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ABSTRACT*

In this thesis, a computation is considered a system of
asynchronously cooperating "independent" programs (coroutines)
linked by paths of information along which messages are sent.

A programming language called DCPL, a Distributed Control
Programming Language, in which such computations may be expressed,
and which may be considered as a system-oriented programming
language, is presented. A tree-structured representation and
a very dynamic binding give to a DCPL program the flexibility of
the highest level programming languages together with the poten-
tial of concurrency of the asynchronous computational structures.

The locality of references which is exhibited in any DCPL
program allows a new computer organization using sequential storage
devices with large transfer rate instead of random-access storage
devices with relatively low transfer rate. Moreover, the computer
is expected to achieve a large throughput by taking the parallel-

ism into account.

*This report reproduces a thesis of the same title submitted to the
Department of Electrical Engineering, Division of Computer Science,
University of Utah, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.
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CHAPTER |

INTRODUCTION

1.1 Introduction.

In this thesis, a computation is considered a system of
asynchronously cooperating "independent” programs (coroutines)
linked by paths of information along which messages are sent.

A programming language called DCPL, a Distributed Control
Programming Language, in which such computations may be expressed,
and which may be considered as a system-oriented programming
language, is presented. A tree structured representation and
a very dynamic binding give to a DCPL program the flexibility
of the highest level programming languages together with the
potential of concurrency of the asynchronous computational
structures.

The locality of references which is exhibited in any
DCPL program allows a new computer organization using (inexpensive)
sequential storage devices with large transfer rate instead of
(expensive) random access storage devices with relatively low
transfer rate. Moreover, the computer is expected to achieve

large throughput by taking the parallelism into account.



1.2 Variables in computing processes.

In his paper "On certain basic concepts of programming
languages™ [ 27] Niklaus Wirth wrote:

"The elementary concepts of computing processes are:

0 There exist certain quantities, to be called "values™
and elementary classes or types (possibly only one)
of values among whose elements given elementary rela-
tionships hold. These relationships or mappings are
represented in a computer by its operations which
generate a new value (called result) which has the
specified relationship to the given value(s) (called
operands).

0 There exist cells (usually called "variables") which
are able to contain a value, and which have a name.
That name serves to refer to the contained value.

0 There exists an operator for the assignment of a new
value to a cell.

I

These concepts are widely accepted today, and they under-
lie any actual implementation of a conventional programming languag

In DCPL we support the first part of the quotation: there
is a universe of values structured in classes or types, and mapping
from some classes to some possibly different classes which are
actualized by operations. There may be, for instance, in our uni-
verse, integer and logical values forming the classes | and L,

and the operations:

operations operators mappings
addition + IxW
disjunction \Y LxLAL
negation L>L

equality I XI-*L



Fig. 1-1

In fact, it is not our intention to impose any restriction
on our universe. Consequently, we are leaving the list of types
and operations open-ended. For this reason, and since syntax has
received a rather speedy treatment, the emphasis being placed upon
semantics, it would be proper to consider DCPL as describing a family
of languages rather than defining completely one specific language.
DCPL, however, does not support the second part of the
quotation: one variable in DCPL has no meaning by itself; a system

of mutually bound variables defines communication paths.

1.2.1 An example.
Let us consider the evaluation of the following simple

expression:

(1) (2 +3#x; (6-h+y; x +y +xjy +1%y ;(2xy)-x)

in a conventional programming language (fig. 1-2):






- there are two cells x and y ;

- the expression is viewed as a sequence of statements.
The execution of any statement is a simple process involving
some cells: whenever the statement x +y =>x , for instance,
is executed, the values contained in x and y are retrieved, and
their sum is then stored in x;

- the statements are executed serially one after the other.
The last item is not a statement; its value is considered to be

the value of the expression.

The same expression may be interpreted in a quite different
way in DCPL. In order to study gradually the notions involved,

we start by interpreting a much simpler expression without variables

(2) 2+3+2 +2+1

Association having to be done on the right, the expression may
be represented as the tree of fig. I-5a. We may view each node
as a simple automaton, and each edge as a channel of information.
Whenever a node represents an integer, it sends up spontaneously
along the edge its own value, and then vanishes (fig. 1-3).
Whenever a node represents an addition, it waits until
it receives a value from both the right and the left side; then
it adds the two values and sends the result up along the channel,
and vanishes (fig. 1-4). The evaluation of expression (2)
is displayed in fig. 1-5.
Let us consider again expression (1). The expression may

be represented as a syntax tree (fig. 1-6).



Fig.

1-4






Fig.

1-6



Each node is here again considered as being an automaton

which has an address in some address space. Whenever a node A
knows the address of another node B, the former may send a message
to B (fig. 1 7). Moreover any node may send a message up the
tree; any node receiving such a message may either pick it up

or pass it along upward.

The nodes representing values or operations have the same

behavior as before. Whenever a node represents some variable x,y, etc
it sends spontaneously up the tree its name and its address. Such
a message can be picked up by a binder ( -kk -vy are binders)

containing the same variable name only if the message reaches the
binder by the right. The binder possesses then the address of the
node which has originated the message (fig. 1 8).

The various nodes which act spontaneously are completely

independent from one another. However, in order to have figures

Note about the syntax: -m is considered as being a triadic

operator (operator of degree 3),

Whenever an operator Ojd is triadic, A Ojd B;C represents:

OR

The association being done on the le ft, A Op~ B;C D;E represents:
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Fig.

1-7

1-8

message
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more readable and to display the binding in a more visible way,

the binding operations are performed first.

Whenever a binder has received a value on its le ft, and
addresses of variable nodes on its right, it sends the value re -
ceived to each variable node whose address it has received (fig. 1-9).

Whenever a binder receives a value from its right, it
passes this value up along the tree and vanishes (fig. 1 10)

The description of the evaluation is given in fig. 111

12.2 Variables as defining paths of information.

If we view a computation as a sequence of statements, variables

are to be considered as denoting cells in which some results may

be stored for subsequent use. Conversely if beforehand variables

are considered as denoting cells, it is necessary to be assured

that no attempt will be made to use a value before it has been

produced, or to overwrite a value which is s till to be wused.

As a result some sequencing has to be done, sequencing whose

viscosity will decrease the amount of possible parallelism

If we view a computation as occurring in space and in time,

we will use variables whenever we want some information to be

transferred from one place to some other place(s). Whenever a

variable is free, it has no meaning by itself. A system of mutually

bound variables is used as a symbolic device defining paths of infor-

mation along which information flows toward computation. Whenever

the needed information reaches an operator node, the simple process

it represents would be activated asynchronously. |Its completion

may result in sending some information to some other nodes.
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1-10






Fig. 1-11d
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In DCPL a computation may be regarded as an object composed

of small automata which react to one another. Since a variable may
receive a computation as value, representing for instance a proce-
dural argument, the object representing a computation may expand

and shrink with a behavior which may lead wus to think of Von
Neumann's self reproducing automata [24]4 We may notice however
that our structures are not to be implemented in some cellular
space but programmed on a storage device.

The binding of variables superimposes to the tree structure

a graph structure similar to a program graph. Fig. 112 for instance
displays the graph of our previous example. Such a program graph
accounts for all the possible parallelism (or preferably concurrency)
which may occur in the computation.
1.3 DCPL as a programming language.

As a programming language, DCPL has much in common with

languages emphasizing expressions (rather than statements) and
having to some extent the lambda calculus as background machine

(McCarthy [18]; Landin [121314] A . Evans [7]). Any computation

is a structured object whose evaluation produces a value. Moreover
we can have procedural arguments: a procedure may be constructed
in some place, produced as a value and sent to some other places
where copies of the procedure are <created (implemented in space).

However, DCPL presents many peculiarities: a computation,

viewed as an object, may produce explicit side-effects on the

environment in which the computation is embedded. Together with

a binder ‘lambda’ which binds the variables which are to receive

an argument from the environment (as in some extent "value in



Fig.

1-12



Algol 60) there is a binder ‘'mu’' which binds the variables which

(fig. 1-13)
are to send an argument to the environment~" 'Mu’ , as a binder,
is in some way similar to "result" in Algol W [261 with this impor-
tant difference: an argument may be sent to the environment before

the computation has been completed or even while the computation

is actively worked out; as a result a computation may ask to the
environment how to pursue the process or, some special conditions
having occurred, if the computation is not to be cancelled , etc

As it has been already mentioned, DCPL is a programming
language implicitly displaying parallelism to a large extent.
Indeed, there is no need for special devices such as fork, join,
parbegin/parend etc which determine parallelism explicitly.

DCPL is a system-oriented programming language, this aspect
being discussed in the next section.
|.4 DCPL as a system-oriented programming language.

"System" is regarded here as denoting a group of interacting
procedures constituting a collective entity. A sophisticated
industrial organization, an administration, a hospital, are systems
a number of departments are services interacting to one another.

If a computer is to be wused integrated in such an environment, it
is likely it should look like an information network; moreover

programming should reflect such an organization.

In DCPL we are able to write asynchronously cooperating
"independent" programs (coroutines) linked by paths of information
along which messages are sent, and to write them recursively, i.e .
any one of the previous programs may itself be a construct of
cooperating independent subprograms (fig. 1 14) It is possible

to embed in DCPL sequential programs and to master their synchro-



environment



20

nization. Fo
it is possib
Paths

generality:

made availab

environment

conventional

may not be a

contains the

the former p

latter ones.

are allowed.

r such programs DCPL looks like a host system . In fact
le to write in DCPL a hierarchy of host/guest systems.
of information permit as well to have full programming
the same program may be debugged in a testing environment,

le in a program shop and put

without the n

programming

vailable for

names of som

rocedure is

cular instructions (read,

to debug a p

simulated by

sidered as p

procedures.

by some wuser in his own
eed of any surgery (Krutar [8]) . In
languages, such a programming generality
two reasons: 1 A procedure in general
e other procedures to call; as a result

bound to the environment which contains the

The situation is better when procedural arguments
2. Input/output operations are performed with parti-
write etc P thus it is not possible

rocedure in a testing environment with 1/0 devices

some programs. In DCPL inputs and outputs are con-

aths of information coming into and going from the

Such paths may be connected as

as to programs.

1.5 Machi

DCPL

ne organizati

on.

gives to machine organization

Whenever a program

language, th

a same cell

results in a

importance i

one processo

may be consi

e control may

may be access

serious lack

is expressed in

well to 1/0 devices

a new perspective.

a current programming

jump from one place to any other one,

ed from quite different places. This

of locality. This would not be of any

f today's computers were s til

r has access

dered as bein

Von Neumann type machines:

to a random access memory whose cells

g all

equidistant” from +the processor.



21

Processors becoming faster and faster (and cheaper and cheaper)

the trend in machine organization is to hierarchies of memories.
However, unless many iterative computations are expected to occur
in the fastest level, it is necessary to have at any level of the
hierarchy a transfer rate large enough to "feed" the processor.

A large tranfer rate may be obtained by taking at each

level a large block as unit of transferable information (the slower
the level of memory, the larger the block).

One may believe, however, that only a few words in such
blocks would be really wused. For this reason Jack Dennis suggests

in [4] that information should be moved on demand with the word

as information unit, a large transfer rate being assured by perfor-
ming many computations in parallel.

In DCPL it is possible to consider a program as a construct
of "simply-connected" computations which, once triggered, could
be brought in the fastest level of memory and completed without
the need for any additional information.

Moreover it is possible to replace random access memory
by sequential rotative memory. This will be discussed extensively
in part 111 of this thesis.

In part 11 DCPL is presented. Part one is concerned with

preliminaries and discussions which the author believes to be relevant
to the subject and important. Some readers might prefer to skip them

and go directly to part two ( beginning p. 86)






CHAPTER |1

SOME CONSIDERATIONS ABOUT PROCESSES

This chapter is intended to present some notions about
simple processes . We are indebted to Holt [9] and Shapiro [22]

for some of the concepts presented here.

(-, A process as a sequence of transformations
Some simple processes may be considered as leading from
one object to some other object through a sequence of elementary

transformations.

11.1.1 The object-flow model
The process illustrated in fig. I'l1-1 may be visualized

by considering each node as being a processor able to perform the

corresponding elementary transformation, and considering each arrow
as being a communication path. The object enters on the left.

It then advances along the path. On reaching a processor, it
triggers the corresponding transformation. Then the resulting object
continues to advance along the path. When the process is completed

the result emerges at the right end.

11.1-2 Control signals
Another point of view may be adopted. There are places
where objects may be stored and retrieved. A processor does not

receive on the path the object to be transformed, but a control
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signal. Chi receiving it, the processor expects to find the object
to be transformed at some specific place. When the transformation
has been completed, it puts the resulting object at some (possibly
different) place and sends a control signal to the next processor
to operate. In fig. II—2 one single place is used; a cascade of
places s used in fig. II-3.

The latter situation may be somewhat abstracted. To each
processor is associated an environment (environments may overlap
one another). Each processor is able to perform a specific transformation
on its environment. The process is controlled by a control signal
as before (fig. II-4). In fig. II—5 there is one common environment

accessible by each processor.

In the light of these latter interpretations the arrows
in fig. - appear to have two purposes: 1 They order in time
the occurences of the different transformations, carrying an implicit
control signal (which is the object itself); 2 They specify,
for each processor, on which object the corresponding transformation

is to be done.

IIA1.3 Production line. s

Up to now we were interested in transforming one object into
another one. Let us suppose we want to apply a process to a sequence
of incoming objects, fig. [ | being interpreted as representing
a production line.

For instance we may consider a row of objects advancing on the
communication path. Any processor performs repetitively its transformation
on each incoming object. If the various processors operate at different

rates, it becomes necessary for each arrow to act as a first-in-first-out
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queue (fig. 11-6).
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11.1.4 Pipe-line.

If a large throughput (number of objects processed per unit
of time) is desired, such straightforward solutions are not satisfactory:
at any time only one processor is working; we would prefer to have
the various processors working concurrently on different objects.

I f the time required by one processor to transform one object

is independent of the object and if this time is known, synchronization
may be performed with a central timer. Every T (an amount of time
during which any processor may perform its task on one object) the
timer triggers all the processors by sending them a control signal

(fig. 11-12 ana 11-13).

A more general solution may be achieved by replacing the
backward path in fig. II—? by a sequence of backward paths as displayed
in fig. 11 14 Fig. II-15a-d describe the process.

The processes we have just described are called pipe-lines.

In fig. 11—12 the pipe-line is synchronous; in fig. 11—14 the pipe-line

is asynchronous.

11.1-5 Petri-net.

The situation of fig.' 11—14 may be modeled by a Petri-net
(fig. 11.16).

The behavior of a Petri-net is very close to the behavior
described in fig. II-8A A Petri-net is made out of transitions
(bars in fig. 11 16) and places (circles in fig. 11 16) An arrow
may lead from a place to a transition, or from a transition to
a place; a place in the former case is called an input place of the

transition, and in the latter case, an output place of the transition
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(fig. 11 17) A place is either empty or filled by a token. A transition
is ready to fire whenever all its input places are filled. (1t is supposed
that the Petri-net is such that all the output places are empty at the
time of firing. For a detailed discussion, please see Holt [9]). The
firing of a transition may be viewed as a spontaneous and instantaneous
operation: each input place is emptied, a token is placed in each _
output place of the transition (fig. II-18a»b)A

It may be interesting to note that a place may be the input
of several transitions. Several of these transitions may be ready to fire
at the same time; however only one transition among them may fire
at a given time (fig. ||-19a-b)4

Remark.

A given situation may be modeled in quite different ways depending
on the emphasis which is to be placed on various <conditions. For
instance, fig. 11—20 and fig. 11—16 account quite differently for
the same situation. [ ]

II.2 A process as a system of transformations.

In the previous section we discussed simple processes whose
elementary transformations were applied sequentially to some object.

In general an elementary process may be applied to one or
several inputs producing one or several outputs (fig. II-Zla).

We require of any would-be elementary process that it may only
be applied when all its inputs are available and that its outputs
are available only after the process has been completed (fig. II-21b)A
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11.2.1 The object-flow model.
Let us now consider a process leading from a set of objects

to another set of objects by applying different elementary processes

A ™27 x> aS indicated in fig* H-22.

By and large, our previous discussion may be applied here again.
Each node may be considered as being a processor. Whenever an object
is produced it advances on the corresponding path until it reaches
the next processor. A processor is triggered whenever there is an
object on each of its input lines.

11.2.2 Control signals.

In another implementation there are places in which and from
which objects may be stored and retrieved. Control signals may travel
on the arrows. A processor is triggered whenever it has received
a control signal on each of its input lines. The processor retrieves
the objects stored in its input places, performs the associated
elementary process, stores the resulting objects in its output
places, and sends a control signal on each of its output lines.

Fig. 11—23 and 11—24 present two possible configurations.

11.2.3 Determinacy.

We may abstract such a situation by considering each processor

as being able to perform a transformation on its environment after
it has been triggered by some control signals (fig. 11 25) However
it is important to notice that the result of the process may depend
on the order in which elementary processes have been applied if
the different environments are interdependent or if there is one

global environment. A process is said to be deterministic or
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output-functional if the resulting objects or the resulting environ-
ments do not depend on the order in which elementary processes have

been applied[15].

A process is said to be completely functionala) if, for any
elementary process P*, the objects or the local environment to which
P~ is applied do not depend on the order in which elementary processes
are applied, at the time when P” is triggered.

The process of fig. 11—22 with objects flowing on arrows
is determinate if the elementary processes are output-functional;

we owe this result to the requirement we made about elementary

processes (fig. 11 21) However the process would not be determinate
if we had allowed races to occur with, for instance, an elementary
process having as an output the first input received (fig. 11 26)

The processes of fig. 11-22 and 11—23 are determinate;
however, some other configurations of places would have given

non-determinate processes.

1. 2.4 Service-on-demand.

A same elementary process may occur at different locations
in a process. Let us assume that the process of fig. 11—27 is to be
carried out by a team of four workers, each worker being able to

perform a specific elementary process A,B,C or D.

The flow chart of the process is displayed on a table with
a light bulb on each node and a place on each arrow. Whenever all

a) The term "determinate" is often used instead of deterministic.
However determinate is sometimes opposed to deterministic and means
then completely functional. Such opposition is not a very important one
from the point of view of this thesis, and we shall use "determinate"
in general. However, whenever the opposition is meaningful we will use de-

terministic and completely functional.
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11.2.6 Centralized vs. distributed control machine.

Abstracting the situation, we may consider the description of the

process as a sequence of instructions. One processor scans such a

sequence performing one at a time the corresponding elementary trans-

formations on the environment (fig. 11 36)
We call a machine with one or several processors working in
such a way a centralized control machine. On the other hand we call
a distributed control machine a machine whose special purpose processors
act on a service-on-demand basis: any action is triggered by Jlocal

conditions occurring asynchronously.

Although such a distinction may appear rather artificial

under certain circumstances, the notion of a distributed control machine

will be helpful in the sequel.
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which is syntactic relatively to a phrase structure grammar is

not an ob; however, any syntax tree of the same sentence may be

considered as an ob.

A symbol denoting a combination is <called a combinator.
The degree of a combination or of a combinator is the number
of obs to which the combinator is applied. An atom is <considered

as a combination of degree zero.

Fig. Lrr-1 represents an ob 0 with and being
respectively combinators of degree zero, two and three. The figure
displays the "topology" of 0 i.e ., the different obs, components
occurring in the construction of 0

L2 Realization of a process or of an object:

categories and functors.

Let us consider an elementary process with input and output
places (upper part of fig. III»2). When realizing such a process,
each place is mapped into a value of the universe of values and
operations (see introduction), each elementary process into an
operation, such that the value associated to the output place is

obtained by applying the operation (associated to the elementary

process) to the values associated to the input places (fig. III-2)
It is possible to realize an ob by assigning a value to

each component and an operation to each combination with the same

rule as previously: the value associated to the ob, result of the

combination, is the value obtained by applying the operation

(associated to the combination) to the values associated to the obs,

operands of the combination (fig. III-3)
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Fig. 111-2 ( to be viewed in space)

Fig. II—3 ( to be viewed in space)
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It is useful to abstract slightly such situations by intro-
ducing a variation of the concept of categories and functors (see
Mitchell [17] ; as defined here, categories may be extended in
a trivial way to be mathematical categories ).

A category is a set of objects among which some given
relations, which we shall suppose to be mappings, hold. So, for
instance, the previous wuniverse is a category. Any ob is also
a category: the components of the ob are the objects of the category,
and the relations are here the mappings actualized by the combinations.

Let C and C' be two categories. A functor is a mapping T: Cc >
which associates:

to each object 0 in C, an object T(O) in C'
to each mapping R in C[ a mapping T(R) in C'
such that whenever

OX s 02 s 07-- e e - 0'2 (Vv in C
we have either

1¢(01),7(02), T (0n ) s T(R) ~ 17(0p ,71(0p, ,7(0p)
and T is <called a covariant functor (fig. III-4a), or

T(0) , T(0" ), ... ,T7(0") T(R) v>T(O_IJ_.),T(09), .1 )

11 p 1 n
and the function is <called a contravariant functor (fig. III-4b)
III.3 lterative and recursive processes.

The previous definitions are significant because covariant
and contravariant functors lead to two different computational
schemata. We shall see that they correspond to the intuitive
distinction of an iterative versus a recursive computation, when

applied to sequential processes.
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source

Fig. 111-5

3 n-1

.l L1 source

jL TCPy) * ) T(P J | T(P )
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To any mapping R is associated an operation T(R) (which
may be primitive or not) in the universe of values and operations,
and the correspondance R- >-T(R) is given beforehand. For some
objects a”~ , called sources, the values T(a?”) are given in the wuni-
verse of values. For some b~ the values T(b?") ,called goals, are
to be determined.

Let us consider a sequence of objects, each object (the
first one excepted) being obtainable by applying a particular
elementary process to the previous object in the sequence. To each
elementary process P” is associated an operation T(P ™), T being
a covariant functor. The first object Aqg is the source; the value
associated to the last object A~ is +the goal (fig. III-5)

The computation of T(A”) may be performed straightforwardly
with one storage place whose contents will be called the current
value. At the beginning t (Agq) is the current value; the control
then proceeds sequentially from the source to the last object of
the sequence; whenever a mapping P~ is encountered, the operation
T(P_~) is applied to the current value, and the result is taken as
the new current value. When the control reaches An , the current
value is the goal T(A ).

n

In pseudo-Algol, the process may be described by means of an

iteration:
currentvalue T(AQq)
for i = 1 step 1 until n do

currentvalue

=T (P~)(currentvalue) H



51

We consider now the same sequence of objects, T being a

contravariant functor. An is the source and T(AO) the goal (fig. 11

It may seem that T(A ) being given, the computation of

n
T(Ao) is completely similar to our previous computation T(A")
and T(AN) being permuted: T(Pn), TP N _ N ) s T(P”) would be
applied sequentially to T(An). However, in general, this reverse
sequence of mappings is not known beforehand.

The control goes as before from A tonA : whenever a
mapping P_~ is encountered, the corresponding operation T(P*) is
placed at the top of a last-in-first-out queue (a stack).

After the control has reached A"~ , the computation proceeds as in
our previous example, the operations being retrieved, now, from

the stack.

The arrows on the diagram may serve as a built-in stack.
Let us consider as an example the factorial function:
1 fact(n) = [if n = 0 then 1 else n x fact(n-1)]

Let us compute fact(3)4 The goal is fact(3), the source s 0
with fact(O) being 1 The diagram is displayed in fig. III-7.

We can interpret the program as a diagram modification

scheme. The arrows T(P ) are constructed as the control proceeds
along the arrows P_~. When the control reaches the source the two
sequences are bound. Then the control proceeds towards the goal,
performing the operations T(P~). (Fig. III-8)

We may wonder what interpretation an iterative factorial

may have.






A "while-iterative” factorial: (2) [ x =1 ;y =1 ;
while x < n do begin y:= x xvy ;
x:=x + 1 end
y ]
A "for-iterative™ factorial: 3) [ y:= 1,

for i:=1 step 1 until n ~o y:= i*y

y 3

In these programs, the programmer knows beforehand what the sequence

TP ), » eee js. As a result fact(O) being known, fact(l),
fact(2), ... may be computed iteratively, one after the other (fig. 111-9)
In the first program, at each step, a test determines whether the goal

is reached or not. In the second program, the programmer knows

beforehand that the goal will be reached whenever the control

has passed three arrows.

As a result we can consider algorithm (1) as the most general.
Algorithm (2) uses a particular situation. Algorithm (3) uses a
still more particular situation.

In the previous discussion elementary processes were restric-
ted to transform one object into another one. The general case where
elementary processes are applied on several input objects and produce
several output objects may receive a rather similar treatment.

Objects and mappings relating one object to another constitute
a category (fig. 111-10). Let T be a functor, associating to each
elementary process P~ an operation in the universe T(P?). If T is
covariant (fig. I11-1I) we can take the input objects a,i,j as
sources, the goals being the values of the output objects ¢ and m

The computation is performed with a distributed control. If T is



54

Fig. 111-10

is a covariant functor ( in this figure X' denotes T(X) for any symbol X)

Fig. 111-11
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contravariant (fig. 111 12) the output objects are taken as sources,
the goals being the values of the input objects T(a), T(i), T(j) .
The arrows representing the mappings T(P_”) are wused as a first-in -
last-out-like storage device. We may notice that a stack,being an

essentially sequential storage device, cannot be used here.

III.4 Synthetic and inherited attributes.

111.4.1 Definitions.

When applied to an ob, covariant and contravariant functors
lead to the notions of synthetic and inherited attributes. Indeed,
it is sometimes interesting to associate to each component of an ob

an attribute, these attributes being structurally related to one

another. In our terminology, the components of an ob are considered
to constitute a category, which is mapped by some functor into the
universe of values and operations. 1 f the functor is covariant,

the attribute of the given ob may be computed whenever the attributes
of the atoms (primitive obs) are known. Such attributes are called
synthetic attributes. 1 f the functor is contravariant, the attribute
of an atom may be computed whenever the attribute of the given ob

is known. Such attributes are called inherited attributes (see

Knuth [11] where a syntactic point of view has been taken).

111.4-2 The value of an expression as a synthetic attribute.
The expression (2 +3 +2) + 2+1 (see section 121)
may be regarded as an ob. |Its evaluation requires only one synthetic

attribute, the value.
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T is a contravariant functor

Fig. 111-12
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Whenever an ob like (x + y + x ) + x + 1 , containing
formal variables, is to be evaluated, it is necessary that the
environment determines the value of each variable. The realization
of the ob is a covariant functor (fig. 111 13)

III.4.3 The environment as an inherited attribute.

In the previous example the environment was considered as

being global relatively to the expression, and as being accessible

by any variable. We may also consider the environment as an inheri-
a)

ted attribute. The evaluation may then be viewed as having two

phases: the binding and the evaluation proper (fig. 111 14)

In the example of section 121
(2+3->-x;5->»y;x + Yy - > - X ;Y +|->-y;2xy»x) t
the ->x and ->y may be considered as being operators on

environments (fig. 11115)

a) To each node is associated an attribute: a local environment.
As a result, to two occurences of a same variable in a computation
may correspond two different local environments which may associate to

these variable-nodes two different values.
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CHAPTER IV

SOME COMPUTATION  MODELS

1v.1 Introduction
In this chapter, two different approaches of modelling
computations are discussed. In both of these approaches, the

models present in some way concurrency and distribution of
control.

In the first approach, the directed graph is taken as
a model of computation [61010a162123] . In section IV.2
we will discuss the "computation model with data flow sequencing"
due to Adams [1]. Such a representation is of interest for wus
since a DCPL program may appear to be a data flow model after

the binding has been performed.

In the second approach, a functional computation is
considered as an expression; the evaluation of such an expression
may be carried out by some abstract machine. The lambda-calculus

provides a machine whose elementary operations are replacement
and substitution (section IV.3).

Curry's combinators allow to use a much simpler machine,

using replacement only. Strikingly enough, variables are not used
at all in this representation. As a result of the simplicity

of the machine and of the extreme locality of control, the repre-
sentation of an expression may appear rather complex (section IVA4).

The second part of this chapter (sect. IV.3 and IV.4)
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contains some technicalities. Some readers might prefer to
skip it.
_ _ ~a)
IV.2 The Adams' computation model with data flow sequencing.
The directed graph is used as a model of the computation.

“"The nodes of the graph represent computation steps and the edges
represent transmission paths for data and control. An edge may
be thought of as a queue of data produced by one node and waiting
to be consumed by another. A computation step may be initiated
whenever each edge directed into that node of the graph contains

the amount of data required for the node to execute properly."
Fig. |v—1 displays some nodes which are activated whenever

there is an input value on each input edge. Then, output values

to be put on the output edges are computed according to a function f
associated with the node. is a notational device: placing "vf>"
on an edge means placing nothing on this wedge.

Fig. IV-2 displays some nodes having a more involved behavior.
Relatively to a node, an input edge may be in any one of two status:
it is either locked or unlocked. In fig. IV-2, the status of input
edges is given, for instance, as uLtL , which means that port 1
is unlocked and that ports 2 and 3 are locked. The computation
step of a node is initiated whenever there is an input value on
each unlocked input edge. Output values are computed as before
according to an associated function f; moreover, a new status
for each input edge is determined according to another function g
associated with the node. The blocking capabilities of these nodes
permit the computations to be determinate.

a) We have taken the freedom to quote some passages of,

and to reproduce some figures from Adams [1],
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Fig.
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Fig. IV—3 and IV—4 represent an iterative [1, p. 31] and
a recursive [I,p.32] factorial respectively. The latter figure

withnesses to the recursive character of a graph procedure:

“"When a node in a graph procedure represents a recursive
call upon the procedure of which it is a part, a copy of the
called graph procedure is <created. Thus, during the execution
of a graph program, an auxiliary graph referred to as the executing
graph will be constructed. Initially the executing graph will
consist of the main graph procedure G, with the initial data
for the program placed on the edges of G. The initial data must
be of the same type as the edges on which it is placed. Whenever
a procedure node in the executing graph is ready for execution,
a copy of the defining graph procedure will be created and added
to the executing graph a) ; and when the procedure terminates,
the created copy will be deleted. The executing graph can thus

expand and contract dynamically during the execution of the program."

Remark. Such a situation may be regarded as an instance of the

realization of a contravariant functor (ccnapare III-8 and IV-5).

In DCPL we will find the same notion of implementing in

space successive generations of a recursive procedure.

IV.3 Functional representation: the lambda-calculus *

The discussion in this section and in the next one s
based on Curry [3]. The lambda-calculus provides a framework
in which functional expressions may be represented and evaluated.

a) Such a creation and addition of a graph procedure to
the executing graph is referred to in this thesis as an implementation

in space.

b) There are different lambda-calculi, each one having
its particular idea about what objects represent the same function.
However since in programming languages the emphasis is put to
the application of a function to an argument, and not to a function

itself, only one calculus is generally used (A -conversion lambda-calculus).
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Such evaluations present possibilities of concurrency and distri-
bution of control. Since Me Carthy [18] , the lambda-calculus has
often been considered in connection with programming languages:

tandin [12,13, 147, A. Evans [ 7], Morris [19].

v . 3.1 Variables in mathematics.
Let us consider with Curry the following mathematical statements:
(1) (x + Lya = x~ + 2 x + 1
d 2
(@) -r- x = 2 x
d x
3 2
(3 x dx = 9

In statement (1) the variable X may be considered as
having an intuitive meaning: for any integer, for instance a,
we have the relation (a + 1)2 = a2 + 2a + 1
We cannot interpret the use of the variable x in such a simple
way in (2) and (3): they do not enunciate any statement about
some object for which X stands. In fact, (2) and (3) state
some properties about a function, the square function. The wuse
of variables in these statements may be considered as only a
notational device. The wuse of variables may even be more explicit

with Church's Lambda notation (Church [2 1)*\x.x" denotes then

the square function. If D and 1" denote respectively derivation
and integration between a and b, the statements (2) and(3) become:
(2") D(Ax.x~) =(VX.2Xx
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The lambda notation allows us to consider a function, at least

conceptually, as an object: functions become part of tho wunlvrrsr

of discourse, and statements about functions may be formulated.
IV.3.2 Functional representations in programming languages.
Functions appear naturally in programming languages whenever

some object is to be evaluated in some realization (see chapter 111).

Generally statements about functions which are considered in

programming languages are very Ilimited; with the exception, may be,
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1V.3.3 An abstract reducing machine.

We are interested here in abstract machines performing
reductions since these machines are particularly simple: when
applied to some object, they look for any component correspon-
ding to a given pattern and replace it by an associated com-
ponent . A macro-processor, an interpreter using a simple prece-

dence grammar (Wirth [28]) might be considered as reducing machines.

IV.3.3.1 Substitution versus replacement.
We present these notions pictorially: in fig. IV-6 an
ob X is substituted for an atom x in an ob A; the result is
an ob B.(We may notice that
1. x is supposed to be an atom
2. each occurrence of x is replaced by an occurrence of X.).
In fig. 1V-7, a component X of an ob A is replaced by an
ob Y; the result is an ob B. (Note:
1. X is not necessarily an atom, but an ob
2. Even if there are several occurrences of X in A, only

the considered occurrence is replaced. ).

1V.3.3.2 Reduction rules.
Let us consider two obs A and B and the reduction rule
A-*B. Let X be an ob having A as a component. We say that X may
be reduced in Y, and we note X i>Y if Y is obtained by replacing,
in X, the component A by B. We note X & Y  whenever X Y or
Y X and N and = represent respectively the quasi-ordering

(symmetric and transitive) and the equivalence generated by <> and =
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Ob A

Fig.

1V-6



The same definitions may be given with a set of reduction

el - In summary:
X &Y <#=2> there 1is in the ob X a component whose repla-
cement by the corresponding produces the ob Y

X =Y <P either X>Y or Y 1> X,

X-Y there is a sequence of objects X~ , X ,... X*
X = X and X H Y such that X_ * X ..$>X
0 n 0 1
(~ denotes the identity of obs)
X there is a sequence of objects X~ , X , X

such that Xos X and Xn = Y and

I """ 'n

Fig. 1V-8

1V.3.3.3 Reducing machine.
Whenever a set of reduction rules is given we can consider

following reduction process, to be applied to any ob X:



Obviously, such a process is not in general deterministic. Moreover,
applied to an ob X it may or may not stop. If it does stop, pro-
ducing an ob X~ , there is no reduction which may be performed on X*:
Xo is said to be a normal form of X.

We are interested in abstract reducing machines which are
deterministic to some extent, namely in machines verifying the

following condition (Church-Rosser): if X =Y there is an ob Z

such that XS z and Y> Z
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Indeed such a condition guarantees that whenever the machine
stops when applied to an ob X, it produces the same normal form
(however in some simulation the machine may not stop). Such a normal
form may be considered as the "value" of X, the reduction machine

being therefore an evaluating machine.

1V.3.3.4 A trivial example.
Let us consider a trivial representation of simple computa-
tions without variables:

- to each value v in the universe corresponds a combinator of
degree zero v and to each operator of degree n, opr, a combina-
tor of degree n, opr. We call CL™ the class of obs which may be
constructed with these combinators. For any operator opr and
for any values vi 7v2 * “ " vn Pr<ducing <pr(vh,v2, eee _yn*

we have the reduction rule

For instance if there is one operation, the addition, and

integers as values, the reduction rules will be of the form:

Any sum will be trivially evaluated by our machine (Ffig. I1V-11).

The Church-Rosser condition is here obviously verified; the machine
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Fig.

1V-13

Fig.

Fig.

Fig.

1v-11b

1IVv-1lc

1v-11d
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is deterministic and has a distributed control. The result 12 ,
as a combinator, 1is the normal form of the given expression and
may be considered as being the value of the expression. The
relation of equality we have defined corresponds to the tradi-

tional meaning of equality of sums.

IV.3.4 Evaluation of A -expressions.

Let us consider, together with the previous combinators,
a new atom called a formal variable x. Any ob M containing x
may be considered as a function CL6-*‘>CL0 (CL0 is thg class of
obs obtained with the combinators associated to values and opera-
tions of the universe): indeed, to any ob A in CLq we may associate
the ob obtained by substituting A for x in M, which may be denoted
by [A/x]M and the function A- *-[A/x]M may be denoted by A x.M {[2])-
The operation M-» Ax.M 1is called abstraction relatively to the
formal variable x.

We can represent such a function as an ob in the following
way:

1. There is a combination of degree 2, called abstraction
and denoted by a combinator A . Whenever abstraction is applied
to two obs, the first one must be a formal variable. A written

notation for such a combination is Ax.M ; the ob is

2. There 1is a combination of degree 2 called application,

and denoted by the combinator “applyl. A written notation for



3. There is an abstract reducing machine defined by the
reduction rules generated by the following reduction scheme:
Whenever M and N are two obs and x is a formal variable,

(\ Xx.M)N->[N/xIJM , or graphically:

Fig. 1V-12

It is proven that these reductions verify the Church-
Rosser condition ( Church-Rosser theorem, see Curry"s [3,chapter 4])
We now have a machine which can evaluate expressions such as:
(Ax. @+ x+ D))+ 3 (fig. 1V-13)
or: (Ax-x + D) ((Ax.2 +Xx) 3 (fig. 1v-14).
In fact, very general computations may be expressed with

such a model (see Landin [12]).

Remark 1: The reduction process may not stop when applied to some
peculiar obs like: Y= Af.[(Ah.f(hh))(X h. f(hh))] called "parado-

xical combinator™ (see Morris [19]).

Remark 2. The reduction machine is not in a strict sense deter-
ministic: we can only state that whenever the machine stops, it

produces the same value; however some simulation may produce a value



Fig.

1V-14
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and some other simulation may go for ever. Example: any expression
(/"x.2)A , A being any ob, may be reduced to 2 since”x not occurring
in 28 [A/x]2 =2 . However if A= Y (the paradoxical combinator),
the machine may undefinitely reduce Y. Therefore a reduction of
("x.2)Y may not terminate.

The machine may be modified in order to be deterministic:

a reduction such as the one of

may only be applied when the argument N is not reducible any more.
Then (AX*2)Y (Y being the paradoxical combinator) becomes
a computation which does not terminate in any case.

In Me Carthy [18] and Landin [12] a sequential machine
is used (the order of the reduction is uniquely determined).

The evaluation is therefore deterministic.

IV.4 Another functional representation: Curry's combinators.

In the previous section, an abstract machine evaluating
/"-expressions was supposed to be able to perform replacements
and substitutions. We consider a replacement as a simple and basic
transformation; however we view a substitution as a much more
complex transformation. The question then arises whether it is
possible to represent functional computations with an abstract
machine which is only able to perform replacements.This is possible

with Curry®"s combinators and moreover formal variables are not

needed anymore in the representation. Such a property is concep-
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tually important enough to legitimate this section of the thesis.
In fact the study of combinatory logic has been a point of departure

from which many ideas expressed in this dissertation have emerged.

IV.4.1 Notations and representations.

In this section (and in this section only), we suppose that
there is only one combination called application. Whenever F and X
are two obs, we represent the ob obtained by applying F to X by FX;

in a graphical notation:

Whenever parentheses are not used, association is to be
performed on the left (in this section only). So FXYZ s (FX)YZ s (FXY)Z
Any combination different from the application is represented
by an atom; for instance, if A denotes addition, A 2 3 represents
(A2 3 ; A may be considered as an operation of degree 2, (A 2) as
an operation of degree 1 . Fig. 1V-15 represents the ob:

A (A2 (A35) 1

IV.4.2 The combinators K,L((

Let us suppose that together with the combinators associated
with values and operations we have the following combinators: K,I 0.
To each of these combinators is associated a reduction scheme:

For any obs X,Y,Z, T we have:



Fig. 1V-15



rule (K) : KXY -*aX

rule (1) : I X-*- X

rule (Q) : XY ZT-*X(Y )@ T)

As we have seen in section 1V.3 these rules define an

abstract reducing machine.

IV.4.3 An example.

A and M denoting the addition and the multiplication,

let us consider the ob:
Fs(DA (dM T 1) (DM (K 2) D)

Let us reduce the ob Fa, with a"standing for any integer:
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Fa-= 0 A> 0___M_<I __I_) ('_di__M__(/_}i/__z__)_l) a
Nv N
. N \ /
0o Vx z T
(rule 0)
XY T) (Z T)
t
A ) o N (K 2) a)
A ( % ( . A )
1 » [ 3
* t *
X z % z T
I rule 0 I rule (
(Y T)Y (Zz T)
] j
* \, *
A (M (Cla) (la)) (m (K 2 a) (I a))
Jrute rule (K)
Ql ) (G )
We have Fa- A (Maa) (M2a) , So, F is a function
which, applied to any integer a, produces A (Maa)IM2a)
F is therefore an ob representing ~x . A (Mxx) (Mi X))

or, with usual notations,

contain any variable.

Axa(x xx) + 2 xx)

and F does not
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1V.4.4 An algorithm.

We may wonder if every function may be represented in this
way: Let us consider an ob M which may contain a formal variable x.
Is there an ob F which does not contain any variable, representing
Ax .M ? The answer is yes. In order to simplify the discussion,
let us assume that M only contains operations of degree 2. Let us
call [x]M the ob F we are looking for. We have the following

algorithm:

if M does not contain x then [xJMs K M
else if M is x then [x]M s 1

else

M has the form:
<operator> <left operand> <right operand>

and:

[X]M se $ <operator”[x]<left opErand*([x]<right operand”

This algorithm, applied to Ax.A(Mxx)(Mxx) produces in fact F.

Iv.4.5 B,C,W,S,K.
If M contains several variables x, y, z , then \x y z .M

is obtained by forming X1 CIyl CI[z1 M)

We have particularized our discussion with operations of
degree 2. However any function may be represented with:
B ®) : B fgx f@@ x)
C © : Cfxy- fyx

w (W): Wf x — f x x
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or, alternatively, with:

S ©) Sfgx* fx(gXx

K «) Kecx ™ ¢

With any of these combinators the abstract machine verifies the
Church-Rosser condition.The remarks at the end of 1V.3 are still

valid here.

Remark. Each of the previous combinators may be considered as
a lambda-expression. For instance, we can take:
B= Af gx . f(g X
Cs Af xy . f(y 0
Ws ~fF x. Fx X
Then B,C,W may be considered as a "base", any lambda-expression

being expressible as an ob constructed with B,C,W.

This discussion is the last of our preliminaries. We are

now going to study DCPL.
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A DISTRIBUTED CONTROL PROGRAMMING LANGUAGE



CHAPTER V
D.C.P.L.

A DISTRIBUTED CONTROL PROGRAMMING LANGUAGE

V.1 The general frame.
V.1.1 A computation as a formal object.
In DCPL, any computation is considered as a formal object,
an ob (see section Il1l1.1). In the computing machine, such an ob
is actualized as a tree whose nodes, representing combinators,
are automata, and whose edges are directed channels of information,

directed from "son" to "father"™ (fig. V-1). A node may have zero,
one or several sons; the number of sons it has is called its degree
(fig. V-2).

The edges being directed channels of information, each node
may send a message up the tree; such a message is called a notice
(fig. V-3). Whenever a node receives a notice, it may either
pick it up or pass it along upward. ;

The tree is considered to be in some space in which each
node has an address. There is a communication system allowing any
node to send a message to any other node whose address it knows;
such a message is called a reply. A reply contains explicitly
the address of the addressee.

Whenever a node A wants some information from ancestor B,

A sends up a notice with its own address (fig. V-4); such a notice

is called a request. A request is a notice containing the address



Fig. V-2
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of the sender to which some reply is to be made. A notice which
is not a request is a simple notice. On receiving the request
sent by node A, the node B may send back the required information

(fig. V-5).

V.1.2 Values and operations: their representation.

As it has been already noted in the introduction (chapter 1),
we assume that there is a universe of values structured in classes
or types, and mappings from some classes to some possibly different
classes which are actualized by operations, and we leave the list
of types and operations open-ended. We require however that:

1. to each value in the universe corresponds a specific
combinator, represented by a value-node. Spontaneously a value-node
sends up the tree a simple notice containing the value it represents;
the node then disappears (fig. 1-3, chapter I).

2. to each operation in the universe corresponds a specific
operator represented by an operation-node, which has the degree
of the operation it represents. An operation-node waits until it
receives a value from each of its sons; it performs, then, the operation
it represents on these values.The result is sent up the tree, and
the operation-node disappears(fig. 1-4). Fig. 1-5, in the introduc-
tion, shows how a simple expression without variable may be evaluated.

3. to each ob corresponds a value in the universe,which
may be considered as a description of the ob. As a result, a descrip-
tion of an ob may be sent as a message from some part of a computation
to some other part, where the described ob may be built and imple-

mented in space, extending the tree (fig. V-6).
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As a result of these behaviors, the tree representing a

computation may grow and shrink during its Iife?)

V.1.3 The other combinators.
Together with the combinators associated to the values

or operations, DCPL uses many other specific combinators:

Triadic combinators (degree 3):

(setdown)
(setup)
"IF' or CI° ()
Dyadic combinators (degree 2) ;
"NEW (new)
'LAMBDA (lambda)
‘MU (mu)
i (sendup)
(sendown)
(trigger)
IMPL' (implement)
o" (compose)
'OR’ (or-event)
'AND' (and-event)

a) Such a behavior is similar to the behavior of the execu-
ting graph used in the Adams®" model (1V.2). Instead of graphs, the
model described here manipulates trees.



Degree zero combinators

0 (null ob)

a whole class of variables: X, Y, JOHN, VAR ,

a whole class of alpha-variables: aX,

aY, aJOHN, aVAR ,

The function and the behavior of each of these nodes will

be progressively presented in the sequel.

V.2 About the syntax.

The tree-structured representation is fundamental in DCPL.

However, it is useful to have a linear representation easier to

manipulate. Rather than a straight parenthesization or a heavy

syntactic apparatus, we prefer the use of a few replacement rules:

programs gain a familiar appearance without any syntactic freezing.

The following rules determine a one-to-one mapping between the

tree-structured and the linear representation.

Rule 1. Parentheses may be used freely
is made between parentheses and brackets.

Rule 2: Any combinator of degree 2 may
is to be done to the right, unless explicitly
use of parentheses. For instance X+Y+Z is
iX+(Y+Z) ) . As a consequence, whenever two
are not ordered by parentheses, the latter is,

a descendant of the former: NEW X .... +

and no distinction

be infixed. Association
specified through the
to be structured as
combinators of degree 2
on the tree structure,

has the following tree
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Rule 3. Much like in Algol where integer X,Y,Z; is used
instead of integer X; integer Y; integer Z; , one can factorize

combinators:

NEW X,Y,Z X+Y+Z represents:

Rule 4. Combinators of degree 3 may be infixed between their
first two arguments, a semi-colon separating the second argument
from the third. Rule 2 is then applicable to such combinators.

Some examples:

5-+X;X+2 represents © (ft) and PRED\EXPR1;EXPR2

The interest of this rule is sharpened when it is used repetitively

on a nested structure:

may be represented respectively by  X+5;(X+Y)+Z;Z-X and by
PINEI',P2\E2\PZ\EZ\Eii or, with a non-necessary pair of parentheses,
U<-5; (X+Y)+Z;Z-X) and (Pl \EI;P2\E2;P3\E3;EL)

Rule 5. As it will be discussed in the sequel, the application
of a function to an argument or to a parameter is represented
through the use of "+ ("sendown®) or "+" ("sendup®"). However, in
order to conform to traditional notations, we allow expressions

such as F(A,B,C) , F(A,B,C;D,E) , F(;D,E)
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HA,H,Ct

Cm/UF AP tC4>414/m

Remark. Application of rule 5 may be misleading: F(A,B,C) is an ob;
(A,B,C) 1is a notational convenience which has no meaning by itself,

it does not represent any ob.

An example:
According to these rules, the expression
NEW X,Y,Z  (X+5-,(X+Y)+ZiZ+X) +(Y+X+liX)

is the following ob:

This is as much as is necessary to know about the "syntax"

of DCPL.
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its address and its name (for instance 'X')7 up the tree (fig. V-7).

Such a request is picked up by the first corresponding binder-node

encountered. The variable-node is then bound by this binder-node:

a communication path leads from the binder-node to the variable-node.
A binder-node may bind several variable-nodes. Whenever

a binder-node receives an argument, it sends a copy of this argument

to each variable-node it binds (fig. V-8).

V.3.1 The binder-node setdown:

X being an identifier, -+X combines two components:

-+X may only pick up the requests reaching it from the right (fig. V-9) .
On receiving a value simple notice on the left, setdown sends
a copy of this value to every variable-node it binds, on the right.
The scope of -+x 1is therefore limited to the right component; -+X may
be considered as assigning the value produced on the left to the
variable-nodes x in its scope (fig. V-10).
On receiving a value simple notice on the right, -+X passes it

along up the tree and disappears (fig. V-11).

Example 1:
The evaluation of the expression (572-X;X+2) 1is displayed in

fig. Vv-12.

Example 2:
The evaluation of the expression (2-A";3>-Y;AtY) is displayed

in fig. V-13.



Fig. V-7

Fig. V-9
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Fig.

V-12

(5-+X;X+2)
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Example 3:
The evaluation of the expression
[(2 +3)+X-,5+Y-,(X+Y)+X;(Y+I)+Y;(2xY)-XI

has already been studied in the first chapter (fig. 1-6 and 1-11).

V.3.2 The binder-nodes setup and 'NEW'.

As already noted, the scope of -+X is limited to the right
component. X+~ allows to send a value in the right component and
in the environment as well (fig. V-14). In order to delimit exactly
the scope of X+~ , NEW X 1is used as a "top-binder": the scope of X+
is entirely under the corresponding NEW X (fig. V-15).

-+X and X* bind exactly in the same way any variable-node X
in their right component. However, contrarily to -+X, X+~ sends up the
tree a request with its name which is picked up by the first NEW X
the request encounters. As a reply, NEW X sends to X+ the address
of any variable-nodes whose requests it has received (fig. V-16).

Whenever X* receives a value on the left, it sends a copy
of it to each variable-node whose address it possesses (fig. V-17).

X+ , as -+X, disappears whenever it receives a value simple
notice on the right. NEW X disappears whenever it receives a value

simple notice.

Example 1:
Fig. V-18 displays the evaluation of the expression:
NEW V (2+U;V+U+;U+V") + (3+U;U+V)
in the left argument of the addition, a value V is produced;

V is used in the evaluation of both arguments.
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Fig. V-6
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NEW V (2+U;V+-U+1;U+V) + (3+U;U+V)
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Example 2:
Fig. V-19 displays the evaluation of the expression:
NEW U,V  (U+-5-,LU+VI+Z-,Z+U) + (V+U+IiU)

Such an expression is remarkable in that it cannot be evaluated
by a sequential machine: the evaluation of the first argument
requires the value of V which is produced in the second argument
whose evaluation requires the value U which is produced in the
first argument. In DCPL there is no deadlock since the two arguments

are evaluated concurrently.

V.3.3 The binding of procedures.

A procedure is a computation ob which is intended for
implementation and usage in various parts of a computation program.
In order to ensure generality of utilization, the set of variables
used inside a procedure must not conform to the set of variables
used in the environments in which the procedure is to be implemented
(please, see fig. V-20).

Whenever a variable in a procedure is to receive an argument
from the environment, the variable is bound inside the procedure to
a LAMBDA binder-node; the procedure itself is interfaced with its
environment through a node sendown "4° (fig. V-2la) .

Whenever a variable in a procedure is to send an argument
to the environment, the variable is bound inside the procedure to
a M/ binder-node; the procedure itself is interfaced with its environ-

ment through a node sendup H® (fig. V-21b).
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NEW U,V (U*-5;1U+V1-+Z-,Z+U) + (V+U+1;U)
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'LAMBDAl and sendown '4-'.

An example: LAMBDA 5 (5+1) is a procedure with one lambda-
variable 5. [LAMBDA 5 (5+1)] (3) represents that procedure applied
to one argument 3. According to the (syntax) replacement rule number 5,

the computation tree is:

procedure

In fig. V-22a and V-22b the variable-node S is bound to the
lambda-node: the former sends up the tree a request which is picked
up by the latter. This binding occurs inside the procedure itself
and may be performed beforé&ﬁnplementation in space of the procedure,
i.e., the physical embedding of the procedure in its environment.
Then the procedure is bound to its environment: the lambda-node
sends up the tree a request with its address which is picked up by
the sendown node (fig. V-22c and V-22d). The argument may flow down,
from the environment into the procedure, and reach the variable-node
(remainder of figure V-22).

Whenever a procedure contains several lambda-variables, it is
necessary to have the arguments matched with the lambda-nodes
(fig. V-23). The matching is performed dynamically in the following way
when a lambda-node sends up the tree a request with its address,
this request contains a count set to zero. This count is incremented
by one whenever the demand encounters another lambda-node, and

decremented by one whenever the demand encounters a sendown node
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Fig. V-22
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Fig. V-24



with a non-zero count. The demand is picked up by the first sendown

node which receives it with a count equal to zero (fig. V-24).

‘MUt and sendup "t°.

An example: ceee MUT .o T3 L] (X)

environment

procedure

The binding inside the procedure and the binding of the
procedure to the environment are performed exactly as for lambda
and sendown. However, instead of receiving an argument, the variable
in the procedure receives the address in the environment to which
the produced value is to be sent (fig. V-25).
Let us consider again the example of fig. V-19:
NEW U,V (U+5:1U+V1+Z-,Z+U) + (V+U+1;U)
It may be expressed as
NEW U,V F(V;U) + G(U;V)

with F - MU U LAMBDA V (U*-5;LU+V]+Z;Z+U)

and G LAMBDA U MJ V (V+-U+1:;U) . In order to make it clear that
U and v are bound in F and G, we can take
F = MUR LAMBDA S -,LR+SAT-, T+R)

and G * LAMBDA R MU S (S*-R+1;R) (fig. V-26) .



Fig.

V-25



112

Fig. V-26a
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V.4 Procedures as arguments.

V.4.1 Pseudo-values.

As stated in section V.1.2, any ob has its description as
a value in the universe of values. Such a value is called a pseudo-
value : "LAMBDA 5 (5+1)" 1is a pseudo-value representing the ob
LAMBDA 5 (5+1).

Whenever a variable receives a pseudo-value as an argument,
it implements the ob described by the pseudo-value at its own place.
As a result a procedure may be received as an argument and imple-
mented if the corresponding pseudo-value is given beforehand (fig. V-27).

Let us however consider the following example:

LAMBDA S,T (S+T) -*F___ F(5)-K? f(4)

In this example the procedure LAMBDA 5,T (S+T) 1is first implemented
in the environment A and receives the argument 5; then the resulting
procedure is to be sent and implemented in the place of G in the
environment B. This may only occur if the ob fLAMBDA S, T (S+T)I(5)
is able to produce a pseudo-value representing itself. We will see

in the sequel how we may implement such a pattern of behavior.

V.4.2 Pseudo-argument.

There is a special message 0 called pseudo-argument: whenever
a variable X receives a pseudo-argument, it sends up the tree the
pseudo-value representing itself, "X" (fig. V-29).

Whenever the combinator representing an operation receives
the proper number of input values, it computes the resulting value

and sends it up the tree. If the same combinator receives at least
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Fig. V-27
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one pseudo-value representing an ob, it produces a pseudo-value
which is sent up the tree: for instance, in fig. V-30 the combinator
"+"receives a pseudo-value "Z+3" and a value 2; it sends up the tree
the pseudo-value "(Z+3)+2".

An ob may have some of its variables receiving a value and some
other variables receiving a pseudo-value. As a result, this ob is
partly evaluated into an ob whose associated pseudo-value is produced

and sent up the tree (fig. V-31).

V.4.3 Procedural arguments.
We are now able to handle the example of fig. V-28: whenever
the node K7 receives from the left a request sent by a lambda-node,
it sends as a reply a pseudo-argument (fig. V-32). As a result the
ob for which F(5) stands may be partially evaluated, the correspon-
ding pseudo-value is produced and sent to the variable G (fig. V-33).
The problem of having procedures as arguments is not yet
completely solved: we have seen how a combinator representing an
operation reacts whenever it receives a pseudo-value; however® we
do not know yet how other combinators (for instance 4, ...) are

to react. Let us study the two following examples:

Example 1: ([LAMBDA X ([LAMBDA Y (Y+1)]-K?;£U))]+F;F(2) )
(fig. V-34).

Example 2: ([LAMBDA X (LLAMBDA Y (Y+X) jAG-,G{X))j+F;F{2) )
(fig. Vv-35).

In example 1, the component ([LAMBDA Y (Y+1)2"G;G(X))

may be handled as previously (fig. V-36):



"XR+5H-37[F

PSEUDO-VALUE

Fig. V-31
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1. -H7 sends to the lambda-node LAMBDA Y a pseudo-argument <

2. on receiving the pseudo-value "LAMBDA Y (7+1)", —+G passes it
along to the variable-node G where the procedure is to be implemented.

The variable-node X (in G(X) ) receives a pseudo-argument sent
by -+ via LAMBDA X ; it sends up the tree the pseudo-value "X" which
is received, on the left, by the node sendown,4 . On receiving this
pseudo-value, sendown sends a pseudo-argument to the procedure on *
the right, and waits for a pseudo-value from this procedure (fig. V-37)
Then 4 combines the two pseudo-values into a pseudo-value it sends up
the tree. The completion of the evaluation of example 1 is displayed
on fig. V-38.

In example 2 the procedure LAMBDA Y (Y+X) cannot be
transmitted and implemented in the place of G for X is externally
bound: it is indeed our policy to implement an argument only after
its complete evaluation; we require (see fig. V-35) that the imple-
mentation of B in the place of F occurs before the implementation
of A in the place of G

As a result -+G must have here another behavior: on receiving
a pseudo-value on the left it sends a pseudo-argument to each
variable-node it binds on the right. On receiving a pseudo-value
on its right -*G combines the two pseudo-values and sends the resulting
pseudo-value up the tree (fig. V-39).

In summary, in the following situation
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Fig. V-37
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Fig. V-39
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the ob A may or may not be to receive some argument from the
environment.

In the latter situation (fig. V-40) and if A does receive
these arguments, A produces a pseudo-value "4", after having received
a pseudo-argument 4 from +G (fig. V-41) . This pseudo-value "A" is
sent by +G to the variable-node G where A is implemented.

IfT A receives at least one pseudo-argument from the environment
(fig. V-42), the evaluation of A is not completed and "VI" is not
to be sent and implemented in the place of G . Instead, on receiving
the pseudo-value "A", -*G sends to the variable node G a pseudo-argu-
ment. On receiving the pseudo-value "B", -*G sends up the tree the
pseudo-value "A+G\B" (fig. V-39).1t is therefore necessary that
is able to distinguish between these two situations.

We implement such a behavior in the following way:

Whenever a variable-node sends up the tree a request with its
own address, such a request contains an integer called count, equal
to zero at the beginning. While the request flows up the tree, the
count is incremented by one every time the request reaches on the left
one of the combinators setdown * , setup , or sendown "41

Such a count 1is associated to pseudo-arguments and pseudo-values

as shown in the following table:
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ACTION
pseudo-/ Nyt
arguments >* s+
v pseudo-

value

"CA+Q'2' I max (p>q)

f
/ y

Vio*" ~

arguments

(situation of example 1)

p-1

(situation of example 2)

max (p-1,q)






Remark.

Whenever a combinator receives from the left a pseudo-value
with a count of zero, it is assured (by these behaviors) that the left
ob has not received a pseudo-argument from above””™. As a result, the

pseudo-value received may be implemented (see example 1).

The behaviors ofQandQare similar to the one described foro.

V.5 Conditional expressions.

"IF* (or "I") 1is a combinator of degree three:

The ob "predicate" is assumed to produce a logical value:
FALSE or TRUE . In the former case the ob "if-true-ob"™ is deleted
from the computation tree; in the latter case it is the ob "if-false-
ob™ which is deleted from the computation tree (fig. V-43a and V-43b).
As shown in section V.3, any ob may exchange information
with its environment; as a result, messages can freely flow down
from the environment into the obs "predicate", "if-true-ob", "if-
false-ob" which may be considered as being evaluated concurrently.
However, it is important to prevent an ob which eventually would
be cancelled from sending messages to its environment. For this reason,
the messages which are sent to the environment by the obs "if-true-ob"
and "if-false-ob" are picked up and kept in two different packages

at the 'IF "-combinator level (fig. V-44a). When the value of the ob

"predicate”" reaches the combinator, one of the two packages is destroyed
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and the messages contained in the other one are freed (fig. V-44b

and V-44c).

V.6 DCPL as a system-oriented programming language.

In the previous section of this chapter, we have seen how
simple DCPL programs may be considered as expressions which may be
evaluated. This section sustains our claim that DCPL is a system-
oriented programming language: a computation is considered a system
of asynchronously cooperating "independent" programs (coroutines)

linked by paths of information along which messages are sent.

V.6.1 Asynchronous events and sequential processes.

Sequential processes which are triggered by the occurrence
of some asynchronous event can be embedded in DCPL. Whenever some
actions are to be synchronizedaln some way, such sequential processes
may be used ( these processes may be very small and perform just one
elementary action).

Any value may be considered as an event whenever we are
interested in knowing whether the value has been received or not,
disregarding the value itself.

We may operate on events with the operators 'AND' and 'OR'
which are not to be confused with the logical operators "a" and "V.
The nodes which correspond to these operators consider any value they
receive as an event. An AND-node produces an event whenever it re-
ceives an event from both of its sons. An CW-node produces an event
whenever it receives an event from one of its two sons (fig. V-45).

Thus it is possible to have an expression producing an event (fig. V-46).

a) The word "synchronize"™ 1is here a poor choice.We mean that these
actions must be safeguarded from one another as they would be with sema-
phores (Dijkstra [5])-
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Such an expression may be used to trigger a sequential pro-

cess with the combinator trigger, "0*":

/ EVENT-) [SEQUENTIAL\
/  PRODUCING OB 1 \ PROCESS \

Whenever the trigger-node receives an event from the left, it
triggers the sequential process on the right (fig. V-47).

A sequential process is considered as a sequence of statements
Whenever such a sequential process is triggered, the statements are
executed sequentially. A sequential process may be connected to its
DCPL environment by communication paths (fig. V-48). Some statements
may, when executed, send some values on these paths; some other
statements may only be executed after they have received a value
from such a path. If the control reaches such a statement before the
arrival of the required value, the control stays pending in this
statement until the value does arrive: the servicing of the communi-
cation paths in a sequential process may be viewed as some kind of
input/output operations.

A sequential process may be DCPL-like; 1in this case the
binding of variables is performed as already described (each variable
node sends a request which is picked up by the corresponding binder,
etc ...). However it may be useful to embed in DCPL some subset of
a usual sequential programming language; the programs in these
languages being considered as sequential processes, the DCPL environ-

ment serves as a host system. In this case a special binding process
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must be worked out in order to bind the sequential processes to their

environments.

V.6.2 Cells.

Simple or structured cells may be used in DCPL. A cell is
declared with its type: |INTEGER X , LOGICAL Y etc ... . Each cell
is implemented as a node in a computation tree (fig. V-49). The
scope of a cell declaration is limited to the portion of the subtree
under the declaration node which is not superseded by another cell
declaration with the same name. In order to assure that no attempt
of retrieving a value from a cell will occur before the value is
stored, these actions are to be ordered and synchronized. For this
reason, in DCPL a cell can only be accessed from a sequential process
There 1is an assignment operator to assign a value to a cell;
the value is retrieved whenever the name of the cell is referred to

in an expression.

V.6.3 Recursive procedures.

Let us try to implement a recursive procedure like the
factorial function. For instance we may suggest for n! something like
[LAMBDA N[_{N=0)\I-,NtFACT{N-I)a\-]

or more specifically we may suggest for 3!
( "[LAMBDA N f(N-0) 11:N*FACT(N-1) ~]y'+FACT;FACT(3) )
In this program, several occurrences of the. ob assigned to FACT

are to be embedded one in another (fig. V-50). At some point the

a) 'IF' and '|1 denote the same combination.
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Fig. V-50a

Fig. V-50b
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variable N will be locally equal to zero and the right subtree
NxFACT(N-1) of the corresponding 'IF' combinator will be disregarded.
However such a program presents a major shortcoming: the
implementations of the different occurrences of FACT are in no way
synchronized with the computation itself; thousands of generations
of FACT may be needlessly implemented.
With the combinator “IMPL" (implement) we can master the imple-
mentation of a procedure. "IMPL1 stops any request reaching it on
the right. Whenever it receives an event on the left, it frees the
stopped requests. The variable-nodes on the right may then receive
their arguments (fig. V-51).
In the program
( "[LAMBDA N I(N=0) \I;Nx(N IMPL FACT)(N-l)iy'+FACT; FACT(3) )
the implementation of FACT is synchronized with the availability
of the variable N. In the following program an implementation of
FACT is only performed if the corresponding test produces a FALSE value
( "TLAMBDA N NEW T [[(N=0)\TBUE; (T+I\FALSE) ]J11;Nx(T IMPL FACT) (.N-DIT'+FACT

n FACT(3) )

Some other programs would permit a fixed amount of "look-ahead".

V.6.4 Paths of information: alpha-variables.

Alpha-variables (as for instance aJ , a¥Y , aJOHN etc...)
allow the construction of alpha-paths along which an indeterminate
number of arguments may be sent. As far as ob-construction and
binding are concerned, alpha-variables have exactly the same behavior
as variables (there is one exception, see the "cyclic behavior"

subsection). However, passing an alpha-value never results in the
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deletion of a node; as a result, alpha-variables allow a computation
tree to carry out repetitively a same computation.

An alpha-variable may successively receive arguments which
it passes along, up the tree, as alpha-values (fig. V-52).

An operation-node may successively receive an alpha-value
on each incoming path and produces each time a resulting alpha-value
(fig. V-53). If an operation-node has an incoming alpha-path and
an incoming simple-path, it uses the value received on the simple
path iteratively with the successive values received on the alpha-

path (fig. V-54).

Cyclic behavior.

Iterative and cyclic behaviors may be modeled with alpha-
paths. In particular a setdown-node may bind a setup-node constitu-
ting a recirculating path. For instance, the program

MU aU [1-HaK; aU+aV; av*-av-\-1; <D
is an infinite loop sending out on the path au the successive

integers starting at 1 (fig. V-55).

Interlinked coroutines.

Alpha-paths may interconnect coroutines. In the following
example, the procedure PROCl sends messages to procedures PROC2 and
PROC3:

NEW aU ... PROCI(;aU) ... PROC2(aU) ... PROC3(aU) (fig. V-56).
In order to associate together procedures it is useful to have a
particular dyadic combinator compose ; whenever compose receives
a value from one of its two sons, it produces this value and deletes

the other son. Our previous example may be written:
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Fig. V-55d,e
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Fig. V-56

Fig. V-57
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INEW aU PFtOCI( ;aU)°PROC2(aU)oPHOC3(aU) ] (fig. V-57).

In the following example, any of the procedures PROCU,PROCV,
PROCW can send information which is duplicated and sent to the two
other procedures:

[NEW aU,aV,aW PROCUiaV,aW-,aU)°PROCV(aU ,aW;aV) ®PROCW(aU , aV-,aW) ]
(fig. V-58).

Whenever a procedure is interfaced with its environment,
an alpha-variable in the environment may be bound with another
alpha-variable or with a simple variable.

In the former case the path in the environment is connected
to the path in the procedure; any number of arguments may use these
paths.

In the latter case the procedure must be recursive, the path
in the environment is connected successively to each generation of the
recursion3)(fig. V-59). If the path goes into the procedure the incoming
arguments are queued on reaching sendown, constituting a First-In-
First-Out queue. Whenever such a sendown receives a request from a
lambda-node, the first element in the queue is popped out and sent

as a reply to the lambda-node (Ffig. V-60).

Queue declaration.

It is possible to declare the end of a path as a queue:
au QUEUE V; the scope of such a declaration is the subtree under it.
Whenever V is referred to in a sequential process, the first of the
queue 1is popped out; it may then be forwarded to the environment of

the sequential process (fig. V-61).

a) each generation receives one argument from the path.
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V.7 Summary.

Let us review the main notions encountered in this chapter.

1. A computation is viewed as a tree whose nodes are automata
and whose edges are directed channels of information.

2. Each node has an address in a particular space; any node
may send a message to any other node whose address it knows.

3. The universe of values and operations is left open-ended.
To each value corresponds a value-node and to each operation an
operation-node. ,

4. A few replacement rules allow to have a linear representa-
tion of any DCPL computation tree.

5. A binding process superimposes a graph structure to the
computation tree: each variable-node sends a request (containing
its address) up the tree. This request is picked up by the corres-
ponding binder.

6. Setdown allows to send a value "down the tree".

Setup allows to send a value "down the tree" and to the envi-
ronment; its scope is delimited by the binder NEw.

7. A variable in a procedure may either receive an argument
from the environment or send an argument to the environment. In the
former case, the variable is bound inside the procedure with a LAMBDA
binder-node and the procedure is interfaced with its environment
through a node sendown "-t-".In the latter case, the variable is bound
inside the procedure with a M/ binder-node and the procedure is inter-
faced with its environment through a node sendup "+".
> 8. The description of any computation tree may be transmit-

ted as a pseudo-value. Whenever a variable receives a pseudo-value,
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the corresponding computation tree is implemented in the place of
the variable. "X+I" is a pseudo-value describing the tree X+lI.

9. A procedure may be modified through interaction with
its environment, and then be transmitted as a pseudo-value in order
to be implemented in some other place.

10. The different parts of a conditional expression are
evaluated concurrently. However, as long as the result of the test
is not available, the outgoing messages of the alternate subtrees
are picked up and retained.

11. With the nodes AND and OR_ it is possible to have an expres-
sion produce an event.

12. fO+f , trigger, 1is used to trigger sequential processes,
and IMPL to master the synchronization of the implementation of
the different generations of a recursive procedure.

13. Cells may be declared; they may only be accessed from
a sequential process.

14. Alpha-variables allow the construction of alpha-paths
on which an indeterminate number of arguments can be sent. They
permit cyclic behavior, interlinked coroutines and implicit or
explicit FIFO queue servicing.

It should be noted that the concepts described here do not
constitute a set of primitive concepts.

Moreover, the behavior of the nodes might be modelled in
very different ways. We consider the general notions discussed as

more important than the described schemes themselves.



PART THREE

MACHINE ORGANIZATION



CHAPTER VI

IMPLEMENTING DCPL : MACHINE ORGANIZATION

VI. 1 Introduction.

Any machine which is intended to actualize and to carry out
a DCPL program must respect and be able to express the following
properties:

1. A computation in DCPL is represented as a tree whose nodes
are automata and whose edges are directed channels of
information.

2. Each node has an address in a certain address space; any
node may send a message to any other node whose address
it knows.

3. During its life, a computation tree evolves, growing and
shrinking.

The third requirement may appear to be the most stringent

one. We would like to have some host physical structure which can

grow and shrink as the guest computation it contains evolves, synthe-
sizing itself from the components available in the surrounding milieu,
like a DNA molecule governs its own reproduction. In [24], Von Neumann
used a similar analogy, comparing a computing process to a self-
reproducing organism. He used as supporting structure a cellular
space. Such an approach for designing a machine for DCPL may be

valid from a theoretical point of view, however as a result of
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), it would turn out to be too impractfcal.

concentration phenomena®
Different kinds of machine organization are described in the
sequel. In particular it is shown how large transfer rate sequential

memories may be used. Moreover an organization allowing swapping

in advance is discussed.

VI.2 Cellular structure using busses as communication paths.
DCPL computation trees may be implemented in the supporting
physical structure shown in fig. VI-1: autonomous "active" cells
may communicate to one another through a system of busses; each
cell has an address and may send a message via a bus to any other
cell. Each node of the computation tree is actualized by one or
several cells (the amount of storage a node may need is not bound:
there is indeed no limit to the number of pointers a node may
contain). The edges of the tree are actualized with pointers.
At any time there are cells which are free: they do not participate
to any computation tree. Whenever a computation tree grows (or
shrinks), free cells are allocated to that tree (or deallocated
and freed). If the busses may be used concurrently, such an organi-
zation allows concurrency and distribution of control. However,
since every cell is "active", such an organization would be prohi-
bitively expensive if large computation trees were to be carried

out. Moreover, since there is a lack of locality in such an organi-

a) As any reproducing organism, trees may grow exponentially:
their embedding in a n-cellular space may therefore be problematic.
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Fig. VI-1

Fig. VI-2
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zation, such a communication system would probably clog rapidly
whenever the size of a computation would grow. In the organization
displayed in fig. VI-2, we can take advantage of the locality

a program may present: each cell has a hierarchy of neighborhoods.
However, with this organization the cell-allocation problem may
become more difficult. It should be noted that such a cellular
organization with busses may be very attractive if used as the
fastest level of a "memory"™ hierarchy: the main computation tree
is implemented in some other type of organization, small parts of
a computation with many local interactions being swapped into the

cellular structure to be carried out.

V1.3 A machine organization with the nodes stored on a random access
storage medium.

In the previous section, a node was actualized by an "active"
cell. This is a straightforward approach when considering a node as
an automaton. However, we may view a node behavior in the following
way: a node is quiescent until it receives a message; the interaction
of a node with a message addressed to it results in a new quiescent
state of the node and possibly messages for some other nodes. From
this interpretation derives the following machine organization:

The nodes are placed on a storage medium, each node having
a physical address on this storage. At any time, the addresses of
the nodes for which some messages are waiting form a queue to which

a) Whenever a node acts spontaneously in DCPL, this action
occurs right after the creation of the node; it may then be con-

sidered that a correspondent message 1is addressed to the node at
its creation.
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is associated the set of corresponding messages. One or several
processors may access the nodes on the storage medium, the queue

of addresses and the corresponding set of messages. Any processor
may service the queue: it takes the first message, accesses the node
to which the message is addressed, '"computes" the interaction,
stores the new content of the node, and places at the end of the
queues the addresses of the nodes to which the resulting messages
(if any) are to be sent.

Fig. VI-3 displays such an organization with one processor;
in fig. VI-A several processors may access different parts of the
storage medium; to each processor is associated a queue; any pro-
cessor may access the queue associated to the other processors and

place messages in it.

VI_A A machine organization with a sequential rotative memory.

The computation trees may be implemented on a sequential
rotative memory. For instance, in fig. VI-5, a processor controls
a read/write head; the addresses of the node for which some messa-
ges are waiting, and the corresponding messages, are queued;
however, such a queue is not serviced on a FIFO basis: the addresses
in the queue are ordered according to the order of appearance of
the corresponding nodes under the head. Thus, the top of the queue
contains the address of the first node to appear under the head.

One processor may service several sets of tracks, nodes
being implemented on each of these sets (fig. VI-6).

Several processors may serve different sets of tracks

(fig. VI-7) or may serve the same track at different locations
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Fig. VI-3

Fig. VI-4
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Fig. VI-8
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(fig. VI-8). In both cases a communication system must link each
processor to the queues associated to the other processors.

A DCPL computation tree may be implemented on a sequential
rotative memory so that a son always appears under the head before
its father. As a result, any request may be sent from son to father
up the tree in a fraction of the rotation time (fig. VI-9). In the
same way, structured cells may be implemented in order to be
accessed and searched in a fraction of a rotation time (fig. VI-10).

We consider these machine organizations as being of special
interest: not only sequential memories are generally rather cheap,
but they also allow very large transfer rates. It becomes then
possible to take advantage of the possibility of having very fast
processors (for instance, a processor designed on a wafer with a

cycle time of 20 ns.)e

V1.5 Hierarchy of memories.

Whenever it is desired to take advantage of a very fast
processor, a hierarchy of random-access memories is used (fig. VI-11):
the smaller a level, the faster its memory([25]).When a memory hierarchy
is used, the processor works in the fastest level, programs being
swapped back and forth between the various levels. It is hoped
that the processor would feel that the whole memory is as fast as
the fastest one. Unless many iterative computations are expected
to occur in the fastest level, it is necessary to have between any
two levels a transfer rate large enough to "feed" the processor.

A large transfer rate may be obtained by taking at each level
a large block as a unit of transferable information (the slower the

level, the larger the block).



161

structured cell

Fig. VI-10



fastest level

w slowest level

Fig. VI-11: A memory hierarchy

addressee table

*-——— sequential connected process

entry filled with an
S m]_-_"argument

/ YE ]
/ v

N "empty entry\/'s'\
event table

Fig. VI-12: A sequential connected program element



163

One may believe, however, that only a few words in such
blocks would be really used. For this reason Jack Dennis suggests
in 14] that information should be moved on demand with the word
as information unit, a large transfer rate being assured by perfor-
ming many computations in parallel.

In order to be able to use efficiently large units of
transferable information, we introduce the notion of connected
program. A computation 1is said to be connected if:

1. it can be activated whenever a certain set of arguments

is available, and then completed without the need of any
external information;

2. no partial result must be supplied to its environment

before the completion of the computation.
As a result, a connected computation may be brought in the fastest
level of a memory hierarchy and completed without the need for any
information from some other level; moreover, there is no advantage
in breaking the connected computation into pieces, carrying out
separately the various pieces.

The notion of simple connectedness arises because a connected
computation tree may be too large to be swapped in the fastest level
of the memory hierarchy and have some of its parts not being connected

.A computation is said to be simply connected if it is connected
and if any subcomputation it contains is connected. As a result,
a simply connected computation may be brought by parts in the fastest
level.

Consider the following examples in DCPL
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1. the computation tree (fig. V-18):
NEW V (@=>/; v+U+l; E/+7) + (B>E/; £/+7)
is simply connected.
2. the computation tree (fig. V-19):
NEW U,V  E+5; [E/+7>Z; Z+E)) + (T+E/+]; L)
is connected, but not simply: the ob (8/-<5 [£/+7]-*Z; Z+U)
is not connected since the argument Vv can only come after the
arguments has been sent to the second expression.
In DCPL it is easy to determine simply connected parts
by taking for instance the largest parts which do not contain
any setup "“Fl(these simply connected parts are by no means maximal).
Whenever a computation tree is simply connected, it is
irrelevant for its environment whether the computation is carried

out with a distributed or a sequential control.

VI.6 A computation as a network of sequential connected programs.
A sequential connected program element may be described by
giving (fig. VI-12):
1. an event table, each entry of which may receive an
argument from the environment,
2. a sequential connected process which may be applied
to the arguments contained in the event table when this
table is filled.
3. addresses of some other event table entries to which

a produced value is to be sent (addressee table).

Remark: Any reference in a sequential connected process is local
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to its program element. Any binding with the environment involves

only the event and the addressee tables.

Whenever an argument is sent to an entry of the event table,
this entry is filled with it. The sequential process is triggered
when all the entries of the event table are filled. At the comple-
tion of the computation, the produced values are sent to some entries
of some other program elements, according to the addressee table.

A computation may be considered as a network of sequential
connected program elements (fig. VI-13). Fig. VI-14 displays a
machine organization which can carry out such a computation. The
configuration is similar to the one of fig. VI-5: the network of
sequential connected program elements is stored on a sequentially
accessed rotative memory; at any time there are messages waiting
for an entry in an event table; the addresses of these entries
are ordered in the order of appearance of these entries under the
head. Whenever an event table containing an entry for which a
message 1is waiting passes under the head, the table is examined.

If, in addition to the entry for which there is a message, a non-
filled entry remains, the message is just placed in the event table
at the proper entry. On the contrary if, with the exception of the
entry for which there is a message, the event table is filled, the
corresponding program element is swapped into the scratch-pad
memory (see fig. VI-14) and executed there; at its completion,

the addresses of the event tables to which the messages are to

be sent are placed together with the corresponding messages,

at the proper places in the queue.

Let us suppose now that some of the sequential processes
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are stored in a library, their addresses appearing only in the
program elements (fig. VI-15). A computation looks at any time
like the network of fig. VI-16. Whenever there is a message for
an entry in an event table which will be filled with this message,
a request for the proper sequential process in the library will
be made; the elementary program can only be performed when this
process will be available. We can already know to which entries
in which event tables we will have messages to send: if these
entries pass under the head while the required program has not
yet been provided, the messages to be sent to these entries are
not yet available. However we may see whether the event table
would be filled if the message were available; if so, we may already
request from the library the sequential process whose address is
contained in this last elementary program. The scheme may be
performed again with this new elementary program. For instance,
in fig. VI-17, one message triggers the request for five sequential
processes from the library.

We have seen that it is possible to single out from the
computation network a subgraph of elementary programs which can
be performed as soon as the corresponding sequential processes
will be available from the library.

Whenever a message 1is conditional, we cannot know in advance
whether this message will be sent or not to the associated entry
in the corresponding event table. It is then a question of policy
to extend or not the scheme to such event tables.

We can now propose another machine organization with a hierar-

chy of sequential rotative memories (fig. VI-18). For instance,
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Fig. VI-17

Fig. VI1-18
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each memory might have the same transfer rate and the capacity might be

almost proportional to the rotation time:

Ml M2 M3
rotation time 16 ms 1 ms 64 yts
capacity 256K 16K 256 words

Subgraphs of computation networks may be swapped between these
memory levels using the previous scheme.

A sequential memory has a privileged direction: consequently,
an implementation of a network will be more efficient if a greater
number of messages are to be sent in the privileged direction.

The internal binding of a DCPL procedure may be performed
before the procedure is placed in a library. This binding super-
imposes to the procedure a graph structure which may be expressed
as a network of sequential connected program elements. Moreover,
this network may be implemented contiguously in a logical space
(for instance, a segment). Whenever this procedure is implemented
in a computation tree, this segment is stored on the rotative memory
in a way which keeps (relatively to the privileged direction) the
topology of the network. Then the procedure 1is bound to its environ-
ment, in the computation tree, according to the DCPL binding rules.
The convention we have taken previously ( a son appears under the
head before its father) assures a non-optimal but to a large extent

satisfying solution.



A program in DCPL exhibits, to a large extent, the flow

of information, the possible concurrency, and the ""topology" of

the computation structure. This allows new machine organizations

which, we believe, would permit to obtain a larger throughput

with less resources.



CHAPTER VII

CONCLUSION

Notions which are relevant to both programming language design
and machine organization have been discussed in this thesis.

Progresses made in these two domains occurred generally inde-
pendently; since these developments were to be compatible, artificial
restrictions have been imposed in order to define a common frame of
reference. We believe such restrictions can only be removed by com-
prehensive approaches.

Today"s programming languages view computers as if they were
still simple von Neumann®s type machines. A computation is mainly
considered as a sequence of instructions, which can modify the con-
tents of some cells. As a result, almost any possibility of having
concurrency and distribution of control in computation structures
is lost.

Today"s machine and system organizations consider programming
languages as if they were unable to grasp the information and control
topology of the computations which are expressed with them. As a result,
possibilities to plan in advance the computation process are lost,
producing, 1in our opinion, less efficient systems.

A DCPL program exhibits concurrency, distribution of control
and locality of references. We believe that this will permit to have

a more efficient machine organization with less expensive resources:
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with a traditional organization, a very fast processor (a "processor

on a chip”™ will be very inexpensive in just a few years) would not

be able to be fully used unless a prohibitively expensive very fast
memory were to be used, or small iterative computations were expected
to occur very often. The machine organization proposed here is believed
to be able to "feed" such a processor by using relatively not expensive,

very large transfer rate, sequential memories.
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