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ABSTRACT 
 
 

Although renal transplant is the preferred modality for end-stage renal disease, it 

brings with it a number of challenges primarily associated with lack of individualized 

approach. The goals of the present project were: (1) to determine the most significant 

and clinically practical predictors of kidney transplant outcomes (patient survival, 

allograft survival, posttransplant complications) using United States Renal Data System 

(USRDS) data; (2) based on the selected predictors, to generate prediction models of 

renal transplant outcomes. 

Our initial study developed prediction models using logistic regression and tree-

based algorithms derived from data provided by the United Network of Organ Sharing 

(UNOS). A series of follow-up projects, using data supplied by the United States Renal 

Data System (USRDS), was performed.  We were able to capture significant 

associations between donor, recipient, and transplant procedure variables (that could 

not be derived from UNOS data) and the allograph and recipient survival. Among our 

important findings, compared to peritoneal dialysis (PD), hemodialysis is associated with 

increased risk of graft failure and recipient death; preemptive retransplantation is 

associated with an increased risk of graft failure; increased time on dialysis between 

transplants is associated with a negative effect upon graft and recipient survival in most 

patient subgroups; short-term (6 months or less) dialysis had no negative effect on graft 

survival compared to preemptive transplants; certain socioeconomic factors, such as 

higher education level, citizenship, and type of insurance coverage, influenced graft and 

recipient outcomes, independent of racial differences; and that one particular 
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immunosuppressive medication regimen was superior to others in prolonging graft and 

recipient survival. 

Based on these results, we developed a more comprehensive prediction model 

of the graft outcome using URSDS data using logistic regression and tree-based 

models.  The new models included both deceased and living donor graft recipients, was 

based on the longer list of pertinent predictors while still being practical in the clinical 

setting, and addressed the probability of graft failure at five different time points (1, 3, 5, 

7, and 10- year allograft survival).  The models have been validated on the independent 

dataset and demonstrated performance suggesting implementation in the clinical 

decision support system.     
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1. INTRODUCTION 
 
 

1.1. Statement of the problem 
 

Renal transplant recipients represent a large subgroup of patients with chronic 

kidney disease (CKD).  Renal transplant is a preferred modality of treatment for end-

stage renal disease (ESRD), as it is associated with lower comorbidity, better recipient 

survival [1-3], improved quality of life [4], and lower medical expenses [5] than those of 

patients remaining on the transplant waiting list [6, 7].  However, since organ 

transplantation requires surgical intervention, aggressive immunosuppression, frequent 

blood sampling, patient monitoring, and other diagnostic studies, it is associated with 

serious complications mostly attributed to therapy [8, 9].  In particular, 

immunosuppressive therapy, a core method required of successful transplantation, has 

a narrow therapeutic window.  Insufficient immunosuppression might predispose 

recipients to acute organ rejection and shortened allograft survival, while overaggressive 

immunosuppression might cause complications due to toxicity (e.g, cancers, diabetes 

mellitus [DM], hypercholesterolemia, osteoporosis) [10-13] or life-threatening 

opportunistic infections (e.g., bacterial infections, Epstein-Barr virus [EBV], 

cytomegalovirus [CMV], and polyoma BK virus) [14-16].   

If the probability of specific outcomes (e.g., allograft failure, infection, cancers, 

diabetes) could be estimated by reliable risk-stratification tools, the patient-specific 

estimates would be very useful for individualizing therapeutic approaches. While 

individual factors associated with allograft survival and posttransplant complications 

(acute rejections, infections, cancers, diabetes) are to some extent known, in complex, 
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real-life situations where several factors are at play, it is difficult to estimate the risks of 

particular outcomes.   

Developing risk stratification tools (i.e., a scoring systems and a decision support 

system [DSS]) based on predicted long-term outcomes of transplantation for individual 

patients might accomplish several important goals: (1) indicating donor-recipient 

combinations that predict favorable or poor outcomes; (2) identifying adjustment of 

modifiable factors that are highly predictive of allograft survival; and (3) identifying 

immunosuppressive strategies that predict improved allograft survival and limited 

complications in specific patients.  Predicting important clinical events with subsequent 

risk-stratification of long-term posttransplant outcomes would represent a very important 

step towards individualized patient therapy, as opposed to protocol-driven approaches, 

where the individual factors of the recipient, donor, and transplant procedure are not 

considered in combination.  However, the actual prediction of the outcome is impossible 

without using mathematical tools due to complexity of the associations and their 

interactions.   

Using informatics tools it is possible to develop the prediction model of long-term 

kidney allograft survival, that can be used in the development of a decision support 

system. 

 
1.2. The need for outcome prediction in renal transplantation 

 
1.2.1. Transplantation is a preferred method of renal-replacement  
therapy 

The number of patients with ESRD in the USA is approaching half-a-million; in 

most of the cases, the kidney function is being replaced by dialysis [17].  Mortality in 

patients on dialysis is 10 to 20 times higher than that of the general population [18, 19].  

Renal transplantation, limited by a shortage of kidney donors [20], significantly improves 

survival of the patients [17].  With the introduction of new immunosuppressive 
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medications, short-term allograft outcomes have improved considerably [21], while long-

term survival and chronic allograft nephropathy still present a problem [22].   

Increased patient survival [1-3], quality of life [4], and decreased medical 

expenses [5] occur as a result of kidney transplantation compared to patients remaining 

on the transplant waiting list (usually on chronic dialysis). At the same time, the 

transplant procedure and the posttransplant course carry their own risks (e.g., surgery 

and anesthesia, immunosuppressive medications, lipid abnormalities, hyperglycemia, 

cancers, infections) that may shorten the life span of the recipient.  

 
1.2.2. Predicting the outcome of transplantation is difficult 

Health care providers and patients face several important questions before a 

transplant such as: is transplantation always beneficial compared to dialysis?; should 

one receive a transplant now and have the benefit of shorter time on dialysis, or wait for 

the kidney with a better match?; should a patient with multiple comorbidities receive a 

kidney transplant at all, and if so, how it is going to affect his/her life expectancy?; if 

there are several living donors available, who is the optimal choice for a particular 

patient (based on body size, gender, antigen match, comorbidities, and their interaction, 

etc.)?; what is the best immunosuppressive strategy?   

Ideally, a computer-based DSS would integrate a large number of variables, 

allow modeling of specific constellations of predictors (i.e., issues associated with donor, 

recipient, and the transplant procedure) to reach a tailored prediction. This tool would be 

extremely valuable in the pre- and posttransplant setting, as it would help clinicians and 

patients alike to decide on the ESRD management strategy. Such a system could be 

used successfully if it predicted the degree of allograft survival, patient survival, and 

potential complications during the posttransplant course. The critical issue here is that 

patients and clinicians alike approach a transplant with virtually no sense of the patient-
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specific expected outcome.  Historically, the decision has been “transplant, yes or no?” 

The reality of posttransplant is much more of a gray area than this simple question 

suggests. 

Several modifiable factors were found to be broadly associated with transplant 

outcome. These include body size match, type of recipient immunosuppressive therapy, 

the timing of the transplant in relation to the ESRD course, HLA antigen match, etc. [23-

34]. Some of these factors have established optimal criteria (e.g., a living kidney is better 

than deceased, a preemptive transplant is advantageous compared to postdialysis 

transplant, a shorter organ cold-ischemia time is preferable, and close antigen matches 

are considered beneficial). However, clinically relevant, patient-specific treatment 

questions are difficult to answer based on these predictors in isolation. Since the number 

of variables is large, and their interactions are complex, it would be unrealistic to expect 

clinicians to reach an optimized decision unaided. To demonstrate the complexity of 

determining an optimal strategy, consider the following example: a potential recipient 

who is nearing ESRD is offered a well-matched deceased kidney available immediately. 

Should the patient accept the deceased organ to avoid dialysis or go on dialysis for an 

indefinite period in the hopes of receiving a living organ, missing the opportunity for a 

preemptive transplant? The complex nature of interactions between predictors of the 

kidney transplant outcome, as well as their intricate relationship to the outcome itself, 

makes manual prediction of allograft outcome daunting.  

 
1.2.3. Individualized prediction would improve patient management 
 

The personalized medicine paradigm proposes the diagnostic and therapeutic 

approaches to be tailored to the specific patient as opposed to “one-size-fits-all” 

approach [35, 36].  Usually considered in association with genomic information, 

personalized medicine also requires consideration of environmental factors of the 
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recipient and donor that, when considered in combination, may help in individualizing 

therapeutic approaches. Currently in organ transplantation, use of immunosuppressive 

medications is mostly based on general clinical protocols, rather than on individual 

differences between the patients.  At the same time, the therapeutic window for most of 

the immunosuppressive medications is very narrow, where under-use may cause 

rejection, while overaggressive dosing schedule may cause long-term and life-

threatening complications (e.g., posttransplant infections, cancers, diabetes, and 

osteoporosis) [10, 13, 15].  Individual patients respond differently to immunosuppression 

and the level of the drug is not always a good predictor of the response [37].  In addition 

to drug levels, other factors pertinent to the recipient, donor, and transplant procedure 

clearly affect the response to therapy and the rate of complications [23, 38-40].   

While posttransplant management of the patients in most transplant centers is 

protocol-driven, predicting the duration of allograft and recipient survival and risk 

stratification for different outcomes (including posttransplant complications) might 

dramatically modify patient care.  Knowing the quantified risks of allograft failure, patient 

death, acute rejection, cancers, infections, and other posttransplant complications for an 

individual patient may significantly affect several decision processes, including the 

following: whether to transplant, who is the best donor, what is the preferable 

immunosuppressive regimen.  Prediction models were proposed in other areas of 

medicine, such as liver transplantation [41, 42], cancer [43-45], and cardiovascular 

disease [46-48].  NIH awarded a grant (1R01HL087115-01A1 Clinical Risk Factors for 

Primary Graft Dysfunction) to study clinical factors affecting posttransplant lung graft 

dysfunction and to develop a prediction model based on these factors.  Interestingly, 

there is another R01 grant awarded by NIH (2R01DK034238-21A1 Models for Optimal 

Liver Transplant Outcomes) to predict renal function in liver transplant recipients. At the 

same time, in the area of kidney transplantation, aside from a few reports [49-52] 
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including those by our group [40, 53], the development and use of outcome prediction 

models are largely lacking.   

 
1.3. Prediction models in liver transplantation 

 
A Child-Turcotte-Pugh scoring system has been used in the past and has been 

recently modified to predict mortality in patients with advanced liver failure [54]. Other 

prediction models have been proposed to predict recurrent hepatitis C [55] and liver 

fibrosis [56] in liver transplant recipients.  An artificial neural network (ANN) has been 

used to predict the allograft failure in patients with liver transplantation [57]. Finally, in 

liver transplantation, a model for end-stage liver disease (MELD) based on outcomes of 

transjugular intrahepatic portosystemic shunt (TIPS) is used for prediction of liver failure 

[58] and to determine priorities in organ allocation, [41].  However, while factors 

associated with survival after liver transplantation have been evaluated [59], attempts to 

use MELD to predict the outcome of liver transplant recipients (recipient and allograft 

survival at 1 year) were unsuccessful [60].  This illustrates the need to utilize a large data 

set of data that is directly related to the outcome of interest, as opposed to the use of 

proxies (e.g., data from TIPS outcomes used to predict transplant outcomes). 

 
1.4. Prior efforts to predict kidney transplant outcome 

 
Outcome prediction is becoming increasingly important in medicine, but when a 

resource is scarce, the need for accurate prediction becomes even more evident. There 

is extensive literature dedicated to identifying predictors and risk factors of kidney 

transplant outcomes in adults [23, 61] and children [62], including the work published by 

our group [23, 63-71]. 

In addition to conventional environmental factors associated with renal transplant 

outcome, new biomarkers are currently being proposed.  To name a few, ELISpot assay 

for interferon-gamma is associated with renal function in recipients at 6 and 12 months 



  7 

 

posttransplant [72].  IL-12 and IL-10 elevated pretransplant are associated with acute 

rejection [73].  Gene expression studies were also performed and showed association of 

some transcripts with acute rejection [74] and early [75] allograft function.  Renal artery 

resistance index measured by Doppler has been associated with allograft survival [76].  

However, actual prediction studies in this area are limited. In his New England Journal of 

Medicine editorial “Predicting outcomes after renal transplantation--new tools and old 

tools,” Marsden [77] describes specific markers of the renal transplant outcome. 

However, to our knowledge, there is no comprehensive model taking advantage and 

benefiting from several predictors taken together.  

Several published reports focus on the prediction of the drug kinetics or 

differential diagnoses. Prediction analysis and, specifically, an ANN were used in 

transplant patients to predict both pharmacokinetic parameters of cyclosporine [78, 79], 

tacrolimus [80], and mycophenolate mofetil [81].  An ANN was also used to differentiate 

between acute rejection and acute tubular necrosis based on the results of renogram 

and clinical parameters [82], and to assist in pathological diagnosis of acute rejection 

[83]. In addition, decision analysis models were used to assist decision making for 

specific clinical questions (e.g., treatment of ESRD in insulin-dependent diabetics) [84-

86].  

Literature dedicated specifically to the general prediction of the clinical outcomes 

in kidney transplantation is scarce.  In an early effort, Opelz et al. concluded that time-

dependent renal function and clinical grades can be used in prediction of late allograft 

failure [87].  ANNs have been used to identify patients who risk the development of 

posttransplant cytomegalovirus disease [88].  Brier et al. used an ANN to predict the 

occurrence of delayed allograft function in kidney transplant recipients [51]. They found 

that ANNs were more sensitive, but less specific, than logistic regression in predicting 

delayed graft function.  Delayed graft function is a short-term outcome, where the event 
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is reached in a few days after transplant.  This makes prediction less challenging than 

the task of predicting long-term outcome since there are very few censored data points 

and a limited chance for unaccounted factors to adversely affect the model.  Shoskes 

used an ANN to predict short-term renal transplant outcome and reported results in a 

non-peer-reviewed journal [49].  In the early work by Hennige [50], the authors used a 

multivariate model and data from 924 patients to predict 1-year survival.   

Several scoring systems predicting short-term outcomes have been proposed:  

 Scoring systems for deceased donor kidneys (deceased donor score) predicting 

short and long-term outcome were studied.[89-91].  In a recent paper based on 

217 transplantations, three prediction scores were evaluated in their performance 

of predicting short-term allograft outcome.  They demonstrated moderate 

predictive ability [92]. 

 De Bruijne et al. used Cox modeling with time-dependent renal function 

covariates for prediction of late allograft failure [52]. The project was based on a 

relatively small sample size (n=692) and a short list of predictors. Another clinical 

tool predicting mortality after kidney transplantation based on the Cox model [93] 

has been proposed based on 6,324 Canadian renal transplant recipients.  In our 

proposed project, we will have access to almost 200,000 records of renal 

transplant recipients in the USA with hundreds of variables, which provides an 

excellent opportunity to develop a comprehensive and robust prediction model 

and risk-stratification tools for several important renal transplant outcomes. 

1.5. Published reports by the author 
 

The results discussed here were previously reported in peer-reviewed 

publications.  In particular, the preliminary model discussed in Chapter 3 has been 

presented in publication [23] and is also protected by US patent [94].  Studies discussed 
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in Chapter 4 were reported as follows: The role of the renal replacement therapy 

modality discussed in Section 4.3. was published in [66].  In a follow-up project, we 

reported the role of previous renal transplantation [65] (presented here in Section 4.4), 

while the role of ESRD duration prior to transplantation was presented in [64] and 

discussed below in Section 4.5.  In more recent papers, we discussed the role of 

recipient socioeconomic status [95] (presented here in Section 4.6.) and the role of 

immunosuppressive medications [96] (presented in Section 4.7).  Finally, we reported 

the results of tree-based modeling presented in Chapter 5 [97]. 

 
1.6. Specific aspects of medical informatics applicable to 

this project 
 
1.6.1. Manipulating a large dataset 
 

In this project, the data were obtained from several separate USDRS files that 

had to be linked to each other.  Some of the medical data format had to be changed.  

We performed data cleaning and validation.  Finally, we performed imputation 

procedures to prepare the dataset for analysis. 

 
1.6.2. Knowledge discovery in the databases 
 

We used specific KDD techniques, including recursive partitioning, artificial 

neural networks, as well as more traditional logistic regression to establish the feasibility 

of the prediction modeling and by comparing different models to select the optimal 

statistical approach.   

 
1.6.3. Variable selection for the prediction modeling 
 

Variable selection for the prediction modeling is an integral part of machine 

learning, and was performed prior to the construction of the prediction models. 
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1.6.4. Creation and validation of the prediction model: The core  
of the decision support system 
 

In this project, we generated several mathematical models predicting the 

probability of the kidney allograft failure at different time points of the posttransplant 

period.  Prediction models represent either a regression model or a recursive partitioning 

algorithm that can be easily coded and can be used as a core for the decision support 

system.



 

 
 

2. SPECIFIC AIMS 
 
 

2.1. Hypothesis 
 

Clinically useful individualized estimates of long-term kidney transplant outcomes  

can be generated by using mathematical models to combine standardized data collected 

on recipient characteristics, donor characteristics, and transplant procedures. 

 
2.2. Project aims 

 
The specific goals of the present project are the following: 

1) To determine the most significant and clinically practical predictors of 

kidney transplant outcomes (patient survival, allograft survival, posttransplant 

complications) using United States Renal Data System (USRDS) data. 

2) Based on the selected predictors, to generate prediction models of renal 

transplant outcomes. 

 
2.3. Impact on patient care 

 
While realizing the potential caveats concerning observational and retrospective 

studies, employing prediction models and developing risk-stratification tools may be 

used successfully in clinical practice to accomplish the following:  

(1) manipulate modifiable factors (e.g., donor selection, diet, behavior, 

medications) in pretransplant and posttransplant periods to potentially prolong allograft 

and patient survival;  

(2) create evidence-based recipient and donor counseling regarding pre- and 

posttransplant strategies and range of likely outcomes;  
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(3) individualize selection of immunosuppressive regimens in order to 

minimize the risk of allograft rejection and posttransplant complications, and thus to 

expand overall allograft and patient survival;. 

(4) extend the predictive models to predict long-term outcome in the general 

population of patients with CKD. (Here, the infrastructure designed to collect and 

analyze the data used in this project will also be configured to accommodate new data 

types). 

(5) to advance future research through utilizing the hypotheses generated in 

this study and by using research resources (including data collection and DNA storage) 

developed at the end of this project;  

(6) generate hypotheses and provide important targets for future 

interventional studies by identifying important predictors of patient outcome; 

(7) and finally, employing the proposed study to address the Healthy People 

2010 statement to improve kidney transplant outcomes, and thereby accomplishing the 

goal of reducing  the consequences of CKD.  



 

 
 

3. PRELIMINARY MODEL: 3-YEAR ALLOGRAFT SURVIVAL 
 
 

3.1. Introduction and project goal 
 

Attempts have been made to develop prediction models of graft survival (mostly 

short-term) [98] based on data available using different statistical models such as Cox 

regression [50] and artificial neural networks [49].  The goal of this initial study was to 

evaluate the set of United Network of Organ Sharing (UNOS) records (1990-1998) to 

identify pretransplant factors affecting 3-year allograft survival in order to generate a 

prediction model that would accurately identify patients at risk for 3-year allograft failure 

using logistic regression and a tree-based algorithm. To assure practical use of the 

prediction model in pretransplant evaluation and recipient counseling, only variables 

available in the pretransplant period were used. 

 
3.2. Methods 

 
3.2.1. Dataset 
 

Between the years 1990 and 1998, from the U.S. Scientific Registry of 

Transplant Recipients (supplied by UNOS), we selected patients with ESRD who had 

undergone kidney or kidney-pancreas transplantation. The dataset includes transplants 

done in infants and young children as well as old age (minimal age below 1 year, and 

maximum age 98 years).  To protect patient privacy, follow-up dates and transplant 

dates were shifted randomly by 1 to 180 days.  Dates were shifted by the same amount 

for any given record so that the difference between the dates is preserved.  Independent 

variables available for analysis included age, gender, race, height and weight for both 
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donor and recipient, recipient cause of end-stage kidney disease, type of pretransplant 

renal replacement therapy, number of previous kidney transplants and pretransplant 

blood transfusions, recipient most recent creatinine and donor terminal creatinine, 

history and duration of diabetes in hypertension in the donor, number of HLA match and 

mismatch, cold ischemia time, kidney or kidney and pancreas transplant, and transplant 

center code.  The outcome variable was 3-year graft survival, and the end point was 

defined as allograft failure.  Patient death with functioning graft was not included in the 

definition of graft failure.  Information regarding most of the variables used in our 

analysis was collected by UNOS beginning October 1, 1987.  However, several 

variables (donor history and duration of diabetes and hypertension, recipient most recent 

serum creatinine and donor terminal creatinine) were collected by UNOS only since 

4/1/1994.  Furthermore, donors’ most recent creatinine levels were collected only for 

nondialyzed patients between 4/1/94 and 10/25/99 with collections from all patients 

beginning only after 10/25/99 [23].   

 
3.2.2. Data cleaning and imputation 
 

The initial dataset consisted of 102,686 records.  Independent variables initially 

planned to be included in the analysis, but missing a large number of entries, were either 

eliminated (recipient creatinine levels were missing in 89.2% of the entries) or 

categorized (previous number of kidney transplants, donor terminal creatinine levels, 

donor duration of diabetes, and donor duration of hypertension were missing in 87.3%, 

60.6%, 63.7%, and 60.7% of the entries, respectively, and were converted into 

categorical variables with a separate code for missing values).  The following variables 

were considered erroneous and were replaced with blank values: cold ischemia time =0 

(n=376), cadaveric donor creatinine >3 mg/dl or 26.5 mmol/dl (n=923), donor or recipient 

height <45 cm or >210 cm (n=211, n=6), donor or recipient weight <1 kg or >340 kg 
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(n=21, n=29).  A number of records with critical information being incomplete or deemed 

to be unreliable or erroneous had to be eliminated.  Records missing both height and 

weight (for either donor or recipient) were eliminated.  In the remaining missing records, 

donor and recipient height and weight were imputed using a tree-based model with 

height (for weight imputation), weight (for height imputation), age, gender, and race as  

independent variables.  The imputation algorithm for recipient height (missing 90% of the 

values) was tested using 8,282 USRDS patients with complete data for age, weight, 

height, gender, and race from DMMS Waves 3 and 4 studies.  The dataset consists of a 

random sample of all ESRD patients on January 1, 1994.  As a test of reliability, the 

intra-class correlation coefficient was calculated using SPSS (SPSS Inc., Chicago, IL).  

Based on the Landis and Koch guideline for evaluation of the reliability coefficient [99], 

our correlation coefficient of 0.76 for the predicted height values has substantial 

agreement with the actual observed heights.  Records with missing and indeterminate 3-

year outcome were deleted; therefore, the dataset was biased towards a higher 

proportion of failed grafts.  As a result, values of the percent survival have only relative 

meaning and are used for the purpose of comparison between groups studied.  Two of 

the categorical variables had more than 34 levels (transplant center code, cause of 

ESRD).  Based on the possibility that transplant center volume may have an effect on 

the outcome, a five category variable was created: transplant centers codes were 

grouped into quintiles according to total number of transplants done between ’90 and ’98 

(1= 1-83; 2= 84-209; 3= 210-355; 4= 356-615; 5= 616-2529).  Causes of ESRD were 

grouped into deciles by total number of transplants with known 3-year survival.  The final 

dataset consisted of 37,407 records. 
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3.2.3. Statistical analysis 
 

Bivariate analysis was performed using cross-tabulation and comparison of graft 

survival in the subgroup using the Chi-square test. The Friedman supersmoothing 

method was used to fit the curve in bivariate analysis.  Discrimination was determined by 

area under receiver operating characteristic (ROC) curve and Chi-square for logistic 

regression models.  Model calibration was assessed using the Hosmer-Lemeshow 

goodness-of-fit test.  For the purpose of prediction analysis, all records were randomly 

assigned either to a “training” set (n=25,000), used for knowledge acquisition and model 

development, or to a “testing” set (n=12,407), used to validate the models.  Predicted 

probabilities of 3-year graft survival were generated on a testing set and were compared 

with the actual patient outcomes.  The predicted probability of the graft survival with 

group-average observed graft survival was used to compare the performance of the 

models.  Also, 2x2 contingency tables were used to determine positive and negative 

predictive values.   

Multivariate statistical models used in the analysis included logistic regression 

and classification trees.  In certain situations, traditional statistical methods are poorly 

suited for complex interactions or detecting patterns in the data.  Many possible predictor 

variables may violate the normality assumptions necessary for parametric analysis.  In 

addition, the results of traditional methods sometimes may be difficult to use.  Therefore, 

along with a traditional regression model that assumes linear relationship between 

predictors and the outcome, we decided to use a less commonly used tree-base model, 

which does not require the linearity assumption, and was used in clinical prediction 

before [100].  Tree-based modeling is an exploratory technique for uncovering structure 

in data which generates a collection of many rules displayed in the form of a binary tree 

[101].   We used the S-Plus statistical software package (MathSoft, Inc., Seattle, 
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Washington) for bivariate analysis and tree-based modeling and SAS (SAS Institute, 

Cary, North Carolina) for logistic regression. 

 
3.3. Results 

 
3.3.1. Comparison between initial and final datasets 
 

The elimination of the large number of records could potentially bias the dataset; 

therefore, after completing the data cleaning described in the previous section, we 

compared the final dataset (n=37,407) to the initial one (n=102,686).  The final dataset 

had the same donor and recipient mean age, height, weight, number of matched and 

mismatched antigens, and cold ischemia time as the initial dataset, as well as the same 

distribution of donors and recipients by gender, dialysis type, race, presence of DM and 

HTN in donors’ number of pretransplant transfusions, and transplant procedure (data not 

shown).  Compared to the initial dataset number, the number of transplant centers in the 

final datasets has not changed.  Therefore, we concluded that even after the elimination 

of a large number of records, the final dataset is still representative of the initial sample.  

 
3.3.2. Bivariate analysis 
 
3.3.2.1. Donor and recipient characteristics 

 
Young as well as elderly donors and recipients have lower 3-year graft survival 

(p<0.001).  There were differences in outcome associated with donor and recipient 

gender and race.  Kidneys from the donors with both DM and HTN had the worst 3-year 

survival (59.3%), while those from the donors without either had the best outcome 

(76.3%).  Kidneys from either diabetic or hypertensive donors were roughly in the middle 

(66.2% and 64.3%, respectively) (p<0.001).  Increased duration of HTN and/or diabetes 

(from 1 to 5 years by 1 year increments) in the donor was associated with worse 

outcome (p<0.001 for both).  There is no relationship between donor terminal creatinine 
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and graft survival.  There were differences in outcome associated with different 

etiologies of renal failure (data not shown).  Patients with no dialysis history (preemptive 

transplant) had the best 3-year graft survival (81.3%, n=1,940) followed by those with 

history of peritoneal dialysis (76.1%, n=4,591) and then hemodialysis (73.0%, n=11,542) 

(p<0.001).  A previous transplant history worsened 3-year survival in almost a linear 

fashion with 76.7% survival in recipients with no previous transplant history: 70.9%, 

62.1%, and 56.9% in those with one, two and more than two previous transplants, 

respectively (p<0.001).  The number of pretransplant transfusions did not significantly 

affect graft survival in bivariate analysis.   

 
3.3.2.2. Transplant procedure: Matching donor and recipient 

Three--year survival improves and declines in a linear fashion with increasing 

numbers of matched and mismatched antigens, respectively (p<0.001).  Donor/recipient 

BMI vs. 3-year graft survival looks almost like a bell-shaped curve with the best outcome 

associated with the donor/recipient BMI equal to 1.  The worst survival was in grafts from 

relatively small donors to large recipients (p<0.001). Transplant centers with a low 

volume of transplants had variable outcomes, while in those with a high number of 

transplants, the outcome was relatively uniform.  There was a slight downward trend in 

the relation of 3-year graft survival to cold ischemia time.  Recipients of kidney-pancreas 

transplants had better 3-year kidney survivals (82.5%, n=3,243) than those receiving a 

single (i.e., kidney) transplant (75.7%, n=33,526) or en-bloc kidneys (68.2%, n=638) 

(p<0.001).   

 
3.3.3. Mulitvariate analysis 
 

The entire dataset (n=37,407) was initially included in a logistic regression model 

predicting 3-year graft survival.  Using stepwise forward selection, we set a significance 

level of 0.05 for independent variables to enter the model.  The variables and model 
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information are presented in Table 1.  Odds ratios with 95% confidence intervals for the 

binary variables identified by the model are presented graphically (Figure 1).  Deciles 6 

and 7 of ESRD causes were identified as having a significantly higher risk of allograft 

failure, and the odds ratios of 3-year graft survival were 0.75 (95% CI 0.6-0.9) and 0.78 

(95% CI 0.7-0.9), respectively [23].   

Causes of ESRD in these categories that demonstrated less than 70% 3-year 

survival are membranous nephropathy (66.2%), cyclosporin nephrotoxicity (68.3%), 

analgesic nephropathy (68.8%), type II insulin dependent diabetes mellitus (65.6%), 

Henoch-Schönlein purpura (69.7%), mesangio-capillary type 1 glomerulonephritis 

(68.5%), and hemolytic uremic syndrome (54.8%). 

Model discrimination using the c index (area under the receiver operating 

characteristic curve) was 0.653.  This is the probability that for a randomly chosen pair of 

patients, the predicted and observed graft survivals are concordant.  Model calibration 

was assessed using the Hosmer-Lemeshow goodness-of-fit test.  Since the p-value, 

p=0.63, of this test was not significant, the model’s estimated probabilities of 3-year graft 

survival are not significantly different from the actual survival of patients over groups 

spanning the entire range of probabilities. 

3.3.4. Prediction analysis 
 

To generate the prediction model, we randomly selected 25,000 records as the 

training set, while the remaining 12,407 records were designated as a testing set and 

were used to compare predicted and observed 3-year allograft survival.  A logistic 

regression model was again generated on the training set only.  This model was 65% 

concordant and 34.5% discordant, while the c index was 0.653.  Using the variables and 

parameter estimates generated with the training set, we calculated the probability of 3-

year graft survival in the testing set.  All records were divided into 10 groups based on  
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Table 1.  Predictors of the outcome (3-year graft survival) identified by logistic 
regression for the whole dataset (n=37,407) 
 

Independent variable 
     

C
oefficient 

 

C
hi-S

quare 
 p  

O
dds ratio 

 

95%
 confidence 
interval 

 

      
Intercept 1.332 89.474 <.0001   
Donor age -0.0145 297.87 <.0001   
Donor BMI 0.0015 9.0748 0.0026   
Recipient BMI -0.0121 42.774 <.0001   
Recipient age 0.0146 231.46 <.0001   
HLA match 0.1336 206.65 <.0001   
Cold ischemia time -0.0079 35.701 <.0001   
Recipient is male 0.0648 6.4246 0.0113 1.067 1.015-1.122 
Donor is male 0.1467 30.611 <.0001 1.158 1.099-1.22 
Terminal donor creatinine 0.1-0.5 -0.2087 10.343 0.0013 0.812 0.715-0.922 
Terminal donor creatinine >1.5-2 -0.2389 12.579 0.0004 0.787 0.69-0.899 
Terminal donor creatinine >2-2.5 -0.4012 8.8319 0.003 0.67 0.514-0.872 
Previous number of transplants =1 -0.4078 11.241 0.0008 0.665 0.524-0.844 
Previous number of transplants =2 -0.8534 35.723 <.0001 0.426 0.322-0.564 
Previous number of transplants >2 -1.1078 25.17 <.0001 0.33 0.214-0.509 
Previous number of transplants 
unknown -0.0454 0.1503 0.6982 0.956 0.76-1.202 
Donor is Black -0.3229 66.57 <.0001 0.724 0.67-0.782 
Donor is Hispanic -0.1247 7.1664 0.0074 0.883 0.806-0.967 
Recipient is Black -0.4726 263.48 <.0001 0.623 0.589-0.66 
Recipient is Asian 0.2201 8.065 0.0045 1.246 1.071-1.451 
Recipient was never dialyzed 0.2001 9.7585 0.0018 1.222 1.077-1.385 
Recipient dialysis modality is unknown 0.1754 33.774 <.0001 1.192 1.123-1.264 
Donor: HTN (but not DM) -0.3701 32.775 <.0001 0.691 0.608-0.784 
Donor: no diabetes -0.571 13.845 0.0002 0.565 0.418-0.763 
Donor: duration of DM >= 5 years -0.5702 14.815 0.0001 0.565 0.423-0.756 
Donor: duration of HTN >= 5 years 0.1856 4.7968 0.0285 1.204 1.02-1.421 
Simultaneous kidney-pancreas 
transplant 0.3052 30.044 <.0001 1.357 1.217-1.513 
Transplant procedure: en-block 
transplant -0.6445 47.954 <.0001 0.525 0.437-0.63 
Transplant procedure: double kidney -12.727 0.021 0.8849 <0.001 >999.99 
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Table 1. Continued  
 

Independent variable 
     

C
oefficient 

 

C
hi-S

quare 
 p  

O
dds ratio 

 

95%
 confidence 
interval 

 

Transplant procedure: whole pancreas 
/ right kidney -1.413 3.9032 0.0482 0.243 0.06-0.989 
Transplant center volume (>83-209) -0.1436 8.2045 0.0042 0.866 0.785-0.956 
Transplant center volume (>355-615) -0.1115 14.812 0.0001 0.895 0.845-0.947 
Number of transplants for this 
diagnosis >46-77 (6th decile) -0.2942 7.2995 0.0069 0.745 0.602-0.922 
Number of transplants for this 
diagnosis >77-196 (7th decile) -0.2435 7.9364 0.0048 0.784 0.662-0.929 
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Figure 1.  Odds ratios of the 3-year graft survival based on the logistic regression model 
 

 

deciles of predicted probability of graft survival (0-10%, >10-20%, >20-30%, etc.).  The 

observed percentage of 3-year graft survival was calculated for each group, and the 

observed graft survival was compared to the expected survival.  Since there was only 

one patient in the >10-20% group, that group was combined with the >20-30% group to 

produce a >10-30% group.  The midpoint of each group’s probability range was used as 

the expected percent survival.  As shown in Figure 2, the prediction of the probability of  
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Figure 2.  Results of the prediction of 3-year graft survival using a logistic regression 
model on the testing dataset.  All patients were divided in ten groups based on predicted 
probability of graft survival.  The observed group averaged graft survival is compared to 
the predicted probability. 
 

graft survival  from the training model achieved a very good match with the observed 

survival of the testing set, with a Chi-square value of 6.15 and p=0.63, which shows no 

significant difference between observed and predicted category, and a correlation of 

r=0.998. 

We converted predicted allograft failure probability into a binary variable (graft 

survival = “yes” or “no”) using a cut-point of 50% probability.  The results were compared 

by means of a 2x2 contingency table.  The positive predictive value of allograft survival 

with the model was 76.0%, and the negative predictive value was 63%. 
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3.3.4.1. Tree-based model 

We used a tree-based model to identify predictors of 3-year graft survival and to 

develop a prediction model.  The outcome of a cross-validation procedure in the form of 

deviance plotted against number of terminal nodes (tree size) was analyzed, and the 

optimal size of the tree was determined to be equal to 54 terminal nodes.  To identify 

predictors of the outcome, the initial tree was constructed on the entire dataset and 

pruned to 54 terminal nodes.  The following 17 predictors of outcome (in order from the 

root of the tree to the terminal nodes) were identified by the tree-based model: recipient 

race, donor age, recipient weight, cold ischemia time, recipient height, previous number 

of transplants, recipient age, number of matched HLA antigens, donor race, cause of 

end-stage renal disease, recipient gender, number of mismatched HLA antigens, 

recipient BMI, recipient weight, presence of diabetes and/or hypertension, donor height, 

and donor/recipient BMI.  The residual mean deviance of the model was 1.03 and the 

misclassification error rate was 0.23. 

The new tree-based model was built upon a training set and validated on the 

testing set.  Using the model generated with the training set, we calculated the 

probability of 3-year graft survival in the testing set.  All records were divided into 10 

groups based on deciles of predicted probability of graft survival (0-10%, >10-20%, >20-

30%, etc.).  The observed percentage of 3-year graft survival was calculated for each 

group.  The observed graft survival was compared to the expected survival.  Since there 

were only six patients in the 0-10% and >10-20% groups taken together, those groups 

were combined with the >20-30% group to produce a 0-30% group.  For the same 

reason groups >30-40% and >40-50% were combined to produce a >30-50% group.  

The midpoint of each group’s probability range was used as the observed percent 

survival (Figure 3).  The prediction of the probability of graft survival from the training 

model achieved a good correlation with the observed survival of the testing set  
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Figure 3.  Results of the prediction of 3-year graft survival using a tree-based model on 
the testing dataset.  All patients are divided into seven groups based on predicted 
probability of graft survival.  The observed group-averaged graft survival is compared to 
the predicted probability. 
 

(r=0.984).  We converted predicted allograft failure probability into a binary variable (graft 

survival = “yes” or “no”) using a cut-point of 50% probability (Figure 4).  The graph 

represents the model in a form of a dichotomized tree, where each node presents a 

question regarding the value of a single independent variable.  If the answer to the 

question is “yes,” users move to the next node by way of the left branch (or right branch, 

if the answer is “no”) until it reaches the terminal node, which predicts 3-year graft 

survival (Y or N).  The results were compared by means of a 2x2 contingency table.  The 

positive predictive value of the allograft survival with the model was 76.0% and the 

negative predictive value was 53.8%. 
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Figure 4.  Tree-based model built on the training dataset.  D- donor, R – recipient, Tx – 
transplant, CIT – cold ischemia time, “Y” and “N” at the terminal nodes of the tree 
correspond to predicted 3-year graft survival (yes or no).   
Transplant procedure group 1: left /right, or en-bloc kidney with or without the whole     
pancreas with duodenum or whole pancreas with duodenal patch / left kidney 
Transplant procedure group 2: double kidneys, pancreas segment with left kidney, whole 
pancreas with duodenum and double kidneys, whole pancreas with right kidney 
Transplant procedure group 3: pancreas segment and left kidney, whole pancreas with 
duodenum and right or en-bloc kidney, whole pancreas and left kidney 
Transplant procedure group 4: left /right / en-bloc kidney, whole pancreas with 
duodenum and left kidney, whole pancreas with duodenal patch and left kidney, whole 
pancreas and right kidney. 
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3.4. Discussion of the results and deficiencies of the 
 

present study 
 

Factors affecting kidney allograft survival were evaluated previously, based on 

local datasets and national databases.  In this project, we evaluated a large national 

dataset which includes a relatively new collection of data covering all renal and kidney-

pancreas transplants between 1990 and 1998. Using strict criteria, we eliminated 

records with incomplete information and made careful imputation of some variables.   

 
3.4.1. Discussion on dealing with missing information in UNOS  
dataset 
 

While cleaning the data, we encountered certain problems with missing and 

poorly reported values.  The amount of misreported or missing information in the1990-

1998 UNOS dataset can be explained by several factors that need to be considered by 

researchers analyzing the data.  As mentioned above, certain variables may not have 

been collected over the entire time period of the cohort.  For example, donor history and 

duration of diabetes and hypertension, and recipient most recent serum creatinine and 

donor terminal creatinine were collected only since April of 1994.  Additionally, voluntary 

data submission via paper form (with some fields not mandatory) account for much of 

the missing information.  It has been speculated that this is the reason that height and 

weight are not populated well (e.g., recipient height is missing in approximately 90% of 

the values).  In some cases, the field may not be relevant in that particular instance, so 

the member may have chosen to leave it blank (e.g., data for PRA tends to be entered 

only if the patient is sensitized [PRA 80 or above]; otherwise, it is left blank).  One may 

expect improved quality of data in the future.  The number of outstanding forms has 

been steadily declining in recent years For example, there were almost 150,000 

outstanding forms in April of 2000 and 56,000 in September 2002 (UNOS, personal 

communications).  UNet, the online transplant data entry system, was implemented in 
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October 1999.  The new system of on-line data entry employed real-time data quality 

control, forcing the user to enter the data in a correct and unified format.  Therefore, the 

quality of information should substantially improve.  Thus far, the effect of the new 

system on the individual variables over time has not been studied closely.  In this study, 

missing categorical variables were coded as a new category and missing continuous 

variables were replaced using appropriate data imputation methods.  In particular, a 

tree-based algorithm was used for height and weight imputation.  The algorithm that we 

developed has been shown to have good precision when validated on a separate 

database derived from USRDS Wave 3 and 4 study patients.  Tree-based imputation 

can be a useful tool for the researchers analyzing the datasets with missing values for 

the anthropometric characteristics.  After careful imputation, the results and conclusion 

of our analysis should not be affected by various causes of missing data (UNOS not 

collecting it vs. poor reporting).  During cleaning of the initial dataset, we tried to 

preserve as much useful information as possible and at the same time eliminate 

potentially erroneous, incomplete, or unreliable information.  A significant number of 

records had to be eliminated as some critical information was missing or deemed 

unreliable.  

 
3.4.2. Individual predictors of the transplant outcome 
 

Our bivariate and multivariate analyses demonstrated the importance of several 

pretransplant donor, recipient, and procedure variables in predicting 3-year graft 

survival; in particular, we found that the number of previous kidney transplants in 

recipients has a direct relationship to the transplant failure rate, and that diabetes and  

hypertension worsen the outcome.  The relationship between donor and recipient age, 

race, gender, and 3-year graft survival previously reported [27, 34] proved to be 

nonlinear. The number of HLA matched/mismatched antigens has a very strong linear 
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relationship with the percent 3-year graft survival. On the other hand, the effect of cold 

ischemia time is much less dramatic by bivariate analysis than we initially expected and 

that was previously reported [102].  The transplant center effect was studied before [103] 

and showed only a very slight difference between the large and small centers.  In our 

study, centers with higher number of transplants have more similar outcomes, while the 

outcomes of the smaller centers exhibited considerable variability.  This may represent 

either a regression to the mean or a true phenomenon of more uniform outcome that 

comes with greater experience.  The logistic regression model selected transplant center 

volume as a predictor of the outcome, with centers having less experience increasing 

the risk of 3-year allograft failure.  Some of the causes of end-stage renal disease in a 

recipient as a predictor of the outcome were described before [104].  In addition, we 

evaluated all the diagnoses with known 3-year outcome that we could derive from UNOS 

database.  We confirmed previously reported beneficial effects of preemptive 

transplantation [105-107].  Body mass index (BMI) of donor and recipient as well as 

recipient obesity in relation to outcome has been discussed in the   literature and has 

been found to have an important role in the prediction of the kidney allograft outcome in 

some studies [108, 109], while in others obese (high BMI) transplant recipients  have 

similar outcomes to nonobese patients [110].  In our study, both donor and recipient 

BMIs were found to be good predictors of outcome by means of bivariate and 

multivariate analysis.  Since successful transplantation of adult living donor kidneys into 

infants and small children with good long-term outcome has been shown in a small study 

[111], the unexpected, almost bell-shaped curve (Figure 3) describing the relationship 

between donor-to-recipient BMI and graft survival is surprising.  This may represent 

either the deleterious effect of donor obesity [108] or the impact of poor recipient 

nutritional status.  This relationship needs to be further evaluated in prospective studies 

and may be an important factor affecting the selection of the donor.  
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3.4.3. Predictive model issues 

The novel part of this study is the predictive model.  The time period of interest 

covers the “postcyclosporine era”; however, the 1990s were associated with changes in 

immunosupression protocols and surgical techniques and therefore, the database 

represents a very heterogenous population.  This heterogeneity may potentially affect 

the performance of the prediction models, especially since we included in the analysis 

only a limited number (26) of pretransplant independent variables.  In designing the 

study, our intent was to develop a prediction model for use prior to transplantation; 

therefore, we excluded posttransplant variables that were not available until after the 

transplant procedure. We did not analyze the impact of immunosuppressive therapy, 

immediate posttransplant graft function, and episodes of acute rejection, since this 

information was not available prior to transplant.  Along with the conventional logistic 

regression model, we used a tree-based model never before used to analyze transplant 

outcome.  This model represents a relatively new approach compared to conventional 

regression analysis of the data. Interest in this statistical approach has been increasing 

over the last 10 years.  Several features make tree-based models a powerful tool for 

building a prediction algorithm that can be successfully used in practice. The tree-based 

model works when the regression variables are a mixture of categorical and continuous 

variables, and it is often able to uncover complex interactions between predictors which 

may be difficult or impossible to uncover using traditional multivariate techniques.  The 

algorithm is nonparametric, so no assumptions are made regarding the underlying 

distribution of values of the predictor variables. The tree-based model identifies 

"splitting" variables based on an exhaustive search of all possibilities, even in problems 

with many hundreds of possible predictors.  Simultaneously, it requires relatively little 

input from the analyst.  This graphical algorithm, presented as a collection of simple 

binary rules, is much simpler to interpret by a nonstatistician than the multivariate logistic 
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regression.  Thus, it can be used in the decision-making process without doing any 

additional calculations, and therefore is more likely to be followed in clinical practice.   

Prediction models using logistic regression and tree-based algorithms are 

developed in this study on the large set of data, and can potentially be used in recipient 

counseling and decision-making regarding cadaveric renal transplants. The relatively low 

area under the ROC curves of the initial models suggests that a longer list of the 

potential predictors should be evaluated.  However, the prediction algorithms generated 

on the training dataset can be successfully used in practice to identify the probability of 

3-year kidney allograft survival, since both models achieved good precision in predicting 

the probability of the graft survival on the separate set of data.  There is an experience of 

using similar data derived from univariate and multivariate analyses in a smaller study in 

a cadaveric kidney allocation decision-making study in a northern Italy transplant 

program [112].  The identification of factors that play an important role in graft survival 

helps to focus efforts of transplant programs on certain individual aspects of patient care.  

The implementation of the models that were generated in this study in the form of 

software to make it available for transplant programs and prospective transplant 

recipients may be a subject of future projects.   

 
3.5. Significant deficiencies of this project 

 
A very important deficiency of this project is a limited number of predictors.  In 

particular, none of the factors associated with the pretransplant dialysis course were 

included in the model.  Similarly, socioeconomic factors and comorbid conditions were 

left out of the model, since the information is not available in UNOS database.  

Furthermore, it is not clear in the existing literature which of the factors have a significant 

association with the outcome and therefore need to be included in the modified model.  

Furthermore, the model presented above predicted the probability of 3-year graft 
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survival, but not at any other time points.  Finally, only deceased donor transplant 

recipients were included in the reported study, while the recipients of living donor grafts 

were left out [23]. 

Based on these deficiencies, the decision was made to proceed as follows. 

1. Evaluate the association between specific variables and the transplant outcome 

in order to make a decision whether or not to include them in the final model. 

2. Build a more sophisticated model based on a more complete list of predictors 

available in other datasets. 

 

 



 
 

 
 

4. STUDIES OF THE ADDITIONAL PREDICTORS OF  

ALLOGRAFT SURVIVAL 

 
 

4.1. Project goal 
 

The goal of this series of projects was to establish the association between 

previously unexplored potential predictors and transplant outcome in order to improve 

the performance of the predictive model. 

 
4.2. Dataset and methods 

 
4.2.1. Dataset 
 

Using the USRDS database, we collected data on all kidney allograft recipients 

(both pediatric and adults) who underwent kidney or kidney-pancreas transplantation 

during the period of January 1, 1990 through December 31, 1999.  The follow-up data 

were collected through December 31, 2000.   

For recipients of multiple transplants, the most recent one was considered the 

target transplant (transplant of interest).  Patient records with missing information 

regarding graft or patient survival were excluded from the study.  A total of 92,844 

patients with kidney transplant were identified.  Records of patients with prior kidney 

transplants (n= 11,714) were also identified and analyzed separately.   

 
4.2.2. Study outcomes 
 

There were two outcomes in this study.  The first outcome was the time between 

the most recent kidney transplant and the failure of the graft.  The second outcome was 
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the time between most recent kidney transplant and the patient’s death.  Both outcomes 

were modeled using continuous survival time variables.   

Graft failure definition did not include patient death with a functioning graft, the 

latter determined in the USRDS as a single binary variable.  In case the value of this 

variable was missing and the patient’s death date was found to be equal to the graft 

failure date, we assumed that patient died with a functioning graft, unless the cause of 

death was coded as one of the following: 3200 (graft failure: primary failure), 3201 (graft 

failure: rejection), 3202 (graft failure: technical), 3299 (graft failure: other), or 3903 

(miscellaneous: renal failure).   

Allograft outcome was censored at the earliest of the following events: loss to 

follow-up, patient death, or the study completion date (12/31/2000) and was analyzed as 

days-to-graft-failure or censor.  Patient follow-up was censored at the earliest of loss to 

follow-up or study completion date, and was analyzed as day-to-recipient death or 

censor. 

 
4.2.3. Covariates 
 

The following independent variables were collected:  

1. recipient variables: recipient age, gender, race, height, weight, history of 

hypertension (HTN) and diabetes, history of prior transplant, total duration of 

ESRD, total number of transplants, mean and peak panel reactive antibody 

(PRA) levels, education level, primary source of pay, citizenship (the combination 

of the last three variables was used as a surrogate for socioeconomic status); 

2. donor variables: type of donor (cadaveric or living), heartbeating donor or not, 

donor age, gender, race, height, weight; 

3. transplant procedure variables: day of the week the transplant was done, the 

year of the transplant, number of matched HLA antigens, and cold storage time.  
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To adjust the multivariate models for recipient comorbidities, we calculated a 

comorbidity score similar to one proposed by Davis, which has been shown to be 

strongly associated with the survival in a prospective study of 97 peritoneal dialysis (PD) 

patients [113].  The comorbidity score used in this study was calculated based on the 

following coexisting conditions, each of them contributing one point to the score: 

cardiovascular disease (defined in USRDS as symptomatic cardiovascular disease or 

angina/coronary artery disease), symptomatic peripheral vascular disease, diabetes 

mellitus, and hypertension. Information about coexisting conditions was obtained from 

the TXUNOS file (that file’s data come from the Transplant Candidate Registration 

Form); therefore, the comorbidities used for this study are those that patient had at the 

time of listing for the study transplant.  We did not use data from the CMS-2728 form 

(that also has comorbidity information at the time of onset of ESRD) in order not to 

exclude patients who were not Medicare eligible prior to 1995 (prior to 1995 dialysis 

units and transplant centers were required to fill the Medicare Evidence form only for 

Medicareeligible patients).  To reduce lead time bias, the models were also adjusted for 

total duration of ESRD prior to the follow-up time included in the Cox models.  Unrealistic 

values of the independent variables used in the study were eliminated. In particular, for 

donors and recipients younger than 13 years of age, the United States CDC Growth 

charts were used as a guide for determining valid ranges. The heights and weights of 

recipients and donors age 13 and older were based on the acceptable ranges: height 

(122 to 274 cm), weight (23 to 180 kg). 

Other variables, delayed graft function, episodes of acute rejection, and type of 

immunosuppressive medications were not included in the models.  Delayed graft 

function and acute rejection may represent intermediate outcome rather than the 

confounding factor and therefore, we speculated that adjusting for it might yield false 

negative results (type 2 error: failure to reject null hypothesis).   
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Patients with a prior history of kidney transplant in some subprojects described 

below were analyzed separately and for this subgroup, the following variables were 

added to the analysis: donor type for the transplant immediately prior to the current 

transplant, age at the first transplant, age at the first graft failure, age at transplant 

immediately prior to the current transplant and at graft failure immediately prior to the 

current transplant, time period between last transplant failure and current transplant.  To 

reduce lead time bias, the models were also adjusted for total duration of ESRD. 

 
4.2.4. Statistical analysis 
 

Categorical variables in the subgroups were compared using cross-tabulation.  

Continuous variables were summarized using means and standard deviations.  Kaplan-

Meier graphs and Cox regression models were used for survival analysis.  To avoid 

colinearity between the primary variables of interest, we analyzed these variables in 

separate Cox models.  SAS (SAS Institute, Cary, NC) was used for survival analysis 

(Kaplan-Meier and Cox proportional hazards models), while S-Plus (Insightful, Seattle, 

WA) was used for descriptive statistics and tree-based modeling for data imputation.   

 
4.3. Baseline characteristics 

 
The characteristics of the study population are presented in Table 2. The 

recipients were 60% male, 70% White, and 27% diabetic, with an average age of 43 

years at the time of the study transplant. Roughly one-in-eight (12.6%) had at least one 

prior transplant.  The subset of patients had more than one transplant (retransplants, 

n=11,714). These recipients were 59% male, 78% White, and 16% diabetic, with an 

average age of 38.5 years at the time of the study transplant.  The median time between 

last graft failure and current transplant surgery was 21.9 months; 13.7% had preemptive 

retransplants (n=1,609).  
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Table 2.  Baseline characteristics of the of kidney transplant recipients (n=92,844) at the 
time of the most recent transplantation1 

 

Recipient characteristics 

Age (yrs) 43.3±14.2

Gender (males) 60.3%

Race (White, African American, Asian, Native American) 70.2%, 23.0%, 3.4%, 0.9% 

Weight (kg) 72.6±17.2

Height (cm) 169.0±13.7

Primary cause of end-stage renal disease  

 DM 25.2%

 HTN 17.2%

 Glomerulonephritis 25.8%

 Cystic disease 7.6%

 Other 24.2%

Comorbidity score2 0.8±0.8

History of diabetes 27.2%

History of hypertension 52.5%

Total duration of end-stage renal disease (yrs) 3.1±3.6

Percent of end-stage renal disease duration time on 

peritoneal dialysis3 

22.8±38.0

Percent of end-stage renal disease duration time on 

hemodialysis3 

67.3±41.5

Percent of total end-stage renal disease duration with 

transplant3 

6.1±20.1

Renal replacement therapy modality immediately prior to 

transplant 

 

 Hemodialysis 71.3%

 Peritoneal dialysis 21.8%

 Transplant (dialysis free retransplant) 1.1%
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Table 2 Continued 
 

Recipient characteristics 

 Unknown 5.8%

Predominant renal replacement therapy modality4   

 Hemodialysis 67.3%

 Peritoneal dialysis 22.6%

 Transplant 6.4%

 None 3.6%

Total number of transplants (including the current one) 1.2±0.4

Time on the transplant list (yrs) 1.3±1.1

Peak reactive antibody level (%) 12.1±21.5

Mean reactive antibody level (%) 5.3±14.7

Number of matched HLA antibodies 1.8±1.5

Cold ischemia time (hr) 15.5±8.7

Transplant day of the week5  4.0±1.8

History of previous kidney transplant(s) 12.6%
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Table 2 Continued 
 

Donor characteristics 

Age (yrs) 34.4±15.5

Gender (males) 56.2%

Race (White, African American, Asian, Native American) 82.5%, 11.5%, 1.3%, 
0.4%

Weight (kg) 72.8±19.0

Height (cm) 164.3±21.9

Terminal serum creatinine level (mg/dL) 0.9±0.3

Terminal blood urea nitrogen level (mg/dL) 12.1±6.1

Living donors 24.8%

 
 

 

 

 

 

 

 

 

 

 

 

 

 

1Continuous variables presented as mean ± standard deviation 
2 The comorbidity score used in our study was calculated based on the following 
coexisting conditions, each of them contributing one point: cardiovascular disease 
(defined in USRDS as symptomatic cardiovascular disease or angina/coronary artery 
disease), symptomatic peripheral vascular disease, diabetes mellitus, and hypertension.   
3 Information obtained from USRDS RXHIST file; due to missing/unknown data and "60 
days rule" convention adopted by USRDS (see text) the total is less than 100%  
4Predominant renal replacement therapy modality defined as a modality used for >50% 
of the duration of end-stage renal disease 
5Transplant day of the week expressed in numbers starting with Sunday (1=Sunday, 
2=Monday, etc.) 
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4.4. The role of pretransplant renal replacement therapy 
modality 

 
4.4.1. Introduction 
 

The ESRD course itself (e.g., the modality of renal replacement therapy [RRT], 

alone or in combination) as a predictor of graft and patient outcomes has not been well 

studied.  Several studies suggest that this pretransplant dialysis modality has an impact 

on patient outcome [114-117].  However, some reports have not shown that long-term 

graft survival is affected by the modality of dialysis treatment [118, 119].  What is 

established is that increased time on dialysis is associated with decreased survival of 

transplant recipients [119].   

The goal of this project was to perform a retrospective analysis of United States 

Renal Data System (USRDS) data to evaluate the role of renal replacement modalities, 

including number of modalities used and their combinations in allograft and recipient 

survival. 

 
4.4.2. Primary variables of interest 
 

The primary variables of interest were those pertinent to RRT from the USRDS 

database: RRT modality immediately prior to current transplant; predominant RRT 

modality during the ESRD course (defined as modality used for >50% of the ESRD 

period; if none of the modalities were used for more than 50%, then predominant 

modality was labeled as “None”); number of different RRTs used; the combination of 

RRT modalities used (e.g., peritoneal dialysis [PD] and hemodialysis [HD] and 

transplant); and the time course during the pretransplant period that the patient was 

treated with a specific RRT modality.  We defined the use of a specific dialysis modality 

using the “60 day rule,” ( the convention adopted by USRDS), stating that a dialysis 

modality must continue for at least 60 days in order to be considered stable, and 

therefore constitute a change in modality.   
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4.4.3. Results 
 
4.4.3.1. Baseline characteristics 

The dataset comprised 92,844 records of patients receiving kidney or kidney-

pancreas transplants starting January 1, 1990 and through December 31, 1999.  The 

study population characteristics are presented in Table 2.   

 
4.4.3.2. RRT modality immediately prior to transplant 

A Cox model using HD as a reference demonstrated the following results.  

Having a transplant immediately prior to the transplant of interest without dialysis in 

between was associated with increased risk of graft failure (Hazard Ratio [HR] 1.65, 

p<0.001).  PD as a modality immediately prior to transplant predicts a better graft 

outcome compared to HD (HR 0.97 p<0.05). See Table 3. A similar association was 

found in the subgroup of patients with a previous history of kidney transplant: having the 

transplant as an RRT modality prior to the last transplant without going on dialysis in 

between posed a greater risk of graft failure (HR 1.99, p<0.001) in this subgroup of 

patients.  The protective effect of PD is not significant in this patient subgroup.   

In the analysis of recipient survival in the Cox model using HD as a reference, 

both prior transplant (0.80 p<0.005) and PD (0.94 p<0.001) had protective effects on 

recipient survival compared to HD.  This association was confirmed again in the 

subgroup of patients who had prior transplants, though the difference between PD and 

reference (HD) was not statistically significant (Table 3).   
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Table 3.  Results of Cox proportional hazard model analyzing the role of renal 
replacement therapy in the allograft and recipient survival 1.  
 

Graft survival Recipient survival   

Hazard 
ratio 

95% CI p 
 

Hazard 
ratio 

95% CI p 

Renal replacement therapy modality 
immediately prior to current 
transplant2 

      

 

        

  Peritoneal dialysis 0.97 0.94 1 <0.05 
 

0.94 0.91 0.97 <0.001 

  Transplant 1.65 1.51 1.8 <0.001 
 

0.8 0.68 0.93 <0.005 

  Unknown 0.92 0.85 1 <0.05 
 

0.87 0.77 0.97 <0.05 

  Lost to follow-up 1.07 1 1.15 0.069 
 

0.9 0.81 0.99 <0.05 

Predominant renal replacement 
therapy modality2 

      
 

        

  Peritoneal dialysis 0.97 0.94 1 <0.05 
 

0.96 0.92 0.99 <0.05 

  Transplant 0.86 0.81 0.9 <0.001 
 

0.82 0.76 0.89 <0.001 

  None 0.9 0.84 0.95 <0.001 
 

0.92 0.85 1 0.063 

Time spent on hemodialysis 
(years) 

1.02 1.01 1.02 <0.001 
 

1.05 1.04 1.05 <0.001 

  >0 to 1 year 1.05 1.01 1.09 <0.05 
 

1.18 1.12 1.24 <0.001 

  >1 to 3 years 1.18 1.13 1.23 <0.001 
 

1.42 1.34 1.5 <0.001 

  >3 years to 10 years 1.18 1.12 1.23 <0.001 
 

1.59 1.5 1.7 <0.001 

  >10 years to 33 years 1.27 1.16 1.39 <0.001 
 

1.77 1.57 2 <0.001 

Time spent on PD (years) 1.02 1.01 1.03 <0.005 
 

1.04 1.03 1.06 <0.001 

  >0 to 1 year 1.04 1.01 1.08 <0.05 
 

1.12 1.07 1.17 <0.001 

  >1 to 3 years 1.08 1.04 1.12 <0.001 
 

1.21 1.16 1.27 <0.001 

  >3 years to 10 years 1.13 1.06 1.2 <0.001 
 

1.33 1.23 1.44 <0.001 

  >10 years to 33 years 1.28 0.99 1.64 0.057 
 

1.43 1 2.04 0.053 

Time spent with prior 
transplant (years) 

0.98 0.97 0.99 <0.001 
 

1 0.99 1.01 0.525 

  >0 to 1 year 0.84 0.78 0.9 <0.001 
 

1.06 0.95 1.19 0.319 

  >1 to 3 years 0.82 0.75 0.9 <0.001 
 

1.08 0.94 1.23 0.291 

  >3 years to 10 years 0.72 0.67 0.78 <0.001 
 

1.08 0.95 1.22 0.24 

  >10 years to 33 years 0.67 0.6 0.75 <0.001 
 

1.12 0.94 1.33 0.217 

Number of different renal 
replacement therapy 
modalities3 

1.04 1.02 1.07 <0.005 

 

1.11 1.08 1.15 <0.001 

 
 

 

 

 



  43 

 

Table 3 Continued 

Graft survival Recipient survival   

Hazard 
ratio 

95% CI p 
 

Hazard 
ratio 

95% CI p 

Combinations of renal replacement 
therapy modalities2 

      
 

        

  PD only 0.93 0.9 0.96 <0.001 
 

  0.9 0.86 0.94 <0.001 

  PD+transplant 0.87 0.78 0.97 <0.05 
 

0.98 0.83 1.17 0.86 

  PD+HD 1.09 1.05 1.12 <0.001 
 

  1.1 1.06 1.15 <0.001 

  HD+transplant 0.74 0.69 0.8 <0.001 
 

0.96 0.86 1.08 0.508 

  Transplant only 0.94 0.85 1.05 0.269 
 

0.89 0.75 1.06 0.196 

  PD+HD+transplant 0.73 0.67 0.8 <0.001 
 

1.11 0.98 1.27 0.106 

  None 0.75 0.69 0.81 <0.001 
 

0.81 0.73 0.89 <0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 The Cox model represents a multivariate analysis of graft and recipient survival.  To 
avoid colinearity between the primary variables of interest they were analyzed in 
separate Cox models.  Only primary variables of interest are presented in the table.  All 
models were also adjusted for the following covariates: recipient age, gender, race, 
height, weight, history of hypertension, diabetes, recipient comorbidity score, history of 
prior transplant, total duration of ESRD, and total number of transplants, panel reactive 
antibody levels (mean and peak), recipient education level, primary source of renal care 
payment, and citizenship; donor variables: heartbeating donor or not, age, gender, race, 
height, weight, number of matched HLA antigens, and citizenship; and transplant 
procedure variables (day of the week for the procedure, the season and year of the 
transplant, and cold storage time). 
2Hemodialysis is a reference  
3Sixty days rule applied   
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4.4.3.3. Predominant RRT modality 

Predominant RRT modality, defined as RRT modality (used for more than 50% of 

the whole ESRD period) was analyzed in a Cox model in relation to the graft survival. 

Both PD (HR 0.97 p<0.05) and transplant (HR 0.86 p<0.001) had a protective effect for 

the graft survival compared to HD.   

The absence of the predominant modality (each of the modalities were used for 

less than 50% of the duration of ESRD, or no RRT was used) was also associated with a 

lower risk of graft failure (HR 0.90 p<0.001).  These results were illustrated by Kaplan-

Meier plots (Figure 5, Panel A).  In the Cox model, better recipient survival was also 

associated with both PD (0.96 p<0.05) and transplant (0.82 p<0.001) as predominant 

pretransplant RRT modalities.  Those patients who had no predominant modality during 

ESRD course also had better survival compared to HD, though the difference was not 

statistically significant (HR 0.921, p=0.063).  The worst patient outcome associated with 

HD is illustrated by Kaplan-Meier plots (Figure 5, Panel B).  Same trends for graft and 

recipient survival were found in the subgroup of patients with prior transplants. 

 
4.4.3.4. Number of different modalities used 

We calculated the number of different RRT modalities that the patient was 

exposed to during ESRD course using the “60-day rule,” where the change in dialysis 

technique is considered stable, if the patient remained on a new modality for 60 or more 

days (“60-day rule” does not apply to transplant).  We analyzed the Cox model and 

demonstrated that the number of RRT modalities is a significant predictor of graft failure 

(HR 1.04 per additional modality p<0.001) and recipient death (HR 1.11 per additional 

modality p<0.001).  In the separate model in the subgroup of patients with prior 

transplants, the number of modalities was not a significant risk for graft failure, while it 

was for recipient death (HR 1.09 p<0.005).   
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Figure 5.  Predominant renal replacement therapy modality and graft (Panel A) and 
recipient (panel B) survival.  The worst graft and recipient outcome is associated with 
HD. 
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These associations are illustrated by the Kaplan-Meier plots: the increased 

number of modalities is associated with the worsening of graft survival (Figure 6, Panel 

A), the best graft survival being associated with zero pretransplant RRT modalities.  

Similarly, zero modalities used before transplant were associated with the best recipient 

survival, but an increased number of modalities above 1 does not affect recipient 

survival (Figure 6, Panel B). 

 
4.4.3.5. Combination of different RRT modalities 

We considered 8 different combinations of RRT modalities during the ESRD 

course independent of the sequence and number of times patient would return to a 

particular modality: PD only, HD only, transplant only, PD + HD, PD + transplant, HD + 

transplant, all three modalities, and None.  We defined combinations of RRT modalities 

using the “60 days rule” described above.  In the Cox model (“HD only” was used as a 

reference group), any combination or single modality (except for transplant only, PD + 

HD, and None) were better than HD only (Table 2).  In particular, “PD only” was 

associated with HR 0.93 (p<0.001).  PD + HD and None were associated with 

nonsignificantly higher risk.  When patient survival was evaluated, modality combinations 

showing the significant difference with the reference group (HD only) were: PD only (HR 

0.90 p<0.001) and None (HR 0.81, p<0.001) and also PD and HD (1.10 p<0.001).  

When patients with prior transplants were analyzed separately compared to HD alone, 

PD alone was associated with the lower risk of graft failure (HR 0.60 p<0.05), PD + HD + 

transplant was also beneficial (HR 0.79 p<0.005), as well as HD + transplant (HR 0.791 

p<0.005).  When recipient survival was used as an outcome, PD + transplant (HR 0.73 

p<0.05), HD + transplant (HR 0.74 p<0.005), and transplant only (HR 0.62 p<0.0005) 

were associated with the lower mortality risk.  
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Figure 6.  Number of different renal replacement therapy modalities and graft (Panel A) 
and recipient (panel B) survival. The increased number of modalities is associated with 
the worsening of graft survival, with the best graft and recipient survival associated with 
zero RRT modalities (preemptive kidney transplant).   
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4.4.3.6. Number of years on specific dialysis modality 

The Cox model discussed in this section was not adjusted for total duration of 

ESRD to avoid colinearity with the primary variables of interest.  The duration of both 

dialysis modalities was associated with a higher risk of graft failure.  Each year of PD is 

associated with HR of 1.02 (p<0.005), while each year of HD is associated with HR of 

1.02 (p<0.001).  On the other hand, the number of years with functioning graft in the past 

had a protective effect on a current graft survival (HR 0.98 p<0.001).  In the subgroup of 

patients with prior transplant, the same trend is true, but the association between the 

duration of PD and graft failure is not statistically significant.  We performed the same 

analysis for the recipient survival and demonstrated similar associations.  The longer the 

patient was on HD (HR 1.05 p<0.0001) or PD (HR 1.04 p<0.005), the higher the risk of 

dying, while number of years with prior transplant did not make a significant difference.  

Recipient survival in the subgroup of patients with prior transplant was also analyzed.  

The number of years on PD (HR 1.05 p<0.005) or HD (1.04 p<0.001) was associated 

with greater risk of recipient mortality, while the number of years with a functioning graft 

was not associated with any significant change. 

 
4.4.4. Discussion 
 

In general, prior studies comparing different renal replacement modalities in 

relation to the transplant outcome were based on the small datasets [115, 120], 

evaluated short-term rather than long-term outcome [115, 117, 121, 122], have not 

studied combination of the RRT modalities, or were done 10-20 years ago, before 

significant changes in the immunosuppressive regimens [120-124].  Most of the studies 

examined the graft outcome only, and not patient survival.  In addition, most of the 

authors evaluated the role of RRT modality immediately prior to the transplant rather 

than predominant modality as a primary variable of interest.  Patients who were on PD 
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for a number of years and were switched to HD immediately prior to transplant would be 

classified as a HD in these studies, which introduces a significant degree of 

misclassification bias.   

 Previous studies on short-term transplant outcome have yielded somewhat 

conflicting results.  Higher rates of early graft failure were associated with PD as 

demonstrated by [125].  In the report by Bleyer et al. [117],  the authors evaluated 

delayed graft function after deceased donor transplant based on dialysis modality 

immediately prior to transplantation and found an association between HD and delayed 

graft function.  Similar results were demonstrated by other authors [115, 116, 125-127].  

Vanholder et al. also demonstrated the advantage of PD for short-term outcome: 

patients on PD have reduced incidence of acute renal failure [115].  PD is recommended  

as an initial modality in patients who plan a kidney transplant within 2-3 years [128]. 

Though in one report there was no association between dialysis modality and 

graft thrombosis [129], in several other studies, increased incidence of graft thrombosis 

associated with PD compared to HD was reported [33, 125, 130-132].  Higher rates of 

graft thrombosis in PD patients might be because hypercoagulable states are not so 

readily detected in PD patients as in HD patients.  Higher rates of acute rejection were 

associated with PD [115]; however, in other reports, the rate of acute rejection was not 

found to be different between patients on PD vs. those on HD before the transplant [117, 

124, 127, 132].  Peritoneal dialysis was associated with a higher rate of posttransplant 

infection compared to patients on HD in some reports [133], but in other ones, the rate of 

infection between PD and HD was found to be similar [115, 134] or lower in patients with 

pretransplant PD [135]. 

When long-term outcome (1 and 5 years) was studied, no difference between 

dialysis modalities was reported [124].  Similarly, PD and HD showed similar 1-year 

outcome in a report by Donelly in the mid-80s [122].  In a small case-control analysis, 1- 
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year outcome of transplantation in patients on continuous ambulatory peritoneal dialysis 

is not significantly different from that in HD patients with similar clinical characteristics 

[120].  Similar long-term graft and patient survival is achieved independent of the 

modality of dialysis prior to transplantation in a retrospective analysis of the first 

cadaveric graft.  Graft and patient survival cases were identical in HD and continuous 

ambulatory peritoneal dialysis groups (5-year graft survival: continuous ambulatory 

peritoneal dialysis 67%, HD 66%; 5-year patient survival: continuous ambulatory 

peritoneal dialysis 88%, HD 87%) [123].  No difference in long-term outcome between 

patients treated with PD compared to those on HD was demonstrated in other studies 

[121, 127, 136, 137].  Snyder et al. [125] compared long-term transplant outcome 

between PD and HD and demonstrated that compared to pretransplant HD, death 

censored long-term graft failure was 15% higher in patients on PD and short-term graft 

failure was 33% higher.  Their analysis was based on 22,776 Medicare beneficiaries with 

kidney transplant.  Compared to our analysis,  the Snyder et al. study [125] used a 

smaller number of patients, shorter follow-up (3 years), and some baseline 

characteristics of the study population were different from ours (pediatric patients and 

those with prior history of transplant were excluded).  These authors studied 

pretransplant dialysis modality (based on UNOS form) adjusted for the dialysis modality 

change as a binary variable, while we evaluated the role of both pretransplant and 

predominant dialysis modality as well as the number of modalities used and their 

combinations. 

Our study, when compared to HD and/or PD immediately prior to transplant, 

demonstrated a protective effect on the graft and recipient survival.  Even though the 

effect size associated with PD is modest, we disprove previous reports claiming a higher 

long-term risk associated with PD.  We evaluated the role of the predominant RRT 

modality during the ESRD course.  Peritoneal dialysis, transplant, and preemptive or 
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very short course dialysis had a protective effect for the graft and recipient survival.  This 

approach again confirmed an advantage for allograft and recipient survival of PD over 

HD as a modality immediately prior to transplant and as a predominant modality during 

the ESRD course.  Though statistically significant, the effect of the size of the dialysis 

modality is quite limited (HR 0.97 and 0.94 for graft and recipient survival, respectively, 

for PD as an RRT modality immediately before transplant; and HR 0.97 and 0.96 for 

graft and recipient survival, respectively, for PD as a predominant RRT modality 

compared to HD).  For comparison, the effects of size of other predictors of the graft and 

recipient survival evaluated in our analysis were as followed: recipient age (HR 1.01 p 

<0.001; HR 1.04 p<0.001 per year of life for graft and recipient survival, respectively); 

recipient history of diabetes (HR 0.96 p=0.48; HR 1.11 p=0.107 for graft and recipient 

survival, respectively); recipient comorbidity score (HR 1.1 p <0.001; HR 1.26 p <0.001 

per unit increase in score for graft and recipient survival, respectively); living donor as 

compared to deceased donor (HR 0.68 p <0.001; HR 0.67 p <0.001 for graft and 

recipient survival, respectively); donor age (HR 1.01 p<0.001; HR 1.01 p <0.001 per year 

of life for graft and recipient survival, respectively);  and number of HLA matched 

antigens (HR 0.94 p<0.001; HR 0.96 p <0.001 per antigen matched for graft and 

recipient survival, respectively).   

The number of RRT modalities used during ESRD course is a significant 

predictor of graft failure and recipient death.  Almost any single RRT modality or their 

combinations were associated with better graft and recipient outcome than with HD only.   

The mechanism of the outcome observed in our analysis is not completely clear.  

Residual renal function that might be better preserved in patients on PD may contribute 

to better preservation of kidney function after transplant [138].  One can hypothesize that 

the degree of residual renal function is more important for the graft and recipient 

outcome than either PD or HD modality.  Unfortunately, we did not have information 
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about the residual renal function for the whole study population.  Answering this question 

could be a subject of another research project.  Furthermore, body mass index and 

degree of hypervolemia might be different in the PD and HD patients and therefore 

confound the results.  The rate of posttransplant infections associated with HD might be 

higher as compared to PD [135].  In addition, there are some indications that HD 

membranes and vascular access might cause sensitization in transplant candidates 

[139].  It has been shown that HD patients demonstrate the elevation of natural killer 

cells [140] and production of cytokines [141].  Other immunological differences might 

exist between HD and PD patients.  It was postulated that PD modifies the population of 

T-helper (Th) cells with an increase in the percentage of Th2 cells and by a normal 

percentage of Th1 cells [142].  Th2 cells produce inteleukin-4 and inteleukin-10, which 

inhibit interferon-gamma secretion and cell immunity [143], while increased Th2 cell 

fraction may provide additional immunosupression.   

Potential selection bias should be considered when interpreting the results of this 

study.  We speculated that the decision regarding dialysis modality is made based on 

patient’s age, diabetic status, comorbidity, ability to learn the technique, prior history of 

abdominal surgeries, the distance to dialysis center, and the status of vascular access.  

Adjusting our multivariate models for recipient age, diabetic status, comorbidity index, 

socioeconomic status (indicated by educational level, primary source of pay for renal 

care, and citizenship), and duration of ESRD should considerably reduce the selection 

bias.  We recognize that some factors not included in the models (e.g., exhausted 

vascular access) might force the selection of the dialysis modality and confound the 

results.  Though our models were carefully adjusted for pertinent covariates, HD and PD 

populations are different in our study as well as in other reports.  For example, it was 

demonstrated that PD patients are more likely to be transplanted than HD patients both 

in the group of adult patients [125], and to a lesser extent in the group of pediatric 
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patients [144].  One can speculate regarding the causes of this discrepancy, that certain 

demographic characteristics and potentially the more assertive personality of the PD 

patient versus the HD patient might make the former more aggressive in pursuing 

transplantation.  Indeed, in our study population, PD was a pretransplant RRT modality 

in 21.8% and predominant RRT modality in 22.6% of patients, while in the dialysis 

population, PD patients comprised less than 15% [145]. To explain this phenomenon, 

Snyder et al. [125] proposed that there is a perception among physicians that PD 

patients may be better candidates for transplant [115, 128] and therefore, there exists a 

selection bias, where potential transplant candidates are more likely to be placed on PD 

rather than on HD.  Other potential shortcomings should be considered in interpreting 

results of this retrospective data analysis.  Retrospective analysis of data registry 

demonstrates the association (but not necessarily the causative relationships) between 

the primary variables of interest and the outcome.  The sequence of PD and HD for 

those patients receiving both has not been evaluated in this study and might be a 

subject of future research.   

In conclusion, our results suggest that compared to PD, hemodialysis as a RRT 

modality immediately prior to transplant or as a predominant RRT modality during ESRD 

course, used alone or in combination with other RRT modalities, is associated with 

increased risk of graft failure and recipient death. An increased number of RRT 

modalities used during ESRD course is associated with worsening of the graft and 

recipient survival.  Peritoneal dialysis is a reasonable choice of renal replacement 

therapy and should not be avoided in the transplant candidates [66]. 
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4.5. The role of previous history of kidney transplant 

4.5.1. Introduction 

In general, preemptive transplant (i.e., without exposing the patient to dialysis) 

seems to be advantageous for graft survival [32, 64, 146].  The length of time on dialysis 

prior to the first transplant is a predictor of the graft and recipient survival. However, a 

relatively short duration of dialysis does not change either graft or recipient outcome 

[64].  It is unclear if the general advantage associated with preemptive transplantation 

holds for patients with a prior kidney transplant.  There is no clear evidence in the 

literature whether patients who failed a previous transplant should be retransplanted 

preemptively or be allowed to “cool down” on dialysis before the next transplant.  Since 

the role of renal replacement therapy in the period between graft failure and a follow-on 

transplant is understudied in this important and growing set of patients, the aim of this 

project was to evaluate the effect of preemptive retransplantation on graft and recipient 

survival.  

 
4.5.2. Methods 
 

The following independent variables were collected: history of transplants prior to 

the study transplant, total number of transplants, renal replacement therapy immediately 

prior to the study transplant, and time between the last allograft failure and the study 

transplant surgery.  

Our definition for preemptive retransplant included all patients with dialysis-free 

retransplant (n=788) or those who had <7 days between a graft failure and a 

retransplant (the data to calculate this variable were complete for the subset of patients 

with prior kidney transplants) (n=1,609).  The latter group was broader and in fact 

included all 788 patients with dialysis-free retransplant; therefore, the number of patients 

with preemptive transplant was 1,609.  Dialysis-free retransplant was assumed for any 
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case where the renal replacement therapy (RRT) immediately prior to transplant was 

reported itself as “transplant.” RRT modality prior to transplant was derived from the 

RXHIST USRDS file. We considered this source more reliable than the PRTXDIAL 

variable from the UNOS file (the latter had > 30% missing values, where the RXHIST file 

only had about 6% missing or unknown values).  The time between the last graft failure 

and the most recent transplant was calculated as a difference between the most recent 

transplant surgery date and the failure date of the graft prior to the most recent one. This 

variable was complete for the subset of patients with prior kidney transplants.  

Separate Cox models were used to correct for colinearity between the primary 

variables.  In particular, these pairs of variables were considered to have high degree of 

possible colinearity and were evaluated in a separate Cox model: history of prior 

transplant as a binary variable and total number of transplants; time after last graft failure 

and preemptive transplant as a binary variable; time after last graft failure and duration 

of ESRD course; and duration of ESRD course and duration of previous graft function. 

Use of Mycophenolate Mofetil (MMF) in the maintenance antirejection regimen was used 

as an indicator of transplant era.  

 
4.5.3. Results 
 
4.5.3.1 The role of prior transplants  
 

The role of previous transplants was analyzed for the entire dataset (n=92,844), 

and a total of 11,714 patients had been retransplanted.  The Kaplan-Meier curves 

representing the role of prior transplant in the graft and recipient survival are presented 

in Figure 7 for any transplant history (Panels A and B) and for the total number of prior 

transplants (Panels C and D).  The analysis represented by Kaplan-Meier graphs is not 

adjusted for confounding factors and suggests that patients with prior transplants do 

significantly better than those with the first transplant, and that patients with a total of 2  
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Figure 7.  Kaplan-Meier analysis of the graft (Panel A, χ2=218.4, p<0.001) and recipient 
(Panel B, χ2=22.5, p<0.001) survival in patients with and without prior kidney transplant 
and association of the graft (Panel C, χ2=525.1, p<0.001) and recipient (Panel D, 
χ2=57.4, p<0.001) survival with total number of transplants.  Log-Rank test was used to 
test strata homogeneity. 
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Figure 7 continued 
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transplants might survive longer than the recipients of a single transplant.  However, 

when the analysis is adjusted for confounding factors in the Cox model (described 

below) the association between prior transplant and recipient survival loses its statistical 

significance.   

In the Cox model, any history of prior transplant was associated with a significant 

increased risk of failure of the study graft (Hazard Ratio [HR] 1.24, p<0.001) but not the 

risk of recipient death; and the risk of graft failure (but not the recipient mortality)  

increases as the number of past transplants increases (increase in HR of 1.35 per 

transplant, p<0.001).  The longer duration of prior graft survival but not the type of the 

graft (living vs. deceased) had a protective effect on the consecutive graft and recipient 

survival. 

 
4.5.3.2. Preemptive retransplant 
 

Altogether, 1,609 or 13.7% of all retransplanted patients had preemptive 

retransplants.  Using the Cox model presented in Table 4, preemptive retransplant was 

associated with an increased risk of graft failure (HR 1.36, p<0.001) but not of recipient 

mortality (HR 1.02, p=0.77).  The shape of the Kaplan-Meier curves suggests early graft 

failure as contributing to the poor graft survival in the recipients of preemptive 

retransplants.  Therefore, we repeated the Cox analysis after eliminating the recipients in 

whom graft survived 0 days (primary nonfunctioning graft) (n=555) and demonstrated 

similar results.  The risk of preemptive retransplant for graft failure had a HR of 1.29 

(p<0.001, 95% CI 1.13 - 1.46), and the risk of recipient mortality had a HR of 1.12 

(p=0.084, 95% CI 0.984 - 1.283).  Furthermore, we analyzed the subgroup of patients 

with previous graft survival of ≥90 days after excluding recipients with previous graft 

survival of <90 days.  In the remaining dataset (n=10,053), the risk of preemptive  
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Table 4.  Results of a Cox proportional hazard model to evaluate the role of variables 
describing prior transplant characteristics.  Variables analyzed in all recipients of 
retransplant (n=11,714) and in the subset of patients with a single prior transplant 
(n=10,070). 
 

  All retransplant patients Recipient of single 
retransplant 

Model number and predictor 
variable(s) 1 

Hazard Ratio 
(95% 

Confidence 
Limits) 

p Hazard 
Ratio (95% 
Confidence 

Limits) 

p 

Graft failure          

1. Preemptive retransplant = 
"yes"2 

1.36 (1.21-1.54) <0.001 1.59 (1.23-
2.04) 

<0.001 

2. Time between last graft failure 
and current transplant (per 
month) 

1.001 (1.00-
1.002) 

0.194 1.001 (1.00-
1.003) 

0.025 

3. Donor type for prior transplant      
 Living3 0.99 (0.93-1.07) 0.8488 0.99 (0.91-

1.06) 
0.684 

  Missing3 1.05 (0.94-1.17) 0.432 0.87 (0.71-
1.08) 

0.202 

4. Duration of ESRD and fraction of time with transplant 
 Total duration of ESRD 

(years) 
0.99 (0.98-1.00) 0.012 0.99 (0.98-

1.00) 
0.019 

  Percent of ESRD time with 
prior transplants 

0.999 (0.998-
1.00) 

0.1252 1.00 (0.999-
1.001) 

0.435 

5. Duration of previous graft 
(years) 

0.983 (0.98-
0.99) 

<0.001 0.98 (0.97-
0.99) 

<0.001 

  

Recipient mortality 

        

1. Preemptive retransplant = 
"yes"2 

1.02 (0.90-1.15) 0.77 0.83 (0.69-
0.99) 

0.037 

2. Time between last graft failure 
and current transplant (per 
month) 

1.003 (1.001-
1.004) 

<0.001 1.004 
(1.002-
1.006) 

<0.001 

3. Donor type for prior transplant      
  Living3 0.90 (0.81-1.00) 0.055 0.92 (0.82-

1.03) 
0.143 

  Missing3 1.11 (0.95-1.29) 0.185 0.92 (0.69-
1.23) 

0.576 

4. Duration of ESRD and fraction of time with transplant 
 Total duration of ESRD 

(years) 
1.02 (1.01-1.03) <0.005 1.01 (1.00-

1.03) 
<0.01 
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Table 4 continued 

 
  All retransplant patients Recipient of single 

retransplant 
Model number and predictor 
variable(s) 1 

Hazard Ratio 
(95% 

Confidence 
Limits) 

p Hazard 
Ratio (95% 
Confidence 

Limits) 

p 

  Percent of ESRD time with 
prior transplants 

0.997 (0.996-
0.998) 

<0.001 0.997 
(0.995-
0.998) 

<0.001 

5. Duration of previous graft 
(years) 

0.988 (0.98-
1.00) 

0.035 0.99 (0.98-
1.00) 

0.037 

 

 

 

 

 

 

 

 

 

1Separate models were fitted for co-linearity-related factors.  Each model shown in the 
table is adjusted for the following list of covariates: recipient age, gender, race, height, 
weight, history of hypertension (HTN), diabetes, comorbidity index, total duration of ESRD 
prior to the follow-up time included in the Cox models, education level, primary source of 
pay, citizenship, history of prior transplant, total duration of ESRD, and total number of 
transplants, type of donor (cadaveric or living), heartbeating donor or not, donor age, 
gender, race, height, weight, and citizenship, day of the week the transplant was done, 
year of the transplant, number of matched HLA antigens, and cold storage time. 
2Preemptive retransplant define as “Yes” if renal replacement modality immediately prior to 
the study transplant was “transplant” or the time between last graft failure and the study 
transplant was <7 days. 
3 Deceased donor is the reference. 
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retransplant for the graft survival (HR 1.26, p<0.005, 95% CI 1.09-1.46) and recipient 

survival (HR 1.24, p=0.027, 95% CI 1.03 – 1.50) was substantially increased. 

Analysis of the subgroup of patients with only one retransplant (history of single 

graft failure in the past, n= 10,070) yielded similar results for the graft survival (HR 1.59, 

p<0.001), while the recipient survival associated with preemptive retransplant was 

significantly better (HR 0.83, p<0.05).   

 
4.5.3.3. The effect of waiting time for retransplant 

To examine the effect of the waiting time for the retransplant, we examined the 

role of the time between last graft failure and the most recent transplant (median time 

was 21.9 months).  Increasing this time interval had significant association with the 

adverse outcome of the most recent graft (only in patients with a single retransplant), 

and the risk of patient death (Table 4). 

 
4.5.3.4. Stratification by the transplant era   

Major changes in immunosuppressive medications were unveiled in the mid- 

1990s (e.g., tacrolimus was approved for liver transplantation in 1994 and was used "off-

label" in kidney transplant soon after its release; Mycophenolate Mofetil and Neoral were 

introduced in 1995).  Therefore, we report a stratified survival analysis by the use or 

nonuse of Mycophenolate Mofetil (MMF) as a surrogate for a transplant era. In 5.6% of 

the population, the information about use of MMF was missing, and the remaining 

dataset was used for analysis.  In the remaining dataset of single and multiple kidney 

transplants (n=87,652), 28,360 (32.4%) patients were on MMF, while 59,292 (67.6%) 

were not.  In the dataset of patients with retransplant(s) with information of MMF use 

nonmissing (n=11,565), 3,693 (31.9%) patients were on MMF, while 7,872 (68.1%) were 

not (Tables 2 and 4).  Most of the associations observed in the entire dataset were also 

present in both the MMF(+) and MMF(-) strata. 
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4.5.3.5. Characteristics of the patients who received preemptive  
retransplants 
 

We evaluated the subgroups of preemptive retransplant patients and 

nonpreemptive retransplant patients to assess their potential distinguishing 

characteristics.  We evaluated the percent of the whole ESRD course prior to the study 

transplant spent on dialysis or with another transplant.  Patients with preemptive 

retransplants had a greater percentage of their pretransplant ESRD course up to the 

time of the study transplant spent with transplant (50.6%±43.6% vs. 42.0%±32.6% in 

nonpreemptively retransplanted patients, p<0.001), but a lower percentage time spent 

on hemodialysis (34.6%±38.1% vs. 38.0%±31.9% p<0.001) and peritoneal dialysis 

(9.4%±21.8% vs. 11.5%±21.5% p=0.083).  The duration of the ESRD was longer in 

patients without preemptive retransplant.  Thirty percent of the preemptive retransplant 

patients had living donors, while only 17.6% of those without preemptive retransplant 

had living donors. 

 
4.5.4. Discussion  
 

The prediction of renal transplant recipient and graft survival is an important 

clinical issue, especially in view of the growing shortage of donor organs[147].  

Traditionally, ESRD patients would take a course of hemodialysis (HD) or peritoneal 

dialysis (PD), or both, possibly followed by one or more transplants.  Increasingly, 

patients are opting for transplantation as the very first ESRD treatment modality, a 

choice labeled “preemptive transplant.” Much of the enthusiasm for preemptive 

transplantation stems from reports that they are advantageous for graft and recipient 

survival [22, 32, 146, 148], while increased time on dialysis prior to a transplant is a 

predictor of negative short-term graft outcome [32, 64].   

More specific to this study, factors that influence retransplant graft survival have 

been identified as well.  Notable roles have been identified for the period of survival of 
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the previous graft, the use of cyclosporin A, the level of preformed antibodies, the ESRD 

cause (in particular diabetes and analgesic nephropathy), and the patient's gender [149].  

Gjertson recently delineated the top five factors affecting 1-year regraft survival rates 

(transplant center, duration of first graft function, donor age, recipient's body mass index, 

and year of transplant) [150].  He also showed that long-term allograft outcome 

depended on donor age, transplant center, recipient age and race, and donor 

relationship.   

In this project, we demonstrated a better graft outcome, but not recipient survival, 

with the first transplant compared to the patients with prior history of transplants; the 

latter had a 24% higher risk of graft failure.  Each additional transplant in the past 

incrementally increased the risk of graft failure.  Since retransplantation patients occupy 

an ever-increasing portion of the transplant waiting list, it is reasonable to ask whether 

preemptive retransplantation should be added to these lists of important predictors.  

While numerous studies, including one by our group [64], demonstrated the positive 

association between preemptive first kidney transplant and graft and recipient survival, 

the effect of preemptive retransplantation on the graft and recipient outcome has not 

been established.   

Our data suggest that the risk of graft failure is actually higher in preemptive 

retransplant patients by 36%.  We did not find any association between the recipient 

survival and preemptive retransplant, except for the subgroup of patients with a single 

retransplant, where the risk of death decreased by 17%.  The result that preemptive 

retransplant decreases graft survival but increases recipient survival in the subgroup of 

patients with single retransplant is somewhat counterintuitive; better allograft outcome 

should translate into better patient survival.  One can imagine that lead time bias, which 

favors healthier recipients at the outset, may play a role here. This effect would 

represent a true bias rather than true improvement in the survival.   
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Interestingly, the recipients of the nonpreemptive transplant in our study on 

average had significantly more kidney transplants in the past compared to recipients of 

the preemptive retransplant.  Also, there is a greater proportion of the deceased donors 

in the recipients of nonpreemptive retransplant.  Furthermore, the comorbidity score is 

higher and the total duration of ESRD is significantly greater in the recipients of the 

nonpreemptive retransplant, which should also adversely affect their outcome.  The 

comparison between the groups does indicate that the recipients of the nonpreemptive 

retransplant are at a disadvantage in regards to the classic predictors of the clinical 

outcome.  Despite that, however, the multivariate model, when adjusted for such 

variables, demonstrated a better outcome in nonpreemptively transplanted patients with 

respect to the graft survival.  Although apparently counterintuitive, this discrepancy is 

fairly common when the results of simple group comparison are considered separately 

from multivariate modeling.  The multivariate model takes the disparity that exists 

between the study groups into account and makes an adjustment for it, so these 

differences become irrelevant to the final outcome of the modeling.  The results of the 

Cox model therefore should be interpreted as if the study populations were equal in 

regard to the baseline characteristics included in the model. 

We also found that waiting time after the previous graft failure has an association 

with the worse graft survival in the recipient of single retransplant and with recipient 

survival in the whole patient population.  However, the effect size of this association is 

relatively small, and since the recipient survival is calculated as a time period starting at 

the transplant event; latter association might be confounded by the lead time bias (i.e., 

patients with preemptive retransplant might have an advantage over those waiting for 

retransplant simply because their clock started earlier).   

Also, to reconcile the better graft survival associated with shorter waiting time 

and worse survival associated with preemptive retransplant, one might imagine that a 
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relatively short period of dialysis between the transplants might be beneficial in 

comparison to preemptive retransplant, while longer time on dialysis might in fact be 

somewhat detrimental.  However, the optimal time on dialysis before retransplant was 

not evaluated in this study.   

Our findings that suggest that preemptive retransplantation is associated with 

worse graft outcome seem to contradict the prior reports of a beneficial effect of the first 

transplant on the graft survival [32, 64, 146].  The question is why preemptive transplant 

is good for the first kidney transplant, but negatively affects the outcome of the 

consecutive transplants.  We hypothesized that this phenomenon could be explained by 

at least several mechanisms based on the difference between the first and subsequent 

transplants.  Recipients of retransplant have been exposed to immunosuppressive 

medications for a period of time, and might have accumulated additional comorbidities, 

as well as experienced side effects of the medical treatments.  The effect of dialysis on 

T-cell activity [140-143] and also the withdrawal of immunosuppressive medications with 

subsequent recovery of the immune system may be the mechanisms of the positive 

effect of the dialysis on subsequent graft outcome.  Hypothetically, the discontinuation of 

the immunosuppressive medications and recovery of the immune system in between 

transplantations might be an important factor in reducing the risk of viral infections and 

malignancies.   

Furthermore, to explain the negative role of preemptive retransplantation, we 

hypothesized that better clearance of toxic products and drug metabolites might be 

achieved with dialysis as compared to the failing kidney allograft, so that patients with 

failed graft receiving the preemptive retransplant might be more “uremic” at the time of 

transplantation than those who were dialyzed prior to retransplantation.  It is also 

possible that patients with failing graft might try to hold on to the poorly functional kidney 

and delay the initiation of dialysis.  By the same token, patients with failing graft might be 
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in general more “uremic” than those with native kidney failure, which would explain the 

opposite effect of the preemptive transplantation on the graft survival in recipients of the 

first vs. subsequent transplantations.  

 It is worth mentioning that since using the year of the transplant as an indicator of 

transplant era may introduce bias in the statistical analysis, we selected the use of MMF, 

that came on the market in the mid-90s, as a surrogate of the transplant era.  Evaluating 

particular immunosuppressive medications was not the focus of our investigation.  Since 

MMF is only an indicator of the transplant era, we do not necessarily think that it has 

direct effect on the outcome.  However, the question remains, why is it that in patients 

transplanted in the late era (on MMF) the negative effect of the preemptive retransplant 

is not statistically significant?  Since the hazard ratio between the groups is very similar, 

the nonsignificant effect in patients on MMF may simply be a reflection of the smaller 

sample size (among patients with retransplant, 3,693 were on MMF and 7,872 patients 

were not on MMF). 

Finally, since this study was based on the analysis of the large dataset, there are 

some issues in interpreting the results that need to be pointed out.  The power of the 

large amount of data leads to the small and clinically nonsignificant associations still 

demonstrating statistical significance in the analysis.  Therefore, the associations with 

the borderline p value (<0.05), while technically significant, should be interpreted with 

caution.  

Also, in this analysis, only patients who survived from the graft failure to the next 

transplant were included in the nonpreemptively transplanted group, which potentially 

introduces a survivor bias.  In other words, the study excludes those patients who were 

transplanted once, failed the graft and died while being on the waiting list, before getting 

the next graft.  That potentially may allow for selection of the healthiest recipients in the 

group with nonpreemptive retransplants.  Multivariate models adjusted for the specific 
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covariates such as comorbidity index may reduce this bias, but it is certainly problematic 

to exclude patients who died on the waiting list from the analysis altogether.  We 

considered including patients with failed graft who were on the waiting list for 

retransplant into the analysis and classifying them as nonpreemptive retransplant.  

However, that would introduce additional problems: some of the patients on the waiting 

list might have never been transplanted for the reason other than death; also, the 

analysis of the graft outcome for this subpopulation would have been impossible 

because the retransplants have never happened.  Therefore, the analysis was done 

based only on the patients who received the retransplant, while those who could 

potentially receive it, but did not survive, were excluded.  Therefore, the results of the 

study should be interpreted with caution due to the potential survivor bias, where only 

patients who survived from the last graft failure to the next transplant were included in 

the study.  In other words, regarding the recipient survival, the results of the study should 

be interpreted as applicable only to those patients who survived to retransplant. One 

should also keep in mind the potential residual survivor bias (even after adjusting for 

comorbidity index) while interpreting the results of the graft survival.   

With the potential caveats associated with retrospective data analysis, these 

results suggest that preemptive retransplantation is associated with increased risk of 

graft failure, while longer time on dialysis in between transplants is associated with 

negative effect upon graft and recipient survival in most patient subgroups.  The optimal 

time in between graft failure and retransplant was not evaluated in this study.  This 

knowledge is important for future construction of the predictive model of long-term graft 

outcome [65]. 
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4.6. The role of duration of pretransplant dialysis 
 
4.6.1. Introduction 
 

While preemptive transplant would appear to have an advantage over traditional 

therapy, it is unclear if this represents a negative effect intrinsically associated with 

dialysis or the fact that patients who had a transplant after dialysis generally have a 

longer history of ESRD or have accumulated more comorbid conditions.  Aside from 

prolonging the ESRD course, suggested mechanisms that may account for the 

worsening outcome by exposure to dialysis include increased rate of acute rejection, 

delayed graft function, vascular access complications, and various immunological 

mechanisms[148, 151].   

This study addresses several factors that confounded earlier comparisons of 

dialysis duration to preemptive transplant. Lead-time bias, which occurs because 

candidates for preemptive transplants have better residual kidney function than patients 

already on dialysis, is a variable rarely accounted for in previous work. Categorical 

dialysis modeling strategies, where dialysis is modeled as a categorical variable (e.g., 

the patient was on dialysis or not, or the patient had dialysis for 0-175 days, 176-365 

days, etc.) can obscure subtle or moderate factors influencing outcomes that cannot be 

resolved when patients are lumped together in a few, large groups.  Lastly, 

socioeconomic variables are often ignored in previous studies, even though it has been 

shown that educational level and ethnicity are predictors of receiving a preemptive 

transplant in the first place[146].  An important question remains: are there subgroups of 

patients who might have better outcomes if they received short-course dialysis before 

transplant (e.g., patients with renal failure awaiting transplant, for whom the graft is not 

yet available or those with overt uremic complications where dialysis prior to transplant 

might improve their pretransplant health status)?   

 



  69 

 

4.6.2. Results 
 
4.6.2.1. Baseline characteristics 

In this study, recipients were 44.1±14.3 years old, 60.5% male, 69% White/24% 

African American, 29% diabetic, 49% hypertensive, and had ESRD an average 2.2±2.2 

years prior to transplantation.  Kidney donors were 34.6±15.6 years old, 56% were 

males, 82% White/11.9% African American, and 25.7% living donors.  

 
4.6.2.2. Duration of ESRD and graft survival 

The Kaplan-Meier plot shows that graft outcome worsens as the duration of 

ESRD increases, supporting the results of earlier studies. The Cox models also 

demonstrated a modest overall increase in graft failure as ESRD duration is prolonged: a 

2% increase in risk per year overall (hazard ratio[HR], 1.02 per year, p<0.001).  Analysis 

stratified by the donor type demonstrated the same results for cadaveric and living 

donors.   

An important pattern in the relationship between short-tem ESRD and transplant 

outcome emerges when pretransplant ESRD duration is analyzed with a fine time 

granularity (i.e., 0-14 days, 15-60 days, 61-180 days, 181-365 days, 1-2 years, 2-3 

years, 3-5 years, and >5 years).  A longer course of ESRD was indeed associated with a 

higher risk of graft failure, although the difference became statistically significant only 

after 180 days.  The hazard ratio of graft failure increases from this point in a nearly 

linear fashion, until ESRD duration reaches 3-years, when there is no further increase 

(Figure 8).  Analysis stratified by the donor type yielded similar results for both cadaveric 

and living donors.  To evaluate a potential difference in the association of ESRD duration 

with graft outcome between different dialysis modalities, we stratified the Cox model by 

the predominant dialysis modality.  We found that the association between ESRD  
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Figure 8.  Hazard ratio of the graft failure in different categories of the pretransplant 
ESRD duration.  Compared to the reference (ESRD duration ≤14 days), the hazard ratio 
of graft failure became significant only after 180 days of pretransplant ESRD.  The 
hazard increased from this point in a linear fashion, until the ESRD duration reached 3 
years, when there was no further increase in the risk of graft failure. 
 
 
duration and graft survival were similar between HD (HR 1.02 per year, p<0.001) and PD 

(HR 1.03 per year, p<0.001). 

 
4.6.2.3. Duration of ESRD and recipient survival  
(calculated from the time of transplant) 
 

The Kaplan-Meier plot shows that a longer duration of ESRD was also 

associated with poorer recipient survival.  In the Cox models, overall recipient survival 

decreased with increased duration of ESRD for all patients (HR 1.04 per year, p<0.001) 

as well as recipients of cadaveric (HR 1.04 p<0.001) and living kidneys (HR 1.06 

p<0.001) analyzed separately.  When ESRD duration was categorized into finer time 
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blocks, the higher risk of recipient mortality only became significant when ESRD duration 

reached 1-year (HR 1.35, p<0.05).  From that point, the hazard increased linearly 

(Figure 9).  Separate analysis of the cadaveric kidney recipients yielded similar results; 

in the recipients of living kidney, the effect of ESRD duration on survival became 

significant at 181-365 days (HR 1.98 p<0.05).  When Cox analysis was stratified by the 

predominant ESRD modality, the overall results were similar between HD (HR 1.04, 

p<0.001) and PD (HR 1.07 p<0.001).   

 
4.6.2.4 Duration of ESRD and recipient survival (calculated  
from the time of onset of ESRD) 
 

To avoid lead time bias, analysis was also performed with recipient survival 

calculated from the time of ESRD onset rather than from the time of transplant surgery.   

Kaplan-Meier curves are flat for the time that the patient remained on dialysis 

pretransplant, since only patients who survived until transplant are evaluated.   

The curves represent different durations of the follow-up, where the longest duration was 

in the group which was on pretransplant dialysis for the longest time.  On visual 

examination, the slopes of the Kaplan-Meier curves seem to be similar in those patients 

who received a kidney transplant after ≤14 days, 15-60 days, or 61-181 days of dialysis.  

Patients who received the kidney 181-365 days after being on dialysis had a faster rate 

of decline, and those who were on dialysis for more than a year had the fastest rate of 

graft loss (including those who received a kidney after being on dialysis for >5 years).  In 

the Cox models, when the duration of ESRD was analyzed as a continuous variable, 

longer ESRD duration was associated with a better recipient survival (HR 0.85 per year, 

p<0.001).  There was no significant advantage in recipient survival with increased 

duration of ESRD when the latter is analyzed as a categorical variable until the ESRD 

duration reached 3 years and greater.  This better outcome was likely to be at least 

partly attributed to survival bias.  
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Figure 9.  Hazard ratio of the recipient mortality in different categories of the 
pretransplant ESRD duration.  Compared to the reference (ESRD duration ≤14 days), 
the hazard ratio of the recipient death became significant only after 1 year of 
pretransplant ESRD and from that point increased in a linear fashion. 

 
 

4.6.3. Discussion 
 

The literature on the association between preemptive transplantation and ESRD 

duration versus survival is rich and at times inconsistent.  Recent reports have 

suggested that increased duration of pretransplant ESRD is associated with poor graft 

and recipient outcome [117, 137].  While preemptive transplant without the patient going 

on dialysis at all has been shown to be advantageous to the graft survival in several 

studies[32, 146, 148], some of these studies examined the time on dialysis only as a 

binary variable[146, 148].  
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Meier-Krische [32] reported that longer waiting time on dialysis was found to be a 

significant risk factor for death-censored graft survival and patient death for those 

subjects with a functioning graft after renal transplantation.  However, the smallest 

category of dialysis duration authors analyzed was 0-6 mos.  This particular duration of 

dialysis worsened graft survival, but has not worsened patient survival.  

Previous studies have usually calculated recipient survival from the time of 

transplant to the time of patient death.  This type of analysis may introduce a lead time 

bias, in which patients with shorter ESRD duration have a starting time advantage; in 

effect they are healthier by definition.  Additionally, residual kidney function may 

confound the result of these studies, as those with shorter duration of ESRD are likely to 

have better preserved kidney function[152]. 

To address the lead time bias, we also calculated recipient outcome  based on 

the time of onset of ESRD, instead of the time of transplant. When the recipient survival 

was calculated from the time of ESRD onset, the survival had a sharper rate of decline 

only when the pretransplant ESRD duration was over 180 days. In addition, in our Cox 

models, the duration of ESRD was analyzed as a continuous variable, and longer 

duration was associated with a better recipient survival.  We recognize that this outcome 

may potentially be explained by survivor bias, where only those patients with long 

duration of dialysis, who survived to transplant, were included in the study.  In the 

present study, the duration of dialysis was analyzed as both a continuous and a 

categorical variable, rather than simply as a binary variable describing preemptive 

versus nonpreemptive transplant. The 60-day rule (a convention adopted by USRDS, 

that a dialysis modality must continue for at least 60 days in order to be considered 

stable, and therefore dialysis duration for less than 60 days may not be reflected by the 

binary variable describing pretransplant dialysis) was not applied. Instead, the actual 

number of days for which the patient was dialyzed prior to transplant was analyzed.   
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There are many potentially confounding variables in renal transplant outcome 

studies, such as socioeconomic status, age, race, citizenship, and primary payer.  

Kasiske et al. demonstrated that some of these factors (race, ethnicity, education) are 

associated with receiving  a preemptive transplant [146].  In the study by Meier-Krische 

et al. [32], the authors have not adjusted for socioeconomic status and education level.  

In the study by Mange [148], authors have not adjusted for socioeconomic status or 

education. Instead, their model was adjusted for race and median household income for 

the ZIP code of recipient.  We adjusted our Cox models for recipient education level, 

primary source of payment, and citizenship as a surrogate for differences in the 

socioeconomic status. 

Finally, it is unclear from the existing literature if both HD and PD used prior to 

transplant affect the outcome of the transplant to the same extent.  We stratified the Cox 

models by predominant dialysis modality and demonstrated that the association between 

duration of dialysis and the graft and recipient survival for patients on HD and PD are 

essentially the same.  This study did not address other factors associated with dialysis 

prior to transplantation either in a negative (e.g., loss of job) or positive (e.g., potentially 

better compliance after exposure to dialysis) way. 

We confirmed that a longer duration of ESRD is associated with a worsening 

graft outcome; however, the association only becomes significant after 6 months of 

dialysis therapy, and after 3 years, no significant change in risk was evident.  Similarly, a 

longer duration of ESRD was also associated with a worsening recipient survival as well 

when calculated from the time of transplant. However, it only becomes significant after 1 

year of ESRD duration.   

This retrospective study did not address the mechanism of association described 

above. However, we speculate that clinically significant accumulation of ESRD related 

comorbidities and loss of residual kidney function occurs only after 6 months of exposure 
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to dialysis.  The negative effect of dialysis therapy and/or ESRD on the graft survival (but 

not recipient survival) plateaus at 1 year after initiation of dialysis.  This can potentially 

be explained by the fact that predictors of the graft survival (e.g., oxidative stress, loss of 

residual renal function, aberrant T-, B-cell, and cytokine production[153]) might be 

peaking at 1 year.  Additional factors affecting recipient survival (e.g., cardiovascular 

calcification) continue to accumulate after 1 year of dialysis therapy. 

Since dialysis for up to 6 months does not appear to adversely affect graft 

survival, these results suggest that patients who have uremic symptoms should not defer 

dialysis while waiting for kidney transplant [64]. 

 
4.7. The role of recipient socioeconomic status 

 
4.7.1. Introduction 
 

The role of socioeconomic status of the donor and recipient in the graft and 

recipient survival remains controversial and poorly understood.  We and other authors 

previously demonstrated that donor and recipient race plays an important role in allograft 

survival [23, 154], and that long-term transplant outcomes in African American patients 

remain significantly lower than all other ethnic groups, independent of genetic matching 

[155].  However, it is not clear what impact genetic and environmental factors have on 

these racial disparities in allograft survival.  Furthermore, it has been demonstrated that 

racial differences affect the access to specific transplant procedures: in particular, 

kidney-pancreas transplant [156] are associated with different levels of compliance 

[157].  In addition, there are apparent disparities in chronic kidney disease care provided 

to ethnic minorities.  Disparities exist in wait-list time and kidney transplant rates for 

Native Americans and African American patients, independent of insurance status [155].  

African American patients were less likely than White patients to want a transplant and 

less likely to be referred for evaluation at a transplantation center and placed on a 
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waiting list.  These differences, however, explain only a small fraction of the substantial 

racial differences in access to transplantation [158].  While certain genetic factors 

associated with race might potentially play a role, literature reports suggest the presence 

of poorly understood social aspects contributing to the survival differences.  We 

hypothesized that certain socioeconomic factors, such as education level, 

citizenship/immigration status, and source of payment for medical service, play an 

important role in graft and recipient outcome.  The goal of this project was to evaluate 

the role of the above factors in kidney allograft and recipient outcome.   

 
4.7.2. Results 
 
4.7.2.1. Baseline characteristics 

The recipients (n=92,844) were 60% male, 70% Euro American, 23% African 

American, 3% Asian; and 27% diabetic, with an average age of 43 years at the time of 

the study transplant. Roughly one-in-eight (12.6%) had at least one prior transplant.  

These recipients were 59% male, 78% White, and 16% diabetic, with an average age of 

38.5 years at the time of the study transplant.   

 
4.7.2.2. Survival analysis 

While the models described here were not adjusted for the year of the 

transplantation due to a relatively short study period, we realize that the time of the 

transplant might still confound the results.  Therefore, additional analysis was performed 

after adjusting the model for the year of the transplant.  Also, since using the year of the 

transplant as an indicator of transplant era may introduce bias in the statistical analysis, 

we selected the use of mycophenolate mofetil, that came on the market in the mid-90s, 

as a surrogate for the transplant era.  Using both approaches revealed results very 

similar to our original analysis and are not presented here. 
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4.7.2.3. Role of education level 

Kaplan-Meier plots suggested incremental improvement in the outcome with 

increased education level. The proportional hazard model demonstrated improved 

outcome associated with more advanced education.  Compared with patients who 

receive grade to high school (0-12) education, those with some college to bachelor 

degree had significantly better graft (HR 0.93, p<0.005) and recipient (HR 0.90, p<0.005) 

survival.  Furthermore, recipients with postcollege graduate degrees had even better 

outcomes with HR 0.85 (p<0.005) for the graft and HR 0.88 (p=0.09) for recipient failure 

(Table 5).  When different racial groups were analyzed separately, African Americans  

and White patients (but not Asians) had a similar trend for graft survival.  Similar trends 

for recipient survival was observed only in White patients. 

 
4.7.2.4. Primary source of pay 

Based on Kaplan-Meier plots, recipients with private insurance had better 

outcomes than those with Medicare, Medicaid, or other sources of payment.  As far as 

recipient survival, patients on Medicare seem to have worse outcome than other groups, 

which could be confounded by older age.  In the entire patient population, using 

Medicare as a reference group, the proportional hazard model demonstrated statistically 

significant benefits to graft survival from having private insurance (HR 0.87, p<0.001).  

This effect was not observed in Asian recipients, but remained in African Americans (HR 

0.8, p<0.001) and Whites (HR 0.89, p<0.001).  Private insurance in comparison with 

Medicare also had an advantage for recipient survival in the entire group of patients (HR 

0.8, p<0.001) as well as in Asians (HR 0.66, p<0.05), African Americans (HR 0.71, 

p<0.001), and Whites (HR 0.83, p<0.001), when analyzed separately. Health 

maintenance Organizations (HMO) and Preferred Provider Organizations (PPO) were 

associated with a significantly higher risk of graft failure (HR 1.2, p<0.05) but  
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Table 5.  Proportional hazard model evaluating the role of socioeconomic status in graft 
and recipient survival1 
 
 Graft Survival Recipient Survival 

Variables HR (95%CI) p HR (95%CI) p 

Recipient education level 

Missing or Unknown 1.07 (1.03-1.12) <0.001 1.101 (1.04-1.17) <0.001
N/A: <5 yrs old 1.26 (0.98-1.62)   0.076 2.36 (1.5-3.72) <0.001
None 1.05 (0.83-1.31)   0.7 1.17 (0.87-1.59) 0.298
Grade to High School: 
grades 0-12 

reference 

Some College to 
Bachelor Degree 

0.93 (0.89-0.97) <0.005 0.9 (0.84-0.96) <0.005

Postcollege Graduate 
Degree 

0.85 (0.76-0.95) <0.005 0.88 (0.76-1.02) 0.09

Primary Source of Payment 

Medicare reference 

Missing or Unknown 1.00  (0.96-1.05) 0.865  1.12  (1.05-1.19) <0.001

Medicaid 1.00  (0.91-1.09) 0.916  0.92  (0.80-1.05) 0.214

US/State Government 
Agency 

1.00  (0.87-1.15) 0.957  0.84  (0.69-1.04) 0.108

Private Insurance 0.87  (0.83-0.90) <0.001 0.80  (0.76-0.85) <0.001

HMO/PPO 1.20  (1.02-1.42) <0.05 0.52  (0.36-0.74) <0.001

Other: Self, Donation, 
Free Care, VA, 
Pending, Foreign 
Government 

1.08  (0.85-1.38) 0.515  0.91  (0.63-1.32) 0.608

Recipient Citizenship   

U.S. Citizen reference 

Missing or Unknown 1.03  (0.97-1.10) 0.357 0.99  (0.91-1.08) 0.849

Resident alien 0.81  (0.74-0.88) <0.001 0.70  (0.62-0.80) <0.001

Nonresident alien 0.78  (0.54-1.13) 0.190 0.64  (0.35-1.15) 0.134

 
1 Only primary variables of interest are presented in the table.  The model was adjusted 
for the following covariates: recipient age, gender, race, BMI, history of DM, history of 
HTN, total duration of ESRD, cause of ESRD, mean and peak PRA levels, number of 
pretransplant transfusions, total number of transplants, number of different RRT 
modalities used, donor type, donor age, gender, race, BMI, heartbeating or not, donor 
history of DM, cold ischemia time, number of matched antigens. 
4.7.2.5. Role of citizenship. 
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improved patient survival (HR 0.52, p<0.001).  Having Medicaid, U.S./State Government 

agency, or other sources of payment for medical services did not show any significant 

association with outcome as compared with Medicare either in the whole patient 

population or in the subgroups divided by race. 

Kaplan-Meier plots suggested that resident and nonresident alien recipients had 

the best graft outcome and patient survival as compared to U.S. citizens.  Using the Cox 

model in the entire patient group with U.S. Citizens as the reference group, resident 

aliens had significantly better graft outcomes (HR 0.81, p<0.001).  When analysis was 

stratified by race, only in White patients did this association reach statistical significance 

(HR 0.823, p<0.001).  Similar results were observed for recipient survival, so where 

compared to U.S. citizens, legal aliens had a survival advantage (HR 0.7, p<0.001).  

This effect was observed in Asian patients (HR 0.66, p<0.05) and Whites (HR 0.7, 

p<0.001), but not in African Americans.  In addition, similar to resident aliens, 

nonresident aliens have better outcome than the U.S. citizens, but this finding did not 

reach statistical significance, likely due to the very small sample size of this group. 

 
4.7.2.5. Subgroup analysis: Adult patients with the first transplant 

We reanalyzed the subset of patients older than 18 when the first transplant 

occurred (n=78,181).  In this subset of the data, we found associations similar to those in 

the entire dataset.  Compared to patients with high school attendance, those with college 

education had a trend towards better graft (HR 0.96, p=0.0965, 95% CI 0.91-1.01) and 

recipient (HR 0.90, p<0.01, 95% CI 0.84-0.97) outcome.  Those with more advanced 

education had even better outcomes for the graft (HR 0.88, p<0.05, 95% CI 0.78-1.00) 

and recipient (HR 0.90, p=0.173, 95% CI 0.77-1.05) survival.  Compared to patients with 

Medicare (n=28,882), recipients who had private insurance (n=15,339) had a lower risk 

for the long-term graft failure (HR 0.86, p<0.001, 95% CI 0.82-0.90) and recipient death 
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(HR 0.80 p<0.001, 95% CI 0.76-0.85).  Having HMO/PPO (n=618) was associated with 

worse graft survival (HR 1.27, p<0.01, 95% CI 1.07-1.51) but better recipient survival 

(HR 0.54, p<0.005, 95% CI 0.37-0.78).  Also, resident aliens (n=1,739) had an 

advantage over the U.S. citizens for graft (HR 0.81 p<0.005, 95% CI 0.74-0.90) and 

recipient (HR 0.70, p<0.001, 95% CI 0.62-0.81) survival. 

 
4.7.3. Discussion 
 

Socioeconomic factors have been shown to affect health care outcomes.  

Poverty, unemployment, and low education levels have been listed among the factors 

adversely affecting health [159].  Socioeconomic status has been suggested to play a 

significant role in kidney transplant outcome.  Among others, the following 

socioeconomic factors have been listed as risk factors for posttransplant 

noncompliance: occupational status, educational level, language or cultural barriers, and 

ethnic background [160].  Race and income have substantial effects on mortality and 

use of services among Medicare beneficiaries [161].  Poor individuals are less likely than 

wealthy individuals to be medically suitable, to be interested in transplant, and to 

complete the pretransplant workup [162].   

In a study similar in design to our project and based on UNOS data, in patients 

with liver transplant, it has been shown that neighborhood income had no effect on graft 

or patient survival; education had only marginal influence on the outcome (survival was 

lower in those with a high school education than in those with graduate education); and 

patients with Medicaid and Medicare had lower survival when compared to those with 

private insurance [163].  The results of our study done in kidney transplant recipients are 

similar.  In the entire patient group, there is a statistically significant benefit to graft and 

patient survival from having private insurance compared to Medicare.  This effect was 

observed across almost all racial groups (except for Asians, where there was no 
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significant association between private insurance and graft survival).  HMO/PPO was 

associated with significantly higher risk of graft failure but improved patient survival.  

These results are similar to those reported in liver transplant recipients [163]. 

 Compliance with regards to immunosuppressive medication use is one of the key 

factors in prolonging graft survival.  Until 1993, Medicare regulations allowed for 

coverage of immunosuppressive medications for only 1 year posttransplantation unless 

the recipients maintain their Medicare beneficiary status through disability or age.  

Between 1993 and 1995, that duration was gradually extended to 3 years 

posttransplantation, which was further extended by 8 months in 2000. Woodward et al. 

[164] have shown that extending the coverage from 1 year to 3 years posttransplantation 

has eliminated the 4.5% difference in graft survival between low income and high 

income recipients.  In a follow-up analysis [165], the same authors estimated that if 

Medicare provided life-long immunosuppressive medications to all the recipients, graft 

failure would be reduced by 1.2% annually beginning in the fourth year 

posttransplantation.  Furthermore, Medicare beneficiaries who are eligible to receive the 

immunosuppressive medication coverage must still pay 20% of the cost of these 

medications, as Medicare covers only 80% of the total cost. With many HMO/PPO or 

private insurances, carrier subscribers may be required to pay substantially lower co-

payments.  This could also contribute to better compliance with immunosuppressive 

medications and subsequently, better graft outcome among HMO/PPO or private 

insurance subscribers compared with Medicare beneficiaries.  Medicare beneficiaries 

who underwent kidney transplantation do not have coverage for nonimmunosuppressive 

prescription drugs.  This could explain the poor recipient survival seen in our analysis. 

Medicare beneficiaries were shown to be more likely to take required prescription 

medications if they had prescription drug coverage [166].  Finally, even though we 

included age as an independent variable in our analysis, there may be a residual 
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confounding effect of age on the outcome.  As Medicare patients tend to be older 

compared to HMO/PPO or private insurance patients, Medicare beneficiaries may have 

poor outcome compared to non-Medicare recipients. 

 A possible reason for inferior outcomes in Medicaid beneficiaries is as follows:  

Previous studies have shown that Medicaid beneficiaries are less likely to receive 

optimal treatment, and their outcome is worse compared with privately insured patients 

for common conditions such as myocardial infarction and bronchial asthma [167, 168].  

Restricted access to medical care because of lower reimbursement by Medicaid and 

highly variable coverage benefits between different states are some of the possible 

explanations for such poor outcomes. Low income and poverty indicated by Medicaid 

may directly or indirectly contribute to worse health outcomes in general.  Indeed, cost-

related skipping of medications has been shown to be associated with the level of drug 

coverage and the income level [169].  A potential explanation for better outcomes among 

those with private insurance could be better quality of care.  Furthermore, these patients 

might be either healthy enough to be employed or have high enough personal incomes 

to be able to afford private insurance, both of which may potentially influence the 

outcomes.  

 Our study demonstrated that better recipient but worse graft survival is 

associated with HMO/PPO coverage.  Better graft survival does not always translate into 

improved recipient survival.  In this particular case, we hypothesize that the HMO 

population is likely to consist of relatively young employed patients.  The residual 

confounding effect of age might explain longer recipient survival as compared to 

Medicare beneficiaries.  Poor graft survival among HMO/PPO recipients is intriguing and 

difficult to explain.  Interestingly, in another study, no difference in clinical outcome was 

demonstrated between HMO and fee-for-service patients [170].  We speculate that 

higher co-pays and deductibles in these plans for specialist physician visits and 
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expensive immunosuppressive medications compared either to private insurance plans 

or Medicare/Medicaid may be a hindrance for the patients to comply with required 

posttransplant treatment.  Indeed, the HMO membership was associated with higher 

degrees of cost-related skipping of medications as compared to Medicare beneficiaries 

[169]. 

 Also, in our analysis, recipients with higher education level have better graft and 

patient survival.  There is a clear trend in incremental lowering of the hazard ratio for 

both graft failure and recipient survival with advanced education level.  Theoretically, 

people with higher level of education are more likely to be well-informed and have better 

awareness of posttransplant care, which could potentially improve outcomes.  The 

correlation between the better education status and compliance is arguable.  We also 

contemplated the possibility of the association between education level and insurance 

status, so that the effect of these variables on the outcome is not independent.  It seems 

logical that the insurance status would be associated with education level of the 

recipients.  To address this question, we evaluated the potential association between 

these variables in a bivariate (Chi-square) analysis.  We found a significant association 

between education level and insurance status (p<0.001).  In general, people with higher 

level of education tend to earn higher income.  For example, according to the US 

Census Bureau data [171], annual average earnings of workers with a bachelor’s degree 

was $45,678 in 1999 compared with $24,572 for those with only a high school diploma. 

Higher income may translate into better medical care, greater ability to pay for 

medication, which in turn may translate in to better graft and recipient survival.  This 

effect of the higher education on the outcome might or might not be independent of the 

insurance status.  To address this potential confounding effect of the education level on 

the insurance status, we constructed two separate models with each one having either 

the level of education or the type of insurance coverage and found that the results were 
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very similar to the main analysis that included both the variables.  This similarity 

suggests an independent association between the outcomes and the level of education 

and the type of insurance coverage. 

Finally, in our analysis, resident aliens seem to have a significantly better 

outcome than U.S. citizens in terms of both graft and recipient survival.  This effect was 

observed in Whites, but not in African Americans, and may be explained by a number of 

factors.  These results are somewhat counterintuitive, as previously, the negative 

association between foreign immigration status and the health outcome has been 

suggested [159].  Low income, unemployment, low level of education, lack of health 

insurance and access to quality health care along with anti-immigrant sentiment and 

discrimination in health care [159], as well as language barrier [172] have been listed as 

potential reasons.  However, due to the selection process, the transplant population 

might not reflect the general trends described in the immigrants.  Also, it is conceivable 

that people who recently arrived to the US might have certain differences in 

environmental factors compared to the people born in the US.  In a recent study, women 

from Poland and more recent migrants had generally more nutritious intakes, compared 

to US-born women, or earlier migrants [173].  In the year 2000, persons born outside the 

United States comprised an estimated 11.1% of the U.S. population [174].  In the report 

published by the Centers for Disease Control, women born outside the United States 

had better birth outcomes than their racial/ethnic US-born counterparts [175].  In 

addition, we speculate that the fraction of the foreign population immigrating to the US 

might not be simply a random slice of the foreign society, but rather the motivated and 

active part of it.  Therefore, one can hypothesize that there is a degree of selection bias 

when the outcome of the American citizens is compared to the foreign nationals living in 

the US.  The attitude towards medical care (e.g., commodity rather than active involved 

process), such as the physician authority and subsequent compliance with 
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recommendations might be different between Americans and foreigners.  While most of 

these potential reasons are merely speculative, some cultural differences in regard to 

specific aspects of medical care between Americans and foreign nationals have indeed 

been described in the literature [176].  

In general, based on our results, it seems that some of the socioeconomic factors 

are significant predictors of the outcome across racial groups.  This supports the 

independent role of these factors from the racial characteristics.  Also, in the studies 

analyzing the role of race in the transplant outcome, potentially uneven distributions of 

the socioeconomic factors in the different racial groups may confound the results of the 

analysis and hypothetically explain some of the differences in the outcome between the 

races.   

This study is a retrospective analysis utilizing data reported to the United States 

Renal Data System.  There are limitations as well advantages to large renal transplant 

database analyses.  Database analyses can show long-term differences in outcomes, 

and provide the statistical power to help determine the differences between the primary 

variables of interest.  However, the quality of data is always a concern due to a 

significant amount of missing and potentially erroneous information (misclassification 

bias).  In particular, socioeconomic status is difficult to quantify and subjects might be 

unwilling to share certain information (e.g., immigration status, education level).  For 

example, in our dataset, the education level variable is missing in 61% of the data. 

Therefore, the analysis of the role of the education status is based on the remaining 39% 

percent of the data (over 32,000 subjects).  It would be optimal not to have any missing 

values, but due to very large sample size of the remaining observations, the results are 

still valid.  One can assume a random pattern of missing elements in the data and 

analyze only records with nonmissing information.  While the random distribution of the 

missing values is likely, we decided not to discard the records with values missing, but 



  86 

 

rather code and analyze them separately, as reported above.  Misclassification bias is 

difficult to address in the retrospective study and remains one of the shortcomings of the 

data registry analyses.   

Other potential problems with retrospective data analysis should be considered.  

As in other retrospective studies, while establishing the association between 

independent variables and the outcome, this analysis cannot ascertain causative 

relationships.  In addition, as in most retrospective studies, the results could be distorted 

by reverse causality described elsewhere [177].  Finally, as our multivariate models 

depend on the variables available in the dataset, certain potential confounders may not 

be included in the analysis (e.g., annual income, employment status, geographic 

location, IQ level, marital status).  Analysis of the role of these variables may present a 

new and exciting opportunity for future research. 

In conclusion, recipients with higher education level, resident aliens (as 

compared to US citizens), and patients with private insurance have an advantage over 

graft and recipient outcomes independent of racial differences [95]. 

 
4.8. The role of posttransplant immunosuppressive medications 

 
4.8.1. Introduction 
 

In the last decade, the immunosuppressive armamentarium has increased 

substantially, and several choices are now available for immunosuppression in kidney 

transplant recipients.   Improvement in patient and graft survival over time has correlated 

best with the introduction of new more effective immunosuppressive agents.  These 

newer immunosuppressant medications have shown equal or superior short-term (1 

year) outcomes in comparison with the established immunosuppressive medications 

[178-180].  We have seen improvement in short-term graft survival, due in part to the 

reduction in the incidence of acute rejection episodes or potentially a better use of 
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existing medications [181].  Unfortunately, these improvements in immunosuppression 

and reduced incidence of acute rejection episodes have had only minimal effects on 

chronic allograft nephropathy and late graft loss [147, 182].  

There is a continuing shift in the calcineurin inhibitor used from cyclosporine to 

tacrolimus and in antimetabolites from azathioprine to mycophenolate mofetil.  Both 

tacrolimus and mycophenolate mofetil were introduced for kidney transplantation in  the 

mid-90s. Since then (in 2003), according to the Scientific Registry of Transplant 

Recipients, 67% of kidney transplant recipients received tacrolimus and 81% of kidney 

received mycophenolate mofetil at the time of discharge [183].   

There have been numerous clinical trials comparing the different 

immunosuppressive agents.  These trials have historically evaluated the short 1 year 

outcomes of graft and patient survival and have contained a relatively small number of 

patients.  The results from clinical trials utilizing tacrolimus and /or mycophenolate have 

varied in their outcomes.  

Clinical trials have shown superior graft survival with tacrolimus when compared 

to cyclosporine [184], while others have failed to show any significant differences in 

either graft or patient survival [178, 185].  Other trials have shown improved renal 

function for tacrolimus-based regimens when compared to cyclosporine-containing 

regimens but showed no significant differences in graft or patient survival [186].  On the 

other hand, in the brief report based on the UNOS Scientific Renal Transplant Registry 

analysis by Bunnapradist and Takemoto, the authors demonstrated better 3-year graft 

outcome in patients on cyclosporine + mycophenolate mofetil than in those on tacrolimus 

+ mycophenolate mofetil regimen [187].  Similar data for clinical trials comparing 

mycophenolate mofetil to azathioprine can be found.  Although mycophenolate mofetil 

has been shown to decrease the incidence of acute rejections when compared to 

azathioprine in renal transplant recipients, the 3-year follow-up of the United States and 
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the Tricontinental studies did not show an increase in graft survival [3, 188].  Ojo et al. 

have subsequently shown an improved 4-year graft survival in patients treated with 

mycophenolate mofetil when compared to azathioprine treated patients [189].  To date, 

long-term outcome studies of different immunosuppressive regimens are lacking.  The 

goal of this project was to analyze retrospective data provided by the United States 

Renal Data System and compare the graft and recipient outcome of kidney transplants 

managed with the three most common maintenance immunosuppressive protocols over 

the last 5 years of last century. 

In this project, the primary variable of interest was the type of maintenance 

immunosuppressive regimen at the time of discharge from the hospital.  Three regimens 

that were considered the most common maintenance protocols in the 1990s were 

selected for this analysis: prednisone + cyclosporine + mycophenolate mofetil (PCM); 

prednisone + tacrolimus + mycophenolate mofetil (PTM); and prednisone + cyclosporine 

+ azathyoprine (PCA).   

 
4.8.2. Results 
 
4.8.2.1. Baseline characteristics 

Among recipients (n=31,012), average age was 44.2±14.3 years, 39.6% were 

females, 68.7% were White, and 23.3% were African Americans.  Patients on 

maintenance PCM were 55.2% (n=17,108), PTM 23.3% (n=7,225), and PCA 21.5% 

(n=6,679).  Since different immunosuppressive drugs were introduced at different time 

periods, we evaluated the prevalence of different immunosuppressive protocols in 

transplants performed in two different time periods during the study: prior to 1997 and 

during 1997 and later.  Prior to 1997, 38.1% of the transplant recipient were placed on 

PCA maintenance at the time of discharge, 50.1% were placed on PCM, and 11.9% on 

PTM protocols.  During and after 1997, 16.3% were placed on PCA maintenance, 56.8% 
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were palced on PCM, and 26.9% on PTM protocols.  We compared baseline 

characteristics of the patients in the three study groups using ANOVA for continuous 

variables and Chi-squared for the categorical variables.   

 
4.8.2.2. Survival analysis 

Using the PCM group as a reference, the Cox model demonstrated the increased 

risk for allograft failure associated with PTM (HR 1.08 p<0.05) and PCA (HR 1.14 

p<0.001) regimens (Table 6).  PCA (HR 1.15 p<0.005) but not PTM (HR 0.99 p=0.9) 

regimen was associated with increased recipient mortality.  This association is illustrated 

by Kaplan-Meier survival curves for donor and recipient survival. 

 
4.8.2.3. Transplant era 

Since clinical practice has evolved over the follow-up period of our study, we 

analyzed the outcomes of the transplants performed during two time periods as 

described above: (1) from January 1, 1995 and through December 31, 1996 (early 

period) and (2) from January 1, 1997 and through December 31, 1999 (late period).  

Among patients transplanted in the early period, 11.7% (7,448) were on PTM, 38.1% on 

PCA, and 50.2% on PCM.  Among those transplanted in the late time period, 26.9 % 

(n=23,564) were on PTM, 16.3% on PCA, and 56.8% on PCM.  Among the transplants 

performed in the early time period, using PCM as a reference group, PTM was 

associated with the significantly greater risk for graft failure (HR 1.16, p<0.05 95% CI 

1.01 - 1.33).  PCA was associated with nonsignificantly increased risk of graft failure (HR 

1.06, p=0.244, 95% CI 0.96 - 1.17).  Among the late time period, both PTM and PCA 

regimens were associated with significantly greater risk of graft failure (HR 1.10, p<0.05, 

95% CI 1.01 - 1.19 and HR 1.14, p<0.01, 95% CI 1.04 - 1.25, respectively).  Recipient 
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Table 6.  Cox model: graft and recipient survival in recipients on different 
immunosuppressive regimens 
 

 Graft survival Recipient survival 

 Hazard 

Ratio (95% CI) 

p Hazard 

Ratio (95% CI) 

p 

Recipient age (per year) 1.01 (1.01 - 1.01) <0.001 1.04 (1.03 - 1.04) <0.001 

Recipient gender female 0.96 (0.90 - 1.02) 0.169 0.93 (0.84 - 1.03) 0.140 

Recipient race 

   White 

 

reference 

   African American 1.25 (1.16 - 1.33) <.0001 1.04 (0.94 - 1.15) 0.429 

   Asian 0.72 (0.61 - 0.86) <0.001 0.66 (0.51 - 0.84) <0.005 

   Other 0.98 (0.85 - 1.13) 0.781 1.15 (0.94 - 1.39) 0.175 

Recipient history of 

diabetes 

0.96 (0.82 - 1.13) 0.626 1.14 (0.94 - 1.39) 0.197 

Recipient history of 

hypertension 

0.86 (0.78 - 0.95) <0.005 0.71 (0.63 - 0.81) <0.001 

Recipient height (cm) 1.00 ()0.99 - 1.00 <0.01 1.00 (0.99 - 1.00) 0.06 

Recipient weight (kg) 1.00 (1.00 - 1.01) <0.005 1.00 (1.00 - 1.00) 0.63 

Recipient comorbidity 

score 

1.07 (1.00 - 1.15) <0.05 1.29 (1.19 - 1.40) <0.001 

Total duration of 

pretransplant end-stage 

renal disease (per year) 

1.00 (0.99 - 1.01) 0.474 1.04 (1.03 - 1.06) <0.001 

Total number of 

transplants 

1.40 (1.30 - 1.52) <0.001 0.93 (0.81 - 1.07) 0.322 

Cause of ESRD 

   diabetes 

 

reference 

   hypertension 0.99 (0.85 - 1.15) 0.848 0.96 (0.79 - 1.16) 0.679 

   glomerulonephritis 0.89 (0.76 – 1.03) 0.122 0.79 (0.65 - 0.95) <0.05 

   other 0.91 (0.79 - 1.05) 0.207 0.88 (0.74 - 1.06) 0.186 
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Table 6 continued 
 
 Graft survival Recipient survival 

 Hazard 

Ratio (95% CI) 

p Hazard 

Ratio (95% CI) 

p 

Mean PRA level (%) 
 

1.00 (1.00 – 1.01) <0.05 1.00 (1.00 – 1.01) 0.13 

Peak PRA level (%) 
 

1.00 (1.00 – 1.00) 0.741 1.00 (1.00 – 1.00) 0.267 

Number of HLA 
matched antigens 
 

0.94 (0.92 – 0.96) <0.001 0.93 (0.91 – 0.96) <0.001 

Deceased donor 
 

Reference 

Living donor 
 

0.72 (0.65 – 0.80) <0.001 0.61 (0.53 – 0.71) <0.001 

Donor age (per year) 
 

1.01 (1.01 – 1.01) <0.001 1.01 (1.01 – 1.02) <0.001 

Donor gender female 
 

1.03 (0.97 – 1.09) 0.298 1.00 (0.92 – 1.09) 0.984 

Donor race 
   White 

 

Reference 

   African American 1.24 (1.14 – 1.34) <0.001 1.25 (1.11 – 1.41) <0.001 

   Other 1.20 (1.07 – 1.33) <0.005 0.96 (0.81 – 1.15) 0.676 

Donor height (cm) 1.00 (1.00 – 1.00) <0.001 1.00 (1.00 – 1.00) <0.05 

Donor weight (kg) 1.00 (1.00 – 1.00) <0.005 1.00 (0.99 – 1.00) <0.005 

Cold ischemia time 
   ≤6 hours 

 

Reference 

   >6 and ≤14 hours 0.83 (0.73 – 0.94) <0.005 0.86 (0.72 – 1.04) 0.117 

   >14 and ≤19 hours 0.93 (0.82 – 1.05) 0.248 0.98 (0.81 – 1.17) 0.791 
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Table 6 continued 
 
 Graft survival Recipient survival 

 Hazard 

Ratio (95% CI) 

p Hazard 

Ratio (95% CI) 

p 

   >19 and ≤24 hours 0.99 (0.88 - 1.12) 0.906 1.01 (0.84 - 1.21) 0.920 

   >24 and ≤30 hours 0.94 (0.83 - 1.07) 0.354 0.98 (0.81 - 1.18) 0.823 

Number of pretransplant 
transfusions: 
   0 

 

 

reference 

   1-5 1.08 (1.02 - 1.15) <0.05 1.29 (1.18 - 1.41) <0.001 

   6-10 1.07 (0.94 - 1.22) 0.328 1.31 (1.10 - 1.57) <0.005 

   >10 1.28 (1.11 - 1.47) <0.005 1.59 (1.31 - 1.94) <0.001 

Percent of ESRD time 
on HD 

1.00 (1.00 - 1.00) 0.069 1.00 (1.00 - 1.01) <0.05 

Percent of ESRD time 
on PD 

1.00 (1.00 - 1.00) <0.05 1.00 (1.00 - 1.00) 0.283 

Maintenance 
immunosuppressive 
regimen:  
   Prednisone  + 
Cyclosporine + MMF 

 

 

 

reference 

   Prednisone + 
Tacrolimus + MMF 

1.08 (1.01 - 1.15) <0.05 0.99 (0.90 - 1.10) 0.901 

    Prednisone + 
Cyclosporine + 
Azathioprine 

1.14 (1.07 - 1.22) <0.001 1.15 (1.04 - 1.26) <0.005 
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survival had no significant association either with PTM or PCA regimens in the early or 

late time periods.  For the early period, HR was 1.04 (p=0.693) and 1.10 (p=0.15) for the 

PTM and PCA regimens, respectively.  In the late time period, HR was 1.003 (p=0.96) 

and 1.14 (p=0.057) for the PTM and PCA regimens, respectively (Figure 10). 

 
4.8.2.4. Year of transplant 

To evaluate the outcome in patient cohorts with the same or similar duration of 

follow-up period, we stratified the analysis by the year of transplant, evaluating the 

patients who were transplanted in 1995 (n=997), 1996 (n=6,451), 1997 (n=8,160), 1998 

(n=8,379), and 1999 (n=7,025) separately.  Patients transplanted in 1995 would have 

had 5 to 6 years follow-up during the study; those transplanted in 1996 - 4 to 5 years of 

follow-up; those transplanted in 1997 – 3 to 4 years follow-up; etc.  For the graft survival, 

using PCM as a reference group, the results were as follows: in the recipients 

transplanted in 1995, the PTM regimen was associated with an increased risk of graft 

failure (HR 1.49, p<0.05), while the PCA regimen did not have any significant 

association.  In the recipients transplanted in 1996, no significant associations between 

the graft survival and maintenance immunosuppressive regimen were found.  For the 

recipients transplanted in 1997 and 1998, only PCA was associated with shorter graft 

survival (HR 1.14 and 1.25, respectively, p<0.05).  Finally, recipients of the kidney 

transplant in 1999 had an increased risk of graft failure associated with PTM (HR 1.17, 

p<0.05), while PCA did not have any significant association with graft survival.  We did 

not find any significant association between the maintenance immunosuppressive 

regimen and the recipient survival in the cohorts of patients stratified by the transplant 

year.   

 



  94 

 

 

  

Figure 10.  Illustration of the results of Cox proportional hazard model evaluating the 
role of immunosuppressive regimen.  Hazard ratio of the graft failure and recipient death 
in the entire group of patients and in the subgroups based on the transplant period (early 
vs. late), and donor type (deceased vs. living).  Patients on the Prednisone + 
Cyclosporine + Mycophenolate Mofetil used as a comparison/reference group (HR 1.0), 
significant associations (p values <0.05) indicated by *. 
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4.8.2.5. Living vs. deceased donor 

A separate analysis was performed for the recipients of living and deceased 

donor transplants.  Among the recipients of living donor kidney (n=8,924), 19.6% were 

on PTM, 23.4% on PCA, and the remaining 57% were on PCM regimen.  Among the 

recipients of the deceased donor kidney (n=22,088), 24.8% were on PTM, 20.8% were 

on PCA, and the remaining 54.4% were on the PCM regimen. 

In the recipients of the deceased donor graft using PCM as a reference group, 

PTM had no significant association with the allograft outcome (HR 1.04 p=0.284), while 

the PCA regimen was associated with 18% increased risk (HR 1.18, p<0.001, 95% CI 

1.1-1.27).  In the recipient of the living donor kidney, PTM (HR 1.22, p<0.01, 95% CI 

1.06 – 1.41) but not PCA (HR 1.05, p=0.51) was associated with the higher risk of graft 

failure as compared to PCM.  Furthermore, since the analysis is somewhat suggestive of 

a potential superiority of PCA over PTM regimen in the recipient of living kidneys, we 

repeated the Cox analysis in living donors with PTM group as a reference.  That 

provides direct comparison between PCA and PTM regimens.  While, as expected, the 

PCM regimen had an advantage over the PTM (HR 0.820, p<0.01, 95% CI 0.71 - 0.95), 

the PCA regimen was not significantly different from the PTM.  Therefore, we concluded 

that the PCM, but not the PCA maintenance regimen, is superior to PTM regimen in 

living donors. 

In the recipients of the deceased donor kidneys, the recipient survival had no 

significant association with the PTM regimen, but was significantly associated with the 

PCA regimen (HR 1.17, p<0.001, 95% CI 1.05 – 1.29).  In the recipient of the living 

donor kidney, the recipient survival had no significant association with either one of the 

maintenance immunosuppressive regimens (Figure 10). 
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4.8.2.6. Adult vs. pediatric recipients 

Separate analysis was performed for the recipients younger than 18 years of age 

(pediatric) and those 18 years and older (adult).  In pediatric patients (n=1,227), 18.3% 

were on PTM, 35.0% on PCA, and the remaining 11.7% were on PCM maintenance 

immunosuppressive regimen.  In adult recipients (n=29,785), 23.5% were on PTM, 

21.0% were on PCA, and 55.5% were on PCM regimen.  Among pediatric patients, we 

did not find any significant association between the drug regimen and the graft or 

recipient outcome.  In adults, the results were similar to those in the entire study 

population: PTM was associated with increased risk of graft failure (HR 1.08, p<0.05), 

but not recipient survival, while PCA was associated with increased risk for both graft 

failure (HR 1.14, p<0.001) and recipient death (HR 1.14, p<0.01). 

 
4.7.2.7. Kidney-only vs. simultaneous kidney pancreas 
(SPK) transplant 
 

We performed separate analyses of the recipients of kidney-only and recipients 

of SPK.  The information about SPK was missing in 542 patients; therefore, 28,404 

patients with kidney-only and 2,066 patients with SPK were included in the analysis.  In 

patients with kidney-only transplant, 20.9% were on PTM, 22.5% on PCA, and the 

remaining 56.6% were on PCM regimen.  In SPK recipients, 55% were on PTM, 7.6% 

were on PCA, and 37.4% were on PCM.  In SPK recipients, we did not detect any 

significant association between the drug regimen and either graft or patient survival.  In 

the recipients of kidney-only transplants, results were similar to those in the entire 

patient population: in comparison to PCM regimen, PTM was associated with increased 

risk of graft failure (HR 1.10, p<0.01) but not recipient death, while PCA was associated 

with both increased risk of graft loss (HR 1.15, p<0.001) and recipient death (1.16, 

p<0.005). 
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4.8.2.8. Effect of the induction therapy 

Since the results of the survival analysis potentially could be confounded by the 

induction therapy, we collected the data describing induction regimen divided into the 

following groups: muromonab-CD3 (OKT3), antithymocyte globulin (ATG), interleukin-2 

receptor monoclonal antibodies (IL-2R mAb): daclizumab or basiliximab, and “Other or 

Missing.”  The latter category included patients with no induction, those in whom 

induction therapy information was missing, and those in whom regimens other than 

OKT3, ATG, or IL-2R mAb induction were used.  Of the total patient population, ATG 

was used for induction in 5,152 patients, OKT3 in 3,904 patients, and IL-2R mAb in 

3,337 patients. The remaining recipients (n=18,619) were either on other induction 

therapy, or information was missing.  We included the information regarding the 

induction therapy into the Cox model and reanalyzed the data.  The results were similar 

to those reported above.  Using the PCM group as a reference, graft survival in the 

recipients on PTM and PCA regimens was associated with increased risk of graft failure 

(HR 1.07 p<0.05 and HR 1.15 p<0.001, respectively).  For recipient survival, only PCA 

regimen was associated with significant risk (HR 1.14 p<0.01). 

 
4.8.3. Discussion 
 

Multiple factors have been shown to affect the outcome of renal transplantation.  

These include demographic characteristics [190] such as race and ethnicity [154], 

pretransplant dialysis course [66], and the timing of the transplant [64].  Patient response 

to the transplantation procedure (e.g., delayed graft function, acute rejection, acute 

tubular necrosis) is strongly associated with the long-term prognosis [191].  The 

selection of the appropriate immunosuppressive regimen (including induction and 

maintenance) is without doubt one of the most important modifiable factors that might 

affect the short-term events, as well as long-term results of the transplantation.   
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Determining the optimal maintenance immunosuppressive regimen in kidney 

transplantation is an area of continued research.  The immunosuppressive regimen that 

provides the best long-term outcome has yet to be defined.  There are multiple factors to 

consider when choosing a maintenance immunosuppressive regimen, including the side 

effect profile, cost, potency, and effect on allograft function [192].  Due to the short term 

outcomes and the lack of power of trials for new immunosuppressants, there is little 

information about the long-term graft outcomes associated with the different 

maintenance immunosuppressant regimens [193]. 

The short-term outcome of the kidney transplant, mostly expressed as an 

incidence of acute rejection, has been shown to be better with tacrolimus than with 

cyclosporine in both pediatric [194] and adult [195, 196] kidney transplant patients as 

well as in heart transplant recipients [197].  In lung transplant recipients, the episodes of 

acute rejections were similar in patients receiving cyclosporine and those receiving 

tacrolimus in combination with steroids and mycophenolate mofetil [198].  The data 

regarding long-term outcome are controversial.  In the recipients of living donor kidney 

transplants, cyclosporine + mycophenolate mofetil had better long-term outcome in 

terms of all-cause graft failure and death-censored graft failure than tacrolimus + 

mycophenolate mofetil protocol [187].  However, other authors report better 3-year 

outcome with tacrolimus-based regimens as compared to cyclosporine-based regimens 

[199, 200] or no significant difference between the protocols [201, 202].  In a recent 

study based on 2-year follow-up comparing tacrolimus and cyclosporine-based 

regimens, the authors demonstrated no difference in the graft loss between the 

regimens; however, renal function was better in patients receiving tacrolimus [195].  

Using the annualized change in glomerular filtration rate as an outcome, the superiority 

of the tacrolimus plus mycophenolate mofetil regimen in preserving renal function has 

been demonstrated in a study by Gill et al. [193].  The latter study, however, was 
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criticized for potential biases, including the nonuniform measurements of renal function 

between immunosuppressive regimens and between transplant centers [203].  Despite 

the lack of long-term outcome data, the trend in recent years has been towards a shift 

from cyclosporine-based to tacrolimus-based and from azathioprine to mycophenolate 

mofetil regimens [204]. 

We attempted the analysis of the kidney transplants performed during the last 5 

years of the last century to compare the long-term outcomes of the patients receiving 

three most frequently used drug protocols.  Since the data are available, we considered 

extending the study period into the earlier years of the 1990s but decided against it.  Our 

study period covers the use of all three immunosuppressive regimens of interest, while 

comparing the early 90s (where azathioprine and cyclosporine were mostly used) to the 

latter years (where tacrolimus and mycophenolate mofetil started to dominate) would not 

be a fair comparison, since major changes in practice took place during the 1990s.  

Stratifying analysis by the transplant era, as well as analyzing patient cohorts 

transplanted in the same year, to some extent should eliminate the factor of time and 

related issue of evolving clinical practice confounding the outcome. 

 This study demonstrates that the use of PTM and PCA as maintenance 

immunosuppression between 1995 and 1999 was associated with increased risk of graft 

failure by 9% (p<0.05) and 15% (p<0.001), respectively, as compared to the PCM 

protocol.  Using the PCA regimen was associated with recipient survival worsening by 

15% (p<0.005) as compared to PCM.  Similar results were reported by other 

investigators analyzing long-term outcome on the large kidney transplant datasets [187], 

where, using data from the UNOS Scientific Renal Transplant Registry, authors 

demonstrated that the death-censored graft failure is 25% higher in the tacrolimus + 

mycophenolate mofetil group as compared to cyclosporine + mycophenolate mofetil.  

Woodward et al. at the recent American Transplant Congress presented results of the 
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analysis, where graft survival in patients on PCM regimen was superior to those on PTM 

regimen in living [205] and deceased [206] donor kidney transplant recipients.  In the 

analysis of the secondary outcomes, the results seemingly are pointing in another 

direction.  Serum creatinine concentration values were consistently lower in the PTM 

group, except for the 7-year follow-up time point (Figure 11).  Results of this analysis 

should be interpreted cautiously.  Serum creatinine has been used in numerous studies 

as a surrogate outcome, when the longer follow-up period needed to observe graft 

failure is not feasible.  In this project, however, we feel that we have long enough follow-

up to adequately observe the “hard” outcomes (i.e., graft failure and recipient death) to 

make a conclusion.  In a way, it is probably less important what a patient’s serum 

creatinine value is at a given point in time, as long as his or her graft is surviving longer.  

In addition, while interpreting these results, one must realize one very important potential 

flaw of this type of analysis.   

 Comparing serum creatinine values among the groups at a given time point may 

be misleading since only those patients who survived to that time point are included in 

this analysis.  Therefore, if the PTM group were to have a higher graft failure rate, 

creatinine might be artificially lower in the surviving patients as compared to the PCM 

group, where fewer patients failed the transplant, and therefore average creatinine 

values might be artificially higher (survivor bias).  For example, it is conceivable that if 

two cohorts of patients were compared, and in the first one that graft failure rate is 

greater than in the second one, the average creatinine might also be lower in the first 

cohort, since only the “healthiest” patients remain in the study.  In the second cohort, 

where the graft failure rate is slower, more patients with dysfunctional grafts, which have 

not failed yet, would remain in the study, and therefore, the average creatinine might be 

higher.  This would still mean the better outcome (lower rate of graft failure) in the 

second cohort despite higher average creatinine concentration.   
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Figure 11.  Results of mean serum creatinine concentration in the study groups at 6 
months, 1 year, 3 years, 5 years, and 7 years posttransplant associated with different 
immunosuppressive regimens.  Differences between the groups are significant by 
ANOVA (p<0.001) for 6-month, 1-year, and 3-year, (p<0.01) for 5-year follow-up.  
Differences are not significant for 7-year follow-up. 
 

 Another interesting finding of this study is a significantly lower rate of 

posttransplant malignancies in the PTM compared to PCM and PCA groups.  This 

phenomenon, however, did not translate into improved patient survival in the PTM group 

as compared to PCM group.  Contrary to our results, in a recent meta-analysis, no 

difference has been demonstrated between tacrolimus-based and cyclosporine-based 

regimens [207].  It has been suggested by other authors that induction therapy might be 

equally or even more important than the maintenance immunosuppression in developing 

posttransplant malignancies [208].  Adjusting our model for the induction therapy 
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demonstrated results similar to those which we detected in the model not adjusted for 

induction, suggesting lower risk of posttransplant malignancies with the PTM regimen. 

This study is a retrospective analysis utilizing data reported to the United States 

Renal Data System.  There are limitations as well advantages to large renal transplant 

database analyses.  Database analyses can show long-term differences in outcomes, 

but the results must be evaluated with caution.  Using a database such as the USRDS 

provides the statistical power to help determine the differences between current 

maintenance immunosuppressive regimens.  However, because the database does not 

contain information about the dose or duration of therapy, caution must be taken when 

making conclusions from the data.  Certain limitations should be considered when 

interpreting the results of this study.  Selection bias is a common flaw of a retrospective 

analysis.  Based on our results, the outcome of the cyclosporine-based regimen is 

superior to that of the tacrolimus-based protocol.  We recognize that during the early use 

of tacrolimus, there was a tendency to use it mostly in the higher risk population (e.g., 

those with higher PRA levels, retransplants, and African Americans), and hence the 

selection bias.  Indeed, we compared subgroups of patients on three 

immunosuppressive regimens of interest and found that there is a very small, though 

statistically significant, difference in the baseline characteristics between the study 

groups (Table 2).  To reduce this potential bias, we adjusted the Cox model for the risk 

factors of premature graft failure (e.g., recipient race, PRA levels, number of previous 

blood transfusions, number of previous transplants, and comorbidity index).  Including 

these potential confounding factors in the multivariate model should considerably reduce 

the bias.  In addition, we tried to reduce the selection bias by stratifying  the analysis by 

the transplant era, as tacrolimus became more of a “mainstream” medication (as 

opposed to be used in high risk patients only) in the later 1990s.  Also, since living 

donors might have been considered at lower risk and thus affect the choice of 
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immunosuppression, we stratified the analysis by donor type.  Finally, we analyzed 

pediatric and adult recipients and kidney and SPK recipients separately.  The negative 

association between the PTM regimen and graft survival was observed in the entire 

patient population.  Importantly, the observed negative association between the PTM 

regimen and the graft outcome was observed not only in the early period, but in the late 

period as well, when the use of tacrolimus was supposedly not limited only to the high-

risk patient population.  The negative association between the PCA regimen and graft 

survival was observed in the entire patient population and only in late, but not in early 

transplant periods, and only in deceased, but not in living donor transplants.  The 

described associations were also revealed in adult recipients and kidney-only recipients 

(but not in to pediatric and SPK recipients).  Specifically, there is no superiority of PTM 

as compared to PCM in SPK recipients.  Subgroup analysis of the recipient survival did 

not demonstrate any association between PTM regimen and the recipient survival either 

in the whole patient population, or in any of the subgroups.  As kidney transplant 

recipients survival is relatively long, it is conceivable that longer follow-up period is 

needed to observe enough events to demonstrate a difference between the PTM and 

PCM regimens.  The negative association between the PCA regimen and recipient 

survival was demonstrated in the whole patient population, but in the subgroup analysis, 

only patients transplanted with a deceased donor kidney, adult recipients, and those 

receiving kidney-only (as opposed to SPK) transplant had increased risk of death on this 

regimen.   

Unfortunately, any study evaluating the long-term outcome has to deal with the 

fact that the practice evolves during the time of the study.  We partially addressed this 

issue by performing analysis separately for early and late transplant eras.  However,  

clinical practice, even during the late era of the study (late 1990s), is different compared 

to the current practice in the early 2000s.  In particular, the proportion of various 
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immunosuppressive regimens during the study is different from that in the modern days.  

We tried to address that by performing additional analysis comparing centers that use 

particular regimen (PCM, PCA, or PTM) exclusively or predominantly.  However, the 

amount of missing data related to the immunosuppressive regimen evaluated separately 

by the transplant center prevented us from performing this analysis.  We did, in fact, 

identify the centers leaning towards one regimen or another; however, in every case we 

encountered a high amount of missing information that made the classification of the 
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� � � � � � � � � � e potentially misleading and thus are not presented here.  Our study 

was performed in a retrospective fashion and unfortunately does not provide the 

explanations for the mechanism of the observed associations.  Future studies are 

needed to confirm this association and establish the mechanism of it.  In general, the 

difference in graft survival between two regimens may be explained by the difference in 

nephrotoxicity, associated comorbidity, different side effect profile, or center effect.   Furthermore, some of the patients in the study had relatively short follow-up due 

to censoring.  Our study period included all transplants done since 1995 with the 

duration of follow-up through the end of 2000.  Of all patients included in the study, 997 

were transplanted in 1995 and therefore had 5-6 years of follow-up; 6,451 were 

transplanted in 1996 and had 4-5 years of the follow-up; 8,160 were transplanted in 

1997 and had 3-4 years of the follow-up;  while patients transplanted in 1998 (n=8,379) 

and 1999 (n=7,025) had relatively short follow-up (1-3 years). 

 In summary, our data suggest that prednisone + cyclosporine + mycophenolate 

mofetil regimen is associated with lower risk of graft failure compared to prednisone + 

tacrolimus + mycophenolate mofetil, and lower risk of graft failure and recipient death 

compared to prednisone + cyclosporine + azathioprine regimen [96].  

 



 

 
 

5. REVISED MODEL OF KIDNEY ALLOGRAFT  

PREDICTION SURVIVAL  

 
 

5.1. Introduction 
 

Several significant predictors of suboptimal transplant outcome were previously 

identified in adults [102, 109, 114, 209, 210] and children [38, 62, 211] based on data 

from the United Network of Organ Sharing (UNOS) and the North American Pediatric 

Renal Transplant Cooperative Study (NAPRTCS).  Donor and recipient age [212], 

preexisting donor hypertension and diabetes [213, 214], nonheartbeating donor [215], 

prolonged cold storage time [102], retransplantation [216], pretransplant renal 

replacement therapy modality [66], duration of pretransplant end-stage renal disease 

[64], body mass index of donor and recipient [109], and recipient marital status [71], 

along with other factors, play important roles in the outcome.  However, the probable 

interaction of these factors, plus their potential to act in various combinations, make it 

difficult to predict the outcome in individual patients without using mathematical tools.  

Mathematical models would accurately predict graft survival duration as well as identify 

patients at risk and locate potentially modifiable risk factors. We previously described 

mathematical models predicting 3-year deceased graft survival [23].  However, that 

report was limited only to deceased donor kidney recipients, and the mathematical  

model was designed only to predict 3-year allograft survival.  The attempt herein 

described is undertaken to develop a tree-based model predicting the probability of graft 

survival at posttransplant years 1, 3, 5, 7, and 10. 
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5.2. Methods 
 
5.2.1. Dataset 

As described above, we used the data collected by the United States Renal Data 

System (USRDS) and UNOS which described all kidney allograft recipients (both 

pediatric and adults) who underwent kidney or kidney-pancreas transplantation during 

the period of January 1, 1990, through December 31, 1999.  The follow-up period was 

extended through December 31, 2000.  Censored data used for multivariate analysis to 

identify factors that have an association with the outcome were excluded from the 

prediction analysis, as described below.  Separate datasets were generated for each of 

the five prediction models.  These datasets included only uncensored records which had 

specific information of graft survival at a given time period (i.e., 1, 3, 5, 7, and 10 

posttransplant years in the respective datasets).  For example, for the 1-year prediction 

model, only patients with a known 1-year outcome were selected, while those who were 

censored due to insufficient duration of follow-up or other reasons were excluded.  From 

each of the datasets, 2/3 of the data were randomly selected into the training dataset 

and the remaining 1/3 into the testing dataset. The training set was used for knowledge 

acquisition (to generate the model), while validation was performed using the records 

from the testing set. 

 
5.2.2. Outcome 
 

The outcome was the time between the most recent kidney transplant and the 

failure of the graft.  For the purpose of the prediction model, the outcome was converted 

into 1, 2, 3, 5, 7, and 10-year transplant recipients and graft survivals as a binary 

variable. The graft failure definition did not include patient death with a functioning graft 

(i.e., death censored graft survival).  In the event that the information regarding death 

with a functioning graft was missing in the dataset, and the patient death date has been 
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found to be equal to the graft failure date, we assumed that the patient died with a 

functioning graft unless the cause of death specified in the UNOS file was coded (ICD-9) 

as one of the following: 3200, graft failure: primary failure; 3201 graft failure: rejection; 

3202 graft failure: technical; 3299 graft failure; other;  or 3903 miscellaneous: renal 

failure.   

 
5.2.3. Independent variables 
 

The following independent variables were considered and evaluated for inclusion 

in the prediction models. 

 
5.2.3.1. Recipient demographic and anthropometric data 

Recipient demographic and anthropometric data: age, race, gender, height, and 

weight.  Information was obtained from USRDS files SAF.PATIENT and SAF.TXUNOS. 

 
5.2.3.2. Variables describing recipient ESRD course 

Variables describing recipient ESRD course were obtained from SAF.PATIENT 

and SAF.RXHIST60 files: age of  onset of ESRD; total duration of pretransplant ESRD 

period (time between the first ESRD service and most recent transplant date); renal 

replacement therapy (RRT) modality immediately prior to current transplant; 

predominant RRT modality during ESRD course (defined as modality used for >50% of 

the ESRD period as previously described [66]); number of different RRT modalities 

used; the specific combination of RRT modalities; absolute time and percent time of the 

whole ESRD period that the patient was treated with specific RRT modality; history of 

transplants prior to the current one (yes/no); and total number of transplants (including 

the current one).  Since preemptive transplantation was reported to be advantageous in 

terms of graft survival [146, 148, 217], the binary variable defining preemptive transplant 

was considered for inclusion in the models. The definition of preemptive transplantation 
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was based on the variable PRTXDIAL from the SAF.TXUNOS file, as was done by other 

researchers [146].  In addition, since the PRTXDIAL variable was not collected prior to 

1995, we defined preemptive transplant from the SAF.RXHIST60 file, based on duration 

of ESRD and use of dialysis prior to the transplant of interest, as described before [64].  

The recipient’s dialysis network was used as a proxy for geographic location. 

 
5.2.3.3. Recipient comorbidity status 

Recipient comorbidity status was described by a composite comorbidity index 

similar to the one proposed by Davies, which has been shown to be strongly associated 

with the outcome in ESRD patients [113].  Other comorbidity indices have been 

proposed in literature, and since it has been demonstrated that Khan, Davies, and 

Charlson scores are appropriate for expressing the prognostic impact of comorbidity on 

mortality risk in patients with ESRD [218, 219], Davies’ approach was selected for its 

simplicity.  Also, the specific comorbid conditions used as separate variables were 

considered for the model: presence and duration of HTN and DM; history of coronary 

artery disease; symptomatic cerebrovascular disease; symptomatic peripheral vascular 

disease; history of malignant tumors; recipient medical conditions at listing; and 

functional status prior to transplant.  Information about coexisting conditions was 

obtained from the SAF.TXUNOS file, which was collected from the Transplant Candidate 

Registration Form prior to transplant (at the time of listing for the most recent transplant).  

 
5.2.3.4. Donor variables 

Donor variables: type of donor (deceased or living), age, race, gender, height, 

weight, and donor health conditions prior to donation (i.e., presence and duration of 

comorbidities: DM, HTN, CAD; smoking history; heart beating or not; donor 

cause/mechanism of death) were obtained from SAF.TXUNOS file. 
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5.2.3.5. Transplant procedure variables 

Transplant procedure variables were also obtained from SAF.TXUNOS file: cold 

ischemia time, transplant procedure type (e.g., single kidney, kidney-pancreas, double 

kidney transplant), transplant center where surgery was done, donor and recipient HLA 

match, maintenance immunosuppressive therapy at the time of discharge from the 

hospital (latter was obtained from  the SAF.TXIRUNOS file). 

 
5.2.4. Variables selection 
 

We used several strategies to select the optimal combination of predictors for the 

model.  The selection criteria were based on the predictive value of the variable 

weighted against the practicality of including it in the model.  Even though the longer list 

of the predictors may potentially improve the outcome of the model, using too many 

variables may compromise the parsimony and practical usefulness of the model in the 

clinical setting.  In particular, since the decision support tool might potentially be used in 

the pretransplant clinical environment, only variables available before transplantation 

were used in developing prediction algorithms.   

 
5.2.4.1. Survival analysis 

We performed the survival analysis using proportional hazards regression 

modeling for the purpose of identifying the set of statistically significant predictors of graft 

(p<0.05).  For the survival analysis, where outcomes were analyzed as time to event, 

allograft outcome was censored at the earliest of the following events: loss to follow-up, 

patient death, or study completion date (12/31/2000) and was analyzed as days to graft 

failure or censor.  For the purpose of variables selection, the survival analysis was 

supplemented by the logistic regression models, as described below. 
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5.2.4.2. Logistic regression modeling for variables selection 

We generated 5 separate logistic regression models predicting the graft survival 

as a binary variable at 1, 3, 5, 7, and 10 years of the follow-up.  We used a conservative 

approach to variable selection.  Only variables that had significant association (p<0.05) 

with the outcome in all of the 5 models were included in the final tree-based analysis. In 

other words, variables that were not significant in at least one model were excluded. 

 
5.2.4.3. Additional variables 

In addition to the variables selected by the algorithms described above, we also 

included several variables that were originally excluded.  These variables were 

considered to be important for the graft outcome prediction: recipient history of unstable 

angina, predominant renal replacement therapy modality in the pretransplant course and 

percent time on peritoneal dialysis [66], recipient history of hypertension, recipient 

gender, and donor gender.  

 
5.2.4.4. Additional selection 

Using the set of variables selected by these methods, we tested the tree-based 

model for convergence and demonstrated poor performance, which were thought to be 

due to potential collinearity in the data.  To make the model more practical and 

parsimonious, we evaluated the performance of the model with the shorter list of 

variables, excluding the variables that were considered nonessential.  The heartbeating 

donor variable was found to have significant missing information, while nonmissing data 

was collinear with donor type (living vs. deceased).  Variables describing cardiovascular 

disease history were collinear with the variable describing peripheral vascular disease 

history, and therefore, the latter was removed.  The variable describing the use of 

antihypertensive medications by the donor was largely homogenous and was also 

removed.  RRT modality immediately prior to transplant was not used, and instead 
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predominant RRT modality during ESRD course was included in the model.  We also 

excluded the variable describing dialysis network, since the model did not converge in its 

presence.  Based on R-squared statistics, the model based on the shorter list of 

variables (below) performed not worse than the one less parsimonious based on the 

longer list of predictors.   

 
5.2.4.5. Final list of predictors 

The final list included the following recipient variables: recipient race, gender, 

age, height, weight, recipient having a transplant prior to the current one (yes/no), total 

number of transplants (including the current one), the time recipient has been on the list 

prior to transplant, predominant renal replacement therapy modality, percent time on 

peritoneal dialysis prior to transplant, number of renal replacement therapy modalities 

used prior to transplant, specific combination of renal replacement therapy modalities, 

recipient comorbidity score, history of cardiovascular disease, history of unstable angina, 

history of diabetes, history of hypertension, presence of hepatitis B core antibodies, 

presence of hepatitis C antibodies, peak and most recent level of panel reactive 

antibodies, and primary source of pay for medical services. In addition, the following 

donor variables were used in the final model: donor race, gender, age, height, weight, 

donor type (living or deceased).  

Finally, we used the following transplant procedure variables: cold ischemia time, 

and number of matched HLA antigens, using MMF in the immunosuppressive regimen 

(as a proxy for the transplant era).  

 
5.2.5. Statistical analysis and prediction models 
 

Continuous variables were summarized using means and standard deviations.  A 

tree-based model analysis has been extensively described elsewhere [101] and was 

previously used by our group in the prediction of renal function of diabetics [220] and in 
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the prediction of kidney allograft survival [23].  Briefly, tree-based modeling, also called 

classification and regression trees, or CART, is a form of binary recursive partitioning 

which systematically separates data into two groups using regression of a single factor 

on the outcome.  Unlike traditional methods, tree-building techniques are ideally suited 

for the development of a reliable clinical decision rule, which can be used to classify new 

patients into categories according to predicted allograft outcomes, where traditional 

statistical methods are sometimes cumbersome to use, or of limited utility [101].  Tree-

based modeling works well when the regression variables are a mixture of categorical 

and continuous variables.  The algorithm is nonparametric, so no assumptions are made 

regarding the underlying distribution of values of the predictor variables.  Tree-based 

modeling requires relatively little input from the analyst, as the outcome is presented in a 

form of binary trees is easy to interpret by a nonstatistician. However, the model is 

limited in that the partitioning method leads to the predicted value being presented in a 

discrete format, which may not make full use of the information that continuous variables 

can provide [101]. 

 
5.2.5.1. Validation and performance testing 

To test the performance of the models, prediction algorithms were applied to the 

testing dataset, and the values of the predicted probability of graft failure were generated 

and compared to actual values of graft outcome.  

Two measures were used for the validation of the prediction models. The 

probability of graft failure predicted on a testing set was categorized into deciles, and for 

each category, the rate of graft failure was calculated and compared with the predicted 

value [23].  We also used receiver operating characteristic (ROC) curve analysis to 

evaluate and compare the performance of the models.  ROC (probability that for a 

randomly chosen pair of patients the predicted and observed graft survival are 
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concordant) analysis is a nonparametric method used to quantify the accuracy of the 

prediction.  It is a plot of the true positive rate against the false positive rate for the 

different possible cut-points of a prediction algorithm.  It shows the tradeoff between 

sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease 

in specificity).  The closer the curve follows the left-hand border and then the top border 

of the ROC space (resulting in large area under ROC curve: an area of 1 represents a 

perfect prediction), the more accurate the model. The closer the curve comes to the 45-

degree diagonal of the ROC space (resulting in a smaller area under ROC curve: an 

area of 0.5 represents a worthless prediction), the less accurate the model.  The 

procedure ROCCOM in the software package STATA (Stata Corporation, College 

Station, TX) was used to calculate and compare the area under the ROC curves. 

 
5.2.6. Software 
 

SAS (SAS Institute, Cary, NC) was used for descriptive statistics and survival 

analysis; S-Plus (Insightful, Seattle, WA) was used for logistic regression and tree-based 

modeling [23, 220]; and STATA (Stata Corporation, College Station, TX) was used for 

ROC analysis.   

 
5.3. Results 

 
5.3.1. Descriptive statistics 
 

Data were collected from USRDS and included 92,844 records of patients 

receiving kidney or kidney-pancreas transplants starting January 1, 1990, and through 

December 31, 1999, with the follow-up period through December 31, 2000.  The study 

population characteristics are presented in Table 1.  The average age of patients was 

43.3 years, of which 60.3% were male, 70.2% were White, 27.2% were diabetics, 77.1% 

were on HD prior to transplant, and 12.6% had another kidney transplant prior to the 
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current transplant.  During the 11 years of the study, the graft failed in 34.9% of the 

patients.  Cold ischemia time was on average 15.5 hours.   

 
5.3.2. Prediction model generation 
 
5.3.2.1. Selection of training and testing datasets 

The same training and testing datasets were used for logistic regression and 

tree-based models.  The training and testing datasets were derived from the full dataset 

after records were shuffled in the random order (S-Plus code: menuRandomSample(data = 

knownoutcome1, replace = F, save.name = " knownoutcome1", show.p = T)).  As discussed above, roughly 

2/3 of the data were used for the training dataset (for example the S-Plus procedure to 

select the training data for 1-year outcome prediction: knownoutcome1.training <- 

remove.row(target = knownoutcome1, start.row = 60001, count = 32844)), while 1/3 was used for the 

model testing (knownoutcome1.testing <- remove.row(target = knownoutcome1, start.row = 1, count = 60000)).   

 
5.3.2.2. Comparison of the models with long and short list of  
Predictors 
 

As indicated above, we aimed at finding the most parsimonious model, and in 

this particular exercise compared the outcome of the model based on the short list of 

predictors with the model based on longer list of predictors.  We used R-squared to 

compare models (Rsquared.Model1.Short<-Rsquared(Model1.Short); Rsquared.Model1.Long<-

Rsquared (Model1.Long)) and found no differences in the outcome. 

 
5.3.2.3. Regression modeling 

The Regression Model was based on the list of predictors described above. Five 

different logistic regression models predicting the probability of the allograft survival for 

1, 3, 5, 7, and 10 years were generated using S-Plus software.  As an example, the code 

for the model predicted 1-year outcome is presented here: 
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Final.model1.reg <- menuBinomialGlm(formula = AA.GS~ UNSANGR.Cat + 
Predom.Mod + htnnew1 + tx.sex + DSEX + height + PKPRA + prev.tx + 
PRIPAY.Cat + tx.months + weight + tx.race + CVASCR + HBCORE + HCSRN 
+ DTYPE + DAGE + DRACE + Dheight + Dweight + match + MRPRA + 
C.COLDTIME + total.txs + RRage + time.onlist + MMF.Maint + RCITZ.Cat 
+ PTXTFUS.Cat + Comorb.Score + Mod.Number60 + Mod.Comb60 + pd.months 
+ hd.months + dmnew1, family = binomial, link = logit, variance = 
NULL, data = knownoutcome1.training, na.omit.p = T, trace = F, maxit 
= 50, epsilon = 0.0001, print.short.p = T, print.long.p = T, 
print.anova.p = F, print.correlation.p = F, save.fit.p = F, 
save.resid.working.p = F, save.resid.pearson.p = F, 
save.resid.deviance.p = F, save.resid.response.p = F, 
plotResidVsFit.p = F, plotSqrtAbsResid.p = F, plotResponseVsFit.p = 
F, plotQQ.p = F, smooths.p = T, rugplot.p = F, id.n = 3, 
plotPartialResid.p = F, plotPartialFit.p = F, rugplotPartialResid.p 
= F, scalePartialResid.p = T,  

newdata = knownoutcome1.testing, predobj.name = 
"knownoutcome1.testing", predict.type = "response", predict.p = T, 
se.p = T) 

pvalues1.final.reg <- anova(Final.model1.reg, test="Chi") 
menuCreateCategories(xname = "knownoutcome1.testing", col = "fit", 
numuse = "Cut Points", nbin = 10, numby = "Count", cutpoints = 
"0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9", newcol = 
"Predicted.Surv.Cutpoints") 

 

Variables used in the models are presented in Table 7.  Some variables had 

significant association with outcome in all or few of the five models.  This probably has to 

do with the fact that different factors are predicting the outcome at different 

posttransplant time points.  Few variables, however, were universally significant; in 

particular, higher degree of HLA match was associated with lower risk of graft failure, 

history of prior transplant increased the risk of graft failure in all but one models, while 

number of prior transplant was universally significant.  The living donor dramatically and 

significantly decreases the risk of graft failure in all models as compared to the deceased 

donor. A more detailed description of the direction and significance of the associations is 

presented in Table 7. 
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Table 7. Variables used in logistic regression models predicting the risk of graft failure, 
their regression coefficients and p-values. 

 
 1 year 3 years 5 years 7 years 10 years 

   p  p  p  p  p 

Recipient race: 
Asian 

1.0 0.97 0.8 <0.001 0.8 <0.001 0.7 <0.001 1.0 <0.001 

Recipient race: Black 1.4 <0.001 1.4 <0.001 1.6 <0.001 1.7 <0.001 1.7 <0.001 

Recipient race: 
White 

1.3 <0.001 0.9 0.08 0.9 0.18 0.9 0.25 0.9 <0.001 

Recipient sex: 
Female 

1.0 0.65 1.0 0.60 0.9 0.30 0.9 0.17 0.9 <0.001 

Recipient weight 1.0 <0.001 1.0 <0.001 1.0 <0.001 1.0 <0.001 1.0 <0.001 

How long on the list 
(years) 

1.0 <0.001 1.0 0.37 1.1 <0.001 1.1 0.01 2.4 <0.001 

Recipient height 1.0 <0.001 1.0 <0.001 1.0 <0.001 1.0 0.06 1.0 <0.001 

Number of HLA 
matched antigens 

0.9 <0.001 0.9 <0.001 0.9 <0.001 0.9 <0.001 0.9 <0.001 

History of prior 
transplant: Yes 

1.5 <0.001 1.5 <0.001 1.2 0.06 0.9 0.56 0.9 <0.001 

Total duration of 
ESRD (months) 

1.0 0.02 1.0 0.12 1.0 0.77 1.0 0.25 1.0 <0.001 

Total number of 
transplants 

1.5 <0.001 1.6 <0.001 1.6 <0.001 1.9 <0.001 2.1 <0.001 

Cause of ESRD: DM 1.1 0.52 1.2 0.05 1.5 <0.001 1.8 0.55 2.2 <0.001 

Cause of ESRD: GN 0.9 0.01 1.0 0.58 1.0 0.37 1.1 <0.001 1.1 <0.001 

Cause of ESRD: 
HTN 

1.1 0.23 1.0 0.34 1.1 0.02 1.2 0.40 1.6 <0.001 

Peak PRA level (%) 1.0 <0.001 1.0 0.02 1.0 0.14 1.0 0.05 1.0 <0.001 

Mean PRA level (%) 1.0 0.06 1.0 0.06 1.0 0.34 1.0 0.08 1.0 <0.001 

Comorbidity score 1.0 0.85 1.2 0.55 0.9 0.72 0.9 1.00 0.8 <0.001 

History of 
cerebrovascular 
disease: No 

0.9 0.78 0.9 0.66 0.6 0.13 0.0 0.84 1.0 0.24 

History of 
cerebrovascular 
disease: Unknown 

1.0 0.95 0.9 0.56 0.5 0.06 0.0 0.83 0.9 <0.001 

History of peripheral 
vascular disease: No 

0.9 0.84 1.2 0.42 1.0 0.38 1.0 0.85 1.1 <0.001 

History of peripheral 
vascular disease: 
Unknown 

0.9 0.75 1.0 0.29 1.0 0.96 0.1 0.06 1.2 <0.001 

History of unstable 
angina: No 

0.7 0.28 0.8 0.46 0.7 0.37 2.5 0.97 1.3 <0.001 

History of unstable 
angina: Stability 
unknown 

0.6 0.11 0.7 0.18 1.1 0.81 >9
99 

0.72 1.2 <0.001 

History of unstable 
angina: Stable 
angina 

0.8 0.14 0.8 0.09 0.9 0.57 3.2 0.39 1.2 <0.001 

History of unstable 
angina: Unknown 

0.6 0.07 0.6 0.06 0.6 0.19 3.1 0.96 1.2 <0.001 

Recipient history of 
HTN 

0.9 0.57 0.9 0.64 1.2 0.61 1.3 0.99 1.3 <0.001 

Recipient history of 
DM 

1.0 0.99 0.9 0.62 1.1 0.74 1.2 0.99 1.2 <0.001 

Donor age 1.0 <0.001 1.0 <0.001 1.0 <0.001 1.0 <0.001 1.0 <0.001 
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Table 7 continued 
 

 1 year 3 years 5 years 7 years 10 years 

   p  p  p  p  p 

Donor race: Black 1.4 <0.001 1.3 <0.001 1.3 <0.001 0.9 0.22 1.6 <0.001 

Donor race: White 1.1 0.36 1.1 0.47 1.0 0.56 0.7 <0.001 1.1 <0.001 

Donor sex: Female 1.0 0.38 1.0 0.45 1.0 0.06 0.9 <0.001 0.9 <0.001 

Donor type: Living 0.5 <0.001 0.5 <0.001 0.5 0.01 <0.
001 

0.58 1.3 <0.001 

Donor height 1.0 <0.001 1.0 0.42 1.0 <0.001 1.0 0.35 1.0 <0.001 

Donor weight 1.0 <0.001 1.0 <0.001 1.0 0.11 1.0 0.04 1.0 <0.001 

MMF-based 
maintenance 
therapy: missing 

5.1 <0.001 2.3 <0.001 0.4 <0.001 0.5 0.02 4.9 <0.001 

MMF-based 
maintenance 
therapy: No 

1.5 <0.001 1.0 0.91 0.2 <0.001 0.2 <0.001 1.1 <0.001 

Cold ischemia time 
<6 hours 

1.0 0.35 1.1 0.18 1.1 0.09 1.1 0.04 1.1 <0.001 

Cold ischemia 
time: >6 and <=14 
hours 

0.9 0.01 0.9 <0.001 0.9 <0.001 0.9 0.22 1.0 <0.001 

Cold ischemia 
time: >14 and 
<=19 hours 

0.9 <0.001 0.9 <0.001 0.9 0.07 0.9 0.24 1.1 <0.001 

Cold ischemia 
time: >19 and 
<=24 hours 

0.9 0.12 0.9 0.05 0.9 0.03 1.0 0.59 1.2 <0.001 

Cold ischemia 
time: >24 and 
<=30 hours 

1.0 0.28 0.9 0.02 1.0 0.25 1.0 0.98 1.1 <0.001 

Pretransplant 
dialysis modality: 
HD 

1.2 0.04 1.0 0.95 0.7 <0.001 0.8 0.38 2.5 <0.001 

Pretransplant 
dialysis modality: 
no dialysis 

1.7 <0.001 1.3 0.03 0.8 0.06 0.8 0.62 2.8 <0.001 

Pretransplant 
dialysis modality: 
PD 

1.2 0.06 1.0 0.73 0.7 <0.001 1.5 0.22 3.7 <0.001 

RRT modality prior 
to transplant: HD 

0.8 0.01 1.0 0.69 0.9 0.11 1.1 0.36 1.0 <0.001 

RRT modality prior 
to transplant: lost 
to f/u 

0.9 0.30 1.3 <0.001 1.0 0.77 1.2 0.28 0.9 <0.001 

RRT modality prior 
to transplant: PD 

0.9 0.20 1.1 0.38 0.9 0.16 1.2 0.32 1.0 <0.001 

RRT modality prior 
to transplant: TX 

3.2 <0.001 2.4 <0.001 1.8 <0.001 1.8 <0.001 1.0 <0.001 

Predominant RRT 
modality: HD 

1.0 0.76 1.2 0.30 1.2 0.16 1.1 0.74 1.4 <0.001 

Predominant RRT 
modality: None 

1.0 0.78 1.0 0.85 1.1 0.49 1.1 0.54 1.2 <0.001 

Predominant RRT 
modality: PD 

1.1 0.51 1.3 0.13 1.4 0.05 1.5 0.08 1.7 <0.001 

Number of months 
on HD 

1.0 <0.001 1.0 <0.001 1.0 0.06 1.0 0.03 1.0 <0.001 

Number of months 
on PD 

1.0 <0.001 1.0 0.02 1.0 0.02 1.0 0.08 1.0 <0.001 
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Table 7 continued 
 

 1 year 3 years 5 years 7 years 10 years 

   p  p  p  p  p 

Number of months 
with prior Tx 

1.0 0.56 1.0 0.87 1.0 0.19 1.0 0.32 1.0 <0.001 

Percent of ESRD 
time on HD 

1.0 0.93 1.0 0.17 1.0 0.92 1.0 0.84 1.0 <0.001 

Percent of ESRD 
time on PD 

1.0 0.27 1.0 0.02 1.0 0.24 1.0 0.02 1.0 <0.001 

Percent of ESRD 
time with prior 
transplants 

1.0 0.30 1.0 0.60 1.0 0.73 1.0 0.59 1.0 <0.001 

RRT modality: 
HD+Tx 

1.0 0.95 0.6 <0.001 0.6 <0.001 0.7 0.03 0.5 <0.001 

RRT modality: HD 
only 

1.3 0.19 1.0 0.66 1.0 0.86 1.0 0.49 1.1 <0.001 

RRT modality: 
None 

1.0 0.87 0.7 0.01 0.9 0.21 0.8 0.07 1.0 0.04 

RRT modality: 
PD+HD 

1.5 0.10 1.2 0.08 0.9 0.38 1.4 0.05 1.0 <0.001 

RRT modality: 
PD+HD+Tx 

1.0 0.94 0.6 <0.001 0.6 <0.001 0.8 0.32 0.5 <0.001 

RRT modality: 
PD+Tx 

1.3 0.22 0.8 0.15 0.8 0.26 1.1 0.67 0.8 <0.001 

RRT modality: PD 
only 

1.5 0.06 1.1 0.50 0.9 0.58 1.2 0.11 1.2 <0.001 

Number of different 
RRT modalities 
(>60 days) 

1.0 0.92 1.0 0.92 1.3 0.02 1.0 1.00 1.3 <0.001 

Donor Citizenship: 
US citizen 

1.0 0.69 1.0 0.51 1.0 0.71 0.8 0.05 0.7 <0.001 

Donor Citizenship: 
Missing 

1.2 0.14 2.1 <0.001 2.3 <0.001 1.1 0.69 0.7 <0.001 

Donor Citizenship: 
Nonresident alien 

0.9 0.62 1.0 1.00 0.8 0.46 0.4 0.10 1.0 0.10 

Donor Citizenship: 
Resident alien 

1.0 0.94 0.9 0.76 0.8 0.24 0.7 0.32 0.5 <0.001 

Donor Hx of DM 0-
5 years 

1.0 0.97 1.3 0.13 0.8 0.29 0.7 0.99 0.8 <0.001 

Donor Hx of DM 
>10 years 

1.0 0.96 1.1 0.71 1.2 0.59 0.5 0.98 0.8 <0.001 

Donor Hx of DM 6-
10 years 

0.8 0.54 0.9 0.62 1.6 0.25 0.5 0.98 1.2 0.01 

Donor Hx of DM: 
None 

0.9 0.23 1.0 0.88 0.8 0.36 0.2 0.90 1.1 <0.001 

Donor Hx of 
HTN:Missing 

1.4 0.14 1.9 <0.001 1.3 0.29 <<
0.0
011 

0.61 9.4 <0.001 

Heartbeating 
donor: missing 

0.7 0.08 0.5 <0.001 0.7 0.04 0.8 0.40 0.1 <0.001 

Heartbeating 
donor: No 

0.9 0.36 0.8 0.03 1.0 0.81 1.1 0.82 0.9 <0.001 

Recipient 
education level: 
Associate/Bachelor 
Degree 

1.2 0.54 0.9 0.52 1.0 0.92 3.1 0.30 0.4 <0.001 
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Table 7 continued 
 

 1 year 3 years 5 years 7 years 10 years 

   p  p  p  p  p 

Recipient 
education level: 
Grade School (0-8) 

1.0 0.99 1.0 1.00 1.2 0.47 4.6 0.24 0.5 <0.001 

Recipient 
education level: 
High School (9-12) 

1.1 0.68 1.0 0.85 1.3 0.37 4.4 0.10 0.5 <0.001 

Recipient 
education level: 
Missing 

2.9 0.09 0.8 0.71 2.6 0.30 19.7 0.85 0.1 <0.001 

Recipient 
education level: 
None 

1.0 0.89 0.9 0.81 1.1 0.78 171.3 0.78 0.5 <0.001 

Recipient 
education level: 
Postcollege 
Graduate Degree 

1.1 0.79 0.8 0.44 0.9 0.66 2.4 0.50 0.4 <0.001 

Recipient 
education level: 
Attended 
College/Technical 
School 

1.1 0.65 1.0 0.94 1.2 0.49 2.3 0.35 0.5 <0.001 

Recipient 
education level: 
Unknown 

1.2 0.53 0.9 0.69 1.1 0.82 1.0 0.98 0.4 <0.001 

Hepatitis B core 
Ab: negative 

1.1 0.42 1.1 0.65 1.2 0.13 0.9 0.78 1.6 <0.001 

Hepatitis B core 
Ab: not done 

1.0 0.77 0.9 0.24 1.0 0.91 2.1 0.22 1.9 <0.001 

Hepatitis B core 
Ab: positive 

1.0 0.86 1.0 0.73 1.5 0.01 2.5 0.29 1.3 <0.001 

Hepatitis C: cannot 
disclose 

1.2 0.84 <<
0.0
011 

0.94 0.0 0.97 37.0 0.97 5.4 <0.001 

Hepatitis C: 
indeterminate 

1.3 0.75 1.2 0.82 0.3 0.28 0.0 0.81 0.1 <0.001 

Hepatitis C: 
negative 

1.1 0.43 1.2 0.08 0.9 0.40 3.0 0.06 1.6 <0.001 

Hepatitis C: not 
done 

1.1 0.41 1.1 0.60 0.9 0.31 0.7 0.58 0.8 <0.001 

Hepatitis C: 
positive 

1.3 0.07 1.5 <0.001 1.1 0.49 6.3 0.05 1.2 <0.001 

Number of 
Previous 
pregnancies: 1 

1.0 0.84 0.9 0.22 1.0 0.63 0.9 0.04 1.0 <0.001 

Number of 
Previous 
pregnancies: 2 

1.0 0.94 1.0 0.48 1.0 1.00 0.9 0.11 0.9 <0.001 

Number of 
Previous 
pregnancies: 3 

1.0 0.47 1.0 0.54 1.0 0.85 0.9 0.45 1.0 <0.001 

Number of 
Previous 
pregnancies: 4 

1.0 0.94 1.1 0.31 1.1 0.15 1.1 0.46 1.0 0.02 

Number of 
Previous 
pregnancies: 5 

1.0 0.81 0.8 0.06 1.0 0.91 1.1 0.36 1.2 <0.001 
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Table 7 continued 
 

 1 year 3 years 5 years 7 years 10 years 

   p  p  p  p  p 

Number of 
Previous 
pregnancies: 6 

0.9 0.54 0.9 0.24 1.0 0.79 0.9 0.52 1.1 <0.001 

Number of 
Previous 
pregnancies: Male 

1.4 <0.001 2.5 <0.001 3.2 <0.001 1.0 0.90 1.0 0.08 

Number of 
Previous 
pregnancies: 
Missing 

1.0 0.81 1.1 0.24 6.7 <0.001 1.0 1.00 1.1 <0.001 

Primary Source of 
Payment: Free 
Care 

0.6 0.50 0.1 <0.001 0.2 0.06 12.3 0.97 2.8 <0.001 

Primary Source of 
Payment: US/State 
Govt Agency 

0.5 0.14 0.3 0.01 0.5 0.33 1.0 1.00 3.3 <0.001 

Primary Source of 
Payment: 
HMO/PPO 

0.8 0.53 0.5 0.13 1.9 0.42 0.0 0.91 3.9 <0.001 

Primary Source of 
Payment: Medicaid 

0.5 0.09 0.3 0.02 0.7 0.65 0.0 0.89 2.9 <0.001 

Primary Source of 
Payment: Medicare 

0.5 0.12 0.3 0.01 0.6 0.43 0.0 0.89 2.0 <0.001 

Primary Source of 
Payment: Missing 

0.5 0.08 0.3 0.02 0.4 0.17 0.0 0.88 1.7 <0.001 

Primary Source of 
Payment: Private 
Insurance 

0.5 0.10 0.3 0.01 0.5 0.32 0.0 0.89 3.0 <0.001 

Primary Source of 
Payment: Self 

0.3 0.04 0.3 0.02 0.4 0.32 <<0.
001
1 

0.83 3.2 <0.001 

Number of 
pretransplant 
transfusions: >10 

1.2 0.01 1.1 0.12 1.1 0.12 1.2 0.02 0.8 <0.001 

Number of 
pretransplant 
transfusions: 1-5 

1.0 0.22 1.1 0.06 1.0 0.33 1.0 1.00 1.0 <0.001 

Number of 
pretransplant 
transfusions: 6-10 

1.0 0.80 1.0 0.89 1.0 0.35 1.1 0.02 0.9 <0.001 

Number of 
pretransplant 
transfusions: 
missing 

1.0 0.56 1.1 <0.001 1.1 <0.001 1.1 0.04 3.6 <0.001 

Recipient 
Citizenship: US 
citizen 

1.2 0.04 1.2 0.01 1.3 <0.001 1.3 0.02 0.9 <0.001 

Recipient 
Citizenship: 
Missing 

1.3 0.01 1.6 <0.001 1.5 <0.001 1.3 0.10 0.3 <0.001 

Recipient 
Citizenship: 
Nonresident alien 

1.0 0.92 0.8 0.50 1.4 0.44 0.8 0.70 0.3 <0.001 

Recipient age 1.0 <0.001 1.0 <0.001 1.0 <0.001 1.0 <0.001 1.0 <0.001 
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Table 7 continued 
 

 1 year 3 years 5 years 7 years 10 years 

   p  p  p  p  p 

Day of transplant: 
Friday 

1.1 0.01 1.0 0.33 1.0 0.24 1.0 0.94 0.9 <0.001 

Day of transplant: 
Monday 

1.1 0.21 1.0 0.90 1.0 0.43 1.0 0.70 0.9 <0.001 

Day of transplant: 
Saturday 

1.1 0.07 1.0 0.68 1.0 0.78 1.0 0.71 1.0 <0.001 

Day of transplant: 
Sunday 

1.0 0.91 1.0 0.97 1.0 0.35 1.0 0.84 0.9 <0.001 

Day of transplant: 
Thursday 

1.0 0.72 1.0 0.90 1.1 0.18 1.0 0.65 1.0 <0.001 

Day of transplant: 
Tuesday 

1.1 0.19 1.0 0.52 1.0 0.29 1.0 0.44 1.1 <0.001 
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5.3.2.4. Tree-based modeling 

Five different tree-based models predicting the probability of the allograft survival 

for 1, 3, 5, 7, and 10 years were generated.  TBM were initially generated without 

restrictions in order not to limit the list of independent variables described above.  To 

generate final, more parsimonious models, the optimal number of terminal nodes was 

determined for each model using the cross-validation procedure (S-Plus: 

plot(cv.tree(tree1))), where the deviance was plotted against the size of the tree to select 

the optimal tree size.  The optimal size of the tree was identified as 93 for the model 

predicting 1-year survival, 40 for 3-year survival, 88 for 5-year survival, and 65 for 7- 

year survival. The cross-validation procedure did not indicate the optimal tree-size for 

the 10-year outcome model; therefore, we arbitrarily selected the model with 65 terminal 

nodes (the same as for 7-year outcome prediction).  Following that, the second set of 

tree models was generated and pruned to the size identified by the cross-validation 

procedure.  After the models were created, the set of predicted outcome values was 

generated in the testing datasets.  The residual mean deviance of the model and 

misclassification error rate are presented in Table 2.   

As an example, the code for the tree-based model predicted 1-year outcome is 

presented here: 

finaltree1.response <- menuTree(formula = AA.GS~ DTYPE + Predom.Mod + htnnew1 + tx.sex + DSEX 
+ height + UNSANGR.Cat + PKPRA + prev.tx + PRIPAY.Cat + weight + tx.race + 
CVASCR + HBCORE + HCSRN + DAGE + DRACE + Dheight + Dweight + match + MRPRA + 
C.COLDTIME + total.txs + RRage + time.onlist + MMF.Maint + RCITZ.Cat + 
PTXTFUS.Cat + Comorb.Score + Mod.Number60 + Mod.Comb60 + dmnew1, data = 
knownoutcome1.training, print.summary.p = T, print.tree.p = T, , plot.it = F, plotUniform = T, plot.addText = T, 
plot.addText.what = "Response-Value", prune.p = T, prune.k = NULL, prune.best = 90, prune.method = "deviance", 
predict.newdata = knownoutcome1.testing, predict.type = "response", predict.save.name = "knownoutcome1.testing") 
menuCreateCategories(xname = "knownoutcome1.testing", col = "Yes", numuse = 

"Cut Points", nbin = 5, numby = "Range", cutpoints = 
"0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9") 
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Variables that were used in tree-based model construction are presented in 

Table 8.  The table demonstrates the list of variables used for each of the five models in 

the order of their significance (from the root of the tree to the periphery.)  While different 

models used similar variables in the prediction of the outcome, they vary in the priorities 

assigned to the particular variables. 

 
5.3.3. Model validation 
 
5.3.3.1. Correlation analysis 

The predicted variable in this study is the probability of graft survival, which is a 

continuous variable.  However, the actual outcome for each individual patient is binary.  

All records were divided into 10 groups based on predicted probability of graft survival 

using the following cut-points: 0-10%, >10-20%, >20-30%, >30-40%, >40-50%, >50-

60%, >60-70%, >70-80%, >80-90%, and >90-100%.  The observed graft survival was 

calculated for each group and compared to the predicted probability using cross-

tabulation.   

Examples for cross-tabulation procedures for the logistic regressing and tree-

based model are presented here: 

Crosstab1 <- menuCrosstabs(formula = ~ Decile.LogRegr + AA.GS, data = 
knownoutcome1.testing, margin.p = T, na.action = "Fail", 
drop.unused.levels = T, print.object.p = T, digits = 2, marginal.totals 
= T, chi2.test = T)).   
 
Crosstab1 <- menuCrosstabs(formula = ~ Tree.Decile.Yes + AA.GS, data = 
knownoutcome1.testing, margin.p = T, na.action = "Fail", 
drop.unused.levels = T, print.object.p = T, digits = 2, marginal.totals 
= T, chi2.test = T) 

 

If the number of patients in a particular group was low (arbitrarily selected value 

of <30), it was merged with next group up, except for the very last group, and that was 

merged with the next group down.  In particular, for the 1-year prediction group, the 

models did not make any predictions with the probability of graft survival 0-10% and  
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11-20%; therefore, this group was merged with the group where the predicted probability 

of graft survival was 21-30%.  Similarly, the 31-40% group had only 7 patients and 

therefore was merged with the 41-50% group.  In the 3-year prediction model, none of 

the groups with predicted probability between 0 and 30% had any patients and therefore 

were merged with the 31-40% group.  In the 5-year model, the last group 91-100% had 

13 patients and was merged with the 81-90% group.  For the 7-year prediction, the 91-

100% group had only 21 patients and was merged with 81-90% group.  Finally, for the 

10-year prediction, none of the group greater than 60% had enough patients and were 

merged together in the 61-100% group. 

 The results of the analysis are presented in Table 9, where the percent of actual 

graft survival and number of patients for each of the groups of predicted probability of 

graft survival are presented.  These results are illustrated in Figure 12.   

The midpoint of each group’s probability range was used as the predicted 

percent survival for the group and compared to observed graft survival for the group by 

correlation analysis.  Similarly, the results of the validation in the testing dataset are 

presented in Figure 13 for the logistic regression model.   

For the tree-based model, the prediction of the probability of graft survival from 

the training model achieved a good correlation with the observed survival of the testing 

set with r= 0.94 for 1-year survival prediction; r= 0.98 for 3-year survival prediction; r= 

0.99 for 5-year survival prediction; r= 0.93 for 7-year survival prediction; and r= 0.98 for 

10-year survival prediction.  The results of the logistic regression model were very 

similar. 

 
5.3.3.2. Receiver operator characteristics (ROC) curve analysis 

The ROC analysis was performed for each model using the predictions 

generated on the testing dataset.  The ROC curves for the tree-based models are  
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Figure 12.  Bar plots of the graft survival rates vs. predicted probability of graft survival 
for one (Panel A), three (Panel B), five (Panel C), seven (Panel D), and ten (Panel E) 
years of graft survival.  Predictions were generated in the independent testing dataset, 
separate from the training dataset upon which the models were created. 
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Figure 12 continued 
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Figure 12 continued
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Figure 13.  Bar plots of the graft survival rates vs. predicted probability of graft survival 
for one, three, five, seven, and ten years of graft survival for logistic regression model.  
Predictions were generated in the independent testing dataset, separate from the 
training dataset upon which the models were created.   
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Figure 13 continued 
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Figure 13 continued 
 
 

0-10% 11-20% 21-30% 31-40% 41-50% 51-60% 61-70% 71-80% 81-90%91-100%

Predicted probability of graft survival

0

20

40

60
 O

b
se

rv
e

d
 g

ra
ft

 s
u

rv
iv

a
l r

a
te

 (
%

)

 Predicted probability vs. observed rate of graft survival over 10 years 
Logistic regression model



  133 

 

presented in Figure 14 (the results for the regression model were very similar).  The area 

under the ROC curve was calculated for each model using the prediction data generated 

on the testing dataset.  All models achieved a reasonable prediction accuracy on the 

independent testing dataset.  For 1-year prediction, the area under the ROC curve was 

0.63; for 3-year prediction: 0.64; for 5-year prediction: 0.71; for 7-year prediction: 0.82; 

and for 10-year prediction: 0.90. 

 
5.4. Discussion 

 
Factors affecting kidney allograft survival were evaluated previously based on 

both local and national databases.  Other authors attempted to generate prediction 

models of the transplant outcome. A neural network model was used to predict the 

outcome of liver transplant [57, 221] and delayed graft function after renal 

transplantation [51].  Multivariate modeling was employed to predict living graft 

recipients’ creatinine based on four parameters: recipient age, BMI, creatinine clearance, 

and degree of relationship [222].   

As far as previous studies are concerned, we found one paper in which 

investigators used multivariate modeling to predict the outcome of the transplantation in 

order to optimize deceased kidney allocation decision making in a northern Italy 

transplant program [112].  However, to the best of our knowledge, aside from our report 

in 2003 [23], no other investigators have employed working prediction models to study  

long-term renal allograft outcomes.  

We previously presented mathematical models predicting the probability of 3-

year kidney allograft survival from a deceased donor based on UNOS data [23].  That 

model, however, had several limitations.  The model was based on the deceased donors 

only (as opposed to the current model based on both deceased and living donor kidney 

transplants), it employed a very limited set of predictors, and it was based on the  
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Figure 14.  ROC curves for the prediction models of the one (Panel A), three (Panel B), 
five (Panel C), seven (Panel D), and ten (Panel E) years of graft survival.  ROC curves 
were generated in the independent testing dataset, separate from the training dataset 
upon which the models were created. 
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Figure 14 continued 
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relatively old dataset.  In addition, the previously reported model predicted only 3-year 

allograft survival, while the currently reported model predicts the probability of 1, 3, 5, 7, 

and 10-year graft survival.  The previous analysis was also challenging in the face of a 

relatively large amount of missing data.  The current model is based on the more recent 

dataset, representing clinical practice modalities of the late 1990s.  In recent years, the 

quality of data has improved, especially since the introduction of UNet, the online 

transplant data entry system, that was implemented in October 1999.  In the current 

study, we used the data supplied by USRDS, which in addition to the UNOS data has 

information regarding patient dialysis course, more detailed patient comorbidity, and 

more comprehensive information on patients’ demographics.  In designing the study, our 

intent was to develop a prediction model to be used in the pretransplant setting; 

therefore, we excluded posttransplant variables that were not available until after the 

transplant procedure.  We also did not analyze the impact of immunosuppressive 

therapy, immediate posttransplant graft function, and episodes of acute rejection, since 

this information was not available prior to the transplantation procedure.   

The tree-based modeling used in this study represents a relatively new approach 

compared to conventional regression analysis of the data.  This nonparametric modeling 

works when the regression variables are a mixture of categorical and continuous 

variables in that it identifies "splitting" variables based on an exhaustive search of all 

possibilities, even in problems with many hundreds of possible predictors.  

Simultaneously, it requires relatively little input from the analyst.  This graphical 

algorithm, presented as a collection of simple binary rules, is much simpler to interpret 

by a nonstatistician than the multivariate logistic regression.  Prediction algorithms 

evaluated in this study can potentially be used in recipient counseling and decision- 

making processes regarding renal transplants. Tree-based modeling is easy to 

implement in the computer-based decision support system to be used in the 
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pretransplant clinic.  In addition, it can be used as a tool to identify patients at risk for 

premature graft failure, and to model different clinical situations, where the modifiable 

factors of the recipient, donor, and transplant procedures can be optimized.  The 

identification of factors that play an important role in graft survival helps to focus efforts 

of transplant programs on certain individual aspects of patient care [97]. 



 

 
 

6. CONCLUSION 

 
 
 Predicting kidney transplant outcome based on the recipient and donor 

pretransplant characteristics is a first step towards personalized medicine in the 

management of transplant recipients.  Unfortunately, these efforts are difficult to 

undertake due to an insufficient amount of data in any given transplant center and the 

unclear role of some of the potential predictors.  In this project, we started with 

developing a pilot model of the long-term outcome prediction, and after validating the 

model and assessing its deficiencies, we have undertaken a series of projects to study 

the role of pretransplant dialysis course, socioeconomic status, immunosuppressive 

medications, and some other parameters in the graft and recipient survival.  This 

knowledge and the use of new, more complete set of data allowed us to generate a 

more sophisticated and more comprehensive yet practical prediction model, that can be 

used in the future development of the decision-support system. 

It should be mentioned that while different prediction models have specific 

advantages and disadvantages, it is difficult to predict which model would perform the 

best in a particular dataset.  Therefore, it is reasonable to use a multimodel approach to 

study which model is more appropriate for a given data structure. 

Certain limitations should be considered while interpreting the results of this 

project.  The dataset used covers the time period of the last 11 years of the last century.  

One should realize that there will always be a time gap, the data cannot be very recent, 

and a certain period of follow-up is necessary.  While this is the case, changes in clinical 

practice should be considered by the reader and potential users of the model.  
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Another limitation is the discrete type of the tree-based model output.  While the 

number of terminal nodes was relatively high, the output information is still limited due to 

the noncontinuous nature of the predicted probability.  Finally, as in every other analysis 

of the large registry data, the quality of the data is of concern.  That concern has been 

alleviated, however, by the recent improvement in the UNOS data collection techniques.  

Also, the relatively good performance of the models indirectly indicates the reasonable 

quality of the input data.   

This project was performed in the environment of biomedical informatics, which 

shaped the ultimate goal of the project to create the informatics tool potentially useful in 

clinical practice.  Specific approaches unique to the biomedical informatics field helped 

to develop the tools to accomplish this goal.  In particular, the initial part of the project 

involved manipulation of the large collection of medical data, including the combination 

of patient demographics, medical history, comorbidities, treatments, and outcomes.  The 

data was reformatted, cleaned, and internally validated.  Some of the variables 

underwent imputation of the missing values.  Knowledge discovery in the databases 

approaches were used for initial data analysis and prediction model design.  Several 

KDD approaches were explored in order to develop optimal prediction model and feature 

selection for the models.  While working on this project, the final goal of improving 

patient care was always in sight.  As results of the efforts presented here, we generated 

several mathematical models predicting the probability of the kidney allograft failure at 

different time points of the posttransplant period.  Prediction models represent either 

regression model or recursive partitioning algorithm that can be easily coded and be 

used as a core for the decision support system.  Other specific biomedical informatics 

approaches are presented in Table 10. 
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Table 10. Biomedical informatics aspects of this project 

Project stage Medical informatics aspect 

Acquire data from national data 
registry 

Data cleaning, validation, integration 

Medical data acquisition and manipulating 
large dataset, including data integration, 
storage, validation, formatting, imputation, 
and use 

Develop preliminary prediction model Creating the core of the decision support 
system 
Knowledge discovery in the databases 

Evaluate potential predictors of the 
outcome 

Public health and consumer use of health 
information 

Variable selection for the prediction 
modeling 

Machine learning techniques 

Develop refined prediction model Creating the core of the decision support 
system 
Personalized medicine 
Medical education using information  
technology 
Patient informatics 
Evaluation and technology assessment 

 
 
 

 

 

 

In conclusion, we studied the role of several potential predictors in the transplant 

outcome and showed their association with kidney transplant outcome.  Furthermore, we 

developed and validated a prediction model of allograft survival in patients with kidney 

transplants.  The models predicting the probability of 1, 3, 5, 7, and 10-year allograft 

survival have been validated on the independent dataset and demonstrated performance 

that may suggest implementation in the clinical decision support system.  Evaluating 

these models, in a prospective study, may be the subject of a future project.   



   

 

REFERENCES 

 
 
[1] F. K. Port, R. A. Wolfe, E. A. Mauger, D. P. Berling, and K. Jiang, "Comparison of 

survival probabilities for dialysis patients vs cadaveric renal transplant recipients," 
JAMA, vol. 270, pp. 1339-1343, 1993. 

 
[2] R. A. Wolfe, V. B. Ashby, E. L. Milford, A. O. Ojo, R. E. Ettenger, L. Y. Agodoa, 

P. J. Held, and F. K. Port, "Comparison of mortality in all patients on dialysis, 
patients on dialysis awaiting transplantation, and recipients of a first cadaveric 
transplant," N Engl J Med, vol. 341, pp. 1725-1730, 1999. 

 
[3] L. G. Hunsicker, "A Survival Advantage for Renal Transplantation," N Engl J 

Med, vol. 341, pp. 1762-1763, 1999. 
 
[4] R. G. Simmons and L. Abress, "Quality-of-life issues for end-stage renal disease 

patients," Am J Kidney Dis, vol. 15, pp. 201-208, 1990. 
 
[5] P. Eggers, "Comparison of treatment costs between dialysis and transplantation," 

Semin Nephrol, vol. 12, pp. 284-289, 1992. 
 
[6] A. Ojo, R. A. Wolfe, L. Y. Agodoa, P. J. Held, F. K. Port, S. F. Leavey, S. E. 

Callard, D. M. Dickinson, R. L. Schmouder, and A. B. Leichtman, "Prognosis after 
primary renal transplant failure and the beneficial effects of repeat 
transplantation: multivariate analyses from the United States Renal Data 
System," Transplantation, vol. 66, pp. 1651-9, Dec 27 1998. 

 
[7] A. O. Ojo, J. A. Hanson, H. U. Meier-Kriesche, C. N. Okechukwu, R. A. Wolfe, A. 

B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port, "Survival in recipients of 
marginal cadaveric donor kidneys compared with other recipients and wait-listed 
transplant candidates," J Am Soc Nephrol, vol. 12, pp. 589-597, 2001. 

 
[8] C. Ponticelli, "De novo thrombotic microangiopathy. An underrated complication 

of renal transplantation," Clin Nephrol, vol. 67, pp. 335-40, Jun 2007. 
 
[9] M. Salvadori, E. Bertoni, A. Rosati, and M. Zanazzi, "Post-transplant diabetes 

mellitus," J Nephrol, vol. 16, pp. 626-34, Sep-Oct 2003. 
 
[10] N. M. Maalouf and E. Shane, "Osteoporosis after solid organ transplantation," J 

Clin Endocrinol Metab, vol. 90, pp. 2456-65, Apr 2005. 
 
[11] A. J. Fabrega, M. Lopez-Boado, and S. Gonzalez, "Problems in the long-term 

renal allograft recipient," Crit Care Clin, vol. 6, pp. 979-1005, Oct 1990. 



  143 

 

[12] F. Dumler and C. Kilates, "Metabolic and nutritional complications of renal 
transplantation," J Ren Nutr, vol. 17, pp. 97-102, Jan 2007.  

 
[13] J. L. Bosmans and G. A. Verpooten, "Malignancy after kidney transplantation: still 

a challenge," Kidney Int, vol. 71, pp. 1197-9, Jun 2007. 
 
[14] S. Sagedal, A. Hartmann, and H. Rollag, "The impact of early cytomegalovirus 

infection and disease in renal transplant recipients," Clin Microbiol Infect, vol. 11, 
pp. 518-30, Jul 2005. 

 
[15] C. A. Benavides, V. B. Pollard, S. Mauiyyedi, H. Podder, R. Knight, and B. D. 

Kahan, "BK virus-associated nephropathy in sirolimus-treated renal transplant 
patients: incidence, course, and clinical outcomes," Transplantation, vol. 84, pp. 
83-8, Jul 15 2007.  

 
[16] G. L. Adani, U. Baccarani, D. Lorenzin, M. Gropuzzo, P. Tulissi, D. Montanaro, 

G. Curro, M. Sainz, A. Risaliti, V. Bresadola, and F. Bresadola, "De novo 
gastrointestinal tumours after renal transplantation: role of CMV and EBV 
viruses," Clin Transplant, vol. 20, pp. 457-60, Jul-Aug 2006. 

 
[17] "U.S. Renal Data System. USRDS 2005 annual data report. Bethesda, MD: 

National Institutes of Health," 2005. 
 
[18] R. N. Foley, P. S. Parfrey, and M. J. Sarnak, "The clinical epidemiology of 

cardiovascular disease in chronic renal disease," Am J Kidney Dis, vol. 32(Suppl  
3), pp. S112-S119, 1998. 

 
[19] F. Valderabbano, E. H. P. Jones, and N. P. Mallick, "Report on management of 

renal failure in Europe, XXIV, 1993," Nephrol Dial Transplant, vol. 10(Suppl 5), 
pp. S1-S25, 1995. 

 
[20] N. Perico, P. Ruggenenti, M. Scalamogna, and G. Remuzzi, "Tackling the 

shortage of donor kidneys: how to use the best that we have," Am J Nephrol, vol. 
23, pp. 245-59, Jul-Aug 2003. 

 
[21] A. Djamali, N. Premasathian, and J. D. Pirsch, "Outcomes in kidney 

transplantation," Semin Nephrol, vol. 23, pp. 306-16, May 2003. 
 
[22] S. Hariharan, "Long-term kidney transplant survival," Am J Kidney Dis, vol. 38, 

pp. S44-50, Dec 2001. 
 
[23] A. S. Goldfarb-Rumyantzev, J. D. Scandling, L. Pappas, R. J. Smout, and S. 

Horn, "Prediction of 3-yr cadaveric graft survival based on pre-transplant 
variables in a large national dataset," Clin Transplant, vol. 17, pp. 485-97, Dec 
2003. 

 
[24] B. M. Brenner, R. A. Cohen, and E. L. Milford, "In renal transplantation, one size 

may not fit all," J Am Soc Nephrol, vol. 3, pp. 162-169, Aug 1992. 
 



  144 

 

[25] M. Cecka, "Clinical outcome of renal transplantation. Factors influencing patient 
and graft survival," Surgical Clinics of North America, vol. 78, pp. 133-148, Feb 
1998. 

[26] J. Cicciarelli, Y. Iwaki, and R. Mendez, "The influence of donor age on kidney 
graft survival in the 1990s," in Clin Transpl 1999, 1999, pp. 335-340. 

 
[27] H. Degawa, T. Nemoto, M. Uchiyama, K. Kozaki, N. Matsuno, E. Sakurai, K. 

Kubota, M. Kozaki, and T. Nagao, "Effect of donor age on renal allograft 
survival," Transplant Proc, vol. 30, pp. 3660-3661, Nov 1998. 

 
[28] H. I. Feldman, I. Fazio, D. Roth, J. A. Berlin, K. Brayman, J. E. Burns, and R. A. 

Grossman, "Recipient body size and cadaveric renal allograft survival," J Am Soc 
Nephrol, vol. 7, pp. 151-157, Jan 1996. 

 
[29] B. Frisk, L. Smith, L. Sandberg, and H. Brynger, "Prognostic factors at the time of 

renal retransplantation," Proc Eur Dial Transplant Assoc, vol. 20, pp. 280-5, 
1983. 

 
[30] B. L. Kasiske, J. J. Snyder, and D. Gilbertson, "Inadequate donor size in cadaver 

kidney transplantation," J Am Soc Nephrol, vol. 13, pp. 2152-2159, Aug 2002. 
 
[31] H. U. Meier-Kriesche, J. A. Arndorfer, and B. Kaplan, "The impact of body mass 

index on renal transplant outcomes: a significant independent risk factor for graft 
failure and patient death," Transplantation, vol. 73, pp. 70-4, Jan 15 2002. 

 
[32] H. U. Meier-Kriesche, F. K. Port, A. O. Ojo, S. M. Rudich, J. A. Hanson, D. M. 

Cibrik, A. B. Leichtman, and B. Kaplan, "Effect of waiting time on renal transplant 
outcome," Kidney Int, vol. 58, pp. 1311-7, Sep 2000. 

 
[33] A. O. Ojo, J. A. Hanson, R. A. Wolfe, L. Y. Agodoa, S. F. Leavey, A. Leichtman, 

E. W. Young, and F. K. Port, "Dialysis modality and the risk of allograft 
thrombosis in adult renal transplant recipients," Kidney Int, vol. 55, pp. 1952-60, 
May 1999. 

 
[34] P. I. Terasaki, D. W. Gjertson, J. M. Cecka, S. Takemoto, and Y. W. Cho, 

"Significance of the donor age effect on kidney transplants," Clin Transplant, vol. 
11, pp. 366-372, Oct 1997. 

 
[35] A. K. Daly, "Individualized drug therapy," Curr Opin Drug Discov Devel, vol. 10, 

pp. 29-36, Jan 2007. 
 
[36] D. W. Nebert and E. S. Vesell, "Advances in pharmacogenomics and 

individualized drug therapy: exciting challenges that lie ahead," Eur J Pharmacol, 
vol. 500, pp. 267-80, Oct 1 2004. 

 
[37] M. Israeli, A. Yussim, E. Mor, B. Sredni, and T. Klein, "Preceeding the rejection: 

in search for a comprehensive post-transplant immune monitoring platform," 
Transpl Immunol, vol. 18, pp. 7-12, Jul 2007. 

 



  145 

 

[38] M. Ishitani, R. Isaacs, V. Norwood, S. Nock, and P. Lobo, "Predictors of graft 
survival in pediatric living-related kidney transplant recipients," Transplantation, 
vol. 70, pp. 288-292, Jul 27 2000. 

 
[39] F. Moreso, D. Seron, A. I. Anunciada, M. Hueso, J. M. Ramon, X. Fulladosa, S. 

Gil-Vernet, J. Alsina, and J. M. Grinyo, "Recipient body surface area as a 
predictor of posttransplant renal allograft evolution," Transplantation, vol. 65, pp. 
671-676, Mar 15 1998. 

 
[40] S. Krikov, A. Khan, B. Baird, L. L. Barenbaum, A. Leviatov, J. K. Koford, and A. 

S. Goldfarb-Rumyantzev, "Predicting Kidney Transplant Survival Using Tree-
Based Modeling," ASAIO J, vol. 53(5), pp. 592-600, Sep-Oct.  2007. 

 
[41] R. Wiesner, E. Edwards, R. Freeman, A. Harper, R. Kim, P. Kamath, W. 

Kremers, J. Lake, T. Howard, R. M. Merion, R. A. Wolfe, and R. Krom, "Model for 
end-stage liver disease (MELD) and allocation of donor livers," Gastroenterology, 
vol. 124, pp. 91-6, Jan 2003. 

 
[42] P. S. Kamath, R. H. Wiesner, M. Malinchoc, W. Kremers, T. M. Therneau, C. L. 

Kosberg, G. D'Amico, E. R. Dickson, and W. R. Kim, "A model to predict survival 
in patients with end-stage liver disease," Hepatology, vol. 33, pp. 464-70, Feb 
2001. 

 
[43] M. Schumacher, H. Binder, and T. Gerds, "Assessment of survival prediction 

models based on microarray data," Bioinformatics, vol. 23, pp. 1768-74, Jul 15 
2007. 

 
[44] M. K. Gould, L. Ananth, and P. G. Barnett, "A clinical model to estimate the 

pretest probability of lung cancer in patients with solitary pulmonary nodules," 
Chest, vol. 131, pp. 383-8, Feb 2007. 

 
[45] M. van Wely, B. C. Fauser, J. S. Laven, M. J. Eijkemans, and F. van der Veen, 

"Validation of a prediction model for the follicle-stimulating hormone response 
dose in women with polycystic ovary syndrome," Fertil Steril, vol. 86, pp. 1710-5, 
Dec 2006. 

 
[46] T. A. Holt and L. Ohno-Machado, "A nationwide adaptive prediction tool for 

coronary heart disease prevention," Br J Gen Pract, vol. 53, pp. 866-70, Nov 
2003. 

 
[47] G. L'Ltalien, I. Ford, J. Norrie, P. LaPuerta, J. Ehreth, J. Jackson, and J. 

Shepherd, "The cardiovascular event reduction tool (CERT)--a simplified cardiac 
risk prediction model developed from the West of Scotland Coronary Prevention 
Study (WOSCOPS)," Am J Cardiol, vol. 85, pp. 720-4, Mar 15 2000. 

 
[48] S. T. Normand, M. E. Glickman, R. G. Sharma, and B. J. McNeil, "Using 

admission characteristics to predict short-term mortality from myocardial 
infarction in elderly patients. Results from the Cooperative Cardiovascular 
Project," Jama, vol. 275, pp. 1322-8, May 1 1996. 

 



  146 

 

[49] D. A. Shoskes, R. Ty, L. Barba, and M. Sender, "Prediction of early graft function 
in renal transplantation using a computer neural network," Transplant Proc, vol. 
30, pp. 1316-1317, Jun 1998. 

 
[50] M. Hennige, C. O. Köhler, and G. Opelz, "Multivariate prediction model of kidney 

transplant success rates," Transplantation, vol. 42, pp. 491-493, 1986. 
 
[51] M. E. Brier, P. C. Ray, and J. B. Klein, "Prediction of delayed renal allograft 

function using an artificial neural network," Nephrol Dial Transplant, vol. 18, pp. 
2655-9, Dec 2003. 

 
[52] M. H. de Bruijne, Y. W. Sijpkens, L. C. Paul, R. G. Westendorp, H. C. van 

Houwelingen, and A. H. Zwinderman, "Predicting kidney graft failure using time-
dependent renal function covariates," J Clin Epidemiol, vol. 56, pp. 448-55, May 
2003. 

 
[53] A. Goldfarb-Rumyantzev, M. H. Schwenk, S. Liu, C. Charytan, and B. S. 

Spinowitz, "Prediction of single-pool Kt/v based on clinical and hemodialysis 
variables using multilinear regression, tree-based modeling, and artificial neural 
networks," Artif Organs, vol. 27, pp. 544-54, Jun 2003. 

 
[54] T. I. Huo, H. C. Lin, J. C. Wu, F. Y. Lee, M. C. Hou, P. C. Lee, F. Y. Chang, and 

S. D. Lee, "Proposal of a modified Child-Turcotte-Pugh scoring system and 
comparison with the model for end-stage liver disease for outcome prediction in 
patients with cirrhosis," Liver Transpl, vol. 12, pp. 65-71, Jan 2006. 

 
[55] M. Berenguer, J. Crippin, R. Gish, N. Bass, A. Bostrom, G. Netto, J. Alonzo, R. 

Garcia-Kennedy, J. M. Rayon, and T. L. Wright, "A model to predict severe HCV-
related disease following liver transplantation," Hepatology, vol. 38, pp. 34-41, Jul 
2003. 

 
[56] S. Benlloch, M. Berenguer, M. Prieto, J. M. Rayon, V. Aguilera, and J. 

Berenguer, "Prediction of fibrosis in HCV-infected liver transplant recipients with 
a simple noninvasive index," Liver Transpl, vol. 11, pp. 456-62, Apr 2005. 

 
[57] B. Parmanto and H. R. Doyle, "Recurrent neural networks for predicting 

outcomes after liver transplantation: representing temporal sequence of clinical 
observations," Methods Inf Med, vol. 40, pp. 386-91, 2001. 

 
[58] P. S. Kamath and W. R. Kim, "The model for end-stage liver disease (MELD)," 

Hepatology, vol. 45, pp. 797-805, Mar 2007. 
 
[59] A. W. Avolio, A. S. Chirico, S. Agnes, G. Sganga, R. Gaspari, F. Frongillo, G. 

Pepe, and M. Castagneto, "Prediction of 6-month survival after liver 
transplantation using Cox regression," Transplant Proc, vol. 36, pp. 529-32, Apr 
2004. 

 
[60] P. H. Hayashi, L. Forman, T. Steinberg, T. Bak, M. Wachs, M. Kugelmas, G. T. 

Everson, I. Kam, and J. F. Trotter, "Model for End-Stage Liver Disease score 
does not predict patient or graft survival in living donor liver transplant recipients," 
Liver Transpl, vol. 9, pp. 737-40, Jul 2003. 



  147 

 

 
[61] D. W. Gjertson, "Determinants of long-term survival of adult kidney transplants: a 

1999 UNOS update," Clin Transpl, pp. 341-52, 1999. 
[62] D. W. Gjertson and J. M. Cecka, "Determinants of long-term survival of pediatric 

kidney grafts reported to the United Network for Organ Sharing kidney transplant 
registry," Pediatr Transplant, vol. 5, pp. 5-15, Feb 2001. 

 
[63] M. Chelamcharla, B. Javaid, B. C. Baird, and A. S. Goldfarb-Rumyantzev, "The 

Outcome Of Renal Tranplantation Among Systemic Lupus Erythematosus 
Patients," Nephrol Dial Transplant, p. in press, 2007. 

 
[64] A. Goldfarb-Rumyantzev, J. F. Hurdle, J. Scandling, Z. Wang, B. Baird, L. 

Barenbaum, and A. K. Cheung, "Duration of end-stage renal disease and kidney 
transplant outcome," Nephrol Dial Transplant, vol. 20, pp. 167-75, Jan 2005. 

 
[65] A. S. Goldfarb-Rumyantzev, J. F. Hurdle, B. C. Baird, G. Stoddard, Z. Wang, J. 

D. Scandling, L. L. Barenbaum, and A. K. Cheung, "The role of pre-emptive re-
transplant in graft and recipient outcome," Nephrol Dial Transplant, vol. 21, pp. 
1355-64, May 2006. 

 
[66] A. S. Goldfarb-Rumyantzev, J. F. Hurdle, J. D. Scandling, B. C. Baird, and A. K. 

Cheung, "The role of pretransplantation renal replacement therapy modality in 
kidney allograft and recipient survival," Am J Kidney Dis, vol. 46, pp. 537-49, Sep 
2005. 

 
[67] A. S. Goldfarb-Rumyantzev, J. K. Koford, B. C. Baird, M. Chelamcharla, A. N. 

Habib, B.-J. Wang, S.-j. Lin, F. Shihab, and R. B. Isaacs, "Role of Socioeconomic 
Status in Kidney Transplant Outcome," Clin J Am Soc Nephrol, vol. 1, pp. 313-
322, 2006. 

 
[68] A. S. Goldfarb-Rumyantzev, L. Smith, F. S. Shihab, B. C. Baird, A. N. Habib, S.-j. 

Lin, and L. L. Barenbaum, "Role of Maintenance Immunosuppressive Regimen in 
Kidney Transplant Outcome," Clin J Am Soc Nephrol, vol. 1, pp. 563-574, 2006. 

 
[69] S. J. Lin, J. K. Koford, B. C. Baird, A. N. Habib, I. Reznik, M. Chelamcharla, F. S. 

Shihab, and A. S. Goldfarb-Rumyantzev, "The association between length of 
post-kidney transplant hospitalization and long-term graft and recipient survival," 
Clin Transplant, vol. 20, pp. 245-52, Mar-Apr 2006. 

 
[70] S. J. Lin, J. K. Koford, B. C. Baird, J. F. Hurdle, S. Krikov, A. N. Habib, and A. S. 

Goldfarb-Rumyantzev, "Effect of Donors' Intravenous Drug Use, Cigarette 
Smoking, and Alcohol Dependence on Kidney Transplant Outcome," 
Transplantation, vol. 80, pp. 482-486, Aug 27 2005. 

 
[71] N. Naiman, B. C. Baird, R. B. Isaacs, J. K. Koford, A. N. Habib, B. J. Wang, L. L. 

Barenbaum, and A. S. Goldfarb-Rumyantzev, "Role of pre-transplant marital 
status in renal transplant outcome," Clin Transplant, vol. 21, pp. 38-46, Jan-Feb 
2007. 

 
[72] D. E. Hricik, V. Rodriguez, J. Riley, K. Bryan, M. Tary-Lehmann, N. Greenspan, 

C. Dejelo, J. A. Schulak, and P. S. Heeger, "Enzyme linked immunosorbent spot 



  148 

 

(ELISPOT) assay for interferon-gamma independently predicts renal function in 
kidney transplant recipients," Am J Transplant, vol. 3, pp. 878-84, Jul 2003. 

[73] J. T. Fitzgerald, J. R. Johnson, and R. V. Perez, "Pre-transplant elevations of 
interleukin-12 and interleukin-10 are associated with acute rejection after renal 
transplantation," Clin Transplant, vol. 18, pp. 434-9, Aug 2004. 

 
[74] M. Sarwal, M. S. Chua, N. Kambham, S. C. Hsieh, T. Satterwhite, M. Masek, and 

O. Salvatierra, Jr., "Molecular heterogeneity in acute renal allograft rejection 
identified by DNA microarray profiling," N Engl J Med, vol. 349, pp. 125-38, Jul 
10 2003. 

 
[75] Y. Avihingsanon, N. Ma, M. Pavlakis, W. J. Chon, M. E. Uknis, A. P. Monaco, C. 

Ferran, I. Stillman, A. D. Schachter, C. Mottley, X. X. Zheng, and T. B. Strom, 
"On the intraoperative molecular status of renal allografts after vascular 
reperfusion and clinical outcomes," J Am Soc Nephrol, vol. 16, pp. 1542-8, Jun 
2005. 

 
[76] J. Radermacher, M. Mengel, S. Ellis, S. Stuht, M. Hiss, A. Schwarz, U. 

Eisenberger, M. Burg, F. C. Luft, W. Gwinner, and H. Haller, "The renal arterial 
resistance index and renal allograft survival," N Engl J Med, vol. 349, pp. 115-24, 
Jul 10 2003. 

 
[77] P. A. Marsden, "Predicting outcomes after renal transplantation--new tools and 

old tools," N Engl J Med, vol. 349, pp. 182-4, Jul 10 2003. 
 
[78] H. Bourgoin, G. Paintaud, M. Buchler, Y. Lebranchu, E. Autret-Leca, F. Mentre, 

and C. Le Guellec, "Bayesian estimation of cyclosporin exposure for routine 
therapeutic drug monitoring in kidney transplant patients," Br J Clin Pharmacol, 
vol. 59, pp. 18-27, Jan 2005. 

 
[79] G. Camps-Valls, B. Porta-Oltra, E. Soria-Olivas, J. D. Martin-Guerrero, A. J. 

Serrano-Lopez, J. J. Perez-Ruixo, and N. V. Jimenez-Torres, "Prediction of 
cyclosporine dosage in patients after kidney transplantation using neural 
networks," IEEE Trans Biomed Eng, vol. 50, pp. 442-8, Apr 2003. 

 
[80] C. Willis, C. E. Staatz, and S. E. Tett, "Bayesian forecasting and prediction of 

tacrolimus concentrations in pediatric liver and adult renal transplant recipients," 
Ther Drug Monit, vol. 25, pp. 158-66, Apr 2003. 

 
[81] C. Le Guellec, H. Bourgoin, M. Buchler, Y. Le Meur, Y. Lebranchu, P. Marquet, 

and G. Paintaud, "Population pharmacokinetics and Bayesian estimation of 
mycophenolic acid concentrations in stable renal transplant patients," Clin 
Pharmacokinet, vol. 43, pp. 253-66, 2004. 

 
[82] P. Abdolmaleki, M. Movhead, R. I. Taniguchi, K. Masuda, and L. D. Buadu, 

"Evaluation of complications of kidney transplantation using artificial neural 
networks," Nucl Med Commun, vol. 18, pp. 623-30, Jul 1997. 

 
[83] P. N. Furness, J. Levesley, Z. Luo, N. Taub, J. I. Kazi, W. D. Bates, and M. L. 

Nicholson, "A neural network approach to the biopsy diagnosis of early acute 
renal transplant rejection," Histopathology, vol. 35, pp. 461-7, Nov 1999. 



  149 

 

[84] S. V. Jassal, M. D. Krahn, G. Naglie, J. S. Zaltzman, J. M. Roscoe, E. H. Cole, 
and D. A. Redelmeier, "Kidney transplantation in the elderly: a decision analysis," 
J Am Soc Nephrol, vol. 14, pp. 187-96, Jan 2003. 

 
[85] V. Douzdjian, D. Ferrara, and G. Silvestri, "Treatment strategies for insulin-

dependent diabetics with ESRD: a cost-effectiveness decision analysis model," 
Am J Kidney Dis, vol. 31, pp. 794-802, May 1998. 

 
[86] G. A. Knoll and G. Nichol, "Dialysis, kidney transplantation, or pancreas 

transplantation for patients with diabetes mellitus and renal failure: a decision 
analysis of treatment options," J Am Soc Nephrol, vol. 14, pp. 500-15, Feb 2003. 

 
[87] G. Opelz, N. Sasaki, and P. I. Terasaki, "Prediction of long-term kidney transplant 

survival rates by monitoring early graft function and clinical grades," 
Transplantation, vol. 25, pp. 212-5, Apr 1978. 

 
[88] D. Sheppard, D. McPhee, C. Darke, B. Shrethra, R. Moore, A. Jurewitz, and A. 

Gray, "Predicting cytomegalovirus disease after renal transplantation: an artificial 
neural network approach," Int J Med Inf, vol. 54, pp. 55-76, Apr 1999. 

 
[89] S. L. Nyberg, A. J. Matas, W. K. Kremers, J. D. Thostenson, T. S. Larson, M. 

Prieto, M. B. Ishitani, S. Sterioff, and M. D. Stegall, "Improved scoring system to 
assess adult donors for cadaver renal transplantation," Am J Transplant, vol. 3, 
pp. 715-21, Jun 2003. 

 
[90] E. S. Baskin-Bey, W. Kremers, M. D. Stegall, and S. L. Nyberg, "United Network 

for Organ Sharing's expanded criteria donors: is stratification useful?," Clin 
Transplant, vol. 19, pp. 406-12, Jun 2005. 

 
[91] S. L. Nyberg, E. S. Baskin-Bey, W. Kremers, M. Prieto, M. L. Henry, and M. D. 

Stegall, "Improving the prediction of donor kidney quality: deceased donor score 
and resistive indices," Transplantation, vol. 80, pp. 925-9, Oct 15 2005. 

 
[92] J. Moore, K. Tan, P. Cockwell, H. Krishnan, D. McPake, A. Ready, S. Mellor, A. 

Hamsho, S. Ball, G. Lipkin, and R. Borrows, "Predicting early renal allograft 
function using clinical variables," Nephrol Dial Transplant, vol. 22, pp. 2669-77, 
Sep 2007. 

 
[93] S. V. Jassal, D. E. Schaubel, and S. S. Fenton, "Predicting mortality after kidney 

transplantation: a clinical tool," Transpl Int, vol. 18, pp. 1248-57, Nov 2005. 
 
[94] A. S. Goldfarb-Rumyantzev, "Prediction model of cadaveric graft survival.  United 

States Patent 20060122786; Kind Code:A1," Available: 
http://www.freepatentsonline.com/20060122786.html USA, 2006. 

 
[95] A. S. Goldfarb-Rumyantzev, J. K. Koford, B. C. Baird, M. Chelamcharla, A. N. 

Habib, B. J. Wang, S. J. Lin, F. Shihab, and R. B. Isaacs, "Role of socioeconomic 
status in kidney transplant outcome," Clin J Am Soc Nephrol, vol. 1, pp. 313-22, 
Mar 2006. 

 



  150 

 

[96] A. S. Goldfarb-Rumyantzev, L. Smith, F. S. Shihab, B. C. Baird, A. N. Habib, S. 
J. Lin, and L. L. Barenbaum, "Role of maintenance immunosuppressive regimen 
in kidney transplant outcome," Clin J Am Soc Nephrol, vol. 1, pp. 563-74, May 
2006. 

 
[97] S. Krikov, A. Khan, B. C. Baird, L. L. Barenbaum, A. Leviatov, J. K. Koford, and 

A. S. Goldfarb-Rumyantzev, "Predicting kidney transplant survival using tree-
based modeling," Asaio J, vol. 53, pp. 592-600, Sep-Oct 2007. 

 
[98] S. L. Nyberg, A. J. Matas, M. Rogers, W. S. Harmsen, J. A. Velosa, T. S. Larson, 

M. Prieto, M. B. Ishitani, S. Sterioff, and M. D. Stegall, "Donor scoring system for 
cadaveric renal transplantation," American Journal of Transplantation, vol. 1, pp. 
162-170, 2001. 

 
[99] J. R. Landis and G. G. Koch, "The measurement of observer agreement for 

categorical data," Biometrics, vol. 33, pp. 159-174, 1977. 
 
[100] A. S. Goldfarb-Rumyantzev and L. Pappas, "Prediction of renal insufficiency in 

Pima Indians with nephropathy of type 2 diabetes mellitus," Am J Kidney Dis, vol. 
40, pp. 252-264, Aug 2002. 

 
[101] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and 

Regression Trees. Monterey, CA: Wadsworth and Brooks/Cole, 1984. 
 
[102] M. L. Jordan, R. Shapiro, C. A. Vivas, V. P. Scantlebury, R. J. Corry, P. 

Randhawa, T. R. Hakala, and T. E. Starzl, "High-risk donors: expanding donor 
criteria," Transplant Proc, vol. 31, pp. 1401-1403, Feb-Mar 1999. 

 
[103] P. I. Terasaki and J. M. Cecka, "The center effect: is bigger better?," in Clin 

Transpl 1999, 1999, pp. 317-324. 
 
[104] A. J. Bleyer, L. A. Donaldson, M. McIntosh, and P. L. Adams, "Relationship 

between underlying renal disease and renal transplantation outcome," Am J 
Kidney Dis, vol. 37, pp. 1152-1161, June 2001. 

 
[105] H. U. Meier-Kriesche, F. K. Port, A. O. Ojo, S. M. Rudich, J. A. Hanson, D. M. 

Cibrik, A. B. Leichtman, and B. Kaplan, "Effect of waiting time on renal transplant 
outcome," Kidney Int, vol. 58, pp. 1311-1317, Sep 2000. 

 
[106] B. L. Kasiske, J. J. Snyder, A. J. Matas, M. D. Ellison, J. S. Gill, and A. T. Kausz, 

"Preemptive kidney transplantation: the advantage and the advantaged," J Am 
Soc Nephrol, vol. 13, pp. 1358-1364, May 2002. 

 
[107] K. C. Mange, M. M. Joffe, and H. Feldman, "Effect of the use or nonuse of long-

term dialysis on the subsequent survival of renal transplants from living donors," 
N Engl J Med, vol. 344, pp. 726-731, 2001. 

 
[108] H. U. Meier-Kriesche, M. Vaghela, R. Thambuganipalle, G. Friedman, M. Jacobs, 

and B. Kaplan, "The effect of body mass index on long-term renal allograft 
survival," Transplantation, vol. 68, pp. 1294-1297, Nov 15 1999. 



  151 

 

[109] G. Remuzzi, J. Grinyo, P. Ruggenenti, M. Beatini, E. H. Cole, E. L. Milford, and 
B. M. Brenner, "Early Experience with Dual Kidney Transplantation in Adults 
Using Expanded Donor Criteria," J Am Soc Nephrol, vol. 10, pp. 2591-2598, 
1999. 

 
[110] R. J. Howard, V. B. Thai, P. R. Patton, A. W. Hemming, A. I. Reed, W. J. Van der 

Werf, S. Fujita, J. L. Karlix, and J. C. Scornik, "Obesity does not portend a bad 
outcome for kidney transplant recipients," Transplantation, vol. 73, pp. 53-55, Jan 
15 2002. 

 
[111] P. J. Healey, R. McDonald, J. H. Waldhausen, R. Sawin, and D. Tapper, 

"Transplantation of adult living donor kidneys into infants and small children," 
Arch Surg, vol. 135, pp. 1035-1041, Sep 2000. 

 
[112] F. Poli, M. Scalamogna, M. Cardillo, E. Porta, and G. Sirchia, "An algorithm for 

cadaver kidney allocation based on a multivariate analysis of factors impacting 
on cadaver kidney graft survival and function," Transpl Int, vol. 13 Suppl 1, pp. 
S259-S262, 2000. 

 
[113] S. J. Davies, L. Russell, J. Bryan, L. Phillips, and G. I. Russell, "Comorbidity, 

urea kinetics, and appetite in continuous ambulatory peritoneal dialysis patients: 
their interrelationship and prediction of survival," Am J Kidney Dis, vol. 26, pp. 
353-361, Aug 1995. 

 
[114] VanBiesen, R. Vanholder, and N. Lameire, "Impact of pretransplantation dialysis 

modality on patient outcome after renal transplantation: the role of peritoneal 
dialysis revisited," Peritoneal Dialysis International, vol. 19, pp. 103-106, Mar-Apr 
1999. 

 
[115] R. Vanholder, P. Heering, A. V. Loo, W. V. Biesen, M. C. Lambert, U. Hesse, M. 

V. Vennet, B. Grabensee, and N. Lameire, "Reduced incidence of acute renal 
graft failure in patients treated with peritoneal dialysis compared with 
hemodialysis," Am J Kidney Dis, vol. 33, pp. 934-40, May 1999. 

 
[116] W. Van Biesen, R. Vanholder, A. Van Loo, M. Van Der Vennet, and N. Lameire, 

"Peritoneal dialysis favorably influences early graft function after renal 
transplantation compared to hemodialysis," Transplantation, vol. 69, pp. 508-14, 
Feb 27 2000. 

 
[117] A. J. Bleyer, J. M. Burkart, G. B. Russell, and P. L. Adams, "Dialysis modality and 

delayed graft function after cadaveric renal transplantation," J Am Soc Nephrol, 
vol. 10, pp. 154-9, Jan 1999. 

 
[118] T. V. Cacciarelli, N. B. Sumrani, A. DiBenedetto, J. H. Hong, and B. G. Sommer, 

"The influence of mode of dialysis pretransplantation on long-term renal allograft 
outcome," Ren Fail, vol. 15, pp. 545-550, 1993. 

 
[119] F. G. Cosio, A. Alamir, S. Yim, T. E. Pesavento, M. E. Falkenhain, M. L. Henry, 

E. A. Elkhammas, E. A. Davies, G. L. Bumgardner, and R. M. Ferguson, "Patient 
survival after renal transplantation: I. The impact of dialysis pre-transplant," 
Kidney Int, vol. 53, pp. 767-772, Mar 1998. 



  152 

 

[120] G. Triolo, G. P. Segoloni, M. Salomone, G. B. Piccoli, M. Messina, C. Massara, 
D. B. Bertinet, and A. Vercellone, "Comparison between two dialytic populations 
undergoing renal transplantation," Adv Perit Dial, vol. 6, pp. 72-5, 1990. 

 
[121] J. B. Evangelista, Jr., D. Bennett-Jones, J. S. Cameron, C. Ogg, D. G. Williams, 

D. H. Taube, G. Neild, and C. Rudge, "Renal transplantation in patients treated 
with haemodialysis and short term and long term continuous ambulatory 
peritoneal dialysis," Br Med J (Clin Res Ed), vol. 291, pp. 1004-7, Oct 12 1985. 

 
[122] P. K. Donnelly, T. W. Lennard, G. Proud, R. M. Taylor, R. Henderson, K. 

Fletcher, W. Elliott, M. K. Ward, and R. Wilkinson, "Continuous ambulatory 
peritoneal dialysis and renal transplantation: a five year experience," Br Med J 
(Clin Res Ed), vol. 291, pp. 1001-4, Oct 12 1985. 

 
[123] D. O'Donoghue, J. Manos, R. Pearson, P. Scott, A. Bakran, R. Johnson, P. Dyer, 

S. Martin, and R. Gokal, "Continuous ambulatory peritoneal dialysis and renal 
transplantation: a ten-year experience in a single center," Perit Dial Int, vol. 12, 
pp. 242, 245-9, 1992. 

 
[124] T. V. Cacciarelli, N. B. Sumrani, A. DiBenedetto, J. H. Hong, and B. G. Sommer, 

"The influence of mode of dialysis pretransplantation on long-term renal allograft 
outcome," Ren Fail, vol. 15, pp. 545-50, 1993. 

 
[125] J. J. Snyder, B. L. Kasiske, D. T. Gilbertson, and A. J. Collins, "A comparison of 

transplant outcomes in peritoneal and hemodialysis patients," Kidney Int, vol. 62, 
pp. 1423-30, Oct 2002. 

 
[126] M. Perez Fontan, A. Rodriguez-Carmona, P. Bouza, T. Garcia Falcon, M. Adeva, 

F. Valdes, and J. Oliver, "Delayed graft function after renal transplantation in 
patients undergoing peritoneal dialysis and hemodialysis," Adv Perit Dial, vol. 12, 
pp. 101-4, 1996. 

 
[127] R. Binaut, M. Hazzan, F. R. Pruvot, M. Dracon, G. Lelievre, and C. Noel, 

"Comparative study of chronic ambulatory peritoneal dialysis versus 
hemodialysis patients after kidney transplantation: clinical and financial 
assessment," Transplant Proc, vol. 29, p. 2428, Aug 1997. 

 
[128] E. Thodis, P. Passadakis, V. Vargemezis, and D. G. Oreopoulos, "Peritoneal 

dialysis: better than, equal to, or worse than hemodialysis? Data worth knowing 
before choosing a dialysis modality," Perit Dial Int, vol. 21, pp. 25-35, Jan-Feb 
2001. 

 
[129] M. Perez Fontan, A. Rodriguez-Carmona, T. Garcia Falcon, C. Tresancos, P. 

Bouza, and F. Valdes, "Peritoneal dialysis is not a risk factor for primary vascular 
graft thrombosis after renal transplantation," Perit Dial Int, vol. 18, pp. 311-6, 
May-Jun 1998. 

 
[130] B. G. Murphy, C. M. Hill, D. Middleton, C. C. Doherty, J. H. Brown, W. E. Nelson, 

R. M. Kernohan, P. K. Keane, J. F. Douglas, and P. T. McNamee, "Increased 
renal allograft thrombosis in CAPD patients," Nephrol Dial Transplant, vol. 9, pp. 
1166-9, 1994. 



  153 

 

[131] J. A. van der Vliet, W. B. Barendregt, A. J. Hoitsma, and F. G. Buskens, 
"Increased incidence of renal allograft thrombosis after continuous ambulatory 
peritoneal dialysis," Clin Transplant, vol. 10, pp. 51-4, Feb 1996. 

 
[132] A. N. Vats, L. Donaldson, R. N. Fine, and B. M. Chavers, "Pretransplant dialysis 

status and outcome of renal transplantation in North American children: a 
NAPRTCS Study. North American Pediatric Renal Transplant Cooperative 
Study," Transplantation, vol. 69, pp. 1414-9, Apr 15 2000. 

 
[133] J. A. Passalacqua, A. M. Wiland, J. C. Fink, S. T. Bartlett, D. A. Evans, and S. 

Keay, "Increased incidence of postoperative infections associated with peritoneal 
dialysis in renal transplant recipients," Transplantation, vol. 68, pp. 535-40, Aug 
27 1999. 

 
[134] Z. Kang, G. Fang, and W. Chen, "A comparative study of the outcome of renal 

transplantation in peritoneal dialysis and hemodialysis patients," Chin Med Sci J, 
vol. 7, pp. 49-52, Mar 1992. 

 
[135] J. Miemois-Foley, M. Paunio, O. Lyytikainen, and K. Salmela, "Bacteremia 

among kidney transplant recipients: a case-control study of risk factors and short-
term outcomes," Scand J Infect Dis, vol. 32, pp. 69-73, 2000. 

 
[136] J. Rubin, K. A. Kirchner, S. Raju, R. P. Krueger, and J. D. Bower, "CAPD patients 

as renal transplant patients," Am J Med Sci, vol. 294, pp. 175-80, Sep 1987. 
 
[137] F. G. Cosio, A. Alamir, S. Yim, T. E. Pesavento, M. E. Falkenhain, M. L. Henry, 

E. A. Elkhammas, E. A. Davies, G. L. Bumgardner, and R. M. Ferguson, "Patient 
survival after renal transplantation: I. The impact of dialysis pre-transplant," 
Kidney Int, vol. 53, pp. 767-72, Mar 1998. 

 
[138] M. Misra, E. Vonesh, J. C. Van Stone, H. L. Moore, B. Prowant, and K. D. Nolph, 

"Effect of cause and time of dropout on the residual GFR: a comparative analysis 
of the decline of GFR on dialysis," Kidney Int, vol. 59, pp. 754-63, Feb 2001. 

 
[139] M. Lopez-Cepero, C. E. Sanders, J. Buggs, and V. Bowers, "Sensitization of 

renal transplant candidates by cryopreserved cadaveric venous or arterial 
allografts," Transplantation, vol. 73, pp. 817-9, Mar 15 2002. 

 
[140] A. Nishimoto and Y. Matsumoto, "Increase of peripheral natural killer T cells in 

hemodialysis patients," Clin Nephrol, vol. 55, pp. 121-6, Feb 2001. 
 
[141] A. C. Cooper, A. Mikhail, M. W. Lethbridge, D. M. Kemeny, and I. C. Macdougall, 

"Increased expression of erythropoiesis inhibiting cytokines (IFN-gamma, TNF-
alpha, IL-10, and IL-13) by T cells in patients exhibiting a poor response to 
erythropoietin therapy," J Am Soc Nephrol, vol. 14, pp. 1776-84, Jul 2003. 

 
[142] T. Yokoyama, K. Nitta, K. Futatsuyama, T. Hayashi, K. Honda, K. Uchida, A. 

Kawashima, W. Yumura, and H. Nihei, "Identification of T helper cell subsets in 
continuous ambulatory peritoneal dialysis patients," Nephron, vol. 89, pp. 215-8, 
Oct 2001. 



  154 

 

[143] C. Libetta, T. Rampino, and A. Dal Canton, "Polarization of T-helper lymphocytes 
toward the Th2 phenotype in uremic patients," Am J Kidney Dis, vol. 38, pp. 286-
95, Aug 2001. 

 
[144] P. J. Held, M. N. Turenne, D. W. Liska, D. L. Zobel, R. L. Webb, S. R. Alexander, 

and C. Jones, "Treatment modality patterns and transplantation among the 
United States pediatric end-stage renal disease population: a longitudinal study," 
in Clin Transplants 1991 Los Angeles: UCLA Immunogenetics Center, 1992, pp. 
71-85. 

 
[145] T. M. Jones and C. N. Mead, "The architecture of sharing. An HL7 Version 3 

framework offers semantically interoperable healthcare information," Healthc 
Inform, vol. 22, pp. 35-6, 38, Nov 2005. 

 
[146] B. L. Kasiske, J. J. Snyder, A. J. Matas, M. D. Ellison, J. S. Gill, and A. T. Kausz, 

"Preemptive kidney transplantation: the advantage and the advantaged," J Am 
Soc Nephrol, vol. 13, pp. 1358-64, May 2002. 

 
[147] M. Pascual, T. Theruvath, T. Kawai, N. Tolkoff-Rubin, and B. Cosimi, "Strategies 

to improve long-term outcomes after renal transplantation," N Engl J Med, vol. 
346, pp. 580-590, 2002. 

 
[148] K. C. Mange, M. M. Joffe, and H. I. Feldman, "Effect of the use or nonuse of 

long-term dialysis on the subsequent survival of renal transplants from living 
donors," N Engl J Med, vol. 344, pp. 726-31, Mar 8 2001. 

 
[149] M. G. Veller, J. R. Botha, J. Seggie, P. D. Thomson, A. M. Meyers, and J. A. 

Myburgh, "Renal retransplantation. The Johannesburg Hospital experience," S 
Afr Med J, vol. 71, pp. 752-4, Jun 20 1987. 

 
[150] D. W. Gjertson, "A multi-factor analysis of kidney regraft outcomes," Clin Transpl, 

pp. 335-49, 2002. 
 
[151] K. C. Mange, M. M. Joffe, and H. I. Feldman, "Dialysis prior to living donor kidney 

transplantation and rates of acute rejection," Nephrol Dial Transplant, vol. 18, pp. 
172-7, Jan 2003. 

 
[152] L. M. Moist, F. K. Port, S. M. Orzol, E. W. Young, T. Ostbye, R. A. Wolfe, T. 

Hulbert-Shearon, C. A. Jones, and W. E. Bloembergen, "Predictors of loss of 
residual renal function among new dialysis patients," J Am Soc Nephrol, vol. 11, 
pp. 556-64, Mar 2000. 

 
[153] B. Moser, G. Roth, M. Brunner, T. Lilaj, R. Deicher, E. Wolner, J. Kovarik, G. 

Boltz-Nitulescu, A. Vychytil, and H. J. Ankersmit, "Aberrant T cell activation and 
heightened apoptotic turnover in end-stage renal failure patients: a comparative 
evaluation between non-dialysis, haemodialysis, and peritoneal dialysis," 
Biochem Biophys Res Commun, vol. 308, pp. 581-5, Aug 29 2003. 

 
[154] R. B. Isaacs, S. L. Nock, C. E. Spencer, A. F. Connors, Jr., X. Q. Wang, R. 

Sawyer, and P. I. Lobo, "Racial disparities in renal transplant outcomes," Am J 
Kidney Dis, vol. 34, pp. 706-12, Oct 1999. 



  155 

 

[155] R. Isaacs, "Ethical implications of ethnic disparities in chronic kidney disease and 
kidney transplantation," Adv Ren Replace Ther, vol. 11, pp. 55-8, Jan 2004. 

 
[156] R. B. Isaacs, P. I. Lobo, S. L. Nock, J. A. Hanson, A. O. Ojo, and T. L. Pruett, 

"Racial disparities in access to simultaneous pancreas-kidney transplantation in 
the United States," Am J Kidney Dis, vol. 36, pp. 526-33, Sep 2000. 

 
[157] R. B. Isaacs, A. Conners, Jr., S. Nock, C. Spencer, and P. Lobo, "Noncompliance 

in living-related donor renal transplantation: the United Network of Organ Sharing 
experience," Transplant Proc, vol. 31, pp. 19S-20S, Jun 1999. 

 
[158] J. Z. Ayanian, P. D. Cleary, J. S. Weissman, and A. M. Epstein, "The effect of 

patients' preferences on racial differences in access to renal transplantation," N 
Engl J Med, vol. 341, pp. 1661-9, Nov 25 1999. 

 
[159] V. A. Diaz, Jr., "Cultural factors in preventive care: Latinos," Prim Care, vol. 29, 

pp. 503-17, viii, Sep 2002. 
 
[160] J. R. Chapman, "Compliance: the patient, the doctor, and the medication?," 

Transplantation, vol. 77, pp. 782-6, Mar 15 2004. 
 
[161] M. E. Gornick, P. W. Eggers, T. W. Reilly, R. M. Mentnech, L. K. Fitterman, L. E. 

Kucken, and B. C. Vladeck, "Effects of race and income on mortality and use of 
services among Medicare beneficiaries," N Engl J Med, vol. 335, pp. 791-9, Sep 
12 1996. 

 
[162] G. C. Alexander and A. R. Sehgal, "Barriers to cadaveric renal transplantation 

among blacks, women, and the poor," Jama, vol. 280, pp. 1148-52, Oct 7 1998. 
 
[163] H. Y. Yoo and P. J. Thuluvath, "Outcome of liver transplantation in adult 

recipients: influence of neighborhood income, education, and insurance," Liver 
Transpl, vol. 10, pp. 235-43, Feb 2004. 

 
[164] R. S. Woodward, M. A. Schnitzler, J. A. Lowell, E. L. Spitznagel, and D. C. 

Brennan, "Effect of extended coverage of immunosuppressive medications by 
medicare on the survival of cadaveric renal transplants," Am J Transplant, vol. 1, 
pp. 69-73, May 2001. 

 
[165] E. F. Yen, K. Hardinger, D. C. Brennan, R. S. Woodward, N. M. Desai, J. S. 

Crippin, B. F. Gage, and M. A. Schnitzler, "Cost-effectiveness of extending 
Medicare coverage of immunosuppressive medications to the life of a kidney 
transplant," Am J Transplant, vol. 4, pp. 1703-8, Oct 2004. 

 
[166] A. D. Federman, A. S. Adams, D. Ross-Degnan, S. B. Soumerai, and J. Z. 

Ayanian, "Supplemental insurance and use of effective cardiovascular drugs 
among elderly medicare beneficiaries with coronary heart disease," Jama, vol. 
286, pp. 1732-9, Oct 10 2001. 

 
[167] J. A. Finkelstein, P. Lozano, H. J. Farber, I. Miroshnik, and T. A. Lieu, "Underuse 

of controller medications among Medicaid-insured children with asthma," Arch 
Pediatr Adolesc Med, vol. 156, pp. 562-7, Jun 2002. 



  156 

 

[168] J. H. Gurwitz, R. J. Goldberg, J. A. Malmgren, H. V. Barron, A. J. Tiefenbrunn, P. 
D. Frederick, and J. M. Gore, "Hospital transfer of patients with acute myocardial 
infarction: the effects of age, race, and insurance type," Am J Med, vol. 112, pp. 
528-34, May 2002. 

 
[169] I. B. Wilson, W. H. Rogers, H. Chang, and D. G. Safran, "Cost-related skipping of 

medications and other treatments among Medicare beneficiaries between 1998 
and 2000. Results of a national study," J Gen Intern Med, vol. 20, pp. 715-20, 
Aug 2005. 

 
[170] M. A. Smith, J. R. Frytak, J. I. Liou, and M. D. Finch, "Rehospitalization and 

survival for stroke patients in managed care and traditional Medicare plans," Med 
Care, vol. 43, pp. 902-10, Sep 2005. 

 
[171] "Educational Attainment in the United States: March 2000 (Update):U.S. Census 

Bureau, Population Division, Education & Social Stratification Branch, 
Washington, D.C., http://www.census.gov/population/www/socdemo/educ-
attn.html, last accessed 10/28/05." 

 
[172] G. A. Finlay, B. Joseph, C. R. Rodrigues, J. Griffith, and A. C. White, "Advanced 

presentation of lung cancer in Asian immigrants: a case-control study," Chest, 
vol. 122, pp. 1938-43, Dec 2002. 

 
[173] D. P. Dunham, A. Czysczon, N. Chavez, J. Piorkowski, and V. Persky, "Dietary 

differences among women of Polish descent by country of birth and duration of 
residency in the United States," Ethn Dis, vol. 14, pp. 219-226, 2004. 

 
[174] U.S.CensusBureau, "Profile of general demographic characteristics: 2000."  

Available: http://censtats.census.gov/us/01000.pdf.." 
 
[175] "From the Center of Disease Control and Prevention. State-specific trends in US 

live births to women born outside the 50 states and the District of Columbia--
United States, 1990 and 2000," Jama, vol. 289, pp. 1503-5, Mar 26 2003. 

 
[176] H. R. Searight and J. Gafford, ""It's like playing with your destiny": Bosnian 

immigrants' views of advance directives and end-of-life decision-making," J 
Immigr Health, vol. 7, pp. 195-203, Jul 2005. 

 
[177] J. A. Greenberg, "Hypothesis - the J-shaped follow-up relation between mortality 

risk and disease risk-factor is due to statistical confounding," Med Hypotheses, 
vol. 59, pp. 568-576, Nov 2002. 

 
[178] J. D. Pirsch, J. Miller, M. H. Deierhoi, F. Vincenti, and R. S. Filo, "A comparison 

of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric 
renal transplantation. FK506 Kidney Transplant Study Group," Transplantation, 
vol. 63, pp. 977-83, Apr 15 1997. 

 
[179] H. W. Sollinger, "Mycophenolate mofetil for the prevention of acute rejection in 

primary cadaveric renal allograft recipients. U.S. Renal Transplant 
Mycophenolate Mofetil Study Group," Transplantation, vol. 60, pp. 225-32, Aug 
15 1995. 



  157 

 

[180] R. Shapiro, M. L. Jordan, V. P. Scantlebury, C. Vivas, J. W. Marsh, J. McCauley, 
J. Johnston, P. Randhawa, W. Irish, H. A. Gritsch, R. Naraghi, T. R. Hakala, J. J. 
Fung, and T. E. Starzl, "A prospective, randomized trial of tacrolimus/prednisone 
versus tacrolimus/prednisone/mycophenolate mofetil in renal transplant 
recipients," Transplantation, vol. 67, pp. 411-5, Feb 15 1999. 

 
[181] S. Hariharan, C. P. Johnson, B. A. Bresnahan, S. E. Taranto, M. J. McIntosh, 

and D. Stablein, "Improved graft survival after renal transplantation in the United 
States, 1988 to 1996," N Engl J Med, vol. 342, pp. 605-12, Mar 2 2000. 

 
[182] P. F. Halloran, A. Melk, and C. Barth, "Rethinking chronic allograft nephropathy: 

The concept of accelerated cenescence," J Am Soc Nephrol, vol. 10, pp. 167-
181, January 1999. 

 
[183] "Scientific Registry of Transplant Recipients, 2004 OPTN/SRTR Annual Report," 

Available: www.ustransplant.org, last accessed May 20, 2005. 
 
[184] D. W. Gjertson, J. M. Cecka, and P. I. Terasaki, "The relative effects of FK506 

and cyclosporine on short- and long-term kidney graft survival," Transplantation, 
vol. 60, pp. 1384-8, Dec 27 1995. 

 
[185] C. Johnson, N. Ahsan, T. Gonwa, P. Halloran, M. Stegall, M. Hardy, R. Metzger, 

C. Shield, 3rd, L. Rocher, J. Scandling, J. Sorensen, L. Mulloy, J. Light, C. 
Corwin, G. Danovitch, M. Wachs, P. van Veldhuisen, K. Salm, D. Tolzman, and 
W. E. Fitzsimmons, "Randomized trial of tacrolimus (Prograf) in combination with 
azathioprine or mycophenolate mofetil versus cyclosporine (Neoral) with 
mycophenolate mofetil after cadaveric kidney transplantation," Transplantation, 
vol. 69, pp. 834-41, Mar 15 2000. 

 
[186] N. Ahsan, C. Johnson, T. Gonwa, P. Halloran, M. Stegall, M. Hardy, R. Metzger, 

C. Shield, 3rd, L. Rocher, J. Scandling, J. Sorensen, L. Mulloy, J. Light, C. 
Corwin, G. Danovitch, M. Wachs, P. VanVeldhuisen, K. Salm, D. Tolzman, and 
W. E. Fitzsimmons, "Randomized trial of tacrolimus plus mycophenolate mofetil 
or azathioprine versus cyclosporine oral solution (modified) plus mycophenolate 
mofetil after cadaveric kidney transplantation: results at 2 years," 
Transplantation, vol. 72, pp. 245-50, Jul 27 2001. 

 
[187] S. Bunnapradist and S. K. Takemoto, "Controlling treatment allocation bias in a 

registry analysis when comparing calcineurin inhibitors," Transplant Proc, vol. 35, 
pp. 2407-8, Nov 2003. 

 
[188] T. H. Mathew, "A blinded, long-term, randomized multicenter study of 

mycophenolate mofetil in cadaveric renal transplantation: results at three years. 
Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group," 
Transplantation, vol. 65, pp. 1450-4, Jun 15 1998. 

 
[189] A. O. Ojo, H. U. Meier-Kriesche, J. A. Hanson, A. B. Leichtman, D. Cibrik, J. C. 

Magee, R. A. Wolfe, L. Y. Agodoa, and B. Kaplan, "Mycophenolate mofetil 
reduces late renal allograft loss independent of acute rejection," Transplantation, 
vol. 69, pp. 2405-9, Jun 15 2000. 



  158 

 

[190] A. J. Matas, K. J. Gillingham, A. Humar, D. L. Dunn, D. E. Sutherland, and J. S. 
Najarian, "Immunologic and nonimmunologic factors: different risks for cadaver 
and living donor transplantation," Transplantation, vol. 69, pp. 54-8, Jan 15 2000. 

 
[191] D. W. Gjertson, "Multifactorial analysis of renal transplants reported to the United 

Network for Organ Sharing Registry: a 1994 update," Clin Transpl, pp. 519-39, 
1994. 

 
[192] G. M. Danovitch, "Immunosuppressive medications for renal transplantation: a 

multiple choice question," Kidney Int, vol. 59, pp. 388-402, Jan 2001. 
 
[193] J. S. Gill, M. Tonelli, C. H. Mix, N. Johnson, and B. J. Pereira, "The effect of 

maintenance immunosuppression medication on the change in kidney allograft 
function," Kidney Int, vol. 65, pp. 692-9, Feb 2004. 

 
[194] R. Trompeter, G. Filler, N. J. Webb, A. R. Watson, D. V. Milford, G. Tyden, R. 

Grenda, J. Janda, D. Hughes, J. H. Ehrich, B. Klare, G. Zacchello, I. Bjorn 
Brekke, M. McGraw, F. Perner, L. Ghio, E. Balzar, S. Friman, R. Gusmano, and 
J. Stolpe, "Randomized trial of tacrolimus versus cyclosporin microemulsion in 
renal transplantation," Pediatr Nephrol, vol. 17, pp. 141-9, Mar 2002. 

 
[195] B. K. Kramer, G. Montagnino, D. Del Castillo, R. Margreiter, H. Sperschneider, C. 

J. Olbricht, B. Kruger, J. Ortuno, H. Kohler, U. Kunzendorf, H. K. Stummvoll, J. 
M. Tabernero, F. Muhlbacher, M. Rivero, and M. Arias, "Efficacy and safety of 
tacrolimus compared with cyclosporin A microemulsion in renal transplantation: 2 
year follow-up results," Nephrol Dial Transplant, vol. 20, pp. 968-73, May 2005. 

 
[196] J. M. Boots, E. M. van Duijnhoven, M. H. Christiaans, F. H. Nieman, R. J. van 

Suylen, and J. P. van Hooff, "Single-center experience with tacrolimus versus 
cyclosporine-Neoral in renal transplant recipients," Transpl Int, vol. 14, pp. 370-
83, Dec 2001. 

 
[197] B. M. Meiser, J. Groetzner, I. Kaczmarek, P. Landwehr, M. Muller, S. Jung, P. 

Uberfuhr, P. Fraunberger, H. U. Stempfle, M. Weis, and B. Reichart, "Tacrolimus 
or cyclosporine: which is the better partner for mycophenolate mofetil in heart 
transplant recipients?," Transplantation, vol. 78, pp. 591-8, Aug 27 2004. 

 
[198] A. Zuckermann, H. Reichenspurner, T. Birsan, H. Treede, E. Deviatko, B. 

Reichart, and W. Klepetko, "Cyclosporine A versus tacrolimus in combination 
with mycophenolate mofetil and steroids as primary immunosuppression after 
lung transplantation: one-year results of a 2-center prospective randomized trial," 
J Thorac Cardiovasc Surg, vol. 125, pp. 891-900, Apr 2003. 

 
[199] T. Gonwa, C. Johnson, N. Ahsan, E. J. Alfrey, P. Halloran, M. Stegall, M. Hardy, 

R. Metzger, C. Shield, 3rd, L. Rocher, J. Scandling, J. Sorensen, L. Mulloy, J. 
Light, C. Corwin, G. Danovitch, M. Wachs, P. VanVeldhuisen, M. Leonhardt, and 
W. E. Fitzsimmons, "Randomized trial of tacrolimus + mycophenolate mofetil or 
azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney 
transplantation: results at three years," Transplantation, vol. 75, pp. 2048-53, Jun 
27 2003. 



  159 

 

[200] G. J. Murphy, J. R. Waller, R. S. Sandford, P. N. Furness, and M. L. Nicholson, 
"Randomized clinical trial of the effect of microemulsion cyclosporin and 
tacrolimus on renal allograft fibrosis," Br J Surg, vol. 90, pp. 680-6, Jun 2003. 

 
[201] B. Kaplan, J. D. Schold, and H. U. Meier-Kriesche, "Long-term graft survival with 

neoral and tacrolimus: a paired kidney analysis," J Am Soc Nephrol, vol. 14, pp. 
2980-4, Nov 2003. 

 
[202] W. Irish, B. Sherrill, D. C. Brennan, J. Lowell, and M. Schnitzler, "Three-year 

posttransplant graft survival in renal-transplant patients with graft function at 6 
months receiving tacrolimus or cyclosporine microemulsion within a triple-drug 
regimen," Transplantation, vol. 76, pp. 1686-90, Dec 27 2003. 

 
[203] K. C. Mange, "Challenges from bias when estimating change of renal allograft 

function," Kidney Int, vol. 66, pp. 463; author reply 463-4, Jul 2004. 
 
[204] R. Shapiro, J. B. Young, E. L. Milford, J. F. Trotter, R. T. Bustami, and A. B. 

Leichtman, "Immunosuppression: evolution in practice and trends, 1993-2003," 
Am J Transplant, vol. 5, pp. 874-86, Apr 2005. 

 
[205] R. S. Woodward, A. Kutinova, and D. C. Brennan, "Tacrolimus Versus 

Cyclosporine Microemulsion: Immunosuppressive Regimen Makes A Difference 
In Living Renal Transplantation," American Transplant Congress, Seattle, 
Washington, May 21-25, 2005; American Journal of Transplantation, vol. 5 
Supplement 11, p. Abstract #1366, 2005. 

 
[206] R. S. Woodward, A. Kutinova, and D. C. Brennan, "Immunosuppressive Regimen 

Makes A Difference In Cadaveric Renal Transplantation: Tacrolimus Versus 
Cyclosporine Microemulsion," American Transplant Congress, Seattle, 
Washington, May 21-25, 2005; American Journal of Transplantation, vol. 5 
Supplement 11, p. Abstract #974, 2005. 

 
[207] A. C. Webster, R. C. Woodroffe, R. S. Taylor, J. R. Chapman, and J. C. Craig, 

"Tacrolimus versus ciclosporin as primary immunosuppression for kidney 
transplant recipients: meta-analysis and meta-regression of randomised trial 
data," Bmj, vol. 331, p. 810, Oct 8 2005. 

 
[208] R. T. Bustami, A. O. Ojo, R. A. Wolfe, R. M. Merion, W. M. Bennett, S. V. 

McDiarmid, A. B. Leichtman, P. J. Held, and F. K. Port, "Immunosuppression and 
the risk of post-transplant malignancy among cadaveric first kidney transplant 
recipients," Am J Transplant, vol. 4, pp. 87-93, Jan 2004. 

 
[209] A. D. Lu, J. T. Carter, R. J. Weinstein, W. Prapong, O. Salvatierra, D. C. Dafoe, 

and E. J. Alfrey, "Excellent outcome in recipients of dual kidney transplants: a 
report of the first 50 dual kidney transplants at Stanford University," Arch Surg, 
vol. 134, pp. 971-975, Sep 1999. 

 
[210] A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. 

Morris, "Delayed graft function: risk factors and the relative effects of early 
function and acute rejection on long-term survival in cadaveric renal 
transplantation," Clin Transplant, vol. 13, pp. 266-272, Jun 1999. 



  160 

 

[211] A. Tejani, D. M. Stablein, L. Donaldson, W. E. Harmon, S. R. Alexander, E. 
Kohaut, L. Emmett, and R. N. Fine, "Steady improvement in short-term graft 
survival of pediatric renal transplants: the NAPRTCS experience," in Clin Transpl 
1999, 1999, pp. 95-110. 

 
[212] J. W. Alexander, L. E. Bennett, and T. J. Breen, "Effect of donor age on outcome 

of kidney transplantation," Transplantation, vol. 57, pp. 871-876, 1994. 
 
[213] A. O. Ojo, A. B. Leichtman, J. D. Punch, J. A. Hanson, D. M. Dickinson, R. A. 

Wolfe, F. K. Port, and L. Y. Agodoa, "Impact of Pre-Existing Donor Hypertension 
and Diabetes Mellitus on Cadaveric Renal Transplant Outcomes," Am J Kidney 
Dis, vol. 36, pp. 153-159, July 2000. 

 
[214] Y. W. Cho, J. M. Cecka, D. W. Gjertson, and P. I. Terasaki, "Prolonged 

hypertension (>10 years) is a significant risk factor in older cadaver donor renal 
transplants," Transplant Proc, vol. 31, p. 1283, 1999. 

 
[215] A. I. Sánchez-Fructuoso, D. Prats, J. Torrente, J. M. Pérez-Contín, C. 

Fernández, J. Alvarez, and A. Barrientos, "Renal transplantation from non-heart 
beating donors: A promising alternative to enlarge donor pool," J Am Soc 
Nephrol, vol. 11, pp. 350-358, 2000. 

 
[216] C. Mouquet, H. Benalia, E. Chartier-Kastler, C. Sylla, P. Coriat, M. O. Bitker, and 

F. Richard, "Renal retransplantation in adults. Comparative prognostic study," 
Progres en Urologie, vol. 9, pp. 239-243, Apr 1999. 

 
[217] H. Meier-Kriesche, F. K. Port, A. O. Ojo, A. B. Leichtman, S. M. Rudich, J. A. 

Arndorfer, J. D. Punch, and B. Kaplan, "Deleterious effect of waiting time on renal 
transplant outcome," Transplant Proc, vol. 33, pp. 1204-6, Feb-Mar 2001. 

 
[218] J. G. Van Manen, J. C. Korevaar, F. W. Dekker, E. W. Boeschoten, P. M. 

Bossuyt, and R. T. Krediet, "How to adjust for comorbidity in survival studies in 
ESRD patients: a comparison of different indices," Am J Kidney Dis, vol. 40, pp. 
82-9, Jul 2002. 

 
[219] J. G. Van Manen, J. C. Korevaar, F. W. Dekker, E. W. Boeschoten, P. M. 

Bossuyt, and R. T. Krediet, "Adjustment for comorbidity in studies on health 
status in ESRD patients: which comorbidity index to use?," J Am Soc Nephrol, 
vol. 14, pp. 478-85, Feb 2003. 

 
[220] A. S. Goldfarb-Rumyantzev and L. Pappas, "Prediction of renal insufficiency in 

Pima Indians with nephropathy of type 2 diabetes mellitus," Am J Kidney Dis, vol. 
40, pp. 252-64, Aug 2002. 

 
[221] H. R. Doyle, I. Dvorchik, S. Mitchell, I. R. Marino, F. H. Ebert, J. McMichael, and 

J. J. Fung, "Predicting outcomes after liver transplantation. A connectionist 
approach," Ann Surg, vol. 219, pp. 408-15, Apr 1994. 

 
[222] C. Zapletal, M. W. Lorenz, G. Woeste, C. Wullstein, M. Golling, and W. O. 

Bechstein, "Predicting creatinine clearance by a simple formula following live-
donor kidney transplantation," Transpl Int, vol. 17, pp. 490-4, Oct 2004. 


