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ABSTRACT 

 

Virtual point lights (VPLs) provide an effective solution to global illumination 

computation by converting the indirect illumination into direct illumination from many 

virtual light sources. This approach results in a less noisy image compare to Monte Carlo 

methods. In addition, the number of VPLs to generate can be specified in advance; 

therefore, it can be adjusted depending on the scene, desired quality, time budget, and the 

available computational power. 

In this thesis, we investigate a new technique that carefully places VPLs for providing 

improved rendering quality for computing global illumination using VPLs. Our method 

consists of three different passes. In the first pass, we randomly generate a large number 

of VPLs in the scene starting from the camera to place them in positions that can 

contribute to the final rendered image. Then, we remove a considerable number of these 

VPLs using a Poisson disk sample elimination method to get a subset of VPLs that are 

uniformly distributed over the part of the scene that is indirectly visible to the camera. 

The second pass is to estimate the radiant intensity of these VPLs by performing light 

tracing starting from the original light sources in the scene and scatter the radiance of 

light rays at a hit-point to the VPLs close to that point. The final pass is rendering the 

scene, which consists of shading all points in the scene visible to the camera using the 

original light sources and VPLs. 

  



 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my wife, Arezou, 

to my mother, Shahnaz, 

to my father, Reza, 

to my sister, Nahid, 

and to my brothers, Alireza, Hamidreza, Farid, and Morteza, 

without whom none of my success would be possible. 



 

 
TABLE OF CONTENTS 

 

ABSTRACT ................................................................................................................. iii 

LIST OF FIGURES .................................................................................................... vii 

ACKNOWLEDGEMENTS ....................................................................................... viii 

Chapters 

1: INTRODUCTION .................................................................................................... 1 

1.1 Global Illumination with Virtual Point Lights (VPLs) ................................. 1 

2: BACKGROUND ...................................................................................................... 4 

2.1 Rendering with Virtual Lights ...................................................................... 5 
2.2 Approximating Global Illumination Using Virtual Lights ........................... 6 

2.3 Efficient Methods for Many-lights ............................................................. 11 
2.4 Sample Elimination for Generating Poisson Disk Sample Sets.................. 16 

3: BLUE NOISE VPLS .............................................................................................. 19 

3.1 Overview ..................................................................................................... 19 
3.2 VPL Placement ........................................................................................... 20 
3.3 VPL Generation and Elimination................................................................ 21 

3.4 VPL Radiant Intensity Estimation .............................................................. 22 
3.5 Final Rendering ........................................................................................... 23 

4: RESULTS ............................................................................................................... 24 

4.1 U-shaped Scene ........................................................................................... 24 
4.2 Veach Door Scene....................................................................................... 29 
4.3 Sponza Scene .............................................................................................. 32 

5: CONCLUSION ....................................................................................................... 35 

REFERENCES ........................................................................................................... 36 

  



 

 

 
LIST OF FIGURES 

 

Figures 

1.1: Direct illumination, indirect illumination, global illumination .............................. 2 

2.1: Regular VPLs vs. Rich-VPLs ................................................................................ 9 

2.2: Transport path connecting the camera to the light source ................................... 10 

2.3: Sample scene........................................................................................................ 12 

2.4: Light tree .............................................................................................................. 14 

2.5: Three light cuts .................................................................................................... 15 

3.1: Placing VPLs starting (a) from the camera and (b) from the light source ........... 20 

3.2: VPLs in Sponza scene.......................................................................................... 22 

4.1: U-shaped scene rendered by path tracing. ........................................................... 25 

4.2: U-shaped scene from the top. .............................................................................. 26 

4.3: Comparison of VPLs generated from (a) the camera and (b) the light source. ... 27 

4.4: Comparison of (a) blue noise VPLs and (b) random VPLs. ................................ 28 

4.5: Veach door scene rendered by path tracing. ........................................................ 29 

4.6: Comparison of VPLs generated from (a) the camera and (b) the light source. ... 30 

4.7: Comparison of (a) blue noise VPLs and (b) random VPLs. ................................ 31 

4.8: Sponza scene rendered by path tracing. ............................................................... 32 

4.9: Comparison of VPLs generated from (a) the camera and (b) the light source. ... 33 

4.10: Comparison of (a) blue noise VPLs and (b) random VPLs. .............................. 34  



 

 

 
ACKNOWLEDGEMENTS 

 

I would like to express my sincere gratitude to my advisor, Professor Cem Yuksel, for 

his continuous support, knowledge, wisdom, and kindness throughout my education at 

The University of Utah. 

My sincere thanks also go to Ian Mallet for his valuable guidance during this 

research.



 

 
CHAPTER 1  

 

INTRODUCTION 

 

Image synthesis, which is one of the core functions of Computer Graphics, is creating 

images from some description data. Photo-realistic image synthesis aims to simulate the 

interaction of light with objects in the real world. The process of rendering an image from 

a scene file describing all objects, lights, materials, etc. is called rendering. The goal of 

this process is finding the colors of points in the scene which are visible to the camera. To 

find the color of each point, we need to compute the outgoing illumination from that 

point to the camera.  

 

1.1 Global Illumination with Virtual Point Lights (VPLs) 

The incoming illumination at a point x can be separated into direct illumination 

(coming directly from the light sources), and indirect illumination that indicates the 

reflected light from other points in the scene. Global illumination (GI) refers to the 

combined illumination including both direct and indirect illumination (Figure 1.1) and 

computing global illumination can be difficult and time consuming, but it is usually the 

indirect illumination component that is computationally very expensive. 

Computing global illumination is a hard problem because light can reflect from 

almost any object in a scene and that object will act as a light source (by reflecting the 



2 

 

incoming light shining on it) in the scene, even if it is not a light emitter itself. Therefore, 

to compute the correct illumination at a surface point visible by a camera, we need to 

compute all light coming from any direction from both light sources in the scene and 

other objects reflecting light to that point, which, at least in theory, requires a recursive 

computation. At each light bounce from an object surface, light can be reflected in any 

direction, depending on the material properties of the surface, and the reflected light can 

continue to bounce off of other surfaces in the scene in arbitrary directions. Computing 

all possible light paths in a scene is very difficult and needs a lot of time and 

computational power. 

One approach for computing global illumination is converting indirect illumination 

into direct illumination from multiple virtual point lights (VPLs), which was first 

introduced by Keller [1997]. The idea is that instead of computing indirect light coming 

from all directions in the scene, we can render a scene in two passes. First, we do light 

tracing, starting from light sources in a scene and place a VPL, storing the radiant 

intensity of the light ray, wherever the light ray hits a surface. In the second pass, the 

objects are rendered using only direct illumination from these VPLs and light sources. In 

 

Figure 1.1: Direct illumination, indirect illumination, global illumination 
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fact, by applying this technique, we approximate the global illumination with only direct 

illumination. As a result, we can estimate the global illumination and generate an output 

image with less noise compare to other techniques. 

In this thesis, I investigate different methods of placing VPLs for improving the 

convergence of the lighting computation. 

Thesis Statement: Uniformly distributing VPLs to the surfaces that indirectly 

illuminate the points visible to the camera can produce improved rendering quality for 

computing global illumination using VPLs. 

 The particular algorithm we investigate consists of three different passes: 

In the first pass, we randomly generate lots of VPLs in the scene and place them in 

the positions that can contribute to the final rendered image by tracing light paths starting 

from the camera. Then we remove a considerable portion of these VPLs using a sample 

elimination method [Yuksel 2015] to get a subset of VPLs that are uniformly distributed 

all over part of the scene that is relevant for the camera view. The goal is placing VLPs 

spatially evenly over the part of the scene that is indirectly visible to the camera. 

The second pass is to estimate the radiant intensity of these VPLs by doing light 

tracing from original light sources in the scene and scattering the radiance carried by each 

light ray to the VPLs near the point it hits. 

The final pass is rendering the scene that consists of shading all points in the scene 

which are visible to camera using original light sources in the scene and the VPLs we 

generated in the first pass. The illumination from the original light sources corresponds to 

direct illumination, and the illumination from the VPLs corresponds to indirect 

illumination, as in all VPL-based global illumination computation methods. 



 

 
CHAPTER 2  

 

BACKGROUND 

 

Rendering Equation (Equation (2.1)) is an integral over all possible incoming light 

directions that can be reflected towards a specific direction, which is, directly or 

indirectly, visible to the camera. The outgoing light at a point includes all emitted and 

reflected light by the surface point, which depends on surface geometry, material, and 

lights in the scene. 

𝐿𝑜(𝑥, 𝜔𝑜) = 𝐿𝑒(𝑥, 𝜔𝑜) + ∫ 𝑓𝑟(𝑥, 𝜔𝑖, 𝜔𝑜)𝐿𝑖(𝑥, 𝜔𝑖)(𝜔𝑖 ⋅ 𝑛)𝑑𝜔𝑖
𝛺

,  (2.1) 

where 𝐿𝑜(𝑥, 𝜔𝑜) is the total radiance of light going out in direction 𝜔𝑜, from a point 𝑥, 

𝐿𝑒(𝑥, 𝜔𝑜) is emitted radiance, Ω is the unit hemisphere aligned with the surface normal 

vector 𝑛 containg all possible values for 𝜔𝑖, 𝑓𝑟(𝑥, 𝜔𝑖, 𝜔𝑜) is bidirectional reflectance 

distribution function (BRDF) with respect to light coming from 𝜔𝑖 and going to 𝜔𝑜 at 

point 𝑥, 𝐿𝑖(𝑥, 𝜔𝑖) is incoming radiance, 𝜔𝑖 is negative incoming light direction, and 𝑛 is 

the surface normal at point 𝑥. 

Rendering Equation was introduced by Kajiya [1986] and the goal of all physically-

based rendering algorithms is to compute this equation to estimate the outgoing radiance 

at any point. Solving this equation is the aim of photo-realistic rendering and there are 

several different methods proposed by graphics researchers over the years, including 
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finite element methods like the radiosity algorithm [Cohen et al. 1993], and Monte Carlo 

methods like path tracing [Kajiya 1986], photon mapping [Jensen & Christensen 1995], 

and Metropolis light transport (MLT) [Veach & Guibas 1997], just to give a few 

examples. 

 

2.1 Rendering with Virtual Lights 

The VPL-based global illumination computation methods place many secondary light 

sources in a scene and then approximate the light transport using only direct illumination 

from these secondary light sources. This approach results a less noisy image compare to 

Monte Carlo methods. In addition, the number of VPLs to generate can be specified in 

advance, and therefore, it can be tweaked depending on the scene, desired quality, time 

budget, computational power budget, etc.  

To approximate the illumination at a point, we can use Equation (2.2) which is 

derived from the rendering equation. 

𝐿𝑜(𝑥, 𝜔𝑜) ≈ 𝐿𝑒(𝑥, 𝜔𝑜) + ∑ 𝑓𝑟(𝑥, 𝜔𝑖, 𝜔𝑜)𝐿𝑖(𝑥, 𝜔𝑖)𝑐𝑜𝑠𝜃

𝑁

𝑖

 (2.2) 

where 𝜃 is the angle between surface normal at point 𝑥 and the incoming light direction, 

𝑁 is the number of VPLs, and 𝐿𝑖 is incoming illumination from VPL 𝑖. 𝐿𝑖 can be 

computed as 

𝐿𝑖 = 𝐼𝑖 𝑐𝑜𝑠𝜙
1

𝑑2
, (2.3) 

where 𝐼𝑖 is the intensity of VPL 𝑖, 𝜙 is the angle between surface normal where the VPL 

is placed and the light direction at point 𝑥, and 𝑑 is the distance between point 𝑥 and 
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VPL’s position. This equation makes the VPL approximate a Lambertian emitter at the 

surface point it is placed, thereby emulating diffuse reflection of indirect illumination off 

of the surface. 

Prior work on rendering with virtual lights can be grouped into two categories. The 

first category contains the techniques that are developed for approximating global 

illumination by computing direct illumination from many virtual lights. The second 

category consists of techniques that aim to efficiently render a scene that contains a large 

number of (virtual) light sources. 

 

2.2 Approximating Global Illumination Using Virtual Lights 

Instant Radiosity [Keller 1997] is a rendering algorithm introduced by Keller and it is 

the core of VPL-based global illumination methods. Instant Radiosity combines the 

advantages of quasi-random walk and Rendering Equation to generate an output image 

by rendering a scene to several buffers, assuming only diffuse surfaces, and then 

generating the final rendered image by summing up the buffers into an accumulation 

buffer. 

To render a scene, initially N particles are selected to start off the light source 

randomly or using a quasi-Monte Carlo sequence. For each particle, the scene is rendered 

into a buffer, assuming the particle is the only point light source in the scene. Then, 𝑘𝑁 

rays are shot into the scene and at each hit-point, the particle is attenuated by the BRDF 

of the surface at the hit-point and the scene is rendered again for each new particle. In the 

next step, 𝑘2𝑁 particles are generated and sent into the scene; this process is repeated 

until a maximum path length is reached. At the end, all rendered buffers are summed up 
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and then divided by number of buffers, which is equal to number of particles created.  

One difficulty with the VPL-based global illumination methods is that they generate a 

large number of light sources and illuminating a scene using a large number of light 

sources can be computationally expensive. This problem is often referred to as the many-

lights problem. 

Since the introduction of Instant Radiosity, many researchers proposed new 

techniques based on many-lights methods because of their artifact-free outputs and 

scalability [Dachsbacher et al. 2014]. The many-lights techniques can be summed up in 

two main categories: the techniques to solve the global illumination problem using many 

virtual lights, and the techniques to render a scene which has many-lights faster and more 

efficiently. 

Wald et al. [2002] introduced a new parallel global illumination algorithm with 

highly efficient sampling and scalability. They achieve interactive rates by precomputing 

point lights, using photon map only for caustics, interleaved sampling, and using an 

efficient randomized quasi-Monte Carlo integration. 

Wald et al. [2003] achieved interactivity for highly occluded scenes by introducing an 

importance sampling technique that is efficient in those types of scenes. In this method, 

an estimate of each light’s importance, computed by an eye path tracer, is used to steer 

the rendering budget more toward the most important light sources in the scene. 

Dachsbacher & Stamminger [2005] approximate global illumination by calculating 

the incoming illumination from some VPLs generated based on the shadow map, without 

considering the occlusion. For each shading pixel, the corresponding pixel in the shadow 

map is found. Then, hundreds of pixels around the shading pixel in the shadow map are 
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selected and these pixels are treated as VPLs. The direct illumination coming from these 

VPLs roughly approximate the indirect illumination for the shading pixel. 

Segovia et al. [2006] generate VPLs both from the camera and from the light sources 

and using different estimators, a subset of VPLs with a density proportional to the power 

that is received by the camera is chosen. Georgiev & Slusallek [2010] pick a subset of 

VPLs by a sample rejection method and Segovia et al. [2007] sample VPLs by a modified 

MLT approach. 

Hašan et al. [2009] introduced virtual spherical lights (VSLs) to capture the 

illuminations that cannot be captured by VPL easily. The advantage of using sphere 

lights, instead of point lights, is that they can be used to prevent loss of energy, due to 

using diffuse VPLs, in the scenes with glossy surfaces. 

VPLs are not suitable for representing glossy materials, because VPLs usually take 

only one direction to account and this is a very small fraction of light bouncing back from 

a glossy surface. Therefore, the VPLs need to represent multiple light paths to be efficient 

for glossy surfaces. In contrast to regular VPLs, Rich-VPLs [Simon et al. 2015] represent 

a lot of light paths, so they can contribute more to simulate glossy surfaces (Figure 2.1). 

To sample a light path 𝑋, vertex 𝑥1 at camera and 𝑥𝑘 at light source, we compute light 

transport by 

𝑇(𝑋) = 𝑊(𝑥1) (∏ 𝐺𝑥𝑖↔𝑥𝑖+1

𝑘−1

𝑖=1

) (∏ 𝑓(𝑥𝑖)

𝑘−1

𝑖=2

) 𝐿(𝑥𝑘), (2.4) 

where 𝑊(𝑥1) is the importance of the sensor, 𝐺𝑥𝑖↔𝑥𝑖+1
 is the geometry term when going 

from vertex 𝑥𝑖  to vertex 𝑥𝑖+1, 𝑓(𝑥𝑖) is BRDF at surface point 𝑥𝑖, and 𝐿(𝑥𝑘) is the emitted 

radiance. 
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To give an example, we consider a light path length of 3 or greater. The light 

transport can be written as multiplication of sensor importance 𝑊(𝑥3) reaching 𝑥3, 

BRDF 𝑓(𝑥3), and the radiance 𝐿(𝑥3) reaching 𝑥3 

𝑇(𝑋) = 𝑊(𝑥3) ∙  𝑓(𝑥3) ∙ 𝐿(𝑥3), 𝑎𝑛𝑑  

𝑊(𝑥3) = 𝑊(𝑥1) ∙ 𝐺𝑥1↔𝑥2
∙ 𝑓(𝑥2) ∙ 𝐺𝑥2↔3, 𝑎𝑛𝑑  

𝐿(𝑥3) = 𝐿(𝑥𝑘) (∏ 𝐺𝑥𝑖↔𝑥𝑖+1

𝑘−1

𝑖=3

) (∏ 𝑓(𝑥𝑖)

𝑘−1

𝑖=4

) (2.5) 

This is the same as creating a VPL at 𝑥3 with emission 𝑓(𝑥3)𝐿(𝑥3), illuminating 

surface point 𝑥2 which is visible to camera (Figure 2.2). Therefore, Simon et al. proposed 

to sample VPL locations proportional to the product of the total importance reaching a 

 

Figure 2.1: Regular VPLs vs. Rich-VPLs 
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surface point and the total incident radiance reaching that point. 

To estimate the emission profile of each VPL, a photon map is created and then close 

photons are lumped together to estimate the light going out at a VPL. Because the light 

going out can have different directions and these directions can vary a lot, each Rich-

VPL should store an approximation of all these light paths. This approximation is done 

differently for highly-glossy surfaces and moderately-glossy surfaces because the 

reflection of light is focused to a very small angle for highly-glossy surfaces, but that’s 

not the case for moderately-glossy surfaces. In addition, VPLs on diffuse surfaces need 

only to store the outgoing light, because diffuse surfaces reflect the light almost evenly in 

any direction. 

To place the VPLs in a scene, Rich-VPLs method takes a different approach: the 

position of the VPLs is proportional to sensor importance times radiance. The purpose of 

 

Figure 2.2: Transport path connecting the camera to the light source 
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this placement is to keep VPLs that are more important, i.e., they contribute more to the 

output image visible by the camera. The argument behind this placement strategy is that 

the VPLs should be positioned in the places that there is a lot of energy and they are 

visible by camera paths, either in the first sub-paths or farther. There is also an optional 

iterative relaxation step that can distribute VPLs in a scene, based on the idea proposed in 

photon relaxation paper [Spencer & Jones 2009]. 

 

2.3 Efficient Methods for Many-lights 

Prior to Instant Radiosity, Ward [1994] improved rendering a scene with many light 

sources by pre-computing the shadows of the light sources. In this technique, the shadow 

casted by each light source is computed. Then, only light sources with strong enough 

shadows are considered for shading the scene. Shirley et al. [1996] proposed a new 

technique for defining a probability density function for computing direct illumination 

with only one sample, consequently reducing the rendering time. 

Paquette et al. [1998] proposed a method using an octree to cluster the lights in a 

scene. In this octree, each node represents all the light sources it contains. In the shading 

pass, the error caused by rendering with these representative lights is calculated. A 

quality parameter based on the calculated error is computed such that it determines the 

path that should be taken in the hierarchy light structure. In each level, if the shading 

quality is not satisfactory, a lower level node in the hierarchy structure is chosen for the 

shading. 

Local Illumination Environments was introduced [Fernandez et al. 2002] to speed up 

direct lighting in the scenes with many light sources by storing data related to occlusion, 
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geometric and radiometric into an octree. Each octree includes a set of lights and 

corresponding occluders in the scene. The lights in the octree are classified into three 

categories: fully visible, fully occluded, and partially occluded. Using this structure helps 

faster computation of direct illumination due to the fact that there is no need to send 

shadow rays for fully visible and fully occluded lights. 

The Lightcuts method [Walter et al. 2005] is an important improvement for many-

light methods that speeds up the rendering process a lot by taking a different approach. In 

Lightcuts, a special binary tree, called a light tree, is created for all point light sources in 

a scene (Figure 2.3). In this light tree, the lights in the scene are clustered together based 

on similarity in direction and intensity. The goal is to cluster similar lights in a way that 

they can be represented by a single light source, so that the number of light sources to be 

 

Figure 2.3: Sample scene 
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used in the final rendering step is reduced significantly. After creating a light tree for a 

scene, it can be used for shading any desired point in the scene; therefore, building a light 

tree is a one-time operation. At the end of this step, the root node of the light tree is one 

single light source which represents all light sources in the scene.  

The radiance coming from direct illumination of a set of point lights can be written as 

𝐿𝑆(𝑥, 𝜔) = ∑ 𝑀𝑖(𝑥, 𝜔)𝐺𝑖(𝑥)𝑉𝑖(𝑥)𝐼𝑖

𝑖∈𝑆

, (2.6) 

where 𝑆 is a set of point lights, 𝐿 is radiance cause by direct illumination at a surface 

point 𝑥, 𝑥 is a surface point, 𝜔 is view direction, 𝑀𝑖 is material term, 𝐺𝑖 is geometric 

term, 𝑉𝑖 is visibility term, and 𝐼𝑖 is intensity. 

Since the radiance should be calculated for every light source in a scene, the cost of 

computation is linear in number of light sources. To convert this linear computation to 

sub-linear, Lightcuts clusters similar lights together and specifies a representative light 

for each cluster 

𝐿𝐶(𝑥, 𝜔) = ∑ 𝑀𝑖(𝑥, 𝜔)𝐺𝑖(𝑥)𝑉𝑖(𝑥)𝐼𝑖

𝑖∈𝐶

, (2.7) 

where 𝐶 is a cluster, 𝐶 ⊆ 𝑆, that is a set of point lights. 

To compute the direct illumination from a cluster, we can use properties of the 

representative light to approximate the actual direct illumination of the cluster. 

𝐿𝐶(𝑥, 𝜔) ≈ 𝑀𝑗(𝑥, 𝜔)𝐺𝑗(𝑥)𝑉𝑗(𝑥) ∑ 𝐼𝑖

𝑖∈𝐶

, (2.8) 

where 𝑗 ∈ 𝐶 is the representing light of the cluster 𝐶. 
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The intensity of a cluster, 𝐼𝐶 = ∑𝐼𝑖, can be pre-computed and stored in the cluster. To 

form a light cluster properly, a light tree (Figure 2.4), which is binary tree, is created. In a 

light tree, leaf nodes are individual lights and the interior nodes are light clusters. Each 

light cluster is representing the lights that are stored in its child nodes. These child nodes 

can be either an individual light source or another light cluster. 

Rendering a scene with a light cluster, instead of the actual light sources, can lead to 

artifacts in the final image. To minimize these artifacts, selecting a cluster is done in a 

way that the radiance estimation error, caused by the cluster selection, is so insignificant 

that the final rendered image is visually plausible to the viewer.  

To render a scene, each point is illuminated by only a subset of light sources in the 

scene. This subset is called a light cut (Figure 2.5) and each representative light in the 

subset is guaranteed to contain less than a user-defined percentage (typically set as 2%) 

of the total illumination coming to a point. Consequently, for shading a point in a scene, 

only a small subset of light sources is used in direct illumination computation, which 

 

Figure 2.4: Light tree 



15 

 

results in a much faster rendering process. 

In Lightcuts, the error bound calculation is very conservative and it is measured as a 

percentage of the light coming to the surface. Therefore, a light cut may include too many 

light sources in dark areas of a scene. To prevent this, there is limit for maximum number 

of light sources that can be in a light cut. If the limit is reached while computing the light 

cut, the point is shaded regardless of estimated error. 

Hašan et al. [2007] proposed Matrix Row-Column Sampling (MRCS) which is 

similar to Lightcuts. Lightcuts computes a light cut for each point in the scene, but 

MRCS computes a single cut for the whole scene. There are some advantages and 

disadvantages to this approach. The first advantage is that the VPL importance can be 

done by computing shadow maps for the scene, which is faster if it is done in hardware 

level in GPU. The other advantage is that in MRCS, there is no need to find error bounds, 

because the cut is for the whole scene, not only one point in the scene. So, this 

information could be used throughout the process of rendering a scene, at least for one 

frame. The problem with MRCS is that because the cut is computed for some small 

number of VPL samples and then all other VPLs are mapped to these primary VPLs, it 

can produce some artifacts, especially for glossy surfaces. 

 

Figure 2.5: Three light cuts 
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LightSlice [Ou & Pellacini 2011] combines ideas of Lightcuts and MRCS to improve 

the computation of a light cut. Lightcuts re-computes a light cut for each point and this is 

computationally expensive, because this computation could be done multiple times. But 

for many of the points in a scene that are close to each other, the cut is the same. 

LightSlice finds these similar light cuts and uses the same computed light cut for the next 

points. In fact, LightSlice improves performance of the light cut computation by caching 

the computed light cuts for nearby points and using this data for the next light cut 

computation. Frederickx et al. [2015] extended LightSlice to work with virtual ray lights 

(VRLs). In this technique, the optimum number of light clusters is calculated adaptively. 

Kollig & Keller [2006] proposed a method to avoid singularity caused by rendering a 

scene using VPLs. The method relies on a path tracing step to eliminate the artifacts 

caused by clamping the illumination of too-close VPLs. Engelhardt et al. [2012] 

introduced an approximate bias compensation to simulate participating media without 

any pre-computation. Novak et al. [2012] proposed a progressive algorithm to render 

indirect transport paths in volumetric media by generating virtual beam lights (VBLs) and 

avoiding the clamping too-close virtual lights. Huo et al. [2016] proposed a technique to 

efficiently gather the contributions of virtual lights in participating media. In this 

technique, only a small number of elements in “adaptive matrix column sampling” is 

considered to compute the final gathering of virtual lights.  

 

2.4 Sample Elimination for Generating Poisson Disk Sample Sets 

Due to the nature of random samples, randomly generated VPLs may be positioned in 

the places that are not useful for rendering the scene in the final pass. To achieve a higher 
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quality in the rendered image, we need to control where these VPLs are placed in a scene. 

We observed that VPLs that are too close to each other will waste the computational 

budget in the final rendering pass, and they can be represented by a single VPL if it is 

placed appropriately. Additionally, in some cases, there was no VPL in certain areas of 

the scene and this caused some artifacts in the final output image. 

To prevent these situations, we need to uniformly distribute VPLs in the scene to 

increase the quality of the rendered image and to decease the rendering time 

simultaneously. 

Yuksel [2015] proposed a method for generating Poisson disk samples via sample 

elimination that picks a subset of a sample set with the desired output size, rather than 

relying on a user-defined Poisson disk radius, such that the output subset has the blue 

noise property of Poisson disk sample sets. The advantage of specifying the subset size is 

that for many problems, it is more important to have a specific number of samples rather 

than to have samples that are farther than a specific radius. 

To find the desired samples, a greedy algorithm is used that assigns a weight to each 

sample based on the distance to the neighbor samples, then removes the sample with the 

highest weight. After this sample removal, the weight of all samples around should be 

adjusted again. 

To compute the weight 𝑤𝑖 of a sample 𝑖, the weight contribution 𝑤𝑖𝑗 of all samples 𝑗 

is added up only if the sample 𝑗 is within 2𝑟𝑚𝑎𝑥 distance of sample 𝑖, and 𝑖 ≠ 𝑗. 

𝑤𝑖𝑗 = (1 −
�̂�𝑖𝑗

2𝑟𝑚𝑎𝑥
)

𝛼

, �̂�𝑖𝑗 = 𝑚𝑖𝑛 (𝑑𝑖𝑗, 2𝑟𝑚𝑎𝑥) (2.9) 
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𝑟𝑚𝑎𝑥 value is different in various sampling domains, for example, 𝑟𝑚𝑎𝑥 = √
𝐴2

2√3𝑁
 in 

2D and 𝑟𝑚𝑎𝑥 = √
𝐴3

4√2𝑁
 in 3D, where 𝐴2 and 𝐴3 are the area and volume of the sampling 

domain. 

To achieve a better sample set, Yuksel advises that the initial sample set size should 

be 3 to 5 times greater than the desired size at the end. For example, if there is a need for 

10K samples with Poisson disk sample properties, 50K samples should be generated and 

then, using this technique, 40K samples are eliminated to get the evenly distributed 10K 

samples at the end. 

 

 



 

 
CHAPTER 3  

 

BLUE NOISE VPLS 

 

3.1 Overview 

Usually, many-light methods generate VPLs by starting from light sources, but in our 

algorithm, we start from the camera, because these VPLs contribute more to the final 

rendered image. The idea is that the illumination at the points visible by a camera comes 

directly from the VPLs visible by that point. Therefore, the best locations for VPLs are 

the secondary hit-points of camera rays, so that the VPLs can illuminate the points visible 

by the camera. This prevents placing a VPL on locations that, at the end, do not 

contribute to the final rendered image either due to occlusion from other objects in a 

scene, or because the outgoing illumination of the VPL is so low that it does not affect 

the color of a shaded surface point as much (Figure 3.1). 

Briefly, to find the best VPL locations, firstly, a lot of VPLs are generated randomly 

and placed all over the scene. Then, many of these VPLs are eliminated using Poisson 

disk sample elimination technique. The result of this technique is that VPLs are 

distributed evenly in the scene and they are ready for the next step for radiance intensities 

computation. 

To find the radiant intensity of VPLs, we do light tracing and to do that, we shoot a 

lot of photons from each light source in the scene proportional to their power. When a 
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photon hits a surface, we scatter the photon’s energy to the VPLs near that hit-point. 

The next step is to bounce the photon and repeat this process until either the photon 

does not hit anything or it reaches its maximum bounces. 

At the end, we render the scene with the VPLs. To speed up the rendering step, we 

use Lightcuts, since Lightcuts computes the illumination for each point by using only a 

proper subset of VPLs in the scene, selected differently for each shaded point. 

 

3.2 VPL Placement 

Most algorithms that use VPLs for indirect illumination start from the light sources 

and trace light rays to find the position of VPLs in a scene. This make sense, since a VPL 

represents a light source and intuitively they should be traced from light sources. The 

problem with this approach is that in many cases, these VPLs do not contribute to the 

final image as much because they may not be reachable by the points that are visible by 

 

 (a) (b) 

Figure 3.1: Placing VPLs starting (a) from the camera and (b) from the light source 
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camera (Figure 3.1 (b)). 

In contrast, we start from camera to place VPLs in a scene. The reason why we do 

this is that the VPLs that are generated from camera paths are guaranteed to contribute to 

the output image. Also, we start placing VPLs in the scene after the first diffuse bounce, 

because the first diffuse hit-point is where we want to shade in the final rendering step 

and this hit-point could be illuminated by other VPLs in the scene (Figure 3.1 (a)). 

 

3.3 VPL Generation and Elimination 

Starting from the camera, a ray is generated and for each hit-point, we place a VPL at 

that point only if it is after the first diffuse bounce. 

Notice that these VPLs are not actual virtual point lights, but merely placeholders. 

The term VPL might be confusing in this context because the VPLs are, in fact, point 

lights. But in this pass, our VPLs neither have radiant intensity nor have been generated 

from a light source. As a matter of fact, these VPLs are placeholders for the actual VPLs 

that we use in the last pass. For the moment, these VPLs store only surface normal and 

position of the hit-points. 

We skip placing VPLs at the hit-points before a diffuse bounce because in the last 

pass, we shade this very first diffuse hit-point using the VPLs we generated. Therefore, 

there is no need to put a VPL at this point. In addition, it should be after a diffuse bounce 

because if the first hit is a specular bounce, we should trace the ray for the next bounce to 

approximate the illumination coming to that point. 

The number of random VPLs generated in this step is 5 times larger than what we 

need for the rendering step, as advised by Yuksel [2015]. After generating all VPLs, we 
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eliminate most of them using the method that we described in section 2.4. Since the 

method works with specifying the number of output samples, we know exactly how many 

VPLs we remove from this set and how many VPLs remains in the scene. The resulting 

set of VPLs after this elimination, having more pronounced blue noise characteristics, is 

distributed evenly in the scene (Figure 3.2) and this helps generate an output image with 

higher quality.  

 

3.4 VPL Radiant Intensity Estimation 

To estimate the radiant intensity of VPLs generated in the previous step, we shoot lots 

of photons from each light source in a scene and trace them for any intersection with the 

objects in the scene. After a hit, we look around that hit-point in a specific radius to find 

VPLs in that area and scatter the energy of the photon to those VPLs. The photon’s 

energy is distributed evenly among these VPLs, regardless of their distance to the hit-

point. This may shift the energy distribution in the scene a little, but because the radius 

that we look for VPLs is very small, it does not cause any visual artifacts in the rendered 

 

Figure 3.2: VPLs in Sponza scene. Middle: Rendered image. Left: 10K Random VPLs. Right: 

10K blue noise VPLs (after elimination).  
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image. 

Then, depending on the BRDF at the hit-point, the photon’s energy is adjusted and 

the photon bounces to the next direction. This process is repeated until either the photon 

does not hit anything in the scene or it exceeds the maximum number of bounces. The 

whole photon shooting process is repeated until the maximum number of photons desired 

are shot for all lights in the scene. 

No photon information is stored in this step and all the computation is done on the 

fly. At the end of this step, we have a collection of nicely distributed VPLs with 

computed radiant intensities that are a good estimation of light transport in the scene. 

 

3.5 Final Rendering 

To render a scene, we shoot camera rays into a scene and at each hit-point, we shade 

that point in two parts: First, we compute direct illumination coming from original light 

sources to that point. This is done by sending shadow rays to each light source and 

calculate the occlusion factor and radiance coming from each light source. Second, we 

shade the point using direct illumination from the VPLs we generated before. The direct 

illumination from these VPLs is, in fact, the estimation of indirect illumination for the 

aforementioned hit-point. 

To compute the direct illumination from VPLs, we use Lightcuts, as we described in 

section 2.3. Using Lightcuts adds some error to the illumination computation of surfaces, 

but speeds up the rendering process significantly. 

At the end, the output color of each point is the sum of direct illuminations from both 

original light sources and VPLs in the scene. 



 

 
CHAPTER 4  

 

RESULTS 

 

For implementing our algorithm, we used Embree, a high-performance ray tracing 

framework developed by Intel, as the core of our code. We added our implementation of 

blue noise VPLs on top of Embree's path tracer. 

All images in this chapter are rendered using a Windows 10 PC with an Intel Core i7-

6700 3.4GHz Quad-Core Processor and 16GB of memory. To generate the reference 

images for each scene, we used the path tracer included in Embree. 

For each scene, we assess the effectiveness of our technique in two areas. First, we 

show the differences in the output image of a scene generated by placing VPLs in the 

scene starting from the camera, compare to the output image of the scene generated by 

placing VPLs starting from the light sources. The second comparison is between 

rendering the scene with and without Poisson disk sampling for placing VPLs generated 

from the camera. For each scene, the reference image is shown before any comparison. 

 

4.1 U-shaped Scene 

In this scene (Figure 4.1), two rooms are connected by a narrow passage at the end. A 

light source is placed in the room on the right and we placed some objects, including a 

Utah teapot, in the room on the left (Figure 4.2). There is no light source in the left room, 
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so all illumination reaching the teapot (and other objects) comes from the light source in 

the right room after a couple of bounces off of the walls. Therefore, the only illumination 

visible to the camera is indirect illumination, reflected from the walls.  

To render this scene, we generated 10M photons from the light source and 3K VPLs 

and rendered the scene using 8 samples per pixel. As it is shown in Figure 4.3, the output 

image is much dimmer when we generate VPLs from the light source (Figure 4.3 (b)). 

The reason is that the number of VPLs visible by the camera is very small because most 

of the VPLs are placed in the right room. However, if we use a very large number of 

 

Figure 4.1: U-shaped scene rendered by path tracing. 
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VPLs, both approaches converge to the same image. 

Aside from the image brightness, there are some other differences in the shadows on 

the red wall. Shadows are smoother and artifacts are fewer in the image rendered by 

VPLs from the camera. These artifacts are common due to the nature of shading with 

VPLs. 

 

Figure 4.2: U-shaped scene from the top. 
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The image quality is higher in Figure 4.3(a) because a substantial portion of the VPLs 

generated from the camera contribute to the final image, as compared to the VPLs 

generated from the light source, most of which are not visible from the points visible to 

the camera. 

The second comparison is for testing the effect of using Poisson disk samples in VPL 

distribution. Figure 4.4 shows the differences between randomly generated VPLs and 

blue noise VPLs, both generated from the camera. 

 

 

 (a) (b) 

Figure 4.3: Comparison of VPLs generated from (a) the camera and (b) the light 

source. 
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The main differences between the two images are the artifacts in the teapot's shadow. 

In Figure 4.4(b), a number of distinct shadows are visible, while in Figure 4.4(a), the 

shadows appear soft. Also, there is a spot on the red wall where the shadow of the green 

box is shown. In Figure 4.4(b), the shadow consists of a couple of dark areas, but the 

same spot is correctly rendered in Figure 4.4(a). Because the VPLs in Figure 4.4(a) are 

uniformly distributed, the rendered scene contains fewer artifacts.  

 

 

 

 (a) (b) 

Figure 4.4: Comparison of (a) blue noise VPLs and (b) random VPLs. 
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4.2 Veach Door Scene 

A recreation of the famous Veach door scene [Veach & Guibas 1997] includes a door 

that is slightly open and is the only light source is in the room behind that door (Figure 

4.5). Only a small percentage of the light in the other room (containing the light source) 

goes through the door and illuminates the room, where the camera is.  

To render this scene using blue noise VPLs, we generated 6K VPLs and 10M photons 

 

Figure 4.5: Veach door scene rendered by path tracing. 
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and rendered the scene using 8 samples per pixel. We set up the same scenarios, as we 

did for the previous scene, to compare the results. Figure 4.6 demonstrates the output 

images of the scenes rendered by VPLs from the camera and VPLs from the light source. 

As expected, when we rendered the scene using VPLs from the light source, the 

output image is almost completely dark. There are only some spots near the door that 

were illuminated due to the fact that in Figure 4.6(b), only a small portion of VPLs are 

positioned in the room visible by the camera. When the VPLs are generated from the 

light source, this scene requires much more VPLs for approximating the lighting in the 

room with the camera. In comparison, when the VPLs are generated from the camera, we 

can capture the illumination by tracing a large number of photons for determining the 

intensities of those VPLs, as shown in Figure 4.6(a). 

 

 (a) (b) 

Figure 4.6: Comparison of VPLs generated from (a) the camera and (b) the light 

source. 
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In the next comparison, we rendered the scene with and without Poisson disk 

sampling for placing the VPLs generated from the camera (Figure 4.7). 

Like the previous scene, there are more artifacts in the Figure 4.7(b), especially in the 

shadow casted by the teapot on the table. In addition, the illumination of bright spots on 

top of the door is more accurate in the image rendered using VPLs generated by Poisson 

disk sampling technique. 

 

 

 (a) (b) 

Figure 4.7: Comparison of (a) blue noise VPLs and (b) random VPLs. 
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4.3 Sponza Scene 

To render the Sponza scene (Figure 4.8) [McGuire 2011], we generated 3K VPLs and 

10M photons and rendered the scene using 8 samples per pixel. Since the number of 

VPLs is small, the image rendered by VPLs from camera is brighter than the image 

rendered by VPLs from the light source (Figure 4.9), because many of the VPLs 

generated from the light source are positioned in the places that do not contribute to the 

rendered image.  

 

Figure 4.8: Sponza scene rendered by path tracing. 
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As it is shown, the quality of the image in Figure 4.9(a) is higher because we rendered 

the scene using VPLs generated from the camera. Besides, the illumination of the scene is 

more plausible.  

In Figure 4.10, the image rendered by blue noise VPLs has higher quality in the 

bright spot on the left side of the scene. Since the VPLs are evenly distributed in the 

scene, the output image is more realistic (Figure 4.10 (a)) compared to the image 

rendered by randomly generated VPLs (Figure 4.10 (b)). 

 

 

 (a) (b) 

Figure 4.9: Comparison of VPLs generated from (a) the camera and (b) the light 

source. 
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 (a) (b) 

Figure 4.10: Comparison of (a) blue noise VPLs and (b) random VPLs. 



 

 
CHAPTER 5  

 

CONCLUSION 

 

Blue noise VPLs is a new technique for improving the quality of rendered images 

using VPLs. Generating VPLs from a camera causes the VPLs to contribute better to the 

illumination of the points visible by a camera. Furthermore, Poisson disk sampling results 

in a uniformly distributed set of VPLs in the part of the scene that is indirectly visible to 

the camera, which consequently generates an output image with fewer visible artifacts. 

Thus, the tests included in this thesis demonstrate that careful placement of VPLs in 

the scene such that the VPLs are neither too-close-to nor too-far-from each other results 

in improved rendering quality. There are some situations in which the quality differences 

are more noticeable, especially in the scene that the light’s frustum does not intersect 

with the camera frustum as much.  
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