
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001 129

T i m e d C i r c u i t V e r i f i c a t i o n U s i n g T E L S t r u c t u r e s

Wendy Belluomini, Member, IEEE, Chris J. Myers, Member, IEEE, and H. Peter Hofstee, Member, IEEE

Abstract—Recent design examples have shown that significant
performance gains are realized when circuit designers are allowed
to make aggressive timing assumptions. Circuit correctness in
these aggressive styles is highly timing dependent and, in industry,
they are typically designed by hand. In order to automate the
process of designing and verifying timed circuits, algorithms for
their synthesis and verification are necessary. This paper presents
timed event/level (TEL) structures, a specification formalism for
timed circuits that corresponds directly to gate-level circuits.
It also presents an algorithm based on partially ordered sets
to make the state-space exploration of TEL structures more
tractable. The combination of the new specification method and
algorithm significantly improves efficiency for gate-level timing
verification. Results on a number of circuits, including many from
the recently published gigahertz unit Test Site (guTS) processor
from IBM indicate that modules of significant size can be verified
using a level of abstraction that preserves the interesting timing
properties of the circuit. Accurate circuit level verification allows
the designer to include less margin in the design, which can lead
to increased performance.

I. INTRODUCTION

IN ORDER to increase performance, circuit designers are
beginning to move away from traditional synchronous de

signs based on static logic. Recent designs, such as the Intel
RAPPID instruction length decoder [1] and the IBM guTS mi
croprocessor [2], have shown that large performance gains can
be realized using aggressive circuit styles, which make many
timing assumptions. The RAPPID chip is an asynchronous im
plementation of an instruction length decoder for a Pentium II
instruction set. It achieves a three times performance improve
ment while dissipating half the power of the synchronous imple
mentation on the same process. The guTS microprocessor is a
synchronous implementation of a PowerPC instruction set run
ning at 1 GHz on a 0.25-//m CMOS process available in 1997.
Although both designs achieve significant performance gains,
they are experimental designs. Many obstacles need to be over
come before the circuit styles developed in these designs can be
used in production. One of the main obstacles is the lack of de
sign automation for timed design styles.

Although the Intel design is asynchronous and the IBM design
is synchronous, the timing analysis problems they create for
synthesis and verification tools are similar. The circuits used in
the guTS processor are synchronous, but their local behavior is

Manuscript received September 10, 1999; revised March 20, 2000. This
work was supported by the National Science Foundation CAREER award
MIP-9625014 and a Traineeship award, by the SRC under Contract 97-DJ-487,
and by the DARPA ASSERT Fellowship. This paper was recommended by
Associate Editor D. Dill.

W. Belluomini and H. P. Hofstee are with the IBM Austin Research Labora
tory, Austin, TX 78758 USA.

C. J. Myers is with the Department of Electrical Engineering, University of
Utah, Salt Lake City, UT 84112 USA.

Publisher Item Identifier S 0278-0070(01)00358-X.

asynchronous, and the timing constraints that are required for
them to work correctly are quite complex. Existing synchronous
static timing analysis methods can be adapted to analyze this
type of circuit [3]-[5], but they have some limitations. The ap
proach presented in [3] extends the static timing methodology by
changing the standard two-event per signal model to a four-event
per signal model. This allows all of the relevant timing constraints
on a domino gate to be verified. However, since the method con
siders only topological delay and not Boolean behavior, it can be
overly pessimistic. The method presented in [5] is successful in
verifying a large high performance chip. It adds some Boolean
behavior to the topological delay calculations in order to improve
accuracy, but may still be conservative. The technique presented
in [4] is designed to verify self-resetting or delayed-reset circuits
at the macro level. A designer must determine an interface
specification for each macro through simulation. The timing
analysis tool then determines if the combination of all the macros
correctly implements all of the interfaces. This works well for
chip level timing verification but the interfaces specified by the
designer are never formally verified. A tool that correctly verifies
that the gates inside the macro work within the specified interface
is required to complete the verification and this appears to be the
ideal place to use a tool designed for asynchronous circuits.

Since this timing verification problem deals primarily with
gate-level circuits, a specification method that corresponds di
rectly to logic gates is needed. There are currently two general
approaches to specifying the behavior of time dependent cir
cuits, time (or timed) Petri nets [6], and timed automata [7].
Both of these approaches were first proposed to model concur
rent software systems and have since been applied to the syn
thesis and verification of time dependent asynchronous circuits
[8]-[12]. They both have drawbacks when applied to circuits.
The Petri net model lacks support for Boolean conditions, which
are central to the specification of gate-level circuits since gates
respond to signal levels and not signal transitions. Although the
Petri net model is expressive enough to specify level-based be
havior, it requires adding an extensive number of feedback arcs
and generally increases the complexity of the Petri net. This in
creased complexity results in increased synthesis and verifica
tion time. Additionally, the method in [11] produces time sep
arations between events instead of directly calculating the state
space. Although these separations can be used to derive the state
space, it may not be exact since there may be time separations
between events that are state dependent. The other approach,
based on timed automata, is in fact more expressive than timed
event/level (TEL) structures. However, TEL structures provide
more powerful primitives to encode states, implicitly leading to
more succinct representations. Also, the generality of timed au
tomata complicates the timed state-space exploration procedure.
By restricting our class of specifications to those which can be

0278-0070/01$10.00 © 2001 IEEE

130 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001

represented using TEL structures, we have been able to develop
a more efficient analysis method.

This paper introduces a new specification method, TEL stru c
tures, which are created specifically to represent circuits. TEL
structures have been shown to be easy to produce from a higher
level language, such as VHDL [13], and are useful in repre
senting gate-level circuits [14]. We also present an adaptation
of the POSET algorithm, first presented for Petri nets in [15],
to the analysis of TEL structures. The combination of the effi
cient representation for circuits provided by TEL structures and
the state-space reduction resulting from the POSET algorithm
results in an order of magnitude increase in speed and memory
performance over previously published timed state-space explo
ration algorithms. The improvement makes it possible to ana
lyze circuits of considerable complexity as illustrated by veri
fication of timed asynchronous circuits in the Stari communi
cation protocol and the Intel instruction length decoder, and by
the verification of the timed synchronous circuits from the IBM
guTS processor.

II. TEL Structures

Timed Event Level (TEL) structures are designed with two
goals. The first is to correspond as directly as possible to gate-
level circuit behavior. Circuit specifications typically use signal
transitions to specify sequencing and signal levels to specify
data, so TEL structures allow both events and levels to be spec
ified. The second goal is to provide a specification formalism
that can be generated automatically from a higher level lan
guage. The flexibility of TEL structures makes their automatic
construction from a standard hardware description language like
VHDL possible [13]. Compiling VHDL to a Petri net is difficult
since VHDL specifications contain both level and event-based
behavior.

TEL structures are based on timed Event Rule (ER) structures
[16], which are fundamentally acyclic. Cyclic specifications are
represented by infinite timed ER structures, and state-space ex
ploration is done by dynamically creating the unrolling of the
specification until no new Boolean states are possible. This type
of acyclic semantics can also be used for TEL structures [17],
but in order to make them more similar to the widely accepted
specification methods such as Petri nets, TEL structures are de
fined here as cyclic structures.

A TEL structure is a 6-tuple T = (N, s0, A, E, R , #)
where

1) N is the se t o f signals;
2) s0 = {0, l} lArl is the in itia l state;
3) A C N x {+ , —} U $ is the se t o f actions;
4) E C A x (J\f = {0, 1, 2 , . . . }) is the se t o f events;

the se t o f rules; ^

is the se t o f constra in t rules;
7) R o is the se t o f in itia lly m arked rules;
8) # ^ E x E is the con flic t relation.
The signal set N contains the wires in the circuit specifica

tion. The state s0 contains the initial value of each signal in
N. The action set A contains for each signal a: in TV a rising

transition :/■+ and a falling transition x - along with the se
quencing event $, which is used to indicate an action that does
not cause a signal transition. The event set E contains actions
paired with instance indices (i.e., (a, i}) , which are used to dis
tinguish multiple instances of a given signal transition within
the specification. For example, there may be two possible situa
tions in which a signal x can rise in a specification. These rising
actions on x are distinguished by having two events, (./■+■ 1)
and {x + , 2). Pairing actions with instance indices allows an
arbitrary number of events to be created from each action, in
cluding the sequencing action $. Sequencing events are often
used to express nondeterminism where a signal may or may
not transition. Although formally the definition requires that all
sequencing events be of the form ($, i) , where i is an integer,
sequencing events of the form $s, where s is a string, are used
in this paper in order to make the purpose of the sequencing
event more clear.

Rules represent causality between events. Each rule r is of
the form (e, / , I, u , b) where

e enabling event;
f enabled event;
(I, u) bounded timing constraint;
b Boolean function over the signals in N .
A rule becomes marked when its enabling event fires. It is

enab led if its enabling event has occurred and its Boolean func
tion is true in the current state. There are two possible semantics
concerning the enabling of a rule. In one semantics, referred
to as nond isab ling sem antics, once a rule becomes enabled, it
cannot lose its enabling due to a change in the state. In the other
semantics, referred to as d isab ling sem an tics , a rule can become
enabled and then lose its enabling. This can occur when another
event fires, resulting in a state where the Boolean function is no
longer true. A single specification can include rules with both
types of semantics. Nondisabling semantics are typically used
to specify environment behavior and disabling semantics are
typically used to specify logic gates. For the purposes of verifi
cation, the disabling of a Boolean expression on a disabling rule
is assumed to correspond to a failure since it corresponds to a
glitch on the input to a gate. A rule is sa tis fied if it has been at
least I time units since it was enabled, and exp ired if it has been
at least u time units since it was enabled. When a rule fires, it
becomes unmarked. Excluding conflicts, an event cannot occur
until every rule enabling it is satisfied, and it must occur be
fore every rule enabling it has expired. This timing semantics,
often referred to as “Type 2” timing semantics [18], means that
the upper bounds on some rules may be exceeded. This timing
semantics closely models gate-level circuits, where gate out
puts transition some amount of time after their inputs change.
It also eliminates the problem of maintaining proper causality
when no upper bound can be exceeded, which is described in
[19]. Constraint rules have the same structure as standard rules,
but they are used to represent requirem ents on the relationships
between events instead of causality between events. When an
event fires, all of the constraint rules that enable it must be
satisfied. If they are not, the algorithm generates a verification
failure.

The conflict relation # is used to model disjunctive behavior
and choice. When two events e and e ' are in conflict (denoted

BELLUOMINI et al.: TIMED CIRCUIT VERIFICATION USING TEL STRUCTURES 131

Fig. 1. Delayed-reset domino gate.

Fig. 2. TEL structure for the gate in Fig. 1.

e # this specifies that either e can occur or d can occur, but
not both. Taking the conflict relation into account, if two rules
have the same enabled event and conflicting enabling events,
then only one of the two mutually exclusive enabling events
needs to occur to cause the enabled event. In the general case,
an event is enabled when a maximal nonconflicting set of its
enabling events has fired. The ability for an event to fire when
only a subset of its enabling events have fired models a form of
disjunctive causality. Events that are enabled by multiple con
flicting events are similar to merge places in Petri nets. Choice
is modeled when two rules have the same enabling event and
conflicting enabled events. In this case, only one of the enabled
events can occur. An event e, which is the enabling event of
multiple rules that have conflicting enabled events, is similar to
a choice place in a Petri net. Every pairwise conflict in the TEL
structure must be specified, but this does not cause a problem
for the user since TEL structures are typically generated from a
higher level input language, such as VHDL [13].

A. E xam ples

Fig. 1 shows an example of a delayed-reset domino gate. This
type of circuit is used extensively in the guTS processor to gain
higher performance. The gate computes the function (a V b) A c
in two stages. The first stage computes n V b while c l k l is
high, and the next stage computes o u t l A c while c lk 2 is high.
Both gates precharge while their respective clocks are low. Since
neither n-stack has a “foot” transistor to ensure that the path to
ground is turned off during the precharge phase, the timing of
the circuit must guarantee that all the inputs to the gate are low
by the time the local clock for each stage falls.

The TEL structure representation for the domino gate is
shown in Fig. 2. It includes one rising and one falling event

Fig. 3. Environment for domino gate.

for each signal. The specification for the gate corresponds
directly to the structure of the circuit. The signal o u t l must
rise between 50 and 70 time units after the Boolean expression
a V 6 becomes true, and it falls ten to 20 time units after c l k l
falls. The signal o u t2 rises between ten and 30 time units after
o u t l A c becomes true and it falls 20 to 50 time units after
c lk 2 falls. The TEL structures for the gate outputs contain
disabling rules, indicated by a d next to the Boolean expression.
Once these expressions are true, any event firing that makes
them false causes a failure. The TEL structure also contains a
constraint rule, marked with a “C.” The constraint rule requires
that cl 1:2 has been high for at least two time units when o u t l
rises. This ensures that the pulldown stack for the second stage
of the gate is turned off before pulldown stack can be turned on.

In order to verify the circuit, the analysis tool needs to know
what inputs it may receive. This is specified by providing TEL
structures for the environment of the circuit. The environment
TEL structures for the domino gate are shown in Fig. 3. The
specification indicates that there is a global clock G c lk , which
rises 500 time units after it falls and falls 500 time units after
it rises. The G c lk signal controls the firing time of the two
local clocks, c l k l and d k 2 . The rule [c lk l —, c lk l+] becomes
enabled when G c lk is true and it becomes satisfied after ten
time units have passed. It becomes expired after 30 time units
and thus must fire between ten and 30 time units after G c lk
rises. The other local clock c lk 2 is similar. The inputs to the
gate a, b, and c nondeterministically rise some time after the
clock rises. The nondeterminism is modeled using the conflict
relation and sequencing events. Each rising event on an input
conflicts with a corresponding sequencing event. Since the
rising event and the sequencing event conflict, only one of
them can occur. If the rising event for a signal fires, the signal
rises in that clock cycle; if the sequencing event fires, it does
not. A falling transition on the global clock is followed by
falling transitions on all of the inputs that have risen. Boolean
guards are used to determine if a signal has risen in the most
recent cycle. Sequencing events and conflicts are again used to
deal with the nondeterminism. If an input signal rises on the
rising edge of G c lk , then a falling event for that signal must
occur when G c lk falls. Otherwise, a conflicting sequencing

132 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001

event fires, preventing the falling event on the input signal
from becoming enabled as soon as that signal rises again. This
environment allows all possible values of the input signals
to be applied to the circuit nondeterministically. If certain
input patterns are known to be unreachable, then the circuit
can be verified in a more restricted environment. Although
the TEL structure is readable for a small circuit, it would be
difficult to specify a large macro at this level. Our synthesis
and verification tool, ATACS, provides support for two higher
level input languages, VHDL and CSP. Designers can specify
circuits in these languages, and they are compiled into TEL
structures using techniques described in [13] and [16].

B. T im ed F iring Sequences

The behavior specified by a TEL structure is defined with
three types of operations: firing of rules, firing of events, and
advancement of time. A time valued clock r, is associated with
each enabled rule A rule can fire when the clock meets the
lower bound on the rule, and must fire when the clock reaches
the upper bound on the rule. Using these semantics, the age of a
clock never exceeds the upper bound of its associated rule. The
firing of a rule may not immediately result in the firing of an
event. An event fires when a su ffic ien t se t of the rules that enable
it have fired. If all of the rules enabling an event e have noncon
flicting enabling events, then e’s sufficient set is all of the rules
that enable it. If some of the rules enabling e have conflicting
enabling events, then e has a number of different sufficient sets.
For a set of rules R s to be sufficient to fire e, all rules that en
able e and are not in R s must have enabling events that conflict
with the enabling event of some rule in R s . Events fire simul
taneously with the last rule firing, which creates a sufficient set
of fired rules. Time is advanced using a function m ax_advance,
which returns the maximum amount of time that can pass be
fore a rule must fire or exceed its upper bound. These semantics
define a set of firing sequences that contain both rule and event
firings, where event firings are placed in the sequence immedi
ately following the firing of its final enabling rule. In order for
the analysis algorithm presented here to succeed in finding the
state space of a TEL structure, it must be one-sa fe . In a one-safe
TEL structure, when the enabling event of a rule fires, it cannot
fire again until either the enabled event of the rule fires or an
event that conflicts with its enabled event fires. This property
is similar to the one-safe property on Petri nets, which prevents
places from containing multiple tokens.

The set of behaviors of a TEL structure is defined by a set of
sequences!] £ ((R*)(E *))* , where each firing (rule or event) is
numbered sequentially. In order to simplify the notation, short
hand operations for dealing with firing sequences need to be
defined. The function L is used to map an instance of a rule or
event in the firing sequence back to the corresponding rule or
event in the original specification. The £ operator is used to in
dicate whether a given rule or event firing occurs in a sequence.
For example x e a indicates that firing x occurs in sequence
a . Also, the functions I and u are used to return the lower and
upper bound on a rule. Finally, it is useful to define a cho ice_set
for each ru le r = (e, / , I, u , b). The choice set of r contains all
events, which are enabled by e and conflict with / .

D efin ition I I . l : The choice set of a rule r = (e, f , I, u , b}
is defined as follows:

choice_set (r)

= { / ' £ E I 3r ' = (e, / ' , I', u ' , b') e R A / ' # / } .

When the event / fires, all of the events in the choice set of
r require another firing of e before they have a chance to fire.
Events that are not in the choice set of r do not require another
firing of e in order to fire. When an event in the choice set of a
marked rule fires, the rule becomes unmarked.

The state space of a TEL structure is found by exploring firing
sequences of events and rules. The Boolean state, which is used
to evaluate the Boolean expressions associated with rules, is de
fined by the rule firing sequence being explored a . The state
resulting from a rule firing sequence (p(a) is simply the state
that results when the firing sequence is executed starting from
the initial state s 0. We can now formally define what it means
for a rule r to be enabled by a firing sequence a .

D efin ition II.2: A ru le r = (e, / , I, u , b) € enab led (a o —n)
if one of the following conditions is true:

1) (r € R o) A (~>3aj e a 0..
(—'Bctj £ uo-.-n'- L ((j j) 6 c h o ic e _ se t(r)) A
\b{(j>{(Jo-n)) V
(nondisabling(r) A 3 a j £ a 0...n : b(<f>(a0...j)))

(->3(Jk € a i+ i...n : L (a 'k) € choice_set(r)) A
(b(0(cro-n)) V nondisabling(r) A

The first condition in the definition deals with rules that
are initially marked. In order to satisfy the first condition, a
rule must be initially marked (i.e., r e R o) and there must
not be any other firing of the rule in the firing sequence (i.e.,
-i3 a j e a 0...n : L (a j) = r). There also must not be any
other event firings in the sequence that would cause this rule
to lose its chance to fire due to conflict [i.e., - d a j £ a 0...n :
L (a j) € ch o ice s e t (r)] . Finally, the Boolean expres
sion on the rule must either be satisfied by the cur
rent firing sequence or be satisfied at some point in
the current firing sequence for a nondisabling rule [i.e.,
(b((f>(ao—n)) V (nondisabling(r) A 3 a j £ a: b(cf>(ao—j))'].
This distinction is made since nondisabling rules only require
that the Boolean expression become true at some point be
fore the rule fires. The second condition deals with all rule
enablings other than the first firings of initially marked rules.
In order for the second condition to hold, the firing sequence
must contain a firing of the enabling event of the rule [i.e.,
3 a i e a 0...n : L (a i) = e] and it must not contain a firing
of the rule that occurs after the firing of the enabling event
[i.e., -<3aj £ a i+1...n : L (a j) = r]. The firing sequence also
must not contain a firing of an event in the choice set of r that
occurs after the firing of e [i.e., - 3 a k £ a i+1...n : L (a k) £
choice_set(r)]. Finally the Boolean expression on the rule
must either be satisfied by the current firing sequence or, if
the rule is nondisabling, it must have been satisfied at some
point in the sequence after the firing of the enabling event [i.e.,

BELLUOMINI et al.: TIMED CIRCUIT VERIFICATION USING TEL STRUCTURES 133

Fig. 4. Conflict behavior.

When a sufficient set of rules has fired in the sequence, an
event becomes enabled to fire. When an event fires, it “uses”
the rule firings. Therefore, we need to define when a rule firing
can be used to fire an event.

D efin ition II .3: The usable relation on a f. L (a i) = (e, / , I,
u , b) and a 0...n is defined as follows:

u sa b le (/J i , a 0...n) O -■ 3 a j £ a i+1...n :

This definition means that a rule firing is usable until its
enabled event fires or an event in its choice set fires. A rule
r = ./• I, b) remains usable when an event f that con
flicts with / fires, if f and / do not share e as an enabling event.
For example, consider the TEL structure in Fig. 4, and assume
that a + and d + have fired. A firing of a-\-----> c+ is made un
usable by the firing of event b+ since b+ is in the choice set of
a-\-----> c+ . However, the firing of b+ does not make a firing
of d-\-----> C+ unusable. This distinction is made since another
firing of a + is necessary before c+ can fire, but another firing
of d + is not necessary before c+ can fire.

Events fire when there is a sufficient set of usable rules.
D efin ition II.4: The set of fireable events of a firing sequence

ao-.-n is defined as follows:

A e;# e A u sa b le (c jj , <Jo...n)} .

The fireable set contains all events which have a sufficient set of
usable rules in the firing sequence. All of the rules that enable an
event must either have a usable firing in a or have an enabling
event which conflicts with a rule that has a usable firing in a .

Definition II.4 allows us to define the set of sequences that
are allowed by the TEL structure £ e as follows:

D efin ition II.5: A sequence a e S if and only if V a ,

2) L (a i) e E => L(a ,i) e fireable(«j0...i_i);
3) L(<7i) e R A ftreable(cr0...i) ^ 0 => a i+1 e

fireable(a0...i).
The first requirement states that rules must be enabled when

they fire. The second requirement of this definition states that
all events must be in the fireable set when they fire. The third
requirement is that if the fireable set of a rule firing is not empty,
an event in the fireable set must follow it in the sequence.

Each rule firing a, can be associated with the event firing
that enabled the rule by the causal event function E c defined
as follows:

D efin ition II.6: E c (<Ji, a) = <jj where j is the maximum
value less than i for which

This means that the causal event for a rule firing is the event
firing that causes the rule to become enabled. This event may
either be the enabling event for the rule or it may be an event
that changes the value of a signal, which causes the Boolean
expression associated with the rule to evaluate to true.

Any sequence can be given a tim ing assignm en t r , which
maps an event to the time at which it occurs. For each sequence
a £ S , there is a set of v a lid timing assignments, referred to as

D efin ition II. 7: A timing assignment r is valid for a sequence
cr if

Vai £ a:

This means that a timing assignment is valid if it corresponds
to the order of the firing sequence, all events fire simultane
ously with the rule immediately preceding their firing, and rules
fire between their lower and upper bounds after their causal
event. A firing sequence a e S is reachable in the specifica
tion TEL structure if and only if it can be given a valid timing
assignment.

III. POSET Algorithm

In order to determine if the set of firing sequences allowed
by a TEL structure results in a failure, it is necessary to find the
timed state-space of the specification. The difficulty in doing
this is controlling the state explosion problem. A number of
techniques have been proposed to deal with state explosion. One
approach is to minimize the number of interleavings due to con
currency that are explored. These techniques include stubborn
sets [20], partial orders [21], or unfoldings [22]. While they have
been successful, they only deal with untimed systems.

The size of the timed state space is highly dependent on the
time representation that is used. Timing behavior can either be
modeled continuously (i.e., dense-time), where the timers in the
system can take on any value between their lower and upper
bounds, or discretely, where timers can only take on values that
are multiples of a discretization constant. Discrete time has the
advantage that the timing analysis technique is simpler and im
plicit techniques can be easily applied to improve performance
as shown in [12] and [23]. However, the state space explodes if
the delay ranges are large and the discretization constant is set
small enough to ensure exact exploration of the state space. For
example, a delay range of 117 to 269 has 153 discrete states if
the discretization constant is set to one. Although the discretiza
tion constant can be larger than one if there is a larger number
that divides all of the numbers used for delay ranges, this does
not happen very often when delay numbers from actual circuit
data are used.

Continuous time techniques eliminate the need for a dis
cretization constant by breaking the infinite continuous timed
state space into equivalence classes. All timing assignments
within an equivalence class lead to the same behavior and do
not need to be explored separately. In the unit-cube (or region)
approach [7], timed states with the same integral clock values

134 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001

and a particular linear ordering of the fractional values of
the clocks are considered equivalent. Although this approach
eliminates the need to discretize time, the number of timed
states is dependent on the size of the delay ranges and the
number of concurrently enabled clocks. This state space can
quickly explode for even relatively small systems.

Another approach to continuous time is to represent the
equivalence classes as convex g eom etric regions (or zones)
[24]-[26]. These geometric regions can be represented by sets
of linear inequalities (also known as difference bo u n d m atrices
[DBMs]). These larger equivalence classes can often result
in smaller state spaces than those generated by the unit-cube
approach. While geometric methods are efficient for some
problems, their complexity can be worse than either discrete or
unit-cube methods when analyzing highly concurrent systems.
The number of geometric regions can explode with these
approaches since each untimed state has at least one geometric
region associated with it for every firing sequence that can
result in that state. In highly concurrent systems, where many
interleavings are possible, the number of geometric regions
per untimed state can be huge. Some researchers [8]-[10],
[27] have attacked this problem by reducing the number
of interleavings explored using the partial order techniques
developed for untimed systems. These algorithms compute a
set of event firings that must be interleaved to ensure that the
desired property is checked. Any event firings not in the set are
not interleaved. This reduces the state space significantly for
highly concurrent specifications. While reducing the number of
interleavings is useful, in [8] and [9] one region is still required
for every firing sequence explored to reach a state. If most
interleavings need to be explored, these techniques could still
result in state explosion. The algorithms from [10] and [27] do
address the problem of generating a unique region for every
firing sequence. However, since these techniques do not find
the entire state space, they cannot be applied to synthesis. In
order for existing algorithms to perform correct logic synthesis
of timed asynchronous circuits, the entire reachable state space
must be found [28]. If the synthesis algorithm is given an
incomplete state space, it cannot be guaranteed to generate
logic that correctly responds to all inputs to the circuit.

O rb its , presented in [29]-[31], takes a somewhat different
approach. It reduces the number of regions per untimed state
by using p a rtia lly ordered se ts (POSETs) of events rather
than linear sequences to construct the geometric regions.
The algorithm generates only one geometric region for any
set of firing sequences that differ only in the firing order of
concurrent events. This algorithm, shown in [30], results in
very few geometric regions per untimed state. This algorithm
differs from the partial order approaches in that it still finds a
complete state space and improvement achieved by O rb its
and is not dependent on the verification property. However, it is
limited to specifications where the firing time of an event can
only be controlled by a single predecessor event [known as the
sing le behav io ra l p la ce (o r ru le) res triction]. In some cases,
the single behavioral rule restriction can be worked around
through transformations on the initial graphs [16]; however, the
transformations cause a large increase in the complexity of the
graphs which need to be analyzed.

In [15] and [32], we present a new version of the POSET algo
rithm that applies to specifications without the single behavioral
place restriction and in [15] we present its theoretical founda
tion using a timed Petri net model. The problem of analyzing a
timed Petri net is isomorphic to the analysis of a TEL structure
where all Boolean expressions true. The Petri net model is used
in [15] because it is better known than the TEL structure model.
Since the theory from [14] and [15] can be applied directly to the
analysis of TEL structures without level expressions, this sec
tion assumes knowledge of that theory and concentrates on the
complexities added to the theory by the Boolean expressions.

A. T im ed S ta tes

A timed state consists of the untimed state, which is the set of
enabled rules and the Boolean state, and the timing information
which is represented by a set of active clocks. An active clock is
created whenever a rule becomes enabled, and eliminated when
the rule fires. After a firing sequence is executed, there is an active
clock for every rule that is enabled by the execution of the firing
sequence. The set of possible timing assignments to the sequence
determines the set of possible ages that the active clocks can have.
This set of ages essentially represents the timed state of the spec
ification at the end of the firing sequence. Therefore, two firing
sequences can be said to lead to the same timed state if they result
in the same set of enabled rules, and the sets of possible ages for
the active clocks resulting from the two sequences are the same.

This representation of equivalence classes leads directly to
the geometric region method of representing time first intro
duced in [24], where the set of possible clock ages is represented
by a set of inequalities. However, as described above, it suffers
from an explosion in the number of geometric regions per un
timed state when the specification is highly concurrent. This is
due to the way the equivalence class is defined. Since a valid
timing assignment must be monotonically increasing, sequences
that have concurrent rules firing in different orders always re
sult in different equivalence classes since the relative clock ages
must reflect the firing order. This means that there is at least one
region generated for each firing order that can lead to a given un
timed state. This “region splitting” problem results in very poor
performance for geometric region-based algorithms for concur
rent examples.

The POSET algorithm uses a different method of defining
equivalence classes, which significantly reduces this problem.
When the POSET method is used, regions are generated based
on the causality in the sequence. A firing of event e is causal to
a firing of event / if the firing time of e controls the firing time
of / . More formally:

D efin ition III. 1: An event firing a , is causa l to an event firing
a,j £ a if <Ti = E c(& j- i , a) .

Intuitively this means a, is causal to a , if the firing a, en
ables the rule whose firing makes a , fireable, and thus controls
the firing time of o r In [15], we proved an inequality on timed
Petri nets that implies the following inequality for TEL structure
specifications where all Boolean expressions are true : if event
firing a , is causal to eventfiring a , in a , then r (a , j + l (a j - 1) <

< r (a i) + M(a.(_i)istrueforallvalidtim ingassignm ents
r to a . These inequalities follow from the fact that arule must fire

BELLUOMINI et al.: TIMED CIRCUIT VERIFICATION USING TEL STRUCTURES 135

at some time between I and u time units after it becomes enabled.
Since it is the firing of the causal event that enables the rule, the
rule fires between I and u time units after its causal event fires.
However, this inequality does not mean that for a given firing
sequence a there is always a timing assignment that allows the
firing time of a i to reach all values within the range of the in
equality. For the purposes of the algorithm, we would like to be
able to create regions that contain the entire range. Therefore, it is
necessary to look at more than one firing sequence at a time and
show that there is always som e firing sequence that allows any
given value in the range to be assigned as a firing time.

B. R eorderings

The concept of a va lid reordering of a firing sequence is de
fined in [15]. A valid reordering of a firing sequence is a change
in the firing order that does not change the causality of the se
quence and conforms to all of the requirements in Definition
II.5. We proved in [15] that for specifications without conflict,
it is always possible to create a reordering of a firing sequence
so that there is a valid timing assignment where the separa
tion between a , and o 3 reaches either of the bounds in the in
equality above. For specifications with conflict, the bounds are
not always reachable, since restrictions must be made to the re
ordering to ensure that conflicts are not resolved differently in
the two sequences. In order to make timing assignments consis
tent with this restriction, rules with nonempty choice sets must
be given timing assignments consistent with the curren t firing
sequence. These properties are used to modify the standard geo
metric region algorithm so that it is not forced to produce at least
one region for each firing order. Instead, regions are produced
that contain timing assignments for all of the possible valid re
orderings of the firing sequence.

In order to ensure that a reordering is valid, it must meet cer
tain restrictions, which are described in [15] for TEL structures
where all Boolean expressions are true. The reordering restric
tions described in [15] are essentially as follows.

1) An event firing o , cannot be reordered to occur after a rule
firing a t if L i a ,) is the enabling event of the rule firing
in

2) A rule firing a , cannot be reordered to occur after an event
firing a , if the firing of L i a ,) is one of the rule firings
needed to fire L (a j) .

3) Since we do not want to change the causality, the rule
preceding each event firing is the same in the original and
reordered sequences.

4) Rule firings that have conflicting enabling events cannot
be reordered since this may cause a different choice to be
made between conflicting events.

These conditions ensure that the reordered sequence has a
valid firing order, the causality remains unchanged, and the same
choices between conflicting events are made in both sequences.

In order to modify the result from [15] to work on TEL
structures with Boolean expressions, we need to determine
the additional reordering conditions that are necessary to pre
serve causality in the sequence and ensure that any reordered
sequence conforms to the requirements in Definition II.5.
When there are no Boolean expressions, any reordering of the

sequence where the rule firing immediately preceding each
event firing does not change preserves the causality in the
sequence. The last rule firing before an event a , fires is always
the causal rule of a i by definition. If all Boolean expressions
are true, then the enabling event for the rule o ,_ i is always
the causal event for event firing a , . With Boolean expressions,
this is not the case. Another event firing may have caused the
rule that fires in a , i to become enabled. A firing sequence a
must not be reordered in a way that changes the identity of this
event. Additionally, due to the Boolean expressions, it is more
difficult to ensure that the reordered sequence is a valid firing
sequence according to Definition II.5. The sequence must only
be reordered in a way that preserves the property that a rule’s
Boolean expression is always true at the time it fires.

If arbitrary Boolean expressions are allowed, determining
which reorderings can be made without changing the causality
or producing an invalid sequence is a difficult problem. When
arbitrary Boolean expressions are included, the ability to
change the firing order of a , and a , can depend on whether the
location of another event a k has been changed. For example,
consider the Boolean expression a A (b V c) on a rule r , where
the enabled event is / + . Suppose that in the original firing
sequence a, b, and c are all true when / + fires. Either 6+ or c +
could be reordered to occur after / + because doing so would
still allow the rule to be enabled when / + fires. However,
once the decision has been made to reorder b+ after / + , c+
cannot be reordered after / + , since r is not enabled when / +
fires if both b+ and c+ are reordered to occur after / + . Since
reordering decisions are no longer independent, it is difficult to
examine all possible reorderings at once because a reordering
of one event may exclude the reordering of another event.

When each Boolean expression is restricted to be only purely
conjunctive or purely disjunctive (with complemented literals),
additional reordering restrictions for level expressions can be
developed. For any firing a* £ a:

1) if L (a i) is a rule where b = true, there are no additional
restrictions;

2) if L i a ,) is an event, there are no additional restrictions;
3) if L(<Ji) is a disabling rule, no event that would disable

L i a ,) can be moved before a ,:
4) If L (a i) is a nondisabling rule and a t = E r (a ,. a) , no

event that would prevent the firing of a t from enabling a,
can be moved before o j ;

5) if L (a i) is a rule with a conjunctive (and) expression and
a j is the causal event of a ,, then:

a) the enabling event of L ia ,) cannot be moved to
occur after a t :

b) no context firing can be moved to occur after a t ;

6) if L (a i) is a rule with a disjunctive (or) expression and
a j is the causal event to a ,, then:

a) the enabling event of L ia ,) cannot be moved to
occur after a ,;

b) no firing which causes the or expression to become
true can be moved before o j;

c) if L(<ij) is the enabling event of L (a i) , then no
event can be reordered to occur after a t if it would
cause the or expression to be false when a t fires.

136 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001

The first four conditions apply equally to and and or expres
sions. Obviously, if there is no Boolean expression, then the old
reordering restrictions that do not consider them are sufficient.
If the firing is an event, there are no additional restrictions since
all of the added conditions in the previous section concern rules.
If a rule is disabling, a reordering should not cause a rule to be
come disabled if it does not do so in the original sequence. For
example, if a disabling rule e-|— > / + has a Boolean expression
a A 6, a firing of a - cannot be reordered to occur before the rule
firing. If the rule is nondisabling, the restriction is needed that
no event prevents the rule’s causal event from enabling it. For
example, consider the nondisabling rule e-\---- > / + , which has
Boolean expression a A b, and causal event e+ . If e + is causal,
then a A 6 is true when it fires. No firing of a — can be moved to
fire before e + since it would not allow the firing of e + to enable
the rule.

There are specific additional restrictions for rules with an d ’s
and o r’s. If there is an and expression, then a reordering may
change the causality or cause the new sequence to be invalid if
some signal firing is moved later in the sequence. The restric
tion prevents a sequence from being created where the and ex
pression is not true when the rule fires. Since no event firing
that affects the expression may be moved after the causal event,
it also ensures that the causal event for the rule firing remains
the same. For example, consider a rule e-\— > / + , which has a
Boolean expression a A b , and assume that 6+ is causal in the
firing sequence. The fact that b+ is causal implies that there has
been a firing of e + and a firing of a + somewhere in the se
quence before b+ . In a reordering, the firings of e + and a + are
not allowed to be moved after b+ in the firing sequence.

With or expressions, three conditions are necessary. As with
and expressions, the enabling event must not be reordered to
occur after the causal event. The reordering also must ensure
that the Boolean expression does not become true too early. If
the reordering moves an event firing that satisfies the or to occur
before the causal event then the causality changes. Therefore,
this is not allowed. For example, consider a rule e+ — / + ,
which has a Boolean expression a V b, and assume that b+ is
causal in the firing sequence. The firing of e + cannot move after
b+ just like in the and expression. However, no firing of a + can
be allowed to move before b+ , unlike in the and expression. If
a + fires first, then it is the causal event. The final condition en
sures that the or expression is satisfied when the rule fires. If
the enabling event is the causal event, the firing that satisfied
the or expression cannot be moved after the firing of the en
abling event. Arbitrary Boolean expressions require combina
tions of these requirements, which could be defined but would
be difficult to implement in an algorithm that is building geo
metric regions. The next section describes how these reordering
conditions are used to build geometric regions, which represent
timing assignments to reorderings of the firing sequence.

IV. Timed State Space Exploration

Circuits specified as TEL structures are verified by using a
depth-first search to find all of the states allowed by the spec
ification. As firing sequences are explored, the current state
after each firing is compared with all previously encountered

states to determine if it has been seen before. In order to do
this search, the algorithm needs to keep track of a set of rules
whose enabling events have fired R m , the Boolean state that re
sults from the current firing sequence s c, and the set of enabled
rules R en . The triple R m x sc x R en defines an un tim ed state
since it indicates which rules are enabled but says nothing about
timing. In order to determine which rules in R , „ are satisfied,
timing information (TI) is needed. A tim ed sta te is defined to be
R m x s c x R en x TI. A timed state contains all the information
necessary to compute the set of satisfied rules R s . Only rules in
R s are allowed to fire and cause a transition to another state.

A. G eom etric R egions

As mentioned earlier, timing information is represented with
geometric regions. The minimum and maximum age differences
of all the active clocks are stored in a constraint matrix M . Each
entry , in the matrix M has the value m ax(cj — r ,), which
is the maximum age difference of the clocks. A dummy clock
c0, whose age is always zero, is also included. The maximum
age difference between c* and c0 (m (],) is the maximum age of
(:,, and the maximum age difference between c0 and c., (m i0) is
the negation of the minimum age of c*. This constraint matrix
represents a convex \R en \ dimensional region. Each dimension
corresponds to an unfired rule, and the age at which it fires can
be anywhere within the space.

When an event fires and causes new rules to be added to R en ,
the matrix needs to be updated to reflect the new timing informa
tion. Information about the newly enabled rules must be added
to the constraint matrix and information about rules that are no
longer in R , „ must be removed. The main operation used to do
this is recanonica liza tion . Recanonicalization takes a matrix M
where some of the m ^ ’s are greater than m ax(cj - c*) and pro
duces a matrix where all the //(, , ’ s have their maximum allowed
value. The assignment of the m * /s so that they all have their
maximum value is always unique; the algorithm can determine
when a given region is equivalent to or contained in a region
that has been seen before. Recanonicalization is, essentially, the
all pairs’ shortest path problem and can be done in 0 (n 2) time
with Floyd’s algorithm [29].

Since our semantics consist of rule and event firings, rules
fire independently of events and timing information is updated
whenever a rule fires. In the algorithm, a rule can always fire
when it is satisfied. The firing of a rule, however, does not al
ways correspond to the firing of an actual event. An event only
fires when a sufficient set of the rules enabling it has fired. As
rules fire, they are projected out of the constraint matrix, re
moved from R m , R en, and R s , and added to a new set of “fired”
rules R f . Since they have fired, timing information about them
is no longer needed, but the fact that they have fired must be
recorded. The set R f is part of the timing information and there
fore part of the timed state. When a set of rules sufficient to en
able an event e are in R f , e can fire.

B. P O S E T Tim ing— U pdating the State

During the depth-first search, the algorithm calculates the sat
isfied set R s from each timed state. It then chooses a rule from
R s to fire, places the rest of the rules in R s on the stack, and calls
a function that returns the timed state that results from firing the

BELLUOMINI et al.: TIMED CIRCUIT VERIFICATION USING TEL STRUCTURES 137

rule. If the new timed state has been seen before, the algorithm
pops an unexplored timed state off the stack and continues the
search. If there are no more unexplored states on the stack, the
algorithm has completed.

The POSET algorithm, used to reduce the state explosion
problem, creates geometric regions based on partially ordered
sets of events rather than linear sequences. The partial order is
defined by the reordering restrictions described above. If two
firing sequences are valid reorderings of each other, then they
have the same partial order. Regions represent all possible age
relationships between the enabled rules and can be generated by
all firing sequences that have the same partial order as the firing
sequence currently being explored. This prevents additional re
gions from being added for different sequences of event firings
that lead to the same untimed state. POSET timing results in a
compression of the state space into fewer and larger geometric
regions that, taken together, contain the same region in space
as the set of regions generated by the standard geometric tech
nique. Therefore, all properties of the system that can be verified
with the standard geometric technique can be verified with the
POSET algorithm.

Fig. 5 shows the procedure for updating the timed state using
the POSET timing technique. The algorithm does a depth-first
search of the timed state space, finding all the timed states that
are reachable. It first initializes all of the elements of the timed
state. The set R m is set to R o , the set of initially marked rules in
the TEL structure. The current state is set to the initial state of the
TEL structure. The R en set is created by including all marked
rules whose Boolean expressions are satisfied by the initial state.
The timing information M is then initialized for all the enabled
rules. All initially enabled rules have a minimum age of zero and
a maximum age of the least upper bound among them. Their
relative age differences are all set to zero. The algorithm then
initializes R f to 0. After these steps, the algorithm has created
the initial timed state. It combines all the elements of the timed
state into a data structure T S and adds it to the state space '!>. In
order to use the state space for synthesis, the algorithm also must
store the set of possible transitions between states. This set is
called T and is initially empty. After initializing F, the algorithm
calls the function f in d - t im e d - e n a b le d , which returns the set
of rules that are currently allowed to fire. It goes through all of
the enabled rules and adds those whose clocks meet their lower
bounds to the list of rules that can fire. The algorithm has now
initialized everything and is ready to begin the main loop.

The main loop of the algorithm continues until all of the
reachable states have been found, a condition represented by the
variable done. When the loop begins, the function removes the
rule it is going to fire r from the front of the rule list [i.e., head
(R L)] and places the rest of the rule list [tail (A L)], the timed
state, and the POSET matrix on the stack. Next, it saves the cur
rent R en set by assigning it to R 0u- This is done so that the
algorithm can determine which rules in R , „ are newly added.
It then adds r to the fired set since it is firing and removes it
from R m and R , „ since it is no longer available to fire. Next,
the algorithm checks if firing of r causes an event to fire. An
event fires if all of the rules that enable it are either in R f or
have enabling events that conflict with the enabling event of a
rule that is in R j . II'an event can fire, the algorithm updates the

void update(TEL structure TEL (N , so, A, E, R, Rq, #) >

ruleJist RL = find_timed_enabled(TS, TEL);

Fig. 5. Procedure for updating the timed state.

state vector using the s_ index function to find the index of the
signal that is changing state in the state vector. If a sequencing
event fires, the state vector remains unchanged. Next, the algo
rithm updates the rule sets to reflect the firing of a new event.
The .RUSed set is set to contain all of the rules that are used in the
firing of / . These are the rules that enable / and are in the fired
set R f when / fires. The marked set R m loses all rules that con
tain / in their choice sets, since they have lost their chance to
fire. The marked set gains all rules that have / , the firing event,
as their enabling event. The fired set loses all rules that enable
/ , and all rules that contain / in their choice sets. These rules
are no longer usable since they have either been used or become
unusable due the firing of an event in their choice sets. The en
abled set is also updated: it loses all rules that contain / in their

138 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001

choice sets and gains all rules in R m , whose Boolean expres
sions are satisfied in the new state. The algorithm then checks
for rules that have been disabled. If a disabling rule is in the en
abled set and its Boolean expression is no longer true due to the
firing of / , it has been disabled. This can result in two different
outcomes. If the designer wishes to consider disablings failures,
since they correspond to hazards on the inputs of gates, then at
this point the algorithm returns a fail condition and ATACS gen
erates a failure trace. If the designer does not want the algorithm
to fail on a disabling, the offending rule is removed from the
enabled set and the algorithm continues. After all the rule sets
have been updated, the algorithm updates the constraint matrix
M and POSET matrix P M . The details of this are discussed
in the next section. Next, the old timed state is saved in T S0id
and all of the sets are combined into the new timed state. The
algorithm then checks to see if this new state is already in the
state space. If it is not in the state space, the new state is added
is added to '!> and a new transition from T 5 0id (o T S is added to
the transition set F. Then a new list of rules to fire is computed
from the current state. If the current state is already in '!>, the al
gorithm removes a state, a POSET matrix, and rule list from the
stack and continues the main loop. If the stack is empty, then
there are no more new states to be found and the algorithm is
completed.

C. P O S E T Tim ing— U pdating the P O S E T

The method for updating the POSET matrix is based on
causality. When doing analysis on TEL structures with all tru e
Boolean expressions, if r = (ec, e, I, u , b) is the causal rule
to e, then the firing time of the event ec controls the firing
time of event e. However, when the Boolean expressions are
not true, this is not the case. The event that determines the
enabling time of a rule may be its enabling event or it may be
some other event firing that causes its Boolean expression to
become satisfied. For example, consider the TEL structure for
the signal o u t2 + in Fig. 2 when o u t2 — has just fired. Suppose
that o u t l rises and then c rises. In this case, c+ is causal to
the event o u t2 + . Assuming that the rule does not become
disabled, o u t2 + must rise between ten and 30 time units after
c rises. This subsection describes how the algorithm maintains
the POSET matrix, taking into account the complexities caused
by the ability of any event to be causal to any rule through a
Boolean expression.

For any given rule firing sequence, there is a well defined
causal event for each event firing r . Each event firing e has a
causal rule firing r c. The event firing that controls the firing time
of e is the causal event of r c . The timing of this causal event
determines the minimum and maximum firing time of e over all
reorderings of the firing sequence. The purpose of the POSET
matrix is to keep track of the time separations between event
firing times that are allowed by a valid reordering of the firing
sequence without forcing the timing behaviors represented by
the geometric regions to conform to the total order of the firing
sequence. This prevents a new region from being generated for
every possible firing sequence leading to an untimed state and
drastically reduces the size of the state space.

Fig. 6 shows the procedure for updating the constraint matrix
and the POSET matrix. The POSET matrix is only updated if

used rule set Rused, POSET matrix PM,
constraint matrix M, TEL (N, so, A, E, R, C

' if(Vr = (e, f c, l,u,b) 6 R : choice-set(r) = 0) then

 ̂ else PM[index(fc)][index(ei)] = M[0][index(rc)];

if(ej = e A PM[index(fc)][index(ei)\ > —I) then

if(d = erc A PM\index(ef)][index(ei)} > —I) then

if (-i3ri = (ei, fi,k,Ui,bi) G Ren A-•match(ei, s c))

PM [index (causal (r j))] [index (causal (rj))];

Fig. 6. Procedure for updating the POSET matrix.

an event fires. Each entry in the POSET matrix represents the
maximum time separation possible between two event firings
over all possible valid reorderings of the firing sequence. When
a new event f c fires, entries must be added to store the separa
tions between f c and all of the other events represented in the
matrix. The function first initializes all of the new entries in the
matrix to infinity. A value of infinity means that there is no re
ordering restriction that applies to this event pair.

The rest of the algorithm checks the various reordering re
strictions and changes the values in the matrix accordingly. For
each event (-, in the POSET matrix, the algorithm first deter
mines if ei is the causal event to the causal rule r c . If (-, is the
causal event and the firing event is not enabled by any rules with
a nonempty choice set, then its firing time determines the upper
bound on the firing time of f c over all valid reorderings. This

BELLUOMINI et al.: TIMED CIRCUIT VERIFICATION USING TEL STRUCTURES 139

separation is thus set to the upper bound of the causal rule u c . If
the firing event f c is enabled by a rule with a nonempty choice
set, then the upper bound in the POSET matrix is set to the upper
bound on the causal rule in the constraint matrix. This sets the
upper bound on the firing time of f c to be the latest allowable
by the curren t firing sequence. Then the function checks if this
event firing could disable a rule that enables the event in the
POSET matrix that is currently being examined <■■,. If it does,
then f c must always occur after e* and their minimum separa
tion is set to zero, indicating that f c cannot occur before

The next step is to check all of the other reordering restric
tions. Since the reordering restrictions are defined with respect
to rule firings, the algorithm needs to apply the reordering re
strictions to all of the rule firings that are used to fire the event
f c . First, the algorithm extracts the causal event for the rule that
it is considering erc . In practice, it is simple to store the causal
event of a rule when it becomes enabled. It then checks to see
if ei is an enabling event of r . If > , is the enabling event of r ,
then the lower bound on r must be met for any valid reordering
and the lower bound in the matrix is set to - / i f it is not already
less than —I. The event e* may also be the causal event of r , and
this also implies the minimum separation between <:, and f c is I.
Next, the algorithm checks for events that are required for an ex
pression associated with r to be satisfied. Any such events must
fire before the causal event, and therefore the minimum sepa
ration between them and the causal event is set to zero. Note
that an event can be considered and_con tex t even if it is asso
ciated with an or expression. If the causal event of a rule with
an or expression is its enabling event, then one other event is
necessary in order for the or expression to be true when the rule
becomes enabled. This event is and_con tex t for the or rule. For
events with or expressions, there is also an opposite restriction.
Any events that would cause the value of the or expression to
become true before the causal event fires must not be reordered
to occur before the causal event. Therefore the maximum sepa
ration between e* and erc is set to zero to ensure that erc cannot
happen after These entries in the POSET matrix ensure that
none of the timing assignments allowed violate the reordering
restrictions.

After the new constraints are added, the matrix is recanonical-
ized, which tightens all of the separations down to the maximum
allowed by the known constraints. Finally, any events that are
no longer relevant to future behavior of the system are removed
from the matrix by the p ro jec t function. An event can no longer
affect future behavior if it is not causal to any rule currently in
the constraint matrix and the direction of the signal transition no
longer matches the current state (a + no longer matches the cur
rent state if a is low in the current state). The result is a POSET
matrix that constrains the minimum and maximum separations
between events to bounds that are implied by the causality in the
firing sequence. The constraints computed in the POSET matrix
can then be used to compute a new constraint matrix M . The
minimum age of each rule is set to zero since information about
minimums is already included in the POSET matrix. Next, the
algorithm sets each entry in the constraint matrix, which repre
sents age differences between rules, to the time separation be
tween their causal events. Then the algorithm projects out the
entry in the constraint matrix for the rule that is firing. Finally,

a+
<2,10> ^ [x]

b+

<2,5>j
c+

[1.5] ̂ [1,5]

x+ y+
<3,7>j |<3,7>

w+ z+

Initially: Firing sequence={a+,v+}
POSET matrix Constraint matrix:

a+v+
a+
v+

00
00

0
[v+,x+]
[v+,y+]

0 [v+,x+] [v+,y+]
Geometric Region:

[v+,x+]
5

5 [v+,y+]
Firing: y+ Firing sequence= {a+,v+,y+}, causal=v+
POSET matrix: Constraint matrix: Geometric Region:

a+
v+
y+

a+ v+ y+ 0 [v+,x+] [y+,z+l [v+,x+]
50 0 - 1 0

5° 5 Ao [v+,x+]
0 5
-1 0

4
-1 /

[y+.z+] 0 5 0 r i

Firing: y+ Firing sequence={a+,v+,y+,x+}, causal=v+
[y+.z+]

POSET matrix a+ v+ y+ x+
a+
v+
y+
x+

0 0 - 1 - 1
0 0 - 1 - 1 0
5 5 0 4 [y+,z+]

[x+,w+]
[b+,c+]

Constraint matrix:
0 [y+,z+] [x+,w+] [b+,c+]

5 5 4 0

10
4
0
0

Geometric Region:
(Projected onto 2 dimentions)

7

[x+,w+]

[y+,z+] 7

Fig. 7. Example of POSET algorithm.

the algorithm updates the constraint matrix. It sets the maximum
age of each constraint rule in the matrix to infinity and the max
imum age of all of the other rules in the matrix to their maximum
possible age u , . This allows time to advance as far as possible
without causing any rule to exceed its maximum age. Since the
upper bounds for constraint rules are set to infinity, they do not
constrain the region, and adding constraint rules to a specifica
tion does not cause the generation of new regions.

This algorithm extends the benefits of POSET timing to spec
ifications with level expressions. The additions that are nec
essary to support levels do not add significantly to computa
tion time, since they simply consist of determining causality
and context relationships. When TEL structures are limited to
simple and or or terms, these relationships can be determined
by checks that occur when a rule becomes enabled, and require
very little computation time.

V. EXAMPLE

Fig. 7 shows the application of the POSET algorithm to
the TEL structure fragment shown at the top. The initial state
of the TEL structure is indicated by its marking. The rules
[a+, 6+], [i>+, x +], and [i>+, y +] are initially in R m . The

140 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001

all zero initial POSET matrix indicates that a + and v + have
fired at the same time. The initial constraint matrix indicates
that only two of the three marked rules are initially enabled,
[i!+, x + \ and [v+, y + \. The rule [a+, b+] is not initially
enabled since its Boolean expression [a:] is not satisfied in
the current state. The initial geometric region shows that the
two rules must have the same age and that their age cannot
exceed five, which is the upper bound for both of them.
Given this region, either rule can fire. In this example, rule
[n+, y + \ is chosen to fire first. Since this is the only rule that
enables event y + , y + immediately fires, resulting in the firing
sequence a + , v + , y + . The POSET matrix generated by this
firing sequence shows that the separation between the firing
of r-+ and y + is between one and five, as is the separation
between the firing times of a + and y + . The region constructed
using this POSET matrix shows that the rule [n+, ./■+] has a
maximum age of five, while the rule [y+ , z+] has a maximum
age of four. The region also requires that [t/+, x + \ must be at
least one time unit older than [y + , z + \ . The benefits of the
POSET algorithm are illustrated with the next firing x + . The
POSET matrix created by the firing of x + shows that y + and
:/■+ are allowed to fire in either order (y + can fire up to four
time units after x + and ./■+ can fire up to four time units after
y +) . This occurs because there are no causal relationships that
require the firing order of y + and x + to enforce in the POSET
matrix. Since x + and y + are concurrent events, and changing
their firing order does not change any causality relationships,
a region is constructed that includes both the current firing
sequence and another firing sequence, where x + fires before
y + . The line drawn through the shaded region shows the two
regions that would be generated using the standard geometric
region algorithm. The POSET algorithm allows one region to
be generated, and thus reduces the number of regions explored
during state space exploration.

VI. Circuit Analysis

The POSET algorithm applied to TEL structures is im
plemented in the CAD tool ATACS and has been applied to
several examples. These examples, which come from both the
synchronous and asynchronous domain, all depend on timing
behavior for correctness. The reduction in state space size
provided by the POSET algorithm makes timing verification
tractable for circuits of interesting complexity.

A. A synchronous C ircu it Verification

The first example is a self-timed at receiver’s input (STARI)
communication circuit, described in detail in [33] and [34].
The STARI circuit is used to communicate between two
synchronous systems that are operating at the same clock
frequency tt, but are out-of-phase due to clock skew which
can vary from zero to skew . The environment of this circuit is
composed of a clk process, a transmitter, and a receiver. The
STARI circuit is composed of a number of first-in first-out
(FIFO) stages built from two C-elements and one NOR-gate
per stage, which each have a delay of I to u . There are two
properties that need to be verified: 1) each data value output by
the transmitter must be inserted into the FIFO before the next

Fig. 8. Stari results with POSETs and with COSPAN.

one is output [i.e., ack(1) - precedes x (0) . t - and x (0) . / —];
and 2) a new data value must be output by the FIFO before each
acknowledgment from the receiver [i.e., x (n) . t + or x (n) . f +
precedes a c k (n + 1) -] [35]. To guarantee the second property,
it is necessary to initialize the FIFO to be approximately half
full [34]. In addition to these two properties, we also verified
that every gate is hazard-free (i.e., once a gate is enabled, it
cannot be disabled until it has fired).

There have been two nice proofs of STARI’s correctness [34],
[36], but they have been on abstract models. Fig. 8 shows the
runtime and memory results of running the POSET algorithm
on STARI. These results are compared to those from [35], where
COSPAN is used to verify STARI. Arrows in the figure indicate
the performance of COSPAN reported in [35]. In [35], the au
thors state that COSPAN, which uses the unit-cube (or region)
technique for timing verification [37], ran out of memory at
tempting to verify a three-stage gate-level version of STARI on
a machine with 1 GB of memory. The paper goes on to de
scribe an abstract model of STARI, for which they could verify
eight stages in 92.4 MB of memory and 1.67 h. We first verified
STARI at the gate-level with delays from [35] (i.e., tt = 12,

BELLUOMINI et al.: TIMED CIRCUIT VERIFICATION USING TEL STRUCTURES 141

skew = 1, I = 1, and u = 2). Using POSET timing, we can
verify a three-stage STARI in 0.74 MB in only 0.40 s. For an
eight-stage STARI, the verification took 11 MB and only 55 s.
In fact, POSET timing could verify ten stages in 124 MB of
memory in less than 20 min. This shows a nice improvement
over the abstraction method and a dramatic improvement over
the gate-level verification in COSPAN. For ten stages, POSET
timing found 14 531 untimed states and only needed 14 859 geo
metric regions to describe the timed state space. This represents
a ratio of only 1.02 geometric regions per untimed state.

Finally, the complexity of POSET timing is relatively inde
pendent of the timing bounds used. We also ran our experiments
using I = 97 and u = 201, skew = 101, and 7r = 1193, which
found more untimed states. With I = 102, we found less un
timed states. Both cases with higher precision delay numbers
had comparable performance to the one with lower precision
delay numbers. This shows that higher precision timing bounds
can be efficiently verified and can lead to different behaviors. It
would not be possible to use this level of precision with a dis
crete-time or unit-cube-based technique, since the number of
states would explode with such large numbers.

Recently, there have been a couple of new approaches taken
to verify the STARI circuit. In [38], a discrete-time BDD-based
approach implemented in KRONOS is used to verify 17 stages
of STARI. While this result is very good, the timing bounds used
in the verification have to be very small ([0,1] or [1,2]) to control
the complexity. This approach would quickly explode if more
significant digits are needed. Previously, we have shown in [15]
that our approach substantially outperforms KRONOS for their
highly concurrent benchmarks [12]. In particular, we analyzed
512 stages of alpha while they could only do 18, and we ana
lyzed 14 stages of beta while they could only do nine. In [39], a
partial order approach is applied to the verification of 11 stages
of STARI. The performance is extremely good completing the
verification in under 1 s using less than 1 MB of memory. How
ever, they do not find the entire state space, making it impossible
to use for synthesis, and the amount of improvement demon
strated by the algorithm depends on the properties to be verified.

The next example comes from the Intel RAPPID design [1].
The key to the performance of the RAPPID design is a very ef
ficient synchronization mechanism which is called the tagun it.
One tagunit is shown in Fig. 9. The operation of this circuit
is that it can receive a tag from one of seven other tag units
(Tagitii). If the instruction is ready (In s tR dy) and the crossbar
is ready (X B R dy), it tags out to one of seven other tag units
(TagO uti) depending on the length of the instruction (Lengths).
In order to compare the performance of the new, level-based ap
proach to the timed Petri-net-based algorithm we presented in
[15], we converted the tag unit TEL structure to a timed Petri-net
and applied the POSET algorithm from [15]. The level based tag
unit requires less time and fewer regions. The POSET algorithm
completes analysis on the level based tag unitin 13 s, using 1246
regions. The algorithm from [15] requires 4518 regions and 103
s to analyze the timed Petri net. The level-based specification
produces nearly a four times improvement in region count and
a ten times improvement in runtime. In this example, the im
provement in runtime and region count comes entirely from the
improvement in the specification method. When the geometric

Fig. 9. Tag unit circuit.

algorithm without POSETS is applied to the level-based speci
fication, the verification is completed in 13 s with a region count
of 2089. The POSET algorithm does not produce a significant
improvement over the standard algorithm on this example due
to limited concurrency and extensive choice in the example.

In order to further examine the source of the improvement
generated by applying the POSET algorithm to TEL structures,
we created a TEL structure specification and a timed Petri-net
specification of the high-performance FIFO element described
by Molnar in [40]. This example is highly concurrent and
choice-free. For a three-stage FIFO, the level-based specifi
cation without POSETS requires 23 540 regions and 121 s
to complete. The same specification with POSETS requires
1405 regions and 5 s. The timed Petri-net specification with
POSETS requires 4797 regions and 16 s. The timed Petri-net
specification without POSETS does not complete. In this
example, the POSET algorithm produces nearly a 20 times
improvement when applied to the TEL structure-based specifi
cation, while moving from the timed Petri-net specification to
the TEL structure specification produces approximately a four
times improvement. In this example, the POSET algorithm
produces a more significant improvement than the TEL struc
ture specification method. Our experience in analyzing these
and other examples has indicated that the POSET algorithm
produces the largest improvements when the specification
is highly concurrent and choice is absent or limited. When
a specification is dominated by choice behavior, the largest
improvement is gained by moving from an event-based to a
level-based specification.

B. Synchronous C ircuit Verification

A TA C S has also been used to analyze several circuits from
the guTS integer microprocessor designed at IBM ’s Austin Re
search Laboratory [2]. The purpose of this design is to demon
strate the performance gains that can be achieved by using ag
gressive circuit design. It is implemented in a 0.25 //in CMOS
process available in 1997. The high performance of the circuit
is a result of the circuit design, which is done is a dynamic cir
cuit style known as delayed-reset domino [41], [42]. Although
TEL structures and the POSET algorithm were originally de
veloped to analyze asynchronous circuits, they are well suited
to the analysis of delayed-reset domino circuits. The micropro
cessor contains a set of macros, which operate synchronously.
A delayed-reset domino macro consists of a number of levels
of dynamic gates, each of which receives inputs from preceding
layers. Standard domino gates use a common clock that acts as

142 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001

a timing reference. In a delayed-reset design, each level of dy
namic gates receives its own, precisely timed clock, which is
generated by a buffer chain within the macro. The local clocks
travel through the logic along with the data, a reset wave pre
ceding each computation wave. This technique allows approxi
mately one-half cycle for each gate to reset and one-half cycle
for each gate to evaluate. The cycle time for a delayed-reset
domino macro is set by adding the necessary precharge and
evaluate times for a single gate. If multiple gates operate on
the same precharge signal, cycle time is set by adding the eval
uate delay through all the stages to the precharge delay. Due
to the overlapping of the precharge and evaluate phases, the de-
layed-reset domino approach significantly increases the amount
of dynamic-logic that can be placed in a macro at a given clock
frequency.

The delayed-reset domino gates used in the guTS processor
lack the “foot” device that is included in a standard domino gate.
The purpose of this device is to turn off the gates’ pulldown
stack during the precharge phase. Removing this device allows
the gate to switch 5% to 15% faster. Alternatively, the gate can
compute a more complex logic function using the same tran
sistor stack height [41]. In order to remove this transistor, it is
necessary to ensure that the evaluate logic is not on during the
precharge phase. This is the case if all inputs to the gate are
guaranteed to be low during the precharge phase. To meet this
requirement, the inputs to the macro must be pulsed. Combined
with the requirement that the inputs to each gate remain stable
high long enough to switch the dynamic node, this results in a
two-sided timing-verification problem, which is unusual for a
synchronous design.

In the guTS processor, the macro level timing verification is
done using extensive SPICE level circuit simulation [43]. After
the delay behavior of the macros is characterized by designers
in SPICE, it is incorporated into a chip-level timing model for
chip-level static timing verification. This was a successful ap
proach for this processor since it worked first in silicon. How
ever, in order to ensure the correctness of the processor over all
variations in delay, large amounts of delay margin are included
in the design of the macros. If it is possible to formally verify
the macros, then less margin is necessary to have confidence in
the processor’s correctness, which can result in higher perfor
mance. The timing constraints that need to be checked in the
delayed reset domino macros are very similar to the correctness
constraints necessary for asynchronous circuits, and the delayed
reset domino circuits are quite similar to asynchronous circuits.
Therefore, an asynchronous timing verification tool is a natural
choice to be used for formal verification of the macros.

1) Verification o f G ate L eve l M odels: The asynchronous
timing verification tool ATACS is used to verify several of the
macros from the guTS processor. The first circuit is a combined
multiplexor and latch (MLE). This circuit is small enough
verify at the gate level and is shown in Fig. 10. The goal with
this circuit is to verify that the timing specification, which is
supplied with the circuit, indeed guarantees that the circuit
works correctly. The timing specification describes the timing
requirements, which must be met by any circuit communicating
with the MLE. It is derived from SPICE level simulation and
the circuit designers knowledge of how the circuit works. The

Fig. 10. MLE circuit.

timing specifications are also used as the basis for chip-level
static timing analysis. In order to ensure that the chip-level
static timing analysis is modeling all timing behavior, each
macro needs to be formally verified in the environment de
scribed by the timing specification. ATACS verifies the MLE
circuit in a few seconds on a 400-MHz Pentium II.

The MLE circuit contains both static and dynamic gates. The
inputs to static gates are allowed to be unstable since this does
not immediately cause a failure. However, if a glitch on the
output of a static gate propagates to the input of a dynamic
gate, it can cause a failure. In the MLE circuit, the gate driving
the signal “output complement” is static. In every cycle where
“output complement” does not fall, there is a glitch on its in
puts. At the end of the precharge phase, the signal “Output_”
is always high and it feeds one of the inputs to the static gate.
When the clock rises, “output complement” always begins to
fall. However, the signal “Output_” falls later in the clock cycle
if the selected data value is high. When “Output_” falls, one of
the inputs to the static gate is driven low and “output comple
ment” rises again, producing a glitch. ATACS detects this glitch
and determines that it cannot propagate to the output of the cir
cuit.

The next circuit is a dynamic programmable logic array
(PLA) that is used in the processor’s control circuitry. Dynamic
PLAs are easy to generate automatically and have predictable
area and delay. In order to make the PLAs fast, they are con
trolled using self-resetting circuitry. An example of the control
circuitry is shown in Fig. 11. The circuit uses a very aggressive
technique to determine when its inputs are valid. The inputs
are presented to the circuit dual-rail. When the inputs are valid,
the sensor transistors are turned on. These transistors are all
connected to a single node n l , which has been precharged
high. The sensor transistors are sized so that one of them
must be turned on for each input in order for n l to discharge
quickly. However, if one input arrives much earlier than the
rest, eventually its single sensor transistor can discharge n l ,
erroneously causing the PLA to begin evaluating early. This
completion detection circuit is highly timing dependent and
only works if the inputs are guaranteed to arrive within a narrow
time interval. After the falling edge of n l propagates through
four inverters, the node n2 falls. When this node falls, transistor
p i is turned on which raises node n l , resetting the completion
detection circuit. The line “and plane control” is used to gate
transistors, which determine if the and-plane of the PLA is in

BELLUOMINI et al.: TIMED CIRCUIT VERIFICATION USING TEL STRUCTURES 143

dual-rail inputs

Fig. 11. PLA control.

precharge or evaluate mode. The line “propagate control” is
used in a similar manner to control whether the output of the
and-plane can propagate to the or-plane of the PLA, which is
not shown. This control circuitry is essentially asynchronous.
Self-resetting circuits are difficult for static tools to handle,
since they often assume that a transition on an input causes
only a single transition on an output. AT ACS is able to verify the
circuit using the designed delays in a few seconds.

2) Verification o f A b stra c ted M odels: The next circuit is a
compare unit for two 64-b quantities. It consists of three stages
of delayed-reset domino logic. The logic in each stage is exactly
the same. A stage consists of a set of blocks that produce an
output, which indicates whether its two 4-b inputs are equal. To
do a 64-b compare, a tree structure is used where the first stage
has 16 logic blocks, the second stage has four logic blocks, and
the final stage has one logic block. Unlike the previous two ex
amples, this circuit is too large for ATACS to verify it, using a rep
resentation derived directly from its transistor level schematic.
In order to verify these circuits, we applied several conserva
tive abstraction techniques by hand to reduce the complexity of
the design. In the future, we plan to formalize and automate the
techniques described here.

In the compare unit, reducing the bit width sufficiently re
duces the complexity of the circut. It is not necessary to model
each of the 64 b entering the compare unit. Each block in the
first level of logic is modeled as a gate that waits for a single
input and produces its output some variable amount of time
later. Variability in input signal arrival times is accounted for
by putting an independent delay range on the arrival time of
the abstracted input signal for each of the blocks in the first
level of logic. When this signal rises in the abstracted model, it
is equivalent to all eight input bits to a block becoming stable
in the actual circuit. Additionally, since the timing behavior of
each block is the same, the number of input blocks can be re
duced from 16 to 8 without effecting the timing behavior of the
circuit. Fig. 12 shows the structure of the model. Each block is
represented as a TEL structure, which raises its output signal
129 to 139 time units after the block receives all of its inputs,
and lowers its output 149 to 153 time units after its local clock
falls. A global clock, which controls the transition times of the
local clocks, is also modeled but not shown. It takes less than
5 s to explore the state-space of this model using the POSET
state space algorithm on a 400 MHz Pentium II. This circuit

Designed Celldelay = Evaluate: 129 - 139, Precharge: 149-153

Fig. 12. Model for the compare unit.

example also demonstrates the advantages of the level-based
specification. The iteration time provided by the POSET al
gorithm makes it reasonable to iteratively adjust the celldelay
values, global clock speed, and local clock timings to determine
the working ranges of the circuit under a variety of assump
tions. The circuit verifies for global clock cycles up to 100 ps
less than the clock cycle necessary for correct operation in the
gigahertz processor.

Since state-space exploration is an exponential problem, large
specifications can only be verified at a high level of abstraction.
This is illustrated by the verification of the 64-b adder portion
of the multifunction fixed point unit (MFXU). This unit com
putes the results of the add, subtract, and compare instructions
for the processor. The core of the unit is the 64-b parallel prefix
adder design presented in [44], which is based on the algorithm
described in [45]. The MFXU adder contains five stages of de-
layed-reset domino logic. The first stage contains a true/comple
ment mux, stages two through four compute the propagate and
generate signals for the adder, and the fifth stage implements
a large mux, which merges many different signals. Each block
contains a few domino gates, which can vary in delay. Attempts
to verify this circuit at the gate level quickly use more than half
of a gigabyte of memory and do not complete. However, a con
servative abstraction of the MFXU verifies in ATACS using the
POSET algorithm in about 2 min.

The structure of the MFXU abstraction is shown in Fig. 13.
There are two steps involved in creating the conservative ab
straction of the MFXU. The first is to reduce the complexity of
each block by lumping the delay ranges for all of the different
gates into one delay range, which represents the minimum and
maximum time difference between the block receiving all of its
inputs and generating all of its outputs. For example, suppose
a block contains two domino gates d±, which takes 100 ps to
evaluate and d 2, which takes 150 ps to evaluate. It is conserva
tive to make a model for the block where the minimum eval
uate time for the block is 100 ps and the maximum evaluate
time for the block is 150 ps. This abstraction does not capture
the gate-level behavior that one output of the block is available
after 100 ps and the other is available after 150 ps, but if a cir
cuit verifies using the abstraction, its actual behavior verifies
also. When an abstraction like this is made for the precharge
phase and the evaluate phase of each block, then the number of
blocks is decreased. The goal is to reduce the number of blocks
without hiding any interesting block interactions. This is done
by analyzing a 32-b-wide slice of the design. Since each block

144 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001

Fig. 13. MFXU structure.

operates on 4 b of input, this corresponds to a model that is eight
blocks wide at its input. This model is large enough to include
all of the types of interblock relationships of the larger design
and is small enough to verify quickly.

This is done by starting at the last stage and working toward
the first. Every block in the last stage is included. Then, for every
block in the last stage, at least two instances of each type of
block that provides inputs to the last stage are included in the
fourth stage. In this case, four instances of the row 3gen block
which feeds sum ou t block in the fifth stage are included. Only
one instance of the ha lfsum block is included, since there is only
one ha lfsum block in the complete circuit. This process is then
repeated for the fourth through first stages. The resulting model
represents a conservative model of the possible timing relation
ships in the circuit, and is small enough to verify quickly.

The circuit, abstracted in this way, verifies at its intended
clock speed. Therefore, any gate-level timing relationships that
are missed by the abstraction are not necessary in order for the
circuit to run at the specified speed. If this is not the case, then
the blocks on the failure path can be specified in more detail.
Although this increases verification time, it should not make the
problem intractable since the additional detail is limited to a few
blocks. Even if the abstracted version of this circuit is quite large
and has complex timing relationships, which provide many pos
sibilities for error. Formal verification gives confidence that all
of the timing behaviors have been considered. Currently, ATACS
does not have an automated method for generating circuit ab
stractions, and the abstraction described for this example is done
manually. It may be possible to adapt techniques from [46] to
develop an automated method for abstracting blocks of domino
gates.

The final circuit, shown in Fig. 14, is an arithmetic circuit
used in the integer execution unit. It is of moderate complexity
and therefore can be used to test the accuracy of an abstracted

model versus a gate-level model. The gate-level model is still
somewhat abstract in that it does not include the full 64-b data
path, but each instance of a block is described at the gate level.
The results on this macro indicate that the limiting factor in
clock speed is the time that the inputs arrive to the macro, not
gate-to-gate interactions inside the macro. Because of this, the
maximum clock speeds allowed by the abstracted model and the
gate-level model are the same. In order for a gate-level model
to allow a circuit to verify at a higher clock speed than an ab
stracted model, there need to be instances of fast gates in one
stage feeding slow gates in another block in the next stage. Such
instances do not occur in this example.

VII. Conclusion and Future W ork

Our results show that the POSET algorithm, when applied
to TEL structures, can dramatically improve the efficiency of
timing verification allowing larger, more concurrent timed sys
tems to be verified. It does so without eliminating parts of the
state space, so it does not limit the properties that can be ver
ified. Due to the efficiency of the algorithm and the flexibility
of TEL structures, ATACS is very effective for the verification
of both synchronous and asynchronous circuits. Since ATACS
is designed for asynchronous circuits, it can be used to verify
many different circuit styles by varying the constraints that are
checked. When circuit-level timing specifications can be veri
fied, less margin is necessary in each circuit to ensure that the
circuit works correctly, which can result in higher performance.
ATACS does a complete state-space exploration. Therefore, its
complexity is exponential and it is not practical to verify large
circuits at the gate level. However, for most circuits, a higher
level of abstraction is sufficient to verify that the circuit can run
at the desired speed. If this is not the case, it is possible to locally
specify more detail on paths that fail without causing a state

BELLUOMINI et a l TIMED CIRCUIT VERIFICATION USING TEL STRUCTURES 145

Fig. 14. CLZ circuit.

explosion. Most importantly, this paper shows how tools devel
oped for asynchronous circuits can be useful to synchronous de
signers when they choose aggressive circuit styles.

In order to make this method practical for circuit designers,
more work is needed to develop a more automated method of
abstracting circuits and to develop a method of verifying circuits
hierarchically. Additionally, all of the circuits described in this
paper are completed and no failures are found by ATACS when
designed delays are used. It would be interesting to study how
ATACS can help designers determine which delay ranges result
in correct circuits closer to the beginning of the design cycle,
as well as how it can be used on early versions of circuits to
find actual failures. Finally, we would like to explore how the
synthesis capabilities of ATACS can be used to help automate
the design of delayed-reset domino and self-resetting circuits.

Acknowledgment

The authors would like to thank all of the guTS design team
at IBM, especially Dr. K. Nowka, for explaining the operation
of the circuits used in guTS.

References

[1] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol,
C. Dike, M. Roncken, and B. Agapiev, “RAPPID: An asynchronous
instruction length decoder,” in Proc. Int. Symp. Advanced Res. Asyn
chronous Circuits Syst., Apr. 1999, pp. 60-70.

[2] H. P. Hofstee, S. H. Dhong, D. Meltzer, K. J. Nowka, J. A. Silberman,
J. L. Burns, S. D. Posluszny, and O. Takahashi, “Designing for a giga
hertz,” IEEE Micro, pp. 66-74, May-June 1998.

[3] D. Van Campenhout, T. Mudge, and K. Sakallah, “Timing verification of
sequential domino circuits,” in Int. Conf. Computer-Aided Design, Nov.
1996, pp. 127-132.

[4] V. Narayanan, B. Chappel, and B. Fleischer, “Static timing analysis for
self-resetting circuits,”in Int. Conf. Computer-Aided Design, Nov. 1996,
pp. 119-126.

[5] E. J. Shriver, D. H. Hall, N. Nassif, N. E. Raham, N. L. Rethman, G.
Watt, and J. A. Farrell, “Timing verification of the 21 254: A 600 MHz
full-custom microprocessor,” in Int. Conf. Computer Design, Oct. 1998,
pp. 96-103.

[6] P. Merlin and D. J. Faber, “Recoverability of communication protocols,”
IEEE Trans. Commun., vol. COM-24, pp. 1036-1043, Sept. 1976.

[7] R. Alur, “Techniques for automatic verification of real-time systems,”
Ph.D. dissertation, Stanford Univ., Stanford, CA, 1991.

[8] T. Yoneda, A. Shibayama, B. Schlingloff, and E. M. Clarke, “Efficient
verification of parallel real-time systems,” in Computer Aided Verifi
cation, C. Courcoubetis, Ed. New York: Springer-Verlag, 1993, pp.
321-332.

[9] A. Semenov and A. Yakovlev, “Verification of asynchronous circuits
using time Petri-net unfolding,” in Proc. ACM/IEEE Design Automat.
Conf., 1996, pp. 59-63.

[10] E. Verlind, G. de Jong, and B. Lin, “Efficient partial enumeration for
timing analysis of asynchronous systems,” in Proc. ACM/IEEE Design
Automat. Conf., 1996, pp. 55-58.

[11] H. Hulgaard and Dept. of Comput. Sci., Univ. of Washington, “Timing
analysis and verification of timed asynchronous circuits,” Ph.D. disser
tation, St. Louis, MO, 1995.

[12] M. Bozga, O. Maler, A. Pnueli, and S. Yovine, “Some progress in the
symbolic verification of timed automata,” in Proc. Int. Conf. Computer-
Aided Verification, 1997, pp. 179-190.

[13] H. Zheng, “Specification and Compilation of Timed Systems,” M.S.
thesis, Univ. of Utah, Salt Lake City, 1998.

[14] W. Belluomini, “Algorithms for synthesis and verification of timed cir
cuits and systems,” Ph.D. dissertation, Univ. of Utah, Salt Lake City,
1999.

[15] W. Belluomini and C. J. Myers, “Timed state space exploration using
POSETs,” IEEE Trans. Computer-Aided Design, vol. 19, pp. 501-520,
May 2000.

[16] C. J. Myers, “Computer-aided synthesis and verification of gate-level
timed circuits,” Ph.D. dissertation, Stanford Univ., Stanford, CA, 1995.

[17] W. Belluomini and C. J. Myers, “Timed event/level structures,” in Col
lection of papers from TAU’97, pp. 39-44.

[18] P. Vanbekbergen, G. Goossens, and H. de Man, “Specification and anal
ysis of timing constraints in signal transition graphs,” in Proc. Eur. De
sign Automat. Conf., 1992, pp. 72-77.

[19] K. Khordoc and E. Cerny, “Semantics and verification of timing di
agrams with linear timing constraints,” ACM Trans. Design Automat.
Electron. Syst., vol. 3, no. 1, pp. 21-60, Jan. 1998.

[20] A. Valmari, “A stubborn attack on state explosion,” in Int. Conf. Com
puter-Aided Verification, June 1990, pp. 176-185.

[21] P. Godefroid, “Using partial orders to improve automatic verification
methods,” in Int. Conf. Computer-Aided Verification, June 1990, pp.
176-185.

[22] K. McMillan, “Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits,” in Lecture Notes in Computer
Science, G. V. Bochman and D. K. Probst, Eds. New York: Springer-
Verlag, 1992, vol. 663, pp. 164-177.

[23] J. R. Burch, “Modeling timing assumptions with trace theory,” ICCD,
pp. 29-36, 1989.

146 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001

[24] D. L. Dill, “Timing assumptions and verification of finite-state con
current systems,” in Proc. Workshop Automat. Verification Methods Fi
nite-State Syst., 1989, pp. 197-212.

[25] B. Berthomieu and M. Diaz, “Modeling and verification of time depen
dent systems using time petri nets,” IEEE Trans. Software Eng., vol. 17,
pp. 259-273, Mar. 1991.

[26] H. R. Lewis, “Finite-state analysis of asynchronous circuits with
bounded temporal uncertainty,” Harvard Univ., Cambridge, MA, Tech.
Rep., July 1989.

[27] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi, “Partial order reductions
for timed systems,” in Int. Conf. Concurrency Theory, Sept. 1998, pp.
485-500.

[28] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng, “Automatic synthesis
of gate-level timed circuits with choice,” in 16th Conference on Ad
vanced Research in VLSI. Los Alamitos, CA: IEEE Computer Soc.
Press, 1995, pp. 42-58.

[29] T. G. Rokicki, “Representing and modeling circuits,” Ph.D. dissertation,
Stanford Univ., Stanford, CA, 1993.

[30] T. G. Rokicki and C. J. Myers, “Automatic verification of timed
circuits,” in Int. Conf. on Computer-Aided Verification, New York:
Springer-Verlag, 1994, pp. 468-480.

[31] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng, “Poset timing and its
application to the synthesis and verification of gate-level timed circuit,”
IEEE Trans. Computer-Aided Design, vol. 18, pp. 769-786, June 1999.

[32] W. Belluomini and C. J. Myers, “Verification of timed systems using
POSETs,” in Int. Conf. on Computer Aided Verification, New York:
Springer-Verlag, 1998, pp. 403-415.

[33] M. R. Greenstreet, “STARI: A technique for high-bandwidth communi
cation,” Ph.D. dissertation, Princeton University, Princeton, NJ, 1993.

[34] , “Stari: Skew tolerant communication,” unpublished.
[35] S. Tasiran and R. K. Brayton, “Stari: A case study in compositional and

hierarchical timing verification,” in Proc. Int. Conf. Computer-Aided
Verification, 1997, pp. 191-201.

[36] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “Practical appli
cations of an efficient time separation of events algorithm,” in ICCAD,
1993, pp. 146-151.

[37] R. Alur and R. P. Kurshan, “Timing analysis in cospan,” in Hybrid Sys
tems III. New York: Springer-Verlag, 1996, pp. 220-231.

[38] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine,
“Kronos: A model-checking tool for real-time systems,” in Proc. Int.
Conf. Computer-Aided Verification, 1998, pp. 546-550.

[39] T. Yoneda and H. Ryu, “Timed trace theoretic verification using partial
order reduction,” in Proc. Int. Symp. Advanced Res. Asynchronous Cir
cuits Syst., Apr. 1999, pp. 108-121.

[40] C. E. Molnar, I. W. Jones, B. Coates, and J. Lexau, “A FIFO ring
oscillator performance experiment,” in Proceedings International
Symposium on Advanced Research in Asynchronous Circuits and
Systems. Los Alamitos, CA: IEEE Comput. Soc. Press, Apr. 1997,
pp. 279-289.

[41] K. Nowka, T. Galambos, and S. Dhong, “Circuit design techniques for
a gigahertz integer microprocessor,” in Int. Conf. Comput. Design, Oct.
1998, pp. 11-16.

[42] T. I. Chappell, B. A. Chappell, S. E. Schuster, J. W. Allan, S. P. Klepner,
R. V. Joshi, and R. L. Franch, “A 2-ns cycle, 3.8-ns access 512-kbCMOS
ECL SRAM with a fully pipelined architecture,” IEEE J. Solid-State
Circuits, vol. 26, no. 11, pp. 1577-1585, Nov. 1991.

[43] S. Posluszny et al., “Design methodology for a 1.0 GHz micropro
cessor,” in Int. Conf. Computer Design, 1998, pp. 17-23.

[44] J. Silberman etal., “A 1.0 GHz single issue 64-bit powerPC integer pro
cessor,” IEEEJ. Solid-State Circuits, vol. 33, pp. 1600-1608, Nov. 1998.

[45] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient so
lution of a general class of recurrence relations,” IEEE Trans. Comput.,
vol. 22, pp. 786-793, Aug. 1973.

[46] Y. Kukimoto and R. K. Brayton, “Delay characterization of combina
tional modules,” in Int. Workshop Logic Synthesis, 1998, pp. 30-36.

Wendy Belluomini (M’99) received the B.S. degree in computer science from
the California Institute of Technology, Pasadena, in 1994, the M.S. degree from
the University of Washington, Seattle, in 1996, and the Ph.D. degree from the
University of Utah, Salt Lake City, in 1999.

Since 1999, she has been with the IBM Austin Research Laboratory, Austin,
TX. Her current interests include symboliic trajectory evaluation, timing verifi
cation, and high-speed circuit design.

Dr. Belluomini received a National Science Foundation (NSF) traineeship in
1996 and a Defense Advanced Research Projects Agency ASSERT fellowship
in 1997.

Chris J. Myers (S’91-M’96) received the B.S. degree in electrical engineering
and Chinese history from the California Institute of Technology, Pasadena, in
1991, and the M.S.E.E. and Ph.D. degrees from Stanford University, Stanford,
CA, in 1993 and 1995, respectively.

He has been an Assistant Professor in the Department of Electrical Engi
neering at the University of Utah, Salt Lake City, since 1995 where he is also
the Director for the Center for Asynchronous Circuit and System Design and
the Director for the Computer Engineering Program. His current research in
terests include innovative architectures for high performance and low power,
algorithms for the computer-aided analysis and design of real-time concurrent
systems, formal verification, and asynchronous circuit design.

Dr. Myers received a National Science Foundation (NSF) Fellowship in
1991, an NSF CAREER award in 1996, and a Best Paper Award at Async99.
He is a Co-Organizer and Technical Program Chair for the Async2001 and
ARVLSI2001 conferences.

H. Peter Hofstee (M’96) received the Drs. degree
from Rijks Universiteit Groningen, Groningen, The
Netherlands, and the M.S. and Ph.D. degrees from
the California Institute of Technology, Pasadena.

He has been a Research Staff Member with the
IBM Austin Research Laboratory, Austin, TX, since
1996, where he works on high-frequency micropro
cessors. His research interests include areas where
microarchitecture and physical design meet.

f i

