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ABSTRACT

The forefront of current nanoscience initiatives includes the investigation and devel

opm ent of semiconducting colloidal nanocrystals for optoelectronic device concepts. 

Being highly facile in their synthesis, a wide range of sizes, morphologies, materials, 

interactions, and effects can easily be engineered by current synthetic chemists. Their 

solution-processability also makes available the use of long established industrial fabri

cation techniques such as reel-to-reel processing or even simple inkjet printing, offering 

the prospect of extremely cheap device manufacturing. Aside from anticipated tech

nologies, this material class also makes available a type of “playground” for generating 

and observing novel quantum  effects within reduced dimensions.

Since the surface-to-volume ratio is very large in these systems, unsatisfied surface 

states are able to dominate the energetics of these particles. Although simple m eth

ods for satisfying such states are usually employed, they have proven to be only sem i

effective, often due to a significant change in surface stoichiometry caused by complex 

atomic reorganization. Serving as charge “trap” states, their effect on observables is 

readily seen, for instance, in single particle photolum inescence (PL) blinking. Unfortu

nately, most m ethods used to observe their influence are inherently blind to the chem 

ical identity of these sites. In absence of such structural information, systematically 

engineering a robust passivation system becomes problematic.

The development of pulsed optically detected magnetic resonance (pODMR) as a 

m ethod for directly addressing the chemical nature of optically active charges while 

under trapping conditions is the prim ary tenet of this thesis. By taking advantage of 

this technique, a great wealth of knowledge becomes immediately accessible to the re

searcher. The first chapter of this work imparts the relevant background needed to 

pursue spin resonance studies in colloidal nanocrystals; the second chapter addresses 

technical aspects of these studies.



In Chapter 3, pODMR is used to explore shallow trap states that dominate the charge 

transfer process in CdSe/CdS heterostructure nanocrystals. Several trapping channels 

are observed, while two in particular are correlated, demonstrating for the first time that 

both electrons and holes are able to be trapped within the same nanoparticle at the same 

time. The intrinsically long spin coherence lifetime for these states allows for the spin 

multiplicity and degree of isolation to be explored. Demonstration of novel effects is also 

performed, such as coherent control of the light-harvesting process and remote readout 

of spin information.

The study presented in Chapter 4 focuses on the spin-dependencies observed in the 

historically ill-described emissive CdS defect. By m onitoring deep-level emission from 

nanorods of this material, it is shown that the cluster defect can ultimately be fed by the 

same shallow trap states explored in Chapter 3. The degree of interaction between trap 

states and the cluster defect is probed. Also, a surprisingly long spin coherence lifetime 

(T2 « 1.6 /is) for the defect itself is observed, which opens the possibility of highly precise 

chemical fingerprinting through electron spin echo envelop m odulation (ESEEM).

This dissertation lays the groundwork for further use of these, and more powerful 

magnetic resonance probes of the states that fundamentally limit the practical utility of 

colloidal nanocrystal optoelectronics devices. Furthermore, by gaining access to these 

optically active electronic states, novel methods of coherent quantum  control may be 

exerted on the energetics of this material system.
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CHAPTER 1

INTRODUCTION 

1.1 Colloidal Nanocrystals
The burgeoning field of nanotechnology, in its conception, is popularly attributed 

to the late Dr. Richard Feynman, who first described the action of “a billion tiny facto

ries,. .. drilling holes, stamping parts, and so on” in his 1959 address “There’s Plenty of 

Room at the Bottom” to the American Physical Society [1]. In this spirit, he went on to 

propose a significant challenge to the scientific community, offering a $1000 reward for 

the construction of a 1/64th inch cube electric motor. Although m et (and paid) within 

a year, the field of nanotechnology did not begin to develop until the early 1980s, when 

scanning tunneling microscopy (STM) [2] and nanofabrication [3, 4] methods began to 

be invented, providing tools for top-down atomic m anipulation.

As the field has begun to mature, less emphasis has been placed on the simple m inia

turization of traditional mechanics and more on the material aspects that dictate the 

quantum  interactions which naturally dominate at these length scales (1-100 nm). If 

Feynman had anticipated that the field of nanotechnology would be so driven by m ate

rials and instead posed a challenge in these terms, he would have been tardy in payment 

by about 1700 years. Incredibly, the 4 th century AD Romans had developed a m ethod of 

colloidally suspending gold and silver nanoparticles within glass, imparting interesting 

optical effects due to the surface plasmon resonance induced by light of visible wave

lengths. A beautiful example of their craftsmanship survives in the Lycurgus Cup [5], the 

glass of which contains about 1% of roughly 70 nm diameter nanoparticles [6], giving the 

goblet a deep red color for transm itted light and a green color similar to copper patina 

for reflected light.

Knowledge-based insight into the unique light-scattering properties of metal nanopar

ticles only slowly emerged after an initial scientific evaluation in 1976 [7]. Colloidal



2

glass-suspensions of semiconducting nanoparticles followed several years later, when in 

1982, Ekimov and Onushchenko made the first size-distributed series of sem iconduc

tor quantum  dots, demonstrating the quantum  size effect on the electronic band gap 

through a correlated shift in the onset of excitonic absorption [8]. This original result of 

being able to continuously vary the frequency of light either absorbed or emitted from 

a material simply based on its size dimensions led to a great deal of early interest in 

nanocrystals. Since then, exerting synthetic control over the dimensional, geometric, 

and material aspects of quantum  confinement has been realized in a wide variety of 

ways, ultimately revealing a broad range of novel effects and potential applications.

Somewhat traditional top-down engineering techniques are widely employed in build

ing various quantum  confined structures. High-precision electron beam lithography 

is used in building electrostatically defined quantum  wells of interacting 2D electron 

gasses [9] and well-controlled reactive chemical techniques are used in the manufacture 

of epitaxially grown quantum  dots and wires [10]. A newer generation of fabrication 

methods rather employs a bottom -up approach, following the Romans’ earlier intuition. 

These range in concept from the small colloids just m entioned to the self-assembly of 

extended macroscale objects from nanoscale constituents [11]. The technological utility 

of glass-matrix colloids is ultimately limited, and so they have largely been replaced 

by more facile wet-chemical methods of producing solution-suspended nanoparticles 

[12-16] (see Section 2.3 for discussion). At this point, this class of nanostructure inherits 

the benefits of being solution-processable, making device production potentially cheap 

and simple through the use of conventional manufacturing processes like reel-to-reel 

processing [17] or inkjet printing [17, 18].

Optoelectronic device concepts such as light-emitting diodes (LEDs) [18], video dis

plays [18, 19], photovoltaics [20-24], lasers [25], and nanom edicine [26] have all been 

explored using these solution-processable colloidal nanocrystals. The successful market 

realization of such devices ultimately depends on their efficiency, which is controlled by 

the stability of excitations within these active materials. Unfortunately, the ubiquitous 

presence of charge “trap” and crystalline defect states has helped forestall the realization 

of cost-competitive device manufacturing in this area. These undesirable states degrade
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device performance by offering competing energetic relaxation pathways [27-29] for the 

more desirable excitonic [24, 30] and multi-excitonic [31, 32] excited states. The effect 

on excitonic states is readily seen via observations of photolum inescence (PL) inter- 

mittency (“blinking”) [33], power-law optical decays [30, 34], and the lack of a phonon 

bottleneck [35, 36].

1.1.1 Electronic Properties

Bulk semiconductor crystals (i.e. dimensions >>10 nm) are generally characterized 

by the electronic band gap formed from their periodic bonding structure. The equilib

rium distance of the constituent atoms forces the overlap of electronic orbitals, leading 

to lifting of degeneracy that is driven by Pauli exclusion. Since these orbitals delocalize 

across the breadth of the crystal and their num ber is large (N « 1019), a correspondingly 

large num ber of nondegenerate orbital states forms an effectively continuous band of 

allowed energies. Electronic energies not supported by these interacting orbitals are 

disallowed, which defines the band gap of the material [37]. As the size dimensions of 

the bulk crystal are diminished to the nanoscale (<15 nm), the num ber of participating 

valence states is also decreased. The width of each band of allowed states then begins 

to narrow, resulting in nearly discrete, atomic-like states for nanocrystals [38]. This is 

schematically depicted in Figure 1.1.

Since the band gap of a bulk semiconductor is an intrinsic material property, m uch 

of the effort in semiconductor physics for the last 60 years has been devoted to m eth

ods of band gap engineering. Far from arbitrary, the ability to tune this intrinsic prop

erty through either doping, applying strain, or heterostructuring fundamentally enables 

m odern electronics (e.g. diodes, transistors, LEDs, photovoltaics, etc.). This is very 

im portant to optoelectronic devices, which are based on the excitonic state, a Coulom- 

bically bound electron-hole pair that is formed at the band gap. The stability of such an 

excited state is due to the energy-lowering electrostatic attraction, Eexciton = Ebandgap -  

Ecoulomb. Excitons in bulk semiconductors have an average charge carrier separation of 

about 10 nm (depending on the material), allowing for minimal exchange overlap of the 

carrier wavefunctions. This intercharge distance is term ed the Bohr exciton radius since
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Figure 1.1. The electronic band gap of bulk and nanoscale crystals. (a) Bulk sem icon
ductor crystals are characterized by the band gap separating their continuous valence 
and conduction bands. (b) The reduced size dimensions of semiconductor quantum  
dots result in atomic-like energetic states. (c) Optical transitions between separate 
orbital states are discrete, reflecting the quantum  dot density of states. This fact is 
witnessed as discernible peaks in the optical absorption spectrum, whereas the bulk 
material absorption is continuous in energy.

the quantized energy levels of the exciton can be treated in a Hydrogenic model [39]. 

Once the size dimensions of the nanocrystal are reduced to the Bohr exciton radius, 

strict terminal boundaries begin to be enforced for the carrier wavefunctions. This ac

tion of quantum  confinem ent essentially creates a particle-in-a-box situation, affecting 

the energy-level spacing for band gap states. The band gap energy of the nanocrystal 

quantum  dot is then [40]

e QD „ Ebulk + L8e2
bg ~ bg 2^R2 4neeoR ’

where x  is the reduced electron-hole mass, e is the dielectric constant of the sem icon

ductor, and eo that of free space. R is the quantum  dot radius. The factor of 1.8 in the 

Coulomb term arises from the Coulomb integral1 of the 1Se electron and 1Sh hole wave- 

functions which comprise the exciton ground state. At this point, band gap engineering

1The Coulomb integral is given by J c o u I . = / /  d redt% Y* (re) Y* t ) (t-h y )  t ) Yh t ).
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for the nanocrystal becomes facile and arbitrary by means of a simple choice of particle 

radius [41].

In combination with the continuous flexibility offered by size-tuning, the band gap 

can also be engineered through more traditional methods: impurity doping, strain fields, 

and heterostructuring. Each of these m ethods has been explored extensively for col

loidal nano crystal systems. For instance, doping with magnetic impurities, such as Mn2+ 

ions, has opened up possibilities for quantum  dots with optically induced [42] and charge- 

controlled [43] magnetization. Band gap tuning through interfacial strain [44] between 

heterojunctions of materials with mismatched lattice constants can allow for nearly the 

same range of tuning available through simple particle dimensions alone. And for he t

erojunctions themselves, there are a wide variety of options available [45] owing to the 

m any compatible semiconductor materials used in constructing them and the ability to 

synthesize a range of geometries and dimensions [45].

Heterostructure formation typically involves a layered growth procedure where one 

nanocrystal serves as the seed for further growth of an additional layer of another m a

terial. Since the synthetic chemist can control the material and size dimension of each 

growth layer, a large array of band gap configurations is possible. Both the relative band 

gap offset as well as the alignment of valence or conduction bands is then determined 

by not only the material itself, but also the size dimensions of each layer. Typically used 

bilayer heterojunctions are illustrated in Figure 1.2, which shows that not only are the 

electron-hole energetics engineered, bu t wavefunction engineering is also exploited in 

order to tune the degree of spatial localization within the structure.

Type I band alignments generally result in both carriers being localized to the smaller 

band gap material, which increases wavefunction overlap and, consequently, optical 

recombination rates. Oftentimes, colloidal nanocrystals are term inated with a m uch 

larger band gap material, which serves as a passivation layer, protecting against the 

formation of dangling-bond trap states that act as localization sites and energetic decay 

channels. On the other hand, Type II alignment minimizes the overlap of carrier wave- 

functions due to the opposing mismatch between corresponding charge carrier bands. 

The charge-separated states which result have a markedly decreased rate of recombina-



Figure 1.2. Common types of nanocrystal heterojunctions. Three types of heterostruc
ture are normally used for band gap tuning in semiconducting nanocrystals, which al
lows for charge localization via wavefunction engineering. (a) In Type I band structures, 
both electron and hole are co-localized to the same material. (b) Type II heterojunctions 
minimize wavefunction overlap by forcing charges to occupy adjacent materials. (c) An 
interm ediate regime is also realizable. In these quasi-Type II heterostructures, one 
charge is localized while its partner is delocalized across the two materials. This effect is 
due to an equal alignment of either valence (VB) or conduction band (CB).

6

tion. An interm ediate regime also exists, term ed quasi-Type II, in which there is nearly 

equal alignment between the two conduction or valence bands. Such a configuration 

continues to enforce the localization of one carrier, while enhancing the delocalization 

of the other. This ability to delocalize a single carrier has supported several studies 

aimed at investigating the nature of excitonic coupling in nanoscale semiconductors 

(i.e. via exchange [46] and electric field effects [31, 45, 47]) and the interface of their 

heterojunctions [48].

1.1.2 Optical Properties

As the band gap of these nanoscale materials is continuously varied, so are their 

optical properties. Band-edge absorption and emission frequencies directly scale with 

the degree of quantum  confinement exerted on the exciton. With decreasing particle 

radii, this is observed as a corresponding optical blue-shift in both the emission and 

onset of absorption. A cartoon of this effect is shown in Figure 1.3.

Although the band gap engineering described above (Section 1.1.1) can be useful 

in this regard, additional influence over the optical properties of nanocrystals is avail

able through geometric design. By utilizing unique growth conditions and intelligently
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photon energy

Figure 1.3. The size-tunable optical band gap of quantum  dots. Quantum confine
m ent is enforced by material dimensions being smaller than the natural exciton length 
scale (R ~ 10 nm  in bulk crystal). This results in the ability to vary the band gap as a 
size-tunable parameter. Therefore, smaller particle sizes display a blue-shifted optical 
absorption onset and emission energy2. The subtle features present in the absorption 
spectra (arrows) correspond to the different orbital excitations.

choosing particular crystalline phases and facets for heterostructure seeding, an enor

mous range of particle geometries can be realized. Examples include rods [15], cubes 

[49], pyramids [49], tetrapods [50], ribbons [51], and highly complex extended structures 

[52]. This geometric complexity not only furthers the ability for wavefunction engineer

ing, but can also be used to greatly enhance the absorption cross-section. An increase in 

excitation rates can even be achieved while maintaining quantum  confinement by using 

elongated rod or well structures that extend selective dimensions of the system.

1.1.2.1 The “Dark” Exciton

Since Chapters 3 and 4 describe studies on spin-dependent optical states existing in 

CdSe and CdS nanocrystals, some attention should be paid to the angular m om entum  

possessed by excitons in these two material systems. It should be clearly stated, though,

2Data presented in this figure simulate the measured behavior.
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that in these studies, the band edge exciton states are only indirectly addressed through 

the action of intermediary “trap” or “shelving” states.

As the synthesis steps for producing CdSe quantum  dots of extremely high quality 

became developed [13], curious optical responses in these systems began to be reported 

in the literature. Band edge excitonic states displayed recombination lifetimes on the 

order of 1 /is [53, 54], whereas excitons in bulk materials radiate within roughly 1 ns 

[55]. An inverse relationship between nanocrystal radius and Stokes shift was commonly 

observed [56]. Also, a decreasing photolum inescence (PL) lifetime was dem onstrated for 

quantum  dots held in an increasing magnetic field [57]. In 1996, the m atter was largely 

resolved in a highly revealing work by Al. L. Efros and coworkers [56], where it was 

shown both theoretically and experimentally that each of these separate effects could 

be reconciled by considering the ground state exciton of CdSe quantum  dots to possess 

a spin-state which disallowed a radiative transition back to the ground state. Much of 

the subsequent work on CdSe nanocrystals has revolved around fully describing the 

nature of this “dark” excitonic state and how it affects the system’s energetics in relation 

to particle size [58-60] and morphology [56, 61].

This dark excitonic state arises due to the orbital angular m om entum  contributions 

to total spin identity that are acquired by the charge carrier wavefunctions as a conse

quence of quantum  confinement. A thorough overview of the theoretical description 

[56, 58, 61, 62] of these states is given by D. J. Norris in Reference 63. Essentially, for 

spherical quantum  dots in the strong confinem ent regime (i.e. Ebox >> ECoulomb due to 

terms r -2 >> r -1), the electron and hole can be treated as independent particles within 

a spherical “box” of infinite boundaries. This allows the wavefunction for each carrier to 

be treated completely independent of the other. Then, each particle wavefunction can 

be approximated as a separable product of wavefunctions: an envelope function which 

satisfies the spherical particle-in-a-box potential as well as a periodic function which 

satisfies the crystal potential:

m Q ^  ^sphere mlattice 
e,h ~ e,h e,h '

This separability holds as long as the nanocrystal radius is m uch larger that its lattice 

spacing, which is generally true. The total state for the electron-hole pair (ehp) is then
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proportional to the envelope functions of each carrier in the spherical potential, written 

in terms of spherical harmonics and Bessel functions,

j Le(kne,Lere) Y
mh

j Lh(knh,Lhrh) YLh

rh

Here, j L(kn,Lr) is an Lth order spherical Bessel function, where kn,L is the n th zero of 

j L, and Ym is a spherical harmonic. Electronic states are then labeled by the quantum  

num bers ne, Le, nh, and Lh, reminiscent of atomic-like orbitals with n = (1,2,3...) and 

L = (S, P,D ...). It then becomes clear why quantum  dots are commonly referred to as 

“artificial atoms.”

The full set of quantum  num bers describing the total angular m om entum  for an 

exciton in a quantum  dot is then six-fold. This is because, in addition to the atomic-like 

states just shown, there is still the orbital m om entum  within the atomic basis (£e>h) as 

well as the intrinsic spin (Se,h) that the charges possess. Each charge carrier then has a 

total angular m om entum  of Fe,h = Le,h + Je,h, where Je,h = £e,h + Se,h. The exciton’s good 

quantum  num ber is then N  = Fe + Fh. This composition is schematically depicted in 

Figure 1.4(a).

In truth, the accurate com putation of carrier states for actual particles is a highly 

nontrivial process. Simply changing the nanoparticle radius can radically alter the rel

ative spacing of energetic sub-bands [58, 61, 64]. This effect is due to the perturba

tion strength of each level upon its neighbor-levels and is more of an issue with hole 

states than those of the electrons since valence sub-bands (light hole, heavy hole, and 

spin-orbit split-off) tend to lie so close to one another. The small am ount of energy 

separation for these states leads to band mixing, reducing the purity of each state’s wave- 

function. Computing the wavefunction in materials like CdSe offers some relief since 

the crystal-field splitting energy is so m uch weaker than its intrinsic spin-orbit coupling 

(AcF = 25 meV and ASo = 420 meV) [64]. Mixing from the spin-orbit band then becomes 

negligible, allowing for a more approachable theoretical treatm ent [56, 62]. Realistically 

computing correct hole-band energy levels in materials with nearly equal spin-orbit 

and crystal field energies, ASo « Ac f , on the other hand, has proved challenging for 

theorists, with an advanced treatm ent for CdS only being developed in 2010 [62].

me

e
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Figure 1.4. The total angular m om entum  of quantum  dot excitons. (a) Angular m om en
tum  for a quantum  dot exciton is primarily composed of three quantum  num bers per 
charge. Quantum confinem ent of both electron and hole results in an envelope func
tion com ponent to its wavefunction, gaining orbital mom entum , Le,h, for the carrier. 
Traditional quantum  numbers, £e,h and Se,h, continue to characterize the charges in 
their atomic basis. (b) An optical absorption spectrum  for CdSe nanocrystals is shown2. 
Individual absorption peaks are labeled according to their orbital transitions, nLp , for 
each electron and hole state. The nondegenerate fine structure for the ground state 
exciton is displayed. Solid lines indicate allowed (“bright”) optical transitions, while 
dashed lines are optically forbidden (“dark”) excitonic transitions.
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The ordering of hole levels in nanocrystals is highly im portant since it determines 

the final spin-identity of the excitonic state. For both CdSe and CdS [56, 62], the lowest 

energy electron and hole states are generally found to be [1Se, 1Sh/2] (where Fh = 3/2). 

Since Fe = 1/2, the total exciton spin identity has eight states, three of which are degener

ate in absence ofZeem an splitting. Ordered by decreasing energy, these are 0U, ±1U, 0L, 

±1L, ±2, where the superscripts “U ” and “L” stand for “upper” and “lower,” respectively 

(see Figure 1.4(b)). Here it is seen that the ground state exciton is a spin-2 state. Spin 

relaxation between N  = ±1 (optically “allowed”) and N  = ±2 (optically “forbidden”) lev

els has been reported to be very efficient (T1 « 1 ps) for CdSe excitonic states [65]. Since 

there is no electric-dipole-allowed transition from N  = ±2 to the ground state, energy 

relaxation occurs over very long time scales, even at low temperatures. This explains 

the long t  « 1 us fluorescence lifetimes observed for CdSe nanocrystals at 10 K [53, 54], 

which were m entioned above.

As one would expect from the above discussion of hole-band ordering as a function 

of particle radius, the relative energetic spacing of the excitonic fine structure, and even 

the ordering itself, is a strong function of nanocrystal size and geometry [58, 61, 64]. Re

cently, wavefunction engineering in quasi-Type II CdSe/CdS core-shell nanocrystals has 

resulted in a dramatically reduced exchange interaction, decreasing the roughly 15 meV 

gap between ±2 and ±1L levels to less than 250 neV [46]. Thermal fluctuations were 

then sufficient to effectively depopulate the “dark” exciton state, resulting in enhanced 

emission stability.

1.1.2.2 Fluorescence In term ittency (“Blinking”)

Soon after m ethods for synthesizing colloidal nanocrystals of high quality became 

known, a surprising characteristic of the emission process was discovered. It was found 

that, under constant excitation conditions, single nanocrystals display a rather binary 

emission intensity as a function of time, where they seem to be either emissive or not 

[66]. This fluorescence interm ittency of the particle (a.k.a. “blinking”) shows stochastic 

switching behavior between the two primary emission states, being in either an “ON” 

(bright) or an “OFF” (dark) state; the process highly resembles the form of random  tele
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graph noise [33] (see Figure 1.5(a,b)). Like the action of random telegraph noise, the 

distribution of dwell times for the em itter while in either the ON or OFF state has a 

power-law distribution [67] (Figure 1.5(c)), m eaning that there is no average ON time 

for the emitter.

Random blinking behavior is not uncom m on amongst quantum  emitters. In fact, 

it is a well-known and well-described process in ionic [68] and molecular [69] systems 

where the observed dynamics can be attributed to competing energy decay m echa

nisms. This usually takes the form of a short-lived optically allowed transition com 

peting with a lower-lying optically forbidden state with a long lifetime. The mechanism 

underlying the blinking process in colloidal nanocrystals has proven to be a m uch more 

complicated affair [70], and since a universal description has remained elusive for the 

past 16 years, the topic has attracted a great deal of interest. The many studies per

formed characterizing the blinking process under various conditions [71-74] has led 

to a proliferation of interpretive models [33, 75]. Since a majority of the experimental 

studies have focused on the stochastic nature of ON and OFF dwell times, so have the

time (ms) frequency ON times (seconds)

Figure 1.5. Characteristics of single particle fluorescence intermittency. (a) Single parti
cle blinking2 is characterized by stochastic switching between optically bright and dark 
states. (b) A bim odal distribution of emission intensity counts shows a clear delineation 
between these bright (ON) and dark (OFF) emission intensity levels. (c) Analysis of 
long-term blinking traces2 reveals a power-law distribution in the am ount of time spent 
in an ON or OFF state. This behavior confirms the complex dynamics underpinning 
these random switching events.
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theoretical models in explaining the power law-like distributions of these dwell times. 

Most of these models invoke either a random charging event leading to a persistent 

Auger process [76, 77] or else some form of charge localization [78, 79], w hether to 

traps, defects, or even the surrounding matrix material. Discrimination between these 

models has been notoriously difficult for this material system, though some fraction 

of resolution has recently been offered with the insight that both Auger and trapping 

processes can induce a blinking event [27-29]. W hat remains completely ambiguous at 

this point, though, is what the causative factors are for these processes; how are single 

charges introduced into the nanocrystal and what particular chemical defect and charge 

trapping sites are responsible?

Understandably, a great deal of effort has been directed towards eliminating this 

interm ittent behavior from this class of materials. One very effective approach is to 

engineer the wavefunction of the system in order to minimize its overlap with any defect 

or trapping states (presumed to consist of dangling bonds at the terminal surface) [80]. 

This is accomplished by exchanging an abrupt core-shell heterojunction for a continu

ous band transition via radial-alloying. Surprisingly, blinking is completely suppressed 

in this case, despite the particle undergoing the same charging events normally asso

ciated with Auger-induced OFF states. Since this technique only applies to core-shell 

heterojunctions of specific materials, a second major approach to enhanced optical per

formance has been widely explored. This is through the engineering of more effective 

surface passivation techniques [22, 23]. Broadly employed, organic ligands are used to 

satisfy the terminal bonds of these nanocrystals, and therefore, the particle surface is 

densely populated with a layer of these materials. Blinking dynamics have also been 

explored in terms of passivation type [73, 81] and matrix environm ent [82], where it has 

become obvious that the particle’s surface states also play a role, again, as a source of 

trap states. Results from these studies highlight the need for a chemically complete u n 

derstanding of the physical mechanisms involved, both in driving the blinking process 

and in quenching it. Such information could then be used to eliminate any chemical or 

energetic support for the production of OFF states.
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1.1.3 Trap and Defect Properties

Common to the study of crystalline materials is the subject of charged “defect” states. 

In bulk materials, these are generally formed from some sort of interruption to the lat

tice periodicity in either one (point defects), two (line defects), or three dimensions 

(bulk defects). For nanocrystals, the sheer lack of particle volume restricts the type to 

point defect centers (i.e. vacancies, interstitials, clusters, etc.). Furthermore, since these 

systems are characterized by their very large surface-to-volume ratios, unsatisfied and 

disordered bonding at the surface can potentially dominate the energetics of the entire 

system [30]. This poses a problem of utm ost im portance for optoelectronic device ap

plications since these states provide strong electronic decay pathways [83], decreasing 

the efficiencies of LEDs [84], solar cells [24], and laser gain media [85].

The inevitable existence of dangling bonds at the terminal surface can be mediated, 

though, by somehow satisfying these unpaired orbitals. Two common methods of ac

complishing this are by covalently bonding either organic ligands or a capping shell of 

wide band gap material to the surface. Unfortunately, neither of these methods has 

been found to function completely against surface defect states. In fact, it has been 

shown that passivating ligands themselves can introduce energetic trap states by being 

incorrectly bonded to the surface or by having a suboptimal packing ratio [86, 87].

In nanocrystals, the broad classifying terms of “trap” and “defect” somewhat overlap, 

and are both ill-defined, as there is very little chemical knowledge available for these 

states. In general, though, traps are nearly always associated with shallow or m etastable 

states, possibly induced by environmental conditions (e.g. ligands or the host matrix), 

while defects refer to classical crystallographic discontinuities. The overlap in term i

nology comes from the wide variety of deformations which occur at crystalline surfaces 

reconstructed by competing ligand orbitals [86]; even for bulk semiconductors, descrip

tions for many surface states remain undefined or imprecise due to the complex atomic 

reorganization which normally takes place at surfaces [88]. In any case, some work has 

been applied to characterizing these states in order to quantify their detrim ent to device 

energetics [24, 30] and in hopes of gaining the chemically relevant information [89, 90] 

needed in order to minimize these states during the synthesis process.
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Since spectroscopy of emission dynamics serves as a direct window on excitonic 

states and their perturbations, photolum inescence studies have been fairly powerful 

tools in trap state investigations. Spectral time dynamics resolved on the 100 femtosec

ond time scale indicate that carrier trapping in CdS nanocrystals can be as fast as a few 

picoseconds [91]. Indeed, a recent theoretical framework has been developed to study 

trapping kinetics as a function of band gap engineering and trap depth, affirming the 

fem to- to nanoscale trapping times [79]. On the other hand, the trapping lifetime can 

be quite long, ranging from nanoseconds to several microseconds [71, 92], as dem on

strated, again, in both fluorescence decay measurem ents and model calculations [30]. 

Section 3.6.2 of this work has some further discussion on deciphering the presence of 

trap states from the form of emission decay dynamics.

Generally, trap and defect sites are presum ed to represent nonradiative decay p ath

ways for band edge excitonic states. A particular species of deep-energy chemical defect, 

though, is actually emissive and so represents an additional radiative decay channel for 

excitonic states [90]. Common to both CdS and CdSe materials, and largely the subject 

of Chapter 4, this emissive site has been studied for more than 60 years [93]. Despite 

the history of work, little is known about the exact chemical or structural nature of this 

site, other than that it is probably a vacancy defect cluster [89, 94]. In CdSe and CdS, this 

would effectively be a donor-acceptor pair formed from a Cd vacancy (hole trap) located 

nearby either a Se or S vacancy (electron trap) [95]. What is known is that its emission is 

a m ultiphonon-driven process, as is evident from its wide emission band [96], lack of a 

visible 0-0 transition, and therefore large Huang-Rhys factor (S = 18) [95]. The emission 

spectrum  for this emissive defect in CdS nanorods is shown in Chapters 3 and 4, where 

the spin-dependencies of this recombination channel are discussed.

Aside from optical forms of defect spectroscopy, several other techniques have been 

applied to the characterization of these nebulous trap and defect states [97]. Several 

studies relying on cyclic voltammetry have been made [98]. This technique holds the 

material of interest in an electrolytic solution while the electrochemical potential is cy

cled. Current is m onitored and correlated with potential in order to observe detrapping 

events, which correspond to spiking in current. A newly developed variation of this
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technique is to instead monitor the emission spectrum  of the material of interest while 

sweeping the electrochemical potential of this cell [29, 99]. Since doing so shifts the 

Fermi level of the material, control over the trap state occupancy can be made, revealing 

the effect these states have on emissive band edge and defect sites. Traditional electronic 

probes can also be revealing: conducting atomic-force microscopy (C-AFM) addresses 

these sites on the atomic scale [100]; deep level transient spectroscopy (DLTS) helps 

determine trap concentrations [101]; and photoconductivity m easurem ents probe trap 

types through below-gap [102] and field-dependent effects [103].

Finally, the technique of continuous wave, optically detected magnetic resonance 

(cwODMR) has proved to be fairly powerful in its ability to directly address long-lived 

trap charges [94, 104]. Virtually all work involving this technique as applied to colloidal 

nanocrystals has been performed by, or at least involved, Dr. Efrat Lifshitz of the Israel 

Institute of Technology -  Technion [105-114]. The power of using a pulsed form of this 

m ethod (pODMR) in characterizing a site’s electronic and chemical environm ent is the 

topic of Section 1.2, as well as of the studies presented in Chapters 3 and 4.

1.2 Pulsed Optically Detected Magnetic Resonance (pODMR)
1.2.1 Electron Spin Resonance (ESR) of Optically Active Carriers

Electron spin resonance is inherently based on the interactions of an electronic charge’s 

intrinsic magnetic m om ent with an external magnetic field, where the m om ent either 

aligns parallel or antiparallel to the field. The relative difference in energy between these 

two alignment configurations is called Zeeman splitting, after Pieter Zeeman who in 

1896 first observed this behavior in atomic emission lines [115], well before the quantum  

nature of the effect could be appreciated. Since this interaction scales linearly with 

magnetic field3,

H z  = - p  • B0  = g  fie S • B0 ,

the magnitude of emission line splitting was fundamentally instrum ental to the remote 

measure of sun-spot magnetic field strengths [116] and polarizations [117]. It was in

3 Here, p  is the magnetic moment of the carrier, B0 is the external magnetic field, g  is the Lande g -factor,
S is the spin angular momentum of the charge, and h is Planck’s constant. The Bohr magneton, f e = 2mh~, 
is also used, where e and m e represent the electron charge and mass, respectively.
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1944, though, that the Russian physicist E. K. Zavoisky used the Zeeman splitting of 

electronic spin states to invent ESR as a chemically specific spectroscopic technique 

[118]. The technique quickly found utility with chemists in the study of free radical 

generation in salts [119, 120] and organic crystals [121], as wells as point defect struc

ture in inorganic crystals [122-124]. More recently, the framework of ESR has been of 

param ount utility to physicists working on the purposeful m anipulation of quantum  

states [125-127] and moving the field towards the realization of “qubit”-based quantum  

computers [128-130].

The polarization of large ensembles (Nspins > 1010) is w hat traditionally enables the 

observation of ESR signals through radio and microwave frequency absorption. Sev

eral variations of spin readout m ethod have been devised since the inception of ESR, 

increasing the sensitivity and specificity of the technique. Readout methods based on 

relative spin perm utation symmetry, rather than simply spin polarization, allow for res

onance detection even at the level ofsingle spins [127,131]. Optically detected magnetic 

resonance (ODMR) is such a method, where ESR of optically active carriers is observed 

through either the fluorescence [132] or phosphorescence [133] emission channel.

Since optically active carriers are intrinsically paired (i.e. excitons, polaron-pairs, 

etc.), the m utual spin configuration between electron and hole is what defines the or

thogonal states of the two-spin system. In the absence of additional angular m om en

tum, this relative spin orientation is defined to be either a singlet (S = 0) or triplet (S = 1) 

state. Upon gaining additional angular m om entum , either through atomic orbital m o

tion or quantum  confinement effects [57], the spin multiplicity of the excitation can 

be increased (see Section 1.1.2.1 for additional discussion). The oscillator strength for 

an optical transition out of any one of the excitation’s spin states is then governed by 

spin selection rules. For example, in most organic semiconductors, the excited singlet 

state has a high oscillator strength and so optical transitions (fluorescence) are very 

efficient for this configuration. Alternatively, the direct transition of an excited triplet 

state to the singlet ground state in organics is dipole-forbidden, producing only very 

weak optical emission (phosphorescence) and usually at lower energies with long decay 

lifetimes [134, 135]. Thus, there is a direct correlation between m utual spin identity and
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the observable of either fluorescence or phosphorescence intensity (see Figure 1.6). For 

weakly exchange coupled states, the wavefunction, W, always carries some superposi

tion of singlet and triplet states. In this case, the observable is then proportional to the 

amount  of singlet content shared between carriers [136], PL rc |( S in g le t  |W) |2.

In general, there are two methods of applying radio-frequency (i.e. the B1 field) in 

magnetic resonance; either spin excitation is continuously driven (cw), or it is driven on 

a time scale which is short compared to the dephasing time, T2, of the spin (pulsed). 

Investigations using cwODMR produce a spin resonance spectrum, which, in principle, 

reflects the environm ent and interactions that the spin system experiences (see Sec

tion 1.2.2.2). In practice, though, the effects of separate interactions become convoluted 

in the cw spectrum, making some param eters impossible to extract. Such dependencies 

include, but are not limited to, the density of spins in the sample, the num ber of resonant

|Singlet> |Singlet>

|Triplet> |Triplet>

Figure 1.6. Spin selection rules govern optical emission. The probability of an optical 
transition between ground and excited states depends on whether angular m om entum  
is conserved in the transition. For a pair of spin-2 carriers in a singlet ground state, 
dipole-allowed optical transitions to (absorption) and from (fluorescence) an excited 
state are efficient. Some finite rate of intersystem crossing due to spin-lattice relaxation 
(kSL) results in a triplet state population. Since transitions to the ground state are 
dipole-forbidden for the triplet manifold, the emission lifetime of phosphorescence is 
m uch longer than for fluorescence (i.e. ks >> kT). Thus, for microwave-induced spin 
mixing that is fast compared to kSL, the intensity of each emission band can be used as 
the observable in a spin resonance experiment involving optically active carriers.
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species, the resonator quality factor, lock-in detection settings, g -factor or hyperfine 

anisotropies, dipolar interactions, and field inhomogeneities. Most of these issues can 

be resolved with information gained from the dynamics of the spin system. In pODMR, 

several pulse sequences [133] have been designed in order to probe the various dynam 

ics and interactions which constitute the environm ent of the isolated spin. In this way, 

a different pulse sequence may be engineered in order to access one set of interactions 

while minimizing any convolution with other, unconnected interactions.

The remaining sections of this chapter are devoted to first describing some of the 

interactions which form the cwODMR spectrum  and then the coherence effects which 

can be used to access particular aspects of the paramagnetic center and its environment.

1.2.2 Resonance Structure

1.2.2.1 Spin-Orbit Coupling and the Land6 g -factor

The fingerprint of a particular resonance spectrum is contained within the condi

tions required to achieve that resonance. For ESR, the resonance condition is m et when 

an oscillating B1 field matches the Zeeman splitting in energy for an electronic state,

hVRF = 2g fieS •B0 ,

where v RF is some resonant radio frequency providing B1 perpendicular to B0. The 

Lande g -factor here serves as a correction factor for the charge’s magnetic moment. Spin 

contributions in the Dirac equation place the free-electron g -factor at exactly g e = 2, al

though vacuum fluctuations in quantum  electrodynamics (QED) predict a slightly larger 

value, g e = 2.0023... [137]. Since the QED treatm ent for g -factor is directly related to 

the fine-structure constant, a, highly precise measures of g e [138] have enabled corre

spondingly high precision in a  [139]. To date, g e is one of the most precisely measured 

quantities of science (0.76 part per trillion uncertainty [138]).

For electrons which are not  free (i.e. atomically bound charges), the g-factor can 

take on a quite different value due to its orbital motion, which can serve as useful in 

formation about the intrinsic nature of the paramagnetic site. The effect fundamentally 

arises from the coupling of orbital (£) and spin (S) angular m om entum . Since this is a 

magnetic interaction of the field generated by the orbital m otion of the charge and the
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spin of that charge, this ultimately affects the magnetic m om ent of the carrier, shifting 

the correction factor away from g e. This behavior represents a perturbation to the spin 

system, H SO = X£ •S, which effectively admixes excited and ground state wavefunctions, 

as according to perturbation theory [140],

^  (n\X£ • S\0) \n)
\0) — \ 0 ) + £  E ' ■

n=0 En E 0

Here \0) and \n) are the ground and excited state wavefunctions, respectively, with E0 

and En being their corresponding energies. The factor X in the spin-orbit Hamiltonian 

determines the strength of the interaction, as well as the directional shift away from g e; 

this goes as [141, 142]

<0\£i\ri){n  \ £ j \0) , , 
gij  = ge + 2X ^ --------------------- , i, j  = x  y, z .

n=0 En E0

The m agnitude of X depends on the orbital being occupied and is proportional to Z 4, Z  

being the atomic number. Obviously, the m agnitude of mixing also depends on energy 

level separation -  a point which is very relevant to the mixing of hole band states of 

quantum  dots, as m entioned in Section 1.1.2.1. The sign of X depends on the cumulative 

spin-orbit contributions from empty (negative sign) and full (positive sign) molecular 

orbitals. In this way, it is possible to have large deviations from g e [143] of both positive 

and negative values [144].

The g -factor can then be used as a very effective spectroscopic marker for identifying 

specific paramagnetic centers since it is defined by a unique combination of atomic 

number, occupied orbital, and electronic band structure. The precise g -values of many 

radicals [145, 146], defects [147], and dopants [148, 149] have been well characterized, 

allowing for their presence and density within a material to be ascertained. By taking 

advantage of the inherent stability of m ost paramagnetic systems, calibration-free m ag

netic field sensors can be produced [150, 151]. Unambiguous access to g -factor can 

sometimes be complicated, though. In general, the g -factor is in fact a g -tensor, due to 

the anisotropic distribution of spin-orbit interactions within the local environm ent of a 

spin center. This results in multiple peaks being present in the resonance spectrum  of 

randomly oriented ensembles, with each peak corresponding to the principal values of
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the g-tensor (see further discussion in Section 3.6.7). Aside from this convolution effect, 

there also exist several m echanisms that alter or distort the resonance lineshape, which 

is the topic of the next section.

1.2.2.2 Broadening M echanisms

The intrinsic lineshape of fully isolated and isotropic spin centers is a single peaked 

Lorentzian profile, as shown in Figure 1.7(a). The width of this line is determ ined by the 

spin dephasing time and the area is proportional to the paramagnetic num ber density. 

These parameters, along with g -factor, are sufficient information for a great deal of stud

ies. But since ESR samples are normally m easured in bulk, or in very high number, any 

local variations in the radical environm ent throughout the material ensemble will result 

in a Gaussian distribution of single resonance lines (Figure 1.7(b)). This distribution of 

local environments can have several intrinsic sources (e.g. hyperfine, dipolar, etc.), but 

each type of interaction essentially has the same effect on the immediate environment 

of the resonant spin: it generates a local magnetic field, Biocai, which perturbs the ex

ternally applied field, Btotai = Bo + B^cai .

A complete description of each interaction will not be given here since a full treat

m ent of each of these broadening m echanisms is usually found in any spin resonance 

text [152]. Essentially, though, these interactions fall under two general classes: (1) those 

that directly generate local fields; and (2) those that modify local fields.

Many nuclear isotopes carry their own intrinsic magnetic moment, I, which can 

directly introduce a magnetic field offset for the electron (i.e. hyperfine interaction). 

Performing isotope exchange or isotopic purification, when practical, can then be a 

powerful m ethod of probing local nuclear interactions [153-155]. Similarly, nearby elec

tronic spins can couple to a paramagnetic center through a magnetic dipole-dipole in 

teraction. This allows for intercharge distance measurem ents of up to 8 nm  [156] to be 

m ade -  a powerful technique with which to probe protein dynamics [157], for example.

Effects which simply modify the local field of a paramagnetic center normally do 

so by affecting the spin-orbit coupling of that center. As m entioned in the previous 

section, g -factor anisotropy arises from anisotropic spin-orbit coupling. It is reasonable, 

then, that any interaction which modifies spin-orbit coupling will in turn act as a local
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(a) Homogeneous (b) Inhomogeneous
Broadening Broadening

Figure 1.7. Spin resonance lineshape broadening. Monitoring transitions between 
Zeeman split energy levels of an ensemble spin-1 system results in a characteristic 
resonance lineshape. (a) When the local environment is identical for each m em ber of 
the ensemble, the lineshape is a single Lorentzian and is homogeneously broadened 
only by the intrinsic linewidth of the transition. (b) If, however, the spin ensemble 
experiences some normal distribution of local field perturbations, then the resonance 
condition for each m em ber will also follow the normal distribution. The envelope 
of individual Lorentzian lines takes on a Gaussian profile with an inhomogeneously 
broadened linewidth.

magnetic perturbation. So, since spin-orbit sensitively depends on details of the atomic 

orbital, any adjustm ent to wavefunction distributions will result in a shift of spin-orbit 

coupling strength. This permits electric field effects, like the internal crystal field [124] 

or even an external electric field [158], to lift the orbital degeneracy of a state. Addition

ally, a nuclear m om ent I > 1 indicates a nonspherical charge distribution among the 

constituent nucleons. This creates an electric nuclear quadrupole m om ent which then 

interacts with the surrounding electronic and ionic charge distribution [159], effectively 

acting as a strain field [160]. In fact, when strain is present across the crystalline or 

molecular system, it usually results in significant broadening. Since strain modifies 

bonding lengths and angles, there can be a large distribution of strengths represented for 

hyperfine, dipole-dipole, nuclear quadrupole, crystal field, and spin-orbit interactions 

[161].
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1.2.2.3 The Half-Field Resonance

When the physical distance between two carriers is small (< 8 nm), magnetic dipole- 

dipole alignment between the two constituent spins can take place. In ODMR, the species 

under resonant investigation is usually an optically excited, closely bound, electron- 

hole pair. As stated in Section 1.1.1, bulk crystal excitons have a m ean charge separation 

of roughly 10 nm. In this case, dipolar coupling is considered weak since its strength 

goes as r -3. For the case of quantum  confinement, though, the excitonic charge sepa

ration is enforced by the nanocrystal boundaries, allowing for a m ean distance of even 

a few nanometers. In this range, dipolar coupling is greatly enhanced and exchange 

coupling becomes pronounced due to the increased wavefunction overlap. For a pair 

of spin-1 carriers, the total spin angular m om entum  of the system then becomes either 

singlet (S = 0) or triplet (S = 1), where degeneracy in the triplet states is lifted by the 

dipolar interaction. In general, ESR of spin-1 states presents unique features to the 

resonance spectrum, which are considered below.

The Hamiltonian for the dipole-dipole interaction between constituent spins S1 and 

S2  is
u,0 „ [ Si • S2 3 (Si • r) (S2 • r ) "

= S1 • D • S2 ,H dip = 4n  g1 g2fi2 r 3  r 5

where D is the dipolar tensor, sometimes called the zero-field splitting (ZFS) tensor, with 

elements
M0 /  r28ij - 3 i j \

D ij = g  1 g 2 M  -------5------ / , 1, j  = x , ̂  z .

In the principal-axis system of D, the Hamiltonian becomes

^2 2̂ 2̂ 
H dip = DxxSx + D yySy + D zzSz ,

which can be parametrized in terms of two factors,

3 1 , ^
D  = ^  D zz , E = 2 (Dxx — D yy) ,

allowing the Hamiltonian to be rewritten as [162, 163]

H dip = D
2 1  

S z -  3 S (S + 1) + E (Sx -  S2y)

The geometric symmetry of the paramagnetic site plays a large role in determining 

the D-matrix elements. For sites with axial symmetry, D xx = Dyy, resulting in E = 0.
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Lower symmetry sites (i.e. rhombic) in general have D xx = D yy and so E = 0. Dipolar 

interactions lead to resonance lineshapes with unique profiles, determ ined by the dis

tribution of spin-spin orientations within a sample. For a system of randomly oriented 

triplet centers (with respect to the external field), this results in a Pake-doublet line- 

shape distribution [164]. Schematically shown in Figure 1.8, this structure allows the 

characteristic D  and E terms to be extracted [165] from which the pair separation can 

be calculated [166].

In cases where the dipolar lineshape features of the full-field (g ~ 2) resonance are 

absent due to poor resolution, additional restrictions can be made on the D  and E p a 

rameters by relying on the observation of the “half-field” resonance. This ESR transition 

occurs for spin pairs which have a total spin angular m om entum  of S > 1, and resides 

at about half the field strength of the full-field resonance; so at g  « 4 if the full-field is 

observed at g  « 2. The g  « 4 feature is sometimes referred to as a “double quantum ” 

transition since it appears to involve a double change of angular m om entum , |Ams| = 2

Half-Field Full-Field

ID'I|LJ 1 ■*—-----------------►
■j ( |d ' |+ 3 |e '|)

Figure 1.8. Extracting dipolar coupling param eters from the resonance lineshape. In the 
presence of electron-electron dipolar coupling, the full-field resonance has a character
istic lineshape determ ined by the D  and E param eters of the dipolar Hamiltonian. Here, 
D  and E are in units of magnetic field (D = D /g /3e and E = E /g /3e). An additional 
resonance is also observed at g  ~ 4, or at about half the magnetic field of the g  ~ 2 
resonance.

t / b 2- ( |D ' |+ |E 1 ) 2

II
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(see Figures 1.8 and 1.9). This potential source of confusion can be explained by the 

nature of the triplet wavefunction in the high and low field limits.

X-band ESR probes the g  ~ 2 state at larger magnetic fields where the Zeeman split 

triplet sublevels are well defined as \ms) = i + 1), !0>, and \—1). At the much lower fields 

where g  ~ 4 is observed, the purity of the triplet sublevels is diminished due to a lack 

of an external axis of quantization (i.e. Bz). Instead, quantization is along the internal 

molecular frame, resulting in a superposition of full-field triplet states:

1 i x  i\TX) = —  ( \-1 ) - \+ 1 ) ) , |Ty) = —  (\-1) + \+1)), and \Tz) = \0) .
2 2

So, in fact, transitions between the low-field \ Tx) and | Ty ) triplet lines are not 2-photon

Low Field
|TX> =  y f ( l + 1 > “  M > )

|ty> =  *(H>+I-1>)
|TZ> =  |0 >

“A m s =  ±1 ”

High Field
|T+> =  |+1> 

|T0>  =  |0 >  

|T-> =  |-1>

Figure 1.9. The zero field splitting of triplet states. For a spin-1 system, there are 
three Zeeman split sublevels. At high magnetic fields, the system has a well-defined 
quantization axis (e.g. Bz). However, at low magnetic fields, the external field and 
internal dipolar fields mix, causing m s to cease to be a good quantum  number. With 
zero external field applied, triplet degeneracy is partially lifted by the internal dipolar 
field, resulting in a level splitting which is determ ined by the D  and E param eters of the 
dipolar Hamiltonian. Wavefunctions at low external field are a superposition of full-field 
states, allowing seemingly spin-forbidden transitions to occur.
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transitions at all, but are actually energy matching 1-photon transitions which effec

tively induce a m om entum  change of |Ams| = 0 [167]. Double quantum  transitions 

can be induced, in principal, though this is a second-order effect, and so high-intensity 

resonant fields are required [168].

Although observing the half-field resonance generally allows for uncertainty m ini

mization in the m easured values of D  and E parameters, there are a few instances of 

convolution which can obscure such information. The first arises from the existence of 

multiple full-field resonances with significantly different g -factors. Since the resonance 

B0-field is used to determ ine D  and E [165], it becomes impossible to choose the correct 

resonance for doing so, especially if each center experiences some am ount of dipolar 

coupling. An example of such a situation occurring is given in Section 4.6.

The second situation which can obscure dipolar information involves the existence 

of significant spin-orbit interaction. Somewhat unfortunately, when spin-orbit is com 

bined with the angular m om entum  Hamiltonian, H  = /5BB0 • £  + g S) + - £  • S, a term 

that is identical in form to the dipolar interaction can be produced, S1 • DSO • S2. This 

new dipolar contribution can be parametrized in terms of its own set of D SO and ESO 

parameters, which convolve with the D  and E parameters from the magnetic dipolar 

interaction. Fortunately, since spin-orbit coupling determines the elements of the g- 

tensor (as seen in Section 1.2.2.1), its contribution to the D-tensor takes on a similar 

form:
_  <0| £  |n)<n| £ j |0> . .

D j  = - 2 E — E - i , j  = x , y , z .n=0 En -  E0

So, by having complete experimental information on the principal values of the g -tensor, 

the D SO and ESO parameters can be com puted by

D SO = -  
2

1 -
gzz 2  igxx + gyy) , E = 2 [gxx gyy)2

At this point, the difference in experimentally obtained D  and E parameters from those 

calculated through the g -tensor will reflect the true magnetic dipolar contribution [162].
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1.2.3 Coherence Effects

1.2.3.1 Spin-Rabi Oscillations

One of the hallmarks of coherence in a two-level system is the observation of a Rabi 

oscillation. First described by 1.1. Rabi in 1937 for nuclear magnetic resonance (NMR) 

[169], this is a coherent cycling of a system between two of its nondegenerate eigen

states, ^ 1 and ^ 2. In principle, any two-level system can support such resonant driving, 

and so this action has been confirmed for many physical systems (e.g. NMR [170], 

ESR [133], cavity quantum  electrodynamics [171], etc.).

For both NMR and ESR, the two-level system is generated by the Zeeman splitting of 

nuclear and electronic spin states, respectively, where y 1 and ^ 2 are stationary states of 

the system in the absence of perturbation. Once a driving field resonant with the two 

separated states is turned on, it acts as a perturbing Hamiltonian, H '  = - ^ B 1 cos(wt), 

resulting in H  = H Z + H ' .  The static Zeeman splitting magnetic field, B0, gives rise to 

Larmor precession of frequency w0 = S • B0, whereas an analogous precession also 

occurs for the perturbing field, w 1 = S • B1. Now, even though the system can be 

started in state ^ 1, over time, it will evolve so that there is a finite probability of finding 

the system in state ^ 2. See Section 4.6 for a discussion of this process in terms of state 

polarization on the Bloch sphere. In general, the tim e-dependence of this probability 

goes as P2(t) «  sin2 (Qr), where Q is the Rabi frequency, which is itself proportional to 

the off-diagonal elements of the perturbing Hamiltonian, Q «  ( y 11 H ' \ty2). By adopt

ing a rotating frame [172] for the case at hand, the perturbing Hamiltonian becomes 

a constant, H ' = - ^ B 1, whose off-diagonal elem ent computes to ( ^ 1\ H ' \ y 2) = h w 1. 

This results in a Rabi frequency of Q = yjw2x + (w -  w0)2, including the detuning term 

(w -  W0 ) [173].

W hat is interesting here is that the Rabi oscillation frequency depends on the type of 

perturbation involved. Although the system m ust be resonantly driven between states 

^ 1 and ^ 2, the presence of additional perturbations will add terms to the off-diagonal 

matrix elements shown above, which then directly affects the measured Rabi frequency. 

At this point, the observation of the Rabi frequency constitutes a spectroscopic m ethod 

in its own right since it directly probes the perturbing Hamiltonian. Much work has
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recently been done in order to characterize this type of spectroscopy, describing the 

expected dependencies of Rabi frequency com ponents from exchange [174, 175] and 

dipolar [176, 177] interactions, spin multiplicity [178], as well as simultaneously reso

nant pair partners [179, 180]. Examples of the utility of this type of spectroscopy can be 

found in Chapters 3 and 4. A more in-depth discussion concerning the practical use of 

this m ethod is also given in Sections 3.6.4 and 3.6.5.

1.2.3.2 Electron Spin Echo Envelope M odulation (ESEEM)

In order to gain the coherence lifetime, T2, of a particular paramagnetic center, sim 

ple lineshape analysis can be sufficient if minimal environmental broadening is present 

[153, 181]. Very few resonant centers m eet this requirement, though, and so pulsed 

microwave techniques have been designed for unambiguous access to this parameter.

Of particular use is the Hahn echo pulse sequence [182], which probes only the phase 

coherence of a state while minimizing any artificial dephasing mechanisms (e.g. applied 

field inhomogeneities). Operation of the optically detected Hahn echo sequence in 

terms of pulse timing and related state polarizations on the Bloch sphere is discussed 

in Sections 3.6.5 and 4.7.

In short, this pulse scheme begins with an initially polarized state4, say, in the sin

glet basis, \S in g l e t ). The system is then placed into a superposition of states, ¥ ( t)  = 

a(t) \ S in g le t )  + b (t) \ T r i p l e t ), with a §-pulse. Subsequent static dephasing is allowed 

to occur over some time, t , according to the distribution of Larmor precession frequen

cies present. A ̂ -pulse is then applied, effectively negating the static dephasing through 

time-reversal of the distributed Larmor precession. Finally, the remaining polarization,

| a (2t) |2, is monitored by projecting the state onto the observable, PL «  \ ( S in g le t  | ¥  (2t) ) \2. 

By monitoring this state polarization as a function of delay time in the pulse sequence, 

the characteristic time-scale for coherence, T2, can be probed.

This simple monitoring of state decay can sometimes be complicated by the exis

tence of perturbing local magnetic fields, from either nearby nuclear, I, or electronic,

4In general, “state polarization” refers to the magnitude of content for a particular eigenstate of the 
system. In ESR, this corresponds to the actual polarization of magnetic moments, whereas in ODMR, it is 
the amount of singlet or triplet content within the system.
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S, magnetic moments. The electron-nuclear dipole coupling is the most often encoun

tered case (see Figure 1.10). Here, the electronic m om ent precesses m uch more quickly 

than the nuclear m om ent (pe >> ixn), and so changes made to its spin orientation with 

the microwave pulse occur on a nonadiabatic time-scale for the nuclear moment. The 

nuclear m om ent then precesses around its new local field, determ ined by the new ori

entation of the m uch larger electronic moment. This nuclear precession acts as a small 

perturbation on the electronic moment, causing it to be periodically out of phase with 

the initially established polarization during the pulse sequence. In the end, the envelope 

of decay for state polarization, as m easured by spin echo amplitude, is observed to 

have some periodic “loss” in coherence. The effect is then known as electron spin echo 

envelope modulation, or ESEEM.

Since the frequency of this periodic dephasing is directly determ ined by the m ag

netic m om ent of the nucleus, measuring ESEEM in the Hahn echo decay of a system 

can be used as an environmental probe. In fact, ESEEM is regularly used as a spectro

scopic technique in this way, through traditional polarization [183-186], as well as opti

cal [159, 187, 188] and electrical [189] detection schemes. An excellent resource for the 

quantum  mechanical treatm ent of this effect under various environmental conditions 

can be found in Reference 190.

1.2.3.3 Decoherence in  Nanocrystals

Spin dynamics in semiconductor nanocrystals are normally quite different than for 

the same states within bulk versions of these materials. In bulk semiconductors, spin 

states normally have a very shortlifetim e (100 fs [191, 192] to a few nanoseconds [192]), 

due to the domination of spin-orbit coupling as a perturbation. In nanoscale systems, 

though, quantum  confinem ent leads to the discretization of energy bands, as discussed 

in Section 1.1.1. Since the separation of energy levels becomes comparatively large to 

the bulk case, spin-orbit interaction becomes weak as a perturbation (see Section 1.1.2.1). 

Room tem perature spin dynamics are still limited to short time-scales [65], though, 

due to phonon-m ediated spin flips. These spin decay mechanisms typically involve a 

2-phonon transition from one spin state to the other, m ediated by either real phonons
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b |+)
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ndipole

sA It>  X
B,

Figure 1.10. A classical model for electron-nuclear ESEEM. In magnetic dipole-dipole 
hyperfine coupling, an S = 2 electron interacts with a nuclear moment, I, a distance r
away. Since the local field generated by the electron (B[++)pole) is m uch larger than that

generated by the nucleus, the nuclear m om ent experiences an effective field, B̂ +), when 
the electron is in a spin-up state. Upon inducing a spin flip with an RF field, B1, the 
effective field experienced at the nucleus suddenly changes to B̂ _). The weak nuclear 
m om ent then begins to Larmor precess about the new field position. The precession of 
this small nuclear m om ent acts as a slow periodic perturbation to the electron moment. 
Since the Hahn echo decay experiment is designed to be sensitive to changes in state 
polarization, this periodic perturbation expresses itself as a m odulation in the decay of 
electronic state polarization.
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(Orbach process) or virtual phonons (Raman process) [193]. At low temperatures (T < 

10 K), phonon modes are largely frozen out, making 2-phonon processes unlikely. A 

so-called “direct” phonon process between spin states is also possible, but meeting the 

condition of energy matching with single phonons is not probable. Instead, the slowly 

fluctuating hyperfine interactions between band edge carriers and the surrounding nu

clear moments have been found to be the dominant dephasing mechanism for semi

conductor quantum dots [194]. This longer time-scale allows for spin coherence to 

routinely persist over a few nanoseconds for pristine nanocrystals of several material 

types [153, 195, 196].

A distinction must be made between the spin dynamics observed for band edge 

carrier states and of the trapped carrier states discussed in Chapters 3 and 4. Much 

of the literature concerning the coherence of electronic states in nanocrystals has used 

optical probes in their characterizations [195-197], limiting their studies to excitonic 

and band gap states. Carriers which occupy the electronic states of the nanocrystal 

are inherently delocalized across it, which then leads to the hyperfine mediated spin 

dephasing just described. For the highly localized states which are considered in this 

dissertation, though, such an interaction with many nuclear sites is absent. As expected, 

the coherence lifetime for these states is correspondingly increased, surpassing those 

which have been reported to date for this material system [153, 198]. Since this work 

is an early investigation into the nature of these types of carrier states, there presently 

exists no information on the relevant perturbations leading to spin dephasing and decay.
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CHAPTER 2

EXPERIMENTAL METHODS 

2.1 Experimental Considerations of pODMR
For the development of the pODMR studies outlined in Chapters 3 and 4, it is im

portant to fully understand the technical nature of the experiments performed. To this 

end, a detailed overview of several of the salient experimental issues is discussed in this 

section. First a walk-through of the technical setup is given, which outlines some of 

the more critical features of physically implementing these experiments. Also critical to 

any measurement is the knowledge of how a dynamic signal becomes digitized, which 

then determines how those data are later analyzed. A description of how the resonantly 

transient response in photoluminescence is captured and digitized is given, enabling a 

meaningful scaling of data that are acquired with the Bruker Elexsys E5801. Calibration 

of this spectrometer’s input analog-to-digital converter (ADC) is also crucial for scaling 

data correctly, and is also discussed. Finally, since the ODMR observable is a reso

nant change in photoluminescence intensity, it is imperative that the researcher have 

complete knowledge of the emitting species which are supported by the material under 

investigation. To this end, the need for spectral selection of the desired emission band is 

demonstrated with an example given of the confusion which can result from incomplete 

knowledge of a material’s minority emission channels.

2.1.1 Technical Implementation

The prospect of conducting an optical experiment under spin-resonant conditions 

inherently means that a marriage of two traditional types of optical probes must be 

performed: at one end, a traditional photoluminescence setup and at the other, a some

what conventional electron spin resonance setup. In order to operate these systems in

1 Bruker BioSpin Corp.; Billerica, MA, USA;X-band EPR spectrometer
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concert, some care must be taken to make one compatible with the other. Discussed 

here is how optical excitation was given access to the highly space-constrained envi

ronment of the spin-resonance chamber and how photoluminescence was collected, 

amplified, and coordinated with the timing of nanosecond-scale microwave pulses. This 

is schematically outlined in Figure 2.1.

The sample space of the ESR system primarily consists of a low-Q, dielectric Flex- 

Line resonator2, which supports, and then quickly dampens, the applied microwave 

field pulse. The cylindrical dimensions of the resonator are defined by a height of ap

proximately 7 cm and a radius of 3 cm. The resonant volume is much smaller and is 

defined instead by the distribution of homogeneous magnetic fields that are induced by 

the applied microwave field and concentrated at the center of the cylindrical volume. 

The field distribution can be considered negligible over a cylindrical volume roughly 

defined by an 8 mm height and a 3 mm radius. This smaller resonant volume sets 

the limit on sample geometry. Since the entire resonator is housed within a Helium-4 

flow cryostat3, stringent constraints on any options for optical access are imposed. The 

most practical access point is through a 7 mm port which is meant to carry a standard 

Bruker sample rod4. In the work presented here, the sample rod was customized by the 

author in order to act as a port for a fiber bundle. This fiber bundle is comprised of 

one excitation fiber and six collection fibers. In designing this fiber bundle, options for 

larger numerical aperture fibers5 were chosen in order to maximize photoluminescence 

collection efficiencies. Since the fibers are composed of a paramagnetically inert glass, 

inserting them directly into the FlexLine resonator does not alter the modal distribution 

of magnetic fields.

Samples are prepared by drop-casting a nanoparticle solution into a Teflon “bucket” 

(details of this process are outlined further in Section 2.4). This optically and paramag-

2Bruker BioSpin Corp.; Billerica, MA, USA;ER4118X-MD5 X-band resonator

3BrukerBioSpin Corp.; Billerica, MA, USA;ER4118CF 4He cryostat

4Bruker BioSpin Corp.; Billerica, MA, USA;E4118130 FlexLine Sample Rod

5Thorlabs, Inc.; Newton, NJ, USA;excitation fiber:BFH22-550;collection fibers: BFL22-365
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netically inert bucket is placed in the bottom of a standard 4 mm diameter quartz EPR 

tube6. A collar7 attached to the FlexLine resonator securely holds the quartz tube in 

place, while the Teflon bucket is designed with a diameter just large enough to allow the 

insertion of the fiber bundle tip. Sealing the sample rod such that it remains vacuum- 

hard under a differential pressure allows it to be operated within the 4He cryostat under 

cryogenic conditions.

Optical excitation is performed with a continuous wave (cw) Argon-ion laser8. A 

narrow-band spectral clean-up filter9 is used to isolate the desired laser line (normally 

458 nm for these studies). Laser power is measured with a photodiode10 and is con

trolled with a continuously-variable, neutral density filter11. The free-space laser is fed 

into the excitation fiber with a fiber coupler12, leading to optical excitation of the nano

crystals. Resultant optical emission is then collected by the remaining fibers in the 

bundle, which are output to the focal point of a collimating lens. The purpose of this col

limating lens is to preserve the collected light intensity while the beam passes through 

a series of optical filters. Several filters may be employed in order to isolate and mon

itor the spin-resonant response of a particular emission band. The first filter in this 

series is always an ultrasteep long-pass edge filter13, designed to eliminate any resid

ually collected laser emission. Subsequent filters are then used, as needed, to isolate 

the emission band of interest. Once appropriately filtered, the remaining photolumi

nescence is passed through a second collimating optic, which focuses the beam to a

6 Wilmad-LabGlass; Vineland, NJ, USA;part number: 707-SQ-250M

7Bruker BioSpin Corp.; Billerica, MA, USA;E4118140 Sample Holder Set

8 Coherent, Inc.; Santa Clara, CA, USA;Innova 90-4 Laser System, supplied by Laser Innovations, Santa 
Paula, CA, USA

9Semrock, Inc.; Rochester, NY, USA;459.9 nm MaxLine, part number:LL01-458-12.5

10 Coherent, Inc.; Santa Clara, CA, USA;FieldMaxII with diode sensitivity range of 400-1060 nm

11 Thorlabs, Inc.; Newton, NJ, USA;part number: NDC-50C-2M

12 Thorlabs, Inc.; Newton, NJ, USA;part number: F220SMA-A

13Semrock, Inc.; Rochester, NY, USA;458 nm RazorEdge filter, part number:LP02-458RU-25
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tight point. Placed at this focal point is a low-noise photodiode14, which converts the 

acquired photoluminescence intensity into an amplified voltage. This signal is then 

further amplified by a voltage amplifier15, which capacitively-couples the input so that 

only the transient response is amplified and output. This output is then fed directly 

into the internal digitizer of the Bruker E580 EPR spectrometer, which then parses the 

data to an external control computer for recording and display. Details on the digitizer 

unit and its ADC front-end are given in Section 2.1.3. The spectrometer system also 

controls the static magnetic field (B0 ) strength, issues commands for predefined mi

crowave pulse (B1) sequences, and coordinates these activities with the signal acquired 

by the digitizer. Desired pulse sequences are programmed by the user and are ultimately 

implemented by an external microwave bridge and amplified by a traveling-wave-tube 

(TWT) amplifier16 before being sent to the FlexLine resonator for resonant excitation of 

the nanocrystals.

2.1.2 Scaling of ESR Spectrometer Data

Under continuous-wave excitation of the nanocrystals, a steady-state photolumi

nescence power (P^i) is maintained. Under magnetic resonance of an optically ac

tive charge carrier spin, the large static photoluminescence intensity will be slightly 

modulated by the transient response of the system (Ppl) to give a total emitted power 

P p l = P0pL + PPL. This photoluminescence signal is focused to a Si-photodiode where 

it is converted to an analog voltage, as shown in Figure 2.2. The total gain response of 

the photodiode is defined by the product of transimpedance gain (APD) and spectral 

sensitivity (SENSPD) of the Si device, which means that power conversion is dependent 

on the emission spectrum being collected. Since the PL has both a steady-state and 

transient component, so will the voltage signal from the photodiode, VpD = vpoD + V^D. 

Or, in terms of the input and gain, VpD = APD • SENSPD {pol + P^L).

14FEMTO Messtechnik GmbH; Berlin, Germany; Si Photoreceiver, part number: LCA-S-400K-SI

15 Stanford Research Systems, Inc.; Sunnyvale, CA, USA; SR560 Low Noise Preamplifier

16Applied Systems Engineering, Inc.; Fort Worth, TX, USA;Model 117 1kWX-band amplifier
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G p d =  A pd S e n s PD G am p 1/2 (ADC)(N meas.)

Figure 2.2. Instrumental scaling factor for ESR spectrometer data. The general manner 
in which the measured change in PL intensity is converted to a voltage and then digitized 
is schematically shown. Signal acquisition of a transient event in photoluminescence is 
primarily accomplished with a low-noise photodiode, voltage amplifier, and the spec
trometer ADC input stage, each of which treat their input signal in a unique manner. 
Input and output impedances for each are also given.

Since the input stage of the amplifier has a very high impedance (100MQ), there is 

virtually no loss in signal amplitude before gain (GAMP ) is applied. However, there is 

50Q impedance matching between the amplifier output and the ADC input of the spec

trometer’s digitizing unit. This effectively acts as a voltage divider, cutting the signal’s 

voltage amplitude in half (hence the factor of 1 in Figure 2.2). The ADC itself is specified 

to be 8-bit (256 steps/V) and is a direct front-end to the digitizing unit with no additional 

signal processing in between. Calibration of the ADC is a very important and necessary 

step to correctly scale raw data and is covered in Section 2.1.3. Recent calibration shows 

that the ADC actually digitizes data on a slope of 220 steps/V.

In order to increase the signal-to-noise ratio of a measurement, extensive averaging 

is normally employed. Experimentally, two types of averaging are generally used. One 

successively sums acquired signals over the course of a large number of microwave 

shots; typically Nshots «  16000 with a repetition time of 100 -  1000^s between each shot. 

This is normally done while keeping all other parameters fixed (i.e. external B0 field, 

laser power, temperature, etc.). This fast repetition is intended to average away any 

short-term noise. Noise which exists over longer time scales is reduced by repeating 

the above Nshots after some longer wait time, accumulating many sets of equivalent 

data, Naccum.; this typically occurs after performing some parameter sweep, such as
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external magnetic field. The full set of similar measurements performed is then Nmeas. =

Nshots • Naccum..

The signal which is digitized by the Bruker spectrometer can be scaled in terms of 

the measurable parameter, PpcL,

RawData =
1 steps
— • 220 v  ' Nshots • Naccum.2 V ■ (Gamp) • (ApD • SENSpd) • [PpL).

Although it is technically possible to scale the data absolutely in terms of changes in 

PL power (i.e. nanowatts), this is experimentally difficult due to the spectral sensitivity, 

SENSPd , of the Si photodiode. It would then be necessary to project the acquired emis

sion spectrum against the spectral sensitivity curve of the diode in order to determine 

the actual value of SENSPd . Thus, while certainly possible, this process can be cumber

some and time consuming. A convenient alternative is to quote the observable in terms 

of a percent change in photoluminescence intensity (or power),

(PPL + PPL) -  P°PL% D iff  = Pl P0l------ Pl  • 100
P cPpl

= 2-100-
1V

220steps V o
vpd Gamp

RawData
Nshots • Niaccum.

Because SENSPd cancels from the relation, it is much more straightforward to simply 

measure vod from the photodiode while under nonresonant conditions than to mea

sure the emission spectrum and assess the approximate value of SENSPd .

2.1.3 Signal Input Calibration for the ESR Spectrometer

As mentioned above in Section 2.1.2, a knowledge of how the spectrometer’s internal 

ADC divides the input voltage into discrete digital steps is crucial to the correct scaling 

of the raw data it acquires. This is especially so for the studies described in Chapters 3 

and 4, where nonstandard spectrometer inputs were utilized. Since the Bruker E580 

spectrometer system being used here is a self-contained, purpose-built unit designed to 

perform standard ESR measurements, the internal operations of this machine are some

what opaque to the user. Here, a general calibration procedure will be outlined, ensuring 

that at least some of the internal workings of this spectrometer will be transparent for 

future users.

1 1
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According to the Bruker E580 User’s Manual, ESR signals are input into a quadrature 

detection stage, which mainly consists of an input preamp, power splitter, phase shifter, 

and signal mixers. Outputs from the two mixers are fed into additional amplifiers and 

sent out for digitization. An extremely important point is that the entire quadrature de

tection stage is bypassed during ODMR measurements. The outputs of the quadrature 

stage are routed to a digitizing unit with an ADC front-end. This is actually where the 

ODMR signal directly enters the spectrometer, which invalidates certain user input pa

rameters such as Video Gain and Bandwidth since the signal experiences no additional 

filtering or amplification.

Since the ODMR signal is patched directly into the ADC, it then becomes impor

tant to validate the calibration of this element. In consulting the limited schematics 

contained within the Bruker E580 User’s Manual, this ADC is quoted as having an 8-bit 

resolution with 256 steps/V over a range of ±0.5 V. The veracity of this statement can, 

and should, be checked by the user since the operation of this element directly affects 

how an external signal is digitally scaled. To do this requires applying a dc voltage to 

the ADC input, sweeping the voltage over several values within the ADC operating range 

while simultaneously monitoring the reading given by the spectrometer in the computer 

display. Within the spectrometer control software, a “dummy” experiment needs to be 

set up, consisting of a single acquisition (e.g. Nmeas. = Nshots • Naccum. = 1) in order 

to take this reading. After a voltage sweep has been made, a simple linear fit to the 

ADC output is plotted as a function of applied voltage, revealing the actual sampling 

and quantization process. An example of such a calibration can be seen in Figure 2.3, 

where the digitizer unit is actually found to operate with a dependence of 220 steps/V. 

The discrepancy of this with manufacturer specifications results in an error in measured 

% D iff  of -14.0625%. Most ADCs are internally calibrated through the use of a reference 

voltage, and any deviation in the value of this reference voltage would cause a drift in the 

ADC’s calibration. This may be the cause for the measured deviation from manufacturer 

specifications.
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Figure 2.3. Calibration results for signal input ADC of ESR spectrometer. The spec
trometer input ADC is specified by the manufacturer as being an 8-bit digitizer giving 
256 steps/V over a range of ±0.5 V Since the number of divisions per volt input is an 
important factor for correctly scaling data obtained with this machine, it is necessary to 
verify the operation of this unit. Shown are the results of such a verifying measurement, 
demonstrating that deviation from specified operational values can be significant.

In any systematic investigation of a physical system, it is absolutely necessary to first 

understand what competing dependencies exist, if any, that may contribute to the ob

servable of that experiment [1]. For the case of ODMR, this primarily means performing 

some form of optical spectroscopy on the material of interest in order to develop an 

understanding of the emission channels involved. This is important for ODMR since op

tical emission intensity is the experimental observable and, if there are multiple emitting 

species or sites within a material, then there may be multiple classes of optically active 

carriers contributing to the observable. Common dual-emission channels are usually 

excitonic band edge emission coexisting with donor-acceptor emission [2], or prompt 

fluorescence followed by weakly allowed phosphorescence emission [3]. Discussed at 

length in Chapters 3 and 4 are ODMR studies conducted on materials with competing 

emission channels (primarily band edge versus donor-acceptor emission), where each 

channel emits at a separate energy level. The energetically separated emission allows 

the investigator to spectrally select the photoluminescence band of interest as a probe of

2.1.4 Spectral Selection in Practice
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only those paramagnetic states that play a role in that channel’s emission process. Such 

selection can be easily established by placing optical isolation filters in the pathway of 

photoluminescence collection optics, allowing only the emission channel of interest to 

illuminate the photodiode (see Figure 2.1 for placement of selection filters).

It is often the case, though, that materials with multiple emitting states have a sin

gle channel with very large oscillator strength and therefore dominates any simple cw 

spectrum that is acquired. A spectrometer outfitted with a camera possessing a very 

large dynamic range and the ability to take time-gated spectra is of great use in such a 

case; such a system proved invaluable to the studies outlined in Chapters 3 and 4. The 

operations of this system are discussed further in Section 2.2.

As an example of the importance of spectral selection in ODMR, Figure 2.4 demon

strates the confusion which can arise from neglecting to account for the multiple emit

ting states found in some materials. The material that is shown here is the CdSe/CdS 

nanotetrapod, which is the subject of Chapter 3 and is described further in Section 2.3. 

The CdS arms of these nanocrystals have a very large optical absorption cross-section 

as well as a larger band gap (by ~0.7 eV), as compared to the much smaller CdSe core. 

This means that nearly all optical excitation takes place in the CdS arms, but the exci

tation energy is efficiently transferred to the core where emission takes place. Panel (a) 

of Figure 2.4 shows the emission spectrum of the tetrapods, where the only emission 

channel visible on a linear intensity scale is that at 2.0 eV (i.e. the CdSe core). For the 

ODMR measurements shown in panel (b), a 458 nm ultrasteep long-pass edge filter was 

used to collect emission from the region marked with green in (a). Simply checking the 

dependence of resonance lineshape on laser excitation power reveals a curious “morph

ing” progression of the ODMR lineshape; at low laser power, the spectrum is primarily 

dominated by three PL enhancement resonances, while at higher excitation densities, 

the lineshape becomes quite complicated, with obvious photoluminescence quenching 

features. Such a change to the lineshape is not expected to occur for an ensemble system 

which simply experiences an increase in the population of paramagnetic centers. This 

somewhat odd behavior firmly indicates that there are multiple spin-resonant species 

contributing to the overall emission from these nanocrystals, which then leads to a con-
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Figure 2.4. ODMR signal convolution from multiple emission channels and the need for 
spectral selection. Panel (a) shows the emission spectrum of CdSe/CdS nanotetrapods. 
The CdS arms of these nanocrystals have a very large optical absorption cross-section 
as compared to the CdSe core, meaning that nearly all optical excitation takes place 
there. Excitation energy is transferred to the CdSe core, where emission takes place 
at roughly 2.0 eV. In assuming that the core emission is the only emission channel of 
these nanocrystals, performing an ODMR experiment presents some challenges due 
to a partial ignorance of the system under study. Panel (b) demonstrates this in the 
“morphing” of resonance structure with respect to a change in applied laser power. The 
same optical spectrum of (a) is shown again on a log-intensity scale in (c), revealing 
nearly insignificant emission from the CdS arms [4] and deep-level defects [5]. Choosing 
optical isolation filters to select each of these bands (colored regions) and repeating the 
ODMR measurement allows one to probe only the spin-resonant carriers involved with 
each emitting species (d-f).
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volution of resonance lineshapes. The presence of multiple emission centers in the 

tetrapods is confirmed in panel (c), where the same spectrum given in (a) is instead 

shown on a logarithmic PL intensity scale. Three emission bands are identified: residual 

CdS arm emission [4]; the dominant CdSe core emission; and the onset of deep-level 

defect emission. Each of these photoluminescence bands can be isolated with a proper 

filter set (indicated by color bands in (c)), allowing ODMR to be performed for each 

segregated emission channel (panels (d-f)). The resonances observed by the arm and 

core emission are qualitatively very similar, which is the general topic of Chapter 3. 

Both of these resonances are distinct, however, from the resonance obtained from the 

deep-level defect emission, which is the topic of Chapter 4. The spectral lineshape 

dependence on excitation power seen in (b) represents a convolution of these three 

spin-resonance features (d-f), with each emission channel increasing its paramagnetic 

population density at different rates in response to changes in optical density. Experi

mentally confirmed, but not shown here, is that the resonance spectrum of each of these 

emission bands (d-f) remains unchanged, regardless of the applied excitation power.

2.2 Time-Resolved Optical Spectroscopy
Imperative to spectrally selected ODMR is a direct knowledge of the material’s op

tical emission characteristics. As was shown in Section 2.1.4, unambiguous resonance 

structure is extremely difficult to acquire when the observable contains multiple spin- 

resonant emitting species. By employing some form of optical spectroscopy, a clear 

understanding of the emitting species can be gained, enabling the use of spectral filters 

designed to isolate the intended emission channel.

For the work discussed in Chapters 3 and 4, an Andor SR-303i17 spectrometer with 

an attached time-gated, intensified charge-coupled device (Andor iStar DH720 ICCD18) 

was used. This experimental setup is fully described in the Ph.D. thesis of Su Liu [6]. 

The use of this instrument made available a great deal of knowledge about the energetic

11 Andor Technology PLC; Belfast, Ireland;Imaging spectrometer with UV-Vis mirror and 150 l/m m  
(1.57 nm resolution) ruled grating

18 Andor Technology PLC; Belfast, Ireland;with 18 mm generation 3 intensifier tube
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nature of the nanocrystals being studied. The dynamic range of the ICCD camera is well 

over eight orders in magnitude, allowing for the detection of extremely weakly emitting 

states. Since the ODMR observable is a differential change in photoluminescence in

tensity, usually from 0.001-1.0 percent of total PL yield, even the most subtle emission 

process can have a dramatic effect on the measurement. By obtaining high-quality 

optical spectra, complications arising from such weak emitters can be avoided.

The requirements for an optically active carrier to become observable in a pODMR 

experiment are two-fold: first is that the carrier experience a spin-lifetime at least on the 

order of T1 «  10 ns; secondly, the carrier lifetime must also be on the order of, or exceed, 

10 ns. The first condition must be checked under spin-resonance conditions, while 

the second can be investigated with the time-gated ICCD spectrometer just described. 

The gating operation for this ICCD extends from 2 ns to 2 s, with subnanosecond step 

resolution. The timing of this camera is managed by an internal digital delay generator 

which is triggered by an external pulsed laser (355 nm)19 operating at variable frequency 

(single shot to 2 kHz). This laser is also used as a photoluminescence excitation source 

for the material under investigation. In this way, optical lifetimes and decay spectra can 

be obtained. An example of this is discussed further in Section 3.6.2.

2.3 Nanocrystal Materials
The studies discussed in Chapters 3 and 4 revolve around the optically active elec

tronic states of two types of nanocrystals, namely, the CdS nanorods and the CdSe/CdS 

tetrapods. In order to provide some perspective on these studies, some of the material 

attributes of these nanocrystals will be discussed here. A special note is made that these 

materials were fully synthesized and graciously made available by Dmitri V. Talapin of 

the University of Chicago and his graduate student, Jing Huang.

As their common moniker implies, colloidal nanocrystals are synthesized [7] via pre

cipitation from chemical precursor materials which are held in colloidal suspension 

within an acceptable solvent. Generally, a stoichiometric amount of precursor materials

19 CryLas GmbH; Berlin, Germany; Diode pumped passively Q-switched solid state laser, model FTSS 
355-50



59

(typically Cd- and S-bearing complexes, rather than bare elements) is combined with 

organic surfactants in a temperature-controlled solvent bath. As the temperature is 

raised, the precursor compounds dissociate, allowing nucleation centers to form. By 

controlling the rate kinetics of crystalline growth (i.e. through bath temperature or sur

factant concentration) as well as the growth time, precise control over nanocrystal size, 

crystalline phase, and geometry has been demonstrated [8, 9]. For instance, the CdS 

nanorod ensemble has a highly homogeneous size distribution, each having dimensions 

of ~ 6  nm x 30 nm, and a well-defined crystalline phase (wurtzite).

These two types of nanocrystal (rods and tetrapods) have related material proper

ties since the tetrapod form is essentially composed of four CdS nanorods (~6 nm x 

30 nm) attached to a small (4 nm) CdSe core in a tetrahedral geometry. Four facets 

of zincblend CdSe serve as nucleation points of wurtzite-CdS arm growth, where the 

lattice mismatch between materials is ~3.8% [9]. The interface of these two materials 

yields a quasi-type II heterostructure, where the conduction bands nearly align and the 

CdSe valence band is lower by roughly 0.7 eV [10, 11]. Important here is that the much 

larger extent of CdS material, as compared to the CdSe core, gives the tetrapod arms 

a correspondingly larger optical absorption cross-section for photon energies above the 

CdS band gap. Nearly all optical excitation takes place in the arms, yet the core possesses 

the smaller band gap, so energy is efficiently transferred to the CdSe core [12-14] within 

~ 2  ps [15]. The action of this system represents an inorganic analogue to the photosyn

thetic light-harvesting complexes normally encountered in organic plant life [16].

The action of this light-harvesting effect can be observed in the tetrapod structures 

by comparing the optical spectra of the CdS rods to that of the tetrapod heterostruc

ture. The nanorod absorption spectrum is shown in Figure 2.5 (violet curve), which has 

an onset at 2.6 eV at room temperature. Optical excitation of the nanorods results in 

band edge emission (blue curve) with a small Stokes shift. Nearly imperceptible on this 

scale is the broad deep-level chemical defect emission inherent to these nanorods [5], 

extending down in energy from ~2.35 eV. Alternatively, optical excitation of the tetrapod 

nanocrystals above the CdS band gap eventuates in emission at a lower energy (orange 

curve). The difference between these two emission energies equals the magnitude of
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Figure 2.5. Optical spectra characterizing the CdS nanorods and CdSe/CdS tetrapod 
band gaps. The tetrapod nanocrystals are composed of four CdS arms (approximately 
6 nm x 30 nm) grown from a 4 nm diameter CdSe core. Optical excitation primarily 
takes place in the arms, due to the fact that the arms have a much larger absorption 
cross-section than the smaller cores [9]. Even though the CdS nanorods are practically 
the same dimension as a single tetrapod arm, the two sets of nanocrystals have widely 
separated emission energies; the nanorods emit just below the onset of CdS nanorod 
absorption, whereas the tetrapods absorb in their CdS arms, but emit at a nearly 0.7 eV 
lower energy due to the valence band offset [10, 11] of the CdSe core. An additional 
nanorod emission channel is also weakly visible as a broad band extending down in 
energy from ~2.35 eV. This represents deep-level chemical defect emission [5]. A trans
mission electron micrograph (TEM) of each nanoparticle species confirms the high 
quality of synthesis. TEM images and CdS nanorod absorption and emission spectra 
are kindly provided by Jing Huang.
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valence band offset between the CdS and CdSe nanomaterials [10, 11]. The primary 

topic of Chapter 3 is how the control of spin-states existing in the tetrapod arms can 

be utilized to exert some measure of coherent control over the general light-harvesting 

process for this form of nanocrystal.

2.4 Sample Preparation
For the studies that are discussed in Chapters 3 and 4, two general types of samples 

were prepared: one for optical spectroscopy and one for spin-resonance spectroscopy. 

All samples ultimately derived from nanocrystal mother solutions, which were suspen

sions in toluene (concentrations unknown) provided by Jing Huang. These were initially 

drawn from to create diluted daughter solutions in order to preserve the purity of the 

mother solution. All daughter solutions were diluted by adding 10 mg/mL polystyrene20 

(also dissolved in toluene) and permanently stored in an inert atmosphere (N2) glovebox 

system21. The purpose of blending the nanocrystals with polystyrene is to help ensure 

that particle-particle segregation is achieved once the solvent is removed, as well as 

to lock the particle ensemble in a rigid matrix. This matrix material is ideally suited 

for these tasks since it is both optically and paramagnetically inert and is also solution 

processable.

For optical studies, this solution is normally drop-cast onto a standard glass micro

scope coverslip22, which is used as a substrate, and then placed on a 50 °C hot plate 

for 10 minutes to evaporate any remaining solvent. The resultant film is approximately

1 ixm thick. These substrates are cleaned to a high degree before usage by submit

ting them to a sequence of 10 minute ultrasonic baths in acetone, isopropanol, ultra- 

pure water, and a second, final bath in ultra-pure water. Ultimately, the substrates are 

mounted to a vertical cold-finger cryostat23 using a thermally conductive silver paste.

20 Sigma-Aldrich; USA;polystyrene, purity > 99.99%

21M. Braun, Inc.; Stratham, NJ, USA;custom configuration

22 Carolina Biological Supply; Burlington, NC, USA; 1 cm square, 0.2 mm thick

23R.G. Hansen & Associates; Santa Barbara, CA, USA; closed-cycle He cryostat model: DE-202
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The small thickness of the coverslips (0.2 mm) also aids in efficient heat transport from 

the surface containing the nanoparticles. In order to protect against the accidental 

collection of auto-fluorescence from the silver paste adhesive, a roughly 100 nm thick 

aluminum mirror is deposited on the back of the coverslip by thermal evaporation be

fore starting the cleaning procedure. At this point, time-resolved optical spectroscopy 

can be performed on the nanocrystal ensemble, as outlined in Section 2.2.

Spin resonance studies require a different sample geometry due to the size restric

tions imposed by the microwave resonator. Here, a mounting scheme compatible with 

the fiber optics used for optical excitation and collection must be employed, while also 

maintaining a paramagnetically inert environment. In this case, a small Teflon “bucket” 

was fabricated, which contains the nanocrystal sample and is also able to accept the 

fiber bundle tip (see Figure 2.1 for a schematic view of this description). Teflon material 

is chosen since it is both optically and paramagnetically inert, but is also stable against 

cryogenic cycling. Fabrication is carried out from a small-diameter Teflon rod which is 

mechanically trimmed with a lathe to the proper dimensions (approximately a 4 mm 

height and a 3 mm diameter). As in the optical samples, the nanocrystal solution is 

drop-cast into the Teflon bucket and annealed at 50 °C for 10 minutes to evaporate any 

residual solvent, resulting in a ~  1 ixm thick polystyrene block. The sample is then loaded 

into the bottom of a standard EPR quartz tube, which also accepts the fiber bundle. The 

standard sample rods for the Bruker spectrometer are designed to accommodate EPR 

quartz tubes of this type, facilitating sample mounting with this scheme. With the ap

paratus and sample prepared, the spin resonance experiments described in Chapters 3 

and 4 can proceed.
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CHAPTER 3

SPIN-DEPENDENT EXCITON QUENCHING 

AND INTRINSIC SPIN COHERENCE 

IN CDSE/CDS NANOCRYSTALS 

3.1 Chapter Synopsis
Large surface-to-volume ratios of semiconductor nanocrystals cause susceptibility 

to charge trapping, which can modify luminescence yields and induce single-particle 

blinking. Optical spectroscopies cannot differentiate between bulk and surface traps 

in contrast to spin-resonance techniques, which in principle avail chemical informa

tion on such trap sites. Magnetic resonance detection via spin-controlled photolumi

nescence enables the direct observation of interactions between emissive excitons and 

trapped charges. This approach allows the discrimination of two functionally differ

ent trap states in CdSe/CdS nanocrystals underlying the fluorescence quenching and 

thus blinking mechanisms: a spin-dependent Auger process in charged particles; and 

a charge-separated state pair process, which leaves the particle neutral. The paramag

netic trap centers offer control of energy transfer from the wide-gap CdS to the narrow- 

gap CdSe, i.e. light harvesting within the heterostructure. Coherent spin motion within 

the trap states of the CdS arms of nanocrystal tetrapods is reflected by spatially remote 

luminescence from CdSe cores with surprisingly long coherence times of >300 ns at 

3.5 K.

3.2 Introduction
Substantial control over the chemistry of semiconductor nanocrystals has been demon

strated in recent years while pursuing novel optoelectronic device schemes [1-3]. Short

comings in the performance of these materials are routinely attributed to ill-defined 

“trap” states competing with the quantum-confined primary exciton [4]. While frequently
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implicated in explaining device inefficiencies [2], photoluminescence (PL) blinking [5

9], and delayed PL dynamics [4,10] little is known about the underlying chemical nature 

of these deleterious states. Despite the wealth of structural and electronic informa

tion accessible in optical spectroscopy, the spin degree of freedom has received only 

marginal consideration as a complementary probe of semiconductor nanocrystals. Ap

proaches pursued previously include isolation of paramagnetic centers in doped di

lute magnetic semiconductor nanoparticles [11, 12]; resolving the exciton fine structure 

by fluorescence spectral line narrowing [13], time-resolved Faraday rotation [12, 14] or 

photon-echo techniques [15]; and continuous-wave optically detected magnetic reso

nance (ODMR), where the fluorescence is modulated under spin-resonant excitation 

in a magnetic field [16-19]. The latter requires stable paramagnetic centers, where the 

carrier’s spin and energy are maintained on long timescales compared to the oscillation 

period of the resonantly driven spin manifold, i.e. for tens of nanoseconds under ex

citation in the 10 GHz (~0.3 T) range. The persistence of spin states in bulk materials 

comprising heavy atoms such as cadmium is largely determined by mixing due to spin- 

orbit coupling.

As dimensions shrink to quantum-confined regimes, spin-orbit-driven spin-mixing 

mechanisms can be weakened by the discretization and separation of states, giving way 

to the more subtle Fermi-contact hyperfine mode of spin mixing [20]. Although spin 

stability can be reinforced through quantum confinement, direct band edge excitons 

in nanocrystals typically decay within a few nanoseconds, making them unsuitable for 

spin-resonant manipulation. In fact, spin mixing amongst the fine-structure levels [14, 

21] of excitonic states has been shown to occur within as little as a few hundred fem

toseconds by means of photon-echo spectroscopy [15]. However, electronic charge- 

separated or “shelved” states also exist, where the excitonic constituents -  either elec

tron or hole, or both -  are stored within a trap. The carriers in this case are not neces

sarily lost to nonradiative relaxation, but can feed back into the exciton state at a later 

time. A direct visualization of this phenomenon is given by the ability to store excitons 

in nanoparticles under an electric field [10, 22] in analogy to excitonic memory effects in 

coupled quantum wells [23]. These charge-separated states can repopulate the exciton,
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since luminescence returns in a burst following field removal [10, 22]. While qualita

tive information on these shelving states (which are distinct from chemical deep traps 

with their characteristic red-shifted emission with respect to the exciton) continues to 

feed the proliferation of microscopic models of quantum dot blinking [4-9, 24, 25], a 

more quantitative metrology is required to determine the nature and location of trapped 

charges. Such an approach is given by the highly sensitive method of pulsed ODMR 

spectroscopy, which, in principle, is capable of chemically fingerprinting even single 

carrier spins.

We focus on the spin dynamics in CdSe/CdS nanocrystal tetrapods since absorption 

and emission can be well separated spatially and energetically: at 3.1 eV (400 nm), the 

absorption cross-section of the CdS arms is more than 300 times greater than that of 

the CdSe core [1]. Emission from CdSe dominates due to the lower band gap, mak

ing the structures excellent light-harvesting systems [1, 26]. Figure 3.1 illustrates the 

underlying scheme. Photons are absorbed in the arm, leading to bright CdS excitons. 

The conduction bands of CdS and CdSe are approximately aligned, whereas a step of 

~0.7 eV exists between the valence bands. We note that significant heterogeneity in the 

precise energetics of the heterostructure arises between single particles [26, 27]. The 

direct transfer of CdS excitons to CdSe is not suspected to be spin dependent since 

CdSe [21] and CdS [28] ground-state exciton fine-structure should be the same for the 

size of nanocrystals used here. Further, energy transfer proceeds so rapidly as to inhibit 

spin manipulation. However, trap states for CdS excitons also exist, the influence of 

which is clearly seen in delayed PL where shelved excitons feed back into band edge 

states at times much longer than the exciton lifetime (discussed further in Section 3.6.2). 

We therefore manipulate the spin state of charge pairs shelved within the CdS, pro

vided these maintain their spin identity while trapped. We do not directly manipulate 

those spins corresponding to the band edge exciton fine-structure. Spin resonance can 

then induce a conversion of mutual spin orientation for trapped carrier (electron-hole) 

pairs, converting them from “bright” to “dark” permutation symmetry. Once detrap

ping occurs, these weakly (exchange and magnetic dipole-) coupled spin pairs again 

become strongly coupled band edge exciton states where the mutual spin identity of
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Figure 3.1. A schematic of spin-dependent light harvesting in CdSe/CdS tetrapods with 
experimental setup. (a) Excitons are generated in the CdS arms by light absorption. A 
small fraction of these excitons becomes trapped as charge-separated states, which can 
re-emit an exciton to the CdS band edge. The lifetime of the trapped state is sufficient 
to enable spin manipulation via electron spin resonance (ESR), switching the trapped 
carrier pair between “bright” and “dark” mutual spin configurations. Relaxation of the 
exciton to the CdSe core gives rise to strongly red-shifted emission. The transmission 
electron micrograph inset illustrates the high quality of the structures used. (b) Experi
mental setup and a representative differential PL transient as a consequence of resonant 
spin transition of an optically active carrier.
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the trapped carriers largely predetermines which excitonic fine-structure level becomes 

populated. Since the trap energies we concern ourselves with are, or are nearly, iso- 

energetic with the band gap, spin-scattering while moving in and out of trap-states is 

weak. This process of cycling carriers from band edge excitons to traps, changing trap 

state spin configuration, and then moving the carriers back to excitonic states is what 

generally allows spin-dependent PL in our structures: dark shelved carriers determine 

the population ratio for dark band edge excitons, which remain dark upon transfer to the 

CdSe core of the nanocrystal. It is important to note here that since PL is the observable 

in this scheme, at this time, a direct discrimination cannot be made between scenarios 

involving PL quenching due to an increase in trapping lifetime or quenching due to 

a direct transfer into a dark exciton [14, 21] state. In either case, the bright exciton 

population is diminished.

3.3 Spectrally Selected, Optically Detected 
Magnetic Resonance

Figure 3.1(b) summarizes the experimental approach (full details are provided in 

Section 3.6.1). A sample of tetrapods is illuminated by a continuous-wave laser and a 

homogeneous magnetic field splits the Zeeman sublevels. Transitions between these 

levels are induced coherently during the application of microwaves and, for optically 

active charge carriers, this process is witnessed as a transient perturbation in PL inten

sity with respect to the steady-state. A typical luminescence transient is illustrated in 

the figure: the microwave pulse should lead to luminescence quenching since optical 

excitation initially populates bright exciton states [21], but coherent spin mixing of inter

mediately shelved carriers leads to an overall increase of dark state exciton populations. 

After removal of the microwave field, the PL intensity returns slowly as shelved “dark” 

states undergo spin-lattice relaxation to form “bright” configurations which feed back 

into bright band edge excitons. This longer timescale process can result in an eventual 

enhancement over the steady-state background as long as the intersystem crossing rate 

is low relative to the rate of initial PL quenching [29]. The resonances of the composite 

CdSe/CdS material are surveyed in Figure 3.2. In order to fully identify the material 

and spectral origin of observed resonant species, we compare separately CdSe quan-
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Figure 3.2. Spectrally selected, spin-dependent transitions in semiconductor nano
crystals at 3.5 K under X-band (9.8 GHz) excitation. (a) Emission spectrum of bare CdSe 
nanocrystal quantum dots (tetrapod cores) and associated near-featureless transient 
ODMR spectrum (b) taken as a function of emission intensity (filter region marked in 
red) in dependence of magnetic field following a microwave pulse. (c) Emission spec
trum of CdS nanorods. (d) Differential PL (enhancement) of CdS nanorod deep-trap 
level defect emission (marked red in panel (c)). (e) Differential PL (quenching) of the 
CdS band edge exciton emission (band labeled blue in panel (c)). (f) PL spectrum of 
CdSe/CdS nanocrystal tetrapods with associated transient ODMR spectrum detected in 
the CdSe emission (g), revealing the CdS spin species. The colored bars in panels (a,c,f) 
indicate the spectral region of the transmission filters used. The laser excitation energy 
is chosen to be just above the CdS nanorod band gap (~2.7 eV).
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tum dots, CdS nanorods, and the full composite CdSe/CdS tetrapod heterostructures. 

The CdSe core emission spectrum is shown in Figure 3.2(a). The corresponding ODMR 

spectrum (panel (b)), where the differential PL is plotted as a function of magnetic field 

and time after the microwave pulse, shows only weak PL enhancement and no quench

ing, exhibiting broad inhomogeneity. We tuned the magnetic field over 1 T and found 

continuous PL enhancement over a range of 500 mT. The broad resonance is attributed 

to deep (below 2.1 eV) red-emitting highly spin-orbit coupled chemical defects of CdSe, 

and not to the band edge exciton [16,17].

CdS nanorods are also known to emit at two energies; at ~2.667 eV (465 nm) due 

to the quantum-confined band edge exciton, and in a broad spectrum around 2.066 eV 

(600 nm) due to a deep-level chemical defect associated with a surface sulfur vacancy. 

The features are seen in the emission spectrum in panel (c). The ODMR transient map

ping of the defect emission (selected by an emission filter) is illustrated in panel (d). A 

resonance is identified at 352 mT, corresponding to enhancement of defect PL, which 

decays over ~50 /is. In contrast, detection in the narrow exciton band (emission filter 

region marked blue in panel (c)) reveals distinct behavior (panel (e)): two resonances 

dominate, at 345 mT and 374 mT, corresponding to PL quenching under resonance. 

After ~30 is ,  PL enhancement occurs. As discussed above, this transient interplay of PL 

quenching and enhancement is as expected for band edge trap states experiencing slow 

intersystem crossing, and intermixing with exciton states. In the following, we focus only 

on resonances associated with the exciton emission channel rather than luminescence 

of the defect, since the former likely relate to traps responsible for single-particle blink

ing [7-9]. As outlined below (and further in Sections 3.6.3 and 3.6.4), the two band edge 

resonances arise due to a pair of weakly coupled spin-2 species, i.e. electron and hole. 

In contrast to the bare cores (panels (a,b)), the same CdSe emission spectrum measured 

from the tetrapods (panel (f)) shows ODMR characteristics that are dominated by the 

CdS band edge trap states (panel (g)). Here, spin-dependent transitions of the CdS 

are imparted on the core emission, enabling remote readout of CdS arm spin states. 

Such ODMR signals were only observed at low temperatures, their amplitude increasing 

steadily from 50 K down to 3.5 K.
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To clarify the origin of spin-dependent transitions in the CdS exciton emission, we 

inspect the resonance dynamics. The nanorod ODMR spectrum in Figure 3.3(a), recorded

3.2 /is after a microwave pulse of 800 ns duration (i.e. a vertical slice of Figure 3.2(e)), 

is accurately described by the sum of three Gaussian resonances. One peak is located 

at a characteristic Lande g -factor of g  = 2.0060(2) (blue arrow), suggesting that this 

resonance is related to asemifree charge [g free- electron ~ 2.002319] with negligible spin- 

orbit coupling. The second distinct peak [black arrow, g  = 1.8486(2)] is substantially 

shifted from the free-electron value, indicating that the carrier is localized in a trap 

with significant spin-orbit coupling. The third Gaussian is environmentally broadened 

(i.e. by hyperfine fields and a variation in effective spin-orbit coupling) and centered at 

g  = 1.9594(2) (grey arrow). Panel (b) plots the absolute differential PL against time after 

resonant microwave excitation for the black and blue peaks, revealing that the perturbed 

spin-state populations follow identical time dynamics during free-spin evolution. The 

decay of the pronounced initial quenching signal approximately follows a single expo

nential, indicating a dominant single spin-dependent transition rate. This transient 

is succeeded by a long-term PL enhancement, again dropping exponentially between 

300-800 i s  after microwave excitation. This form of decay, involving two primary ex

ponential rates, is a clear signature of an electron-hole pair process [30]. Nearly iden

tical resonance line shapes and dynamics are extracted for the tetrapods (panels (c,d)), 

confirming that spin information existing in the CdS nanorods can indeed be accessed 

via luminescence from the attached CdSe core. As seen in the comparison between 

the two sets of nanoparticles, line shapes and resonance center positions are expected 

to be subject to minor variations since both size and geometry of the particles affect 

quantum confinement and, therefore, the relative g -factors [14, 21, 28]. On average, 

the differential PL is ten times weaker for the tetrapods than for the nanorods, since 

light-harvesting of the CdS excitons inhibits trapping on metastable sites as required for 

this spin-resonant manipulation.

The resonances around g  « 2.00 and g  « 1.84 not only follow the same decay to 

equilibrium after spin-mixing but the spectral integrals also match (see Section 3.6.3). 

As discussed further in Section 3.6.4, this agreement is expected for a correlated spin-
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Figure 3.3. Trapped charge correlation and remote readout of tetrapod arm states. 
Spectra at 3.2 ^s delay following an 800 ns microwave pulse detected in the band edge 
emission of CdS nanorods (a) and in the CdSe core emission of tetrapods (c). The spectra 
are accurately described by a superposition of three Gaussians. The temporal dynamics 
of the two dominant resonances (marked blue and black) are identical in (b) and (d), 
implying that the two spin-2 species are correlated. We assign these peaks to spin 
dynamics in a charge-separated state, with each charge carrier located on the surface 
of the nanocrystal. The charge at g ~ 2.00 represents a “semifree” carrier while the 
pair partner (g « 1.84) is situated on a site with greater spin-orbit interactions. The 
third broad Gaussian resonance follows different temporal dynamics and originates 
from an unrelated trapped species, located within the CdS where a large distribution 
in resonance frequencies exists. We tentatively assign the single broad resonance to 
a spin-dependent Auger-type process and the pair mechanism to the situation where 
both carriers are expelled from the bulk of the particle, generating surface charge which 
modulates fluorescence but leaves the particle neutral. Light harvesting in the tetrapods 
reduces the number of shelved excitons since carriers are rapidly removed from the CdS, 
leading to a tenfold reduction in signal strength.
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2 pair process; manipulation of either electron or hole spin has equal probability of 

modulating PL since the two charges couple by the same spin-dependent mechanism. 

An intriguing conclusion can be drawn from these observations: the band diagram of 

the tetrapods in Figure 3.1 suggests that the hole should immediately localize in the 

CdSe core, although this is obviously not the case [31]. If this were the case, we would 

not observe identical resonance spectra and dynamics in nanorods and tetrapods. In

stead, for the same spin-resonant manipulation of both electron and hole to occur in 

the tetrapods, both must be located within the CdS on the same nanoparticle and at 

the same time. The ODMR data therefore imply that trapping of both charge carriers 

can occur simultaneously at the band edge, a result that may be related to the recent 

spectroscopic identification of interfacial barriers at the CdSe/CdS interface [26]. With

out significant modifications to the measurement technique or access to exact chemical 

information of at least one site, we are unable to assign a particular charge to these trap 

states since spin-resonance techniques are inherently insensitive to the sign of a charge.

Given the lack of spin-orbit coupling (a shift from the free-electron g -value) and only 

limited environmental broadening, we propose that the g  «  2.00 peak originates from a 

“semifree” charge localized to the surface of the nanocrystal. The g  «  1.84 resonance 

is only slightly broader than the g  « 2.00 line, indicating that it is also associated with 

a localized surface site rather than the bulk, but is shifted due to spin-orbit coupling. 

We note that a resonance near g  «  2.00 has previously been reported [32] for photogen

erated holes in CdS [33], but this is also the expected g -value for charges localized to 

organic ligands [34] or matrix material [5] experiencing negligible spin-orbit coupling. 

This type of interaction with surface ligands is a distinct possibility as is evidenced by the 

lack of a phonon bottleneck in colloidal quantum dots, a phenomenon which has been 

shown to be mediated by carrier wavefunction overlap with organic ligands [35, 36]. At 

present, the information needed to precisely discriminate between these two chemical 

situations is not complete (see Section 3.6.7 for further discussion). The g  « 1.84 feature 

is distinct from that found in ODMR of bulk CdS [37] (g « 1.789), although g -factors can 

shift significantly due to quantum size effects and geometry [14, 21, 28].

The third feature, the broad g  «  1.95 peak marked grey in Figure 3.3, only shows
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quenching and no enhancement, and decays faster than the narrow resonances, demon

strating that it arises from a distinct spin-dependent process (see Section 3.6.3). This 

feature vanishes in the tetrapods for excitation below the CdS band gap (see Section 3.6.6 

for discussion). The broadening is likely induced by local strain or hyperfine fields, or 

by a superposition of multiple unresolved resonances. We propose that the resonance 

originates from a carrier trapped within the nanocrystal where a wide range of g -factors 

exists. This ODMR signal then likely arises due to spin-dependent Auger recombination

[30] between the localized carrier and the quantum-confined band edge exciton within 

the particle, a process known to quench optical recombination [5, 7-9].

3.4 Coherence Measurements and Novel Effects
Rapid spin dephasing would normally be anticipated for a bulk-like crystal, given 

the significant spin-orbit coupling of the g  « 1.84 resonance [15]. However, recording 

differential PL at each distinct resonance as a function of microwave pulse duration 

reveals Rabi flopping, as displayed in Figure 3.4, a direct manifestation of spin-phase 

coherence. In this example, spins precess so that the shelved carrier pairs propagate 

reversibly between bright and dark mutual spin configurations. Such Rabi oscillations 

were recently reported for Mn-doped CdSe nanocrystals by conventional absorptive 

magnetic resonance [11], but are unprecedented for direct detection via intrinsic op

tical transitions of the semiconductor. The frequency components contained within 

this coherent oscillation provide additional information on the nature of these states; 

specifically on carrier spin-multiplicity and the existence of exchange and/or dipolar 

coupling. From this analysis (a detailed treatment is given in Section 3.6.4), it is found 

that both the g  «  2.00 and g  «  1.84 resonances describe carriers which carry spin-1. The 

mutual exchange and dipolar coupling experienced within the trapped pair is negligible.

Although the decay of the Rabi oscillation can provide a lower bound on the coher

ence lifetime for each of these carriers, more sophisticated resonant-pulse sequences 

can be used to unambiguously measure this value. We quantify the CdS spin-phase 

lifetime, T2, by measuring Hahn spin echoes, the amplitude of differential PL change 

following rephasing of spins by a second microwave pulse (see full description in Sec-
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Figure 3.4. Spin dephasing of CdS trap states and coherent control of light-harvesting 
in tetrapods. (a,b) Rabi oscillations in the differential PL of the CdS nanorods as a 
function of microwave pulse length for the resonances around g  ~ 1.84 and g  ~ 2.00. The 
insets show the corresponding decay of spin coherence measured by performing Hahn 
spin echoes using a sequence of microwave pulses. (c) In the tetrapods, coherent spin 
information in the CdS is extracted remotely in the PL of the CdSe core, indicating the 
high degree of carrier localization since coherence information remains unperturbed 
upon change of environment (i.e. addition of the core to form the tetrapod heterostruc
ture). This result also demonstrates the ability to coherently control the light-harvesting 
process.
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tion 3.6.5). Figure 3.4(a,b) (insets) exhibit exponential decay of the echo amplitude as a 

function of interpulse delay, t , yielding T2 = 328 ± 22 ns for g  «  2.00 and T2 = 186 ± 12 ns 

for g  «  1.84. The coherence time of the g  «  1.95 resonance is too short to be measured 

using our technique (T2 < several ns). Additional structure is seen on the echo decay of 

the g  «  2.00 carrier due to hyperfine-field-induced electron spin-echo envelope modu

lation [11] (see Section 3.6.5). The pair partner of this quasi-free carrier, localized to a 

surface trap, experiences stronger spin-orbit coupling, lowering the g -factor and accel

erating dephasing. Nevertheless, these T2 values are unprecedented for nonmagnetic 

semiconductor nanocrystals [11, 38].

It is notable that, as a consequence of these extraordinary coherence times, identi

cal Rabi oscillations result under detection of CdS (nanorods, Figure 3.4(b)) and CdSe 

emission (tetrapods, Figure 3.4(c)). The experiments offer a qualitative assessment of 

the degree of trap localization. This must be significant since delocalized carriers would 

be expected to lose coherence by coupling to a new environment, such as the core of 

the tetrapods. The persistence of spin coherence over different system environments 

offers the possibility of remote readout of spin-phase information, and demonstrates 

the fundamental ability to coherently control light-harvesting [39] even in inorganic 

structures.

3.5 Conclusion
Pulsed ODMR directly reveals three radical species in CdS which control PL and are 

likely responsible for the two types of blinking observed in CdSe/CdS particles as dis

tinguished by luminescence lifetime [8]: either both carriers are localized to the nano

crystal surface, leaving the particle neutral and thus preventing Auger recombination 

and a change in exciton lifetime (g « 2.00 and g  «  1.84); or one carrier is trapped within 

the particle (g « 1.95), charging it so that Auger-type blinking with the associated fluo

rescence lifetime changes arises. This localization of carriers occurs in CdS, not CdSe. 

Surprisingly, shelved excitons do not thermalize from CdS to CdSe, but remain in the 

CdS “shell” of the heterostructure nanoparticle [31]. The extraordinarily long spin quantum- 

phase coherence times of order 1 /is highlight the potential utility of even strongly spin-
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orbit-coupled nanoparticles for quantum information processing or quantum-enhanced 

sensing, such as magnetometry. In contrast to conventional inorganic quantum sys

tems, such as electrostatically defined quantum dots, nanocrystals offer the possibility 

of creating spatially scalable quantum structures through bottom-up synthetic means

[3] as demonstrated here by the spatially remote light-harvesting read-out of spin-phase 

information.

3.6 Supporting Information
3.6.1 Experimental Methods

The tetrapod nanocrystals consist of wurtzite CdS arms approximately 20 nm in 

length and 6 nm in diameter, grown onto four faces of zincblende CdSe cores of 4 nm 

diameter. Synthesis details are given in Reference 1. The same batch of CdSe cores 

which was used to seed tetrapod growth was also investigated alone for comparison, 

as shown in Figure 3.2(b) of the main text. Each series of colloidal nanoparticles used 

in these measurements was first diluted into a toluene Zeonex (Zeon Chemicals L.P.) 

solution and then drop cast into a small Teflon bucket (2 mm x3 mm). Upon solvent 

evaporation, a solid matrix was formed, which is both optically and paramagnetically 

inert, but contains the distributed nanoparticles. The sample was then suspended in 

a He flow cryostat containing a dielectric microwave resonator, generally kept at 3.5 K 

for all measurements, except for Rabi nutation experiments which were performed at 

15 K. Optical access to the sample was made by extending a home-built fiber bundle 

through a cryostat port and into the resonator, resting at the mouth of the Teflon sample 

bucket. A cw Ar+ laser, tuned to 457.9 nm (2.708 eV) and combined with a suitable 

filter to remove spontaneous emission (Semrock Maxline), was passed into a single fiber 

and used to excite the nanocrystal ensemble with 20 mW of power (intensity approxi

mately 85 iW /cm-2). The remainder of the fibers were used to collect PL, from which 

scattered laser light was filtered out with a 458 nm ultrasteep long-pass filter (Semrock 

RazorEdge). Specific emission bands for each nanoparticle ensemble were spectrally 

selected by choosing an appropriate filter set: the CdS nanorod and CdSe core deep- 

level defect emission were isolated with a 550 nm (2.254 eV) long-pass filter (Thor-



78

Labs); the CdS nanorod band edge emission was cut with a 460 ± 2 nm (2.695 ± 0.012 eV) 

narrow-band filter (ThorLabs); the tetrapod core emission was picked with a 620 ± 2 nm 

(2.000 ± 0.007 eV) narrow-band filter (ThorLabs).

The selected PL was focused onto a low-noise photodiode (Femto LCA-S-400-Si), 

whose signal was amplified with a Stanford Research Systems low-noise preamplifier 

(SR560). AC coupling of the input signal was used in order to apply gain to only the 

modulated contribution of the PL intensity. A 300 Hz high-pass frequency filter was also 

applied in order to help isolate the transient response of the ODMR signal from spurious 

electrical and optical modulations.

With sufficient gain applied, the resulting signal was passed into the fast digitizer of 

a Bruker SpecJet contained within an Elexsys E580 system, which correlates the timing 

of the microwave pulse sequence with the transient response. Programmable control 

over pulse routine timing, leveling of the external magnetic field, and signal acquisition 

was utilized to carry out the large number of measurements required for each data set. 

For example, the transient mappings displayed in Figure 3.2(c,d,f,h) required anX-band 

(9.8 GHz) microwave pulse of 800 ns duration to be applied every 800 i s  a total of 16384 

times. The transient responses of the individual measurements were added together be

fore incrementing the external magnetic field B0. For the high-resolution time transients 

shown in Figure 3.3(b,d), the microwave shot repetition rate was set to be greater than 

2 ms, much longer than the full relaxation time to steady-state populations of carrier 

states under constant excitation of the material system. Rabi oscillations were obtained 

by monitoring the amplitude of the transient PL response as a function of microwave 

pulse length. The transit times for driving the system from optically dark to optically 

bright states served as useful timing information needed for constructing the n and 

n/2 pulses of the Hahn echo sequence. A full description of this conventional pulse 

sequence, as used in ODMR, is given below in Section 3.6.5.

3.6.2 Time-Resolved, Spectral Confirmation 
of Long-Lived Trap States

The existence of trap states lying very close to the band gap of our primary material 

system of interest, the CdS nanorods, can easily be confirmed by considering the lumi-
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nescence decay characteristics following an optical excitation pulse. A sample similar 

to that used for the ODMR experiments is fabricated, consisting of nanorods suspended 

in a polystyrene block several microns thick. This sample is mounted, under vacuum, 

to the cold finger of a closed-cycle Helium cryostat, which cools to 21 K. A diode laser 

operating at 355 nm (3.493 eV) with nanosecond pulse length and variable repetition 

rate is used as an excitation source. PL spectra are monitored with a gated, intensified 

CCD (ICCD) camera mounted to a spectrometer, allowing us to record the decay of 

emission intensity as a function of gating time following optical excitation. The prompt 

PL is shown in Figure 3.5. The dashed green line in panel (a) indicates the spectral 

position which is monitored as a function of time. As is seen in panel (b), the PL intensity 

drops off approximately following a power law over five orders of magnitude in time. The 

excitonic emission spectrum does not shift significantly over this time.

The accepted physical mechanism responsible for delaying emission in these nanopar

ticles for such long times is the temporary isolation of the optically excited charge car

riers into their respective trap states [40], dramatically decreasing the amount of wave

function overlap of the electron-hole pair, and therefore the likelihood of recombina

tion. As the detrapping rate back into the band edge excitonic states depends expo

nentially on the trap energy, which in turn is distributed exponentially, a distribution 

of detrapping rates is observed across the nanoparticle ensemble, leading to the power 

law-like emission decay [40].

3.6.3 Correlating Carrier-Pairs with Resonance Dynamics

To determine which of the three resonances seen in the tetrapods and nanorods (Fig

ure 3.3) correspond to a coupled pair of carriers, the time dynamics of the resonances 

are considered. The correlation of the features in time dynamics in Figure 3.3 is indepen

dent of temperature and laser power, although both of these parameters directly affect 

the transient response. The biexponential time dynamics shown in Figure 3.3(b,d) are 

characteristic of a (electron-hole) pair process, which has been investigated extensively 

in the context of conjugated polymers [29].

While the observation of identical dynamics (Figure 3.3) alone is sufficient to con

clude that each of these paramagnetic centers belong to the same coupled system [29],
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Figure 3.5. Optical decay spectrum of CdS nanorods. (a) Prompt band edge PL spectrum 
of CdS nanorods at 21 K following excitation with a 355 nm (3.493 eV) laser pulse. 
(b) The emission peak is monitored as a function of delay time from excitation using a 
gated ICCD camera and spectrometer. The peak emission decay approximately follows a 
power law, revealing the presence of long-lived trap states, which are energetically close 
to the semiconductor band edge where the exciton forms.
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further proof derives from a comparison of the areas of the two features. Since the area 

of each resonance represents the probability of inducing a spin transition which causes 

an optical activity, separately resonant carriers belonging to the same excitation (e.g. 

an electron and a hole in a pair) must exhibit equal probabilities for this process to 

occur. To aid in the analysis of comparing the equality of these probabilities, a fitting 

routine employing three Gaussians was utilized to study the transient spectra. For the 

CdS nanorod band edge emission, the results of this analysis are shown in Figure 3.6. A 

correlation of the g  «  2.00 and g  «  1.84 resonances is clear since the fitting routine finds 

comparable areas for the Gaussians representing these two features over a wide range of 

times. Additionally, we note that the central g  «  1.95 resonance must represent a carrier 

state which is completely decoupled from the neighboring resonances since it displays 

marked differences in both probability (i.e. area of the resonance) and time dynamics.

A further point must be made about the disparity between the T2 times given for each 

of these carriers in Figure 3.4 in Section 3.4. The results of the Hahn echo experiment 

(outlined below in Section 3.6.5) on the g  « 1.84 center of the CdS nanorods give a phase 

coherence time which is nearly half that of the g  «  2.00 center, as would be expected for 

a carrier experiencing a larger degree of spin-orbit coupling. The inequality between T2 

times of the two (correlated) carriers reflects the unique chemical environments of each 

and does not conflict with the assignment of the two centers as representing a coupled 

pair. In fact, and although not measured explicitly, the only hard requirement imposed 

on the spin states of the pair is that each are characterized by identical T1 times, which 

is inferred from the equal time dynamics of each resonance [29].

3.6.4 Spin and Carrier-Pair Interaction Information 
Obtained by Driven Rabi Oscillations

Determining spin identity is a crucial step in chemical fingerprinting as it can help 

to ultimately illuminate the chemical nature of a trap state for a specific carrier. For 

example, the complementary knowledge of spin multiplicity, resonance g-factor, and 

resonance structure can help to establish the exact symmetry of a paramagnetic site 

and, therefore, the exact environment of the localized carrier.

The spin identity of a paramagnetic center can be confirmed in a straightforward
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Figure 3.6. The equality of resonance areas for coupled-pair trap states. Integrated 
resonances (areas) as a function of time obtained from the triple Gaussian fit applied to 
the ODMR mapping of CdS nanorod band edge emission. The equal resonance areas for 
the g  «  2.00 and g  «  1.84 sites denote the equal probabilities of inducing optical activity 
following a microwave-induced spin transition. Since the probabilities of inducing such 
a transition for each of the two sites are equal, it can be concluded that they represent a 
coupled pair of trap states (i.e. weakly bound electron-hole pair). The g  «  1.95 state is 
clearly unrelated.
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manner by carrying out a Rabi nutation experiment since the carrier’s spin quantum 

number is directly reflected in the frequency of oscillation between mutual spin con

figurations. For transitions between Zeeman-split ms levels of the form |S, ms -  1} — ► 

|S, ms}, and neglecting any significant detuning from resonance, the Rabi frequency is 

determined by [41] QR = V S(S + 1) -  ms(ms -  1), where j  = is the gyromagnetic ratio 

for the center, i B is the Bohr magneton, h is Planck’s constant, and B 1 is the microwave- 

induced magnetic field strength at the sample position within the microwave resonator. 

The g -factor is experimentally determined by the resonance center, but once the Rabi 

nutation has been recorded, a precise value for B 1 must be obtained in order to confirm 

the spin multiplicity of the trap site.

An additional material serving as a standard paramagnetic center with known g - 

factor and spin can be loaded into the microwave resonator alongside the material of in

terest; in this case, phosphorus-doped crystalline silicon (Si:P with a doping concentra

tion of [31P] = 1016 cm -3). The variations in microwave-induced magnetic field within 

the resonator volume that contains the combined sample are negligible over the few 

millimeters of sample breadth, allowing for the direct determination of B 1 fields expe

rienced at the trap sites of the nanorods through recording of the Rabi frequency of 31P 

centers in Si.

Aside from establishing the spin identity of the g  « 2.00 and g  «  1.84 sites, we are 

also interested in the type of mutual interactions experienced by the two carriers. Again, 

by scrutinizing the frequency components of the Rabi oscillations, general statements 

can be made as to the prevailing nature of intrapair coupling. The on-resonance spin-2 

system precesses at a frequency of QR = j B 1. As additional, nonnegligible interaction 

terms are introduced into the Hamiltonian describing the spin pair, further frequency 

components mix with QR which directly correspond to specific forms of interactions. It 

has previously been shown [42] that increasing exchange interactions leads to frequency 

components of 2yB1 appearing in the Rabi flopping signal, while an increase in dipolar 

interactions results in components of [43] \fljB  1.

On the other hand, the same frequency components may arise not due to any par

ticular pair interaction, but merely from spin transitions being stimulated within a par-
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ticular spin manifold. For example, a 11, —-) — ► 11,|) transition will produce a Rabi 

frequency component of 2yB2, while a strongly exchange-coupled spin-2 system can 

do the same. This approach of attributing a systematic cause to a measured frequency 

component is made ambiguous if both the spin identity and the interaction type re

main unresolved for the paramagnetic center. There is, however, one case where this 

ambiguity is easily resolved, which is for the spin-2 pair experiencing weak exchange 

and dipolar interactions. In this case, the only frequency component present in the Rabi 

nutation is yB2, which is the case at hand.

Shown in Figure 3.7 are Fourier transforms of the Rabi oscillations given in Figures 3.4(a) 

(g « 1.84) and 3.4(b) (g « 2.00) of Section 3.4. We focus solely on data obtained from 

the CdS nanorods to investigate the spin state and any possible interactions within the 

pair since the observed ODMR intensities of the nanorods are an order of magnitude 

larger than the same transitions seen in the tetrapods. The absence of any additional 

frequency components in the Fourier spectrum besides the j B2 fundamental implies

Figure 3.7. Frequency components of Rabi oscillations show weak trapped-carrier cou
pling. Rabi oscillation frequency components are shown for both the g  «  1.84 (a) and 
g  «  2.00 (b) resonances of CdS nanorods. The frequency axis is scaled to yB 2, the Rabi 
frequency of a spin-2 paramagnetic center (marked by the vertical dashed line). There 
are no additional frequency components, demonstrating that each of these carriers is a 
spin-2 species and that the coupled pair of carriers experiences negligible exchange or 
dipolar coupling.
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that this spin-dependent transition results from a pair of weakly-coupled spin-1 carri

ers, where both exchange and dipolar couplings are negligible. This weak coupling is not 

beyond expectations for such localized carriers since the distribution of trap sites over 

the nanoparticles should be random in space, leaving an average pair separation too 

large for either sufficient wavefunction overlap (exchange) or magnetic dipole-dipole 

interactions. Such weakly-bound precursor states, which ultimately feed into tightly 

bound band edge excitonic states, are common amongst a variety of material systems, 

such as hydrogenated amorphous silicon [43] and organic semiconductors [44], and can 

be manipulated through ESR in order to predetermine the permutation symmetry of 

final tightly bound states.

In this case, the carriers comprising this weakly bound precursor state are each spin- 

1, which means that they form mutual spin states that can be characterized as either sin

glet or triplet. This holds for the trapped carriers only, as the band edge excitonic states 

are well known to have a higher spin-multiplicity [21]. Therefore, upon detrapping, the 

singlet/triplet nature of the trapped pair will be projected upon the five individual spin 

states which make up the exciton fine structure. Since three of these states are bright 

and two are dark (i.e. spin allowed and forbidden optical transitions), changing the 

singlet/triplet nature of the trapped carriers will change the probability of moving back 

into a bright or dark state after detrapping occurs, thereby changing the overall exciton 

state populations.

3.6.5 Measuring Spin Coherence and ESEEM with 
Optically Detected Hahn Echoes

A lower limit on the spin dephasing time, T2*, of a paramagnetic center can be ob

tained by considering the amplitude decay of the Rabi oscillations. There are two pri

mary mechanisms which artificially shorten coherence time in our system. One is due to 

the slight inhomogeneities in the oscillating magnetic field of the microwave radiation 

across the sample, AB1, which leads to a distribution of Rabi frequencies, AQR. An

other is due to the distribution of local nuclear magnetic moments perturbing the static 

magnetic field, AB^uc, experienced by the trapped carriers. This distribution leads to 

an additional detuning term in the Rabi frequency, further increasing AQR. This spread



86

in frequencies evolves the system towards incoherent transitions between the two spin 

configurations more quickly, but can be overcome by taking advantage of microwave 

pulse techniques to reveal the true dephasing time of the system, T2. The Hahn echo 

pulse sequence is particularly appropriate [45]. Since the observable in ODMR is per

mutation symmetry (i.e. bright or dark mutual spin configuration) and not polarization 

as in traditional magnetic resonance, we use a slightly modified version of this classic 

technique. A simple [f  -  t  -  n  -  t  -  f  ] pulse sequence is illustrated schematically in 

Figure 3.8(a), where a n-rotation denotes a complete reflection in permutation sym

metry for the system and is determined by the precession time measured in a Rabi 

oscillation. The dynamics involved are straightforward. The first f  -pulse places the 

initially bright spin population into a superposition of bright and dark states. After a 

delay time, t , in which the system dephases according to the distribution in Larmor 

frequencies arising from field inhomogeneities, a n-pulse is applied in order to reverse 

the Larmor precession of the system. This reversal effectively takes advantage of the 

time-reversal symmetry enforced by the long-time stability of the perturbing fields. The 

subsequent rephasing, or reversal in dephasing, takes place on a timescale equal to that 

of the initial delay, making the total dephasing time the system is subjected to 2t . The 

second f  -pulse is then applied in order to bring the remaining spin ensemble back to an 

observable state. By sweeping the f-pulse following the pulse sequence, a small change 

in the amplitude of transient response (i.e. the differential PL) is measured. This change 

is referred to as an echo, whose amplitude directly corresponds to the remainder of the 

initial population. By repeating this sequence and recording the echo as a function 

of 2t , the loss of spin coherence is observed in the exponential decay of amplitude. 

Figure 3.8(b) illustrates this process by displaying some representative echoes using data 

for the CdS nanorod g  «  2.00 center reproduced from the inset of Figure 3.4(b) in the 

main text.

We note that the uncertainty of the quoted spin coherence time of the g  «  2.00 

resonance is higher than that of the g  «  1.84 resonance, not due to improved signal- 

to-noise in the latter, but because of a complicated interference of the electron spin 

with nuclear magnetic moments. This substructure to the decay amplitude is apparent
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Figure 3.8. Pulse timing diagram and demonstration of Hahn echo pulse sequence.
(a) In the Hahn echo pulse sequence, a § -pulse projects the dominant initial population 
into a superposition of bright and dark states. Decoherence due to a distribution in local 
Larmor precession frequencies is reversed by application of a n-pulse after a delay time, 
t . A second |-pulse projects the remaining superposition states (i.e. those which have 
not lost their spin phase information) back into a bright configuration. (b) Performing 
the measurement as a function of t  allows for the extraction of the characteristic spin 
dephasing time, T2.
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in Figure 3.8(b). It arises due to a phenomenon known as electron spin echo envelope 

modulation (ESEEM). Amplitude modulations of exponential decay of spin phase co

herence would be expected to be present in the case of a finer structure splitting of 

the already Zeeman-split energy levels. These modulations do not prevent extraction of 

the decoherence time. With higher sensitivity, ESEEM should allow a precise chemical 

fingerprinting of the trap site in the future by providing information on local nuclear 

magnetic moments.

3.6.6 Resonance Lineshapes vs. Optical Excitation Energy

To probe the energetic distribution of trap centers, we studied the dependence of the 

CdSe/CdS tetrapod ODMR spectrum on excitation photon energy. This material system 

was chosen since excitation could be tuned from above the CdS arm band gap down 

to the absorption of the CdSe core while monitoring the resonance through the red- 

shifted PL of the CdSe core. Figure 3.9 shows the results of this excitation sequence. The 

broad, central resonance significantly decreases in amplitude at 488 nm (2.541 eV) exci

tation compared to 458 nm (2.708 eV) excitation, and disappears completely at 514 nm 

(2.412 eV). The coupled-pair resonances (g « 2.00 and g  «  1.84) remain intact, although 

some broadening is observed with decreasing excitation energy. This observation im

plies that the species represented by the central resonance has a unique relationship 

to the delocalized band edge states of CdS, as compared to the g  «  2.00 and g  «  1.84 

coupled-pair species, which exist over a much broader distribution of excitation ener

gies. As commented on in the main text, this observation suggests that the narrow pair 

species both correspond to CdS surface states which can be populated even by direct 

excitation of the CdSe core slightly below the CdS band edge. Due to the presence 

of lattice strain at the heterojunction interface [46], carriers can still become trapped 

in the CdS even if the excitation energy lies below the band gap of the CdS nanorod. 

The involvement of lattice strain may explain the slight broadening of the g  «  2.00 and 

g  «  1.84 coupled-pair resonances with decreasing excitation energy. These resonances 

are comparatively narrow, suggesting that they correspond to discrete atomic sites such 

as surface defects, organic ligands, or the surrounding organic matrix. In contrast, the
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Figure 3.9. The dependence of the tetrapod ODMR spectrum on excitation energy. 
As excitation energy is decreased, the central resonance disappears, suggesting a close 
relationship to band edge states. The coupled-pair resonances remain, shifting slightly 
in center position and broadening.
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broad resonance can only be excited when the CdS is pumped above the band edge, 

suggesting that this species originates from bulk delocalized states in the CdS with sub

stantial disorder broadening due to a wide range of chemical environments probed.

3.6.7 Possible Origins of the g  = 2 Resonance

The resonance present in the CdS nanorods which is most closely aligned with the 

free-electron g-value is that at g  = 2.0060(2). Although the same center is observed 

through the CdSe core emission of the tetrapod structure, since the deep-level chemical 

defect of the CdS arm also emits at this energy (Figure 3.2(c)), the exact resonance po

sition is likely perturbed due to convolution with the resonance structure of the defect 

(Figure 3.2(d)). To avoid this convolution, we rely on the CdS nanorod data to most 

accurately assess the features of the g  = 2.0060(2) resonance, since in this case, the 

excitonic and defect states are spectrally well separated. In describing the nature of the 

g  « 2.00 resonance, there are two possible models which are supported in the literature. 

One involves a photogenerated hole becoming trapped at the CdS surface in an unde

termined chemical position [33]. Another possibility is that a charge becomes localized 

to an incorrectly-bonded surface-ligand site [34], or ejected from the nanoparticle into 

the surrounding organic matrix [5]. Both situations are suspected to constitute a type of 

charge trap [34]. Each of these situations is expected to result in a resonance position 

very close to that of the free-electron g -factor (g free-eiectron ~ 2.002319).

In the case of the photogenerated hole in CdS, Reference 33 reported such a site 

which displayed an axial g-factor asymmetry with g // = 2.035 and g i  = 2.005, where 

parallel and perpendicular refer to the alignment of principal g -factor axes with respect 

to the external magnetic field, B0. For a disordered ensemble of nanocrystals, each of 

these g-factor axes is randomly oriented with respect to B0 and so the spin resonance 

spectrum will display distinct peaks for each principal g -value, as well as a continuum 

of peaks between these values representing the linear combination of projections. Such 

a lineshape is referred to as an anisotropic powder pattern. In general, g !  results in a 

higher degree of spin-polarization due to the larger number of axis-normal orientations 

expressed in the random distribution. This effect would give maximal resonant change
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in photoluminescence at g i ,  as compared to g //, which is very near to the situation we 

observe here.

In considering the second case, that of the charge localized to some organic material 

(either ligands or matrix), we also find good agreement between our measurements 

and the expected characteristics for such a material. Due to the extremely low lev

els of spin-orbit coupling, the g-factor of organic materials is found to be quite close 

to the free-electron value. Consequently, for a charge which is localized to a surface 

passivating organic ligand, a resonance very close to g  «  2.00 would be expected. In 

addition to the resonance position, the value for the T2 coherence time determined is 

much longer than those reported for similar inorganic quantum dots [38], yet is of the 

order of that measured in organic semiconductor systems [38]. Since neither the organic 

ligands nor the matrix are ^-conjugated, it is not presently clear how their chemical 

structures would support charging, although defect centers respective to these materials 

are conceivable.

Discrimination between these two models remains difficult at this time without ad

ditional information. The level of inhomogeneous broadening and the overlap of the 

g  « 1.95 resonance presently prevent us from resolving in detail any possible anisotropic 

features of this resonance. In the previous report of photogenerated holes in CdS [33], 

detailed information regarding the relative amplitude difference and line width differ

ence between the g i  and g/ spectral positions is lacking. We therefore resort to using a 

single Gaussian line profile in order to represent this resonance as a type of first-order 

approximation. More parameter information is necessary (line widths and peak inten

sity ratios) to faithfully make use of a powder pattern fitting function in comparing these 

two models.

Resolving the ambiguity of chemical assignment for this resonance site could be 

carried out in at least two ways. One is in using an electron-spin-echo (ESE) detection 

scheme in order to map out the resonance structure. This technique allows one to 

independently measure the resonance structure of two overlapping species which have 

differing coherence times. The ability to separate out the overlapping g  «  1.95 reso

nance may result in finer resolution of the g  «  2.00 feature details and therefore resolve
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the issue of line shape anisotropy. A second method of resolving this issue is through 

taking advantage of the slight amplitude modulation which is likely to be present in 

the Hahn echo decay of this center, known as ESEEM (described above). By measuring 

this modulation with higher resolution, both in amplitude and echo delay spacing, the 

frequency components involved should allow discrimination between the trapped spin 

interacting with either a local 1H, 111Cd, or 113Cd nuclear magnetic moment. Such a 

measurement would give a direct chemical fingerprint of the trap site position.
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CHAPTER4

TOWARDS CHEMICAL FINGERPRINTING OF DEEP- 

LEVEL DEFECT SITES IN CDS NANOCRYSTALS 

BY OPTICALLY DETECTED SPIN COHERENCE 

4.1 Chapter Synopsis
Carrier trapping in colloidal nanocrystals represents a major energy loss mecha

nism for excitonic states crucial to devices, yet surprisingly little is known about the 

chemical nature of these trap centers or the types of interactions that charges expe

rience in them. Here, we use a pulsed microwave optically detected magnetic reso

nance (pODMR) technique in order to probe the interaction pathways existing between 

shallow band edge trap states and the deep-level emissive chemical defect states re

sponsible for the broad, low energy emission common to CdS nanocrystals. Due to 

the longer spin-coherence lifetimes (T2) of these states, Rabi flopping in the differential 

luminescence under resonance provides access to information regarding coupling types 

of shallow-trapped electron-hole pairs, both isolated species and those in proximity 

to the emissive defect. Corresponding Hahn spin-echo measurements expose an ex

traordinary long spin coherence time for colloidal nanocrystals (T2 « 1.6 ^s), which 

allows observation of local environmental interactions through electron spin-echo en

velop modulation (ESEEM). Such an effect provides future opportunities for gaining the 

detailed chemical and structural information needed in order to eliminate energy loss 

mechanisms during the synthetic process.

4.2 Introduction
Substantial advances in the fundamental understanding of electronic states charac

terizing colloidal nanocrystals have been made in recent years, which have facilitated 

the development of novel and exciting device concepts based on this unique mate-
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rial system. These proposed technologies range from next-but-one-generation photo- 

voltaics [1], over multicolor lasers [2], to inkjet-printed LED displays on flexible sub

strates [3]. Plaguing the further development of such devices has been the existence 

of charge trap states and chemical defects [4] [5] which naturally arise during the tra

ditional synthesis process, but provide strong alternative decay pathways [6] for the 

desired excitonic and multi-excitonic excited states.

The origin of these detrimental states has been attributed to surface dangling bonds 

due to ligand loss [7], incorrectly bonded passivation ligands [8], as well as crystalline 

defects such as vacancies and adatoms [9, 10]. The effects of such states are readily de

tected through observables of conventional optical probes, such as by monitoring single 

particle luminescence intermittency [11-13] (i.e. “blinking”) and the broad, sub-band 

gap chemical defect emission [9,10,14]. In fact, several fairly complex models have been 

formulated in order to describe the complexity witnessed in photoluminescence (PL) 

blinking [15, 16] and decay dynamics [17-19], which generally depend on certain as

sumptions about the population and decay pathways of both band edge and trap/defect 

states and their respective interactions. Even though these models go to great lengths in 

order to describe the complex dynamics observed experimentally, they are often not 

detailed enough, since they normally do not account for the existence of multiple trap 

species and both electron and hole traps, which has recently been confirmed for at least 

one type of nanocrystal (see Chapter 3). In general, very little is actually known about 

the chemical nature of these trap states or the types of interactions they experience since 

they are difficult to address directly using optical techniques alone. Spin resonance 

methods, on the other hand, are uniquely suited as a probe for such states and have his

torically proven to be a powerful tool in elucidating the chemical and electronic nature 

of charge traps and structural defects in a wide range of semiconductor systems [20-22].

Here, we use pulsed optically detected magnetic resonance (pODMR) in order to 

directly probe trapped carriers which are associated with both band edge as well as 

deep-level chemical defect emission in wurtzite CdS nanorods. It is well known that 

band edge excitons can be “shelved” in band edge trap states, leading to delayed PL at 

times much longer than the exciton lifetime [18]. We observe that these charge traps,



98

which shelve the primary exciton [23], are capable of interacting with both band edge 

excitonic states (leading to emission from the quantum-confined exciton) as well as with 

the emissive deep-level chemical defect. The latter case leads to a modification of the 

spin resonance properties of the band edge trap states. We explore the trap states which 

are more directly associated with the chemical defect emission process, demonstrating 

that these are spatially highly localized with substantial dipolar coupling between carrier 

spins, as is most clearly manifested in the appearance of a half-field resonance. These 

states can be utilized as an environmental probe through electron-spin echo envelope 

modulation (ESEEM), which becomes possible due to the extraordinarily long coher

ence time of the state (T2 « 1.6 js )  at 3.5 K.

4.3 Photoluminescence Decay Dynamics Indicating 
Long Trapping Lifetimes

The pODMR spin-resonance technique is limited by a carrier’s lifetime within a par

ticular state relative to the timescale of spin-mixing induced by a resonant microwave 

pulse (~10 ns). In this case, the trapping lifetime must be long and trapped carriers must 

directly feed one of the two primary emission channels, our observables for this material 

system: that is, the excitonic band edge emission at 464 nm, and the deep-level chemical 

defect emission at ~635 nm [9]. Optical investigations of this defect emission in CdS 

nanocrystals, both with [10] and without [9] surface charge modification, have con

cluded that the emissive center is strongly related to surface S2- and Cd2+ ion vacancies 

which act as electron and hole traps, respectively, and likely form a defect cluster acting 

as a color center [9]. To confirm that the trap states do indeed have sufficiently long 

lifetimes, we consider the PL decay dynamics of an ensemble of CdS nanorods following 

an optical excitation pulse. A sample of these nanocrystals is suspended in a polystyrene 

block several microns thick, which is mounted to the cold finger of a closed-cycle He 

cryostat operating at 21 K. Pulsed optical excitation is achieved with a 355 nm diode laser 

and the resultant PL spectrum is captured as a function of time with a gated, intensified 

CCD (ICCD) camera which is mounted to a spectrometer. Figure 4.1(a) shows prompt 

(2 ns integration window) and delayed (10 j s  delay, 0.1 j s  integration window) emis

sion spectra, revealing the two distinct emissive species: the narrow blue exciton band
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Figure 4.1. Time-resolved luminescence of CdS nanorods exhibiting dual emission fed 
by long-lived trap states. (a) Prompt (0-2 ns integration window) and 10 /ds delayed 
(10-10.1 ds integration window) optical emission spectra following 0.7 ns pulsed exci
tation from a 355 nm diode laser. A time-gated ICCD coupled to a spectrometer is used 
in acquisition. Prompt emission is dominated by band edge exciton emission, whereas 
the broad, red emission channel is attributed to deep-level chemical defect states. The 
light blue and red regions denote the spectral bandwidth of collection filters used for 
luminescence channel isolation in the ODMR experiments. Vertical blue and red dashed 
lines mark the spectral positions used to demonstrate the existence of long-lived trap 
states feeding each emission channel, as is evident by the long power-law-like PL decays 
given in panel (b). The integration window used for each step in time delay was: 2 ns for 
0-510 ns; 20 ns for 0.51-2.0 ds; 100 ns for 2.0-10 ds; 1.0 ds f°r 10-20 ds. The inset shows 
a transmission electron micrograph illustrating the high quality of CdS nanorods.
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which dominates the prompt emission; and the broad red defect band which appears at 

longer times. Recording the spectral decay following subnanosecond excitation allows 

confirmation of the presence of long-lived trap states [17] [18] [19] feeding these two 

emission channels, which have distinct lifetimes as seen in Figure 4.1(b). Besides the 

requirement for long lifetimes of suitable carrier states, pODMR additionally requires 

sufficient lifetimes of the spin state (T1 > a few ns), which is also satisfied for several of 

the trap states existing in CdS.

4.4 Experimental Methods
For all pODMR measurements, a sample similar to the above is fabricated, with 

CdS nanorods dispersed within an optically inert, diamagnetic matrix. The sample is 

then held at cryogenic temperatures within a He flow cryostat and a low-Q dielectric 

resonator of a Bruker E580 pulsed EPR spectrometer. Optical excitation is carried out 

with an Ar+ laser tuned to 457.9 nm, which is almost resonant with the band gap of CdS 

nanorods of this diameter (6 nm). As band edge excitonic states are generated optically, 

there is some probability for them to become localized to the shallow trap states which 

are nearly iso-energetic with the band gap, or to lose energy and become associated with 

a deeper-lying chemical defect. Once charge carriers become trapped, they may either 

detrap and return to excitonic states, feed into nearby deep-level chemical defect states, 

interact with subsequent optical excitations through an Auger process, or simply ther- 

malize to the ground state. These processes are spin dependent, so that spin manipula

tion in pODMR becomes possible. In the present work we focus on the spin-dependent 

emission characteristics of the deep-level defect by using coherent modulations of the 

emission as a probe of the intermediate states involved in populating the defect and 

their respective environments.

The optically detected spin resonance process arises by first Zeeman splitting the 

spin states associated with optically active carrier pairs by applying an external mag

netic field (~0.3 T) to the sample and then matching that energy splitting with a pulsed 

microwave field (~9.8 GHz; with the frequency held constant in all measurements). The 

resonant change in mutual spin identity for the carrier pair is reflected in PL intensity
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as a resultant enhancement or quenching of the emission channel [24], as observed by 

acquisition from a low-noise photodiode (FEMTO LCA-S-400K-SI). In principle, individ

ual trapping species can be fully resolved since the resonance condition for each type is 

unique and corresponds to the Lande g -factor of that state. In order to differentiate 

between trap species which play a role in separate emission processes, pODMR is per

formed on each of the two CdS nanorod emission channels by using optical selection 

filters (spectral bandwidths given in Figure 4.1(a)). This general process of excitation, 

charge trapping or localization on a defect, and electron spin resonance (ESR) of opti

cally active carriers is schematically depicted in Figure 4.2(a). The results of this spec

trally resolved pODMR can be seen for each emission channel in Figure 4.2(b,d), where 

the resonant change in PL intensity, plotted on a color scale, is shown as a function 

of magnetic field strength and time following the microwave pulse. The temporally 

integrated magnetic field dependence of differential PL yields the resonance spectra in 

Figure 4.2(c,e).

4.5 Optically Detected Magnetic Resonance 
vs. Emission Channel

The resonance spectrum for shallow band edge trap states detected by band edge 

excitonic emission, shown in Figure 4.2(c), is composed of three primary Gaussian res

onances, two narrow and one broad, which all lead to PL quenching. The broad central 

resonance (g2 « 1.96) is likely due to a single carrier whose wavefunction is somewhat 

delocalized over the nanorod, thereby experiencing a large distribution of hyperfine and 

strain fields. Since, in contrast to the mechanism described below, there is no indication 

of a pair process for resonance 2, we speculate that PL quenching here arises due to an 

Auger mechanism involving an exciton and a single trapped charge, in analogy to mod

els of blinking in single nanocrystals [11-13]. The two narrower resonances (g1 « 2.00 

and g3 « 1.85) have been attributed to spin-1 carriers which are localized to the surface 

of the nanocrystal [25], which limits the range of magnetic environments experienced 

by the spins and thus environmental spectral broadening. An interesting aspect of these 

two narrow features is that they have the same resonance area, which describes the 

probability of undergoing a spin-resonant transition followed by some form of optical
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Figure 4.2. Spectrally resolved ODMR confirms that the correlated trap states feed 
each emission channel. (a) Optical excitation near the band edge populates the lowest 
exciton state. This exciton either emits, localizes to shallow trap states, or dissipates to 
the chemical defect. Long carrier trapping lifetimes allow for use of ESR in changing the 
mutual spin configuration of trapped charge pairs, modulating optically “bright” and 
“dark” population ratios and thereby affecting the resultant PL intensity from each of 
the two emission channels. (b) Spin resonance mapping and (c) resonance spectrum 
for shallow trap states affecting band gap exciton emission; and (d,e) for defect emis
sion. Multiple resonances (i.e. optically active carrier states) are observed through each 
emission channel. Two resonances (g1 « 2.00 and g3 « 1.85) are found to be common to 
both emission channels, indicating that both band edge excitons and emissive chemical 
defects interact with the same species of shallow band edge trap states. (f,g) These two 
resonances arise due to a coupled carrier pair (i.e. electron and hole), as evidenced 
by the correlations in resonance peak areas and temporal dynamics for each emission 
channel. The dynamics of the broad resonance 2 (band edge emission, black line in (f)) 
and the superimposed resonances 4 and 5 (defect emission, black line in (g)) differ from 
those of the respective pairs (resonances 1 and 3, blue and red lines, respectively).
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activity. In addition, as shown in Figure 4.2(f), the two peaks exhibit exactly the same 

time dynamics following a microwave pulse. The two peaks must then correspond to 

electron and hole resonances. Since the two carriers in the pair are correlated by spin- 

dependent recombination, the resonance of either of these two species leads to the same 

overall change in “bright-to-dark” exciton population ratio; once perturbed, the system 

evolves freely to a steady-state condition in exactly the same way at the two magnetic 

fields (g-factors). This equality of resonant area and time dynamics makes a secure 

case for these carriers constituting a coupled state. It can be shown by analysis of the 

frequency components observed in coherent Rabi oscillations of the spin species that 

these signatures arise due to trapped carrier pairs experiencing negligible exchange and 

magnetic dipole-dipole interactions, but which are still strongly Coulombically bound. 

Since the external magnetic field lifts the degeneracy, the mutual spin orientation in 

the pair assumes either singlet or triplet character, but only while these carriers remain 

trapped and localized. Upon detrapping to band edge exciton states, this singlet-triplet 

character becomes projected onto the higher spin multiplicity which is well known to 

characterize the excitonic fine-structure [26, 27]. Therefore, changing the singlet to 

triplet content of trapped carrier pairs will modify the probability of moving the carrier 

pair back into one of the three radiative spin-allowed (“bright”) or two spin-forbidden 

(“dark”) exciton levels. Ultimately, this conversion of spin multiplicity under resonance 

changes the overall bright-to-dark state exciton population ratio once detrapping has 

occurred. Similar dependencies on mutual spin orientation exist for the emissive defect 

center, although we note that there is no information available on the nature of its exci

tonic fine structure. The remainder of this work focuses on the spin-resonant dynamics 

observed in emission from this deep-level trap center.

The magnetic resonance spectrum detected under emission from the defect in Fig

ure 4.2(e) exhibits four PL enhancement rather than quenching processes. Upon fitting 

the resonance structure, it is found that the same two coupled states that were observed 

under detection of the band edge emission channel (g1 « 2.00 and g3 « 1.85) are also 

present in resonant modulation of the defect emission, even though these are spectrally 

entirely distinct species. PL quenching of the band edge emission under resonance cor
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relates directly with PL enhancement of the defect emission. This conclusion is based 

not only on the equality of g -factors, but also, as before, on the identify of resonance ar

eas and free-evolution dynamics, summarized in Figure 4.2(f,g). Apparently, as carriers 

within the shallow band edge traps (the exciton “shelving” states) are placed in a mutual 

spin configuration corresponding to a “dark” state, the probability of charge transfer or 

relaxation to the emissive defect site is increased [28]. Two important consequences are 

implied by this result. One is that both electrons and holes are transferred to the emissive 

defect deep-level trap, suggesting that it is actually a defect cluster which can trap both 

carriers. Secondly, this mechanism serves as a direct observation of a circumvention 

process for the phonon bottleneck problem [29] of both carrier types. The additional 

two resonances comprising the primary central feature in the spectrum have previously 

received limited attention within cw ODMR investigations [20]. In bulk crystalline CdS, 

it was found that the pronounced lineshape anisotropies of multiple resonances indi

cate that this emissive defect is indeed a type of donor-acceptor complex [20] which 

can accommodate both carriers. In contrast, in CdS nanoparticles, this resonance was 

purported to arise due to strong carrier-pair exchange coupling [21].

4.6 Increased Dipolar Coupling of Shallow Trap States 
Associated with the Defect

Additional information on the nature of these spin states responsible for the ODMR 

signal of the deep-level defect can be gained through observing coherent Rabi oscilla

tions arising during application of the microwave field. Specifically, both spin multiplic

ity [30] as well as exchange [31] and dipolar [32, 33] interactions leave their imprint on 

the frequency components contained in the oscillation. Transitions between different 

Zeeman-split ms levels produce well-defined Rabi frequency components independent 

of driving field amplitude, whereas components due to interactions depend on the type 

of interaction and vary with field strength. By sequentially driving the carriers between 

bright and dark state mutual spin configurations during Rabi flopping, coherent nu

tation for each of the primary resonance features is demonstrated in Figure 4.3. Fig

ure 4.3(a) illustrates the coherent spin propagation scheme employed. Under detec

tion of the defect emission, Rabi flopping is shown in panel (b) for the two individual



105

Figure 4.3. Rabi oscillations and the half-field resonance give evidence for carrier-pair 
dipolar coupling. (a) Coherent Rabi oscillations are driven by a microwave field, which 
reversibly nutates the spin pair between optically bright and dark mutual spin configu
rations, enabling read-out of the spin state through the emission intensity. (b,c) Fourier 
transform of the Rabi oscillations of the emissive defect resonances g1 and g3 [as iden
tified in Figure 4.2(d)]; and of the convoluted resonances g4 and g5. The insets show the 
measured Rabi oscillations in the time domain. The frequency components observed 
in panel (b) indicate the occurrence of dipolar coupling, while those in (c) are difficult 
to assign due to the convolution of multiple resonances. (d) The half-field resonance 
confirms the existence of dipolar coupling for at least one of the full-field signals.
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resonance peaks g 1 (blue) and g3 (red), and in panel (c) for the overlapping peaks g4 

and g5 together (black). The Fourier transform of oscillations (raw data inset) is shown 

with a frequency scale normalized to the free-electron-spin nutation frequency, which 

is given by the product of the gyromagnetic ratio (y « 28.024 GHz/T) and the strength 

of the driving microwave field (B1 «  mT). The frequency spectrum of such a decaying 

oscillation exhibits a swept frequency response about the primary frequency compo

nent [34]. As reported in Chapter 3, when coherent spin precession for the g  1 and g3 

resonances is read out through the band edge emission channel, there is no signature 

of either exchange or dipolar interactions and the spin-multiplicity for each carrier is 

unambiguously S = 2. Surprisingly, when the same trapped carrier pairs are probed 

coherently, but instead Rabi information is accessed through deep-level chemical defect 

emission, a clear deviation from the previously observed frequency of j B 1 is noted (see 

Figure 3.7 and Section 3.6.4). Since spin multiplicity cannot lead to a frequency compo

nent lower than j B 1, some change in mutual spin interaction between the two carriers 

has apparently occurred. Also, exchange interaction produces multiple frequency com

ponents [31], not a single low-frequency component. Therefore, it may be presumed 

that dipolar interaction has been increased for these two trap states [32,33]. This change 

in character is likely induced by the proximity of the trap to the emissive defect cluster; 

the local structural environment of the surface is significantly altered by the S2- and 

Cd2+ vacancies [35], thereby perturbing the more shallow trap states as well. This struc

tural effect is witnessed by the subtle change in linewidth of a few mT for each of these 

resonances when going from band edge emission detection to defect emission detection 

(see the Gaussian fits of the lineshapes in Figure 4.2(f,g); for band edge emission, widths 

w1 = 5.7 mT and w2 = 8.6 mT; for defect emission, w1 = 6.7 mT and w1 = 5.8 mT). By 

monitoring the g1 and g3 resonances through defect emission, we therefore probe only 

that subset of shallow trap states which is both spatially and energetically associated 

with the deep cluster defect, thereby modifying the linewidths of the resonance slightly.

The Rabi oscillations taken at the central (g4 and g5) resonance feature display a 

strong frequency component at j B 1, but also at both higher and lower frequencies. In

terpreting such information is made difficult due to the fact that the resonance structure
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being probed actually involves a combination of resonant features (the broad g5 « 1.93 

and the sharper g4 « 1.94 species). Even if the frequency components of each reso

nance differ, they will become inseparably convoluted without higher-order measure

ment techniques (such as high-field ESR with control of the crystalline axis, shifting 

each resonance through orientation-specific crystal-field splitting). This convolution 

will only occur, though, for resonances where each feature experiences a sufficiently 

long coherence time to allow us to measure Rabi oscillations in the experiment (i.e. for 

T2 > 10 ns). Consequently, determining whether convolution of the dynamics of reso

nance species is a factor in the transient spectroscopy requires knowledge of coherence 

times. If the T2 time for each of these two resonances differ even slightly, then this should 

be discernible as a double exponential decay in a Hahn spin echo experiment. Such an 

experiment is described below, confirming convolution of resonance species.

Since the two satellite features (g1 and g3) of the pair process experience dipolar 

coupling as evidenced by the harmonics observed in the Rabi oscillations, a resonance 

at approximately half-field (ghf  «  4) is to be expected. Figure 4.3(d,e) shows that such 

a resonance is indeed observed. This type of (dipole-forbidden) transition provides 

evidence of dipolar interactions arising from the S = 1 content in at least one set of the 

full-field transitions. In principle, the features of such a resonance can be used to help 

establish a rough estimate of spin-pair distances, but information on the corresponding 

full-field signal is also required (i.e. g-factor, lineshape anisotropy, and spin-orbit cou

pling tensor), which is lacking here due to the presence of multiple resonances and their 

convolution. Finally, we note that there is no detectable half-field signal associated with 

the ODMR gained by monitoring the CdS band edge emission. Strong dipolar coupling 

of the spin pairs can therefore only arise when these pairs are associated with emission 

from the deep-level defect, implying that in such species, trapped electron and hole are 

spatially strongly correlated.

4.7 Probing Coherence and ESEEM with 
Optically Detected Hahn Echoes

The Hahn spin echo pulse sequence (outlined in Figure 4.4(a)) is relied upon in 

order to reveal the state multiplicity of the resonance about g  = 1.94 by means of the
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Figure 4.4. PL-detected Hahn spin echoes reveal slow spin dephasing and an environ
mental ESEEM signal. (a) The conventional Hahn echo pulse sequence is modified for 
ODMR in order to place the remaining state polarization into an optically observable 
state. (b) The decay of the spin echo recorded in defect emission for the center reso
nance feature [convolution of peaks g4 and g5, as labeled in Figure 4.2(d)] is biexpo
nential, suggesting the involvement of two independently resonant carriers under the 
same resonance condition with distinct dephasing pathways. The very long coherence 
time of one of these carriers allows probing of the corresponding chemical environment, 
leading to an electron spin-echo envelop modulation (ESEEM) of the signal. (c) ESEEM 
signal with the biexponential decay removed, and (d) corresponding Fourier transform.
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coherence lifetime of the different states. This conventional pulse sequence is designed 

to measure the persistence of coherence of a spin as a function of delay time between 

an initialization and an echo pulse. Here, the technique has been modified to suit the 

specifics of ODMR, which measures spin permutation symmetry rather than spin polar

ization as in conventional ESR. This adaptation requires a final f  -probe pulse in order 

to place the spin configuration back into an observable state (i.e. an optically bright 

or dark mutual spin configuration). The results of this measurement confirm that two 

long-coherence states are indeed probed at the broad resonance about g  = 1.94 (i.e. g4 

and g5), leading to the observed double exponential decay in echo magnitude as a func

tion of interpulse delay time as shown in Figure 4.4(b). Remarkably, the coherence of the 

longer-lived spin species persists into the microsecond timescale. Such long coherence 

times are reminiscent of diamond N-V centers. Even in diamond, coupling to nearby 

defects [36] can cause charge fluctuations [37] and dephasing. Such processes also likely 

occur here. Nevertheless, this particularly long-lived spin state in semiconductor nano

crystals could find utility in quantum information processing schemes [38]. We note 

that correlating each coherence time component in the echo signal decay to a respective 

magnetic resonance could be made possible with selective resonance detection using 

electron spin echoes observed beyond the shorter coherence lifetime, i.e. by temporally 

gating out the shortest-lived component.

Additional information on the immediate chemical environment of the spin state 

can be gained from the long-lived coherence. The pronounced modulation present in 

the envelope arises due to interactions between the spin of a trapped carrier and its local 

environment. Such an effect is referred to as electron spin echo envelope modulation, 

or ESEEM [39, 40]. Figure 4.4(c) shows the pure contribution of the echo signal due 

to ESEEM, with the biexponential echo decay removed. The corresponding Fourier 

transform of the ESEEM oscillations are given in panel (d) for illustration purposes. 

In the present case, ESEEM arises due to either hyperfine coupling with Cd nuclear 

magnetic moments or dipolar coupling with a nearby carrier. Differentiation between 

these two cases is at present made difficult due to the ambiguity of dipolar and hyperfine 

interaction strengths. Nonetheless, the modulation of the echo signal demonstrates the
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potential of using long-coherence states in colloidal nanocrystals as a local probe of the 

defect’s exact chemical environment.

4.8 Conclusion
In this study, we have shown how pODMR can be used as a probe of the chemical 

nature and electronic environment of various charge trap and emissive chemical defect 

states. Particular attention has been paid to describing the spin-resonant dynamics 

involved in the deep-level chemical defect emission common to CdS nanocrystals. It 

was found that shallow trap states which interact with band edge excitons also provide 

a relaxation channel to the lower-lying emissive defect state. The observed coherence 

phenomena in this trap-to-defect relaxation channel indicate that local structural trans

formations of the nanocrystal are induced by the defect center, causing increased mag

netic dipole-dipole coupling among the shallow-trapped electron-hole pairs nearby. 

The high degree of spatial localization and the resulting dipolar coupling of charges 

trapped as a result of the emissive defect are evidenced both in the PL-detected Rabi 

oscillations and in the presence of a pronounced resonance at half-field. Hahn spin echo 

measurements detected in the emission of the defect itself exposes the extremely long 

spin coherence lifetime of this center. At T2 « 1.6 /is at 3.5 K, this value is extraordinarily 

high for colloidal nanocrystals, even compared to magnetically doped particles [39]. In 

addition, the ESEEM signal opens up future possibilities for gaining insight into the spe

cific chemical and structural information needed in order to engineer this well-known

[14] yet incompletely characterized emissive defect out of the CdS nanocrystal synthesis 

process.

4.9 References

[1] O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. 
Beard, “Peak external photocurrent quantum efficiency exceeding 100% via MEG 
in a quantum dot solar cell,” Science 334, 1530-1533 (2011).

[2] C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green 
and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. 
Nanotech. 7, 335-339 (2012).



111

[3] V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and 
V. Bulovic, “Inkjet-printed quantum dot-polymer composites for full-color AC- 
driven displays,” Adv. Mater. 21, 2151-2155 (2009).

[4] J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, 
X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and
E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passiva
tion,” Nat. Mater. 10, 765-771 (2011).

[5] D. Zhitomirsky, I. J. Kramer, A. J. Labelle, A. Fischer, R. Debnath, J. Pan, O. M. Bakr, 
and E. H. Sargent, “Colloidal quantum dot photovoltaics: The effect of polydisper- 
sity,” Nano. Lett. 12, 1007-1012 (2012).

[6] F. M. Gomez-Campos and M. Califano, “Hole surface trapping in CdSe nano
crystals: Dynamics, rate fluctuations, and implications for blinking,” Nano Lett. 
12, 4508-4517 (2012).

[7] S. A. Fischer, A. M. Crotty, S. V. Kilina, S. A. Ivanov, and S. Tretiak, “Passivating 
ligand and solvent contributions to the electronic properties of semiconductor 
nanocrystals,” Nanoscale 4, 904-914 (2012).

[8] O. Voznyy, “Mobile surface traps in CdSe nanocrystals with carboxylic acid ligands,” 
J. Phys. Chem. C 115, 15927-15932 (2011).

[9] N. Chestnoy, T. Harris, R. Hull, and L. Brus, “Luminescence and photophysics of 
cadmium sulfide semiconductor clusters: The nature of the emitting electronic 
state,” J. Phys. Chem. 90, 3393-3399 (1986).

[10] D. V. Bavykin, E. N. Savinov, and V. N. Parmon, “Surface effects on regularities of 
electron transfer in CdS and CdS/CuxS colloids as studied by photoluminescence 
quenching,” Langmuir 15, 4722-4727 (1999).

[11] J. Zhao, G. Nair, B. R. Fisher, and M. G. Bawendi, “Challenge to the charging model 
of semiconductor-nanocrystal fluorescence intermittency from off-state quantum 
yields and multiexciton blinking,” Phys. Rev. Lett. 104, 157403 (2010).

[12] S. Rosen, O. Schwartz, and D. Oron, “Transient fluorescence of the off state in 
blinking CdSe/CdS/ZnS semiconductor nanocrystals is not governed by Auger re
combination,” Phys. Rev. Lett. 104, 157404 (2010).

[13] C. Galland, Y. Ghosh, A. Steinbruck, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and 
H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochem- 
istry of single quantum dots,” Nature 479, 203-207 (2011).

[14] A. Vuylsteke and Y. Sihvonen, “Sulfur cacancy mechanism in pure CdS,” Phys. Rev. 
113, 40-42 (1959).

[15] A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence 
intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110-1113 (1997).



112

[16] P. A. Frantsuzov and R. Marcus, “Explanation of quantum dot blinking without the 
long-lived trap hypothesis,” Phys. Rev. B 72, 155321 (2005).

[17] A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. 
Vos, “Statistical analysis of time-resolved emission from ensembles of semicon
ductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 
75, 035329 (2007).

[18] M. Jones, S. S. Lo, and G. D. Scholes, “Quantitative modeling of the role of surface 
traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics,” Proc. 
Natl. Acad. Sci. 106,3011-3016 (2009).

[19] M. Jones, S. S. Lo, and G. D. Scholes, “Signatures of exciton dynamics and carrier 
rrapping in the rime-resolved photoluminescence of colloidal CdSe nanocrystals,” 
J. Phys. Chem. C 113, 18632-18642 (2009).

[20] A. Edgar and J. Porsch, “Optically detected magnetic resonance from a complex 
donor in CdS,” Solid State Commun. 44, 741-743 (1982).

[21] E. Lifshitz, I. D. Litvin, H. Porteanu, and A. A. Lipovskii, “Magneto-optical proper
ties of CdS nanoparticles embedded in phosphate glass,” Chem. Phys. Lett. 295, 
249-256 (1998).

[22] S.-Y. Paik, S.-Y. Lee, W. J. Baker, D. R. McCamey, and C. Boehme, “T1 and T2 spin 
relaxation time limitations of phosphorous donor electrons near crystalline silicon 
to silicon dioxide interface defects,” Phys. Rev. B 81, 075214 (2010).

[23] R. M. Kraus, P. G. Lagoudakis, A. L. Rogach, D. V. Talapin, H. Weller, J. M. Lupton, 
and J. Feldmann, “Room-temperature exciton storage in elongated semiconductor 
nanocrystals,” Phys. Rev. Lett. 98, 017401 (2007).

[24] D. R. McCamey, S.-Y. Lee, S.-Y. Paik, J. M. Lupton, and C. Boehme, “Spin-dependent 
dynamics of polaron pairs in organic semiconductors,” Phys. Rev. B 82, 125206 
(2010).

[25] S. Brovelli, C. Galland, R. Viswanatha, and V. I. Klimov, “Tuning radiative recombi
nation in Cu-doped nanocrystals via electrochemical control of surface trapping,” 
Nano. Lett. 12, 4372-4379 (2012).

[26] A. Efros, M. Rosen, M. Kuno, M. Nirmal, D. Norris, and M. Bawendi, “Band-edge 
exciton in quantum dots of semiconductors with a degenerate valence band: Dark 
and bright exciton states,” Phys. Rev. B 54, 4843-4856 (1996).

[27] P. Horodyska, P. Nemec, D. Sprinzl, P. Maly, V. N. Gladilin, and J. T. Devreese, 
“Exciton spin dynamics in spherical CdS quantum dots,” Phys. Rev. B 81, 045301
(2010).

[28] J. Davies, “Energy transfer effects in ODMR spectra: A possible source of misinter
pretation,” J. Phys. C: Solid State Phys. 16, L867-L871 (1983).



113

[29] D. Schroeter, D. Griffiths, and P. Sercel, “Defect-assisted relaxation in quantum dots 
at low temperature,” Phys. Rev. B 54, 1486-1489 (1996).

[30] A. V. Astashkin and A. Schweiger, “Electron-spin transient nutation: A new ap
proach to simplify the interpretation of ESR spectra,” Chem. Phys. Lett. 174, 595
602 (1990).

[31] A. Gliesche, C. Michel, V. Rajevac, K. Lips, S. D. Baranovskii, F. Gebhard, and
C. Boehme, “Effect of exchange coupling on coherently controlled spin-dependent 
transition rates,” Phys. Rev. B 77, 245206 (2008).

[32] M. E. Limes, J. Wang, W. J. Baker, S. Y. Lee, B. Saam, and C. Boehme, “Numeri
cal study of spin-dependent transition rates within pairs of dipolar and strongly 
exchange coupled spins with (5 = 1/2) during magnetic resonant excitation,” 
ArXiv:1210.0950 [cond-mat.mtrl-sci].

[33] R. Glenn, M. E. Limes, B. Saam, C. Boehme, and M. E. Raikh, “Analytical study 
of spin-dependent transition rates within pairs of dipolar and strongly exchange 
coupled spins with (S = 1/2) during magnetic resonant excitation,” ArXiv:1210.0948 
[cond-mat.mtrl-sci].

[34] R. Glenn, W. J. Baker, C. Boehme, and M. E. Raikh, “Analytical description of spin- 
Rabi oscillation controlled electronic transitions rates between weakly coupled 
pairs of paramagnetic states with S = 1/2,” ArXiv:1207.1754 [cond-mat.mtrl-sci].

[35] Y. R. Wang and C. B. Duke, “Cleavage faces of wurtzite CdS and CdSe: Surface 
relaxation and electronic structure,” Phys. Rev. B 37, 6417-6424 (1988).

[36] B. Naydenov, F. Reinhard, A. Lammle, V. Richter, R. Kalish, U. F. S. D’Haenens- 
Johansson, M. Newton, F. Jelezko, and J. Wrachtrup, “Increasing the coherence time 
of single electron spins in diamond by high temperature annealing,” Appl. Phys. 
Lett. 97, 242511 (2010).

[37] L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Per- 
ruchas, T. Gacoin, M. Chaigneau, H.-C. Chang, V. Jacques, and J.-F. Roch, “Surface- 
induced charge state conversion of nitrogen-vacancy defects in nanodiamonds,” 
Phys. Rev. B 82, 115449 (2010).

[38] J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. Van de Walle, and
D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 
8513-8518 (2010).

[39] S. T. Ochsenbein and D. R. Gamelin, “Quantum oscillations in magnetically doped 
colloidal nanocrystals,” Nat. Nanotech. 6, 112-115 (2011).

[40] F. Hoehne, J. Lu, A. Stegner, M. Stutzmann, M. Brandt, M. Rohrmuller, W. Schmidt, 
and U. Gerstmann, “Electrically detected Electron-Spin-Echo Envelope Modula
tion: A highly sensitive technique for resolving complex interface structures,” Phys. 
Rev. Lett. 106, 196101 (2011).



CHAPTER 5

SUMMARY OF WORK 

5.1 Work in Context
Colloidal nanocrystals are a very interesting material system with inherent flexibility 

that exists well beyond their size tunable band gap. The choice in boundary conditions 

on their electronic states is quite large given the wide variety of semiconductor mate

rials, heterostructure configurations, and geometric dimensions available. Thus, these 

nanocrystals serve as a rich playground for observing single, paired, and multicharge 

dynamics under a range of parameter configurations. Although ferromagnetic doping 

effects on these electronic states have certainly been a popular avenue of exploration, 

paramagnetic effects have remained largely overlooked.

The work presented in this dissertation hopefully serves as an example of how pow

erful electron spin resonance techniques, with pulsed ODMR in particular, can be when 

applied to this material system. Access to various charging conditions (energetic traps, 

chemical defects, etc.), while traditionally difficult to probe directly, were readily avail

able in the studies presented in this work. Time-dependent spin resonance effects were 

particularly useful here, which enabled subtle resonance features to be distinguished 

and correlated. Also, the surprisingly long phase-coherence time for some of these states 

allowed for information on charge-carrier localization to be approached, spin identities 

to be determined, and probes of carrier-pair and environmental coupling to be con

sidered. Beyond the use of optically active paramagnetic states as local environmental 

probes, quite novel effects can also be demonstrated, such as spatially remote read-out 

of spin information and spin-dependence in light-harvesting processes. In all, there 

remain many exciting opportunities for similar work to be explored in the future.
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