophen metabolism. We next study animal nitrogen 

metabolism. Nitrogen stable isotope ratios in consumer tissue are used by ecologists to 

estim ate diet and trophic dynamics, but feedbacks between diet and physiology complicate 

the relationship between diet and the nitrogen isotope ratio of consumer tissue. We develop 

a model of animal nitrogen m etabolism  to study the influence of diet on stable nitrogen 

isotope ratios of consumer tissue. Finally, hair is often measured to  understand how animals 

process nutrients and toxins because organic and inorganic substances are incorporated into 

hair, remaining inert for long periods of time. We develop a model based on the known 

physiology of hair growth to  describe the signal averaging caused by bundling m ultiple hairs 

for segmental analysis.
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CHAPTER 1

INTRODUCTION

Animals ideally process nutrients and toxins in a way th a t maximizes the opportunity  

for growth and reproduction while minimizing dam age, dynamically altering their response 

to  changing inputs and environm ental conditions. Complex cascades of regulation, fine- 

tuned through generations of selected refinement, allow for a dynamic, adaptive response 

to  ever-changing conditions. In animals, the liver plays a central role in this regulation. 

Hepatocytes are responsible for detoxification of the blood and processing nutrients, and as 

such play a m ajor role in the regulation and control required to  m aintain homeostasis.

Those interested in understanding how animals process nutrients and toxins m ust make 

observations and measurem ents. D ata  m ust be collected and interpreted, experiments 

refined, bu t it is often impossible or im practical to  m easure the process of interest directly. 

Instead, researchers rely on indirect measurem ents of biological markers. T he complexity 

of life, the regulation and control, often leads to  a complex, nonlinear relationship between 

m easurem ents and the process of interest.

We wish to  understand how animals process nutrients and toxins by be tte r interpreting 

measurem ents. We ideally connect measurem ents of biological markers to  the biological 

sta te  or process of interest w ith m athem atical models accounting for the regulation and 

control th a t is central to  physiology, lending new insight to  measurements. Questions arise 

from hum an disease, hum an and anim al nutrition, or ecology, bu t rely on a mechanistic 

understanding metabolism. The m athem atics is built upon conservation. We dynamically 

track nutrients and toxins as they are ingested, transform ed, and excreted, and link these 

processes to  m easurable biological markers. Using our m athem atical models, we further 

in terpret the m arker m easurem ents to  gain new insight.

W hile we are interested in how animals process nutrients and toxins in general, we focus 

on specific questions of practical interest. We begin in Ch. 2 by developing a model of 

acetam inophen toxicity. We wish to  understand how the liver processes acetam inophen and 

how the build up of toxic m etabolites causes liver damage. W hile safe in small doses, large
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doses of acetam inophen can lead to  acute liver failure and ultim ately death. We use our 

model to  interpret clinical d a ta  of markers of liver dam age to  predict if patients will live or 

die following an overdose. If a patient is predicted to  die, liver transplan tation  may be the 

only life saving treatm ent. In recent years, overdoses increasingly occur over a background 

of chronic use. In Ch. 3 we further analyze the dynamics of our model of acetam inophen 

toxicity, w ith the addition of chronic use. The structure of the dynamic response of the liver 

to  acetam inophen overdose leads to  a threshold system, such th a t damage occurs acutely, if 

a t all, even w ith chronic use. T he acute nature of liver injury creates characteristic injury 

curves and robust predictions of outcome using the model devloped in Ch. 2, even w ith a 

background of chronic use. The liver also plays a central role in protein metabolism. In 

Ch. 4 we develop a dynamic model of nitrogen metabolism. The model tracks the fate of 

nitrogen as it is ingested as protein, converted to  the toxic m etabolite ammonia, processed 

by the liver to  urea, and excreted. We use the model to  estim ate the role of dietary  protein 

intake on stable nitrogen isotope ratios of tissue. Finally, in Ch. 5 we develop a model of 

how chemical signals in hair are blurred in sample preparation. Drugs, chemicals, and toxins 

are incorporated into hair, which can be sampled segmentally to  provide a chronology of 

measurem ents. Variations of hair growth due to  physiology can blur the chemical signal of 

interest. We develop a model based on the physiology of hair growth th a t we use to  better 

in terpret measurem ents. The regulation and control th a t is central to  physiology leads to 

complex relationships between the signal of interest and m easured biological markers. The 

m athem atical models are built on known physiology, tracking molecules from ingestion to 

m easurem ent, and are used to  better in terpret the blurred signal of biological markers.



CHAPTER 2

MATHEMATICAL MODELING OF LIVER 
INJURY AND DYSFUNCTION AFTER  

ACETAMINOPHEN OVERDOSE: 
EARLY DISCRIMINATION  

BETW EEN SURVIVAL 
AND DEATH 1 

2.1 Introduction
A cetam inophen (A PA P: N-acetyl-para-am inophenol) is the leading cause of acute liver 

injury in the U nited States, accounting for some 56,000 emergency room visits, 26,000 

hospital admissions, and about 500 deaths annually [1]. A PA P toxicity is caused by the 

formation, w ithin hepatocytes, of N-acetyl-p-benzoquinoneimine (N A PQ I), a highly reactive 

benoquinonam ine [2, 3]. Intracellular N A PQ I initially binds to  glutathione (GSH), and is 

safely elim inated [4, 5]. Once GSH stores are depleted, residual free N A PQ I reacts with 

cellular components and causes injury to  A PAP-m etabolizing hepatocytes [6, 7]. Early 

adm inistration of the GSH precursor, N-acetylcysteine (N-Ac), ideally w ithin 12 hours of 

overdose, prevents life-threatening liver injury and ensures recovery [8]. L ater adminis

tra tion  may limit the liver injury, bu t its utility  decreases with tim e [9]. In the presence 

of a sufficiently large overdose, the adm inistration of N-Ac beyond a certain tim e window 

becomes futile. In these cases, liver transplan tation  becomes the only life-saving measure.

A num ber of factors may determ ine w hether a dose of APAP is fatal. Among the most 

im portant are the size of the overdose and the tim e to  first adm inistration of N-Ac [8]. 

Unfortunately, these two values are frequently not available a t the tim e of admission to  the 

hospital: patients often arrive confused or comatose, the family is usually unaware of the

1 REPR IN TED  W ITH PERM ISSION FROM  HEPATOLOGY: Remien CH, Adler FR , W addoups L, Box 
TD, and Sussman NL. M athem atical modeling of liver injury and dysfunction after acetam inophen overdose: 
Early discrim ination between survival and death. Hepatology, 56(2):727-734, 2012.
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tim ing or the dose of drug taken, and concom itant use of other m edications or drugs often 

obscures the clinical picture.

We therefore sought a m ethod for rapidly determ ining the tim e of overdose, extent of 

injury, and likelihood of spontaneous survival using laboratory d a ta  available a t the tim e 

of admission. O ur m ethod is based on a m athem atical model th a t describes typical hepatic 

injury progression, dependent only on overdose am ount. F itting  patient laboratory values 

to  our m athem atical model allows for the estim ation of overdose am ount and tim ing, as 

well as a prediction of outcome. We tested the m athem atical model on 53 patients from 

the University of U tah.

2.2 Materials and methods
2.2.1 M odel background

Our m athem atical model, the Model of Acetam inophen-induced Liver Damage (MALD), 

is based on a reproducible pa tte rn  of APAP-induced liver injury. The enzymes aspartate  

am inotransferase (AST) and alanine am inotransferase (ALT) are released by injured hep- 

atocytes [10, 11]. These enzymes peak at about 36 hours from initial injury and have 

distinct injury and clearance curves. AST concentration in blood is initially approxim ately 

double th a t of ALT, w ith a clearance rate  of about 50 % every 24 hours. ALT peaks at 

about the same tim e as AST, but w ith a slower elimination rate  of about 33 % every 24 

hours [12]. These measures of dam age are complemented by a m easure of liver function, 

prothrom bin tim e/ international normalized ratio  (INR). Decreased production of essential 

clotting factors manifests as reduced clotting and increased INR, again w ith characteristic 

rates of increase and decay [13]. The values of AST, ALT, and INR at the tim e of admission 

thus encode the course of disease progression over tim e and can be used, w ith a suitable 

m athem atical model, to  estim ate initial dose and tim e of overdose.

2.2.2 M odel description

We developed a system of nonlinear ordinary differential equations to  describe the 

tem poral dynamics of APAP-induced acute liver failure (ALF) based on known mechanisms 

of APAP metabolism. The equations describe NAPQI production from APAP metabolism, 

g lutathione conjugation, hepatocyte death  by NAPQI, release and clearance of AST and 

ALT in the blood, hepatocyte regeneration, and clotting factor production (Fig. 2.1).

The dynamics of to ta l serum APAP (^ ) , intracellular NA PQ I concentration (N ), in tra

cellular GSH concentration (G ), num ber of functional hepatocytes (H ), num ber of damaged



5

hepatocyte
regeneration

Functional ( ĝ h) 
Hepatocytes

synthesis

decay

hepatocyte damage
Damaged

Hepatocytes decay

decay

F ig u re  2.1. A schematic diagram  representing the dynamics of the m athem atical model. 
A fraction of APAP is oxidized to  NAPQI, bound to  GSH, and safely eliminated. As GSH 
stores are depleted, NAPQI damages hepatocytes, releasing AST and ALT into the blood. 
Meanwhile, functional hepatocytes regenerate and produce essential clotting factors. Red 
represents the intracellular variables, yellow represents healthy and damaged hepatocytes, 
and blue represents markers of liver damage.
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hepatocytes (Z ), serum AST concentration (S ), serum ALT concentration (L), and serum 

clotting factor concentration ( F ) are governed by the following system of ordinary differen

tial equations:

APAP d A  =  - - 0 - A H  -
dt Hmax

NAPQI d N  =  Ĥ A  -  y N G
dt H max

dG
GSH —  =  k -  y N G  -  5g G

dt

dH  /  H  +  Z  \
Functional Hepatocytes =  r H  1 ---- —----- ) -  n N H

dt H max

dZ
Damaged Hepatocytes —  =  n N H  -  5z Z

dt

AST ddt =  Z  -  ^ ( S  -  Smin)
dt uH max

ALT ddL  =  Z  -  5l (L -  Lmin)
dt u n  max

d F  /  H  \
C lotting Factor —  =  ftpy jh-------- F j -

dt H max
H

APAP is cleared by conjugation at a rate  a —-----, and a small am ount is cleared
H max

unconjugated at rate  5a . A fraction p  of the APAP is converted to  NA PQ I and is cleared 

at a rate  7 G. GSH has a constant production k and decays at a ra te  5g . Hepatocytes grow 

logistically w ith ra te  r sa turating  at H max and become damaged at a rate  n N  releasing AST 

and ALT into the blood at rates 5z @s /(UHmax) and 5z PL/ ( 0Hmax), respectively. Clotting 

factors are produced by hepatocytes and decay at a rate  . INR ( I ) is related to  the 

concentration of clotting factors by the algebraic equation I  =  4.

The variables and param eters can be divided into those describing hepatocyte, APAP, 

glutathione, INR, and A ST/A LT dynamics. Functional hepatocytes (H ) become damaged 

hepatocytes (Z ) and regenerate w ith the following param eters:

•  The num ber of hepatocytes in a healthy liver is H max =  1.6 * 1011 cells [12, 14].

•  Damaged hepatocytes lyse with rate  5z  =  5 /day.

•  Functional hepatocytes regenerate w ith rate  r =  1 /day [15].

•  Functional hepatocytes become damaged with rate  n =  5.12 * 1013 cell/m ol/day.



•  The fraction of liver required for survival is ^  =  0.3 [16].

Serum APAP (A) is a surrogate for liver APAP, which is converted to  NA PQ I (N ) with 

the following param eters:

•  APAP is cleared by hepatocytes w ith rate  a  =  6 .3 /day [17].

•  APAP is cleared unconjugated w ith rate  5 a =  0.33/day [2, 3].

•  The fraction of APAP th a t is oxidized to  NAPQI is p =  0.5 [2, 3].

•  The conversion factor from grams of APAP to  mol of NA PQ I is q =  0.0067 m ol/g.

GSH (G) is associated w ith the following param eters:

•  GSH binds to  NAPQI with rate  y =  1.6 * 1018 cell/m ol/day  [18].

•  GSH decays w ith rate  =  2 /day  [19, 20, 21]

•  GSH is produced with ra te  k =  1.375 * 10-14 m ol/cell/day.

INR ( I ) is related to  the clotting factor concentration as a fraction of normal ( F ) and 

is associated w ith the following param eters:

•  Clotting factor VII is cleared with rate  ftp =  5 /day  [22].

•  The minimum clotting factor concentration is Fmin =  0.75.

Serum AST concentration (S) and serum ALT concentration (L) increase and decay 

w ith the following param eters:

•  AST is cleared with rate  5s  =  0.92/day [12].

•  ALT is cleared with rate  5l  =  0.35/day [12].

•  The to ta l am ount of AST in a healthy liver is 200,000 IU.

•  The to ta l am ount of ALT in a healthy liver is 84,800 IU.

•  The am ount of blood in a hum an body is d =  5 L.

•  The minimum AST level is S min =  12 IU /L .

7
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•  The minimum ALT level is L min =  9 IU /L .

Six param eters were adjusted to  m atch properties of the data, independent of patient 

survival information. The am ounts of AST and ALT in the liver, @s  and , respectively, 

were scaled to  the maximum observed AST and ALT values, and the minimum AST and 

ALT levels, Smin and L min, respectively, were scaled to  the minimum observed AST and 

ALT values. The minimum clotting factor concentration Fmin was scaled to  the maximum 

observed INR value. The damaged hepatocyte lysis rate  5Z was adjusted to  the tim ing of 

peak AST and ALT values.

Two param eters were scaled to  the dose of APAP required for hepatotoxicity and death. 

The glutathione production rate, k, was scaled to  the dosage at which glutathione reserves 

are depleted. The minimum dosage predicted to  lead to  hepatotoxicity varies, but typically 

ranges from 7.5 to  10 g for an adult [8, 23]. We chose a slightly lower value of 6.0 g 

for the dosage at which glutathione reserves are depleted. The rate  at which hepatocytes 

become damaged by NAPQI, n, is a scaling factor th a t was chosen so th a t a 20 g overdose 

is equivalent to  70 % hepatic necrosis and predicted death.

2.2 .3  P atien ts

Between January  1, 2006, and December 31, 2009, all hospital discharges from the 

University of U tah were queried for the diagnosis of severe, acute APAP toxicity. Charts 

were excluded if they included acute hepatitis A or B, autoim m une hepatitis, W ilson 

Disease, or m ultisystem  failure. Laboratory d a ta  and admission and discharge notes were 

further reviewed to  identify cases in which acute liver disease was due to  APAP overdose 

only. C harts th a t had overdose w ith additional m edications were not included in this analy

sis. Demographics, N-Ac adm inistration, and medical outcome information were collected. 

Laboratory results of AST, ALT, INR, bilirubin, and creatinine were also collected. Charts 

w ithout a t least one m easure of AST, ALT, and INR were excluded from the study. In 

to tal, 53 patients were included. The patient population was diverse, w ith varying alcohol 

use, body mass index, and ingestion type, including suicide a ttem pts, single accidental 

overdoses, and multiple day chronic overdoses.

2.2 .4  E th ics sta tem en t

Patien t consent was not obtained because d a ta  were retrospective, were based on stand

ard care, and were analyzed anonymously. The protocol was approved by the Institu tional
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Review Board (IRB) of the University of U tah  in accordance w ith the D eclaration of 

Helsinki.

2.2.5 Serum  creatin ine

Serum creatinine was added as an additional criterion separate from the model because 

it is a m arker of kidney dam age and our dynamic model does not describe kidney damage. 

Because kidney function is ultim ately im portant in survival in APAP overdose, patients 

with serum creatinine greater than  3.4 m g/dL  were predicted to  die [24].

2.2 .6  F ittin g  th e  m odel to  ind ividual p atien ts

Upon admission, before adm inistration of N-Ac, a p a tien t’s AST, ALT, and INR values 

in the m athem atical model are a function of two param eters, APAP overdose amount, 

A 0, and tim e since overdose, t . These two param eters were estim ated using weighted 

least-squares and values of AST, ALT, and INR on admission. The weights were determ ined 

by posttreatm ent model fits.

2.2 .6 .1  P osttrea tm en t m odel fits

To estim ate uncertainty in m easurem ents of AST, ALT, and INR, we define a p osttrea t

ment model as a special case of the pretreatm ent model. Treatm ent w ith N-Ac leads to 

a high concentration of intracellular GSH, preventing further damage to  hepatocytes (i.e., 

N  =  0). This reduces the AST subsystem  to

i z  =  a z  
~dt =  -A z z
i S  AZ Ps  ry W c  e \

z  aS (S Smin) ?i t  OH,max

the ALT subsystem to

i Z  A Z
m  =  -A z z
i L  AZ p L z  A (T T  ̂
i t  =  OH z  °L(L  Lmin),i t  OHmax

and the INR subsystem  to
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d z  S Z 
d  =  —S z z  
dH  „ „  H  +  Z—  =  rH (1  -  — ----- )
dt Hmax
d F  _  o ( H  _ ) 
~dt =  ° F (H  F )dt Hmax

I /  1 +  Fmin \
' F  +  Fmin'

The posttreatm ent model subsystems were fit to  individual patients using least squares. 

In the AST subsystem, the modeled AST value is a function of two param eters, the modeled 

AST concentration at the tim e of admission, S0, and the num ber of damaged hepatocytes on 

admission, Z0. For each individual patient, the best fit solution is the one th a t minimizes, 

over all possible combinations of S 0 and Z 0, the sum of the squared residual

2
]T ( lo g (A S T i)  -  log(Si(So,Zo))) ,

where A S T  is the p a tien t’s m easured AST value i days after the first m easurem ent, and 

Si (S0, Z0) is the modeled AST value i days after the first m easurem ent w ith initial conditions 

S0 and Z0. All logarithm s indicate the natural log. The residual for each measurement 

is defined as log(ASTi) — log ^Si (S 0 ,Z 0 )j where S0 and Z0 are the AST and damaged 

hepatocyte initial conditions th a t minimize the least squares problem, respectively. The 

standard  deviation of all of the residuals from all m easurem ents of AST from all patients 

is =  0.60.

Using the same approach described above, bu t replacing ASTi , Si , and S0 by ALTi , Li , 

and L 0, respectively, the standard  deviation of all of the residuals from all measurem ents 

of ALT from all patients is w l =  0.43.

For INR, the modeled value / i depends on three param eters, modeled clotting factor 

concentration at the tim e of admission, F 0, modeled num ber of damaged hepatocytes at 

admission, Z0, and modeled num ber of functional hepatocytes a t admission, H 0. Again 

minimizing the least squares difference between measured /N R i and modeled / i (F0, Z0, H 0), 

the standard  deviation of the residuals from all m easurem ents of all patients is w/  =  0.26.
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2.2 .6 .2  P retrea tm en t m odel fits

For each patient, the estim ated A0 and t  are those th a t minimize

log(AST) -  log(S(A o, t )) " log(A L T ) -  log(L (A o,t)) \ 2)
lo g (IN R )  -  log(I (A o ,t)) \  2)

where A S T , A L T , and IN R  are a p a tien t’s m easured AST, ALT, and INR on admission, 

and S , L, and I  are modeled AST, ALT, and INR for overdose am ount A0 a t tim e t  since 

overdose.

The line separating predicted recovery and predicted death  in Fig. 2.2 was determ ined 

by numerically solving the full pretreatm ent model for a range of A0, m arking the tim e 

since overdose when H  equals 30 % of its initial value (i.e., 70 % hepatic necrosis occurs). 

The estim ated probability of death  for each patient is calculated as the fraction of R within

2 of R* for which A0 and t  lie in the region of predicted death.

The confidence regions of A0 and t  for individual patients in Figs. 2.3, 2.4, 2.5, and 2.6 

are defined as follows. We begin w ith the best least squares estim ate for A0 and t , where 

the residual R takes its minimum R*. We then  find regions A0 and t  for which R is w ithin 

0.5 of R*, R exceeds R* by 0.5 to  1, R exceeds R* by 1 to  1.5, and R exceeds R* by 1.5 to

2 .

To test the sensitivity of model predictions to  param eters, we fit patients to  the pre

treatm ent model with each param eter perturbed  by 50 % and 150 % of its original value.

We tested the model on 53 patients from the University of U tah. The tim e since overdose 

and overdose am ount were estim ated for each patient using initial m easurem ents of AST, 

ALT, and INR on admission (Fig. 2.2). Based on the extent of estim ated liver injury, the 

model predicts death  for patients who took over 20 g of APAP w ithout N-Ac adm inistration 

within the first 24 hours.

Excluding patients who were transplanted, death  versus recovery was predicted w ith 75 

% sensitivity and 95 % specificity (Tab. 2.1). W ith  the addition of initial serum creatinine 

exceeding 3.4 m g/dL , sensitivity increased to  100 %. For this dataset the subset of the 

Kings College C riteria (KCC) to  which we had access (INR >  6.5 and creatinine >  3.4 

m g/dL) had 13 % sensitivity and 100 % specificity. Only one patient had both  INR >  6.5 

and creatinine >  3.4 on admission. Thinking of the KCC as either INR >  6.5 or creatinine >

2.3 Results



T a b le  2.1. Sensitivity, specificity, PPV , and NPV for a subset of K ing’s College Criteria (INR >  6.5 and creatinine >  3.4), either 
INR >  6.5 or creatinine >  3.4 m g/dL , and the current study both  w ith and w ithout creatinine as an independent marker. Absolute 
numbers and 95% Clopper-Pearson confidence interval are given in parentheses.

Model Specificity Sensitivity P P V NPV
INR >  6.5 and creatinine >  3.4 
m g/dL
INR >  6.5 or creatinine >  3.4 
m g/dL
MALD (No Creatinine)
MALD (W ith Creatinine)

1 (43/43, 0.92-1)

0.95 (41/43, 0.84-0.99)

0.95 (41/43, 0.84-0.99) 
0.91 (39/43, 0.78-0.97)

0.13 (1/8, 0-0.53)

0.88 (7/8, 0.47-1)

0.75 (6/8, 0.35-0.97) 
1 (8/8, 0.63-1)

1 (1/1, 0-1)

0.78 (7/9, 0.4-0.97)

0.75 (6/8, 0.35-0.97) 
0.67 (8/12, 0.35-0.90)

0.86 (43/50, 0.73-0.94)

0.98 (41/42, 0.87-1)

0.95 (41/43, 0.84-0.99) 
1 (39/39, 0.91-1)

12
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F ig u re  2.2. MALD derived estim ates of tim e since overdose and overdose am ount for 53 
patients w ith known APAP overdose. Red squares indicate eventual death, green circles 
recovery, and orange triangles transplant. Small white dots indicate INR >  6.5 and small 
black dots indicate serum creatinine >  3.4 m g/dL  on admission. The gray line indicates 
overdose am ounts and tim es since overdose for which 70 % hepatic necrosis is predicted. 
P atien ts to  the right and above the gray line are predicted to  die.
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Patient number 5 , Result: recovery
OOo
CO

o
oo

oO
t \ O -I LO • \

1 • 1 T_ 1 \
1 • - i \
1 O \ '—

!  K
'  \ n  
1 ° C -

CO
<

50
00 1

1 -  _
J 0 - o ' o ~0 o  -

1
t  " ° - c — ----0 - 0—0-  o

T
-2 2 4 

time (days) time (days)

C O  -

co —
^  —
CM -

0
'c
03<D

° 'o  o
,°  O o

I—1— f—I—I

0 4 8
1__--^=0- ________ _

T T T
-2 0 2 4 6 8 

time {days}

cn
CD

OPk_<D>O
0)0 cCD
0)
1  
*o
CD -t—■ 
CD

E

co -| Predicted recovery Predicted death

(O -

rr -

<N -

O  H

10
1

20
I

30
1
40

estimated overdose amount (g)

F ig u re  2.3. Markers of liver damage (small black open circles) and model predictions (red 
dashed line) based on least squares fits of initial AST, ALT, and INR (large black filled 
circle) to  modeled AST, ALT, and INR (large red filled circle). Time t =  0 indicates the 
tim e of admission to  hospital. The estim ated overdose am ount and tim e since overdose for 
each patient is given by the orange dot in the lower right panel.
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F ig u re  2.4. Markers of liver damage (small black open circles) and model predictions (red 
dashed line) based on least squares fits of initial AST, ALT, and INR (large black filled 
circle) to  modeled AST, ALT, and INR (large red filled circle). Time t =  0 indicates the 
tim e of admission to  hospital. The estim ated overdose am ount and tim e since overdose for 
each patient is given by the orange dot in the lower right panel.
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F ig u re  2.5. Markers of liver damage (small black open circles) and model predictions (red 
dashed line) based on least squares fits of initial AST, ALT, and INR (large black filled 
circle) to  modeled AST, ALT, and INR (large red filled circle). Time t =  0 indicates the 
tim e of admission to  hospital. The estim ated overdose am ount and tim e since overdose for 
each patient is given by the orange dot in the lower right panel.
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Patient number 49 , Result: death
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F ig u re  2.6. Markers of liver damage (small black open circles) and model predictions (red 
dashed line) based on least squares fits of initial AST, ALT, and INR (large black filled 
circle) to  modeled AST, ALT, and INR (large red filled circle). Time t  =  0 indicates the 
tim e of admission to  hospital. The estim ated overdose am ount and tim e since overdose for 
each patient is given by the orange dot in the lower right panel.
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3.4 m g/dL  increased sensitivity to  88 %. We did not have access to  patient encephalopathy 

or arterial pH.

Using only d a ta  available on admission, the model results fit the posttreatm ent time- 

series of the markers of liver damage for the m ajority of individual patients (Tab. 2.2). The 

results from four representative patients are shown in (Figs. 2.3, 2.4, 2.5, 2.6). Patien ts 5 and 

8 were predicted to  have had overdoses th a t were very close to  the lethal threshold, whereas 

patient 49 was predicted to  have exceeded the lethal threshold. Patien t 16 was predicted to 

have had a smaller overdose. The confidence region for some patients who recovered (e.g., 

patient 16) includes regions with high overdose am ount and very early N-Ac adm inistration, 

as well as regions w ith low overdose am ount and late N-Ac adm inistration. In both  cases 

AST, ALT, and INR are low.

Model predictions of outcome were robust to  50 % increase or decrease in param eter 

values (Tab. 2.3). The most sensitive model param eters were the fraction of liver required for 

survival, ^ , the am ount of AST in the liver, pS , and the decay rate of AST, AS. Increasing ^  

to  0.45 caused more patients who eventually recovered to  be predicted to  die, and resulted 

in 100 % sensitivity and 77 % specificity, whereas decreasing ^  to  0.15 resulted in 88 % 

sensitivity and 93 % specificity. Increasing p S by 50 % resulted in 100 % sensitivity and 

79 % specificity, whereas decreasing pS by 50 % resulted in 88 % sensitivity and 88 % 

specificity. Increasing AS by 50 % resulted in 100% sensitivity and 91 % specificity, whereas 

decreasing AS by 50 % resulted in 88 % sensitivity and 74 % specificity.

Some param eters such as p, the fraction of APAP oxidized to  NAPQI, have a large effect 

on predicted dose of APAP, but no effect on predicted outcome. If p is 0.025, an overdose 

am ount of 40 g is required for 70 % hepatic necrosis and predicted death, whereas if p  is 

0.075, an overdose am ount of 13.3 g is required for 70 % hepatic necrosis and predicted 

death. Estim ates of overdose am ount scale with lethal dose so th a t estim ates of outcome 

rem ain the same despite large changes in estim ated overdose am ount.

2.4 Discussion
APAP, alone or in combination, accounts for about 50 % of cases of ALF in the USA 

[25]. Survival largely depends on two param eters: the size of the initial dose and tim e 

elapsed prior to  the adm inistration of N-Ac. Very early adm inistration (up to  12 hours 

after overdose) of N-Ac results in almost 100 % survival [8].



T a b le  2.2. Observed AST, ALT, INR, creatinine, and result, and predicted overdose am ount A0, tim e since overdose t , predicted 
result w ithout creatinine, residual, and estim ated probability of death. Patients w ith predicted results m arked with a star (*) were 
predicted to  die w ith the inclusion of creatinine.___________________________________________________________________

patient
num ber

AST ALT INR creatinine result A0 t predicted re
sult (without 
creatinine)

residual probability 
of death

1 18 27 1.2 0.8 recovery 6.1 3.9 recovery 0.5 0
3 138 128 1.2 0.5 recovery 6.6 1.9 recovery 0.46 0
4 6023 3352 11 1.5 transplan t 25.1 4.4 death 3.73 1
5 6432 6390 3 3 recovery 18.9 3.2 recovery 0.23 0.12
6 5267 12202 4.3 0.6 recovery 20.5 3.4 death 0.82 0.44
8 11842 6731 3.9 2.6 recovery 16.3 1.6 recovery 0.46 0.15
9 2381 4960 1.6 0.8 recovery 18.5 4.2 recovery 0.03 0.16
10 26 19 1.1 0.7 recovery 5.8 1.4 recovery 0.13 0
11 1546 3642 1.4 0.7 recovery 17.9 4.6 recovery 0.26 0.18
14 313 402 1.1 0.6 recovery 7.6 2.5 recovery 0.09 0
16 1427 1497 1.2 0.8 recovery 9.6 2.2 recovery 0.1 0
17 29 18 1.1 0.6 recovery 5.8 0.8 recovery 0.13 0
18 17 11 1.3 0.4 recovery 7.1 0.2 recovery 1.04 0
21 14230 6746 10.5 2.7 death 22.2 2.9 death 1.36 0.99
22 52 21 1 0.6 recovery 8.1 0.2 recovery 0.11 0
25 184 48 1 0.7 recovery 17.3 0.1 recovery 0.58 0
26 15953 5598 2 2.8 recovery 40 0.4 recovery 0.46 0
28 28 17 1.1 0.8 recovery 5.8 0.7 recovery 0.13 0
29 10394 8392 3.7 5 death 17.5 2.4 recovery* 0.02 0.14
31 24 16 1.1 0.6 recovery 5.7 1 recovery 0.14 0
33 774 443 1.7 0.7 recovery 7.3 0.8 recovery 3.44 0
36 509 7686 3.3 4 death 25.1 6 d ea th* 2.84 1
37 53 19 1.1 0.5 recovery 9.9 0.1 recovery 0.39 0
38 69 71 1 1 recovery 6.3 2.2 recovery 0 0
39 8122 8134 3.8 0.8 recovery 19 2.9 recovery 0.03 0.17
41 443 3368 1.9 0.8 recovery 24.7 6.6 death 0.01 1

19



T able 2.2 cont.
patient
num ber

AST ALT INR creatinine result A0 T predicted re
sult (without 
creatinine)

residual probability 
of death

43 23 22 1.2 0.7 recovery 5.9 2.3 recovery 0.5 0
44 35 19 1.2 0.7 recovery 6 0.4 recovery 0.5 0
47 23 21 1.2 0.6 recovery 5.9 2.1 recovery 0.5 0
49 7454 5507 17.8 1.4 death 25.7 3.9 death 1.19 1
51 37 27 1.4 0.9 recovery 5.9 1.4 recovery 1.69 0
53 626 563 1.6 0.7 recovery 7.7 1.7 recovery 2.75 0
54 24000 15000 3.1 0.9 recovery 17 1.2 recovery 2.84 0.14
55 289 1884 1.1 0.6 recovery 15.1 5.9 recovery 0.07 0.31
58 21 35 1.2 0.7 recovery 6.2 3.9 recovery 0.5 0
59 5238 3641 17.3 2.8 death 26.4 4.5 death 2.65 1
60 6298 2792 21.1 3.8 death 27.1 4.5 death* 5.3 1
61 230 921 1.7 6.7 transplan t 10.5 4.7 recovery* 4.03 0.29
62 744 903 1.5 0.9 recovery 8.6 2.3 recovery 1.89 0
63 8029 6989 2 1 recovery 14.6 2.2 recovery 0.1 0
65 147 117 1.3 0.6 recovery 6.5 1.6 recovery 0.97 0
67 21 9 1.2 1 recovery 13.9 0.1 recovery 0.86 0
68 1621 1404 1.8 5.5 recovery 8.9 1.3 recovery* 3.11 0
71 10810 9218 4.4 2.4 recovery 18.4 2.5 recovery 0 0.23
74 5562 4449 2.2 3.5 death 13.1 1.7 recovery* 0.76 0.05
75 14520 9159 2.3 1.3 recovery 14.4 1.6 recovery 0.85 0.02
77 1545 1228 6.3 1.2 death 26.7 6.3 death 8.26 1
78 7716 5588 2.3 0.7 recovery 13.9 1.8 recovery 0.15 0
79 37 13 1.2 0.8 recovery 15.9 0.1 recovery 0.92 0
81 31 25 1.1 0.7 recovery 5.9 1.7 recovery 0.13 0
82 115 163 1.5 3.1 recovery 6.9 2.7 recovery 2.41 0
83 78 52 1.5 0.7 recovery 6.1 1.2 recovery 2.43 0
84 17161 12147 4.2 3.5 recovery 17.5 1.5 recovery* 0.42 0.23 20
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T a b le  2.3. A sum m ary of how changes in param eter values affect predictions of outcome.
Modified Param e
ter

New Value Specificity Sensitivity P P V NPV

Current Study 
(W ith Creatinine)

0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)

V 0.45 0.77 (33/43) 1 (8/8) 0.44 (8/18) 1 (33/33)
V 0.15 0.93 (40/43) 0.88 (7/8) 0.7 (7/10) 0.98 (40/41)
H max 2.4 * 1011 0.93 (40/43) 1 (8/8) 0.73 (8/11) 1 (40/40)
H max 8 * 1010 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
pF 7.5 0.88 (38/43) 0.88 (7/8) 0.58 (7/12) 0.97 (38/39)
pF 2.5 0.88 (38/43) 1 (8/8) 0.62 (8/13) 1 (38/38)
n 480 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
n 160 0.93 (40/43) 1 (8/8) 0.73 (8/11) 1 (40/40)
Pl 127200 0.88 (38/43) 0.88 (7/8) 0.58 (7/12) 0.97 (38/39)
Pl 42400 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
Ps 3 * 105 0.79 (34/43) 1 (8/8) 0.47 (8/17) 1 (34/34)
Ps 1 * 105 0.88 (38/43) 0.88 (7/8) 0.58 (7/12) 0.97 (38/39)
q 0.01005 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
q 0.00335 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
Sl 0.525 0.88 (38/43) 1 (8/8) 0.62 (8/13) 1 (38/38)
Sl 0.175 0.93 (40/43) 0.88 (7/8) 0.7 (7/10) 0.98 (40/41)
Ss 1.38 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
Ss 0.46 0.74 (32/43) 0.88 (7/8) 0.39 (7/18) 0.97 (32/33)
r 1.5 0.84 (36/43) 1 (8/8) 0.53 (8/15) 1 (36/36)
r 0.5 0.93 (40/43) 1 (8/8) 0.73 (8/11) 1 (40/40)
K 0.0033 0.91 (39/43) 0.88 (7/8) 0.64 (7/ 1 1 ) 0.98 (39/40)
K 0.0011 0.93 (40/43) 0.88 (7/ 8) 0.7 (7/10) 0.98 (40/41)
Sg 3 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
Sg 1 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
Sz 7.5 0.93 (40/43) 1 (8/8) 0.73 (8/11) 1 (40/40)
Sz 2.5 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
Y 1.5 * 107 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
Y 5 * 106 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
P 0.075 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
P 0.025 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
Sa 0.495 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
Sa 0.165 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
a 9.45 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
a 3.15 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
F ■1 mm 0.85 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
F1 mm 0.65 0.93 (40/43) 1 (8/8) 0.73 (8/11) 1 (40/40)
e 2.5 0.86 (37/43) 0.88 (7/8) 0.54 (7/13) 0.97 (37/38)
e 7.5 0.91 (39/43) 1 (8/8) 0.67 (8/12) 1 (39/39)
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Some models of APAP toxicity rely on the tim e between ingestion and hospital admission 

to  determ ine the need for treatm ent [17] or as a m easure of exposure [26]. These are 

risky approaches because the tim ing of the overdose provided by the patient is frequently 

unobtainable or unreliable. Moreover, patients who arrive at the hospital 24 hours or more 

postingestion may have plasm a APAP levels below the detection limit.

The KCC [24] provides a well-validated m ethod for predicting death  w ithout transp lan

ta tion  in APAP-induced ALF [27], although they have been criticized for low sensitivity 

[28] and low negative predictive value (NPV) [29]. KCC used an initial dataset of 310 

patients to  identify statistically  significant prognostic indicators to  distinguish survivors and 

nonsurvivors and used a validation set of 121 patients to  identify cutoff values associated 

w ith survival rates less th an  20 % for the statistically  significant prognostic indicators, with 

no physiologically defined model of mortality. Many modifications of the KCC have been 

suggested [30, 31, 32, 33, 34, 35], perhaps most im portantly  the addition of arterial lactate 

[36]. A rterial lactate has consistently been shown to  be associated w ith survival, although 

its prognostic value has been questioned [37].

In contrast to  other modifications of the KCC, MALD is novel because we build upon 

the KCC by utilizing an understanding of the dynamics of hepatocyte damage following 

APAP overdose in the form of a dynamic m athem atical model. H epatic necrosis is directly 

related to  the extent of covalent binding of NAPQI to  intracellular components [2, 4, 6, 7], 

which causes hepatocyte lysis and release of AST and ALT into the blood. This produces a 

characteristic tim e course of injury w ith an early rise and predictable decay of AST, ALT, 

and INR. We have developed a system of differential equations based on the principles of 

APAP-induced liver damage. All param eters in MALD were estim ated from the literature, 

except six th a t were adjusted to  m atch general properties of AST and ALT dynamics, and 

two th a t were scaled to  the dosages thought to  cause hepatotoxicity and death. Survival 

information from University of U tah patients was not used in model development or param 

eterization. The equations describe how AST, ALT, and INR levels change over tim e as a 

function of overdose am ount. Because these curves over tim e are only a function of initial 

overdose am ount, AST, ALT, and INR levels in the model only depend on initial overdose 

am ount and tim e since overdose. Our m ethod works by fitting m easured AST, ALT, and 

INR values to  the curves described by our differential equations to  estim ate overdose tim ing 

and am ount (Fig. 2.7). An outcome of death  is predicted when the estim ate of overdose 

am ount is sufficiently high and the estim ate of tim ing predicts N-Ac to  be ineffectual, or
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F ig u re  2.7. A schematic description of how MALD can be used to  estim ate overdose 
am ount, tim ing, and outcome. P a tien ts’ AST, ALT, and INR are fit to  a family of curves 
described by MALD to  estim ate overdose am ount, timing, and outcome. If outcome is 
predicted to  be poor, liver transplan tation  may be necessary.
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when serum creatinine m easurem ents are sufficiently high. If the outcome is predicted to 

be poor, liver transplan tation  may be the only life-saving treatm ent.

Previous studies have not found absolute am inotransferase levels to  be significant pre

dictors of outcome in cases of APAP-induced ALF [24]. This is not surprising because 

am inotransferase levels will be low, even with a high dose, both  early and late in the course of 

the injury based on known mechanisms of liver dam age following APAP overdose. Similarly, 

high am inotransferase levels may be m easured near peak liver damage, even in cases of 

nonlethal overdose. In conjunction w ith INR and a suitable m athem atical model describing 

these mechanisms, however, am inotransferase levels do contain sufficient information to 

estim ate the tim ing and am ount of overdose.

Our model cannot distinguish patients w ith high overdose am ounts and early adminis

tra tion  of N-Ac from patients w ith low overdose am ounts and delayed treatm ent because in 

both  cases AST, ALT, and INR levels are low. However, this ambiguity affects only patients 

who are predicted to  recover.

Some patients w ith unique characteristics, such as those w ith significant muscle damage, 

may not fit the model. Muscle damage increases the level of AST, which may lead to 

poor estim ation of liver damage. Because ALT and INR values are not affected by muscle 

damage, this effect may be minimal. Further studies are w arranted to  determ ine whether 

more refinements are needed for special patient groups.

Our treatm ent of all patients as having the same param eter values is unrealistic. Well- 

known covariates of disease severity such as age [38], chronic alcohol use [39, 40], starvation 

or m alnutrition [41], and interactions w ith o ther drugs [42, 43, 44] may affect the param eter 

values of an individual. In some cases these differences will not affect the accuracy of 

predictions of outcome. Model predictions derive from the am ount of unconjugated NAPQI 

th a t results from a given dose, bu t th a t am ount may depend on patient characteristics. 

For example, alcoholics may make excessive NAPQI because of elevated p-450 levels, or 

individuals may have decreased levels of GSH because of starvation, com petition from other 

drugs, or genetic variation. These differences might make the model estim ates of initial dose 

seem overly high, bu t the outcome could still be accurately predicted because these patients 

have more unconjugated NA PQ I th an  is typical for the overdose amount.

Jam es et al. [45] show th a t APAP protein adduct levels may be used as specific biom ark

ers of APAP toxicity. If m easurem ents were routinely available, adducts could easily be 

added to  our model, and might provide additional predictive value. However, the correlation
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of protein adducts with AST and their similar kinetics lead us to  predict this effect would 

be small, although their more direct relationship to  liver damage might reduce noise and 

make them  a superior predictor.

Gregory et al. [46] found th a t individuals with overdose am ounts greater th an  10 g did 

not have significantly different m ortality than  those reporting smaller overdoses in patients 

w ith eventual hepatic encephalopathy. The authors suggest th a t this may be due to  inac

curate reporting of dosing inform ation by patients w ith eventual hepatic encephalopathy, 

or from a plateau effect in APAP overdose am ount, such th a t above a threshold the effect 

of APAP overdose ceases to  be additive. A plateau is built into our model, but at 20 g 

ra ther th an  10 g. In our model, w ithout treatm ent, any overdose above 20 g will result in 

severe hepatic injury, maximal AST, ALT, and INR levels, and poor outcome. Our patient 

set is quite different because Gregory et al. required eventual hepatic encephalopathy for 

inclusion, a param eter unknown on admission and associated with poor prognosis [47].

M ethods to  determ ine w hether to  use dangerous and costly interventions, such as tran s

plantation, will ideally be based on clinical d a ta  th a t are readily available a t the tim e 

of admission. Using only initial m easurem ents of AST, ALT, and INR, we were able to 

predict the hepatic injury progression and extent of liver dam age following APAP overdose. 

Unlike statistical models to  predict outcome, which m ust build on survivorship data, our 

m echanistic approach is based on the independently testable assum ption th a t 70 % hepatic 

necrosis leads to  death. Our dynamic model yields a prediction of outcome by estim ating 

the tim e since overdose and overdose am ount from commonly obtained laboratory da ta  on 

admission. W ith  the inclusion of creatinine, we were able, in this retrospective analysis, to 

predict survival versus death  w ith 91 % specificity, 100 % sensitivity, 67 % PPV , and 100 % 

NPV. Our initial analysis suggests th a t MALD compares favorably to  statistical methods, 

and should be validated in m ulticenter retrospective and prospective evaluation.



CHAPTER 3

CHRONIC ACETAMINOPHEN USE AND  
ACUTE LIVER INJURY  

3.1 Introduction
Acetam inophen is the most commonly used over the counter drug in the U nited States 

with over 40 % of adults reporting consum ption in a given m onth and 23 % reporting 

weekly use [48]. It is found in a t least 600 over the counter products, in pain relievers, fever 

reducers, cold and alergy medicines, and sleep aids, in tablet, gel tab , caplet and liquid form. 

From 1993 to  2007 there were over 750,000 emergency departm ent visits in the U nited States 

a ttribu tab le  to  APAP overdose [49]. W hile acute liver injury due to  acetam inophen overdose 

was historically the result of a single overdose, often a suicide a ttem pt, increasingly overdoses 

occur unintentionally, w ith dosages in excess of drug m anufacturer recom mendations for a 

period of several days [50]. Unintentional overdoses are associated w ith poorer outcome, 

possibly because they are often recognized only after symptoms have developed [51].

The reason for the increase in accidental overdose is likely multifaceted, but may partially 

be explained by consumer confusion. Since acetam inophen is found in com bination with 

many other drugs, people may exceed the recommended dosage by accidentally “double 

dipping,” not realizing th a t acetam inophen is present in m ultiple drugs, and taking more 

th an  intended. Consumers do not always adhere to  package or label instructions, a problem 

th a t is even more prevalent in patients with lim ited health  literacy [52].

Hepatotoxicity is often associated w ith short-term  fasting, chronic alcohol use, or use of 

P450-inducing m edications [39, 40, 41]. Each of these risk factors increases hepatotoxicity 

for a given dose by altering NA PQ I an d /o r glutathione dynamics. Short-term  fasting lowers 

glutathione production rate, P450-inducing medications increase the am ount of NAPQI 

produced for a given dose, and chronic alcohol use may either increase the am ount of NAPQI 

produced or compete for GSH, lowering the am ount of GSH available to  metabolize NAPQI.

We further analyzed the m athem atical model developed in Ch. 2 to  understand the 

effect of chronic APAP use on liver injury. The m athem atical model developed in Ch. 2
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assumed a single overdose, with APAP input only as an intial condition. Predictions of 

outcome were based on estim ates of tim e since overdose and the size of the APAP initial 

condition. We extended this model to  accom odate chronic acetam inophen use and analyzed 

model dynamics. We found th a t there is a threshold in the model w ith respect to  APAP 

intake and hepatocyte damage. Low intake produces no hepatocyte dam age since NAPQI 

is rapidly bound to  GSH and safely eliminated, bu t if APAP intake produces a quantity  

of NAPQI large enough to  fully deplete GSH reserves, hepatocyte damage ensues acutely. 

We fit our m athem atical model describing single overdose m arker dynamics to  synthetic 

markers of liver damage from overdose scenarios involving chronic use. The fits produced 

estim ated tim e since overdose, overdose am ount, and predicted outcome, w ith predicted 

outcome based on the minimum value of hepatocytes prior to  admission. We found th a t 

outcome could be accurately predicted from our synthetic data, even when the overdose 

occured on a background of chronic use, or as a result of a change in APAP metabolism 

efficiency.

We developed a model of acetam inophen m etabolism  and associated liver damage in 

Ch. 2. The model described below is identical to  the model in Ch. 2, but w ith an APAP 

intake term  in the serum APAP equation, a , and a small leak term  in the NAPQI equation 

unrelated to  GSH metabolism, 5N N . The small leak in the NA PQ I equation was added for 

m athem atical convenience, so th a t N  is bounded as H  goes to  zero.

3.2 Methods
3.2.1 C hronic acetam inophen  m etab olism  

and marker dynam ics

APAP

NAPQI

GSH —  =  K -  yN G  -  5o G 
dt

Functional Hepatocytes

Damaged Hepatocytes —  =  n N H  — 5ZZ
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AST ddt =  Z  -  i s ( S  -  Smin)dt uH max

ALT ^  =  - H k -  Z  -  5l (L  -  Lmin)
dt —H max

d F  /  H  \
C lotting Factor —  =  ,0f ( h -------- F j .

dt ' H max '

In principle the param eters may be tim e-dependent. We will first consider the time- 

invariant chronic use case, and later develop tim e-variant chronic use scenarios, w ith APAP 

input, a , an d /o r GSH production, k, changing w ith time.

3.2.2 T im e-invariant chronic use

3.2 .2 .1  S tead y  sta tes

Setting the tim e derivatives to  zero, we found the steady states of A, G, Z , S, L, and 

F  in term s of the steady states of H  and N  to  be

a H maxA*

G*

Z *

a H  * +  5a H„ 
k

YN* +  i G
nN  *h  *

i z

Z * +  isS m in )
\  max /
^ <*Ẑ L ,7* , * r ^
I - H  Z +  i LL min j \ u H max /

S * =  i s  ( - H r Z ' + i s  S

l * = £( m  Z * + h L
F * H *

H m

The steady states of H  in term s of the steady states of N  are H * =  0 and 
- i zH mox(n N * -  r)

H * = -------—-------- --------- . The steady sta te  of N  corresponding to  H * =  0 is the positive
r ( i z  +  nN  *) 

root of the quadratic equation

(iwiAHmaxY)N2 +  (-q p a a Y  +  YK^AHmax +  iw 5AH m axio)N  -  q p a a iG =  0.

- i z H max(n N * -  r)
The steady states of N  corresponding to  H * =  -------—-------- —------  are the roots of the

r ( i z  +  n N  *)
cubic equation a N 3 +  bN 2 +  cN  +  d =  0, where

a =5n H maxaSznY -  iwHmaxiArnY
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b =qpaarnY -  YKHmaxSArn -  Sn H maxaSzrY  +  Sn H maxaSzV$o -  Sn H max^ArSzY

+  YKHmaxadzn -  Sn H m axSzr^G  

c = qpaar5zY  -  YKHmaxSArSz +  qpaarr/^G -  YKHmaxaSzr -  5n H maxaSzrSG 

-  Sn  Hmax Sa  rSz  Sg 

d =qpaarSz  SG.

3.2 .2 .2  S tab ility  o f stead y  sta tes

Because the markers are not coupled to  the intracellular or hepatocyte equations, we 

need only determ ine the stability of intracellular and hepatocyte subsystem  to determ ine 

the stability of the steady states of the full system. Linearizing our system of intracellular 

and hepatocyte differential equations yields the Jacobian

J

a H
H max

-  SA

qpa
H max

0

0

- y G -  Sn  

- y G 

- n H

0

- Y N  

- y n  -  SG 

0

a A
Hm

' ( 1 -  H ^ )H max
r H

H max
-  n N  -

0

0

r H
H max

0 n H  0 n N  Sz

We found the steady states numerically for a range of acetam inophen input a, using 

param eter values described in Ch. 2, and SN =  10- 4 . We determ ined the stability of these 

steady states by numerically solving for the eigenvalues of J , evaluated at the steady states. 

We found a bifurcation at approxim ately a  =  0.34, when the H * =  0 steady sta te  changes 

stability, and another a t approxim ately a  =  6.83, a t which point the stable fixed point 

associated w ith H * & 1 and the unstable fixed point collide and vanish (Fig. 3.1). For a 

between approxim ately 0.34 and 6.83, the unstable fixed point has four eigenvalues with 

negative real part and one eigenvalue with positive real part.

3 .2 .2 .3  A pp roxim ation  o f b ifurcation  poin ts

Exam ining the steady states in the limit as y  goes to  infinity gives an approxim ation 

to  the bifurcation points (Fig. 3.2). The steady sta te  of N  corresponding to  H * =  0 is the 

positive root of the quadratic equation

0

0
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F ig u re  3.1. Bifurcation diagram s for APAP, NAPQI, GSH, and Hepatocytes as a fraction 
of normal, as a function of the bifurcation param eter APAP input a.
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(Sn Sa H maxYf)N2 +  ( -  qpaa7  +  YKSA—max +  Sn SA—maxSG)N -  qpaaSG =  0.

Dividing by 7  and taking the limit as 7  goes to  infinity, the fixed points of the approxim ate 

system satisfy

N * (Sn SAHmaxN* -  qpaa  +  KSAHmax) =  0.

This equation has degenerate roots when - q p a a  +  KSAHmax =  0, which, solving for a, gives

an approxim ate value for the bifurcation point of a  =  K—max^A .
qpa

- S z —max(n N * -  r)
Similarly, the steady states of N  corresponding to  — * =  -------—-------- ——-----  are the

r(oZ +  n N  *)
roots of the cubic equation a N 3 +  b N 2 +  c N  +  d =  0, where 

a =Sn  —m axaSzn i -  Sn  —maxSArrn

b =qpaarnY -  YK—maxSArn -  Sn  —m a x a S z n  +  Sn  —maxaSznSG -  Sn  —maxSArSz7 

+  YK—maxaSzn -  Sn  —m axSzr^G  

c = qpaarSz7  -  YK—maxSArSz +  qpaarnSG -  YK—maxaSzr -  Sn  —maxaSzrSG

-  Sn  —maxSArSzSg 

d =qpaarSZ Sg .

Dividing by 7  and taking the limit as 7  goes to  infinity, the fixed points of the approxim ate 

system satisfy N ( a N 2 +  bN  +  c) =  0, where

a = SN —maxaSZ n SN —maxSArn

b = qpaarn -  K—maxSArn -  Sn  —maxaSzr -  Sn  —maxSArSz +  K—maxaSzn  

c = qpaarSz -  k—maxSArSz -  k—maxaSzr

This equation has degenerate roots when c =  0, which, solving for a , gives an approxim ate

value for the bifurcation point of a  =  k—max(^A +  a ) .
qpa

3.2 .3  A P A P -in d u ced  liver injury on background o f chronic use

We explored the effect of chronic use in combination with APAP overdose or change 

in m etabolic efficiency on APAP-induced liver injury. We considered five tim e-variant 

scenarios. Three scenarios involved constant chronic APAP use followed by a dose of APAP 

in the form of a pulse of size A over. The three scenarios we considered were constant chronic 

APAP use prior to  overdose followed by continued constant APAP use, continued constant
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o g/day

F ig u re  3.2. Bifurcation diagram  for H epatocytes as a fraction of H max as a function of a  
for various values of 7 . As 7  approaches infinity, the two bifurcation points near a  =  6.9 
converge.

use for 1.5 days followed by no further acetam inophen use, and no further acetam inophen 

use after overdose (Fig. 3.3). We will refer to  these scenarios as a  continued, a  continued 

for 1.5 days, and a  discontinued, respectively.

We also considered two tim e-variant scenarios w ith constant APAP input and lowered 

GSH production levels for 1.5 days. GSH production can decrease for a variety of reasons 

including m alnutrition or starvation, which may in itiate  liver damage, even w ith constant 

APAP input. The two scenarios we considered were constant chronic APAP input with 

GSH production decreased to  some fraction of normal for 1.5 days w ith continued constant 

APAP use, and constant APAP input with GSH production decreased to  some fraction of 

normal for 1.5 days w ith no further APAP input when GSH production returns to  normal
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o continued

A over
A

time

a continued fo r 1.5 days

A o
/
ver

1.5 days

time

a discontinued

time

F ig u re  3.3. A schematic representation of three scenarios of chronic APAP use followed 
by an APAP overdose of size A over. The scenario a  continued has continued APAP input 
a t a constant rate  after A over, a  continued for 1.5 days has continued APAP at a constant 
rate  for 1.5 days after A over, and a  discontinued has no further APAP input after A over.
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levels (Fig. 3.4). We will refer to  these scenarios as k changing a  continued, and k changing 

a  continued for 1.5 days, respectively.

We numerically solved the differential equations for the five scenarios w ith tim e varying 

param eters for a range of A over, k as a fraction of normal, and a. For the three models 

with constant chronic APAP use followed by an overdose, initial conditions for N , G, H , Z ,

S, L, and F  were set to  the stable steady sta te  associated with H * & H max and the given 

chronic value of a. The initial condition for A  was set to  the sum of the A  steady state  

associated w ith H * & H max and A over. For the two models w ith constant chronic APAP 

use followed by lower GSH production, initial conditions for A, N , G, H , Z , S , L, and F  

were set to  the stable steady sta te  associated w ith H * & H max and the given chonic value 

of a .

For each combination of param eters, we tracked AST, ALT, and INR m arker levels and 

the minimum value of H  up to  a range of tim es since A over or change in k. Values of a  

ranged from 0 to  6 by 1 g/day, A over ranged from 0 to  30 by 2 g, and k as a fraction of 

normal ranged from 0 to  1 by 0.1. The differential equations were numerically solved for each 

combination of a  and Aover for each of the three models involving chronic acetam inophen 

use followed by overdose and for each combination of a  and k  as a fraction of normal for 

the two models involving reduced k for 1.5 days.

The case a  discontinued is approxim ately equivalent to  a single tim e overdose of a

larger am ount. Since 7  is large, the initial NAPQI produced by the overdose is rapidly

absorbed by GSH, until GSH reserves are depleted to  zero, and NA PQ I does not increase

until GSH reserves are fully depleted. Because 7  is large, the steady sta te  values of

all of the sta te  variables except A  and G  are approxim ately equal in the chronic use

case and the single tim e overdose case. W ith  a background of constant chronic use, the

am ount of APAP absorbed by GSH before GSH levels drop to  approxim ately zero from an

overdose is Hmax (  k — —— q a a  j . The level of A  for a chronic user before overdose 
qpdo V Hmax (a  +  5 a ) /

is — a ---------- . The equivalence in overdose am ount of the a  discontinued model and the
H  + 5 AH max

single tim e overdose model is thus

A =  A a  + H max (  k qpaa \  H„
A over,chronic — A over a  +  r I K

H max
+  5a  qp5c V Hmax (a  +  5a ) J qp5c

where A over,chronic is the overdose am ount in the a  discontinued case th a t is equivalent to 

a single overdose w ithout chronic use of size Aover

k
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------ k changing,
k changing,

a continued
a continued for 1.5 days

1.5 days

f
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time

F ig u re  3.4. A schematic representation of the two scenarios of chronic APAP use followed 
by decreased GSH production for 1.5 days. The scenario k changing, a  continued has 
continued APAP input a t a constant rate, while the scenario K changing, a  continued for 
1.5 days has no further APAP input after GSH production returns to  normal.
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3.2 .4  Single overdose fits to  chronic m odel marker dynam ics

To determ ine the ability of our single overdose model to  accurately predict outcome 

from liver injury m arker measurem ents arising from chronic use, we fit the AST, ALT, and 

INR values from the five scenarios w ith background chronic acetam inophen use to  the single 

overdose model described in Ch. 2 using weighted least squares a t times 1/2, 1, 2, 3, 4, 5, 6, 

7 days after the pulse of A over or change in k, using MALD as described in Ch. 2 (Fig. 3.5). 

Values of a  ranged from 1 to  6 by 1 g/day, A over ranged from 2 to  30 by 2 g, and k as a 

fraction of normal ranged from 0 to  0.9 by 0.1. The model fits estim ate an overdose amount 

and tim e since overdose for each patient. For each estim ated overdose am ount and time, 

we numerically solved the single tim e overdose model to  obtain an estim ated pre-admission 

minimum hepatocyte level and outcome.

3.3 Results
The tim e-invariant chronic use model has bifurcations with respect to  the APAP in

put param eter a . There exists a bifurcation at approxim ately a i  =  KHmax A where
qpa

the fixed point associated w ith H * = 0  changes stability and another a t approxim ately

a 2 =  kHmax(iA +  a ) where the the stable fixed point associated w ith H * «  H max collides 
qpa

with an unstable fixed point and vanishes. In the limit as iA goes to  zero, all APAP 

is processed by hepatocytes and the fixed point associated w ith H * =  0 is stable for 

all positive a . The bifurcation at a 2 corresponds to  the ratio  of GSH production and 

NAPQI production. If GSH production is greater th an  NA PQ I production, the fixed 

point associated w ith H * «  H max is stable, whereas if NA PQ I production exceeds GSH 

production, the only stable fixed point is th a t associated w ith H * =  0.

The stability analysis indicates th a t for a  between a i  and a 2 there exists an unstable 

fixed point from which a separatrix  em anates. The fixed points associated w ith H * =  0 

and H * «  H max are stable for a  between a 1 and a 2, bu t a large enough pertu rbation  away 

from these fixed points can lead to  a transition  from one fixed point to  the other.

A perturbation  resulting in transition  from the fixed point associated w ith H * «  H max 

to  th a t associated w ith H * = 0  can occur for a variety of reasons. We developed five 

tim e-variant scenarios, two of which involve continued chronic use after a perturbation  in 

either APAP input, a , or GSH production, k. Figs. 3.6 and 3.7 show the APAP pulse 

and k deviation for 1.5 days required to  force a transition  from the fixed point associated 

with H * «  H max to  th a t associated w ith H * =  0. Also plotted is the APAP pulse and k
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------ a discontinued after 1.5 days, 
^const_5 i Aover_12i tiffle—3 days 

----- single time model 
Aest=22.9, timeest=2.45 days

time (days) time (days)

F ig u re  3.5. An example of m arker d a ta  from a chronic overdose scenario and the single 
tim e overdose fit. The single tim e overdose model MALD underestim ates the tim e since 
overdose by about 0.5 days, bu t estim ates the extent of hepatocyte damage well.
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deviation for 1.5 days required to  reach at least 90 %, 70 %, 50 %, and 30 % necrosis, w ithout 

treatm ent, for the three scenarios w ith APAP use eventually discontinued. Even when 

APAP use is discontinued im m ediately following overdose, the damage from an overdose 

over a background of chronic use is greater th an  from a typical single tim e overdose of a 

given dose because GSH levels are lowered from chronic use.

Figs. 3.8 and 3.9 show the am ount of necrosis w ithout treatm ent for the five tim e-variant 

scenarios as a function of APAP pulse, Aover (Fig. 3.8) and decreased GSH production for

1.5 days, k as a fraction of normal (Fig. 3.9). Chronic APAP use increased hepatic necrosis 

for a given dose. Continued APAP intake leads to  more hepatocyte damage th an  when 

APAP use is eventually discontinued. APAP intake after damage has already begun to 

occur results in greater damage th an  typical for a dose, as there are fewer hepatocytes to 

process the APAP.

We fit the m arker levels from the five chronic use tim e-variant scenarios a t times up 

to  a week after overdose or change in GSH production to  MALD, the single tim e overdose 

model described in Ch. 2, yielding an estim ated tim e since overdose, overdose am ount, and 

minimum hepatocyte level. We compared the estim ated tim e since overdose to  the actual 

tim e since APAP pulse or change in GSH production rate  (Tab. 3.1) and the the estim ated 

minimum hepatocyte level to  the actual minimum hepatocyte level actually produced by 

the five chronic use tim e-variant scenarios (Tab. 3.2 and Fig. 3.10).

3.4 Discussion
The antioxidant glutathione is extrem ely effective a t binding to  NAPQI, preventing the 

build up of NA PQ I th a t leads to  hepatocyte damage and ultimately, if enough NAPQI 

is produced, liver failure and death. If GSH production cannot keep pace with NAPQI 

production, intracellular NAPQI levels rapidly increase and acute liver damage ensues. The 

fast binding of GSH to  NAPQI leads to  a threshold system such th a t the rate  of NAPQI 

production m ust exceed the rate  of GSH production for NA PQ I to  build up enough to  cause 

liver damage.

The five tim e variant scenarios fit well to  the single overdose model. Time since overdose 

estim ates were best for the a  continued for 1.5 days and the a  discontinued scenarios. Time 

since overdose was estim ated least well for the k changing, a  continued scenario. In this 

scenario, it takes tim e for APAP to build up because of low GSH production, so there is a 

delay from the tim ing of decreased GSH production to  the onset of liver injury.
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T a b le  3.1. Simple linear regression of estim ated tim e since overdose to  actual tim e since 
APAP pulse or change in GSH production ra te  in the tim e-variant scenarios. Significant 
differences indicate intercept different from 0 and slope different from 1 . ***p < 0.001; 
**p < 0.01; *p < 0.050.1; •p < 0.1_______________________________________________

scenario intercept ±  s.e. slope ±  s.e. R 2

a  continued
a  continued for 1.5 days 
a  discontinued 
k changing, a  continued 
k changing, a  discontinued

0.227 ±  0.053*** 0.793 ±  0.013*** 0.845 
0.060 ±  0.019** 0.930 ±  0.005*** 0.983 
0.144 ±  0.020*** 0.974 ±  0.005*** 0.984 
1.083 ±  0.071*** 0.337 ±  0.017*** 0.453 
0.510 ±  0.058*** 0.789 ±  0.014*** 0.870
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T a b le  3.2. Simple linear regression of estim ated minimum value of hepatocytes for the 
single tim e point overdose fit to  the actual minimum hepatocyte level for the tim e-variant 
scenarios. Significant differences indicate intercept different from 0 and slope different from 
1. ***p < 0.001; **p < 0.01; *p < 0.050.1; • p < 0.1_______________________________

scenario intercept ±  s.e. slope ±  s.e. R 2
a  continued
a  continued for 1.5 days 
a  discontinued 
k changing, a  continued 
k changing, a  discontinued

0.003 ±  0.001** 0.992 ±  0.002*** 0.997 
0.000 ±  0.001 0.995 ±  0.002** 0.997 
0.002 ±  0.001. 1.002 ±  0.001 0.999 
0.002 ±  0.004 0.994 ±  0.004 0.993 
—0.006 ±  0.008 1.005 ±  0.008*** 0.970
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.........separatrix boundary
----- -o continued
----- -o continued for 1.5 days
----- o discontinued

H min -  0 9 H min -  0 7
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F ig u re  3.6. The overdose am ount, A ouer, required for minimum hepatocyte level of 0.9, 
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Figure 3.7. The reduction of GSH production, k as a fraction of normal, required for 
minimum hepatocyte level of 0.9, 0.7, 0.5, and 0.3 for a chronic APAP level a for two 
k changing scenarios. The separatrix boundary describes the k as a fraction of normal 
required to transition from the steady state associated with H * «  Hmax to the steady state 
associated with H * =  0 for the k changing, a continued scenario.
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The extent of hepatocyte necrosis was well estimated for all scenarios, even when time 

since overdose was poorly estimated (R 2 >  0.97 for all scenarios, Fig. 3.10, Tab. 3.2). 

Estimated intercepts were all very close to zero and slopes very close to one, indicating 

good fit between estimated liver damage and actual liver damage.

The threshold nature of the system leads to rapid liver injury when NAPQI production 

exceeds the threshold of GSH production. Either the liver is being injured rapidly, or it is 

not being injured since it is unlikely for APAP levels to be maintained at a level such that 

hepatocyte regeneration balances NAPQI production. Thus, APAP-induced liver injury is 

manifested as acute injury, even when APAP is used chronically. Since APAP-induced liver 

injury tends to be acute, hepatocyte injury dynamics are similar, even with chronic use.

Similar hepatocyte injury curves create similar marker dynamics. The characteristic 

time course of liver injury leads to good fits of markers from the five scenarios of chronic 

APAP use to the single overdose model MALD. Time since overdose is perhaps better 

thought of as time since initiation of liver injury since in some scenarios there is no single 

time of overdose. Surprisingly, even when time since onset of injury was poorly estimated, 

the extent of liver injury was well estimated. Because the extent of liver injury is what is 

used to predict outcome, predictions of outcome were robust, even when estimates of time 

since overdose and overdose amount were poor.

We considered five scenarios, though of course many others are possible. Some scenarios 

such as changing the fraction of APAP metabolized to NAPQI merely change the effective 

dosage, while others such as competition from other drugs may change model dynamics. 

The threshold nature of the system combined with the improbability of balance of NAPQI 

production with hepatocyte regeneration, however, leads us to predict that APAP-induced 

liver injury is generally acute, and thus predictions of the extent of liver injury are robust. 

In our model, we assume a constant intracellular GSH production rate. If GSH production 

is regulated in such a way so as to provide compensation for the lowered GSH levels due to 

chronic use, model dynamics may be altered and the impact of chronic use lessened.

Risk factors for APAP-induced liver injury can be easily understood in the context 

of our model. Short-term fasting, chronic alcohol use, and chronic use of P450-inducing 

medications all affect the model in different ways, but each increases the likelihood of 

hepatotoxicity for a given dose. Fasting can decrease GSH production, chronic alcohol use 

may decrease GSH production or increase the fraction of APAP metabolized to NAPQI, and 

P450-inducing medications increase the fraction of APAP metabolized to NAPQI. These
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factors modify the threshold, changing the APAP dosage required for NAPQI production 

to exceed GSH production.

The dynamics of our APAP overdose model exhibit threshold behavior, giving insight 

into why chronic APAP use leads to acute, rather than chronic, liver damage. The dynamics 

suggest that marker fits to MALD, which are based on a single time point overdose, 

can accurately estimate the degree of hepatotoxicity, even when the overdose occurs on 

a background of chronic use.



CHAPTER 4

HOW ANIMAL NITROGEN METABOLISM 
SHAPES ISOTOPIC SIGNATURES 

OF TROPHIC DYNAMICS 

4.1 Introduction
Community ecology relies on a thorough understanding of species interactions. Predator- 

prey relationships determine energy and nutrient flows, food web structure and dynamics, 

and mechanism of control of species abundance (e.g., top-down vs. bottom-up). An accu

rate knowledge of these relationships is needed to predict how these factors change with 

disturbance and management. In practice, predator-prey relationships are complex, difficult 

to quantify, and often vary with time, changing with season or year. Direct observation 

is often impractical or impossible, making indirect methods to estimate and quantify an 

animal’s diet necessary. Stable isotopes are perhaps the most powerful indirect method 

available. Carbon, nitrogen, and sulfur stable isotopes in nutrients are incorporated into 

tissues, recording and integrating the isotopic signal of dietary sources [53, 54].

While the stable isotope ratios of diet are the major determinant of the stable isotope 

ratios of consumer tissue, isotopes do not act as pure tracers. Physiological and metabolic 

processes lead to the partial separation of light isotopes (e.g., 12C, 14N, etc.) from heavy 

isotopes (e.g., 13C, 15N, etc.) (Tab. 4.1). The difference between the stable isotope 

ratio of consumer tissue and diet is termed consumer tissue-diet discrimination. Nitrogen 

consumer tissue-diet discrimination tends to be positive [55], and the bioaccumulation of
15N can be used to estimate trophic position [56, 57]. The level of nitrogen consumer 

tissue-diet discrimination is highly variable with interesting feedbacks with diet quality 

[58, 59] and quantity [60, 61] that depend on physiology and metabolism. It has been 

suggested that as protein intake increases or protein quality decreases, nitrogen consumer 

tissue-diet discrimination increases. Other important physiological factors that can influence 

the nitrogen stable isotope ratio of tissue include nitrogen recycling in the gut [62, 63], 

tissue turnover [54], and metabolic routing [54, 64], the preferential allocation of certain
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Table 4.1. The difference between the nitrogen stable isotope ratios of consumer tissue and 
diet, termed nitrogen consumer tissue-diet discrimination, is highly variable and influenced 
by many related, potentially interacting factors that affect an organism’s metabolism and 
nitrogen budget.______________________________________________________________

Factor Reference
dietary protein quality [58, 59]
dietary protein quantity [60, 61]
total energy intake [65, 66, 67]
tissue turnover rate [68]
consumer class and species [55]
form of nitrogen excretion [55]
tissue and organ type [55]
amino acid type [69]
starvation and nutritional stress [65, 66, 67]
metabolic rate [70]
metabolic routing [64, 54]
gut nitrogen recycling [71]
pregnancy [72]
growth [73]

macronutrients to specific tissues. Because consumer tissue-diet nitrogen discrimination 

depends on physiology and metabolism, tissue nitrogen stable isotope ratio measurements 

can be used as a proxy for an animal’s metabolic and nutritional state if the physiological 

underpinnings are well understood.

Consumer tissue-diet nitrogen discrimination also varies with amino acid: certain amino 

acids have high amino acid-diet nitrogen discrimination, while other amino acids have 

isotope ratios more similar to diet [69]. This likely depends on the details of how nitrogen is 

exchanged between amino acids in synthesis and catabolism [61]. Amine groups containing 

14N are favored in biochemical reactions that affect nitrogen in amino acids (e.g., transam

ination and deamination), which may result in preferential excretion of isotopically light 

nitrogen [74]. Though transamination may be important, isotopic fractionation associated 

with urea formation is thought to be largely responsible for nitrogen isotope tissue-diet 

discrimination [75].

We have developed a mathematical model that describes the basic nitrogen dynamics of 

an animal. Our model tracks nitrogen atoms in ingested molecules as they are transformed, 

incorporated into tissues, and excreted, and it predicts that a minimum nitrogen intake 

is required to maintain body protein reserves. We extended our model to track nitrogen
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stable isotope and calculated the nitrogen isotope tissue-diet discrimination for a range of 

nitrogen intake values, as well as the turnover of nitrogen isotopes in various pools after a 

diet switch.

4.2 Methods
4.2.1 Nitrogen cycling in an animal

The major source of nitrogen in animal tissues is dietary protein. Proteins in diet enter 

the gut, where they mix with proteins of endogenous origin, mostly shed cells of the mucosal 

lining, and are broken into constituent small peptides and amino acids. Amino acids in the 

gut are absorbed via sodium-dependent amino acid transporters into the portal vein where 

they are processed by the liver and enter the free amino acid pool in plasma [76]. Free amino 

acids in the blood feed body tissues, which are constantly turning over, and represent the 

largest store of nitrogen in an animal.

The size of the free amino acid pool in plasma is tightly regulated, as is the size of the 

protein pool, provided protein intake level exceeds a minimum threshold. Excess plasma 

nitrogen is processed by the liver and converted to urea, under a net reaction requiring 

equimolar amounts of glutamate, derived from plasma amino acids, and ammonia, which 

can be derived from glutamate [75]. Urea is concentrated in the kidneys and excreted, 

though about 30 % is transported to the gut where bacteria can hydrolize it to ammonia, 

a process known as urea nitrogen salvage. Gut bacteria also catabolize amino acids to 

ammonia, as well as synthesize amino acids from ammonia that may become usable to the 

animal [75]. Nitrogen is also lost in feces as proteins, amino acids, ammonia, and urea, as 

shed proteins such as skin and hair, and as ammonia and amino acids in urine.

4.2.2 Model description

We developed a system of nonlinear differential equations to describe the major compo

nents of nitrogen cycling in an animal (Fig. 4.1).

dG p
Gut protein —-— =  a — YGGP +  v—PM P — 5GGP 

dt

dG aGut amino acid —-— =  Yg Gp  — $ g lGa — kgGa +  Ug G— — &g Ga 
dt

dG —
Gut ammonia — —— = kgGa — ^gG m  +  ngG u — £glG m  +  k iIp — $g G— dt
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Figure 4.1. A schematic representation of the interactions of nitrogen pools in the 
mathematical model. Nitrogen atoms in ingested molecules are transformed, incorporated 
into tissues, and excreted. Nitrogen in the gut (blue) is processed by the liver (yellow) and 
incorporated into tissues (red).
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Mucosal protein 

Liver amino acid

Liver ammonia

Liver urea

Gut urea

Plasma amino acid

dMp
dt

dLA
dt

dLM
dt

dLu
dt

dGu
dt

dPA
dt

=YpMPA(mpmax -  M p) -  Vm p M p -  Ym p M p

=  ^GLGA -  nLLMLA -  KLLA +  ^pLPA 

- £ lp La (p amax -  Pa ) -  â La

=  CgLGM +  KLLA -  ^LLMLA -  5MLM

=  2^l Lm La -  l̂gLu -  5l Lu

=  rccL u  -  ncGu -  5g G u

=  Ym p  M p -  YpMPA(mPmax -  M p) +  y/ p  Ip

-  Yp /P a (* pmax Ip ) +  ^lp La (p amax-  Pa ) -  ^p l Pa

dip
Intracellular protein —  =  Yp /P a (ipmax -  ip ) -  Y/p  ip  -  k/ ip  -  5 /ip

The nonlinear terms in the model represent the regulation of the size of the plasma amino 

acid pool, the mucosal protein pool, and the intracellular protein pool, and the formation 

of urea from liver amino acids and ammonia. We assume that the size of protein pools 

are well regulated, so that protein pools will tend toward a given level for a wide range of 

nitrogen intake rates. To achieve this effect, we use mass action like terms to describe the 

regulation of tissue protein production, mucosal protein production, and transfer of amino 

acids from the liver to plasma. For example, intracellular protein is produced by plasma 

amino acid at rate Yp /PA(ipmax -  ip ). We use the mass action term nLLMLa to describe 

the formation, within the liver, of urea from ammonia and amino acids.

4.2.3 Model parameterization
We estimated model parameters for a 65 kg human, using known and estimated param

eters and steady state pool sizes for an intake rate of nitrogen of 10 g/day (Tabs. 4.2 and 

4.3). Using known and assumed parameters and steady state pool sizes for a =  10 g/day, 

we solved the Gp , M p , and ip  steady state equations for yg, YpM , and yp/, respectively. 

Assuming rapid exchange between the plasma amino acid pool and the liver amino acid



Table 4.2. Variables in nitrogen mode
Variable Description Steady state with a =  10 g N/day Unit Reference
G p Gut protein nitrogen 10 g 14n [76]
Ga Gut amino acid 2.0 g 14n [76]
G m Gut ammonia 0.21 g 14n [76]
Mp Mucosal protein 59 g 14n [76]
La Liver amino acid 1.1 g 14n assumed
Lm Liver ammonia 0.98 g 14n assumed
Lu Liver urea 1.1 g 14n assumed
G u Gut urea 0.76 g 14n [76]
Pa Plasma amino acid 15 g 14n [77]
Ip Intracellular body protein 2300 g 14n [76]
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Table 4.3. Parameters in nitrogen model.
Parameter Description Value Unit Reference
a Dietary protein intake rate 0-30 g 14N/day
VMP Shedding rate from mucosal lining to gut 0.17 1/day [76]
5o Gut nitrogen decay rate 0.1 1/day [76]
Pol Absorption rate of amino acids to portal vein 12 1/day [76]
nL Urea production rate 6.5 1 /g/day [78]
5a Rate of amino acid and protein loss in urine 0.65 1/day [79]
5m Rate of ammonia loss in urine and sweat 0.46 1/day [79]
tlo Rate of urea recycling 6.5 1/day [78]
5l Rate of urea loss in urine 6.5 1/day [78]
no Rate of urea hydrolysis 9.3 1/day [78]
Yip Rate of turnover of body protein 0.017 1/day [80]
Ym p Rate of turnover of body protein 0.017 1/day [80]
mpmax Maximum mucosal protein pool size 59.01 g 14n [76]
'Lpmax Maximum body protein pool size 2300.01 g 14n [76]
pamax Maximum plasma amino acid pool size 16 g 14n [76]
5i Rate of shedding of skin and hair 0.00015 1/day [81]
ki Rate of ammonia production by body protein 0.001 1/day assumed
Yo Degradation rate of protein to amino acid 1 1/day calculated
Yp i Intracellular body protein production rate 278 1/ g 14N/day calculated
Ypm Mucosal protein production rate 74 1/ g 14N/day calculated
ioL Rate of ammonia transfer from gut to liver 18 1/day calculated
kl Rate of liver AA conversion to ammonia 3.4 1/day calculated
Ppl Plasma AA to liver AA transfer rate 100 1/day assumed
Plp Liver AA to plasma AA transfer rate 1513 1/ g 14N/day calculated
Ko Rate of microbial ammonia production in gut 1 1/day assumed
Vo Rate of microbial AA production in gut 36 1/day calculated
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pool, we set [3pl  =  100, and solved the Pa steady state equation for [3l p . Similarly, we set 

kg =  1, and solved the Ga steady state equation for ^G. Using these values, we solved the 

Lm steady state equation for kl , and the Gm steady state equation for ( GL.

4.2.4 Steady states

We numerically found the steady states as a function of dietary nitrogen intake a by 

solving the differential equations at time 106 days. Parameters were set to the values in 

Tab. 4.3 and initial conditions were set to the the steady state values for intake rate of 10 

g/day (Fig. 4.2).

4.2.5 Stable isotope model
We developed equations tracking total nitrogen fluxes. The corresponding 15N differ

ential equations, with the potential for fractionation, or preference of molecules containing 

either 15N or 14N, in each flux term are:

dG*
Gut protein 15N =  ainRina -  alGygGp +  a VMP v m pM p -  a$G 5gG*p

*dG
Gut ornino acid 15N =  aYG YgGP -  a «GL&GLGA -  a KG kgGa +  a „GHc G'm

- cMg 5GGA

dG*
Gut ammonia ‘ 5N ^  kg G'a -  am Gl,  +  o„g -  a fGL

+ a K! KIIp  -  aSG 5GG *m

dM *
Mucosal protein 15N —d  =  a lPM y p m PA (mpmax -  M p) -  a VMP vm p Mp

- a lMP ym p  Mp

dL*
Liver amino acid 15N =  apGLPglG*a -  a VL2 nlLm L*a -  a KL klL*a

+ afiphPp LP*  -  a fiLPPl p LA(P amax -  Pa) -  asA 5a L*a

dL*
Liver ammonia 15N — M  =  a^GL£g lG*m  +  a KL klL*a -  aVL1 nLL*MLa -  oSm 5m L*m

dL*
Liver urea 15N - d 1 =  a ^ i VlLMLa +  oVl2 Vl Lm L*a -  o ^ g  ̂ loL ^  -  a&L 5lLU
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dG*
Gut urea 15N ~dfU =  (XrLG TlgLU -  anG VgGU -  a$G 5g GU

dP *
Plasma amino acid 15N —tA =  a1MPy m p M p -  a 1PMYp m Pa (mpmax -  M p )

+ aYJPYIPIP -  aYPjYPIPA( ipmax Ip  )

+ afiLP Plp  L*a (p amax-  PA) -  afPLPp LPa

dl*
Intracellular protein 15N =  alPIYp i P* (ipmax -  Ip ) -  alJPy ip I*p  -  a Kj k iI*p

- a &j 51 I *p .

4.2.6 Stable isotope steady states as 
function of fractionation

In principle, isotopic fractionation may occur with each term. It is likely, however, that 

fractionation is dominated by a small number of processes. Since urine has a lower isotope 

ratio than diet, it is thought that the process leading to isotopic discrimination is urea 

formation [75].

We set all fractionation factors a  in the 15N differential equations to 1, except the 

fractionation factors associated with urea formation, aVL1 and aVL2, which we set equal to 

each other at a value now referred to as a. We numerically found the 15N steady states for 

a  =  1, 0.996, 0.992, and 0.988 as a function of dietary nitrogen intake a with the isotope 

ratio of diet Rin =  0.003676 (Fig. 4.3).

Stable isotope abundances are reported in 5 notation as parts per thousands (0/oo), where

5 =  (R s -  0 * 1000 0/oo

and Ra and Rs are the molar ratios of the rare to abundant isotope in the sample and the 

standard, respectively. For nitrogen isotopes, the standard is air with a nitrogen isotope 

ratio of RS =  0.003676.

4.2.7 Turnover from change in diet isotope composition

To assess how changes in the isotope ratio of diet propagate to internal pools, we varied 

Rin with time and numerically solved the differential equations (Figs. 4.4 and 4.5). We 

simulated a diet switch by setting Rin to be a step function equal to 0.003676, corresponding 

to 515Ndiet =  0 0/oo, until day 100, when Rin switches to 0.00369438, corresponding to
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Figure 4.4. Stable nitrogen isotope ratios of the 10 pools and diet as a function of time 
for a  =  0.990 and a =  10 g/day. The 515N of diet switches from 0 o/oo to 5 o/oo at day 100.
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day 100.
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515Ndiet =  5 0/oo. The total nitrogen dietary intake, a, was fixed at 3.6, 7.5, 10, 15, or 30 

g/day.

4.3 Results
In our model, a minimum dietary nitrogen intake is necessary to maintain plasma amino 

acid and intracellular protein levels (Fig. 4.2). Consistent with Steffee et al. [82], the 

steady state levels of plasma amino acids, intracellular protein, and mucosal protein are 

well regulated, and remain approximately constant with dietary nitrogen intake level, a, 

provided a is greater than about 2.2 g/day. There is almost no urea production for a <  2.2 

g/day, and for a >  2.2 g/day urea production increases linearly with a. The steady state 

levels of gut protein, gut amino acid, liver urea, gut urea, and liver ammonia all also increase 

linearly with a for a >  2.2 g/day.

We extended our nitrogen budget model to account for stable isotope fractionation in 

urea formation. With isotope fractionation occuring only at urea formation, our model 

predicts that urea is isotopically depleted relative to diet that body protein is isotopically 

enriched relative to diet at steady state (Fig. 4.3). The degree of enrichment or depletion 

of the pools depends on both the fractionation factor associated with urea formation, a, as 

well as the dietary protein intake rate, a. For a <  2.2 g/day, almost no urea is produced 

and the 515N of body protein is close to that of diet. As a increases, the 515N of the body 

protein pool increases. The 515N of body protein does not increase linearly, but rather it is 

close to zero for a <  2.2 g/day, and then increases very rapidly, before saturating for large 

a. The 515N of body pools depends on the fractionation factor a. While the characteristic 

shape of the steady state body pool 515N curves as a function of a remain the same, the 

degree of enrichment is determined by the fractionation factor a.

We assessed the turnover rate of the 515N of the body pools, with constant a, and the 

515N of diet switching from 0 to 5 0/00 (Figs. 4.4 and 4.5). Different pools have different 

turnover rates following a change in the isotope ratio of the diet. The gut protein pool turns 

over most rapidly following diet switch, while the intracellular body protein pool turns over 

most slowly. The rate of turnover following a diet switch depends on the dietary nitrogen 

input rate a. The rate of turnover is slowest for low a and increases with a.

4.4 Discussion
We have developed a dynamical model of animal nitrogen metabolism. Our model tracks 

the fate of nitrogen as it is ingested as protein, incorporated into tissues, and excreted.
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The model incorporates known cycling of nitrogen involved with nitrogen urea salvage and 

mucosal lining shedding of protein into the gut, as well as the tight regulation of the size of 

the body protein and plasma amino acid pools.

We also developed a corresponding system of equations that describe the metabolism of 

15N. Fractionation of nitrogen in urea formation is sufficient to explain the 2-6 %o discrim

ination from diet to tissue. In the model, the mechanism of the tissue-diet discrimination 

is the preferential formation of urea from liver ammonia and amino acids with 14N. The 

dynamics of turnover of the intracellular protein pool are largely determined by the intake 

rate of nitrogen, and the gut protein and amino acid pools have one component with very 

fast turnover and a slow component due to the proteins of endogenous origin.

Schoeller [75] developed a simple conceptual steady state model of nitrogen balance to 

explain consumer diet-tissue nitrogen fractionation. In his framework, isotopes can leave 

the body either through a fractionated route, corresponding to urine, or an unfractionated 

route, corresponding to feces. He argues that nitrogen isotopes in consumer tissue are 

isotopically heavy compared to diet because of fractionation in nitrogen excretion, though 

he does not attempt to explain the large variation in nitrogen isotope consumer tissue-diet 

discrimination. Martinez del Rio et al. [83] developed a similar single pool mathematicaal 

model of nitrogen balance. They argue that the fraction of nitrogen lost through the 

fractionated route should increase with nitrogen intake, explaining the relationship between 

nitrogen intake rate and tissue-diet nitrogen discrimination. The relationship between the 

fraction of nitrogen lost as urea and nitrogen intake is likely complex, and a functional 

relationship is not easily derived.

Fractionation in our model also occurs because of preferential excretion of 15N depleted 

urea, but our model builds upon these models in multiple ways. Our model accounts for the 

known physiology of nitrogen cycling in an animal, including recycling of 15N depleted urea 

and shedding of mucosal proteins, regulation of the size of the protein pool, and regulation of 

urea production. This allows us to estimate the relationship between nitrogen intake rate 

and tissue-diet nitrogen discrimination directly, based on known physiology. Since urea 

formation is regulated, the fraction of nitrogen lost as urea increases with nitrogen intake, 

though the relationship is complex. In our model fractionation occurs in urea formation, 

rather than urea excretion, allowing fractionated urea to recycle through pools in the body. 

Therefore, the relationship between fraction of nitrogen lost as urea and 515N of tissue is 

damped and more complex in our model than in Martinez del Rio et al.



63

Balter et al. [71] developed a mass balance model of nitrogen fluxes in an animal. While 

their model accounts for the major cycling of nitrogen in an animal, such as gut urea 

recycling, they did not develop dynamic equations that describe how an animal adapts 

to changes in nitrogen intake rate. Our model also includes the broad scale dynamics of 

nitrogen cycling in an animal, and builds on this model by including dynamic equations 

that account for the regulation of urea formation and the size of body protein pools.

While the general structure of our model is based on physiology, undoubtedly some 

parameters require further refinement. It is thought that a 65 kg human requires a minimum 

intake of about 6.8 g N/day to maintain protein needs [84]. Our model also has a threshold 

such that below a certain intake level intracellular protein levels are not maintained, but 

at an intake of about 2.2 g N/day. However, the intake estimate of 6.8 g N/day may be 

an overestimate since it is likely that some leeway is required when recommending a safe 

minimum intake value. Also, it seems unlikely that the minimum intake value to maintain 

protein needs is only 30 % lower than the average daily intake of 10 g N/day.

Actual turnover rates of individual tissues may vary from those predicted by our model. 

It is known that different tissues, proteins, and amino acids vary in turnover rate and the 

isotopic composition tissues with different turnover rates may provide information regarding 

the timing of of diet history [54]. Our model indicates that turnover may be complicated 

by the structure of nitrogen cycling in an animal. Individual pools do not receive diet 

directly, but rather interact through the free amino acid pool, complicating isotopic turnover 

following a diet switch. The turnover rates of the pools in our model are strongly influenced 

by the rate of dietary nitrogen intake. Lower dietary nitrogen intake leads to greater 

recycling and reuse of amino acids by tissue protein through the free amino acid pool.

Consistent with our model, Sponheimer et al. [85] found greater hair-diet nitrogen 

discrimination in high protein diets in a controlled diet study of two horses. They also 

found that hair turned over quickly following an isotopic diet change, with equilibration 

occuring in less than 24 weeks. Similarly, Huelsemann et al. [86] found rapid turnover of 

nitrogen isotopes in human hair following a diet switch, but speculate the presence of a 

compartment with very slow exchange rate. If individual pools interact through the free 

amino acid pool as described in our model, we predict that tissues with slow turnover rates 

influence the turnover of other tissues such as hair, and experiments with a longer time 

scale are needed to determine if a tissue has truly fully equilibrated. Alternatively, if amino 

acids from diet are routed directly to hair rather than interacting through the free amino
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acid pool, turnover may in fact be as rapid as suggested.

Our mathematical model provides a conceptual framework to better understand con

sumer tissue-diet nitrogen discrimination. Our model connects urea production to dietary 

nitrogen intake by accounting for basic nitrogen dynamics in an animal. Many other factors 

that are not included in the model may also affect nitrogen tissue-diet isotope discrimination. 

The relationship between protein metabolism and total energy intake and expenditure is 

complex and may affect the nitrogen budget of an animal [65, 66, 67, 70]. If energy intake is 

insufficient to meet energy demands, body proteins may be metabolized for energy. Protein 

quality may also be related to tissue-diet discrimination [58, 59]. If a diet is deficient in one 

or more amino acids, the biologically usable protein intake may actually be lower than the 

actual protein intake. Certain amino acids are highly fractionated while others are not [68], 

which may mean that fractionation also occurs in transamination and deamination processes 

unrelated to urea formation, or that certain amino acids are selectively degraded to urea. 

Amino acids with isotopic ratios different than bulk may be selected for the formation of 

certain tissues. Metabolic routing may occur, such that certain proteins or amino acids are 

preferentially routed to specific tissues or metabolic fates [54, 64]. Our model also assumed 

steady state physiological conditions in an adult. Physiological conditions that affect the 

nitrogen budget of an animal such as pregnancy, growth, wound healing, starvation, and 

the mounting of an immune response may affect nitrogen dynamics. Each of these factors 

represents a potential extension of the model. Nitrogen cycling in an animal is a complex 

process with many feedbacks and contributing cofactors. Our model begins to untangle the 

relationship between nitrogen cycling in an animal, diet, and stable isotope composition of 

tissues.



CHAPTER 5

DECONVOLUTION OF ISOTOPE 
SIGNALS FROM BUNDLES OF 

MULTIPLE HAIRS 

5.1 Introduction
Organic and inorganic substances in mammals are incorporated into hair, remaining 

inert for relatively long periods of time [87]. Human forensic applications have long been 

recognized, as hair records the concentration of drugs, metabolites, toxins, and poisons 

at the time of formation [88, 89, 90, 91]. More recently, ecologists and anthropologists 

have used stable isotopes in hair to infer information about an animal’s diet, migration, 

nutritional status, and environment [61, 92, 54, 93, 94, 95]. While the growth of hair is 

approximately linear, allowing the measurement of long-term chronology through segmental 

sampling, individual hairs typically have too low linear density to allow high-resolution 

sampling of a single hair. Sample sizes vary, but segments for drug testing are typically 

between 10 and 30 mm [88] and generally require 1-300 mg of hair [96]. Stable isotope ratios 

of hydrogen, carbon, nitrogen, oxygen, and sulfur require ca. 200, 50, 300, 200, and 1500 ^g, 

respectively. To achieve these masses for animals with hair of relatively low linear density, 

such as humans, multiple hair strands are typically aligned at the root and combined into 

a single bundle for analysis [88, 97]. The challenge is to mathematically extract the true 

chemical signal recorded in hair given variations in growth rate and stasis, because these 

processes will tend to blur, or average, the temporal information recorded in hair.

Two distinct processes can cause misalignment between individual hair strands in a 

bundle: variation in growth phase [98] and variation in growth rate [97]. Each hair follicle 

cycles through three distinct phases of growth [99, 100]. In humans, approximately ninety 

percent of hairs are typically in the anagen, or growth, phase, which lasts for 48-72 months. 

The anagen phase is followed by a brief catagen phase, during which the follicle stops 

producing hair. The hair then enters the telogen, or resting, phase during which the follicle 

and hair remain dormant for 2-6 months, until the hair is shed. Variation of growth rate
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between individual hairs in the growth phase can also blur the measured signal of a hair 

bundle. The intraindividual coefficient of variation of hair growth in humans is about 0.1 

[101, 102], and similar variation has been observed in horses [103] and elephants [104]. 

Because individual hair strands vary in growth, signal details present in a single hair may 

not be captured in hair bundle measurements due to averaging misaligned hair strands in 

a bundle.

Previous studies assume that the measured bundle signal is equivalent to the signal of a 

single hair in the growth phase with average growth rate. Given known physiology of hair 

growth, we assume that the phase of growth and growth rates of individual hairs will vary 

within a bundle. We have developed a mathematical model of hair growth that describes the 

relationship between the signal of a bundle of hairs and the primary body signal (e.g., the 

isotopic pool in the body at equilibrium with hair). The model is based on an estimation of 

uncertainty in time since formation, or age, of the hair at a given length from the root. We 

used the model to develop an inverse method to estimate the primary body signal from the 

measured signal of a hair bundle. Our inverse method was applied to a previously described 

stable oxygen isotope chronology from a hair bundle of a murder victim [105] and provides 

a refined interpretation of the original data.

5.2 Methods
5.2.1 Model formulation

5.2.1.1 Mapping single hair signal to hair bundle 
measurements

Let 0(t) be the time-dependent primary body signal (e.g., drug, metabolite, isotope, 

etc.) to the hair. The function 0(t) refers to the input signal to the hair (e.g., the isotopic 

pool in the body at equilibrium with hair), not the input signal to the body (e.g., drinking 

water, drug dosage history, etc.), and is assumed to be equivalent to the signal of a single 

hair in the growth phase with the average growth rate. The expected bundle signal as a 

function of length is

i>(l) =  J  A(l, t )0 ( t )dr, (5.1)

where A(l, a) is the probability density function of time since formation, or age, of a hair at 

length l from the root given that the total length of the hair is at least l and the hair has 

not yet been shed. The kernel A quantifies the length-dependent uncertainty in age.
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5.2.1.2 Derivation of A( l , a)

Let A(1, a) be the probability density function for the random variable time since forma

tion, or age, A, of hair at length l from the root, given that the hair has not been shed and

the total length of the hair is at least l. Let A(1, a) be the cumulative distribution function
d

of A, so that A(1, a) =  —  A(1,a). We assume that hair grows at constant random rate R
da

for random time S , and then rests for random time T . We will find the distribution of A in 

terms of the distributions of R, S, and T  in Tab. 5.1.

Let L be the random variable describing the total length of the hair. A hair strand is 

shed at random time S +  T . Using the law of total probability, we condition on the phase 

of growth of the hair.

A(1, a) =  Pr (A <  a|L >  l and A <  S +  T )

=  Pr(A <  a|L >  l and A <  S)Pr(A  <  S|L >  l and A <  S +  T )+

Pr(A <  a|L >  l and S <  A <  S +  T )Pr(S  <  A <  S +  T|L >  l and A <  S +  T)

Let g(l) =  Pr(A <  S|L >  l and A <  S +  T ). We again use the law of total probability 

to rewrite A(1,a), this time conditioning upon the amount of time that a hair has been 

resting, V , given that it is in the resting phase.

A(1, a) =  g(1)Pr(A <  a|L >  l and A <  S )

+  (1 — g(l)) f  Pr(A <  a|L >  l and S <  A <  S +  T  and V =  t )
Jt=0

* Pr(V  =  t |S <  A <  S +  T)dT 

We will find each of these distributions in terms of the distributions in Tab. 5.1.

Table 5.1. General distributions used in hair bundle modeling
Distribution Description
h probability distribution function for the growth rate of hair, R
H cumulative distribution function for the growth rate of hair, R

probability distribution function for the time spent in growth phase, S
Fs cumulative distribution function for the time spent in growth phase, S
f T probability distribution function for the time spent in resting phase, T
Ft cumulative distribution function for the time spent in resting phase, T
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Pr(A <  a\L >  l and A <  S )
p r o

=  Pr(A <  a\L >  l and A <  S)Pr(R  =  r)dr 
Jo

=  J  Pr ^ -  <  a\L >  l and A <  S^ h(r)dr
/o

p r o

h(r)dr
ll/a

1 -  H \ -
a(£>

Similarly,

Pr(A <  a\L >  l and A <  S +  T  and V  =  t )
r

=  Pr(A(l) <  a\L >  l and A <  S +  T  and V  =  t )Pr(R  =  r)dr 
Jo

=  J  Pr ^ -  +  t <  a\L >  l and A <  S +  T  and V  =  t Ĵ h(r)dr

=  h(r)dr
Jl/(a-r)

=  1 -  H t b )
To find Pr(V  =  t \S <  A <  S + T ), we find the cumulative distribution function, and then 

differentiate. Because the stage of hair growth is well mixed between hairs, the amount of 

time a hair has been resting given that it is in the resting phase, V , is uniformly distributed 

from 0 to T .

Pr(V  <  t \S <  A <  S +  T) =  Pr(V  <  t \S <  A <  S +  T  and T  =  t)Pr(T =  t)dt
Jo

=  / Pr(V  <  t \S <  A <  S +  T  and T  =  t ) fT(t)dt 
Jo J rr t-ro t

=  fT (t)dt +  J  -jfT  (t)dt 

=  Ft  ( t  ) +  t  I  (t)_ -dt 
Jr t

So that

f  CPr(V =  t \S <  A <  S +  T) =  J fT (t)- dt.
t

Again, because the stage of hair growth is well mixed between hairs,
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g(l) =  Pr(A <  S |L >  l and A <  S +  T )
t̂o r to r torTO rTO rTO

/  h(r) / Pr(A <  s|L >  l,A  <  s +  t ,R  =  r ,S  =  s ,T  =  t ) fS(s ) fT(t)dsdtdr
J 0 J 0 J 0

rTO rTO rTO

/  h(r) / Pr(A <  s|l/r <  A <  s +  t, R =  r,S  =  s ,T  =  t ) f S(s ) fT(t)dsdtdr 
J 0 J 0 J00 J0 J0 /•TO /• TO /• s+t s — l / r

h(r) ---- T r f  (s ) fT (t)dsdtdr
10 J0 Jl/r s +  t — l/r
/•TO /• TO /•v „ — l/r

h(r) ------r r  fS (s)fT  (v — s)dsdvdr
'0 ./l/r ./l/r v — l/r

Putting these distributions together we have

where

K(l ,a) =  g (l) ^  — + (1 — g (l)) f o — H  ( — 7 ) )  K(r)dr

/• to /• to /•v s — l/r
g(l) =  / h(r) ------—  fS (s)fT  (v — s)dsdvdr

0 l/r l/r v -  l/r

and

J
K(a) =  /

a
Differentiating with respect to a, we find:

A(l’ a) = g (l)02h ( 0 )  +  ( 1 —g(l)) i  c r h r K(T)h( ; r b ) dT

5.2.1.3 Averaging due to sample interval
Signal attenuation also occurs by combining material over the sample length to obtain 

the mass of material required for analysis. In the case of sampling a single hair that is in the 

growth phase with fixed growth rate r , the expected measured signal, f (l), is the average of 

the time-dependent primary body signal, ^(t), converted to length, over the sample length 

v :
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r r l/r+v/(2r) 
f  (l) =  - /  0 (t ) dT. 

v Jl/r-v/(2r)

/{■l/r+v/(2r) 

l/r-v/(2r)

The center of the samples are at lengths l =  (2i -  1)v/2 where i is a positive integer. 

Sampling a bundle containing a large number of hairs allows for small sample length, so the 

measured signal of a bundle of hairs approaches ^ (l).

5 .2 .2  In verse  m e th o d

To estimate the time-dependent input signal 0(t) from measurements of ^ (l), we dis

cretized equation 5.1 into the matrix vector equation K f  =  d, where f  is a discretization of 

0(t), d is a vector containing a smoothing of the measured values of ^ (l), and K  is an mxn 

matrix. The smoothing was performed using a cubic smoothing spline with the trace of the 

smoother matrix chosen by generalized cross-validation, and the dimension n was chosen to 

be large enough to obtain an accurate quadrature approximation of A.

As in the estimation of a primary input signal from a measured stable isotope tooth 

enamel signal described by Passey et al. [106], we used Tikhonov regularization to invert 

K , yielding the estimation

fest =  fguess +  K T[K K T +  £2I]-1 [d -  K f guess],

where I  is an identity matrix, f guess is an a priori reference vector, and e is a scalar 

regularization parameter. The reference vector f guess was chosen to be a vector containing 

the mean value of the measurements d.

The damping factor e was chosen using generalized cross-validation. The chosen e 

minimizes the GCV functional

G C V  (e) = 1 2
—trace(I -  A e) 
n

where re =  Kfest -  d and Ae =  K (K TK  +  e2I ) - 1K T [107].

5.3 Results
Using the distributions in Tab. 5.2, the model depends on two parameters: 7  is the 

fraction of hairs in the resting phase (anagen and telogen), and a  is the coefficient of 

variation of hair growth rate. The integral transform kernel, A(l,a), is the probability
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density function of time since formation, or age, of hair at a given length from the root and 

describes the amount of signal attenuation in the hair bundle signal. The kernel A(l, a), 

with y =  0.1 and a  =  0.1, is shown in Fig. 5.1. We varied 7  and a  to assess how 

these parameters affect A(l,a) (Fig. 5.2). A high fraction of hairs in the resting phase, 7 , 

results in high variance in age of hair at all lengths and a mean age that is higher than the 

length divided by the mean growth rate. A high coefficient of variation of hair growth rate, 

a , results in increasing variance of age with length. The distribution of age dictates the 

uncertainty in time when sampling a single hair and also the expected amount of averaging 

from sampling a bundle of multiple hairs.

We compared the expected value of the signal from sampling a bundle of hairs that 

contains hairs with varying growth rates and phases, with a  =  0.1 and 7  =  0 .1, to sampling 

a single hair that has a growth rate of 1 cm/month and sample length v =  1.5 cm (Fig. 5.3). 

The primary body signal is the stable nitrogen isotope record of an elephant tail hair from 

an individual that migrated between two isotopically distinct zones, extended periodically 

to create a longer signal. The primary body signal refers to the signal of the body pool at 

equilibrium with hair and is the signal of a single hair in the growth phase with average 

growth rate. Elephants have thick hairs with high linear density, allowing for high-resolution 

sampling of a single hair. Signal attenuation occurs when sampling a single hair because 

of combining material over the sample length. Combining multiple hairs into a bundle for 

sampling attenuates the primary body signal because of varying growth phases and growth 

rates of hairs in the bundle. Signal details of sufficiently short duration are highly damped 

and are not captured in the bundle signal because of averaging. When sampling a single 

hair, events of duration shorter than the sample length may not be recorded. Additionally, 

when sampling a single hair there is considerable uncertainty in assigning time to length 

since the exact growth rate and phase of growth of the sampled hair is not usually known.

To test the ability of the inverse method to accurately reconstruct a primary body 

signal from measurements, we used the hair bundle model, with a  =  0.1 and 7  =  0 .1, to 

create a synthetic measured bundle signal from an assumed primary body signal. We then 

used the inverse method to estimate the primary body signal from the synthetic bundle 

signal (Fig. 5.4). The primary body signal is from a previously described carbon stable 

isotope record of elephant tail hair in Samburu National Reserve, and represents a typical 

ecologically relevant body signal [93]. The estimated primary body signal is more similar to 

the primary body signal (correlation coefficient R2 =  0.81) than the measured hair bundle



Table 5.2. Parameters and specific distributions used in hair bundle modeling.
Parameter Description Value
Y fraction of hairs in resting phase 0.05, 0.1, 0.3
a coefficient of variation of hair growth rate 0.05, 0.1, 0.25
P average hair growth rate 1 cm/month [101, 97]
V average time from beginning of growth phase to hair shedding 66 months [98]
Distribution Description Value
h hair growth rate probability density function N (P , (P a)2)

time in growth phase probability density function N (v(1  — Y^ (0-1v(1 — Y))2)
f T time in resting phase probability density function N ( v y , (0.1vy)2)
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Figure 5.1. The kernel X(l, a) at lengths 2.5 cm, 5 cm, 10 cm, and 20 cm, A-D, respectively, 
describes the variation of time since formation, or age, at a given length from the root.
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Figure 5.3. Expected length-dependent single hair signal and hair bundle signal derived 
from our mathematical model using an assumed time-dependent primary body signal. Time 
indicates months prior to root formation, length indicates cm from root. The signal of the 
measured bundle of hairs is highly attenuated relative to the primary body signal.
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months prior to root formation, length indicates cm from root.
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signal is to the primary body signal (correlation coefficient R2 =  0.43). High frequency 

details are lost in the estimated input signal, but the general pattern remains well estimated.

The assumed stable isotope primary input signals in Fig. 5.3 and Fig. 5.4 are from single 

elephant tail hairs sampled at 5 mm intervals. Elephants have thick hairs with high linear 

density, allowing for high-resolution sampling of a single hair. The data in Fig. 5.3 represent 

an individual migrating between two areas with different 515N values for vegetation and thus 

an abrupt change in 515N occurs at each migration event [108]; transitions between areas 

were made in less than 12 hours based on GPS-tracking data. Migration events result in a 

signal approximating a step function. Data from this individual are previously unpublished, 

but the individual had behavior analogous to that described by Cerling et al. [108]. The 

data in Fig. 5.4 are from Cerling et al. [93] and represents gradual diet transitions coinciding 

with two rainy seasons per year. Samples were run on an isotope ratio mass spectrometer 

in continuous-flow mode coupled to an elemental analyzer (EA-CF-IRMS).

5.4 Application of inverse method 
to murder victim data

We applied the inverse method to previously described oxygen stable isotope measure

ments from the organic component of a hair bundle of an unidentified murder victim, with 

Y =  0.1 and a  =  0.1 (Figs. 5.5 and 5.6) [105, 109]. Oxygen stable isotope measurements 

of the organic component of hair can be used to determine time-dependent geographic 

region-of-origin because oxygen isotopes in drinking water vary with location [110] and are 

incorporated into hair [111, 112].

The confidence interval for the estimated primary body signal was obtained by inverting 

data with noise added to each measurement. We created 1000 replicates of measurements by 

adding normally distributed noise with mean zero and standard deviation of 0.15 % 0  to each 

measurement. For each set of measurements with added noise, we selected a regularization 

parameter using generalized cross validation, and performed the inversion using Tikhonov 

regularization to estimate the primary body signal. We excluded 48 estimates of the primary 

body signal because their isotope values lay outside the biologically feasible range of 7 to 

16 % 0. The shaded region corresponds 518O within two standard deviations of the mean 

estimated primary body signal.
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Figure 5.5. Estimated primary body signal and equilibrium signal from hair 518O 
measurements of a previously described hair bundle of a murder victim.
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Figure 5.6. Tap water maps for geographic regions predicted by the estimated equilibrium 
signal.
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5.4.1 Estimating equilibrium signal from 
estimated primary body signal

The model inversion yields an estimate of the primary body pool at equilibrium with the 

hair, not the input signal to the body. The body equilibrium signal refers to the primary 

body signal if it were in instantaneous equilibrium with the input. The body equilibrium 

signal can be reconstructed using a previously described method based on multiple pools 

with first order kinetics contributing to the primary body pool that is at equilibrium 

with hair [113, 114]. Briefly, the isotope composition of the j th pool contributing to hair 

formation at time t is

Sjj =  5j-1 e -XjAt +  5eq(1 -  e -XjAt)

where dj-1 is the isotope composition of the j th pool at time t -  1, At is the difference in 

time between t -  1 and t, Aj is the rate constant of the j th pool, and 5eq is the isotope 

composition of the pool if it were at instantaneous equilibrium with the environment. For a 

p pool system, 5eq can be calculated incrementally from the stable isotope signal of a single 

hair, , as

,t  =  SiH -  E IU  fi^i-1 e-XiAt
eq £ P U  fi (1 -  e -XiAt) 

where f i is the fractional contribution of of pool i to the pool at equilibrium with hair. For 

application to the murder victim, we used a single pool with half-life of 7 days.

5.4.2 Region-of-origin maps
Region-of-origin maps were created in two steps. For each region, we used the semi- 

mechanistic model by Ehleringer et al. [112] to predict drinking water 518O values required 

to produce the hair isotope ratio, with an added 0.5 0/oo to either side of the hair value. 

Once the maximum and minimum 518O values of drinking water were predicted for each 

isotopic region, we used the 518O tap water isoscape produced by Bowen et al. [115] for 

the contiguous United States to identify regions with isotope values matching our predicted 

range. Regions with matching isotope values were highlighted in color using ArcGIS 9.3.1(g).

The data were originally interpreted as movement between three isotopically distinct 

geographic regions, Regions 1,2, and 3, corresponding to measured 518O values of approxi

mately 9.9 0/oo, 8.4 0/oo, and 9.2 0/oo, respectivly. The transitions from Region 1 to Region 2 

and from Region 2 to Region 1 at about 20 cm and 15 cm, respectively, occur over multiple
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cm (or equivalently multiple months) of growth, slow movement between geographic regions. 

The transitions from Region 1 to Region 3 and from Region 3 to Region 1 at about 9 cm and 

5 cm, respectively, occur over a short length interval, rapid movement between geographic 

regions. Region 1 is consistent with the location where the victim was found, Salt Lake 

City, UT.

The inverse method was applied to the measured hair £18O to estimate the primary body 

signal. In addition to averaging due to hair bundling, turnover of the primary body pool 

must also be accounted for to determine geographic search regions. We used a previously 

described method [113, 114] to estimate the isotopic composition of the primary body pool if 

it were at instantaneous equilibrium with the environment from the estimated primary body 

signal. To estimate the equilibrium signal, we assumed a single pool with turnover half-life 

of 7 days, which is consistent with observations of hair oxygen stable isotopes in humans 

(calculated from [111, 112]). In this case, the estimated equilibrium signal is very similar 

to the estimated primary body signal (correlation coefficient R2 =  0.89) because of rapid 

turnover of the primary body pool relative to changes in the input signal. Estimated tap 

water maps were produced using a previously described relationship between hair organic 

£18O and drinking water £18O [112] and a relationship between tap water and geography

[115].

The estimated equilibrium signal differs from the measured hair bundle in several impor

tant ways (Figs. 5.5, 5.6, 5.7, and 5.8). Transitions between isotopically distinct regions are 

more rapid, with more time spent in each region. Region 2* and Region 3* have lower 518O 

than Region 2 and Region 3, respectively, and correspond to different geographic regions 

(Fig. 5.7). Regions 2* and 3* have considerable overlap (Fig. 5.8), suggesting that they 

may correspond to the same geographic location. Region 1 is isotopically similar in both 

the measurements and the estimated equilibrium signal, and the 518O is consistent with 

the location where the victim was found. The estimated equilibrium signal has a new short 

duration region, Region 4, with £18O of about 10.9 %0 that does not appear in the measured 

hair bundle signal. Plotted maps were restricted to the western United States. Region 4 

also contains a small region in the northeast United States as well as parts of Canada.

5.5 Discussion
Multiple hairs that may be in different growth phases and have different growth rates are 

typically combined into a single bundle of hairs for segmental analysis. We have developed a



82

Figure 5.7. Comparison of Region 2 with Region 2* and Region 3 with Region 3*.

F igure 5.8. Comparison of Region 2* with Region 3*.
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mathematical model that describes the signal averaging caused by bundling hairs for analysis 

as well as an inverse method to estimate the primary body signal from measurements of 

a hair bundle. If the growth rates of hairs within a bundle vary substantially or a high 

proportion of hairs are in the resting phase of hair growth, the measured hair bundle signal 

is highly averaged relative to the primary body signal, which may lead to misinterpretation 

of the signal.

Our model is based on uncertainty in time since formation, or age, of hair a given length 

from the root. Assigning times to length when sampling a single hair strand also relies on 

an estimation of length-dependent age variation. High variation in growth rates or a high 

proportion of hairs in the resting phase of hair growth leads to high uncertainty in assigning 

time to measurements along the length of a single hair strand.

The determination of whether to bundle hairs or sample a single hair depends on the 

research question. If precise timing of an event is critical or high-resolution sampling is 

desired to capture events in the recent past, multiple hairs should be combined into a 

bundle to decrease sample length and reduce uncertainty in the time corresponding to 

measurements. If multiple hairs are to be combined, it is preferred to combine many hairs 

rather than few, as the uncertainty in the bundle signal decreases with the number of hairs. 

If the amplitude of a long duration event is more important or an individual hair strand 

has high enough linear density to allow for a high-resolution sample interval, sampling 

a single hair strand may result in less signal averaging than sampling a bundle of hairs. 

When sampling a single hair, however, there may be high uncertainty in assigning time to 

measurements.

The inverse method we developed allows for the estimation of the primary body signal 

from a measured hair bundle signal. The method is especially useful in situations where the 

primary body signal is averaged, but characteristics of the signal remain. If the averaging 

is significant enough, however, noise may dominate, preventing meaningful reconstruction 

of the primary body signal.

It may be possible to minimize signal averaging from bundling multiple hairs by ensuring 

hairs are in the growth phase. Van Scott et al. have described a technique to examine a 

hair’s follicle to determine its phase of growth [116], though this is only possible if a hair’s 

root can be observed (i.e., hair was plucked rather than cut). Excluding hairs in the resting 

phase from a bundle has been shown to reduce the growth cycle error in hair stable isotope 

analysis [117]. This can be incorporated into our model by reducing 7 , the fraction of hairs
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in the resting phase, which results in less signal averaging. If the hair has never been cut, 

selecting hairs for analysis with small total length also increases the likelihood of hair being 

in the growth phase. Since each hair grows for a period of time before shedding, hairs with 

small total length are more likely to be in the growth phase. However, the bundled signal 

will still be attenuated due to variation in growth rate of individual hairs.

We applied our inverse method to a previously described [105, 109] oxygen stable isotope 

chronology from the organic component of the hair of a murder victim. The signal obtained 

from the inverse method is an estimate of the 518O of the primary body pool that is in 

equilibrium with the hair, rather than the time-dependent isotopic composition of drinking 

water. Applying a model of turnover of the primary body pool 518O to the estimated 

primary body signal provides an estimate of the equilibrium signal. This further sharpens 

the transitions between regions, though the effect is small due to the relatively rapid turnover 

of oxygen isotopes in the primary body pool at equilibrium with hair. In cases where 

turnover of the body pool at equilibrium with hair is slow (e.g., carbon [118] and nitrogen 

isotopes [85]), the signal attenuation caused by turnover of the body pool may be larger 

than that caused by bundling multiple hairs. The search maps determined by the estimated 

equilibrium signal differ from previously published interpretations in several important ways. 

Transitions between isotopically distinct regions are more rapid, and the 518O of the regions 

are different. An additional region of short duration is present in the estimated equilibrium, 

that may have been have averaged by measuring a bundle of multiple hairs.

Similar methods may also be used to estimate uncertainty in time since formation, when 

time cannot be constrained using other methods, in other length-dependent measurements 

of “ecological tape recorders,” such as measurements of nails, horn, or tropical trees lacking 

growth rings. Additionally, similar probability density functions may be useful for esti

mating the uncertainty in age of an animal or plant from size or length. The details of 

these methods will depend on growth characteristics. Other biological systems, such as 

cell-cycle dependent processes, also rely on inverse methods to estimate individual signal 

from population-level measurements [119, 120, 121, 122]. In these models, variation in 

cell-cycle phase of individual cells can result in important differences between population 

measurements and individual cell dynamics.

Hair records the concentration of drugs, toxins, metabolites, and stable isotopes in the 

body as it grows. Segmental analysis of a bundle of hair allows for the construction of 

a high-resolution record of the history of an animal. However, variation in the growth of
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individual hair strands can distort the relation between measurements and the actual history 

of the animal. Our mathematical model provides an estimate of uncertainty in time since 

formation, or age, of a hair strand a given length from the root as well as an inverse method 

to estimate the time-dependent primary body signal (e.g., drug, metabolite, isotope, etc.) 

from segmental analysis of a bundle of hairs, based on measurable growth characteristics of 

individual hair strands.
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