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ABSTRACT

Control of a prosthetic device for amputees should be as natural as possible for optimal 

integration into daily use. A commonly used source of signal for the control of a prosthetic is the 

amputee's own electrical activity in muscles, known as electromyogram (EMG) readings. In 

order for these signals to be correctly interpreted to control the prosthetic, the intended effect 

of the signals must be understood. A device capable of applying forces and measuring the 

responses of a finger along a single axis was created with the purpose of gathering data about 

the mechanical behavior of the hand and relating it to the corresponding EMG signals. Using 

force and displacement sensors, each device can quantify the behavior of a fingertip. The device 

is designed such that multiple can be combined into an array for testing several fingers at once, 

which allows the gathering of complex force and motion data for an entire hand. Data gathered 

with this device are presented, in which the EMG data are used to predict force, and compared 

with the actual force. This initial comparison shows the device's ability to gather data which can 

improve understanding of the relation of EMG signals to complex motion of the fingers, which in 

turn will lead to a more natural control of prosthetic hands.
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1. INTRODUCTION

A developing field of medical devices makes use of decoded electromyography (a 

recording of electrical activity in muscles known as EMGs) data in order to control prosthetic 

devices (Musallam, et al. 2004). This technology facilitates amputees' (or possibly those with 

congenitally absent limbs) control over devices intended to perform lost functions. For example, 

a transradial amputee can still produce EMG signals in muscles that previously controlled the 

lost hand. Decoding the EMG signal data allows interpretation of the intended motion of the 

hand, and signals can be interpreted and sent to a robotic hand to perform the same function.

Using the body's own signals has the benefit of being very natural to the user, meaning that 

an amputee would need less time becoming accustomed to moving the prosthetic due to a 

more intuitive interface.

However, the correlation between EMG signals and resulting forces applied by the body is 

not fully understood. More complex motion of the hand and fingers leads to more complex EMG 

data. In order to better understand this relationship in the hand, hardware capable of measuring 

the individual forces and displacements of the fingers for correlation with the EMG signals is 

necessary. The hardware also needs to be capable of applying forces to the fingers to provide a 

variety of force and motion stimuli. The design, individual components, and function of such 

hardware are described in this paper.



1.1. Motivation

Prosthetic devices using the EMG control method are already developed and in 

production for simple grasping (Ottobock n.d.). However, it is more difficult to differentiate the 

EMG signals for more complex motion, as in a hand with fingers moving separately. With 

advances in motion capabilities and degrees of freedom in prosthetic hands (BeBionic n.d.), it is 

necessary to better understand the EMG signal data of complex motion in the fingers in order to 

make better use of these electrical and mechanical improvements.

A device capable of applying individual forces simultaneously to each finger of a test 

subject would create an environment that represents more complex grip or motion activity. 

Gathering more comprehensive data this way would shed light on the relationship between 

complex multifinger movements and their corresponding EMG signals. Note that data from this 

device would also be compatible with emerging technologies making use of motor signals in the 

brain (Ortmann and Baziyan 2007) (Zhou, et al. 2007) (Andersen, Hwang and Mulliken 2009).

1.2. Background

Devices intended to relate motion to the user's EMG signals have been created before. 

One device, the Dynamic Skeletal Loading System, was used to apply forces to the arm so the 

muscular activity of the shoulder could be measured (Meek, Jacobsen and Fullmer 1984). These 

data were then used in controlling a prosthetic arm.

An advance in myoelectric control of prosthetics came through proportional control of 

grasping speed and force (Sears and Shaperman 1991). This modification allowed for the speed 

or force of the grasp to be based on the interpretation of gathered EMG data. This was an 

improvement over the previous generation of threshold-type hands, whose grip was either fully 

closed or open, and moved between these states at maximum speed.
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Understanding of EMG signals has advanced. There have been improvements in 

technology for gathering the signals, in understanding of their nature, and in filtering processes 

to extract more useful data (Reaz, Hussain and Mohd-Yasin 2006). This has allowed for research 

away from direct serial control, in which the prosthesis' user toggles between motions to be 

actively controlled. For example, a high signal of the forearm EMG signals could be interpreted 

as a signal to engage in motion, and the user determines whether the motion is in a grasping 

device, a wrist or elbow angle, etc. A signal from the opposite muscle group could be used to 

reverse the motion. However, this method of control was considered awkward and unintuitive 

(Farrell and Weir 2008).

A previous device, now at the University of Utah, related to the motion of the fingers used 

simple switches to determine if a finger had moved (Schieber 1991). These data were correlated 

with neural and EMG signal data (Baker, Yatsenko, et al. 2008) (Baker, Scheme, et al. 2010) 

(Baker, et al. 2009). This device had the benefit of tracking motion of multiple fingers, but a 

limitation of the device was its inability to measure the full behavior of the finger beyond 

whether it had reached a certain point (the switch) or not. The successor to this device, to be 

described on this paper, will improve on its predecessor by gathering much more detailed data, 

primarily real-time displacement and velocity values over the majority of a finger's range of 

motion and the force being exerted by the finger.

The majority of current research into EMG-based prosthetic control (and to some extent, 

readings taken of signals in the motor cortex) is based on pattern classification, and dates from 

the 1970s (Almstrom and Herberts 1978). It focuses on the patterns in the EMG signal 

associated with a certain motion. For example, a test subject is given a cue to make a fist, or to 

open his hand. The EMG signals that accompany this motion are gathered and analyzed, and a 

pattern is sought that can be used to classify similar types of signals as representing a similar
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motion. The primary benefit of pattern classification is "that it can extract more neural 

information with fewer monitored EMG signals than simple methods based only on the EMG 

magnitude" (Huang, et al. 2010). Another benefit is that multiple motions can be interpreted 

and sent to the prosthetic device. However, in surveyed literature, it was difficult to understand 

how the different motions (grasps, etc.) were performed. Most papers on pattern classification 

provided no discussion of how the motion itself was evaluated. Smith, Tenore et al. mentioned 

the use of a glove with joint angle sensors (Smith, et al. 2008), but most appeared to only cue 

the motion to be performed using a video of the motion (Zhou, et al. 2007) (Tenore, et al. 2007), 

if a method was mentioned at all. The lack of standard metrics for the motions makes 

comparison of results and decoding methods difficult (Micera, Carpaneto and Raspopovic 2010). 

There is no baseline for how quickly, fully, or forcefully the motion is completed. This 

shortcoming of typical pattern classification research would be addressed by the device 

discussed in this paper, which would gather force and position data.

Another difficulty found in pattern classification is difficulty in recognizing the motion of 

the hand when performed at different force levels (Scheme and Englehart 2011). At high force 

levels, the EMG signals are difficult to interpret due to tremor in the muscles, and the signals are 

inconsistent at low forces. The device discussed in this paper would help provide data to better 

understand the EMG signals by recording the force levels for comparison and analysis alongside 

the muscle data.
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2. HARDWARE GOALS

Gathering data of the motions and forces of the fingers along a single axis is a primary goal 

of the device. The data to be gathered are displacement and force, for correlation with EMG 

signal data. The accompanying goal is to be able to apply forces to the fingers to simulate a 

wider range of conditions for more varied data.

The primary intended user for the device is a trained macaque monkey named Mars. While 

the device is also capable of interacting with a human, the design of the device must account for 

the size, safety requirements, and behavior of a monkey.

A goal of the system was to allow each finger to move as naturally as possible. This required 

the control to react quickly and smoothly with no degradation in behavior over long periods of 

time, as would be necessary for longer tests. Details of the work towards this goal are given in 7: 

SOFTWARE DESIGN.

In its application, the device may need to be used by someone with a less technical 

background. For this reason, a goal of the project was to increase the ease of use with a friendly 

interface, including switches and knobs for intuitive interaction. See the 5: CONTROL BOX AND 

USER INTERFACE for more information.



Due to the wide variation in available equipment in different lab set-ups, the creation of a 

device that is easily integrated with standard types of data gathering systems is a goal of the 

project.

To summarize the project goals, the device must:

• Gather real-time force, velocity, and displacement data of the fingers along a single axis

• Apply individual forces, velocities, or displacements to the fingers to create varied 

stimuli for wider range of data

• Be reconfigurable in order to accommodate a variety of ergonomic or functional 

positions

• Be designed for use with a monkey

• Be safe for test subject

• Be protected from dirt, dust, or unwanted handling

• Exhibit natural motion feel

• Feature intuitive user interface

• Be compatible with wide variety of data acquisition systems

2.1. Customer requirements

In order to meet the general project goals, the device must meet the following specific 

requirements:

• Measure up to approximately 45 Newton (10 lbf) load without damage to any system 

components

• Be capable of approximately 150 mm/s (6 in/sec) velocity

• Have approximately 100 mm (4 inches) of travel

• Be able to apply approximately 22 N (5 lbf) force
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• Complete independence in each individual device in both data recording and control

• Have BNC data outputs compatible with National Instruments recording equipment

• Finger separation distance: the devices must be designed for fingers that are less than 

25mm apart in order to accommodate smaller monkey hands with less distance 

between fingers than humans

• Number of fingers to measure: the devices need only interact with the thumb and first 

three fingers. In monkey hands (and to a lesser degree also in humans) the motions of 

the little finger are interdependent with the motion of the ring finger, thus not providing 

additional data.

• Finger ring diameter: the devices are to have rings to place the fingers in so that forces 

can be applied in either direction. The inner diameter of these rings should be 10mm in 

order to fit the monkey's fingers well, and be easily interchangeable if a different size is 

desired (i.e. for a human user with larger fingers).
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3. PHYSICAL DESIGN

The physical design of the prototype had two iterations: a first to investigate the 

interactions of the primary components and the feasibility of meeting the motion (speed, force, 

etc.) goals, and a second which improved on the first with geometry that better fit the 

ergonomic size constraints.

3.1. Original version

A single prototype was created to gain experience with the components chosen to test 

their interaction and to understand the behavior of a single unit. This prototype is shown in 

Figure 1 and Figure 2. For scale, the four cylindrical shafts in Figure 1 for the frame are about 

150mm (6 inches) long. The individual components of the prototypes are described in more 

detail later in 4: HARDWARE.

The single unit prototype's basic shape and function were similar to another device used 

for haptic feedback at the University of Utah (Sylvester 2006), although the project goals 

required its size to be much larger than the haptic device. Its behavior had both good and bad 

traits. The loose tolerances on some of the connectors made the motion very smooth but 

limited accuracy of sensors, especially the position sensors as the finger ring could move
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Figure 1: Solidworks model of first prototype

I

J

Figure 2: Photo of first device prototype



significantly before the position sensors were able to read a change.

It used the same primary components as the second iteration, namely drive system and 

sensors (these components are described in detail in subsequent sections). A greater 

understanding of the interactions of the various components was gained through this iteration.

It was controlled exclusively using a dSpace 1104 board connected to a PC. While this 

system gives good functionality, it is not universal. Use of a microcontroller to manage the 

function of the device will enable the system to be compatible with a larger variety of systems.

3.2. Current version

The second iteration incorporated lessons learned about the components from the first 

iteration and incorporated them in a different geometric design to meet the ergonomic and size 

constraints. The second system is made of up a modular design. A single unit can be used by 

itself, or multiple can be bolted together which brings the finger rings close together, to 

measure the force and location of multiple fingers. Each unit individually measures the force 

and location of a fingertip placed in the ring seen in Figure 3.

A computer model of the device was created first to identify benefits and disadvantages 

of various placements of components, as well as to easily evaluate geometrical and tolerance 

issues.

The basic function is as follows (see Figure 4 for a labeled diagram). A lead screw (dark 

spiraled shaft in Figure 3) turns and moves a nut (small cylinder concentric to the lead screw, 

between two hex-head cap screws in Figure 3) back and forth along its length. An electric motor 

is connected to the lead screw, giving it power to turn. The shaft below the lead screw is to 

prevent the nut from rotating along with the lead screw, allowing the rotation to turn into linear 

motion. Connected above the nut is the force sensing load cell, to which is attached a shaft with

10



11

Figure 3: Single unit, mostly extended. Photo courtesy Thomas Taylor

a finger ring on the opposite end. An optical encoder senses the rotation of the lead screw and 

from this the linear position of the finger ring can be calculated.

The linear bearing located between the finger ring and the force sensor is not ideal for 

precise force measurements. This placement lessens the sensitivity of the load cell because the 

moving shaft has friction on it before the force is sensed. This friction can also hold the shaft at a 

position where it is placing a force on the load cell even if no force is being applied at the ring. 

This negative aspect of the design was chosen because the load cells are delicate in off-axis 

forces. Due to the high cost of a load cell and the very likely damage if it were placed on the user 

end of the shaft, the load cell was removed to a safer location with the tradeoff of some loss of 

sensitivity. This also removes wires and delicate parts from the reach of the test subject.
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Figure 4: Side view with labeled components; solid model

The design requirement for length of travel was more than any finger would move in its 

full range of motion, with the hand remaining still. With the components inside the frame taking 

up some of the room for motion, the length of travel is still nearly 130mm (5 inches). This is 

enough for the expected finger range, and also allows for the user to start the ring anywhere in 

a range and still have enough travel for the test. The range of travel is shown visually in Figure 5 

and Figure 6.

One of the most difficult aspects in the design of the device was the inability to 

manufacture the triangular end plates so that the shafts are aligned perfectly. If the three shafts 

(lead screw, top, and bottom guide shafts) are not extremely close to parallel, the device will 

have great difficulty traveling down the full length. If the shafts are significantly out of 

alignment, the device will bind and all motion is impossible. This difficulty was dealt with by 

leaving room for adjustment at the ends of the two smooth shafts so that they can match the 

angle of the rigid lead screw. While this does allow for a smooth motion, it also requires the 

"tuning" of the device during assembly for it to work properly. During use, if a screw is vibrated
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Figure 5: Single unit fully retracted; solid model

Figure 6: Single unit, fully extended; solid model

loose, it can affect the performance of the system significantly. Locking nuts and washers were 

used wherever possible to avoid this.

The triangular frame allows for the devices to nest into an array (see Figure 7), putting 

the testing rings as close as 0.8" (20mm) to each other without interfering. One of the design 

requirements was to have this distance be less than 25mm in order to accommodate smaller 

hands with less distance between fingers. Changing the shape or size of the brackets holding the 

devices together allows for different configurations for either different ergonomics or other 

functional considerations.

Bolting the devices together has the additional safety benefit of creating a barrier
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Figure 7: Three attached devices, for testing several fingers; solid model

between the testing area near the finger rings and the moving parts which could damage a 

hand. This natural barrier can be seen in Figure 8. With a top cover in place, the moving parts 

could not be reached. This would also keep lubrication on the lead screws from being thrown 

and dirtying the lab environment.
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Figure 8: Three devices arranged for minimal finger separation distance; photo courtesy Thomas Taylor



4. HARDWARE

A more thorough discussion of the important components is given in this section. These 

were parts that were selected and purchased, rather than designed and manufactured 

specifically for this project.

4.1. Drive system

Due to their interdependence, the motor and lead screw (and its corresponding nut) had 

to be chosen together to meet the velocity and force output criteria.

The velocity requirement was 150 mm/s (6 in/sec). Since this requirement involves both 

the motor and the lead screw, both had to be considered as a combination. Screws of different 

leads were considered along with their correlation to the maximum motor speed. Lead is a 

measurement of how far the nut will move along a lead screw for one rotation. See Table 1 for 

the comparison of common leads and the calculated rotational speed of the motor to meet the 

linear velocity requirement. The lead which was finally selected is highlighted.

Data were taken from a lead screw manufacturer's website (Nook Industries n.d.) to 

calculate the torque required of the motor to provide the minimum required linear force of 5 

pounds (22 Newtons). The lead screw characteristics affecting the torque required of the motor 

are nut material (plastic or bronze) and lead. Discussion with a company representative and Dr. 

Meek produced a recommendation of a multiplier of 3 to account for the loss of torque to the 

friction of the lead screw bearings and linear bearings. Torque calculations for a plastic nut



are in Table 2, with a bronze nut in Table 3. The lead which was finally selected is highlighted in 

Table 3. This torque value was then used to select a motor.

4.1.1. Lead screw and nut

The lead screw used is a Nook Industries 3/8"-2 screw (Nook Industries n.d.). Its lead is

0.5 inches (13mm), meaning that the nut advances linearly half an inch for each complete 

rotation of the screw. The company representative quoted a screw efficiency above 50% as the 

threshold for a linear load on the nut itself to cause the screw to turn (Nook Industries n.d.), 

which is desirable for the device's application. With the bronze nut, the screw's efficiency is 

rated at 74% and can withstand a linear load of 700 lbs (3114N) while moving. The nut's rated

0.009" (0.2mm) lash was so small as to not be detectable by feel.

An important aspect to consider in a lead screw selection is the PV value, the product of 

Pressure and Velocity that the nut sees. The selected manufacturer quoted 10000 (no units 

given) as the maximum PV value for a plastic nut, and 30000 for bronze. Using the 

manufacturer's website's PV calculator, the values in the following table were gathered, 

assuming a load of 10 pounds (44.5N). All of the PV values were well below the safe threshold 

for either a plastic or bronze nut. These PV values are shown in Table 4. A bronze nut was 

chosen based on a company representative's suggestion that the plastic would loosen up due to 

wear sooner than a bronze nut, decreasing the accuracy of the position readings.

Another calculator from the website found the maximum recommended RPM for the 

lead screw. For the configuration of this project, the calculator gave a value of 31759 RPM, 

which is an order of magnitude larger than the selected motor's maximum speed.

With the powerful motor and the high strength rating of the nut, the system could 

experience large forces if the motor were unable to be turned off quickly or driven in the wrong

17
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Table 1: RPM required of motor to reach velocity goal

Lead Rotations to get 6 inches RPM

0.2 30 1800

0.25 24 1440

0.5 12 720

1 6 360

Table 2: Torque calculations for motor selection, plastic nut

Lead

Plastic nut

Toraue for 

1 lb force

With 3x

friction

factor in-oz Efficiencyin-lb 5 lb force

0.2 0.05 0.25 0.75 12 64%

0.25 0.057 0.285 0.855 13.68 69%

0.5 0.101 0.505 1.515 24.24 79%

1 0.199 0.995 2.985 47.76 80%

Table 3: Torque calculations for motor selection, bronze nut

Lead

Bronze nut

Torque for 

1 lb force

With 3x

friction

factor in-oz Efficiencyin-lb 5 lb force

0.2 0.054 0.27 0.81 12.96 59%

0.25 0.063 0.315 0.945 15.12 63%

0.5 0.107 0.535 1.605 25.68 79%

1 NA



direction. This was a common occurrence during the debugging phase. For safety and to prevent 

expensive damage to the equipment, the threads at the end of each lead screw were removed 

(Figure 9). This allowed the nut to "fall off" the end of the lead screw and the screw could turn 

indefinitely without causing damage. This proved invaluable during both hardware and software 

testing, preventing damage.

4.1.2. 12V DC motor

The electric motor used is a 12 volt direct current model (Herbach and Rademan n.d.). It 

can run in either direction, and is mounted directly to the lead screw shaft through a coupler, 

with no gears in between. This allows for more direct control of the lead screw due to a 

complete lack of gear backlash. However, geared electric motors normally generate more 

torque, so an ungeared motor with sufficient torque had to be selected. The torque capabilities 

of the motor had to be balanced with its potential speed in order for the device to be able to 

move quickly enough. This motor is rated to 3000 rpm and 26 in/oz (0.18 N/m) of torque at no 

load, and 10.6 in/oz (0.07N-m) of torque at full load.

4.2. Optical encoder

The optical encoder used is a US Digital E5 model with 500 counts per revolution (US 

Digital n.d.). Combined with the 0.5 inches (13mm) spiral rate of the lead screw, this allows for 

location data to be accurate to .001 inches (0.03mm), ignoring lash in the mechanical system.

The lash in the screw is rated to 0.009" (0.2mm), so this is the expected accuracy of the 

encoder's position sensing. A model with a pass-through hole was chosen to allow the encoder 

to be mounted in between the threaded part of the lead screw and the motor coupler. The disk 

is placed directly on the lead screw shaft and held in place with a set screw. This allowed
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Table 4: PV values for screws of different leads

Lead RPM PV Value
0.2 1800 6290
0.25 1440 5032
0.5 720 2516
1 360 1258

Figure 9: Threads removed from lead screw ends to prevent damage; photo courtesy Thomas Taylor

the motor to sit on the end of the lead screw and eliminated gear lash with a direct drive 

coupler.

Its electrical output has two channels, allowing for determination of rotational direction.

It also has an index channel to easily count the number of full revolutions, which can be useful in 

avoiding memory overrun in the controlling computer or microchip.

The position calculated with the encoder's readings was compared with a measurement



of the physical displacement of the system, using a dial indicator. A distance of one inch was 

measured in either direction because that was the limit of the dial indicator. Correlation was 

excellent, showing a measured accuracy greater than the 0.009" (0.2mm) expected from the 

limitations of the lead screw. The results are shown in Figure 10.

4.3. Force sensor load cell

The force sensor used in the device is a Honeywell Model 31 miniature load cell, 10 pound 

(44.5N) rating (Honeywell n.d.). It is capable of measuring forces in both tension and 

compression, which not all load cells are. Since the wrist is to be constrained for the test, this 

load rating met the design criteria for force and sensitivity. The voltage changes from the load 

cell are quite small, requiring the signal processing described in Section 6.6 Load Cell Signal 

Processing.
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As discussed previously, this model of load cell is delicate if the force is not applied along the 

single, designated axis. Damage to this instrument was prevented by limiting the angle at which 

the testing shaft approaches the force sensor. In the axial direction, the load cell is rated to 50% 

above its nominal rating, or 15 lbf (67N).

4.4. Linear bearings

The linear bearings used in the device are Pacific Bearing Company Teflon-lined dry 

bearings (PBC Linear n.d.), sliding along hardened and polished steel shafting. They have 

reduced friction to maximize the smooth motion of the system, and need no lubrication, which 

lessens maintenance requirements. The lower bearing is double-width to counteract the 

moment on the nut when a force is applied on the testing shaft.

The diameter of the shafting was reduced for the second prototype, from 3/8" to 8mm 

nominal diameter. This decrease in size also reduced weight that the motor had to move to 

respond to the command inputs, with the intention of speeding up the response of the system.

4.5. Servo drive cards/power supply

Early testing with an h-bridge showed that the motors could draw 3 amps of current for 

heavy loads of short duration. They would heat up quickly but were not damaged if the high 

current flow was for a short period. However, the heat generated in the h-bridge itself was 

excessive and troublesome if the device was used continuously for longer periods of time. A 

more capable solution was sought.

The AMC BD15A8 analog servo drive (see Figure 11) was chosen for its ability to handle 

the motor's current and voltage requirements easily, its use of a PWM input, and common
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Figure 11: The AMC BD15A8 analog servo drive

usage of AMC's other servo drives in the university lab leading to familiarity with their 

integration (Advanced Motion Controls n.d.).

Supplying the servo drives with enough current was difficult. The AMC PS4X3H24 power 

supply (see Figure 12) was chosen because of its ability to supply 12 amps (3 for each motor) 

and the convenient mounting location for the four servo drives on the same plate as the power 

supply (Advanced Motion Controls n.d.). This brand of power supply has had issues with 

supplying clean DC power in other applications in the lab, but this particular model proved 

reliably stable when tested on several occasions.
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Figure 12: The AMC PS4X3H24 power supply



5. CONTROL BOX AND USER INTERFACE

All data reading outputs, user-controllable inputs, and control switches are on the front 

panel. All cables running directly to and from the devices attach to the back panel of the box. 

Power inputs (both AC and DC) also connect to the back of the box. All switches on the control 

box select a mode or function by moving the end of the switch towards the label stating the 

desired mode.

An important consideration for the control box was the organization and delineation of the 

features. For this reason, connections with a similar purpose were grouped together. Markings 

were used to separate sections of similar features. Labels were placed to describe features 

easily.

5.1. Control box front panel features

The control box's front panel is shown in Figure 13, and the numbered components are 

discussed afterwards. The labels on the front panel itself are described by the numbers in the 

corresponding list. Box features are listed in the order corresponding to the labels in Figure 13.

1. Run mode indicator LED: When illuminated, indicates that the microcontrollers are 

running the control code.

2. Data outputs: Connect BNC cables to read force and displacement data from the four 

devices. Each device has one output for the force reading (top row) and two outputs for 

the two encoder channels. For information on how to read and interpret data gathered 

from these sources, refer to Section 9.2.
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Figure 13: Control box front panel

3. Desired force inputs: BNC jacks take in a voltage from 0-5V and tell the microcontrollers 

what force to apply to the finger. Each of the four devices has its own high-impedance 

input. For information on what input voltage will give what force or position, refer to 

Section 9.2.

4. Operation mode switch: This switch selects the program the devices will run. If Force 

control is selected, the devices will run a program that allows the devices to follow a 

force input chosen by the Input select switch (#6). The Position control mode moves the 

devices to a location determined by the Input select switch (#6). The position of this 

Mode switch is only detected once, when the device is put back to Run mode from 

Reset mode (#5). In other words, a change in this switch can only have an effect on the 

system if the system is put in Reset mode during or after the change in program. This is 

due to safety issues related to the device suddenly snapping to a new position when 

switched from Force control mode.



5. Run/Reset switch: This switch tells the microcontrollers to start running their selected 

program, or to wait in idle mode. This switch can serve as a stop switch for non­

emergencies as it causes the microcontrollers to stop sending movement commands to 

the devices.

6. Input select switch: Selects the source of input for the devices. When in Force control 

mode, the devices will seek a force based on the selected input. In Position control 

mode, the devices will move to or hold a position based on the selected input. Moving 

the switch to the upper position enables the BNC inputs for each separate device (For 

information on what input voltage will give what force or position, refer to Section 9.2. 

Moving the switch to the lower position uses the input of the potentiometer (pot knob) 

for all four devices. When the pot is used, all devices receive the same input signal, 

which is useful for setting the devices to a desired starting position. When the knob is 

set to vertical (or 12 o'clock) in Force control mode, the devices will move to where 

there is no force placed on the rings, and moving the knob to one side of center tells the 

devices to seek a force in one direction. Putting the knob to the vertical position makes 

it easy to set up the devices for a test, as the motors will assist the motion. When the 

knob is set to vertical (or 12 o'clock) in Position control mode, the devices will move to 

their initial position, where they were when the Reset switch (#5) was set to Run. Unlike 

the Operation mode switch, the input chosen by this switch is continually monitored, 

and can be changed without resetting the devices. Be careful when switching the input 

while the device is running, as a sudden change in input can cause the devices to move 

suddenly.

7. Emergency stop switch: This switch completely cuts power from the devices' motors, 

preventing them from moving. It is marked clearly in red and set up so that the more
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natural motion of hurriedly hitting a switch downwards will cut power to the motors. 

Note that use of this switch should be accompanied by a toggle of the Run/Reset switch 

(#5) because the microcontrollers are still calculating motion for the devices while the 

Emergency stop switch is engaged, and returning power to the motors may result in a 

sudden jump of the finger rings. There is also the possibility of installing a remote 

Emergency stop switch so that it could be closer to the operator.

5.2. Control box rear panel features

The control box's rear panel is shown in Figure 14, and the numbered components are 

discussed afterwards.

Box features are listed in the order corresponding to the labels in Figure 14.

8. Motor power outputs: These banana cable jacks are the output to the devices' motor 

power cable. Each device A-D requires both a red and black cable to be connected. Be 

sure to match the red plugs to red jacks and black plugs to black jacks or the devices will 

run backwards and not behave correctly.

9. Encoder signal input: This input takes in the signals from the devices' encoders as well as 

sending necessary power to the encoders.

10. Load cell signal input: This input powers and receives signals from the devices' load cells. 

Although this input has the same shape and size as #9, they are not interchangeable to 

prevent damaging the devices by supplying power incorrectly.

11. DC power inputs: These jacks take in power from a regulated power supply for the 

control circuitry. 5V and ±15V are necessary for the circuit board, and 9V supplies power 

to the Arduino. The ground for both of these supplies should be the same, which is most 

easily achieved by connecting the black supplies of the 5V and 9V together with the
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Figure 14: Control box back panel

common channel of the ±15V supply with banana cables outside the control box.

12. AC power input: This jack takes in 120V AC power to run the motors. The cable is the 

same as that used by most desktop computers. The jack is located far from other 

components to minimize 60 Hz noise transfer.

13. Ventilation holes: Allow air to enter and exit the control box so heat from electronics 

will not build up excessively. No overheating issues were ever encountered in testing, 

but these holes should still be kept clear for ventilation and cooling.



6. CONTROL BOX INTERNALS

The control box is designed so that it is unnecessary to open it for normal use. Changing 

elements or code could result in the need for extensive testing to restore functionality to the 

system. However, should the need arise to change the internal parts (such as replacing a 

burned-out op-amp), or for modification to the system, all components are documented in this 

section.

6.1. Location of components

The internal components are carefully arranged for electrical and space considerations.

An internal view is shown in Figure 15.

The box interior with all components in place and connected is shown in Figure 16. Circuit 

board, shielding, and signal cables have been removed to show the components underneath 

better.

6.2. Instrumentation amplifiers

The first stage of amplification for the load cell signal is an Electronic Innovations Corp EL- 

1040 Instrumentation amplifier (Figure 17) (Electronic Innovation Corp (EIC) n.d.).
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Figure 15: Internal view with circuit board, shielding, and signal cables having been removed

This amplifier is set to amplify the very small load cell signals by a factor of 1000. Note 

that each amplifier serves two load cell signals. These amplifiers were selected due to a positive 

result in other university labs, as well as their compact form factor.

The mounting location for these amplifiers is shown in Figure 18.

The signal wires that connect to the EL-1040 are all connected to headers so that they stay in 

the correct order. Each header is marked with labels corresponding to the labels on the EL-1040 

so that they are easily oriented when connecting.
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Figure 16: Internal view showing all components present and connected

Figure 17: Close up of EL-1040 Instrumentation amplifier
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Figure 18: Mounting location of EL-1040's inside box

6.3. Internal shielding

The devices inside that are more likely to introduce electrical noise into other 

components have been shielded (see Figure 19). This includes a shielding cover for the large 

power supply, and a cover for the motor power cables where they run close to other circuitry.

Also, the 120VAC cable powering the motor supply is on the far end from other cables to 

minimize introduction of 60Hz noise into the DC components.

6.4. Microcontrollers

The final microcontroller chosen is an Arduino Duemilanove microcontroller with 

ATMega328 chip (Figure 20) (Arduino IDE n.d.). It was chosen for its ease of use, functionality, 

and wide user base. Much of the initial microcontroller work was done using a Microchip
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Figure 19: Internal view showing shielding over power source and PWM power cables

Figure 20: Arduino Duemilanove microcontroller with ATMega328 chip



dsPIC30F4011 microchip (Microchip n.d.). This was initially chosen due to familiarity gained in 

lecture and lab work for the ME 6960 Advanced Mechatronics class, but was replaced with the 

Arduino due to more universal familiarity and a wider user base on campus.

As configured, each microcontroller uses two analog sensors (load cell and BNC input 

reading) and three digital sensors (2 encoder channels and mode sensor). Each has two digital 

outputs, a PWM signal and a direction signal that go to the servo drive.

The pins of the Arduino that have electrical connection to the circuit board are 

described below, and are labeled in Figure 20.

0. Rx -  receive pin, no programmed use. Note that this pin must be disconnected in 

order to upload new code to the Arduino.

1. Tx -  transmit pin, no programmed use. Note that this pin must be disconnected in 

order to upload new code to the Arduino.

2. Encoder Channel A

3. Encoder Channel B

4. Detects position of mode select switch, determines control program

5. PWM signal out to servo drive

6. Direction signal to servo drive 

A2. Load cell reading

A3. Input reading

Reset. Puts the microcontroller in reset (idle) mode, where no program is running.

The four microcontrollers used in the device are mounted together on a tray for easy 

access and connection (see Figure 21). Note the colored pins for easy connection of cables and 

correct orientation, important for safety of components.
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Figure 21: Nonconductive tray for microcontrollers. Note colored pin sockets for correct cable
connection/orientation.

6.5. Circuit board

The circuit board shown in Figure 22 serves as a central location for all signals to gather. 

The inputs from the load cells, encoders, and front panel all connect to the circuit board and 

receive their 5V power here. The outputs to the front panel and the servo drives come from 

here. All signals in or out of the Arduino are gathered here as well. The circuit also houses the 

three op-amp stages for the load cell signal conditioning. All cables connecting here are marked 

with colored ends to make their orientation to the board clear. This is important to prevent 

potential damage caused by incorrect power connections.

For a complete diagram showing every individual wire's connection for each cable input, 

as well as the connections to the op-amps, please see APPENDIX A: LABELED CIRCUIT PHOTOS.



6.6. Load cell signal processing

Since the force sensing load cell has such a small change in signal, it needed to be 

amplified. It also needed to be modified further to correspond to the Arduino's analog range. 

The amplification circuitry diagram is shown in Figure 23.

In Figure 23, a signal generator represents the load cell. Its first step to become a more 

useful signal is the EL-1040 Instrumentation Amplifier, set to a gain of 1000.This gives the load 

cells a much larger output range, approximately -7 to 7V and centered close to zero for load 

cells A,B, and C. The load cell for device D had a lower output range with more bias, although 

the company tech support representative said its impedance readings were in tolerance. Since 

the load cells did not amplify equally, the signal then passes through an adjustable-gain 

amplifier circuit. Each signal was individually tuned so that all the outputs were a similar range, 

within 0.01V change for a given load. At this stage, the signal is sent to the front panel jacks to 

be read when it is largest.

The remaining stages optimize the signals for the Arduino 0-5V analog-to-digital 

converter (ADC). Before these stages, the signal still centered on zero volts, fluctuating above or 

below depending on the direction of the force applied. This possibility of negative voltage being 

applied to the microchip was a problem as the chip is not rated for it. This ADC can only read 

from 0 to 5V, so the signal needs to be shrunk and shifted to the center of the range. To solve 

this problem, a summing amplifier is used, adding an adjustable voltage to the signal. 2.59V was 

found to be a truer center than the expected 2.5V by reading the data output in a print 

statement. Each load cell's signal is individually adjusted to the 2.59V center value because each 

one is centered on a slightly different value. The summer amp inverts the signal, so it is followed 

by an inverting amplifier which also reduces the range of the signal so more of the range can be 

detected by the Arduino.

37



38

Figure 22: Top view of circuit with labeled connection spots

Figure 23: Signal processing sequence for each load cell



The range is reduced in order for the Arduino to read with better resolution, resulting in 

that the limits of the A/D correspond to approximately -7 to 7 pounds (-31 to 31 Newtons). It 

was a difficult design decision striking a balance between making the signal have a larger range 

to take advantage of the limited resolution of the A/D converter, but still leave the signal small 

enough that a useful range of force can be detected.

The two places in which the circuits are adjustable are shown in Figure 24. Neither 

should need adjustment. The first amplification should be adjusted with care as calibrating for 

all four load cells is a time-intensive iterative process. The second is easily measured at the 

marked locations and adjusting it does not affect other parts of the circuit.

39

Figure 24: Location of circuitry adjustment screws on circuit board



7. SOFTWARE DESIGN

7.1. Controller design

Each of the two modes discussed in Section 5.1 uses a Proportional control (P control) 

scheme to run the devices. P controllers use error between expected results and actual results 

to drive and continually correct the output. The different basis for error for each mode is 

contained in the name of each mode, i.e. Position control the actual position to the desired, and 

any difference is error.

Both modes have a scaling start up feature for safety. This mode limits the output of the 

motor for the first second of function to start more smoothly. Further discussion of this feature 

is given with an example in Section 8.2.

7.1.1. Force control

The Force control program only uses the load cell readings to determine the behavior of 

the system. As the user pushes and pulls on the finger ring, the motors assist in moving the ring 

to make the force on the load cell match the given input. A target load is given to the controller 

through the front panel inputs, either the potentiometer or the BNC inputs. The difference 

between the target load and the actual load is calculated to give the error. This error is 

multiplied by a proportional constant (gain) to give the desirable size characteristics before the 

error is converted into a physical motion in the motor.



The Force control program senses the force on the ring, reads the input (desired) force, 

and updates the signal controlling the motor at a frequency of 2.9kHz, or about every 3.4 

milliseconds.

Steady-state error was found to be a near nonissue, so no integral gain was added. The 

load cell readings had natural fluctuations due to their high gain, and these changes proved too 

noisy for derivative gain, causing instability.

The largest limiting factor with this controller came from the hardware and how the 

load cells were read. The load cells used for force sensing were very sensitive and any small 

forces or moments on the cell would be registered as a force on the ring. The shaft attached to 

the ring passes through a low friction bearing, but the friction from the bearing was still 

significant enough to give incorrect readings to the controller. Because the controller was 

aiming for zero force and a responsive system, even slight incorrect readings would cause the 

motors to kick in. This had the effect of the ring having slight jitters on its own without any input 

from the user. The noise in the load cell signal also contributed to this slight instability. Iterative 

tuning of the proportional gain reduced these jitters but maintained the response of the system.

7.1.2. Position control

This mode uses only the encoder readings to determine the behavior of the system. The 

control scheme for this mode was relatively simple. Position of the ring was read by the 

encoder and compared with the expected position to determine the relative error. This error 

was then used in a P controller feedback loop to give appropriate output from the motors. Once 

the proportional gain was sufficient, it was found that any derivative control added shakiness to 

the system. Low steady-state error made integral gain unnecessary. There was a slight 

shakiness inherent in the Position control due to the slight fluctuations in the A/D reading of the
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position input and the magnification of these fluctuations when scaling up the input to provide a 

wider range of position travel.

The Position control program reads the input (desired) position and updates the signal 

controlling the motor at a frequency of 4.6kHz, or about every 2.2 milliseconds. The Position 

control program runs about 35% faster than the Force control program because it has one less 

analog-to-digital conversion, which saves time in the calculations. This operating frequency 

drops as low as an observed 3.9kHz when the finger ring is moving very quickly due to the 

encoder reading process occurring more often.

Because the position of the encoder is sampled at a certain frequency that is limited by 

the speed of the microcontroller and the code that is being run, it is possible that quickly- 

changing input signals produce severe aliasing. Simple tests using a sine wave input showed the 

device maintained full functionality over the entire length of motion up to 3Hz, above which the 

device usually became unstable.

7.2. Code

The software was programmed in the Arduino language (based on C/C++ (Arduino n.d.)) 

for sensor reading and control outputs. It was optimized to run quickly, which gives more 

consistent and smooth behavior of the system.

The code used a regularly timed interrupt to recalculate the motor outputs. The chip's 

PWM (Pulse Width Modulation) module was implemented to control the motors. Depending on 

the direction and speed desired, the PWM signal was modified and the direction signal was 

updated. The encoder function was written using input capture interrupts to keep track of the 

pulses and determine direction.

The actual code used is shown in APPENDIX B: FULL MICROCONTROLLER CODE.

42



8. SAFETY

Safety is an important consideration in any design, and the prototype would be a failure if it 

caused injury to the user. Listed in this section are some design decisions which took safety into 

consideration.

8.1. Physical considerations

The front of the device is configured so that the test subject is not exposed to the 

dangerous moving internal parts of the devices. The tops of the devices are protected by covers, 

which also protect the test subject from the moving parts, although the test subject is to have 

the wrist constrained, limiting ability to reach this area anyway. All signal cables emerge only 

from the back of the devices, far from the test subject, and are bound together and covered 

with protective tubing in a single package out to the control box.

At opposite ends of their travel, the distance between the rings of two devices exceeds 

the distance that can be spread between two fingers. This means that it is possible to have the 

motors move in opposite directions and injure the fingers of the user. To remove this 

possibility, collar clamps are placed on the shafts during testing so that the device physically 

cannot move far enough to cause injury.



8.2. Controller/software considerations

The controllers are designed so that changing between Force control and Position control 

requires a reset of the system. This was found to be important because the input used to give a 

certain force, for example, could cause the device to move violently to a different position if the 

modes were changed.

The software includes a "start up" time for when it is initially turned on during which the 

motors are not given full power. Testing showed that violent motion of the devices would occur 

if the input called for was far from the current state, in either Position control or Force control. 

As an example, if the device was started (making its current position zero) and the input called 

for the device to already be at a position of 50mm, it will move very quickly to that position, 

probably before the user is ready for such a motion. To counteract this possibility, a "start up" 

feature was included in the code in which the input is scaled up to the full value over the first 

second of operation time. In effect, this makes the devices start slow and move gently to the 

input, even if it was far from the current position/force.

8.3. Operator considerations

In the event of needing to quickly shut off the device, the power switch to the motors was 

set up so that it turned off by moving to the down position, which is a more natural motion for 

quickly reaching out to slap downwards, as in the event of a panic stop. This emergency stop 

directly disconnects the power to the motors for improved safety over switches affecting their 

changes through code. Continued motion after the emergency switch was flipped due to 

momentum was a nonissue due to the friction of the system. Also, the emergency stop is the 

only switch highlighted with bright red markings to catch the eye more easily.
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9. CALIBRATION DATA FOR DATA I/O

Contained in this section are the data necessary for interpreting the voltages given by the 

sensors to convert them into physical values (force or position). Also contained here are the 

equations to convert the desired input values (force or position) to the input voltages required 

by the microcontrollers.

9.1. Calibration data for control box outputs

Both force and position readings use a coordinate system in which positive is towards the 

finger ring, and negative towards the motor. Thus, if the finger ring is extending out farther from 

the device, moving away from the motor end, the position count will increase. A tensile force on 

the finger ring which would make the device move in a positive direction is also a positive force, 

with the force voltage increasing above its steady state value.

The force readings from the top row of BNC jacks are an analog voltage ranging from -10V 

to +10V. The equations necessary to convert the voltages into force values are given in Table 5. 

Note the error value of ±1.2N on the force readings. The tests performed to determine this error 

value are given in Section 10.2.

The bottom two rows of BNC jacks are digital output (TTL) from the encoder readings. At 

any time, each channel is either 0 or 5V, and the changes from either state are the significant 

events. Each change in voltage represents a rotation of 1/2000th of an inch, or 0.0005"

(.013mm), with an error of ±0.009" (0.2mm) primarily due to lash in the lead screw.
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Table 5: Equations to convert each device's load cell voltage reading into a force

Device BNC output calibration equation
label F (Newtons) = m*V (Voltage) + b

A F = 6.98*V +22.58 ±1.2N

B F = 6.98*V +8.93 ±1.2N

C F = 7.12*V -3.02 ±1.2N

D F = 6.83*V - 9.31 ±1.2N

To determine the direction of motion, both channels need to be used together with the 

following logic:

1. When either channel changes state, the digital states of both channels are compared.

2. If a change is sensed in Channel A and this new digital state of A matches that of 

Channel B, then the position count increases by 0.0005" in a counter-clockwise direction 

(when viewed from the motor end), which equates to pulling force on the finger ring, 

with the finger ring shaft extending farther out of the front plate.

For example, if Chan. A changes to a high (5V) signal, and Chan. B is also high, the lead screw 

is turning counter-clockwise (when viewed from the motor end) and the finger ring is extending 

farther out from the frame.

3. If a change is sensed in Channel B and this new digital state of B matches that of 

Channel A, then the position count decreases by 0.0005" in a counter-clockwise 

direction (when viewed from the motor end), which equates to pushing force on the 

finger ring, with the finger ring shaft retracting farther into the frame.

The actual code (C++) used in the microcontrollers to determine position relative to the 

starting point is given in Figure 25.
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//I C interrupt -channelAof encoder - Pi n 2 
I SR(INT0 vect)
{ '

chanl= digitalRead(encoderPirA);
if (chanl =  0 && chan2 ==0) // Quadrature I ogjc
1 " 
positionl++; // Increment positionl by one

}
else if (chanl =  1 && chan2 =  l)  //Quadrature log c 
t
positionl++; // Increment positionl by one

}

//IC2 interrupt - channel B of encoder - pin 3 
I SR(INT1 vect)
{ ”
chan2= digitalRead(encoderPinB); 
if (chanl =  0 && chan2 == 0) // Quadrature logjc 
( " 
positionl-; / / Decrease by one

}
else if (chanl =  1 && chan2==l) //Quadrature logjc 
(
positionl-; / / Decrease by one

}

Figure 25: C++ Code used for relative positioning in microcontrollers

9.2. Calibration data for control box inputs

When run in Force control mode with the Input BNC's selected as the input (instead of the 

knob), an input voltage will tell the devices what force to seek, or apply to a stationary object in 

the finger ring. The equations used to know what force will be returned for a given input voltage 

are shown in Table 6. It is important to note that the force input only accepts a range of 0-5V 

(zero to five volts). Outside this range could cause unstable behavior in the devices or damage 

them.

When run in Position control mode with the Input BNC's selected as the input (instead 

of the knob), an input voltage will tell the devices what position to go to. The equations used to 

know what position corresponds to a given input voltage are shown in Table 7. It is important to
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Table 6: Equations to correlate a voltage input to a force output

Device Force input calibration equation
label Vin (Voltage) = m*Fd„sired (Newtons) + b

A Vin = .0882*Fdesired+2.56
B V  ̂= .0867*Fdesired+2.56
C Vin = .0872*Fdesired+2.56
D Vin = .0941*F desired+2.56

Table 7: Equations to correlate a voltage input to a position output

Device Position input calibration equation
label Vin (Voltage) = m*Posdesired (inches) + b

A Vin = 2.4357*Pdesired + 2.6832
B Vin = 2.4843*P desired + 2.6814
C Vin = 2.4804*Pdesired + 2.6837
D Vin = 2.4536*Pdesired + 2.7064

note that the position input only accepts a range of 0-5V (zero to five volts). Outside this range 

could cause unstable behavior in the devices or damage them.

Refer to Section 10.3.2 for issues related to Position control accuracy and an alternate 

method for controlling position.

It should be noted that later testing showed difficulty with the Position control (see 

10.3.2), rendering Table 7 inaccurate. Please see Section 10.4 for the correct input method.



10.CHARACTERIZATION RESULTS

This section describes the tests performed to evaluate and characterize the performance of 

the completed system.

10.1. PWM noise on the Arduino

Towards the end of testing, electrical noise issues were detected when using the 

potentiometer as an input. It affected the load cell readings and input readings, which in turn 

affected the system behavior, especially under Force control. This affected both the reading of 

the load cell value and the front panel input value. The effect of the PWM noise on the load cell 

reading is shown in Figure 26.

The noise was greater when the error was positive than negative, leading to a decreased 

noise coupling when the motor needed to turn in one direction over the other. See Figure 27 for 

the decreased noise in the other direction.

Many options were explored to eliminate this noise. Analog filters of the PWM signal were 

able to clean it up to a more regular square wave, but the contamination had already taken 

place before the filter. All the separate analog pins were utilized, and the other PWM pins were 

tried, but nothing changed. The PWM frequency was altered but the noise remained. The wires 

carrying the signals were separated and many individual Arduino boards were tried, including a 

newer model (the Uno). Proving too difficult to remove, the effect of the noise was minimized 

with a digital filter in the code itself. Empirical testing showed best results with t = 0.15 and
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V
Figure 26: Noise coupled from the PWM signal (blue line) to the load cell signal (yellow line)

fc=0.94. This reduced the effect of the noise in the system's physical behavior to where it was 

unnoticeable to the test subject, returning the usefulness of the input knob for demos and quick 

hardware tests. As the noise was only present when using the input knob, it will not affect the 

performance of the system under expected use, where each device has an individual BNC input. 

The digital filter had no noticeable harmful effect on the behavior when running on a clean input 

signal, as from a signal generator.

10.2. Accuracy of force readings

In order for accurate force measurements to be taken, the limitations of the force readings 

needed to be known.
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Figure 27: Decreased noise when running in the opposite direction

10.2.1. Effect of linear bearing on force readings

As previously mentioned, the load cell needed to be protected from off-axis forces as well 

as from tampering by the test subject. This led to the design decision of having a linear bearing 

in between the load cell and the finger ring, which affects the accuracy of the force readings due 

to the bearing's friction on the shaft. In order to know the margin of error of the force readings, 

the finger ring was pushed and pulled, and the static force value measured and compared to the 

no-load value of the load cell (with the shaft disconnected). The results of these tests are shown 

in Figure 28. The resulting recommendation is to consider the force readings to have an average 

error of ±0.3N (0.07lbf) with a maximum error of ±0.9N (0.2lbf). Therefore, in any calculations, it
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Figure 28: Measurement of friction's effect on force readings

is recommended that the error due to the linear bearing be considered ±1N (0.22lbf). These 

readings only account for the error caused by the load cell in a static situation, but as the 

coefficient of static friction is usually larger than its kinetic counterpart (Nave n.d.), the force 

readings should be less affected by the linear bearing while in motion.

10.2.2. Effect of system noise and motion on force readings

Other factors to consider in estimating the accuracy of the force readings are the 

variations in the load cell readings due to the high amplification and the slight vibrations in the 

system during use. The effect these individual factors have on the load cell readings would be 

difficult to separate, and as they are all occurring continually and simultaneously, they may be 

considered as a single effect. The results of a Position control test show this effect on the force



reading (see Figure 29 and Figure 30). The test was designed to move the ring a certain distance, 

hold that position, then return to the original position. More details about this type of testing 

are given in Section 10.3. This type of test was chosen because there was no restraint or force 

placed on the finger ring, so the levels of accuracy due to noise would be inherent in the system 

itself.

The two separate areas outlined in Figure 30 show the force readings while the system 

is in motion and while it is stationary. Note the difference in force amplitude when it is moving; 

small vibrations from motion cause more variation in the force signal. In order to quantify the 

variation, the standard deviations for stationary and moving force readings were calculated 

from six tests similar to that shown in Figure 29. A close approximation to the normal 

distribution was confirmed. The standard deviations are given in Table 8.
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Position and Force over Time
Sine input freq: N/A rad/s; Input amplitude: 2.5V; Control Type: Position Feedback;
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Figure 29: Example of the noise on force readings
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Position and Force over Time
Sine input freq: N/A rad/s; Input amplitude: 2.5V; Control Type: Position Feedback;
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Figure 30: Example of the noise on force readings (detail)

Table 8: Statistical analysis of force readings

Test number: 1 2 3 4 5 6 Average a
In motion a: 0.417 0.6 0.543 0.731 0.619 0.604 0.586

Stationary a: 0.219 0.39 0.386 0.442 0.252 0.213 0.317

68% of force readings within ±0.6N

95% of force readings within ±1.2N

Since few tests will be stationary for very long, the average standard deviation for 

moving tests was chosen and rounded up to 0.6N. In order to account for a high percentage 

(95%) of the force readings, an error value of 2*a was chosen, leading to a recommended error 

of ±1.2N on the force readings. This is not much larger than the static error induced by the linear 

bearing, and indeed the bearing is certainly a contributor to this error.



10.3. Bandwidth testing

In order to determine the limits of the response of the system, the bandwidth was 

tested using a sine-wave input of increasing frequency but constant amplitude. The input 

frequency did not change within a test, meaning that each individual test was run at a constant 

frequency, then a new test was begun at the next frequency. The system response was tested 

for both Force and Position control. All data were gathered using a dSpace 1104 board sampling 

at 1kHz. The model used to control the dSpace board is shown in Figure 31.

The system is only rated to 2.5V input amplitude due to the limitations of the Arduino 

ADCs. A 2V input amplitude was chosen for the force bandwidth test because it corresponds 

closely to the customer requirement of being able to apply 5 pounds of force (22N). The 2V 

input rating for the position bandwidth test corresponds to the approximately 2 inch (50mm) 

motion of a small finger's range. These input amplitude values were chosen for their similarity 

to expected testing conditions. A few sample tests at higher or lower amplitude showed that the 

maximum functional speed was inversely related to the size of the input amplitude. This is to be 

expected, since the momentum of the moving parts is related to the speed with which they are 

moving and since it is tied to the power of the drive system and control logic.

The bandwidth is shown in both inches and dB. The values were converted to dB using 

Equation 1. ^

10.3.1. Force control bandwidth

In order to test the Force control response of the system, a consistent method of applying 

force to the load cell was necessary. For this purpose, shaft collars (clamps made for cylindrical
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pieces) were used on both sides of the linear bearing with foam blocks in between (see Figure 

32). Initially, the shaft collars were placed alone against the metal linear bearing, but this 

created intense vibrations, so a compliant layer of foam was added in between them. This 

modification gave the system some ability to move towards the desired force, which reduced 

vibration.

The bandwidth plot for Force control mode is shown in Figure 33. The same plot 

converted to dB (using Equation 1) is shown in Figure 34. The system followed the input well at 

lower speeds, although it did not quite reach the input value in one direction (Figure 35). The 

general decrease in performance as the input speed increases is to be expected as the physical 

limitations of the system hinder its keeping up with the input signal. Once the input frequency 

reaches 5.4Hz (34 rad/s), the force readings are barely recognizable as following the input and 

there is a lot of vibration in the system (Figure 36). Testing beyond 5.4Hz was not performed 

due to the increasingly high forces of impact and risk of damaging the load cell. Note that the 

increasing vibration coupled with the general noise on the force signal made the estimation of 

the peak force difficult. For each data point, several maximums were estimated and their 

average was found.

For Force control at the maximum desired force (5 lb/22 N), it is recommended that the 

frequency of the input to the system not surpass 32 rad/sec. However, this is likely to be far 

faster than necessary for almost any tests.

10.3.2. Position control bandwidth

A similar series of tests were begun to determine the bandwidth for Position control. 

However, tests quickly showed that the system would gradually drift from its initial position. The 

center point for the sine-wave oscillation would slowly move farther out, away from the motor.
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Figure 32: Setup for testing Force control bandwidth
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Figure 33: Force control bandwidth testing results -  Newtons

Bandwidth - Force Control
Device A, force contro l, Z ,0V am pli tudc i n p u t\Z 1.1JN f, shalt. collars and com plian t foam btocfcs u:od

Frequency (ra-d/s)

Figure 34: Force control bandwidth testing results - dB
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Figure 35: Measured force vs expected, 2 rad/s input

Figure 36: Measured force vs expected, 34 rad/s input



This can be seen in Figure 37. This error was encountered at all input speeds, and in all four of 

the devices.

It should be noted here that the system was unable to run at all with an input frequency 

above 15 rad/s. The momentum of the moving parts immediately carried them off onto the 

removed threads part of the lead screw instead of returning in the other direction.

The position error values were found at three different input frequencies. The results are 

shown in Table 9. The result for sine-wave inputs was that the system moved out farther every 

time than it moved back in.

In order to further investigate the problem, a stepped-ramp input was used (see Figure 

38). These tests showed the same directional bias seen in the sine-wave input analysis.

The error was initially assumed to be a problem with the Arduino code. The USB output 

of the Arduino was used to read the variables as they changed. The ADC read in the correct 

values from the input and the position in which the Arduino believed itself to be corresponded 

with the input. The code was inspected and optimized so that its speed would not be a liability 

in reading the position correctly. The code's function matched several versions found online 

which were rated well by experienced users. Local individuals with more Arduino experience 

were asked for input but none were able to identify the problem. It was concluded that the 

Arduino was missing counts of the encoder somewhere, and that a much higher level of 

expertise would be necessary to resolve the issue, so an alternate control method was found. 

The position mode could still prove useful for stationary tests, as it only lost its position while 

moving.
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Figure 37: Typical example of drift in position testing

Table 9: Position control error data

5 rad/s 8 rad/s 12 rad/s
Cycle Peak Positions (in) Abs A Positions (in) Abs A Positions (in) Abs A

1 Low -0.6995 -0.705 -0.73725

1 High 0.6585 1.358 0.6795 1.3845 0.67825 1.4155

2 Low -0.79225 1.45075 -0.784 1.4635 -0.802 1.48025

2 High 0.571 1.36325 0.59925 1.38325 0.60525 1.40725

3 Low -0.8865 1.4575 -0.87875 1.478 -0.87025 1.4755

3 High 0.471 1.3575 0.50975 1.3885 0.5395 1.40975

4 Low -0.985 1.456 -0.96425 1.474 -0.9335 1.473

4 High 0.3695 1.3545 0.4245 1.38875 0.467 1.4005

5 Low -1.088 1.4575 -1.0505 1.475 -1.0163 1.4833

5 High 0.285 1.373 0.33125 1.38175 0.38025 1.39655

6 Low -1.1643 1.4493 -1.1295 1.46075 -1.1043 1.48455

Average in: 1.36125 1.38535 1.40591

Average out: 1.45421 1.47025 1.47932

A between averages: 0.09296 0.0849 0.07341
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Figure 38: Stepped-ramp input showing ineffective Position control

10.4. External Position control using force

An effective alternate to the Position control was found through modifying the input to 

the Force mode, which had been shown effective and functional. Note that this required no 

change to the Arduino code or any other component. This mode was called External Position 

control using Force, abbreviated as Position/Force control for convenience. The method was to 

compare the position of the system to the desired position, then send the Arduino a command 

to apply a force which moves it in the correct direction. The Force control mode on the Arduinos 

was used for this process, unchanged from Section 10.3.1. The actual model used with the 

dSpace board is shown in Figure 39. Note that all position calculations and changes were made 

on the controlling computer, external to the Arduino calculations. Tests showed this method



64

Figure 39: Matlab model for running Position Control through Force

was far more effective at controlling position. No drift was detected in tests lasting 100 seconds, 

whereas before, it was noticeable in less than 10 seconds. A sample test comparable to Figure 

37 (approx 1 inch amplitude, 10 rad/s) is shown in Figure 40. The same input given in Figure 38 

was used again, with vastly improved results (see Figure 41).

Note that, as configured in Figure 39, the voltage given to the Arduino as an input 

corresponds directly to position. In equation form, this means Vin (Voltage) = Posdesired (inches). In 

this situation, the 0-5V input range of the Arduino means the voltage should stay between -2.5 

and 2.5V, yielding a motion range of ±2.5 inches (63.5mm).

The bandwidth plot for Position/Force control is shown in Figure 42. The same plot 

converted to dB (using Equation 1) is shown in Figure 43.
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Figure 40: Improved results from controlling position through force
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Figure 41: Stepped ramp input using Position/Force control



Figure 42: Position/Force control bandwidth testing results -  inches



Figure 43: Position/Force control bandwidth testing results -  dB
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These tests showed the same instability at higher speeds as the earlier Position control tests, 

where the moving parts were unable to reverse direction and so continued off the threaded part 

of the lead screw. Note that the last stable input frequency for Position control was 15 rad/s sec, 

and this value increased to 19 rad/s for Position/Force control with a slightly higher amplitude.

The data for the last stable test (at 19 rad/s) were analyzed and the highest speed 

calculated was almost 19 inches/s (480mm/s). This value is more than three times the required 

speed for function, while still remaining stable. Exceeding the speed goal by such a large margin 

was encouraging.

10.5. Accuracy of position readings to input

With the Position control functioning through an external loop, it was possible to measure 

the accuracy of the position measurements compared to the input (expected) value. For all 

Position/Force control tests, the error between expected position and true position was 

calculated. The absolute value of the error was averaged over the entire test, and this average is 

shown in Table 10. Of interest in these position error values is the increasing error as the sine- 

wave frequency increases. This is to be expected as the input is changing more quickly, allowing 

more difference in the desired velocity the next time the Arduino checks the input. Also it is 

important to note that the Stepped-Ramp Tests (Test 2 is shown in Figure 41) had an order of 

magnitude better correlation than the faster sine input tests. This can be attributed to the 

nature of the test; slow velocities and stops at certain positions allowed the Arduino to keep up 

with the desired input.

The error for all tests was averaged and found to be 2.5mm (0.1in). This value is justifiable 

for the recommended error on all position measurements because tests at the high input
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Table 10: Average position error for all tests

Input Type 
(1 inch amplitude)

Average Position 
Error (inches)

Sine 0.318 Hz 0.078
Sine 0.637 Hz 0.098

Sine 1.114 Hz 0.107

Sine 1.592 Hz 0.124
Sine 1.91 Hz 0.135

Sine 2.228 Hz 0.147
Sine 2.546 Hz 0.16

Sine 2.865 Hz 0.171

Sine 3.024 Hz 0.177
Stepped-Ramp test 1 0.054

Stepped-Ramp test 2 0.017
Stepped-Ramp test 3 0.014

Stepped-Ramp test 4 0.017

Average of all tests 0.0999

speeds are very unlikely in the intended purpose of the system. Input speeds in actual use are 

more likely to be on the slower end of the sine-wave tests or similar to the stepped-ramp tests, 

where the error is close to or less than the recommended error of ±2.5mm on the position 

readings.



11.TESTING RESULTS

This experiment was performed with the purpose of showing the equipment's ability to 

provide force stimuli to the fingers and quantify their biomechanical behavior. Surface EMG 

data from the primary muscles controlling the thumb, index, and middle fingers were also 

recorded simultaneously, to show the device's ability to relate EMG signals to the motion of the 

fingers. As discussed previously, this correlation has important implications for the improvement 

of multiple DOF prosthetic control. Furthermore, the suitability of such data for individual 

control of the fingers in a prosthetic will be shown.

11.1. Test procedure

The entire test protocol was written and tested prior to the experiment. All required 

equipment was listed, with labeled pictures of complicated wiring schemes.

For this experiment, the subject was instructed to keep all fingers as still as possible, 

resisting whatever force was applied. This isometric test was chosen due to its simplicity and 

ease of instruction to any subject. Only forces that pulled on the fingertips in a hand-opening 

motion were applied, never pushing down on the fingernail in a hand-closing motion. Each 

finger was tested alone at 1, 2, and 3 lbf. All combinations of the three fingers were tested at 

those same force levels, with every active finger receiving the same force level. For consistency 

in description, each individual combination of active fingers and force level is referred to as a 

test, and all these tests are called the experiment.



The force profile applied is shown in Figure 44. This profile was repeated five times at the 

same levels and fingers to form one test.
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11.1.1. EMG preparation

EMG locations were carefully located on two subjects' arms multiple times using a 

Myolab II EMG amplifier. For each of the three fingers, the site which generated the largest and 

most independent signal was marked. Complete isolation of a finger's EMG was not possible, 

but the most independent signal location was found. For the index and middle fingers, these 

sites corresponded to different parts of the flexor digitorum profundus muscle. For the thumb, 

this corresponded to the flexor pollicis longus muscle. Silver/silver chloride electrolyte gel and 

EKG electrodes were then applied to each location. See Figure 45 for labeled muscle electrode 

locations. This process was practiced multiple times, and was performed before traveling to the 

other lab for the actual testing

Figure 44: Force profile for tests
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Figure 45: Arm in process of EMG electrode placement

11.1.2. Testing

Upon arriving at the testing location, procedure was followed to set up the EMG 

amplification, data recording hardware, and recording software. Upon initial results, EMG 

amplification was increased slightly for more signal change. Also, the EMG data were found to 

have noise that was not present in the location where the preparation was done. This was 

remedied as well as possible on location using the built-in filters on the EMG amplifiers.

See Figure 46 for a picture of test setup, arm position, and hardware interface with the 

test subject. Note that this picture was taken during setup; not all electrodes had been 

connected yet.

Each combination of fingers at three force levels was tested, at 1, 2, and 3 lbf. The 

experiment was performed such that each force level and combination was achieved five times 

for diversity of sampling, as described previously. Care was taken to randomize the order of the 

tests so as to not cause fatigue on any single finger. Testing was completed without incident or 

injury.

After the first subject completed testing, the process was repeated for the second

subject.
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Figure 46: Test subject during setup, with force application/measurement hardware

11.1.3. Equipment used

The experiment described here was performed on a more customized iteration of the 

device described previously, with different force sensors and amplifiers, and a PC-based 

controller that was more integrated with existing neural test equipment. This PC-based control 

had some limitations, such as inability to output position, only applying the same force level to 

any tested fingers (rather than the completely independent control of the previous version), and 

only thumb, index, and middle fingers being tested.

Given here is a general list of equipment used for testing, in addition to the device and its 

control PC.

• Surface EKG electrodes and silver/silver chloride electrolytic gel



• Myolab II EMG preamplifier

• 4 channel EMG preamplifier

• Circuit board with precision rectifiers

• DC power supply

• PC with dSpace, Simulink, and connected DS1103 controller board sampling at 1kHz

11.2. Testing results

Upon review, it was found that the EMG results from the second subject were excessively 

noisy; a combination of low EMG signals and excessive interference from nearby electrical 

devices made changes in the signal indiscernible. This result was confusing, as the second 

subject had simultaneously undergone the same process of identifying optimal surface EMG 

locations and was in the same testing area as the first subject. This noise, while worse with the 

second subject, was present in both datasets. It is likely that the seemingly high ambient 

interference was exacerbated by the long wires for the electrodes before amplification.

11.2.1. Graphical results

Each individual force level was graphed and analyzed. A sample graph, in which each of 

the three fingers experienced 2lbf, is shown in Figure 47.

The noise on the EMG signals that was previously discussed was filtered for visual clarity 

in the graphs. A centered moving-average filter with time samples of 10ms, 25ms, and 50 ms 

were tested on all data sets, with 25ms having the best balance between maintaining detail and 

removing noise. See Figure 48 as an example of the improved clarity using this filter.

Note the correspondence of the EMG signals' rise with the force measurements. This is 

the expected result. The middle finger and thumb showed a stronger correlation for all force
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Figure 47: Sample graph, three fingertest at 2lbf
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levels, most likely due to better electrode placement. The index finger shows a slight increase 

during the data-gathering period, but not as significant as the other two.
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11.2.2. Force prediction capability

While a full data analysis for prosthetic control is beyond the scope of this thesis, the 

beginning steps of finding the relation between the EMG and force signals was performed.

The linear model of EMG and force signals was used for the force prediction, and is 

given in Equation 2.

Index-, test 1 test 2 ... test n 
Middle: test 1 test 2 ... te s tn  
Thumb-, test 1 test 2 ... test n

[Force]3x n = [A] * [EMG]3 x n,where Force and EMG are m atrices:

A = FEt (EEt ) - 1 (2)

The data used in this section used averaged values taken from the raw data. The mean 

of each recorded input was taken during the peak time, the flat top section labeled "EMG and 

force data gathered" in Figure 44. Each input had five averaged values per force level, one per 

force ramp-up. These five values were averaged into a single value used here. For example, the 

average of all five peaks' average for the index finger's force during one test was put in the 

Index row as the "test 1" value in Error! Reference source not found..

This equation was populated with data for the first subject and evaluated. The A 

regression matrix for this set of data is shown in Table 11.

With further but similar tests that would serve to refine the values, reduce variability of 

the EMG placement, and increase the sample size, this regression matrix could be used in real­

time control of a multiple DOF prosthetic hand by multiplying the incoming EMG signals by the A 

matrix to predict force.

To show the suitability of even this preliminary testing for prosthetic control, this 

process was used to predict the force values. Ideally this would be evaluated using the testing
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Table 11: The A matrix, relating EMG and force

0.5976 7.6443 -1.2293
0.5337 1.43 4.448

0.6171 5.5899 -0.1314

data described above to predict the force values of a separate set of data in which the subject 

was asked to perform simple tasks, motions representative of what a prosthetic user would 

want to do. Two example task motions would be moving all fingers in a grasping motion, and 

moving one finger as if pushing a button.

Due to limited testing time, no task-oriented data set was gathered for true comparison 

of expected versus real results. However, the regression matrix gained from all tests was applied 

to each individual test separately. The results of one test are shown in Figure 49. In this test, the 

index and middle fingers were tested at 2lbs, and the thumb at zero applied force. The shape of 

the force profile is distinct in all the fingers, but especially in the middle finger. The predicted 

force for when zero force was applied tends to run high, but the trapezoidal force trend is 

visible. This error in predicting zero force has two likely sources. First is the lack of tests with the 

fingers receiving force in the other direction, which limits the dataset. The second is due to the 

method of finding the A regression matrix: only values from the peak of each force profile were 

used. This results in the exclusion of both a near-zero baseline force and its corresponding EMG 

activity from the A matrix. A full battery of tests designed to populate the A matrix for the 

purpose of personalized prosthetic control would include zero force steady-state data. This 

would allow for more accurate prediction of force values.

In the test shown in Figure 49, no force was actively applied to the thumb, but the 

thumb itself still applied a force, synchronized with the fingers. This is likely due to the 

movement of the rest of the hand more than any muscular motion of the thumb, but it is still
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Figure 49: Individual finger force predictions compared to measured force for a single test



interesting to note the force prediction's approximation of the shape. It is likely that the thumb 

EMG values that caused this pattern in the predicted force come from cross-talk between the 

electrodes, but they could partially be a result of co-contraction of the muscles. This also would 

account for the slight force activity in the thumb.

Overall, the accuracy of this prediction is not sufficient for prosthetic control, primarily 

due to the amount of steady-state error in force levels. However, the preliminary tests show 

similar force profile shapes.

To show more of the force prediction results simultaneously, all five average force 

values during each test's data-gathering periods were averaged and compared to the average 

force prediction based on the EMG readings during the same periods. The averages of each 

finger and its prediction are shown in Figure 50, Figure 51, and Figure 52, broken up into tests of 

1lbf, 2lbf, and 3lbf, respectively.

In Figure 50, Figure 51, and Figure 52, each finger's predicted and measured forces are 

shown next to each other, with the measured force in a darker hue on the right of the predicted. 

The prediction is shown next to the measured force for each of the tests, grouped along the 

bottom. Above each predicted force value is the standard error percentage relative to the 

measured force value, found using Equation 3. The average standard error for all tests was 21%.

cj. j  j  hi^ine asured~^v re dieted) /->\Standard error = J —---------p -----------— (3)

These graphs quantify the previous observation that the steady state force predictions 

need a more robust A regression matrix. A higher signal-to-noise ratio in the EMG readings 

would help make the predictions more accurate as to steady-state force level. A regression with 

a constant added was also performed, but did not help with steady-state error.
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Some of the lowest error percentages occurred when all fingers were engaged. This 

validates the already standard method of controlling grasping speed or force in a single DOF 

prosthetic using EMG control; more muscles in the forearm performing a similar contraction 

makes for clearer readings. The model had more difficulty predicting the forces of fingers not 

receiving force, often over-predicting them. Possible contributing factors to this are cross-talk in 

the electrodes and co-contraction of the muscles. A more targeted form of electrode coupled 

with improved shielding from the ambient electromagnetic noise would help to correct this type 

of error.

11.3. Numerical analysis

After seeing the need for more independent EMG readings, the correlation matrices for 

EMG and force were found in order to see the quality of the data; see Table 12 and Table 13. 

Ideally, these would be equal to the identity matrix; values off the diagonal show more 

independence if closer to zero.

The force values are very independent from each other. This is to be expected: the force 

sensors are mechanically very isolated from each other. Also as expected, the EMG signals do 

not show the same high level of independence. This correlates with the previous findings from 

Figure 50, Figure 51, and Figure 52. The 0.6318 value between the thumb and middle finger is 

especially high, and helps explain why those two fingers tended to follow each other throughout 

the tests. This interdependence is partly because the muscles of the forearm often do not 

activate with complete independence (Schieber 1991). In addition, the surface EMG sensors 

used are not capable of isolating the deep muscle flexors associated with the fingers. This 

correlation should be improved for wired EMG sensors or IMES, which would target the specific 

muscles more accurately.
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Table 12: Normalized correlation of EMG values

o
LU

V)
TOcQ
\r>

Index Middle Thumb
Index 1 0.2054 0.166

Middle 0.2054 1 0.6318
Thumb 0.166 0.6318 1

Table 13: Normalized correlation of force values

Force signals 
Index Middle Thumb

n J2 Index 1 0.058 -0.021O TO
 ̂ = Middle 

^ Thumb
0.058 1 0.0719

-0.021 0.0719 1



12. SUMMARY

This thesis has described the design, components, and function of hardware capable of 

measuring the individual forces and displacements of the fingers for correlation with the EMG 

signals.

The result is a functional device which fulfills the original goals. The required specifications 

were met or exceeded, as shown in Table 14. The recommended error for the accuracy of the 

sensors' readings are shown in Table 15.

More importantly, the ability to estimate individual finger forces through EMG readings 

was demonstrated at a minimal level. Furthermore, the preliminary tests show that individual 

finger force profile shapes can be derived from the recorded EMG data if further improvements 

are made to the system.

12.1. Future work

The results of this research have shown ways that the system could be improved in a 

future iteration. Several of these are related to the Arduino board and its limitations, while 

others were learned from experience with the current device. Direction for future testing of 

EMG signals for multiple DOF prosthetics is also provided.

12.1.1. Control and hardware

First and foremost, the shortcomings of the Arduino board could be remedied with the 

implementation of a PC-based control like that which was originally used for the first prototype.



Table 14: Original specifications and results

Goal Actual

Force Measurement (min): 45 N 67N

Velocity (min): 150 mm/s 480 mm/s

Travel (min): 100 mm 121mm

Applied force( min): 22 N 27N

Finger separation (max): 25mm 21mm

Table 15: Accuracy of measured data

Recommended Error 
for Measured Data

Force Position

±1.2N ±2.5mm

This would eliminate the failure of the Arduino board to correctly maintain the position, and 

allow for more intuitive Position control. This would in turn necessitate reworking of the code to 

account for any variations in output from a different controller, as well as a likely retuning of the 

control gains, but the gains through this change would be worth the effort.

A more streamlined version of the circuit board could improve access to the adjustment 

potentiometers, and assist in debugging. It is particularly recommended that the three stages of 

the load cell processing circuit be reordered so that the balancing circuit comes first. This would 

allow for the same calibration curve to be used for all force data read from the front panel. It 

could also improve the layout of the cable connections, which would help organize the inside of 

the control box. Planning and having a printed circuit board (PCB) commercially made is 

recommended for simplicity and function, as well as reducing the time-consuming and difficult



task of making the circuits by hand. Commercially available solutions for simultaneous 

amplification and offsetting should be investigated.

The source of the noise associated with the input knob could be better understood. This 

may also be an issue that can only be resolved by replacing the Arduino with a microcontroller 

that has better isolated functions.

As noted in the Design section, the three shafts need to be very parallel for smooth 

motion. A future version could make the shafts easier and more natural to align, which would 

aid in reassembly after cleaning or inspection.

Testing showed that the system has a slight directional bias in smoothness in the lead 

screw. This effect is only noticeable at very low speeds. The motion is smoother as the finger 

ring extends, with a more jerky motion as it retracts (see slight steps in Figure 41 along the right 

side). It may be possible to reduce or eliminate this effect by using a different drive system with 

less natural directional bias. Possibilities include a ball screw or a linear actuator.

Although the chosen DC motors met the requirements well and were very inexpensive, 

their power connection tabs can break off and were difficult to repair. Other motors with a 

more protected connection would prevent this.

12.1.2. Testing and application to prosthetic control

As has been mentioned previously, more isolated EMG signals would help with the force 

prediction accuracy. There is a limit to how isolated the signals can be due to muscular 

interactions, but they could be improved greatly with a more targeted electrode type (wired or 

IMES are examples). Improved shielding from electromagnetic noise would also help improve 

the predictions by giving a cleaner signal.
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A more constrained shoulder joint would help to isolate the subject's hand muscles more 

reliably.

More data sets are needed to determine a robust A regression matrix. Repeating the 

same tests again would strengthen the relations found for the linear model by varying the EMG 

reading locations as would be typical of a prosthetic user regularly donning an electrode device. 

This would include baseline level analysis for better accuracy on predictions that should be zero 

force. Also beneficial would be tests in which each of the fingers received individual force levels 

for more rich data, rather than the same force value applied to any fingers involved. This would 

be a simple step, as the device was already configured for these types of independent inputs. It 

would also be possible to increase the maximum level of force in a test, as the subjects reported 

that the 1lbf level was so low as to be difficult to discern and the 3lbf level was not too straining. 

Increased force levels would require larger resting periods to avoid muscle fatigue.

An important part of the expanded data set is the gathering of data that are not part of a 

formal test. The subject would be instructed to move the fingers in common motions such as a 

grasp or a two finger pinch. These data sets would allow for comparisons of predicted force in a 

more natural activity than the trapezoidal force profile used here.

Finally, the ultimate step would be to apply these force predictions to a multiple DOF 

prosthetic hand with the goal of improving their intuitiveness and usefulness to an amputee.

12.2. Conclusion

In order to create more natural motion in prosthetic devices, the relation between the 

oft-used EMG signals and the mechanical motion of the limb needs to be better understood.

This relationship grows in complexity with multiple fingers and complicated motions. This thesis 

presents a device designed to measure the force, position, and velocity of each finger
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independently for comparison with EMG data. Data from a representative test were presented, 

and a method of predicting the force of each finger was shown, with the resulting prediction 

generally following the measured force profile. This design will allow improved data to be 

independently gathered from more fingers, representing more complex motions of the hand, 

helping the EMG-motion relation to be comprehended more fully.
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APPENDIX A:

LABELED CIRCUIT PHOTOS

Large, detailed diagrams of the actual circuit board with all its connections are shown in 

this appendix.



-3- 
ur> 

c
d

92

Figure 53: Circuit with all connectors labeled



Table 16: Descriptions of labeled connectors in Figure 53

A, B, C and D E: Front 
panel 

outputs

F: Front 
panel 
inputs

G:Front 
panel 

outputs

H:
Loadcells A 

and B

1: Front 
panel 

switches
J: Loadcells 

C and DPin Encoder Servo drive Arduino
1 5V 5V Reset switch 5V A 5V 5V 5V 5V
2 Chan A GND Analoginput Load cel! A B Load ceil C +15V Reset switch +15V

3 Index Direction Loadcell in Enc A Chan A C EncC Chan A Load cell A none Load cell C
4 Chan B PWM none EncA Chan B D EncC Chan B -15V none -15V
5 GND none Load cell B Load cell D Load Ceil B Mode switch Load Cell D

6 EncChanA Enc B Chan A Enc D Chan A GND none GND
7 EncChan B Enc B Chan B Enc D Chan B none

8 Mode switch GND GND
9 PWM out

10 Motor dir out

<X)UJ
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Figure 54: Circuit with all op-amp connections labeled



Table 17: Descriptions of labeled op-amp connections in Figure 54

Pin Od AmoA Od AmoB Od Amo C Od AmpD Od Amo E
1 Vout:To inverting Vout:To inverting Vout:To inverting Vout:To inverting Vout:To Op Amp A
2 V(-)in: Summeramp V(-)in: Summer amp V(-)in: Summeramp V(-)in: Summeramp V(-)in: Gain resistor pot

3
V(+)in:Summer
amp V(+)in: Summeramp V(+)in: Summer amp V(+)in: Summer amp

V(+)in: InputAfrom EL- 
1040

4 V(+)s: +15V V(+)s: +15V V(+)s: +15V V{+)s: +15V V{+)s: +15V

5 none V(+)in: A analogin V(+)in: D analogin none
V(+)in: InputBfrom EL- 
1040

6 none
V(-)in: A Voltage 
follower

V(-)in: D Voltage 
follower none V(-)in:Gain resistor pot

7 none Vout:To ArduinoA Vout: To Arduino D none Vout:To Op Amp B
8 Vout: To Arduino Vout:To Arduino Vout:To Arduino Vout:To Arduino Vout:To Op AmpC

9
V(-)in: inverting 
amp V(-)in: Invertingamp V(-)in: Invertingamp V(-)in: Invertingamp V(-)in:Gain resistor pot

10
V(+)in: Inverting 
amp V(+)in: Invertingamp V(+)in: Invertingamp

V(+)in: Inverting 
amp

V(+)in: InputC from EL- 
1040

11 V(-)s:-15V V(-)s: -15V V(-)s:-15V V(-)s: -15V V(-)s: -15V

12 none V(+)in: B analogin V(+)in: C analogin none
V(+)in: InputD from EL- 
1040

13 none
V(-)in: B Voltage 
follower

V(-)in:C Voltage 
follower none V(-)in:Gain resistor pot

14 none Vout:To Arduino B Vout:To Arduino C none Vout:To Op Amp D

<X)
Ln



APPENDIX B:

FULL MICROCONTROLLER CODE

The actual code used by the Arduinos to control each device is shown here:

//Position and Force control code

/*  Note: All four devices have different gains in Force control mode in order to run more smoothly. If uploading new code to all 
Arduinos,
remember to put in the correct gain by changing the value of the pgainForce variable in the Global variables section (two sections 

down).
It looks like:

unsigned int pgainForce = X;

For each device, input a different value:

Device A pgainForce: 12 
Device B pgainForce: 15 
Device C pgainForce: 11 
Device D pgainForce: 14

*/

//#include stuff
#include <C:\Users\Brian\Desktop\Arduino\hardware\tools\avr\avr\include\avr\interrupt.h> /*  To compile code, you'll have to 
locate these files on your own computer and */
#include <C:\Users\Brian\Desktop\Arduino\hardware\tools\avr\avr\include\avr\io.h> /*type in the correct file locations. It will 
be in a sim ilar folder. */
#define encoderPinA 2 
#define encoderPinB 3 
#define modeSelect 4 
#define PWMout 5 
#define motordirection 6 
#define loadcell 16 
#define pot 17 
#define LEDPin 13

unsigned int pgainForce = 11; /*  This gain needs to be a different value depending upon the selected device, see note above. */ 
unsigned int pgainPos = 15; //  Stays at 15 for all devices. 
double effort1 = 0; 
double effort2 = 0;
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double effort2prev = 0; 
double forceerror1 = 0; 
long poserror1 = 0; 
long position1 = 0; 
int force1 = 0; 
int forcegoal = 512; 
long posgoal = 0; 
int forceinit = 512; 
int speed1 = 0; 
float startcounter = 0.0; 
int chan1 = 0; 
int chan2 = 0; 
char direction = 0; 
int potread = 0; 
int mode = 0;

//_______________________________________________

//_______________________________________________

//  Two input capture interrupts as edge finders for encoder

//IC interrupt -  channel A of encoder - Pin 2 
ISR(INT0_vect)

{
chan1 = digitalRead(encoderPinA); 
if (chan1 == 0 && chan2 == 0) //  Quadrature logic 

{
position1++; //  Increment position1 by one

}
else if (chan1 == 1 && chan2 == 1) //  Quadrature logic 

{
position1++; //  Increment position1 by one

}
}

//IC2 interrupt - channel B of encoder - pin 3 
ISR(INT1_vect)

{
chan2 = digitalRead(encoderPinB); 
if (chan1 == 0 && chan2 == 0) //  Quadrature logic 

{
position1--; //  Decrease by one

}
else if (chan1 == 1 && chan2 == 1) //  Quadrature logic 

{
position1--; //  Decrease by one

}

}

//  Tim er buffer overrun interrupt -  fo r regularly timed motor updates 

ISR(TIM ER2_OVF_vect) {

if (mode == HIGH) //  If in Position control mode 

{
interrupts();
potread = analogRead(pot); 
digitalWrite(LEDPin, HIGH); 
posgoal = (potread-512)*4; 
poserror1 = position1 - posgoal;

effort1 = pgainPos*poserror1;

invertedm otor(effort1*startcounter);
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digitalWrite(LEDPin, LOW); 
if (startcounter < 0.9999)
{/*  startcounter helps the devices start more smoothly if their initial input goal is not close to where they are, but scaling up the 

effort over about 1 sec */ 
startcounter += 0.0005;

}

TCNT2 = 250; / *  This number has to count to 255 outside the interrupt before the next interrupt starts. 250 worked well for 
running speed, 100 is better for debugging with prints. */

}

if  (mode == LOW) //  I f  in Force control mode 

{

//interrupts();
force1 = analogRead(loadcell); 
digitalWrite(LEDPin, HIGH); 
forcegoal = analogRead(pot)-512; 
forceerror1 = forcegoal-(force1-forceinit); 
effort1 = pgainForce*forceerror1;

//  Digital Filter, 8/1
effort2 = effort1*0.0002362 + 0.9998*effort2prev; 
effort2prev = effort2;

invertedm otor(effort1*startcounter); 
digitalWrite(LEDPin, LOW); 
if (startcounter < 0.9999)
{/*  startcounter helps the devices start more smoothly if their initial input goal is not close to where they are, but scaling up the 

effort over about 1 sec */ 
startcounter += 0.0005;

}
TCNT2 = 250; / *  This number has to count to 255 outside the interrupt before the next interrupt starts. 250 worked w ell. */

}
}

//  M otor control function
/*  This file controls the BD15A8 servo drive, which needs an inverted PWM when using the optically isolated inputs */ 
void invertedmotor(long speed)

{
direction = 1; //  1 is CW, 0 is CCW 
if  (speed < 0)

{
direction = 0; 
speed = speed * (-1);

}

if (direction == 1) //  Sets direction pin 

{
digitalWrite(motordirection,HIGH);

}
else

{
digitalWrite(motordirection,LOW);

}

//  clamp speed between 0 and 10000 which is 100%
//  duty cycle 
if  (speed > 10000)

{
speed = 10000;

}
speed1 = 255-(speed*255/10000); /*  Scales the motor control effort to the required 8 bit number fo r a PWM output, and inverts 

PWM */
analogWrite(PW Mout,speed1);
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}

//  From Mitch 6/29

void setPwm Frequency(int pin, int divisor) {
byte mode;
if(pin == 5 | |  pin == 6 | |  pin == 9 | |  pin == 10) { 
switch(divisor) { 
case 1: 

mode = 0x01; 
break; 

case 8: 
mode = 0x02; 
break; 

case 64: 
mode = 0x03; 
break; 

case 256: 
mode = 0x04; 
break; 

case 1024: 
mode = 0x05; 
break; 

default: 
return;

}
if(pin == 5 | |  pin == 6) {
TCCR0B = TCCR0B & 0b11111000 | mode;

}
else {
TCCR1B = TCCR1B & 0b11111000 | mode;

}
}
else if(pin == 3 | |  pin == 11) { 
switch(divisor) { 
case 1: 

mode = 0x01; 
break; 

case 8: 
mode = 0x02; 
break; 

case 32: 
mode = 0x03; 
break; 

case 64: 
mode = 0x04; 
break; 

case 128: 
mode = 0x05; 
break; 

case 256: 
mode = 0x06; 
break; 

case 1024: 
mode = 0x7; 
break; 

default: 
return;

}
TCCR2B = TCCR2B & 0b11111000 | mode;

}
}

//_______________________
//  Loops

//_______________________
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//  Setup loop for inititalization 
void setup()

{
noInterrupts();
/ /  Serial.begin(9600);
//  Serial.println("In itializing..."); 
analogW rite( PWMout, 255); 
pinMode(PWMout, OUTPUT); //PW M  output 
pinMode(motordirection, OUTPUT); //m otor direction output 1 
pinMode(loadcell, INPUT); //Load cell analog - Pin 14, A0 
pinMode(pot, INPUT); //Pot analog - Pin 15, A1 
pinMode(encoderPinA, INPUT); //  Encoder Chan A - Pin D2 
pinMode(encoderPinB, INPUT); //  Encoder Chan B - Pin D3 
pinMode(modeSelect, INPUT); //  Switch - Pin D4
digitalWrite(modeSelect, HIGH); //  Turn on a pull-up resistor fo r mode pin 
pinMode(LEDPin, OUTPUT); // Make onboard LED an output

//  Codes to set up encoder interrupts 
EIMSK | = ( 1 << INT0); // for arduino-pin2 
EIMSK | = ( 1 << INT1); // for arduino-pin3 
TIMSK2 | = (1<<TOIE2); //  set interrupts=enabled 
EICRA |= ( 1 << ISC00); //  on int0 CHANGE 
EICRA |= ( 0 << ISC01); //
EICRA |= ( 1 << ISC10); //  on int1 CHANGE 
EICRA |= ( 0 << ISC11); //

//  From Mitch 6/29 email
setPwm Frequency(5, 1); //*setPwm Frequency(int pin, int divisor); The base frequency for pins 5 and 6 is 62500 Hz. - Divisors: pins 

5, 6, 9 and 10 are: 1,
, 64, 256, and 1024. */

//  Codes to set up Timer2 Overflow Interrupt 
TCCR2A = 0;
TCCR2B = 1<<CS22 | 0<<CS21 | 0<<CS20; / *  Page 162 of AVR datasheet gives prescalers fo r tim er */
TIMSK2 = 1<<TOIE2;

mode = digitalRead(modeSelect);

analogW rite(PW Mout,255); 
position1 = 0;
analogW rite(PW Mout,255);
interrupts();

}
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