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A B S T R A C T 

As microelectronics continue to scale, the transistor delay decreases while the 

wire delay remains relatively constant or even increases. The wire or interconnect 

delay is quickly becoming the key performance limiting factor in integrated circuit 

design. This thesis is designed to determine the feasibility of replacing conventional 

diffusive wires with transmission lines and to compare the tradeoffs of the two 

systems. The transmission lines propagate signals at the speed of light in the 

medium and are much less dependent on repeaters than comparable diffusive wires. 

Therefore, the transmission line system has potentially large power and perfor­

mance benefits. To compare the tradeoffs, five important design metrics are used: 

propagation delay, power consumption, maximum throughput, area requirements, 

and noise tolerance. The transmission lines prove to be an excellent replacement 

for diffusive wires especially as the length passes 500 /im. For a 1 cm interconnect, 

the transmission line shows more than a 90% improvement in delay and more 

than an 80% improvement in energy per bit transmitted. In practice, fabricating 

transmission lines on real integrated circuits is a difficult process because they 

require precise resistance, inductance, and capacitance parameter extraction. Using 

tools specially developed by Mentor Graphics for this thesis, the necessary wire 

dimensions to produce various transmission lines are calculated for in IBM's 65 nm 

process. 
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C H A P T E R 1 

MOTIVATION 

Current microelectronics design and fabrication are two of the greatest feats of 

technology and science in recorded history. A pioneer in the field, Gordon Moore 

predicted as early as 1965 that the total number of transistors in an integrated 

circuit (IC) will double every year [1]. Ten years later while serving on the board of 

Intel, he modified this number to doubling every two years. The idea, later termed 

Moore's Law, became a self-fulfilling prophecy for semiconductor design houses. 

Industry began to make their future designs to follow this law. Initially assumed to 

last for approximately 10 years, Moore's Law has been correctly determining the 

path for semiconductor scaling for nearly 40 years, as seen in Figure 1.1. 

The speed of these processors has been doubling every generation due to signifi­

cant decreases in transistor delay. In synchronous digital design, the clock controls 

the speed of the IC. Two components, wire delay and transistor delay, dictate the 

minimum period of the clock. The transistor transit time, r, is given by [2] 

n(Vas - Vr 

where L is the channel length, /;, is the electron mobility, VQS is the gate-to-source 

voltage, and Vy is the threshold voltage for the MOSFET. According to constant 

field scaling (all dimensions and applied voltages are multiplied by s = 0.7), the 

transit time also scales by 5 . This transit time is the minimum time required for 

a charge placed on the gate to result in a transfer of a charge through the channel 

onto the gate of another transistor and has historically been a figure of merit in 

semiconductor performance [2]. 

(i.i) 
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Although transistor delay decreased exponentially, the wire delay decreased at a 

much slower rate. Wire delay is proportional to the resistance and capacitance of the 

wire. According to simple first order models, the wire's resistance and capacitance 

are 

where L, w, t, and p are the wire's length, width, thickness, and resistivity, 

respectively, e is the relative dielectric permittivity of the media, d is the distance 

to the next conductor, and A is the area of the metal facing the nearest conductor. 

These equations give the resistance of a rectangular wire and the capacitance of a 

wire modeled as two parallel plates. The wire delay is the product of these two 

equations. As semiconductors scale, all the physical dimensions scale. The material 

properties, however, do not scale; occasionally, they are replaced by new materials 

that make small improvements. Overall, the physical dimension scaling dominates 

the time constant for the interconnects. 

Assuming that these parameters remain constant, the R scales by 1/s and C 

scales as s according to constant field scaling. Therefore, the wire delay remains 

constant. In order to better scale the wire delay, manufacturers do not scale the 

wires uniformly: the thickness scales much more slowly than the other dimensions 

in order to decrease the resistance. This phenomenon is shown in Figure 1.2. 

The cross section shows that the upper metal layers remain thicker than the lower 

layers to reduce the wire resistance. Copper replaced aluminum wires to decrease 

resistivity, and new insulators are used to decrease the capacitance. With all of 

these innovative solutions, the wire delay still does not scale very well. 

As technology scales from the 250 nm node to the 32 nm node, the gate delay 

decreases over 80%, as seen in Figure 1.3. The delay of a global wire with repeaters 

(1.2) 

and 

(1.3) 
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more than doubles, and the delay of global wire without repeaters increases by 

more than a factor of 50. Although Figure 1.3 shows relative numbers, Table 1.1 

shows some absolute numbers for these technology nodes. Combining both sets of 

information gives a clear picture of the growing interconnect crisis. 

Furthermore, as semiconductor technology continues to scale, a larger percent­

age of nets will require repeaters. If current trends continue, then most of the 

available cells in a circuit block will be repeaters. At the 90 nm node, roughly 6% 

of the cells are repeaters [6]. On the other hand, at the 32 nm node, 70% of the cells 

will be repeaters, as shown in Figure 1.4 [6], if current trends continue. Current 

wire scaling trends will not be able to meet the demands of future process nodes 

due to excessive power consumption and layout area. Other solutions are necessary 

as wire delay becomes the critical performance limiting factor. 

Table 1.1. Delays for intrinsic devices and wires for various process nodes (adapted 
from [5]). 

Tech. Nodejnm] 250 180 150 130 100 70 

Device intrinsic delay [ps] 
1mm wire[ps] 

2cm unoptirnized[ps] 
2cm optimized [ps] 

Projected clock period [ps] 

70.5 51.1 48.7 45.8 39.2 21.9 
59 49 51 44 52 42 

2080 1970 2060 2070 2890 3520 
890 790 770 700 770 670 
1333 833 714 625 500 400 

(j 
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C H A P T E R 2 

INTRODUCTION 

Current publications show a plethora of approaches to solve the interconnect 

problem, including the use of optics, radio frequency (RF) transmission, carbon 

nanotubes, and transmission lines. Each has unique advantages and disadvantages. 

2.1 Optical Interconnects 
Optical transmission is one solution that promises very high speed wave prop­

agation for longer wires. The propagation delay of optical interconnects (OIs) 

are over 50% less than electrical interconnect systems [7]. Unfortunately, OIs 

require additional complex transmitter and receiver circuitry that add a fixed 

amount of delay regardless of the interconnect length. Without faster transmitters 

and receivers, only very long wires over 1 cm long have less delay than electrical 

interconnects [7]. Furthermore, building all the necessary optical devices (e.g., laser 

source, quantum well modulators, and photo detectors) on silicon is very costly 

and difficult. Many of these devices do not perform well and have a very large 

footprint [8]. 

OIs usually require off-chip laser sources due to the poor light emitting proper­

ties of silicon. As these devices improve, OIs will outperform electrical interconnects 

over 1 cm long [8]. In addition to a delay penalty due to the extra circuitry, a power 

penalty is associated with any optical interconnect that eliminates the power savings 

of using less repeaters: there is a critical length of 18 cm to 20 cm depending on the 

process node where the OIs consume less power than electrical interconnects, as 

shown in Figure 2.1 [9]. For higher required bit rates, the critical length decreases. 

Therefore, optical interconnects will have a smaller delay and consume less power 
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than electrical interconnects for very long wires (over 10 cm) and may be a viable 

solution to interchip communication. 

2.2 Radio Frequency (RF) Interconnects 
Utilizing recent developments in wireless communications, an alternative in­

terconnect approach is an RF interconnect (RFI). RFIs use various algorithms to 

encode and transmit data. One such implementation using code division multiple 

access (CDMA) transmitted data at the rate of 100 Gbps/pin [10]. Similar to OIs, 

RFIs require a large amount of overhead to implement any RFI independent of the 

interconnect length. This circuitry includes analog components that require large 

amounts of area that do not scale well in future process nodes. If the RFI is not 

wireless, then carefully designed transmission lines or wave guides are necessary 

to maintain signal integrity while sending these high frequency signals. If the 
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10 

interconnect is wireless, area intensive antennas must also be built. Furthermore, 

wireless communication is more likely to be affected by noise than other interconnect 

schemes. The overhead adds power and delay to any RFI interconnect. Figure 2.2 

shows the measured and predicted power consumption of the transceiver pairs for 

various process nodes. A comparison of Figure 2.1 and 2.2 shows that the RFIs 

require less power than the OIs as technology scales. At the 32 nm node, both of 

these interconnects, however, only consume less power than electrical interconnects 

at lengths over 10 cm. Therefore, RFIs are an excellent option for transmitting 

large amounts of data between different circuits. For point to point communication, 

however, it is not a good option except for very long distances. 

2.3 Carbon Nanotube Interconnects 
A more exotic interconnect implementation is the use of carbon nanotubes 

(CNT). Unlike OIs and RFIs, the CNT interconnects do not require special transceivers 

for sending and receiving data. Although a single CNT has a high resistance, 

a bundle of CNTs has much lower resistance than copper wires assuming low 

resistance contacts [12]. Unfortunately, a bundle of CNTs has a higher capacitance 

than copper wires due to the multiple conductors in close proximity. Each carbon 

0.35nm 0.18nm 0 . 1 3 ^ 0.1 Ô m 0.07flm 0.05jim 0.035|im 
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Figure 2.2. RF transceiver-pair power consumption [11] ©2001 IEEE 
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nanotube is capacitively coupled to the surrounding tubes, which makes the delay 

of CNT local wires greater than copper local wires. Intermediate and global wires 

are faster than copper wires, as shown in Figure 2.3. The performance benefits of 

CNT compared to copper wires at the 45 nm will be negligible but may be 80% 

faster at the 22 nm node [13]. This requires a high bundle density, a ground 

plane beneath the bundle to reduce capacitance, and perfect contacts for all of 

the CNTs. Bundles that would be useful for interconnects require a much higher 

CNT density than has been currently produced [12]: a bundle needs approximately 

106 CNTs/ / /m 2 whereas current research has only produced less than 100 CNTs/ 

/iin2 [14]. CNT technology is still a very nascent field that does not have the yield 

necessary for commercial integrated circuit fabrication. 

2.4 Transmission Line Interconnects 
Transmission lines (TLs) are a very attractive solution to the interconnect 

problem for intrachip communication. The TLs can be implemented by placing 

two coplanar wires next to each other, which makes them easy to implement in any 

semiconductor process. Through numerous computer simulations, studies show 

that coplanar TLs can propagate signals near the speed of light in silicon dioxide 

(1/2 the speed of light in a vacumn) if designed properly [2]. Additionally, due 

to the low loss nature of TLs, they consume far less energy per bit, especially 

Dense CNT Bundle Intermediate Level Interconnects 

Figure 2.3. CNT interconnect delay compared to copper wire delay [12] 
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as semiconductors continue to scale [15]. Figure 2.4 compares the energy per bit 

consumption of transmission lines (DTL) with other interconnect implementations 

such as conventional optimized wires (RC), optics (OPT) , and carbon nanotubes 

(CNT). The number indicates the process node (e.g., RC90 indicates the 90 nm 

node for an optimized wire). The transmission lines are a very energy efficient 

solution. 

Additionally, the delay for the transmission lines is very competitive with the 

other interconnects, as shown in Figure 2.5 [15]. A very exciting future solution 

may be transmission lines built from carbon nanotubes; the carbon nanotube 

transmission lines would be a fraction of the size of their metal counterparts. 

Therefore, the TLs can propagate signals at very high speeds for a small amount 

of energy and can be designed for any semiconductor process by the designer; it 

does not require any process changes. The main negative tradeoffs of TLs consist 

of an area and a noise penalty. The TLs require three relatively wide wires to 

run in parallel, which requires more area in the routing metal layers. Minimum 

pitch wires are not a viable option due to their increased susceptibility to variation. 

Line length [mm] 
Figure 2.4. Energy comparison of various interconnect implementations [15] 
©2006 IEEE 
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This makes it much more difficult to precisely control the characteristic impedance. 

Since they require fewer repeaters, however, less silicon and contact routing space 

are required. 

Due to their inductive properties, TLs are much more susceptible to noise than 

other implementations due to reflections. TLs rely on changing magnetic and 

electric fields to propagate a signal. The signal integrity is not only dependent 

on the conductor properties but is also very dependent on the conductor geometry 

and insulator properties. Every time one of these changes (e.g., the driver connects 

to transmission line, the transmission line forks, or the transmission line connects 

to the receiver), the impedance can potentially change, which leads to reflections. 

The reflections can be mitigated by designing matched impedance drivers and 

designing receivers with hysteresis. Matched drivers reduce the amplitude of the 

noise, and the hysteretic receivers prevent the system from responding to the noise. 

Furthermore, using modern circuit parameter extraction programs such as Calibre 

from Mentor Graphics, the inductance effects can be accurately modeled well before 

fabrication. 
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Although each interconnect implementation has a unique set of advantages and 

disadvantages, transmission lines are potentially best suited to transmit signals for 

long intermediate and global wires on a single IC. As the wire becomes very long 

for interchip communication, then other solutions such as wireless RF and optical 

transmission become better options. Future high performance ICs will require 

different interconnects for different lengths of wire: conventional metal wires for 

local interconnect, transmission lines for intermediate and global wires, and RF or 

optical transmission for very long global wires and interchip communication. This 

thesis is designed to investigate and quantify the advantages of transmission lines 

over diffusive wires with optimally spaced repeaters for intermediate and global 

wires. 

2.5 IBM 65 nm Process Parameters 
Another goal of this thesis is to provide the necessary framework and prepa­

rations to build a test chip to compare the benefits and tradeoffs of transmission 

lines and diffusive wires. In order to observe the transmission line benefits, the 

test chip must be built in the most modern process available, as explained in 

Chapter 1. The best process available through MOSIS is the IBM CMOS10SF 

process. This corresponds to 50 nm physical gate lengths and 100 nm minimum 

transistor widths [16] and will be referred in this study as the 65 nm process based 

on the printed gate length. The 2007 ITRS report explains that there are currently 

"multiple drivers of scaling" and that it is misleading to refer to a node by a 

single highlighted driver [17]. Memory devices such as DRAM are pushed by the 

minimum metal pitch whereas MPUs and ASICs are pushed by the minimum poly 

pitch, as seen in Figure 2.6. Many of the models in the thesis rely on various process 

parameters. These are placed in Table 2.1 as a reference for the rest of the report. 

Different combinations of these layers are available to the designer depending on 

which metalization option is selected. 
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Table 2.1. CMOS 10SF IBM process parameters (adapted from [16]) 
Layer Name Min. Min. Thickness Notes 

Width 
[/mi] 

Spacing 

H 
H 

M l 0.09 0.09 0.135 
M2-6 0.10 0.10 0.175 
Bl-4 0.20 0.20 0.350 2x thickness 

in low-k 
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BA,BB,BD-BG 0.20 0.20 0.350 2x thickness 
in TEOS/FTEOS 
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EA, EB 0.40 0.40 0.570 4x thickness 
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LB 2.40 1.40 1.325 required 
top aluminum 
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C H A P T E R 3 

DIFFUSIVE W I R E MODELING A N D 

SIMULATION 

Conventional wires with optimally spaced repeaters were modeled and used as 

the reference point since the majority of IC designers currently use them. For 

this wire optimization scheme, long wires are divided into segments of length h. 

Repeaters that are k times the size of a minimum sized inverter are placed between 

the wire segments, as shown in Figure 3.1. The necessary parameters for the 

simulation were based on a study that derived circuit parameters for various process 

nodes [18] using the 2001 ITRS report. Ideally, the 2007 ITRS report would have 

been used, but this would have required repeating the simulations in the study. 

According to the derivation [18], the delay per unit length is optimized when 

the distance between repeaters, hopt, and the sizing, kopt, are 

where rs is the output resistance, c0 is the input capacitance, and cp is the output 

parasitic capacitance of a minimum sized repeater (i.e., k =1). The remaining pa-

(3.1) 

(3.2) 

Figure 3.1. Diffusive wire repeater spacing, /i, and sizing, k 
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rameters, r and c, are the resistance and capacitance per unit length of interconnect, 

respectively. 

3.1 Minimum Width Wires 
The resistance per unit length was found by dividing equation (1.2) by the 

length, L. Finding the capacitance per unit length was more complex. The 

model assumes that there are two contributions to capacitance for each metal wire. 

First, each conducting wire is capacitively coupled with the nearest conductor: this 

contribution is given by ca. Secondly, there is a capacitance between the metal wire 

and the surrounding metal layers which is proportional to the insulator thickness, 

tins. This capacitance is found by multiplying tiUS and cj,. Assuming dense routing, 

Table 3.1 gives the value of these parameters that were found by using a FASTCAP 

[19] parameter extraction program. Therefore, the capacitance per unit length is 

equal to 

C = Ca + C-btins (3-3) 

The optimal repeater spacing and sizing were determined for various process 

nodes using equations (3.1), (3.2), (3.3), and Table 3.1. Table 3.1 shows the 

various values used. Table 3.2 shows the results calculated with Matlab. Note 

that the resistance rises dramatically due to wire scaling. The capacitance remains 

relatively constant. The nearest conductor contribution decreases: the product of 

the insulator permittivity and wire thickness scaling factors are less than the wire 

spacing scaling factor. The conductor-to-next layer capacitance increases because 

the distance from the conductor to the substrate is scaled more aggressively than 

the wire dimensions and dielectric constant of the insulator. These factors cancel 

each other out. Table 3.2 also confirms that the number of necessary repeaters 

is increasing rapidly, as shown by Saxena [6]. These parameters were used in the 

Spice simulations for the diffusive wire. 
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Table 3.1. Circuit parameters for top metal layers based on 2001 ITRS report [18] 
Tech. Node[nm] 130 90 65 45 

Width [nm] 335 230 145 103 
Thickness [nm] 670 482 319 236 

tm.s[H 6.3 4.7 3.9 2.9 
( r 3.3 2.8 2.5 2.1 

c0[fF/mm] 207 181 165 143 
c6[fF/^m2] 0.057 0.071 0.103 0.116 

6.23 9.04 9.6 13.2 
c0[fF] 1.33 1.1 1.03 0.9 
cp[fF] 3.32 2.04 1.22 0.6 

Table 3.2. Interconnect parameters for top layer metal [min. pitch wires] (calcu­
lated using Matlab) 

Tech. Node[nm] 130 90 65 45 
r[mO//im] 76.6 155.2 371.9 707.6 
c[fF//mi] 0.566 0.515 0.566 0.479 

1156 843 453 342 
186 165 119 99.7 

The repeater spacing, h,opt, for the 65 nm node wires is 453 /mi, as shown in Ta­

ble 3.2. In VLSI design, the repeaters can not always be placed at the exact desired 

locations due to other design constraints. Similarly, for the simulations done here, 

the repeaters were placed every 500 /mi. The result is a nearly optimal diffusive 

wire: it will have slightly more delay but less power consumption. Nalamalpu shows 

that a single repeater placed 40% away from the optimal location causes up to a 

7% increase in delay in a 130 nm process [20]. The repeaters consist of inverters 

that are kopt times the size of a minimum inverter. Figure 3.2 shows the outputs 

for diffusive wires constructed in this manner of lengths 2500 /im, 5000 //m, and 

10000/mi. The state of the output (inverted or noninverted) depend on whether or 

not an odd or even number of repeaters were placed on the wire. 
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~~=e-c~h-. ~N~o~de~~ [n-m~] ~11~13~O--~9~0--~6~5----4-5--

r[mD/ fLm] 76.6 155.2 371.9 707.6 
c[fF / fLm] 0.566 0.515 0.566 0.479 
hupdfLm] 1156 843 453 342 

k upt 186 165 119 99.7 

The repeat er spacing, h opt , for the 65 nrn nocle wires is 453 I lUl , as shown in Ta­

ble 3.2. In VLSI clesign , the repeaters can not always be placed at the exact clesired 

locations clue to other clesign constraints. Silllilarly, for the silllulations clone here, 

the repeaters were placecl every 500 fLlll. The re~;ult is a nearly opt illlal diffusive 

wire: it will have slightly more delay but less power consumption. Nalam alpu shows 

that a single repeater placed 40% away from the optimal location causes up to a 

7% increase in delay in a 130 nm process [20] . The repeaters consist of inverters 

that are kopt times the size of a minimum inver ter . Figure 3.2 shows the outputs 

for diffusive wires constructed in this manner of lengths 2500 fLm, 5000 ILm , and 

10000fLm. The state of t he output (inverted or noninverted) depend on whether or 

not an odd or even number of repeaters were placed on the wire. 



19 

Diffusive wires (minimum pitch) 
(V) : Time(seconds) 

(V) : Time(seconds) 

(V) : Time(seconds) 

(V) : Tirne(seconds) 

Input Voltage 

I I I I I I I 
0.0 5 0 0 p 1n 1.5n 2n 2.5n 3n 

Time(seco nd s) 

Figure 3.2. Diffusive wire output (using minimum pitch wires and IBM 65nm 
Spice models) 

3.2 Diffusive Wire Results: Latency and Power 
Figures 3.3 to 3.12 show the power consumption (Figure 3.3 and Figure 3.4), 

rise times (Figure 3.5), fall times (Figure 3.6), propagation delays (Figure 3.7, 

Figure 3.8, Figure 3.9, and Figure 3.10), and the maximum bandwidth (Figure 3.11 

and Figure 3.12) for minimum pitch wires in the top metal layer. The frequency 

for all the simulations was one gigahertz except for the maximum bandwidth 

simulations. The bandwidth was measured by increasing the input frequency until 

the output did not swing between 10% and 90% VDD. 
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Figure 3.3. Diffusive wire power consumption (dynamic - 1 GHz) 
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Figure 3.4. Diffusive wire power consumption (short interconnects) (dynamic - 1 
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Figure 3.5. Diffusive wire rise times (1 GHz) 
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Figure 3.6. Diffusive wire fall times (1 GHz) 
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Figure 3.5. Diffusive wire rise times (1 GHz) 
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Figure 3.7. Diffusive wire propagation delays (rising) (1 GHz) 
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Figure 3.8. Diffusive wire propagation delays (rising) (short interconnects) (1 
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Figure 3.7. Diffusive wire propagation delays (rising) (1 GHz) 
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Diffusive wire propagation delay (falling) 
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Figure 3.9. Diffusive wire propagation delays (falling) (1 GHz) 
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Figure 3.11. Diffusive wire maximum bandwidth 
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Figure 3.12. Diffusive wire maximum bandwidth (short interconnects) 
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3.3 Noise Tolerance 
Two noise tolerance simulations were performed to measure both the transient 

and the propagated noise tolerance of each system. The transient analysis con­

sisted of switching the input voltage quickly (~1 ps) and measuring the settling 

time. Since the diffusive wires operate in the RC domain, they do not suffer from 

reflections due to impedance mismatch. The wire's resistance contributes far more 

to the wire's impedance than the wire's inductance. Therefore, the settling times 

for the diffusive wires are the same as the rise and fall times shown in the figures 

in section 3.2. 

To simulate the propagated noise analysis, a DC sweep on the input was per­

formed. The diffusive wires use the same size inverter for the driver and the 

repeaters. The driver had a range of 200 mV where the output was between 

the required 10% to 90% VDD values. By sending the voltage through multiple 

repeaters, however, this range decreased significantly; the range was 26 mV after 

the first repeater and 3 mV after two repeaters, as shown in Figure 3.13. Therefore, 

as long as the steady state noise does not move the repeater input between 500-700 

mV, the noise will not be propagated to the next stage. To truly determine the 

noise tolerance, noise must be added to each stage to model the effects of various 

system components such as power supply jitter and wire coupling. 

3.4 Area Requirements 
Modern commercial processes produce one active silicon layer underneath sev­

eral metal layers. Different nietalization options can be chosen by the designer to 

determine the thickness of the upper metal layers and the type of insulator between 

them (either tetraethyl orthosilicate (TEOS/FTEOS) or a low-A; dielectric) [16]. 

Although adding more metal layers makes building the interconnect possible, the 

number of devices on an integrated circuit is limited by the silicon base. Future 

processes will most likely involve 3D processes which include multiple semiconductor 

layers to build transistors. This technology still faces many challenges such as heat 

dissipation, multilayer interconnects, and nondestructive production measurements 
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Figure 3.13. DC sweep of driver and two repeaters 

while remaining economically feasible [17]. 

The amount of silicon area required to implement an optimized diffusive wire 

is proportional to the length of the line due to repeater placement. For minimum 

pitch wires in the IBM 65 nm process, a repeater was required every 500 nm. Fig­

ure 3.14 shows exactly how many repeaters are required for different interconnects 

of different lengths. Furthermore, Figure 3.15 shows the silicon area required by the 

complete diffusive wire system including the buffer, driver, repeaters, receiver, and 

a small load. The load only requires 0.4 /mi2 of area. Note that the area increases 

significantly for longer lines. The diffusive wires themselves are very small; the 

minimum pitch for the top metal layer diffusive wires under investigation is 0.20 

fim. 

Intermediate and long global wires (i.e., interconnects that are approximately 

500 //,m and longer) are usually placed on upper metal layers. The lower metal 

layers are reserved for connecting devices and local interconnects. Each repeater 

in an optimized wire requires a pair of vias connecting the wire to the substrate. 

These vias require metal contacts on every metal layer between the interconnect 

and the substrate which block metal routing on each layer. If the repeaters can be 
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Figure 3.14. Number of repeaters required for optimized diffusive wire (upper 
metal layer and 500 nm spacing) 
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Figure 3.15 . Silicon area required for diffusive wire driver , repeaters, and receiver 
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removed, more routing space for local interconnects will be available. 

3.5 Low Resistance Wires 
The wire delay is proportional to the resistance and the capacitance of the 

wire. Potentially, a designer could reduce the wire delay by reducing the resistance. 

According to equation (1.2), this can be done by either increasing the width or 

the thickness of the wire. Since the wire thickness is controlled by the foundry, 

the circuit designer can only control the wire width to change the wire delay. 

Unfortunately, as the wire width increases, the wire capacitance increases due to 

the parallel plate capacitance from wire-to-closest conducting layer beneath it. 

The resistance decreases faster than the capacitance increases, so the RC delay 

for the wire decreases. Although the wires require roughly the same number of 

repeaters, the repeaters must be larger according to equation (3.2). Larger repeaters 

mean higher power consumption. Even with the decreased wire delay, it is still 

not close to the propagation speeds obtainable with transmission lines (for silicon 

dioxide - approximately 1/2 the speed of light). Figure 3.16 [21] shows how the 

diffusive wire delays changes with wire widths for a 180 nm process. 
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C H A P T E R 4 

TRANSMISSION LINE MODELING 

The characteristic impedance, Z G , of a transmission line summarizes many 

important electrical properties of the line. Knowing the impedance allows the 

designer to make important decisions to ensure proper signal propagation and 

mitigate reflections. Determining Z0 for a given transmission line is a nontrivial 

task that requires accurate, fast modeling. All the transmission line dimensions were 

synthesized by a software tool developed at Mentor Graphics by Rafael Escovar for 

coplanar transmission lines, as shown in Figure 4.1. Since all the transmission line 

modeling in this thesis rely on this tool, a brief overview on how the tool operates 

will be given. Escovar's thesis contains a much more detailed explanation [2]. 

4.1 Transmission Line Synthesis 
The characteristic impedance of the line is denned as the ratio of voltage to 

current experienced by a single waveform traveling on the line. Z0 is dependent on 

frequency. To derive Z 0 , the transmission line is divided into small blocks consisting 

of a resistor and an inductor connected in series to a capacitor and conductor in 

parallel with values of R, L, C, and G, respectively. 

Figure 4.1. Transmission line geometry 
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Combining the series impedance and shunt admittance of each block and calling 

them z and y results in 

z = juL + R (4.1) 

y = jcuC + G (4.2) 

Starting with one block with an impedance of Z c , a second block can be added in 

series with it by combining the shunt admittance, y, in parallel with Zt. and then 

combining the impedance z in series. Simplifying the resulting equation yields [22] 

Zc = J- + zZc (4.3) 

Dividing each block into n blocks, the R, L, G, and C values become R/n, L/n, 

G/n, and C/n. The impedance and admittance become z/n and y/n. By substi­

tuting these values into (4.3) and taking the limit as n approaches infinity, the last 

term of (4.3) goes to zero which yields 

Zc = S (44) 
V y 

Substituting (4.1) and (4.2) into (4.4) yields 

ZC = ^1^CTG (4-D) 

By taking the limit of (4.5) as the frequency, UJ, goes to infinity, the equation 

becomes 

Z0 = ZcnJ^ (4.6) 
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This equation demonstrates that, at high frequencies, the characteristic impedance 

becomes dependent only on the inductance and capacitance of the line. At lower 

frequencies, the resistance becomes more dominant than the inductance. For trans­

mission lines surrounded by silicon dioxide, the conductance is negligible compared 

to the capacitance and can be neglected. Once the resistive component becomes 

greater than the inductive component, the transmission line enters the RC or 

diffusive wire region. Studious transmission line design requires the designer to 

ensure that the line remains in the RLC regime. Escovar's tool provides a minimum 

boundary that guarantees that the transmission line operates in this region. In 

other words, the region where delay is linearly proportional to the wire length 

and the speed of propagation equals the speed of light in the medium. Quadratic 

delay with interconnect length is a clear indication that the interconnect is in the 

RC region. As already discussed in Chapter 1, inserting optimally sized and spaced 

repeaters allows longer RC wires to have linear delay with interconnect length. The 

transmission lines, however, do not require these repeaters and propagate signals 

at much higher speeds than the RC wires. 

4.1.1 Minimum Boundary Derivation 

Escovar's thesis [2] contains a detailed derivation of this boundary based on a 

paper by Davis and Meindl [23] that produces simplified expressions to describe 

the transient response of high-speed distributed RLC interconnects. Meindl builds 

on previous papers that derived the same expressions for RC wires. The most 

important results of this derivation follows. 

The expression for a voltage waveform [23] traveling down a lossy infinite length 

transmission line is 

VW0M) = VDD-^—e-""z- (4.7) 

where Rtr, r, x, and t are the resistance of the source, resistance of the line per unit 

length, distance, and time, respectively. To perform proper switching at the end of 
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frequencies, the resistance becomes more dominant than the inductance. For trans­

mission lines surrounded by silicon dioxide, the conductance is negligible compared 

to the capacitance and can be neglected. Once the resistive component becomes 

1!;reater than the inductive component , the transmission line enters the RC or 

diffusive wire region . Studious transmission line design requires the designer to 

ensure that the line remaiw; in the R LC regillle. Escovar 's tool provides a lllinimulll 

boundary that guarantees that the transmission line operates in this region . In 

other words , the region where delay is linearly proportional to the wire length 

and the speed of propagation equals the speed of light in t he mediulll. Quadratic 

delay with interconnect length is a clear indication that the interconnect is in the 

RC region. As already discussed in Chap ter 1, inserting optimally sized and spaced 

repeaters allows longer RC wires to have linear delay with interconnect length . The 

transmission lines, however , do not require these repeaters and propagate signals 

at much higher speeds than the RC wires. 

4.1.1 Minimum Boundary Derivation 

Escovar 's thesis [2] contains a detailed derivation of this boundary based on a 

paper by Davis and Meindl [23] that produces simplified expressions to describe 

the transient response of high-speed distributed RLC interconnects. Meindl builds 

on previous papers that derived the same expressions for RC wires. The most 

important results of this derivation follows . 

The expression for a voltage waveform [23] traveling down a lossy infinite length 

transmission line is 

\I.. (T I) = V Zo e-Tx/2Zo 
mf . , ' DD Z + R ~ 

o tT 

(4.7) 

where Rtn T, x, and t are the resistance of the source, resistance of the line per unit 

length , distance, and time, respectively. To perform proper switching at the end of 
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4Z„ 

Rtr + Zn 

•e •{rL/2Z0) > 1 (4.8) 

where L is the length of the wire. Solving for the ratio of the total resistance, rL, 

to the characteristic impedance, Z„ leads to 

rL 4Z0 

y < 2lniHhr ^ 
ZJ0 lxtr -f- ZJ0 

The left hand side of equation (4.9) will always be positive. Therefore, the logarithm 

on the right hand side must always be positive. Satisfying this condition means 

that 

Rtr < 3Z0 (4.10) 

Satisfying equations (4.9) and (4.10) guarantees that the wire will act as a 

transmission line with a delay linearly proportional to length and a propagation 

speed equal to the speed of light in the medium. Escovar imposes another condition 

that Rtr must be greater than or equal to Z„ to eliminate overshoot [2]. In spice 

simulations of the circuits, this condition proved to be too restrictive; there was 

little overshoot even when Rfr was less than ZQ. Appendix A shows that these 

boundaries correspond to a minimum spacing between the transmission line wires 

to produce a minimum characteristic impedance. 

4.1.2 RLC Calculations 

Calculating the characteristic impedance and modeling the transmission lines 

requires accurate modeling of the resistance, inductance, and capacitance of the 

wires involved. For wires in silicon dioxide, the conductance is negligible and 

the transmission line, the voltage should be greater than 0.5 VDD at the end of the 

line. By using equation (4.7) and an equation describing finite lines (equation (42) 

in [23]) the condition can be rewritten as [2] 
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wires involved . For wires in silicon dioxide, the conductance is negligible and 
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set to zero. These parameters must be calculated many times to produce the 

desired transmission lines. Therefore, the modeling work needs to be very fast 

while providing an acceptable level of accuracy. Since resistance and inductance 

are frequency dependent, all parameters were calculated for a particular frequency. 

4.1.2.1 Resistance Calculation 

At low frequencies, the current flows uniformly throughout the entire conductor. 

Therefore, the resistance of a wire can be found using equation (1.2). As the 

frequency increases, however, the current no longer flows uniformly through the 

conductor due to magnetic fields within the conductor [24]. The fields cause the 

current to flow only in a shallow band at the conductor's surface. Since only a 

fraction of the conductor cross sectional area is being used for current flow, the 

resistance increases. This frequency dependent increase in resistance is known as 

the skin effect; it becomes noticeable at a certain skin-effect cutoff frequency [24], ua. 

At this frequency, the added resistance due to the skin effect becomes comparable 

to the conductor's resistance. Thicker conductors are required to attenuate the 

magnetic fields. The necessary thickness is called the skin depth and is given by 

equation (4.11), 

where p, u, and // are the resistivity of the conductor, the frequency of operation 

[rad/s], and the magnetic permeability of the conductor, respectively [24]. The skin 

effect becomes noticeable around 10 GHz wire dimensions under consideration in 

this thesis. To account for the skin effect, higher frequency signals require wider 

wires to maintain a low enough resistance. Escovar's tool takes into account the 

skin effect for resistance. For IBM's 65nm process, the highest frequency due to 

F04 delays is approximately 15 GHz. Although the skin effect is limited at these 

frequencies, including it adds another degree of accuracy and makes the tool more 

flexible for calculating transmission line dimensions with future processes. 

(4.11) 
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where p, W, and II, are the resistivity of the conductor, the frequency of operation 

[rad /s], and thc lllagnetic penneability of the conductor, rcspectively [24]. The skin 

effect becomes noticeable around 10 G Hz wire diIllensions under consideration in 

this thesis. To account for the skin effect, higher frequency signals require wider 

wires to maintain a low enough resistance. Escovar's tool takes into account the 

skin effect for resistance. For IB~I 's 65nm process, the highest frequency due to 

F04 delays is approximately 15 GHz. Although the skin effect is limited at these 

frequencies , including it adds another degree of accuracy and makes the tool more 

flexible for calculating transmission line dimensions with future processes. 
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4.1.2.2 Inductance and Capacitance Calculations 

The inductance extractor developed by Escovar [2] determines the inductance 

of the closed loop system. The extractor operates by dividing each wire into a 

large number of filaments. The tool is able to calculate the current for each of 

the filaments and add them together to determine the total current. Using these 

current values and the applied voltages, the line impedance and inductance can be 

determined. The reader should refer to Escovar's thesis [2] for a much more detailed 

explanation. 

Escovar compared his tool to the standard used by academia, FastHenry [25]. 

Developed at MIT, FastHenry similarly divides the wire into a number of volume 

filaments. The tool uses a matrix solution algorithm to solve for the currents 

in the line. Escovar demonstrated that his tool produced results very close to 

FastHenry (usually less than 1% difference). His tool, however, operated at an 

order of magnitude faster; it required less than one tenth the time to do the same 

extraction [2]. The fast inductance extractor made it possible to quickly determine 

transmission line effects in real time. Furthermore, the inductance extractor takes 

into account the change in current distributions caused by the skin effect at higher 

frequency. 

The capacitance was calculated using a FastCap approach [19]. Since all the 

charge is on the surface of the conductors, the skin effect does not affect the 

capacitance. 

4.1.3 Transmission Line Dimensions 

In order to not repeat the same transmission line calculations, the results from 

Escovar's tool were saved to a repository of transmission line dimensions. A 

summary of the repository is in Appendix A. The appendix shows many inter­

esting trends in transmission line dimensions as various design parameters such as 

frequency, characteristic impedance, or length of the line change. It also shows 

the relationship between the total line resistance (i.e., the total loop resistance 

calculated by summing the resistance of the signal wire and the resistance of the 

parallel combination of the two return wires) and characteristic impedance. As the 
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esting trends in transmission line dimensions as various design parameters such as 

frequency, characteristic impedance, or length of the line change. It also shows 
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total resistance goes up due to the skin effect or due to increasing line length, the 

wires need to be wider and the minimum spacing (Smin) increases. 

Additionally, the appendix provides valuable information for designing and 

simulating the lines. One weak point of Escovar's tool is that it only calculates 

successful lines without determining the smallest total width necessary. The total 

width equals the sum of the signal wire width ( W 5 ) , twice the spacing (S(Z G ) ) , 

and twice the ground wire width ( W G ) . In Appendix A, only the transmission 

lines with the three smallest total widths are shown. Lengths with less than three 

designs indicate that the particular design space was not extensively studied. 

The appendix definitely does not provide an exhaustive list of minimum di­

mensions to produce the desired set of transmission lines. Other wire dimension 

combinations and smaller widths may be possible. Application specific transmission 

lines may be even smaller. For example, if designing a multibit bus with several 

parallel transmission lines, then the ground wires can be built smaller with wider 

signal wires. Normally, the signal wire should be roughly the same width as the 

ground wires to ensure that the signal wire is properly coupled to the return wires. 

The parallel transmission lines, however, provide additional shielding and can use 

smaller wires. For this thesis, the possibility of sharing return paths was not 

investigated. The combination of return currents can affect the RLC parameters of 

the line and requires additional modeling to guarantee transmission line behavior. 

4.2 Transmission Line Drivers 
Driving transmission lines requires fast, low impedance drivers. The output of 

a MOSFET can be modeled as a voltage source connected in series with a source 

resistance. In order to minimize the noise, the drivers should have a constant output 

resistance. If the output resistance matches the impedance of the transmission 

line, reflections would be eliminated. This is called a source-series termination [26]. 

However, if the output resistance of the driver is comparable to the loop resistance 

of the transmission line, then it will not be able to drive the line. Furthermore, the 

driver's output resistance can not be too low compared to the line's resistance or 
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there will be potentially damaging overshoot at the line output. 

To obtain a first order approximation for the transistor sizing, a spice simulation 

was designed to find the transistor widths corresponding to different transistor drive 

strengths. The first step was to assume a 50 ps rise time and set this value equal to 

the time constant (i.e., output resistance times the load capacitance). Next, solving 

this equation for the load capacitance gave 

C i m i = ^ (4.12) 

Substituting different values for the output resistance, Rout, gave different ca­

pacitances, as shown in Table 4.1. These capacitance values were attached to the 

output of the transistor, and the width was changed until the rise time equaled 

50p.s. Using this method, the transistor width corresponding to any driver output 

resistance could be found. The resulting transistor widths for the three drivers 

using the IBM CMOS10SF spice models are given in Table 4.2. 

Ideally, the driver should have a constant output impedance so it can be properly 

matched to the transmission line. Unfortunately, this is not the case for MOSFETs; 

they do not have a constant output resistance. When either the NMOS or PMOS 

Table 4.1. Load capacitances used in spice to determine driver transistor sizes 
Rout CloadlfF] 

80 333 
100 500 
150 625 

Table 4.2. Measured rise times and device widths for various drivers 
Predicted Driver 

Output Impedance 
[Q] 

Measured 
Rise Time 

[ps] 

NMOS 
Device Width 

[fim] 

PMOS 
Device Width 

[fim] 
80 50.4 11.25 22.5 
100 50.4 9 18 
150 50.0 6.05 12.1 
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device is fully on, the resistance is constant. When each device enters the linear 

region of operation (which occurs during every switching event), the resistance 

increases significantly. Figure 4.2 shows the nonconstant output impedance as the 

driver switches. As the driver size increases, the output resistance becomes more 

constant. The figure also shows that the driver's output resistance was much less 

than expected. 

For the lossless transmission lines, overshoot was a major concern. However, 

switching to the lossly transmission lines (more accurate for modeling transmission 

lines on integrated circuits) showed that the resistance of the transmission line 

eliminates most of the overshoot. The main performance limiting factor was signal 

buffering and the F 0 4 delay; the measured F04 delay for the process is 70 ps. The 

final driver size selected had an NMOS width of 20 /mi and PMOS width of 40 /mi 

compared to the diffusive wire repeaters that have an NMOS width of 12 /mi and 

PMOS width of 24 /mi. Figure 4.3 shows the output resistance of the driver. The 

resistance is about 38 Q when the PMOS is on and 18 Q when the NMOS is on. 

The final transmission line driver has a rise time of approximately 10 ps. 

Driver output resistance 

Rs(Ohms) : Input(Volt) 

^ I ~| 1 00 Ohm driver 

0.0 0.25 0.5 0.75 1.0 

Input(Volt) 

Figure 4.2. Driver output resistance 
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4.2.1 Annular Drivers 

In order to produce a faster, more constant driver, annular transistors were 

proposed. A conventional MOSFET consists of a gate with symmetrical source 

and drain on either side. The annular transistor has a circular or a square gate 

with the source on the outside and the drain on the inside, as shown in Figure 4.4. 

The main motivation for using this driver is to reduce the parasiticus, to possibly 

produce lower resistance drivers, and to more easily match the impedances. In order 

to fully profit from the device, it needs to be sized so that Wg is as small as possible; 

the drain becomes merely a contact with a very small diffusion region around it. 

When designed in this fashion, some design rules for the process are broken such as 

connecting narrow gate polysilicon to other gates. Meeting all design rules results 

in a larger device that acts as four transistors placed in a circle. Currently, annular 

devices are only used for projects that need high radiation and noise immunity 

[27, 28, 29, 30]. 
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In order to produce a faster, more constant driver , annular transistors were 

proposed. A conventional MOSFET consists of a gate with symmetrical source 

and drain on either side. The annular transistor has a circular or a square gate 

with the source on the outside and t he drain 011 the iuside, as shown ill Figure 4.4. 

The lllain motivation for using this driver is to reduce the parasitics, to possibly 

produce lower resistance drivers , and to more easily match t he impedances. In order 

to fully profit from t he device, it needs to be sized so that Ws is as small as possible ; 

the drain becomes merely a contact with a very small diffusion region around it. 

When designed in this fashion , some design rules for the process are broken such as 

connecting narrow gate polysilicon to other gates . Meeting all design rules results 

in a larger device that acts as four transistors placed in a circle. Currently, annular 

devices are only used for projects that need high radiation and noise immunity 

[27,28 , 29,30]. 
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Figure 4.4. Aerial view of annular driver 

The annular driver was modeled by calculating the area and periphery of the 

source and drain based on the width of a side, w3, the gate length, and minimum 

diffusion design rules. These values were placed into the IBM spice MOSFET 

models used for the conventional transistors. The accuracy of this approach is 

unknown. Table 4.3 shows the parameters used in the spice model for the annular 

and conventional MOSFETS. The rule breaking annular MOSFET used in the 

simulations had ws = 150 nm, which is also listed in Table 4.3. Also, it should 

be noted that the simulations for the annular and conventional MOSFETs did not 

use fingering; the annular MOSFETs used only the multiple, m, and conventional 

MOSFETS just used width, w, to increase the drive strength and transistor size. 

In practice, both 

designs will have less area for the source and drain than listed. The only exception 

to this rule was in the area estimation. Overlapping the annular transistor squares 

as much as possible decreases the area significantly. In order to better compare 

this area with the conventional transistor area, they had to be corrected to take 

into account fingering. A better approach would be to use a semiconductor device 

simulator to model these devices better. For this thesis, however, a faster simulation 

that could be easily integrated into spice simulations was more important. 

To compare the annular and rectangular drivers, both devices were attached to 
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as much as possible decreases the area significantly. In order to better compare 
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simulator to model these devices better. For this thesis , however , a faster simulation 

that could be easily integrated into spice simulations was more important. 

To compare the annular and rectangular drivers , both deviCf~s were attached to 
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Table 4.3. Model parameters for annular and conventional MOSFETs 
Parameter Annular Annular Conventional 

Name MOSFET MOSFET 
(w s =150nm) 

MOSFET 

Length [nm] 50 50 50 
Width [nm] 4w s 600 w 
Drain Area wJ-(90 nm) 2 14400 155w 

[nm2] 
Source Area (w,s+155)2-(4w.s(50))+w;2 40525 155w 

[nm2] 
Drain Periphery 4w s 600 2 w + 2 x l 5 5 

[nm] 
Source Periphery 4 (w a +w s +2(155) ) 2440 2 w + 2 x l 5 5 

[nm] 

equivalent capacitive loads (500 fF). By changing the number of annular drivers 

connected in parallel, the rise time also changed to match the rise time of the 

rectangular driver. 

Since the largest performance limitation to the transmission line interconnect 

is the speed of the buffers, advantages in buffering are as important as driver 

advantages. The annular drivers were simulated against the rectangular drivers 

in two way: first, the transmission line system was tested with the rectangular 

buffers and the annular driver at the end; and second, with annular buffers and 

annular drivers. The setup of the buffer, driver, transmission line and receiver are 

shown in Figure 4.5. 

In terms of area, the annular driver showed a 35% decrease in area, as shown in 

Table 4.4. The buffering did not show a comparable drop in area because the buffer 

Buffer 

^river Receiver 

Transmission Line 

Figure 4.5. Buffer and driver simulation setup 

41 

Table 4.3. Model parameters for annular and conventional MOSFETs 
Parameter Annular Annular Conventional 

Name MOSFET MOSFET MOSFET 
(ws = 150IllU) 

Length [nm] 50 50 50 
Width [nm] 4ws 600 w 
Drain Area w;-(90 nm)2 14400 155w 

[nm2] 
Source Area (w.,+ 155)2-( 4w,,(50) )+w; 40525 155w 

[nm2] 
Drain Periphery 4ws 600 2w+2x 155 

[nm] 
Source Periphery 4(ws+ws+2(155)) 2440 2w+ 2x 155 

[nm] 

equivalent capacitive loads (500 fF) . By changing the number of annular drivers 

connected in parallel, the rise time also changed to match the rise time of the 

rectangular driver. 

Since the largest performance limitation to the transmission line interconnect 

IS the speed of the buffers , advantages in buffering are as important as driver 

advantages. The annular drivers were simulated against the rectangular drivers 

in two way: first , the transmission line system was tested with t he rectangular 

buffers and the annular driver at the end; and second, with annular buffers and 

annular drivers. The setup of the buffer, driver , transmission line and receiver are 

shown in Figure 4.5. 

In terms of area, the annular driver showed a 35% decrease in area, as shown in 

Table 4.4. The buffering did not show a comparable drop in area because the buffer 

:~ ______ __ ___ __ _______ __ ________ i 

Transmission Line 

Figure 4.5. Buffer and driver simulation setup 
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Table 4.4. Driver (including buffer) area comparisons 
Driver Type (Buffer Type) Buffer Area Driver Area Total Area 

[/mi2] [//,m2] [/im2] 
CMOS Driv. (CMOS Buff.) 5.01 16.02 21.03 

Annular Driv. (CMOS Buff.) 5.01 10.05 15.06 
Annular Driv. (Annular Buff.) 4.19 10.05 14.24 

sizes were limited to discrete sizes. The annular buffer drive strength is changed 

by changing the number of devices in parallel. This number must always be an 

integer so exact matching with the conventional devices was not possible. Many 

of the other performance differences for the devices can be explained by this size 

mismatch, as shown in Figure 4.6 through Figure 4.15. Figures 4.6 and 4.7 show 

large peaks and drops in power consumption. The effect is attributed to standing 

waves at multiples of the A/4 value (refer to section 5.1.2 for a more in-depth 

explanation). All the setups had relatively similar overshoot parameters, as shown 

in Appendix B. 

Furthermore, in order to obtain the maximum effect of reducing the drain area, 

the annular transistors need to be as small as possible. The smaller the devices 

become, the more design rules need to be broken. There are many rules regarding 

how transistor gates can be attached to other polysilicon blocks. For example, right 

angles are not allowed between two gates. Fixing the problem causes the width of 

each side to become larger, which increases the area of the drain and would reduce 

the area benefit. Overall, according to the simulations, the annular drivers do not 

show any performance benefit over the conventional drivers. 

4.3 Transmission Line Receivers 
The transmission line receivers are designed to accomplish three goals: reduce 

the reflections caused by impedance mismatch at the end of the transmission line, 

reduce the amount of transmission line noise propagated to digital stages, and 

reduce the latency of the receiver. In integrated circuit design, resistors, capacitors, 

and inductors require large amounts of area to build and are difficult to build with 

Table 4.4. Driver (including buffer) area comparisons 
Driver Type (Buffer Type) Buffer Area Driver Area 

CMOS Driv. (CMOS I3uff.) 
Anuular Driv. (CMOS I3uff.) 

Annular Driv. (Annular Buff.) 

[JLm2] [p,m2] 
5.01 16.02 
5.01 
4.19 

10.05 
10.05 

Total Area 
[JLm2

] 

21.03 
15.06 
11.24 
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show any performance benefit over the conventional drivers. 

4.3 Transmission Line Receivers 

The transmission line receivers are designed to accomplish three goals: reduce 

the reflections caused by impedance mismatch at the end of the transmission line, 
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precise values. The digital designer avoids using these components if possible, 

which only leaves the size of the receiver as a means to match the transmission 

line impedance. In this thesis, initial simulations for the lossless transmission lines 

used minimum sized inverters as receivers. To better match the line impedance, 

these receivers were replaced with larger inverters. To reduce the propagated noise, 

hysteresis was added to the receivers by using complementary dynamic logic or jam 

latches. The proceeding discussion outlines the design process for these circuits 

along with a performance comparison of each receiver. Except for the lossless 

transmission line simulations and the receiver simulations in this section, all the 

simulations in this thesis were performed with the dynamic receiver with minimal 

hysteresis. This receiver was abandoned for the jam latch receiver late in the study. 

4.3.1 Dynamic Receiver and Jam Latch 

Noise cannot be eliminated. Therefore, the receivers must be noise tolerant. 

Complementary dynamic logic (CDL) is one way to increase the noise margin. 

These gates are implemented with dynamic logic but include a complementary 

gate that sets the noise margin to any amount desired [31]. The increased noise 

margin, however, comes at a price; there is a definite tradeoff between noise margin, 

power, and speed [31]. 

Utilizing a two-input CDL NAND gate, a noise tolerant receiver can be gener­

ated by connecting the precharge signal and one of the inputs that becomes the 

receiver input [32], which is shown in Figure 4.16. The remaining NAND gate input 

becomes a reset signal. This signal, however, can only partially reset the circuit. If 

the signal is low, the circuit output will not be able to switch low. Fully resetting 

the circuit requires the reset and the receiver input to be low. 

By resizing the various transistors, the speed, noise margin, and switching 

voltage can be set arbitrarily. Larger devices increase the noise tolerance and speed 

of the gate but require more power. For the receiver simulations, a minimum sized 

inverter was used as a baseline. The transistors were sized to give the dynamic 

receiver rise and fall times comparable to the inverter. Table 4.5 shows the transistor 

widths corresponding to the schematic in Figure 4.16. 
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Output 

Figure 4.16. Dynamic receiver schematic 

Table 4.5. Dynamic receiver transistor widths 
Transistor Name Type[NMOS/PMOS] Width [rim] 

MO PMOS 1000 
Ml PMOS 200 
M2 PMOS 200 
M3 PMOS 200 
M4 NMOS 600 
M5 NMOS 600 
M6 NMOS 500 
M7 NMOS 200 
M8 PMOS 200 
M9 NMOS 100 

The receiver was further improved by removing the reset signal by connecting 

transistor A/5 directly to the output and removing A/2. By changing the ratios 

between various transistors in the design, the amount of hysteresis and the delay 

could be changed. Two designs with different amounts of hysteresis were tested. 

Although these pruned dynamic receivers had much better performance than its 

predecessor, they did not have significant benefits compared to the other receivers. 

Furthermore, the process of sizing the transistors to increase the amount of hys­

teresis was far from intuitive. The hysteresis was dependent on the drive strength 
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Figure 4.16. DYllamic receiver schematic 

Table 4.5. DYllamic receiver trallsistor widths 
Transistor Name II T ype[NMOS/PMOS] Width [nm] 

MO PMOS 1000 
M1 PMOS 200 
M2 PMOS 200 
M3 PMOS 200 
l\I4 NMOS 600 
M5 NMOS 600 
M6 NMOS 500 
M7 NMOS 200 
M8 PMOS 200 
M9 NMOS 100 

The receiver was further improved by removing the reset signal by connecting 

transistor M5 directly to the output and removing M2. By changing the rat ios 

between various transistors in the design , the amount of hysteresis and the delay 

could be changed. Two designs with different amounts of hyst eresis were tested. 

Although these pruned dynamic receivers had much better performance than its 

predecessor , they did not have significant benefits compared to the other receivers. 

Furthermore, the process of sizing the transistors to increase the amount of hys­

teresis was far from intuitive. The hysteresis was dependent on the drive strength 
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of A/8 and A/9, the drive strength of M3 and A/7, and the channel resistance of 

Ml and A/6. Figure 4.17 shows the response of an inverter to a rising and falling 

input. For the inverter, there is no hysteresis so the two plots are indistinguishable. 

Figure 4.18 and Figure 4.19 show the same response for the 40 mV and 60 mV 

dynamic receivers, respectively. 

Eventually, the dynamic receiver design was abandoned in favor of a jam latch. 

The jam latch consists of a large conventional CMOS inverter with two small 

inverters connected in series to the output, as shown in Figure 4.20. For the 

simulations in this thesis, the output was taken directly after the first inverter 

attached to the input. By switching the output to the location in Figure 4.20, the 

noise tolerance improves and the load has less of an effect on the hysteresis. The 

first small inverter's input is connected to the output of the large inverter. The 

second inverter's output is also connected to the output of the large inverter. The 

small inverters add hysteresis by acting as keepers; they do not allow the output of 

the large inverter to change until the large inverter forces the first small inverter 

Figure 4.17. DC sweep of CMOS inverter (no hysteresis) 
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Figure 4.20. Jam latch schematic 

to change. The jam latch performed very well and the tradeoff between hysteresis 

and latency were very straightforward. Figure 4.21 shows the jam latch output 

response. Figure 4.22 shows the same plot with cursors showing the switching 

points and the amount of hysteresis (133 mV) . This is the same design used in the 

receiver comparisons. 

4.3.2 Receiver Comparisons 

The simplest receiver is a CMOS inverter. As a baseline, a small inverter (lOx 

minimum sized) and a larger inverter (75x minimum sized) were compared against 

two dynamic receivers and a midsized jam latch. Table 4.6 compares the total 
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Table 4.6. Receiver area comparisons 
Receiver Type Area [fim2] 
CMOS (large) 6.01 
CMOS (small) 0.80 

Dynamic Receiver (40 mV hysteresis) 7.21 
Dynamic Receiver (60 mV hysteresis) 5.85 

Jam Latch (120 mV hysteresis) 4.89 

area of each receiver. The jam latch shows excellent use of area to obtain a large 

amount of hysteresis. Obviously, the CMOS inverter will be faster but without any 

hysteresis. 

Figure 4.23 is a legend for the comparison plots found in Figure 4.24 through 

Figure 4.28. The receivers had similar performance characteristics that showed 

typical behavior for different sized inverters. All the larger receivers use extra power 

(see Figure 4.24), have faster rise and fall times (see Figure 4.25 and 4.26), and have 

larger capacitances, which reduce the amount of overshoot above VDD or 
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Table 4.6. Receiver area comparisons 
Receiver Type 
CMOS (large) 
CMOS (small) 

Dynamic Receiver (40 m V hysteresis) 
Dynamic Receiver (60 m V hysteresis) 

J am Latch (120 mV hysteresis) 

6.01 
0.80 
7.21 
5.85 
4.89 
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area of each rec~iver. Th~ jam latch shows excellent use of area to obtain a large 

amount of hysteresis. Obviously, t he CMOS inverter will be faster but without any 

hysteresis. 

Figure 4.23 is a legend for the comparison plots found in Figure 4. 24 through 

Figure 4.28. The receivers had similar performance characteristics that showed 

typical behavior for different sized inverters. All the larger receivers use extra power 

(see Figure 4.24), have faster rise and fall t imes (see Figure 4.25 and 4.26) , and have 

larger capacitances , which reduce the amount of overshoot above V DD or 
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Figure 4.27. Propagation delay (rising) - various receivers 
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below ground (refer to Appendix B). The total propagation delay is affected by 

the hysteresis. The hysteresis leads to slower falling transistions and faster rising 

transitions than their nonhysteretic counterparts. There is also a tradeoff between 

hysteresis, power, and latency; more hysteresis leads to more power consumption 

and higher latency if everything else is equal. Based on the simulations, if no 

hysteresis is needed, a simple inverter is sufficient. If hysteresis is desired, the jam 

latch works the best. Depending on performance requirements, extra hysteresis can 

be added. 
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C H A P T E R 5 

TRANSMISSION LINE SIMULATIONS 

In spice, there is a lossless transmission line model (T model) that contains six 

required arguments: four for the transmission line connections (two on each side), 

one for the characteristic impedance, and one for the signal delay of the transmission 

line in seconds per meter. An optional argument used in this study is the length of 

the transmission line. This argument is essential for the study since the length of 

the line is an independent variable being tested. 

Additionally, there are several different lossy transmission line models. The 

W model was selected for this study because it can directly use the R, L, and 

C parameters generated by the transmission line synthesis program discussed in 

section 4.1. Initially, the lossless transmission line model with a characteristic 

impedance of 100Q was used. Due to the size and material of the wires in integrated 

circuits, the lossy transmission line models are much more accurate. With the 

exception of specially marked figures in this chapter, all transmission line modeling 

were done with the lossy model. 

The signal delay of the transmission line depends on the materials surrounding 

the conductors and is independent of the transmission line geometry, as explained 

by Bogatin [33]: 

A signal can be launched into a transmission line simply by touching the 

leads of a battery to the signal and return paths. The sudden voltage 

change creates a sudden electric and magnetic-field change. This kink 

of field will propagate through the dielectric material surrounding the 

transmission line at the speed of a changing electric and magnetic field, 

which is the speed of light in the material... [All] changing electro-
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magnetic fields are exactly the same and are described by exactly the 

same set of equations, Maxwell's Equations... How quickly the electric 

and magnetic fields can build up is what really determines the speed of 

the signal... [Maxwell's Equations] say that if the electric and magnetic 

fields ever change, the kink they make will propagate outward at a speed 

that depends on some constants and material properties. 

Accordingly, the time delay per unit length, TDi, is given by [33] 

TDL = - = ^ o ^ r M o M r (5.1) 
V 

where £ 0 — permittivity of free space = 8.89x 1 0 _ 1 2 F / m , er — relative dielectric 

constant of the material = 3.9 (value for silicon dioxide used in this study), /Jo 

= permeability of free space=47rx 10~7///ra, and / i r = relative permeability of 

the material=l (for most materials). Therefore, if the relative permittivity of 

the material decreases, the electric fields can change more rapidly, causing the 

signal to propagate at higher speeds in the medium. Decreasing the magnetic 

permeability would have the same effect, but there are not many materials with 

different permeabilities. 

Figure 5.1 through Figure 5.6 show the waveforms of lossless and lossy trans­

mission line simulations of different lengths. The following lossless transmission 

line simulations include a CMOS driver, transmission line, and a dynamic receiver 

(refer to section 4.3 for more details). Figures 5.1, 5.3, and 5.5 each have two 

plots. Both plots have the input voltage which is attached to the gate of the driver. 

The lower subplot, the receiver input, is the node at the end of the transmission 

line attached to a minimum sized inverter. The upper subplot, the receiver output, 

is the node at the output of the minimum sized inverter. All the simulations were 

done in spice using the IBM CMOS10SF BSIM models. 

Figures 5.2, 5.4, and 5.6 show transmission line systems with the lossy trans­

mission line model for similar interconnect lengths as the lossless simulations. The 

lossy transmission lines were modeled at a much lower frequency than the lossless 

magnetic fields are exactly the same and are described by exactly the 

same set of equations, Maxwell's Equations .. , How quickly the electric 

and magnetic fields can build up is what really determines the speed of 

the signal... [Maxwell's Eqnations] say that if the electric and magnetic 
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(5.1) 

where co = permittivity of free space = 8.89 x 10-12 F 1m, C1' = relative dielectric 

constant of the material = 3.9 (value for silicon dioxide used in this study), Ito 

= permeability of free space=47rx10-7 Hlm, and IlT = relative permeability of 

the material= 1 (for most materials). Therefore, if the relative permittivity of 

the material decreases, the electric fields can change more rapidly, causing the 
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different permeabilities. 

Figure 5.1 through Figure 5.6 show the waveforms of lossless and lossy trans­
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plots. Both plots have the input voltage which is attached to the gate of the driver. 

The lower subplot, the receiver input, is the node at the end of the transmission 

line attached to a minimum sized inverter. The upper subplot, the receiver output, 

is the node at the output of the minimum sized inverter. All the simulations were 

done in spice using the IBl\1 C:MOS10SF BSL\I models. 

Figures G.2, 0.4, and G.G show translllission line systems with the lossy trans­

mission liue modd for similar interconnect lengths as the lossless simulations. The 

lossy tram;mission lines were modeled at a much lower frequency than the loss less 
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transmission lines. The lossless lines were modeled at a frequency much greater than 

the maximum frequency permitted by the F04 delay for the process. Therefore, the 

lossy transmission lines were modeled at more realistic frequencies for the process 

and include the buffering circuitry connected to the driver. For lossy transmission 

lines, overshoot was no longer a major concern. Also, WDD was changed from 1.2 

V to 1.0 V in order to more accurately reflect the voltage for the process. 

Furthermore, transmission line propagation requires that the rise and fall times 

of the driver are less than the twice the time of flight for the signal. This ensures 

that there is enough time for the incident wave to travel to the end of the line and 

for the reflected wave to return to the driver. Below this minimum transmission line 

length, the transmission line interconnect starts to act more like a low resistance 

diffusive wire with a strong driver. Assuming a rise time, r r , of 10 ps, the minimum 

transmission line length, Lrnin, the signal can travel is 

where L and C are the inductance and capacitance per unit length, respectively. 

This results in L m i n of 650 / m i . 

The transmission line simulation setup consisted of a buffer, a driver, a trans­

mission line with Z 0 = 50 Q, a dynamic receiver with 40 mV hysteresis, and a load 

equal to 5x the size of a minimum inverter. The buffer and driver were conventional 

MOSFETS (neither were annular). The dynamic receiver was initially chosen and 

used in these simulations due to its performance and hysteresis levels. Later, the 

jam latch was deemed to be a better choice. Since changing the receiver only 

made a small difference in the overall system performance, the simulations were 

not repeated with the jam latch receiver (refer to section 4.3 for more information 

on the transmission line receiver studies). 

L (5.2) 

5 . 1 Transmission Line Simulation Results 
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All the transmission line simulations were done at frequencies of 1 GHz and 10 

GHz. Since the transmission line parameters are length and frequency dependent, 

a unique transmission line was designed for every length and frequency pair. This 

assured the highest degree of accuracy for the simulations. Appendix A lists the 

values of these transmission line parameters. Both frequencies (1 GHz and 10 GHz) 

used the same rise and fall times of 10 ps for the initial prebuffered input. Buffering 

the signal provided a good way to model more realistic rise and fall times to use as 

inputs for the transmission line drivers. 

5.1.1 Latency 

The rise and fall times for all of these simulations are the amount of time 

required for the receiver output (which is connected to the load) to swing from 10% 

to 90% VDD- These results are shown in Figures 5.7 through 5.10. The latency 

is measured at the receiver output so that the total system response is observed. 

The propagation delay is the amount of time required for the input voltage (before 

any buffering) to cause the receiver output to change. These results are shown in 

Figures 5.11 through 5.14. The propagation delay is dependent on the speed of the 

buffers, drivers, receivers, and line lengths. This delay did not change for the 1 

GHz and 10 GHz case. The difference in frequency came from reducing the time 

the signal remained high and low. 

5.1.2 Power 

The power consumption was measured by finding the root mean square (rms) 

current over two clock cycles once the system is in a steady state and multiplying 

this value by VDD- For the 1 GHz case, the power increased logarithmically with the 

length of the line (see Figure 5.15). On the other hand, the 10 GHz transmission line 

reaches a maximum for a length slightly less than 4000 /im, decreases, and increases 

again to the same maximum value (see Figure 5.16). The power consumption is 

periodic, behavior not observed with the 1 GHz input. The most likely cause for 

this effect is standing waves. These waves are caused by the superposition of the 

incident and reflected waves moving in opposite 
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The propagation delay is the amount of time required for the input voltage (before 

any buffering) ~o cause the receiver output to change. These results are shown in 

Figures 5.11 through 0.14. The propagation delay is dependent on the speed of the 

buffers, drivers, receivers, and line lengths. This delay did not change for the 1 

GHz and 10 GHz case. The difference in frequency came from reducing the time 

the signal remained high and low. 

5.1.2 Power 

The power consumption was measured by finding the root mean square (nns) 

current over two clock cycles once the system is in a steady state and multiplying 

this value by V DD. For the 1 GHz case, the power iucreased logarithmically with the 

length of the line (see Figure 5.15). On the other hand, the 10 GHz transmission line 

reaches a maximum for a length slightly less than 4000 tlm, decreases, and increases 

again to the same maximum value (see Figure 5.16). The power consumption is 

periodic, behavior not observed with the 1 GHz input. The most likely cause for 

this effect is standing waves. These waves are caused by the superposition of the 

incident and reflected waves moving in opposite 
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Figure 5.9. Transmission line fall times (1 GHz) 
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Figure 5.9. Transmission line fall times (1 GHz) 
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Figure 5 .11. Transmission line propagation delay (rising) (1 GHz) 
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Figure 5.13. Transmission line propagation delay (falling) (1 GHz) 
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directions. At certain places on the transmission lines, there are nodes with minimal 

displacement and maximal displacement. Standing wave effects become noticeable 

when the length of the line is of a similar magnitude as one fourth the wavelength, 

A/4. For line lengths equal to odd multiples (i.e., 1, 3, 5, 2n + 1) of A/4, there 

is maximal displacement at the end of the line; the driver and the transmission line 

attempt to force a large voltage swing at the end of the line. For line lengths equal 

to even (i.e., 2, 4, 6, 2n) of A/4, there is minimal displacement at the end of the 

line. 

The speed of light in the transmission lines is equal to [34] 

(5.3) 
rLC 

where L and C are the inductance and capacitance per unit length, respectively. 

The ratio of L and C is set for each characteristic impedance and is independent 

of length. Using the parameters from Appendix A, the speed of light in a 50 Q 

transmission line is 

L = 0.387/i#/m (5.4) 

C = 154.7/;F/ra (5.5) 

v = 1.292 x l 0 8 r a / s = 129 ̂ im/ps (5.6) 

The wavelength of the signal is given by 

A = 7 ( 5 ' 7 ) 

For the speed of light in the medium and a frequency of 10 GHz, A is 12,900 

fim and A/4 is 3200 /mi. This value corresponds well with Figure 5.16. The figure, 

however, only shows data points for 3000 /im and 4000 /mi. Additional data points 

within this range should show that the power reaches a maximum value at this 
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point and tapers off. Furthermore, a power minimum is expected at A/2 at 6400 

/mi. The closest data point at 6000 /mi shows a minimum in the power. 

Although the A/4 wavelengths affected power consumption, it also affected the 

amount of overshoot on the transmission line (see section 5.1.3). Therefore, the 

receiver must be able to tolerate the extra overshoot (which reached a maximum 

of 25% V D D ) . 

The 1 GHz signal did not have the same problem due to the large wavelength of 

the signal; its wavelength is one order of magnitude larger. The first length equal 

to A/4 and a corresponding power maximum would be at 32000 /mi. In practice, 

transmission lines this long are not feasible due to the high amount of loss. 

5.1.3 Overshoot and Noise Tolerance 

The lossless transmission lines are very sensitive to overshoot. Observing the 

waveforms (see Figure 5.1. Figure 5.3, and Figure 5.5) shows that the overshoot can 

be more than 25% VDD- There is no resistance in the line to attenuate the signal 

or attenuate reflections. The more accurate lossy models do not have this same 

problem (see Figure 5.2, Figure 5.4, and Figure 5.6). Additionally, the waveform 

outputs for the lossy lines are very clean without ringing. One concern about 

the transmission line system is large ringing caused by reflections from impedance 

mismatches. This ringing can cause glitches in the output. Therefore, no ringing 

is a very good sign for the transmission line system. To measure the amount of 

overshoot at different parts of the transmission line system, the maximum and 

minimum voltages were measured at both ends of the transmission line, as shown 

in Figures 5.17 through 5.20. The maximum voltages give the overshoot above 

VDD, and the minimum voltages give the overshoot below ground. 

Similar to the diffusive wires, sending the signal through various logic gates 

limits the effect of steady state noise to the system. The transmission line DC 

sweeps showed almost exactly the same behavior, as seen in Figure 3.13. 
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5.2 Area Requirements 
Since transmission lines operate by sending changing electric and magnetic 

fields, they do not require repeaters like the diffusive wires (repeaters may be 

necessary, however, to change direction 90°). The spice simulations show that none 

of the transmission lengths tested required repeaters; they were not added into 

any of the transmission line simulations. As the transmission lines become longer, 

however, there are more problems with reflections and waiting for the reflections to 

affect the line output. Adding repeaters to the transmission lines would reduce the 

noise but would require more power and would add a small amount of delay. The 

silicon area for the total transmission line system consists of the buffer, the driver, 

the receiver, and the load. The same circuitry is used for all the transmission line 

systems so the silicon area is independent of the interconnect length. The silicon 

area is 26.31 /mi 2 for all lengths. This is roughly equal to the amount of silicon 

necessary for a diffusive line 1000 /tm long. 

The metal wires and spacings for the transmission line require wider regions 

for the transmission lines themselves. The total width is the amount of width 

required for the signal wire, the two ground wires, and the two spacings between 

the ground and signal wires. The total width varies widely with the length of the 

line, frequency, and desired characteristic impedance; it can be anywhere from 1 

/an to 30 /mi. For most applications, one of the narrower (1 to 10 /mi total widths) 

areas can be used. Bus signals require the two return paths and the signal path 

to ensure that the RLC parameters are correct; it may be possible to share return 

paths, but this requires further research. Forking has more stringent impedance 

matching requirements; it needs some wider lines (20 - 30 /mi total widths) to 

achieve the high impedances necessary. Appendix A shows the actual values of 

these dimensions. 

5.3 Transmission Line Forks 
A transmission line fork refers to connecting a single transmission line to two 

perpendicular transmission lines. This creates a "T" shape at the location of the 
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fork. In order to minimize fork reflections and maximize the energy transmitted, 

the impedances must be matched on both sides of the fork. Since the two attached 

lines are in parallel, the combined impedance is the parallel combination of the 

impedances of the attached lines. Assuming identical lines, the impedance of the 

two lines in parallel is one half the characteristic impedance of each line. Therefore, 

in order to match the impedance, the attached linos must have twice the impedance 

of the initial line. 

Lower characteristic impedances implies higher capacitance and lower induc­

tance per unit length of the line as demonstrated by equation (4.G). The capacitance 

can be increased by decreasing the spacing of the line. The maximum capacitance 

and thus the minimum characteristic impedance is set by the design rules for mini­

mum spacing between the metals; for the 2x thick copper layers under investigation, 

the minimum spacing is 0.20 /mi (see layers BA, BB, BD-BG in Table 2.1). This 

corresponded to a minimum realizable characteristic impedance of ~ 35 Q. Even 

if lower impedance lines were possible, the drivers may not be able to drive them 

anyway. Higher characteristic impedance implies the opposite: higher inductance 

and less capacitance per unit length. The main way to reduce the capacitance is 

to increase the spacing between the signal and ground wires. In terms of modeling 

the transmission lines and not breaking design rules, there is not an upper bound 

to the characteristic impedance. For an actual integrated circuit, however, several 

factors limit the maximum spacing and the maximum impedance possible. First, 

wide spacings mean that the transmission lines will be very area expensive. The 

minimum pitch wires will be 0.20 /mi. If a transmission line system requires 30+ /mi 

to realize a specific impedance, there may not be enough space for it. Second, even 

if there is space on the metal layer of interest for the transmission line, wide spacings 

would make the capacitance and inductance of the transmission line more coupled 

to metal traces on other layers. Therefore, very wide lines require the designer to 

verify that other metal layers do not significantly affect the LC parameters of the 

line. 

The range of possible impedances dictates the number times a transmission 
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line can be forked. More forks means that the signal can be sent to more places 

without repeaters. Due to the range for the metal layers, the maximum number of 

forks is two with the following transmission line impedances: 35 Q, 70 Q, and 140 

Q. For a single fork, any impedance between 35Q and 70Q can be used with its 

double. The main application of forking would be for a clock distribution network 

or broadcast signals to different die locations. These networks need to be able 

to cover an area of 1 c m 2 area. The first simulation consisted of a 10000 /mi 

transmission line with Z0 — 50(2 connected to two transmission lines that are 5000 

/mi long with ZQ — 100H. The resulting waveforms are shown in Figure 5.21. The 

buffer, driver, receivers, and loads were all exactly the same as for the transmission 

line simulations without forks. For an input frequency of 10 GHz, the output 

waveforms were very clean without attenuation. The internal nodes are very noisy 

but this does not affect the output. For two forks, there was attenuation that was 

independent of line length except for very short lengths (~ 100 /mi legs) when the 

input frequency was 10 GHz. Slowing down the frequency to 8 GHz removed most 

of the attenuation, as shown in Figure 5.22. 
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C H A P T E R 6 

COMPARISONS: TRANSMISSION 

LINES VS. DIFFUSIVE WIRES 

One of the main purposes of this thesis is to compare the tradeoffs between dif­

fusive wires and transmission lines. This section reproduces data already presented. 

However, the results for the diffusive wires and transmission lines arc placed on the 

same figures to permit easier comparisons. 

The simulations for both the diffusive wires and the transmission lines are set 

up to be as equal as possible. Both sets include signal buffering that consists of two 

inverters connected in series. Both sets have a driver attached at the beginning of 

the interconnect. At this point, the diffusive wires simulations have minimum 

pitch wires with optimally sized and spaced repeaters. The transmission line 

interconnects consist of coplanar transmission lines with a characteristic impedance 

of 50 (1 designed for the particular frequency and length of the line. After this point, 

both are attached to a receiver which is attached to a load 5x the size of a minimum 

sized inverter for the process. The load is roughly 1 /5 the size of the output stage of 

the jam latch receiver and 1/10 the size of the output stage of the CMOS receiver. 

Although the number of logic stages (not including repeaters for the diffusive wires) 

is the same for both sets of interconnect, the sizings are not. 

Due to the frequency limits of the diffusive wires, they were only simulated at 

1 GHz. The transmission lines were also tested at 1 GHz. Since they have many 

advantages with increasing frequency, the transmission lines were also tested at 10 

GHz. Both input signals (the 1 GHz and 10 GHz) have rise and fall times equal to 

10 ps. 

In order to truly act as a transmission line, the transmission line length should 

not be less than the half the distance the signal can propagate in the medium 
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during the driver rise or fall time. Assuming 50 Q transmission lines and 10 ps 

rise and fall times, this minimum length is 646 /mi. Below this length, the signal 

propagation is controlled by a combination of RC and RLC effects. Therefore, 

very short transmission lines (below 500 /mi) act more like diffusive wires with low 

resistance wires and a strong driver than a transmission line interconnect. 

6.1 Propagation Delay 
In terms of rise times, fall times, and propagation delays, the transmission 

lines thoroughly outperformed the diffusive wires for longer interconnects. The 

propagation delay is the time it takes for a switching event on the prebuffered 

input to switch the receiver output. Already for interconnects that are 300 /mi 

long, the transmission lines outperform the diffusive wires, as shown in Figures 6.1 

through 6.8. The length where the transmission line performance surpassed the 

diffusive wires was relatively constant on the frequency range of 1 GHz to 10GHz. 

6.2 Power and Energy Consumption 
Figures 6.9 through 6.16 compare the power and energy consumption of the 

diffusive wires and the transmission lines. Operating at the same frequency of 1 

GHz, the transmission lines consume slightly less power for lengths greater than 400 

/mi (Figure 6.9) and much less power as the line length passes 5000 /zm. Increasing 

the frequency by a factor of lOx increases the power consumption by a factor less 

than lOx; this can be observed by comparing Figure 6.9 to Figure 6.11. 

The energy per bit was calculated to show the higher efficiency of the trans­

mission lines at higher frequencies. For the 1 GHz transmission line simulations, 

both the diffusive and transmission line interconnects are operating at the same 

frequency. Therefore, the figures showing the energy per bit looks exactly like the 

power consumption figures except for changing the units on the axes. For the 10 

GHz transmission lines, the power consumption is always higher than the diffusive 

wires except for a few dips due to standing wave reflections. The energy per bit, 

however, of the 10 GHz transmission line significantly outperforms the diffusive 

wires of almost any length (Figure 6.15). This shows the motivation behind using 
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Figure 6.2. Propagation delay comparison (rising)(l GHz)(short interconnects) 
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Diffusive wire vs. transmission line propagation delay (rising) 
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Diffusive wire vs. transmission line propagation delay (falling) 
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Figure 6.6. Propagation delay comparison (falling)(l GHz)(short interconnects) 
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Diffusive wire vs. transmission line propagation delay (falling) 
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Figure 6.7. Propagation delay comparison (falling)(10 GHz) 
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Figure 6 .8. P ropagation delay comparison (falling)( l0 GHz)(short interconnects) 
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Figure 6.10. Power comparison (1 GHz - Transmission Line)(short interconnects) 
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Diffusive wire vs. transmission line power consumption 

5 
E r 

* Transmission Line 

• Diffusive Wire 

ft 
ft 

ft 
ft 

ft 
ft 

ft 
ft 

ft 
ft 

- f t 
ft 

I 
4000 6000 8000 

Interconnect Length [um] 

Figure 6.11. Power comparison (10 GHz - Transmission Line) 

Diffusive wire vs. transmission line power consumption 
6 r , 

ft Transmission Line 

• Diffusive Wire 

ft 

ft 

| T i i i i i i i i i i 

0 200 400 600 800 1 000 1200 1400 1600 1800 2000 

Interconnect Length [um] 

Figure 6.12. Power comparison (10 GHz - Transmission Line)(short interconnects) 

Diffusive wire vs. transmission line power consumption 

,/ 
. " • 
" ~ .-

E : }4 l 
" 3 " • 

• 

• • • 

• 

• 

• Transmit.ion line 

• OiHu,iveW"'1 

• 
• 

• • 
• • 

• 
• 

• 

ZOOO 4000 6000 8000 10000 lZ000 

Interconnect Length [Ilml 

Figure 6.11. Power comparison (10 GHz - Transmission Line) 

Diffusive wire vs. transmission line power consumption 

• Transmission l ine 

• Diffusive Wire • • 
" • 

" • • • 
" ~ " E • 

-:::' 3 • i • 
a.. 

• 
• 

• • • • • 
0 

0 ZOO 400 600 800 1000 1200 1400 1600 1800 2000 

Interconnect Length fIlml 

86 

Figure 6.12. Power comparison (10 GHz - Transmission Line) (short interconnects) 
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Figure 6.14. Energy comparison (1 GHz - Transmission Line) (short interconnects) 
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Diffusive wire vs. transmission line energy consumption 
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Figure 6.16. Energy comparison (10 GHz - Transmission Line)(short intercon­
nects) 
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the transmission lines for a data bus; roughly a 3x increase in power yields a lOx 

increase in frequency (Figure 6.11). The 10 GHz transmission lines show a periodic 

power consumption. This is due to various line lengths corresponding to even and 

odd multiples of A/4, as discussed in Chapter 5. Further power savings may be 

possible with the transmission lines by adjusting the frequency and line length 

to take advantage of those standing wave reflections. This topic requires further 

research. 

6.3 Throughput 
The transmission lines outperform the diffusive wires in terms of throughput 

for lengths greater than 400 /im. The diffusive wire maximum throughput was 

determined by increasing the frequency of the input until the output no longer 

reached 10%-90% of the supply voltage, VDD-

The transmission line throughput was limited by the F04 delay (i.e.. the time 

required to transmit the signal from one stage to the next one that is 4x the 

size). Therefore, the transmission line throughput was relatively independent of 

interconnect length. The maximum throughput of the transmission line systems was 

approximately 13 GHz. This can be compared with the diffusive wire throughputs 

in Figure 3.11 and Figure 3.12; the maximum diffusive wire throughput was approx­

imately 4 GHz for interconnects length over 500 fim. The shorter diffusive wires 

had a higher throughput since they did not require repeaters. The transmission 

lines themselves were capable of transmitting signals with a higher throughput. 

6.4 Area 
The area comparisons need to be separated into three categories to accurately 

understand the advantages and drawbacks of both systems: silicon area, vias, and 

upper metal layer area. Silicon area and vias will be discussed jointly because they 

are both drawbacks of the diffusive wires. Metal layer area is only discussed for 

transmission lines since it is only a drawback of this system. 
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6.4.1 Silicon Area and Vias 

As shown in Figure 3.14 and Figure 3.15, the number of repeaters and hence the 

total silicon area required for the diffusive wires is linearly dependent on the length 

of the line. Furthermore, each repeater requires a set of two vias that penetrate all 

of the metal layers to connect the upper metal wire to the repeater on the substrate. 

Vias do not require very much area but they do block signal routing on all the metal 

layers. Removing vias makes more metal tracks available for routing the signal. 

Since the transmission lines do not use repeaters, its silicon area is about 26.3 

fim2 and is independent of length (see section 5.2). The transmission area is slightly 

higher because of the larger driver (NMOS width of 20 /mi for the transmission line 

driver as opposed to an NMOS width of 12 /mi for the diffusive wire driver and 

repeaters) and buffer sizes for the transmission lines. Once the diffusive wires 

require three repeaters, the transmission lines consume less silicon area than the 

diffusive wires. This occurs at a length of about 1500/mi (Figure 3.15). 

6.4.2 Upper Metal Layer Area 

The diffusive wires simulated were implemented with minimum pitch wires on 

the top copper metal layer available in the process. The minimum pitch is 0.20 

/mi. In practice, the wires will be wider than this to avoid variation and reduce 

the wire delay. Wider wires, however, require larger repeaters and higher power 

consumption. Furthermore, long wires sending critical signals need to be shielded 

from other wires. The most common ways of doing this include increasing the space 

between wires and ensuring that adjacent wires do not switch in opposite directions 

at the same time. Therefore, the actual width required for the diffusive wires will 

be greater than 0.20 /mi. 

Since the transmission lines consist of a coplanar sandwich (Figure 4.1), the 

signal wire is already shielded from other signals. Therefore, they can be placed as 

close as the design rules permit on the same layer. For transmission lines with wide 

spacings, the designer must verify that the transmission line RLC parameters are 

not influenced by other layers. Even adjacent, parallel transmission lines will not 

share return paths to ensure that the RLC parameters remain constant. Further 
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requirf' three repeaters, the transmission lines consnme less silicon arf'a than the 

diffusive wires. This occurs at a length of ahout 1500,lm (Figure 3.15). 

6.4.2 Upper Metal Layer Area 

The diffusive wires simulated wen~ impkmented with minimum pitch wires on 

the top copper mf'tal layer availahk in the process. The minimum pitch is 0.20 

lim. In practice, the win's will be wider than this to avoid variation and reduce 

the wire delay. \Vider wires, however, require larger repeater::; aHd higher power 

consulllPtion. Furthermore, 10llg wires sending critical signals need to be ::;hielded 

frolll other wire::;. The most conllllOn ways of doiug thi::; iudude illcrea::;ing the ::;pace 

between wire::; and ensuring that adjacent wires do uot ::;witch in opposite directions 

at the same time. Therefore, the actual width required for the diffusive wires will 

be greater than 0.20 pm. 

Since the transmission lines consist of a coplanar sandwich (Figure 4.1), the 

signal wire is already shielded from other signals. Therefore, they can be placed as 

close as the design rules permit on the same layer. For transmission lines with wide 

spacings, the designer must verify that the transmission line RLC parameters are 

not influenced by other layers. Even adjacent, parallel transmission lines will not 

share return paths to ensure that the RLC parameters remain constant. Further 
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studies may be able to combine these return paths and verify the characteristic 

impedances of the lines. 

The total width for the transmission lines depends on a number of factors (see 

section 5.2). The total widths for a 10 GHz transmission line with a 50 Q impedance 

for lengths of 1000/im, 5000/im, and 10000 fim are 3.37 mn, 12.2 fim, 27.1 fim, 

respectively (refer to Appendix A ) . The longer interconnects basically need wider 

wires to decrease the resistance per unit length of the line. 

Due to the wide variety of transmission line widths possible, it is more difficult 

to quantitatively compare the metal area tradeoffs. For most integrated circuit 

designs, however, it should be noted that the lower layers are more valuable than 

the upper layers. That is to say, the silicon substrate and the first few metal layers 

are heavily occupied by devices, routing, and local interconnects. The upper metal 

layers are utilized far less; they are mostly used for power supplies, clock signals, 

and global interconnects. Therefore, although the transmission lines require more 

metal area, they trade silicon area and routing space for less valuable upper metal 

layer area. 

6.5 Noise Tolerance 
The lossless transmission line models operating at high frequencies were very 

susceptible to ringing and large voltage spikes that could cause glitching (Figure 5.1, 

Figure 5.3, and Figure 5.5). The lossy transmission lines did not show any ringing 

and very limited overshoot (Figure 5.2, Figure 5.4, and Figure 5.6). The resistance 

of the transmission line does an excellent job of attenuating the reflections. In 

practice, the signals will most likely be more noisy because the RLC parameters of 

the line can not be perfectly controlled due to process variation. 

Due to the buffers and drivers in series, both the diffusive wires and the trans­

mission lines filter out noise coming from the input. The diffusive wires continue 

this process by passing through a repeater every 500 fim whereas the transmission 

lines rely on consistent RLC parameters to avoid mismatch and reflections on the 

line. 
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C H A P T E R 7 

CONCLUSION A N D 

RECOMMENDATIONS 

As shown in Chapter 6, the transmission lines showed significant latency, power 

consumption, and throughput benefits over the diffusive wires. Operating at the 

same frequency of 1 GHz, the transmission lines had a smaller propagation delay 

for all interconnects over 100 fim (Figure 6.2) and consumed less power for all 

interconnects greater than 400 fim (Figure 6.10). The throughput for the trans­

mission lines were limited by the throughput of the signal buffer connected to the 

transmission line driver; the maximum throughput was approximately 13 GHz for 

all interconnect lengths. The diffusive wires, on the other hand, had a maximum 

throughput around 13 GHz for interconnects less than 500 fim (Figure 3.11). For 

longer interconnects, the throughput dropped to 4 GHz for interconnect lengths of 

4000 fim and greater. 

The main negative tradeoff of the transmission lines is the upper metal layer 

area requirements. Building transmission lines requires three wires (one signal path 

and two return paths) that are usually wider than the minimum pitch wires. Also, 

to obtain the desired impedance, the transmission lines require spacings that are 

usually wider than the minimum wire spacings. The total system transmission line 

width will always be at least five times the width of the minimum pitch wire, as 

seen in Appendix A. 

Although at first glance these area tradeoffs seem very large, a second look 

shows that the situation is not that bad. First, in actual systems, critical high speed 

interconnects will not be connected by minimum pitch wires separated by minimum 

spacings. The wires and their spacings will be larger than the minimum values to 
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minimize variation, resistance, and cross coupling capacitance. Fatter wires reduce 

resistance. Larger spacings reduce capacitance. Second, the diffusive wires require 

shielding to mitigate noise. The transmission lines are already shielded due to the 

return paths on either side of the signal. Third, the diffusive wires require repeaters. 

Each repeater requires at least two sets of vias connecting the signal metal layer to 

the substrate and back. These repeaters block routing space on all the intermediate 

metal layers. The lack of repeaters also translates to extra silicon area. Therefore, 

the transmission lines can actually free more lower metal layers (crucial for very 

short interconnects and routing) and provide more silicon space to place devices. 

Furthermore, this thesis was based on the IBM metalization option offered by 

MOSIS for the IBM 65 nm process, which consists of 6 thin copper metal layers 

( lx thick), 2 thick copper metal layers (2x thick) in FTEOS (silicon dioxide-like 

substance), and 1 very thick aluminum layer. Thicker metal layers would decrease 

the necessary total transistor width. A lower k dielectric would allow the spacing 

to decrease while maintaining the desired characteristic impedance in addition to 

increasing the speed of light in the medium (see Chapter 5). 

Another way to mitigate the area tradeoff is to utilize the transmission line's 

higher bandwidth. Since the transmission line can consistently operate at around 

13 GHz, it has approximately 3 times the bandwidth than the diffusive wires for 

interconnects longer than 4000 /mi. For a signal bus, this can translate to three 

diffusive wires being replaced by a single transmission line. As discussed in section 

6.2, this replacement is also more energy efficient per bit transmitted. Furthermore, 

the transmission line bandwidth is limited by the speed of the buffers and the drivers 

and not the transmission lines themselves. In future processes, the bandwidth of 

the transmission lines will increase with the performance of the transistors. The 

diffusive wire system will require more repeaters. Its throughput will not increase 

appreciably since the RC wire delay will remain a problem. 

Another unknown issue for the transmission lines is their noise tolerance and 

sensitivity to wires on other layers. As previously discussed, the transmission lines 

are shielded by other wires on the same layer due to the surrounding return paths. 
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If there is a transmission line that requires a large spacing, it is possible that the 

transmission line could become coupled to a wire on another layer. The transmission 

lines requiring larger spacings will require more care to avoid coupling on other 

layers (i.e., large metal wires cannot be placed parallel to the transmission lines 

on adjacent layers). Since these issues are more design specific, they were not 

addressed in this thesis. 

7.1 Potential Applications 
The results of this thesis are mainly targeted at three applications: point-to-

point signaling, data buses, and clock distribution networks. Basically, any wire 

longer than about 400 mn and shorter than 10000 /mi (or 1 cm) will have better 

performance with the transmission lines, as shown in Figure 7.1. Below 400 /mi, 

diffusive wires will have roughly the same performance as the transmission lines. 

As the transmission lines become very long, the wires need to be very wide to 

reduce resistance; otherwise, the transmission line will operate in the RC regime. 

Additionally, the high resistance of very long transmission lines makes them difficult 

to drive; the output is almost always attenuated. If interconnects longer than 

7500 /mi are needed, alternatives such as optical interconnects become a viable 

solution. In summary, on-chip interconnects that do not require repeaters should 

be implemented with diffusive wires. Interconnects that normally require repeaters 

should be replaced with transmission lines. Very long or off-chip interconnects 

should employ an alternative interconnect. The exact lengths where a designer 

should switch interconnects depend on the application and design constraints. Since 

the transmission lines perform well at higher frequencies, wires with higher activity 

factors will benefit the most from transmission lines. 
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Optical Interconnects 
[7500|jm+] 

Figure 7.1. Recommended interconnects for IBM 65 nm process 

Transmission Lines 
[400 - 1 0000 ~m] 

Optical Interconnects 
[7500~m+] 

Figure 7.1. Recommended interconnects for IBM 65 nm process 
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The clock signal of a digital circuit has a very high activity (by definition it 

changes every clock cycle). For a synchronous design, the clock needs to arrive 

everywhere in the system at the same time with as little variation as possible. In 

addition to the benefits already discussed, the transmission lines would be very 

tolerant to variation because of the wide wires and large drivers. The transmission 

line can reasonably be forked two times with impedance matching; the clock signal 

could be sent to four places at once without any repeaters. Total wire lengths of 

up to 15000 /mi have already been simulated successfully (refer to section 5.3). 

7.2 Future Research 
All the results in this thesis rely on the transmission line synthesis tool correctly 

determining resistance, capacitance, and inductance of the line. The impedance 

calculating tool (see section 4.1) has been compared to other tools widely used in 

academia. The next step is to build a test chip to determine if the transmission 

lines act as expected. 

Depending on the results of the test chip, future research would include devel­

oping tools to automatically generate the transmission lines and replace diffusive 

wires with them. These tools could be applied to an existing integrated circuit 

design. An excellent study would be to implement a large integrated system with 

and without the transmission lines to see what system level effects and tradeoffs 

occur. 
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A P P E N D I X A 

TRANSMISSION LINE DIMENSIONS 

This appendix consists of a table listing many of the transmission line dimen­

sions calculated with Escovar's tool (see section 4.1.3). 

Table A . l : Transmission line parameters for IBM 
65nm process 

Frequency = 1 GHz 
I Z 0 = 50 tt 

Metal Thickness = 0.35 //m 
L w 5 wG 

Q . 
>~'min S(Z 0 ) Rtr R L C 

[/mi] H [mn] [/H H H [0] [kfi/m] [/iH/m] [pF / m] 
100 0.2 0.2 0.09 0.3304 1.26 20 369.5 0.378 151.2 
100 0.4 0.2 0.06 0.3764 1.55 20 246.3 0.381 152.6 
100 0.2 0.4 0.06 0.3217 1.64 20 307.9 0.388 155.2 
200 0.2 0.2 0.20 0.3292 1.26 20 369.4 0.378 151.1 
200 0.4 0.2 0.13 0.3743 1.55 20 246.3 0.381 152.4 
200 0.2 0.4 0.15 0.3206 1.64 20 307.9 0.388 155.2 
300 0.4 0.2 0.22 0.3735 1.55 20 246.3 0.381 152.3 
300 0.2 0.4 0.26 0.3202 1.64 20 307.9 0.388 155.2 
300 0.4 0.4 0.14 0.3734 1.95 20 184.7 0.387 154.7 
400 0.4 0.2 0.34 0.373 1.55 20 246.3 0.381 152.2 
400 0.4 0.4 0.21 0.373 1.95 20 184.7 0.387 154.7 
500 0.4 0.4 0.30 0.3727 1.95 20 184.7 0.387 154.7 
600 0.5 0.5 0.29 0.393 2.29 20 147.8 0.389 155.6 
600 1 0.5 0.18 0.4824 2.96 20 98.52 0.387 155 
600 0.5 1 0.20 0.3743 3.25 20 123.2 0.405 161.8 
700 0.5 0.5 0.38 0.3928 2.29 20 147.7 0.389 155.6 
700 1 0.5 0.23 0.482 2.96 20 98.53 0.387 155 
700 0.5 1 0.26 0.3742 3.25 20 123.2 0.405 161.8 
800 1 0.5 0.29 0.4817 2.96 20 98.53 0.387 154.9 
800 0.5 1 0.33 0.374 3.25 20 123.2 0.405 161.8 
800 1.5 0.5 0.22 0.5466 3.59 20 82.1 0.388 155 

APPENDIX A 

TRANSMISSION LINE DIMENSIONS 

This appendix consists of a table listing many of the trallsmission line dimell­

sions calculated with Escovar's tool (see section 4.1.3). 

Table A .I: Transmission line parameters for IBM 
65nm process 

Frequency = 1 GHz 
Zo = 50 n 

Metal Thickness = 0.35 lI,m 
L W s We Smin S(Zo) W T Rt! , R L 

[pm] [pm] [pm] [J.tm] [J.tm] [J.lm] [0 ] [kO/ m] [pH/ m] 
100 0.2 0.2 0.09 0.3304 1.26 20 369.5 0.378 
100 0.4 0.2 0.06 0.3764 1.55 20 246.3 0.381 
100 0.2 0.4 0.06 0.3217 Ui4 20 307.9 0.388 
200 0.2 0.2 0.20 0.3292 1.26 20 369.4 0.378 
200 0.4 0.2 0.13 0.3743 1.55 20 246.3 0.381 
200 0.2 0.4 0.15 0.3206 1.64 20 307.9 0.388 
300 0.4 0.2 0.22 0.3735 1.55 20 246.3 0.381 
300 0.2 0.4 0.26 0.3202 1.64 20 307,9 0.388 
300 0.4 0.4 0.14 0.3734 1.% 20 184.7 0.387 
400 0.4 0.2 0.34 0.373 1.55 20 246.3 0.381 
400 0.4 0.4 0.21 0.373 1.95 20 184.7 0.387 
500 0.4 0.4 0.30 0.3727 1.95 20 184.7 0.387 
600 0.5 0.5 0,29 0.393 2,29 20 147.8 0.389 
600 1 0.5 0.18 0.4824 2.96 20 98,52 0.387 
600 0.5 1 0.20 0.3743 3.25 20 123.2 0.405 
700 0.5 0.5 0.38 0.3928 2.29 20 147.7 0.389 
700 1 0.5 0.23 0.482 2.96 20 98.53 0,387 
700 0.5 1 0.26 0.3742 3.25 20 123.2 0.405 
800 1 0.5 0.29 0.4817 2.96 20 98.53 0.387 
800 0.5 1 0.33 0.374 3.25 20 123.2 0.405 
800 1.5 0.5 0.22 0.5406 3.59 20 82. 1 0.388 

C 
[pF/ m] 
151.2 
152.6 
155,2 
151.1 
152.4 
155,2 
152.3 
155.2 
154.7 
152 .2 
154.7 
154.7 
155.6 
155 

101.8 
155.6 
155 

161.8 
154.9 
161.8 
155 
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Table A . l - continued from previous page 
L w 5 w G 

Q . 
u r r a n S(Z0) W T Rtr R L C 

900 1 0.5 0.35 0.4814 2.96 20 98.52 0.387 154.9 
900 1.5 0.5 0.28 0.5462 3.59 20 82.1 0.387 155 
900 1 1 0.20 0.4819 3.96 20 73.89 0.395 158.1 
1000 1 0.5 0.43 0.4812 2.96 20 98.52 0.387 154.9 
1000 1.5 0.5 0.34 0.5458 3.59 20 82.1 0.387 155 
1000 1 1 0.24 0.4817 3.96 20 73.89 0.395 158.1 
2000 2 1 0.55 0.6351 5.27 20 49.26 0.388 155.4 
2000 2 1.5 0.37 0.642 6.28 20 41.05 0.391 157.1 
2000 3 1 0.42 0.745 6.49 20 41.05 0.387 154.9 
3000 3 1.5 0.67 0.7795 7.56 20 32.84 0.387 154.9 
4000 4 2 0.78 0.9144 9.83 20 24.64 0.386 154.5 
4000 5 2 0.65 1.016 11 20 22.18 0.385 154.2 
4000 4 3 0.48 0.9392 11.9 20 20.54 0.389 155.6 
5000 4 3 0.88 0.9382 11.9 20 20.54 0.389 155.6 
5000 6 2 1.04 1.104 12.2 20 20.54 0.385 153.9 
5000 5 3 0.71 1.067 13.1 20 18.08 0.386 154.4 
6000 6 3 0.99 1.179 14.4 20 16.43 0.384 153.7 
6000 5 4 0.84 1.077 15.2 20 16.03 0.389 155.5 
6000 7 3 0.86 1.279 15.6 20 15.27 0.383 153.3 
7000 6 4 1.07 1.208 16.4 20 14.39 0.386 154.3 
7000 5 5 1.03 1.067 17.1 20 14.8 0.393 157.1 
7000 7 4 0.91 1.327 17.7 20 13.21 0.384 153.6 
8000 7 5 1.02 1.345 19.7 20 11.99 0.386 154.3 
8000 6 6 1.00 1.201 20.4 20 12.34 0.392 156.8 
8000 7 6 0.81 1.346 21.7 20 11.17 0.388 155.3 
9000 10 4 1.40 1.621 21.2 20 11.11 0.382 152.7 
9000 8 6 1.00 1.479 23 20 10.29 0.386 154.3 
9000 12 4 1.20 1.781 23.6 20 10.29 0.381 152.6 
10000 8 6 1.39 1.478 23 20 10.29 0.386 154.3 
10000 12 4 1.67 1.779 23.6 20 10.29 0.381 152.6 
10000 10 6 1.07 1.72 25.4 20 9.061 0.382 153 
11000 10 6 1.46 1.719 25.4 20 9.061 0.382 153 
11000 12 6 1.20 1.931 27.9 20 8.243 0.381 152.3 
Frequency = 5 GHz 

z 0 = 50 n 
Metal Thickness = 0.35 /im 

2500 2.5 2 0.38 0.725 7.95 20 32.21 0.391 156.4 
Frequency = 10 GHz 

z 0 = 25 tt 
Metal Thickness = 0.35 fim 

100 0.25 0.2 0.08 0.09903 0.848 20 320.2 0.224 358.1 

Tahlp A.1 - contillllPd from prpviollR pagp 
L Ws We Sndl1 S(Zo) W T Rtr R L C 
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900 1.5 0.5 0.28 0.5462 3.59 20 82.1 0.387 155 
900 1 1 0.20 0,4819 3.96 20 73.89 0.395 158.1 
1000 1 0.0 0.43 0,4812 2.06 20 98.02 0.387 154.9 
1000 1.5 0.5 0.34 0.5458 3.59 20 82.1 0.387 155 
1000 1 1 0.24 0,4817 3.96 20 73.89 0.395 158.1 
2000 2 1 0.55 0.6351 5.27 20 49.26 0.388 155.4 
2000 2 1.5 0.37 0.642 6.28 20 41.05 0.391 157.1 
2000 3 1 0.42 0.745 6.49 20 41.05 0.387 154.9 
3000 3 1.0 O.G7 0.7795 7.56 20 32.84 0.387 154.9 
4000 4 2 0.78 0.9144 9.83 20 24.64 0.386 154 .. 5 
4000 5 2 0.6:5 1.016 11 20 22.18 0.385 1:54.2 
4000 4 3 0.48 0.9392 11.9 20 20.54 0.389 155.6 
5000 4 3 0.88 0.9382 11.9 20 20.54 0.389 155.6 
5000 6 2 1.04 1.104 12.2 20 20.54 0.385 153.9 
5000 5 3 0.71 1.067 13.1 20 18.08 0.386 154,4 
6000 6 3 0.99 1.179 14.4 20 16.43 0.384 153.7 
6000 .5 4 0.84 1.077 1:5.2 20 16.03 0.389 15.5.5 
6000 7 3 0.86 1.279 15.6 20 15.27 0.383 153.3 
7000 6 4 1.07 1.208 16.4 20 14.39 0.386 154.3 
7000 5 5 1.03 1.067 17.1 20 14.8 0.393 157.1 
7000 7 4 0.91 1.327 17.7 20 13.21 0.384 153.6 
8000 7 5 1.02 1.345 19.7 20 11.99 0.386 154.3 
8000 6 6 1.00 1.201 20.4 20 12.34 0.392 156.8 
8000 7 6 0.81 1.346 21.7 20 11.17 0.388 15.5.3 
9000 10 4 1,40 1.621 21.2 20 11.11 0.382 152.7 
0000 8 (j 1.00 1.470 23 20 10.29 0.38(j 154.3 
9000 12 4 1.20 1.781 23.6 20 10.29 0.381 152.6 
10000 8 6 1.39 1.478 23 20 10.29 0.386 154.3 
10000 12 4 1.67 1.779 23.6 20 10.29 0.381 152.6 
10000 10 6 1.07 1.72 2:5,4 20 9.061 0.382 153 
11000 10 6 1.46 1.719 25.4 20 9.061 0.382 1:53 
11000 12 G 1.20 1.931 27.9 20 8.243 0.:381 152.3 

-Frp(jHPncy = 0 G Hz 
Zo = 50 n 

Metal Thickness = 0.35 pm 
2500 2.5 2 0.38 0.725 7.95 32.21 0.391 156.4 

Frequency = 10 GHz 
Zo = 25 n 

100 0.25 320.2 0.224 358.1 
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Table A . l - continued from previous page 
L w s wG 

Q . S(Z 0 ) W T R L C 
100 0.5 0.2 0.05 0.1018 1.1 20 221.7 0.232 370.7 
100 0.75 0.2 0.04 0.1025 1.35 20 188.9 0.238 380.8 
200 0.75 0.2 0.09 0.1021 1.35 20 188.9 0.238 380.8 

z0 = 35 n 
Metal Thickness = 0.35 /mi 

100 1 0.2 0.04 0.2131 1.83 20 172.5 0.295 241.1 
200 1 0.2 0.08 0.2116 1.82 20 172.6 0.295 240.9 
250 0.75 0.2 0.13 0.2051 1.56 20 188.9 0.291 237.9 
300 1 0.2 0.15 0.2109 1.82 20 172.5 0.295 240.8 
400 1.5 0.5 0.07 0.2246 2.95 20 82.33 0.305 249.2 
500 1.5 0.5 0.10 0.2243 2.95 20 82.34 0.305 249.2 
600 1.5 0.5 0.14 0.224 2.95 20 82.33 0.305 249.2 
700 1.5 0.5 0.18 0.2239 2.95 20 82.33 0.305 249.2 
800 2 0.75 0.12 0.2365 3.97 20 57.9 0.309 252.6 
900 2 0.75 0.15 0.2364 3.97 20 57.89 0.309 252.6 
1000 2 0.75 0.19 0.2363 3.97 20 57.89 0.309 252.6 
1000 4 0.5 0.23 0.2485 5.5 20 62.69 0.317 258.5 
1000 5 0.5 0.21 0.2521 6.5 20 60.62 0.320 261.1 
2000 4 1.5 0.23 0.2808 7.56 20 29.8 0.313 255.3 
2000 5 1.5 0.20 0.2982 8.6 20 27.57 0.311 254.1 
2000 6 1.5 0.18 0.3126 9.63 20 26.16 0.310 253.2 
3000 4 4 0.23 0.2704 12.5 20 20.58 0.325 265.6 
3000 5 4 0.19 0.3018 13.6 20 18.1 0.318 259.9 
3000 4 5 0.21 0.2661 14.5 20 19.82 0.328 268 
4000 6 5 0.29 0.3292 16.7 20 15.59 0.315 256.8 
5000 10 5 0.37 0.4348 20.9 20 12.34 0.300 244.7 

z„ = 50 Q 
Metal Thickness = 0.35 /mi 

100 0.5 0.5 0.00 0.3975 2.3 20 147.8 0.390 155.8 
100 1 0.5 0.02 0.4924 2.98 20 98.62 0.389 155.4 
100 0.5 1 0.02 0.3786 3.26 20 123.4 0.404 161.8 
200 0.5 0.5 0.06 0.395 2.29 20 147.8 0.389 155.7 
200 1 0.5 0.04 0.4872 2.97 20 98.6 0.388 155.2 
200 0.5 1 0.04 0.3762 3.25 20 123.5 0.405 161.8 
300 0.5 0.5 0.10 0.3941 2.29 20 147.8 0.389 155.7 
300 1 0.5 0.06 0.4852 2.97 20 98.6 0.388 155.1 
300 0.5 1 0.07 0.3754 3.25 20 123.5 0.405 161.8 
400 0.5 0.5 0.16 0.3936 2.29 20 147.8 0.389 155.7 
400 1 0.5 0.09 0.4841 2.97 20 98.62 0.388 155 
400 0.5 1 0.10 0.3748 3.25 20 123.5 0.405 161.8 
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Tahle A.1 - continued from previous page 
L Ws We Sm;n S(Zo) W T Rtl· R L C 

100 0.3 0.2 0.03 0.1018 1.1 20 221.7 0.232 370.7 
100 0.75 0.2 0.04 0.1025 1.35 20 188.9 0.238 380.8 
200 0.75 0.2 0.09 0.1021 1.35 20 188.9 0.238 :380.8 

Zo = 35 ~2 
:\!Ietal Thickness = 0.35 11m 

100 1 0.2 0.04 0.2131 1.83 20 172.5 0.295 241.1 
200 1 0.2 0.08 0.2116 1.82 20 172.6 0.295 240.9 
250 0.75 0.2 0.13 0.2051 1.56 20 188.9 0.291 237.9 
300 1 0.2 0.15 0.2109 1.82 20 172.5 0.295 240.8 
400 1.5 0.5 0.07 0.2246 2.95 20 82.33 0.305 249.2 
500 1.5 0.5 0.10 0.2243 2.% 20 82.:34 0.:305 249.2 
600 1.5 0.5 0.14 0.224 2.95 20 82.33 0.3m) 249.2 
700 1.3 0.5 0.18 0.2239 2.95 20 82.33 0.305 249.2 
800 2 0.75 0.12 0.2365 3.97 20 57.9 0.309 252.6 
900 2 0.75 O.l·S 0.2364 3.97 20 57.89 0.309 252.6 
1000 2 0.75 0.19 0.2363 3.97 20 57.89 0.309 252.6 
1000 4 O.G 0.23 0.2485 G.G 20 62.60 0.317 258.5 
1000 5 O.E) 0.21 0.2521 6.5 20 60.62 0.320 261.1 
2000 4 1.5 0.23 0.2808 7.56 20 29.8 0.313 25.5.3 
2000 5 1.5 0.20 0.2982 8.6 20 27.57 0.311 254.1 
2000 6 1.5 0.18 0.3126 9.63 20 26.16 0.310 253.2 
3000 4 4 0.23 0.2704 12.5 20 20.58 0.325 265.6 
3000 5 4 0.19 0.3018 13.6 20 18.1 0.318 259.9 
3000 ..:1 5 0.21 0.2661 14.5 20 19.82 0.328 268 
4000 6 5 0.29 0.3292 16.7 20 13.59 0.315 256.8 
5000 10 5 0.37 0.4348 20.9 20 12.34 0.300 244.7 

Z" = 50 n 
:\!Ictal Thicknc::i::i = 0.35 pIll 

100 0.0 O.G 0.00 0.3075 2.3 20 147.8 0.390 155.8 
100 1 0.5 0.02 0.4924 2.98 20 98.62 0.389 155.4 
100 0.5 1 0.02 0.3786 3.26 20 123.4 0.404 161.8 
200 0.5 0.5 0.06 0.395 2.29 20 147.8 0.389 155.7 
200 1 0.5 0.04 0.4872 2.97 20 98.6 0.388 155.2 
200 0.5 1 0.04 0.3762 3.25 20 123.5 0.405 161.8 
300 0.5 0.0 0.10 0.3941 2.29 20 147.8 0.389 155.7 
300 1 O .• S 0.06 0.4832 2.97 20 98.6 0.388 155.1 
300 0.5 1 0.07 0.3754 3.25 20 123.5 0.405 161.8 
400 0.5 0.5 0.16 0.3936 2.29 20 147.8 0.389 155.7 
400 1 0.0 0.09 0.4841 2.97 20 98.62 0.388 155 
400 0.5 1 0.10 0.3748 3.25 20 123.5 0.405 161.8 
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Table A . l - continued from previous page 
L w 5 w G 

q . S (Z 0 ) W T R L C 
500 0.5 0.5 0.22 0.3932 2.29 20 147.8 0.389 155.6 
500 1 0.2 0.33 0.4596 2.32 20 172.5 0.385 153.8 
500 1 0.4 0.16 0.4786 2.76 20 110.9 0.386 154.5 
GOO 1 0.2 0,15 0.459 2.32 20 172.5 0.384 153.8 
600 1 0.4 0.22 0.478 2.76 20 110.9 0.386 154.5 
600 1.5 0.2 0.41 0.5057 2.91 20 156.2 0.387 155 
700 1 0.4 0.28 0.4776 2.76 20 110.9 0.386 154.5 
700 1.5 0.4 0.23 0.538 3.38 20 94.6 0.387 154.8 
800 1 0.4 0.35 0.4773 2.75 20 110.9 0.386 154.4 
800 1.5 0.4 0.29 0.5375 3.37 20 94.6 0.387 154.8 
900 1 0.4 0.44 0.477 2.75 20 110.9 0.386 154.4 
900 1.5 0.4 0.36 0.537 3.37 20 94.6 0.387 154.7 
1000 1.5 0.4 0.44 0.5366 3.37 20 94.6 0.387 154.7 
1000 1.5 0.5 0.34 0.547 3.59 20 82.28 0.387 154.8 
1000 2 0.5 0.30 0.5984 4.2 20 74.17 0.388 155.1 
1100 1.5 0.5 0.41 0.5467 3.59 20 82.28 0.387 154.8 
1100 2 0.5 0.36 0.5979 4.2 20 74.17 0.388 155 
1100 1.5 1 0.21 0.5698 4.64 20 57.78 0.390 155.9 
1200 1.5 0.5 0.48 0.5464 3.59 20 82.28 0.387 154.7 
1200 2 0.5 0.43 0.5975 4.2 20 74.17 0.388 155 
1200 1.5 1 0.25 0.5696 4.64 20 57.78 0.390 155.9 
1300 2 0.5 0.50 0.5971 4.19 20 74.17 0.387 155 
1300 1.5 1 0.29 0.5694 4.64 20 57.78 0.390 155.9 
1300 2.5 0.5 0.46 0.6395 4.78 20 69.37 0.388 155.3 
1400 2 0.5 0.58 0.5968 4.19 20 74.14 0.387 155 
1400 1.5 1 0.33 0.5692 4.64 20 57.78 0.390 155.9 
1400 2.5 0.5 0.54 0.639 4.78 20 69.37 0.388 155.3 
1500 1.5 1 0.38 0.569 4.64 20 57.78 0.390 155.9 
1500 2.5 0.5 0.63 0.6386 4.78 20 69.4 0.388 155.3 
1500 2 1 0.31 0.6392 5.28 20 49.63 0.388 155.1 
1600 1.5 1 0.44 0.5688 4.64 20 57.78 0.390 155.9 
1600 2 1 0.35 0.639 5.28 20 49.62 0.388 155.1 
1600 1.5 1.5 0.31 0.5682 5.64 20 49.76 0.395 157.9 
1700 1.5 1 0.50 0.5687 4.64 20 57.78 0.390 155.9 
1700 2 1 0.40 0.6388 5.28 20 49.63 0.388 155.1 
1700 1.5 1.5 0.36 0.5681 5.64 20 49.76 0.395 157.9 
1800 1.5 1 0.56 0.5686 4.64 20 57.78 0.390 155.9 
1800 2 1 0.45 0.6386 5.28 20 49.63 0.388 155.1 
1800 1.5 1.5 0.40 0.568 5.64 20 49.76 0.395 157.9 
1900 2 1 0.51 0.6384 5.28 20 49.63 0.388 155 
1900 1.5 1.5 0.45 0.5679 5.64 20 49.76 0.395 157.9 
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Table A.1 - contillueo from previom; page 
L Ws We Srnin S(Zo) W T Rt ,. R L C 

500 0.5 0.5 0.22 0.3932 2.29 20 147.8 0.389 155.6 
500 1 0.2 0.33 0.4596 2.32 20 172.5 0.385 153.8 
500 1 0.4 0.16 0.4786 2.76 20 110.9 0.386 154.5 
GOO 1 0.2 0.45 0.459 2.32 20 172.5 0.384 153.8 
600 1 0.4 0.22 0.478 2.76 20 110.9 0.386 154.5 
600 1.5 0.2 0.41 0.5057 2.91 20 156.2 0.387 155 
700 1 0.4 0.28 0.4776 2.76 20 110.9 0.386 154.5 
700 1.5 0.4 0.23 0.538 3.38 20 94.6 0.387 154.8 
800 1 0.4 0.35 0.4773 2.75 20 110.9 0.386 154.4 
800 LJ 0.4 0.29 0.G375 3.37 20 94.6 0.387 1,]4.8 
900 1 0.4 0.44 0.477 2.75 20 110.9 0.386 154.4 
900 1.5 0.4 0.36 0.537 3.37 20 94.6 0.387 154.7 
1000 1.5 0.4 0.44 0.5366 3.37 20 94.6 0.387 154.7 
1000 1.5 0.5 0.34 0.547 3.59 20 82.28 0.387 154.8 
1000 2 0.5 0.30 OH)84 4.2 20 74.17 0.388 155.1 
1100 1.5 0.5 0.41 0.G467 3.G9 20 82.28 0.387 1G4.8 
1100 2 O.,j 0.36 0.5979 4.2 20 74.17 0.388 1.j5 
1100 1.5 1 0.21 0.5698 4.64 20 .57.78 0.390 155.9 
1200 1.5 0.5 0.48 0.5464 3.59 20 82.28 0.387 154.7 
1200 2 0.5 0.43 0.5975 4.2 20 74.17 0.388 155 
1200 1.,] 1 0.25 0.5G9G 4.G4 20 57.78 0.390 155.9 
1300 2 0.5 0.50 0.5971 4.19 20 74.17 0.387 155 
1300 1.5 1 0.29 0.5694 4.64 20 57.78 0.390 155.9 
1300 2.5 0.5 0.46 0.6395 4.78 20 69.37 0.388 155.3 
1400 2 0.5 0.58 0.5968 4.19 20 74.14 0.387 155 
1400 1.5 1 0.33 0.5692 4.64 20 57.78 0.390 155.9 
1400 2.5 0.5 0.54 0.G39 4.78 20 G9.37 0.388 1G5.3 
1500 1.5 1 0.38 0.569 4.64 20 57.78 0.390 155.9 
1500 2.5 0.5 0.63 0.6386 4.78 20 69.4 0.388 155.3 
1500 2 1 0.31 0.6392 5.28 20 49.63 0.388 155.1 
1600 1.5 1 0.44 0.5688 4.64 20 57.78 0.390 155.9 
1600 2 1 0.35 0.639 5.28 20 49.62 0.388 155.1 
1600 1.::i 1.5 (U1 0.G682 G.64 20 49.76 0.3% 1,]7.9 
1700 1.5 1 0.50 0.5687 4.64 20 57.78 0.;190 155.9 
1700 2 1 0.40 0.6388 5.28 20 49.63 0.388 155.1 
1700 1.5 1.5 0.36 0 .. 5681 5.64 20 49.76 0.395 157.9 
1800 1.5 1 0.56 0.5686 4.64 20 57.78 0.390 155.9 
1800 2 1 0.115 0.6386 5.28 20 49.63 0.388 155.1 
1800 1.5 L") 0.40 0.568 5.64 20 49.76 0.395 157.9 
1900 2 1 0.51 0.6384 5.28 20 49.63 0.388 155 
1900 1.5 1.5 0.45 0.5679 5.64 20 49.76 0.395 157.9 
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Table A . l - continued from previous page 
L w,. w G 

Q . S(Z0) W T R L C 
1900 2.5 1 0.44 0.6987 5.9 20 44.79 0.386 154.6 
2000 2 1 0.57 0.6382 5.28 20 49.63 0.388 155 
2000 1.5 1.5 0.51 0.5678 5.64 20 49.77 0.395 157.9 
2000 2.5 1 0.49 0.6984 5.9 20 44.8 0.386 154.6 
2100 2 1 0.63 0.6381 5.28 20 49.62 0.388 155 
2100 1.5 1.5 0.56 0.5677 5.64 20 49.76 0.395 157.9 
2100 2.5 1 0.55 0.6982 5.9 20 44.8 0.386 154.6 
2200 2.5 1 0.61 0.698 5.9 20 44.8 0.386 154.6 
2200 2 1.5 0.48 0.6501 6.3 20 41.56 0.390 156.1 
2200 3 1 0.55 0.7502 6.5 20 41.6 0.386 154.4 
2300 2.5 1 0.67 0.6978 5.9 20 44.78 0.386 154.6 
2300 2 1.5 0.53 0.65 6.3 20 41.56 0.390 156.1 
2300 3 1 0.61 0.75 6.5 20 41.6 0.386 154.3 
2400 2 1.5 0.58 0.6499 6.3 20 41.56 0.390 156.1 
2400 3 1 0.67 0.7498 6.5 20 41.6 0.386 154.3 
2400 2.5 1.5 0.48 0.7223 6.94 20 36.7 0.388 155 
2500 2 1.5 0.63 0.6498 6.3 20 41.56 0.390 156.1 
2500 3 1 0.73 0.7496 6.5 20 41.6 0.386 154.3 
2500 2.5 1.5 0.53 0.7221 6.94 20 36.7 0.388 155 
2600 2.5 1.5 0.58 0.722 6.94 20 36.7 0.388 155 
2600 3 1.5 0.51 0.7864 7.57 20 33.47 0.386 154.3 
2700 2.5 1.5 0.63 0.7219 6.94 20 36.7 0.388 155 
2700 3 1.5 0.55 0.7862 7.57 20 33.47 0.386 154.3 
2800 2.5 1.5 0.69 0.7218 6.94 20 36.68 0.388 155 
2800 3 1.5 0.60 0.7861 7.57 20 33.47 0.386 154.3 
2900 3 1.5 0.65 0.7859 7.57 20 33.47 0.386 154.3 
3000 3 1.5 0.71 0.7858 7.57 20 33.47 0.386 154.3 
3000 3 2 0.53 0.8029 8.61 20 29.5 0.387 154.8 
3000 4 1.5 0.59 0.897 8.79 20 29.51 0.384 153.5 
3100 3 1.5 0.76 0.7856 7.57 20 33.48 0.386 154.3 
4000 4 2 0.87 0.9304 9.86 20 25.5 0.384 153.5 
4000 3 3 0.78 0.8109 10.6 20 25.8 0.390 156.2 
4000 4 2.5 0.70 0.9516 10.9 20 23.17 0.384 153.7 
5000 5 2.5 1.05 1.077 12.2 20 20.8 0.381 152.5 
5000 5 3 0.89 1.101 13.2 20 19.27 0.381 152.5 
5000 6 2.5 0.95 1.191 13.4 20 19.24 0.379 151.7 
6000 5 4 1.13 1.13 15.3 20 17.48 0.382 152.7 
6000 7 3 1.17 1.341 15.7 20 16.58 0.377 150.8 
6000 6 4 0.99 1.274 16.5 20 15.86 0.379 151.4 
7000 7 4 1.34 1.407 17.8 20 14.7 0.376 150.4 
7000 6 5 1.27 1.304 18.6 20 14.86 0.378 151.4 
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Tflhle A.1 - continued from previous pa):!;e 
L Ws We Srnin S(Zo) Wr Rtr R L C 

1900 2.5 1 0.44 0.6987 5.9 20 44.79 0.386 154.6 
2000 2 1 0.57 0.6382 .5.28 20 49.63 0.388 155 
2000 1.5 1.5 0.51 0.5678 5.64 20 49.77 0.395 157.9 
2000 2.,j 1 0.49 0.6984 G.9 20 44.8 0.386 154.6 
2100 2 1 0.63 0.6381 5.28 20 49.62 0.388 155 
2100 1.5 1.5 0.56 0.5677 5.64 20 49.76 0.395 157.9 
2100 2.5 1 0.55 0.6982 .5.9 20 44.8 0.386 154.6 
:2200 :r .. J 1 0.61 0.698 5.9 20 44.8 0.386 154.6 
2200 2 1.5 0.48 0.6501 6.:3 20 41.56 0.390 156.1 
2200 3 1 0.50 0.7502 6.0 20 4l.6 0.386 154.4 
2~~00 2Ji 1 0.67 0.6978 5.9 20 44.78 0.386 154.6 
2300 2 1.5 0.53 0.65 6.:3 20 41.56 0.390 156.1 
2300 3 1 0.61 0.75 6.5 20 41.6 0.386 154.3 
2400 2 1.5 0.58 0.6499 6.3 20 41.56 0.390 156.1 
2,100 3 1 0.67 0.7498 6.5 20 41.6 0.386 154.3 
2400 2.5 Li 0.48 0.7223 6.94 20 36.7 0.388 155 
2500 2 1.5 0.6:3 0.6498 6.:3 20 41.56 0.390 156.1 
2500 3 1 0.73 0.7496 6.5 20 41.6 0.386 154.3 
2500 2.5 1.5 0.53 0.7221 6.94 20 36.7 0.388 155 
2600 2 -.0 1.5 0.58 0.722 6.94 20 36.7 0.388 155 
:2600 3 LJ 0.01 0.7864 7.57 20 33.47 0.386 154.3 
2700 2.5 1.5 0.63 O.721~) 6.94 20 36.7 0.388 1,j5 
2700 :3 1.5 0.55 0.7862 7.57 20 33.47 0.386 154.3 
2800 2.5 1.5 0.69 0.7218 6.94 20 36.68 0.388 155 
2800 3 1.5 0.60 0.7861 7.57 20 33.47 0.386 154.3 
2900 3 1.5 0.65 0.7859 7.57 20 33.47 0.386 154.3 
3000 3 1.5 0.71 O.78,j8 7.57 20 33.:17 0.386 154.3 
3000 3 2 0.53 0.8029 8.61 20 29.5 0.387 154.8 
3000 4 L::i 0.59 0.897 8.79 20 29.51 0.384 153.5 
3100 3 1.,j 0.76 0.7856 7.57 20 33.48 0.386 154.3 
4000 4 2 0.87 0.9304 9.86 20 25.5 0.384 153.5 
4000 3 3 0.78 0.8109 10.6 20 25.8 0.390 156.2 
4000 4 2.5 0.70 O.%lG 10.9 20 23.17 0.384 153.7 
5000 5 2 . .5 LOiS 1.077 12.2 20 20.8 0.381 152.5 
5000 .5 3 0.89 1.101 13.2 20 19.27 0.381 152.5 
5000 6 2.5 0.95 1.191 13.4 20 19.24 0.379 151.7 
6000 .5 4 1.13 1.13 1,j.3 20 17.48 0.382 152.7 
6000 7 3 1.17 1.341 15.7 20 16.58 0.377 150.8 
6000 6 4 0.99 1.274 16.5 20 15.86 0.379 151.4 
7000 7 4 1.34 1.407 17.8 20 14.7 0.376 150.4 
7000 6 5 1.27 1.304 18.6 20 14.86 0.378 151.4 
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Table A . l - continued from previous page 
L w5 wG 

S • S(Z 0 ) W T R L C 
7000 7 5 1.15 1.452 19.9 20 13.68 0.376 150.2 
8000 7 6 1.46 1.485 22 20 13.04 0.375 150 
9000 9 6 1.69 1.781 24.6 20 11.42 0.370 148.2 
9000 10 6 1.60 1.921 25.8 20 10.86 0.369 147.5 
9000 9 7 1.56 1.826 26.7 20 10.96 0.370 147.9 
10000 11 6 2.00 2.054 27.1 20 10.39 0.367- 146.9 
10000 10 7 1.92 1.974 27.9 20 10.38 0.368 147.1 
10000 11 7 1.84 2.12 29.2 20 9.909 0.366 146.5 
11000 11 9 2.08 2.216 33.4 20 9.291 0.365 145.9 

z 0 = 70 il 
Metal Thickness = 0.35 fim 

100 1.5 1 0.01 1.471 6.44 20 57.68 0.516 105.3 
200 1.5 1 0.02 1.437 6.37 20 57.7 0.514 105 
300 1.5 1 0.03 1.424 6.35 20 57.7 0.513 104.8 
400 1.5 1 0.04 1.417 6.33 20 57.7 0.513 104.7 
500 1.5 1 0.05 1.413 6.33 20 57.68 0.513 104.6 
600 1.5 1 0.07 1.409 6.32 20 57.68 0.512 104.6 
700 1.5 1 0.09 1.407 6.31 20 57.69 0.512 104.5 
800 1.5 1 0.12 1.405 6.31 20 57.69 0.512 104.5 
900 1.5 1 0.14 1.403 6.31 20 57.69 0.512 104.5 
1000 1.5 1 0.17 1.402 6.3 20 57.69 0.512 104.4 
2000 1.5 1 0.70 1.395 6.29 20 57.7 0.511 104.3 
3000 3 2 0.53 2.215 11.4 20 29.26 0.506 103.3 
4000 3 2 1.06 2.211 11.4 20 29.27 0.506 103.3 
5000 3 2 1.81 2.208 11.4 20 29.26 0.506 103.3 
6000 4 3 1.64 2.803 15.6 20 21.3 0.503 102.6 
7000 4 3 2.39 2.8 15.6 20 21.3 0.503 102.6 
8000 5 4 2.31 3.4 19.8 20 16.99 0.500 102 
8000 6 4 2.05 3.848 21.7 20 15.38 0.499 101.8 
9000 5 4 3.09 3.397 19.8 20 16.99 0.500 102 
9000 6 4 2.73 3.845 21.7 20 15.37 0.499 101.7 
10000 6 4 3.54 3.842 21.7 20 15.37 0.498 101.7 

z 0 = 75 n 
Metal Thickness = 0.35 

100 0.25 0.2 0.08 0.7852 2.22 20 320.2 0.546 97.01 
100 0.25 0.4 0.05 0.8085 2.67 20 258.6 0.547 97.28 
100 0.5 0.2 0.05 0.955 2.81 20 221.7 0.550 97.79 
200 0.25 0.2 0.17 0.7781 2.21 20 320.2 0.544 96.79 
200 0.25 0.4 0.12 0.8015 2.65 20 258.6 0.546 97.12 
200 0.5 0.2 0.12 0.9425 2.78 20 221.7 0.548 97.46 
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Table A.1 - continued from previolls page 
L Ws We Srnin S(Zo) W T Ru· R L C 

7000 7 5 LEi 1.452 19.9 20 13.68 0.376 150.2 

8000 7 6 1.46 1.485 22 20 13.04 0.375 150 
9000 9 (j 1.69 1.781 24.6 20 11.42 0.370 14S.2 
9000 10 (j 1.(jO 1.921 20.8 20 10.8(j 0.369 147.5 
9000 9 7 1.56 1.826 26.7 20 10.96 0.370 147.9 
10000 11 6 2.00 2.054 27.1 20 10.39 0.367· 146.9 
10000 10 7 1.92 1.974 27.9 20 10.38 0.368 147.1 
10000 11 7 1.84 2.12 29.2 20 9.909 0.366 146.5 

11000 11 9 2.08 2.216 :):3.4 :20 9.291 0.365 145.9 

Zo = 70 0 
:\1etal Thickness = 0.:35 pm 

100 1.5 1 0.01 1.471 6.44 20 57.68 0.516 105.3 
200 1..J 1 0.02 1.437 6.37 20 57.7 0.514 105 
300 1.5 1 0.03 1.424 6.35 20 57.7 0513 104.8 
400 1.5 1 0.04 1.417 6.33 20 57.7 0.513 104.7 

500 1.5 1 0.05 1.413 (j.33 :20 57.68 0.513 104.6 
600 LJ 1 fUl7 1.409 6.32 20 57.68 0.512 104.6 
700 1.5 1 0.09 1.407 6.31 20 57.69 0.512 104.5 
800 1.5 1 0.12 1.405 6.31 20 57.69 0.512 104.5 
900 1.5 1 0.14 1.403 6.31 20 57.69 0.512 104.5 
1000 1.5 1 0.17 1.402 6.3 20 57.69 0.512 104.4 
2000 1.5 1 0.70 1.395 6.29 20 57.7 0.511 104.3 
:moo 3 2 or·) .JoJ 2.21S 11.1 20 29.2G O.JOG 103.3 
4000 :3 2 1.06 2.211 11.4 20 29.27 0.506 10:3.3 
5000 3 2 l.81 2.208 11.4 20 29.26 0.506 lO:U 
6000 4 3 1.64 2.803 15.6 20 21.3 0.503 102.6 
7000 4 3 2.39 2.8 15.6 20 21.3 0.503 102.6 
sooo 5 4 2.31 3.4 19.5 20 16.99 0.500 102 
8000 G 4 2.05 3.848 21.7 20 lS.38 0.499 101.8 
9000 5 /1 3.09 3.397 19.8 20 16.99 0.500 102 
9000 6 4 2.73 3.845 2l.7 20 15.37 0.499 101.7 
10000 6 4 3.54 3.842 21.7 20 15.37 0.498 101.7 

Z" = 75 n 
:\1etal Thickness = 0.35 11m 

100 0.25 0.2 0.08 0.7852 2.22 20 320.2 0.546 97.01 
100 0.2S 0.4 0.05 0.8085 2.67 20 258.6 0.547 97.28 
100 0.5 0.2 0.05 0.955 2.81 20 22l.7 0.550 97.79 
200 0.25 0.2 0.17 0.7781 2.21 20 320.2 0.544 96.79 
200 0.25 0.4 0.12 0.8015 2.65 20 258.6 0.546 97.12 
200 0.5 0.2 0.12 0.9425 2.78 20 221.7 0.548 97.46 
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Table A. l - continued from previous page 
L W s w G S • S(Z0) W T R L C 

300 0.25 0.2 0.30 0.7753 2.2 20 320.2 0.544 96.69 
300 0.25 0.4 0.21 0.7989 2.65 20 258.6 0.546 97.04 
300 0.5 0.2 0.20 0.9374 2.77 20 221.7 0.547 97.31 
400 0.25 0.2 0.46 0.7738 2.2 20 320.2 0.544 96.62 
400 0.25 0.4 0.33 0.7974 2.64 20 258.5 0.546 97 
400 0.5 0.2 0.30 0.9346 2.77 20 221.7 0.547 97.22 
500 0.25 0.2 0.67 0.7727 2.2 20 320.2 0.543 96.58 
500 0.25 0.4 0.47 0.7964 2.64 20 258.6 0.545 96.97 
500 0.5 0.2 0.43 0.9326 2.77 20 221.6 0.546 97.16 
600 0.25 0.4 0.65 0.7957 2.64 20 258.7 0.545 96.94 
600 0.5 0.2 0.58 0.9312 2.76 20 221.7 0.546 97.11 
600 0.5 0.4 0.34 0.9767 3.25 20 160.1 0.547 97.19 
700 0.5 0.2 0.76 0.9302 2.76 20 221.7 0.546 97.07 
700 0.5 0.4 0.44 0.9757 3.25 20 160.1 0.547 97.16 
700 0.75 0.2 0.64 1.065 3.28 20 188.9 0.547 97.28 
800 0.5 0.4 0.55 0.9749 3.25 20 160.1 0.546 97.14 
800 0.75 0.2 0.82 1.064 3.28 20 188.9 0.547 97.24 
800 0.75 0.4 0.42 1.129 3.81 20 127.2 0.547 97.18 
900 0.5 0.4 0.69 0.9742 3.25 20 160.1 0.546 97.12 
900 0.75 0.2 1.03 1.062 3.27 20 188.9 0.547 97.21 
900 0.75 0.4 0.51 1.128 3.81 20 127.3 0.546 97.15 
1000 0.5 0.4 0.84 0.9737 3.25 20 160.1 0.546 97.1 
1000 0.75 0.4 0.62 1.127 3.8 20 127.3 0.546 97.13 

z 0 = ioo n 
Metal Thickness = 0.35 /im 

100 0.25 0.2 0.08 1.598 3.85 20 320.2 0.720 71.97 
100 0.25 0.4 0.05 1.688 4.43 20 258.6 0.718 71.76 
100 0.5 0.2 0.05 2.014 4.93 20 221.7 0.727 72.65 
200 0.25 0.2 0.17 1.57 3.79 20 320.2 0.717 71.66 
200 0.25 0.4 0.12 1.659 4.37 20 258.6 0.715 71.5 
200 0.5 0.2 0.12 1.964 4.83 20 221.7 0.722 72.22 
300 0.25 0.2 0.30 1.558 3.77 20 320.2 0.715 71.52 
300 0.25 0.4 0.21 1.647 4.34 20 258.6 0.714 71.39 
300 0.5 0.2 0.20 1.944 4.79 20 221.7 0.720 72.03 
400 0.25 0.2 0.46 1.552 3.75 20 320.2 0.714 71.44 
400 0.25 0.4 0.33 1.641 4.33 20 258.5 0.713 71.32 
400 0.5 0.2 0.30 1.933 4.77 20 221.7 0.719 71.92 
500 0.25 0.2 0.67 1.546 3.74 20 320.2 0.714 71.41 
500 0.25 0.4 0.47 1.637 4.32 20 258.6 0.713 71.28 
500 0.5 0.2 0.43 1.926 4.75 20 221.6 0.718 71.84 
600 0.25 0.2 0.95 1.543 3.74 20 320.2 0.714 71.37 
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Table A.l - continued from previous page 
L Ws We Srnin S(Zo) W T Rtr R L C 

300 0.25 0.2 0.30 0.7753 2.2 20 320.2 0.544 96.69 
300 0.25 0.4 0.21 0.7989 2.65 20 258.6 0.546 97.04 
300 0.5 0.2 0.20 0.9374 2.77 20 221.7 0.547 97.31 
400 0.2G 0.2 0.46 0.7738 2.2 20 320.2 0.G44 96.62 
400 0.25 0.4 0.33 0.7974 2.64 20 258.5 0.546 97 
400 0.0 0.2 0.30 0.9346 2.77 20 221.7 0.547 97.22 
500 0.25 0.2 0.67 0.7727 2.2 20 320.2 0.543 96.58 
500 0.25 0.4 0.47 0.7964 2.64 20 25S.6 0.545 96.97 
500 0.5 0.2 0.43 0.9320 2.77 20 221.0 0.546 97.10 
600 0.25 0.4 0.65 0.79G7 2.64 20 25S.7 0.545 96.94 
600 0.0 0.2 0.58 0.9:112 2.76 20 221.7 0.546 97.11 
600 0.0 0.4 0.34 0.9767 3.25 20 160.1 0.547 97.19 
700 0.5 0.2 0.76 0.9302 2.76 20 221.7 0.546 97.07 
700 0.5 0.4 0.44 0.9757 3.25 20 160.1 0.547 97.16 
700 0.7G 0.2 0.64 1.0G5 :3.28 20 188.9 0.547 97.28 
SOO 0.5 0.4 0.55 0.9749 3.25 20 160.1 0.546 97.14 
SOO 0.75 0.2 0.82 1.064 3.28 20 18S.9 0.547 97.24 
SOO 0.75 0.4 0.42 1.129 3.81 20 127.2 0.547 97.18 
900 0.5 0.4 0.69 0.9742 3.25 20 160.1 0.546 97.12 
900 0.75 0.2 1.03 1.062 3.27 20 18S.9 0.547 97.21 
900 0.75 0.4 0.51 1.128 3.81 20 127.3 0.546 97.15 
1000 0.0 0.4 0.84 0.9737 3.25 20 160.1 0 .. 546 97.1 
1000 0.75 0.4 0.62 1.127 :3.8 20 127.3 0.546 97.13 

Zo = 100 [2 

Metal Thickness = 0.3G pm 
100 0.25 0.2 0.08 1.598 3.85 20 320.2 0.720 71.97 
100 0.25 0.4 0.05 1.688 4.43 20 258.6 0.718 71.76 
100 O.':-i 0.2 0.05 2.014 4.93 20 221.7 0.727 72.65 
200 0.25 0.2 0.17 1.57 3.79 20 320.2 0.717 71.66 
200 0.25 0.4 0.12 1.659 4.37 20 258.6 0.715 71.5 
200 0 .. 5 0.2 0.12 1.964 4.83 20 221.7 0.722 72.22 
300 0.25 0.2 0.30 1.558 3.77 20 320.2 0.715 71.52 
300 0.25 0.4 0.21 1.647 4.34 20 258.G 0.714 71.39 
300 0.5 0.2 0.20 1.944 4.79 20 221.7 0.720 72.03 
400 0.25 0.2 0.46 1.552 3.75 20 320.2 0.714 71.44 
400 0.25 0.4 0.33 1.641 4.33 20 25S.5 O.7l3 71.32 
400 0.5 0.2 0.30 1.933 4.77 20 221.7 0.7l9 71.92 
500 0.25 0.2 0.07 1.540 3.74 20 320.2 0.714 71.41 
GOO O.2G 0.4 0.47 1.637 4.32 20 25S.6 0.7l3 71.2S 
500 0.0 0.2 0.43 1.920 4.75 20 221.6 O.7lS 71.84 
600 0.25 0.2 0.9.5 1.543 3.74 20 320.2 O.7l4 71.37 
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Table A . l - continued from previous page 
L w 5 wG 

Q . S (Z 0 ) W T R L C 
600 0.25 0.4 0.65 1.634 4.32 20 258.7 0.712 71.24 
600 0.5 0.2 0.58 1.92 1.74 20 221.7 0.718 71.78 
700 0.25 0.2 1.31 1.54 3.73 20 320.1 0.713 71.34 
700 0.25 0.4 0.87 1.631 4.31 20 258.6 0.712 71.22 
700 0.5 0.2 0.76 1.916 4.73 20 221.7 0.717 71.73 
800 0.25 0.4 1.15 1.63 4.31 20 258.6 0.712 71.19 
800 0.5 0.2 0.98 1.913 4.73 20 221.6 0.717 71.7 
800 0.5 0.4 0.55 2.045 5.39 20 160.1 0.715 71.52 
900 0.25 0.4 1.50 1.628 4.31 20 258.7 0.712 71.17 
900 0.5 0.2 1.25 1.91 4.72 20 221.7 0.717 71.66 
900 0.5 0.4 0.69 2.042 5.38 20 160.1 0.715 71.5 
1000 0.5 0.2 1.57 1.907 4.71 20 221.7 0.716 71.64 
1000 0.5 0.4 0.84 2.04 5.38 20 160.1 0.715 71.47 
1000 0.75 0.2 1.28 2.232 5.61 20 188.9 0.718 71.84 
5000 3 1 3.74 5.561 16.1 20 41.38 0.711 71.11 
5000 3 1.5 2.36 6.046 18.1 20 33.2 0.708 70.75 
5000 4 1 3.40 6.588 19.2 20 37.38 0.713 71.26 
3000 1.5 0.5 3.61 4.519 11.5 20 82.23 0.784 64.81 

z0 = 120 Q 
Metal Thickness = 0.35 fim 

100 1.5 0.2 0.03 6.425 14.7 20 156.1 0.898 62.37 
200 1.5 0.2 0.07 5.921 13.7 20 156.1 0.884 61.37 
300 1.5 0.2 0.13 5.741 13.4 20 156.1 0.878 60.95 
400 1.5 0.2 0.20 5.643 13.2 20 156.1 0.874 60.71 
500 1.5 0.2 0.30 5.58 13.1 20 156.1 0.872 60.55 
600 1.5 0.2 0.41 5.535 13 20 156.1 0.870 60.43 
700 1.5 0.2 0.55 5.5 12.9 20 156.1 0.869 60.34 
800 1.5 0.2 0.71 5.472 12.8 20 156.1 0.868 60.26 
900 1.5 0.2 0.89 5.449 12.8 20 156.1 0.867 60.2 
1000 1.5 0.2 1.11 5.43 12.8 20 156.1 0.866 60.14 
3000 1.5 0.5 3.61 5.967 14.4 20 82.23 0.855 59.34 
8000 4.5 1 11.78 12.74 32 20 36.02 0.852 59.2 

Z 0 = 125 Q 
Metal Thickness = 0.35 /mi 

1000 1 0.5 0.43 5.662 13.3 20 98.59 0.892 57.11 
2000 1 0.5 1.73 5.575 13.2 20 98.6 0.889 56.89 
3000 1 0.5 4.85 5.537 13.1 20 98.6 0.887 56.79 
4000 2 1 2.69 9.047 22.1 20 49.48 0.884 56.61 
4000 3 1 2.17 11.55 28.1 20 41.38 0.888 56.82 
5000 2 1 4.75 9.011 22 20 49.46 0.884 56.55 

1(M 

Table A.1 - rontiuue(l from previous pa)!;e 
L Ws We Sn~in S(Zo) W T Rt/. R L C 

600 0.25 0.4 0.65 1.634 4.32 20 258.7 0.712 71.24 
600 0.5 0.2 0.58 1.92 4.74 20 221.7 0.718 71.78 
700 0.25 0.2 1.31 1.54 3.73 20 320.1 0.713 71.34 
700 0.2G 0.4 0.87 1.G;.n 4.:31 20 2G8.G 0.712 71.22 
700 0.5 0.2 n.76 1.916 4.73 20 221.7 0.717 71.73 
800 0.25 0.4 1.15 1.63 4.31 20 258.6 0.712 71.19 
800 0.5 0.2 0.98 1.913 4.73 20 221.6 0.717 71.7 
800 0.5 0.4 0.55 2.045 5.39 20 160.1 0.715 71.52 
900 0.25 0.4 1.50 1.628 4.31 20 258.7 0.712 71.17 
900 0.5 0.2 1.20 un 1.72 20 221.7 0.717 71.66 
900 0.5 0.4 0.69 2.042 ;>.;38 20 160.1 0.715 71.5 

1000 0.5 0.2 1.57 1.907 4.71 20 221.7 0.716 71.64 
1000 0.5 0.4 0.84 2.04 5.38 20 160.1 0.715 71.47 
1000 0.75 0.2 1.28 2.232 5.61 20 188.9 0.718 71.84 
5000 3 1 3.74 5.561 16.1 20 41.:38 0.711 71.11 
5000 3 1.5 2.36 6.046 18.1 20 33.2 0.708 70.7G 
5000 4 1 ~~.40 6.588 19.2 20 37.38 0.713 71.26 
3000 1.5 0.5 3.61 4.519 11.5 20 82.23 0.784 64.81 

Z" = 1200 
:VIetal Thickness = 0.35 11m 

100 1.5 0.2 0.03 6.425 14.7 20 15G.1 0.898 62.37 
200 1.J 0.2 0.07 5.921 13.7 20 l5G.1 0.884 61.37 
:300 1.5 0.2 0.13 5.741 U.4 20 156.1 0.878 60.95 
400 1.5 0.2 0.20 5.643 1:3.2 20 156.1 0.874 60.71 
500 1.5 0.2 0.30 5.58 13.1 20 156.1 0.872 60.55 
600 1.5 0.2 0.41 5.535 13 20 156.1 0.870 60.43 
700 1.5 0.2 0.55 5.Zi 12.9 20 156.1 0.869 60.34 
800 1.5 0.2 0.71 ZiA72 12.8 20 15G.1 0.8G8 GO.2G 
900 1..5 0.2 0.89 5.449 12.8 20 156.1 0.867 60.2 

1000 1.5 0.2 1.11 ,5.43 12.8 20 l.':i6.1 0.866 60.14 
3000 1.5 0.5 3.61 5.967 14.4 20 82.23 0.855 ·59.34 
8000 4.5 1 11.78 12.74 32 20 36.02 0.852 59.2 

Z" = 125 n 
:VIetal Thickuess = 0.:35 Illll 

1000 1 0.;) (U3 5.662 13.3 20 98.09 0.892 57.11 
2000 1 0.;) 1.7:3 5.575 1:3.2 20 98.6 0.889 56.89 
3000 1 0.,) 4.85 5.537 13.1 20 98.6 0.887 56.79 
4000 2 1 2.69 9.047 22.1 20 49.48 0.884 56.61 
4000 3 1 2.17 11.55 28.1 20 41.38 0.888 56.82 
5000 2 1 4.75 9.011 22 20 49.46 0.884 56.55 
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Table A. l - continued from previous page 
L w 5 w G 

Q . 
0 mm 

S(Z 0 ) W r R L C 
5000 3 1 3.74 11.49 28 20 41.36 0.887 56.75 
6000 2 1 7.92 8.985 22 20 49.47 0.883 56.5 
6000 3 1 6.03 11.45 27.9 20 41.37 0.886 56.69 
7000 3 1 9.33 11.42 27.8 20 41.37 0.885 56.65 
8000 5 5 2.04 22.88 60.8 20 15.46 0.869 55.64 
8000 5 10 1.66 26.8 78.6 20 13.14 0.861 55.09 
8000 10 5 1.34 37.35 94.7 20 10.7 0.875 55.99 
9000 5 5 2.73 22.83 60.7 20 15.47 0.869 55.61 
9000 5 10 2.21 26.75 78.5 20 13.13 0.860 55.07 
9000 10 5 1.81 37.23 94.5 20 10.69 0.874 55.94 
10000 5 5 3.53 22.8 60.6 20 15.47 0.869 55.59 
10000 5 10 2.84 26.71 78.4 20 13.14 0.860 55.05 
10000 10 5 2.35 37.13 94.3 20 10.69 0.874 55.91 
3000 1.5 0.5 3.61 7.824 18.1 20 82.23 0.926 54.77 

Z 0 = 140 il 
Metal Thickness = 0.35 //m 

100 1.5 1 0.01 15.76 35 20 57.62 1.044 53.28 
200 1.5 1 0.02 13.6 30.7 20 57.6 1.022 52.14 
300 1.5 1 0.03 12.94 29.4 20 57.63 1.013 51.71 
400 1.5 1 0.04 12.61 28.7 20 57.62 1.009 51.47 
500 1.5 1 0.05 12.4 28.3 20 57.62 1.006 51.31 
600 1.5 1 0.07 12.26 28 20 57.63 1.003 51.2 
700 1.5 1 0.09 12.15 27.8 20 57.63 1.002 51.11 
800 1.5 1 0.12 12.07 27.6 20 57.62 1.000 51.04 
900 1.5 1 0.14 12.01 27.5 20 57.62 0.999 50.98 
1000 1.5 1 0.17 11.95 27.4 20 57.63 0.998 50.93 
2000 1 1 0.99 9.324 21.6 20 74 0.989 50.47 
3000 1 1 2.50 9.245 21.5 20 74 0.987 50.37 
4000 1 1 5.42 9.197 21.4 20 74 0.986 50.31 
5000 1.5 1.5 4.35 12.37 29.2 20 49.44 0.983 50.17 
6000 1.5 1.5 7.27 12.33 29.2 20 49.45 0.983 50.13 
7000 1.5 1.5 11.77 12.3 29.1 20 49.44 0.982 50.1 
8000 2 2 9.15 15.44 36.9 20 37.2 0.980 50.01 
9000 2 2 13.21 15.41 36.8 20 37.2 0.980 49.98 
10000 3 1.5 15.43 18.55 43.1 20 33.18 0.986 50.28 
Frequency = 15 GHz 

z 0 = 25 n 
Metal Thickness = 0.35 /im 

100 0.25 0.2 0.08 0.09903 0.848 20 320.2 0.224 358.1 
100 0.5 0.2 0.05 0.1018 1.1 20 221.7 0.232 370.7 

lOS 

Table A.l - continued from previous page 
L Ws We Sm'in S(Zo) W T 

5000 3 1 3.74 11.49 28 
6000 2 1 7.92 8.985 22 
6000 3 1 6.03 11.45 27.9 
7000 3 1 !.l.33 11.42 27.8 
8000 5 5 2.04 22.88 60.8 
8000 5 10 1.66 26.8 78.6 
8000 10 5 1.34 37.35 94.7 
9000 5 5 2.73 22.83 60.7 
9000 5 10 2.21 26.75 78.5 
9000 10 5 1.81 37.23 94.5 
10000 5 5 3.53 22.8 60.6 
10000 5 10 2.84 26.71 78.4 
10000 10 5 2.35 37.13 94.3 
3000 1.5 0.5 3.61 7.824 18.1 

Zo = 140 ~2 
).iIdal Thickn0ss = 0.35 11m 

100 1.5 1 0.01 15.76 35 
200 1.5 1 0.02 13.6 30.7 
300 1.5 1 0.03 12.94 29.4 
400 1..5 1 0.04 12.61 28.7 
500 1.5 1 0.05 12.4 28.3 
600 1.5 1 0.07 12.26 28 
700 1.5 1 0.00 12.15 27.8 
800 1..") 1 0.12 12.07 27.6 
900 1.5 1 0.14 12.01 27.5 
1000 Li 1 0.17 11.95 27.4 
2000 1 1 0.99 9.324 21.6 
3000 1 1 2.50 9.245 21.5 
4000 1 1 5.42 9.197 21.4 
5000 1..5 1.5 4.35 12.37 29.2 
6000 LS 1.5 7.27 123;3 29.2 
7000 1.5 1.5 11.77 12.3 29.1 
8000 2 2 9.15 15.44 36.9 
9000 2 2 13.21 15.41 36.8 
10000 3 1.5 15.43 18.55 43.1 

-Fn~rtU0ncy = 10 GHz 
Zo = 25 n 

Nletal Thickness = 0.35 pm 
100 0.25 0.2 0.08 0.09903 0.848 
100 0.5 0.2 0.05 0.1018 

RI!' 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

R 
41.36 
49.47 
41.37 
41.37 
15.46 
13.14 
10.7 

15.47 
13.13 
10.69 
15.47 
13.14 
10.69 
82.23 

57.62 
57.6 

57.63 
57.62 
57.62 
57.63 
57.G~1 

57.62 
57.62 
57.63 

74 
74 
74 

49.44 
49.45 
49.44 
37.2 
37.2 

33.18 

320.2 
221.7 

L 
0.887 
0.883 
0.886 
0.885 
0.869 
0.861 
0.875 
0.869 
0.860 
0.874 
0.869 
0.860 
0.874 
0.926 

1.044 
1.022 
1.013 
1.009 
1.006 
1. 003 
1.002 
1.000 
0.999 
0.998 
0.989 
0.987 
0.986 
0.983 
0.983 
0.982 
0.980 
0.980 
0.986 

0.224 
0.232 

C 
56.75 
.56.5 

56.69 
56.05 
55.64 
55.09 
55.99 
55.61 
55.07 
55.94 
55.59 
55.05 
55.91 
54.77 

53.28 
52.14 
51.71 
·51.47 
51.31 
51.2 

51.11 
51.04 
50.98 
50.93 
50.47 
50.37 
50.31 
50.17 
50.13 
50.1 

50.01 
49.98 
50.28 

358.1 
370.7 
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Table A . l - continued from previous page 
L w 5 w G 

Q . S (Z 0 ) W T Rtr R L C 
100 0.75 0.2 0.04 0.1026 1.36 20 189 0.238 380.4 
200 0.75 0.2 0.10 0.1022 1.35 20 189.1 0.238 380.4 

z 0 = so n 
Metal Thickness = 0.35 /mi 

2500 2.5 2 0.44 0.7381 7.98 20 33.61 0.388 155.2 
z 0 = 75 Q 

Metal Thickness = 0.35 fim 
100 0.25 0.2 0.08 0.7852 2.22 20 320.2 0.546 97.01 
100 0.25 0.4 0.05 0.8085 2.67 20 258.6 0.547 97.28 
100 0.5 0.2 0.05 0.955 2.81 20 221.7 0.550 97.79 
200 0.25 0.2 0.17 0.7781 2.21 20 320.2 0.544 96.79 
200 0.25 0.4 0.12 0.8015 2.65 20 258.6 0.546 97.12 
200 0.5 0.2 0.12 0.9425 2.78 20 221.7 0.548 97.46 
300 0.25 0.2 0.30 0.7753 2.2 20 320.2 0.544 96.69 
300 0.25 0.4 0.21 0.7989 2.65 20 258.6 0.546 97.04 
300 0.5 0.2 0.20 0.9374 2.77 20 221.7 0.547 97.31 
400 0.25 0.2 0.46 0.7738 2.2 20 320.2 0.544 96.62 
400 0.25 0.4 0.33 0.7974 2.64 20 258.5 0.546 97 
400 0.5 0.2 0.30 0.9346 2.77 20 221.7 0.547 97.22 
500 0.25 0.2 0.67 0.7727 2.2 20 320.2 0.543 96.58 
500 0.25 0.4 0.47 0.7964 2.64 20 258.6 0.545 96.97 
500 0.5 0.2 0.43 0.9326 2.77 20 221.6 0.546 97.16 
600 0.25 0.4 0.65 0.7957 2.64 20 258.7 0.545 96.94 
600 0.5 0.2 0.58 0.9312 2.76 20 221.7 0.546 97.11 
600 0.5 0.4 0.34 0.9767 3.25 20 160.1 0.547 97.19 
700 0.5 0.2 0.76 0.9302 2.76 20 221.7 0.546 97.07 
700 0.5 0.4 0.44 0.9757 3.25 20 160.1 0.547 97.16 
700 0.75 0.2 0.64 1.065 3.28 20 189 0.547 97.29 
800 0.5 0.4 0.55 0.9749 3.25 20 160.1 0.546 97.14 
800 0.75 0.2 0.82 1.063 3.28 20 189 0.547 97.25 
800 0.75 0.4 0.42 1.129 3.81 20 127.4 0.547 97.18 
900 0.5 0.4 0.69 0.9742 3.25 20 160.1 0.546 97.12 
900 0.75 0.2 1.03 1.062 3.27 20 189 0.547 97.21 
900 0.75 0.4 0.51 1.128 3.81 20 127.3 0.546 97.15 
1000 0.5 0.4 0.84 0.9737 3.25 20 160.1 0.546 97.1 
1000 0.75 0.4 0.62 1.127 3.8 20 127.4 0.546 97.13 

z 0 = ioo n 
Metal Thickness = 0.35 /mi 

100 0.25 0.2 0.08 1.598 3.85 20 320.2 0.720 71.97 
100 0.25 0.4 0.05 1.688 4.43 20 258.6 0.718 71.76 
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Table A.1 - continued from previouf; page 
L Ws WG 8mi1/, 8(Zo) WT Ru· R L C 

100 0.75 0.2 0.04 0.1026 1.36 20 189 0.238 380.4 
200 0.75 0.2 0.10 0.1022 1.35 20 189.1 0.238 380.4 

Zo = 50 D 
Metal Thickness = 0.3S IlIll 

2500 2.0 2 0.44 0.7381 7.98 20 33.61 0.388 15S.2 
Zo = 75 D 

Metal Thickness = 0.35 {lm 

100 0.25 0.2 0.08 0.7852 2.22 20 320.2 0.546 97.01 
100 0.25 0.4 0.05 0.8085 2.67 20 258.6 0.547 97.28 
100 0.0 0.2 0.05 0.955 2.tn 20 221.7 O.SSO 97.79 
200 0.2S 0.2 0.17 0.7781 2.21 20 320.2 0.S44 96.79 
200 0.25 0.4 0.12 0.8015 2.65 20 258.6 0.546 97.12 
200 0.5 0.2 0.12 0.9425 2.78 20 221.7 0.548 97.46 
300 0.25 0.2 0.30 0.7753 2.2 20 320.2 0.544 96.69 
300 0.25 0.4 0.21 0.7989 2.65 20 258.6 0.546 97.04 
300 0.0 0.2 0.20 0.9374 2.77 20 221.7 0.547 97.31 
400 0.25 0.2 O.4G 0.7738 2.2 20 320.2 0.544 96.62 
400 0.25 0.4 0.33 0.7974 2.64 20 258.5 0.546 97 
400 0.5 0.2 0.30 0.9346 2.77 20 221.7 0.547 97.22 
500 0.25 0.2 0.67 0.7727 2.2 20 320.2 0.543 96.58 
500 0.25 0.4 0.47 0.7964 2.64 20 258.6 0.545 96.97 
500 0.0 0.2 0.43 0.9326 2.77 20 221.6 0.546 97.16 
600 0.25 0.4 0.65 0.7957 2.64 20 258.7 0.54S 96.94 
600 0.5 0.2 0.58 0.9312 2.76 20 221.7 0.546 97.11 
600 0.5 0.4 0.34 0.9767 3.25 20 160.1 0.547 97.19 
700 0.5 0.2 0.76 0.9302 2.76 20 221.7 0.546 97.07 
700 0.5 0.4 0.44 0.9757 3.25 20 160.1 0.547 97.16 
700 0.7S 0.2 0.64 1.065 3.28 20 189 0.547 97.29 
800 O .. j 0.4 0.55 0.9749 3.25 20 160.1 0.546 97.14 
800 0.75 0.2 0.82 1.063 3.28 20 189 0.547 97.25 
800 0.75 0.4 0.42 1.129 3.81 20 127.4 0.547 97.18 
900 0.5 0.4 0.69 0.9742 3.25 20 160.1 0.546 97.12 
900 0.7S 0.2 1.03 1.062 3.27 20 189 0.547 97.21 
900 0.75 0.4 0.51 1.128 3.81 20 127.3 0.546 97.15 

1000 O .. j 0.4 0.84 0.9737 3.25 20 160.1 0.546 97.1 
1000 0.75 0.4 0.62 1.127 3.8 20 127.4 0.546 97.13 

Z(J = 100 n 
Metal Thickness = 0.35 IlIn 

100 0.25 0.2 0.08 1.598 I 3.85 I 20 I 320.2 0.720 71.97 
100 0.2S 0.4 0.00 1.688 4.43 20 258.6 0.718 71.76 
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Table A . l - continued from previous page 
L w 5 w G 

Q . 
^min 

S(Z 0 ) W T Rtr R L C 
100 0.5 0.2 0.05 2.014 4.93 20 221.7 0.727 72.65 
200 0.25 0.2 0.17 1.57 3.79 20 320.2 0.717 71.66 
200 0.25 0.4 0.12 1.659 4.37 20 258.6 0.715 71.5 
200 0.5 0.2 0.12 1.964 4.83 20 221.7 0.722 72.22 
300 0.25 0.2 0.30 1.558 3.77 20 320.2 0.715 71.52 
300 0.25 0.4 0.21 1.647 4.34 20 258.6 0.714 71.39 
300 0.5 0.2 0.20 1.944 4.79 20 221.7 0.720 72.03 
400 0.25 0.2 0.46 1.552 3.75 20 320.2 0.714 71.44 
400 0.25 0.4 0.33 1.641 4.33 20 258.5 0.713 71.32 
400 0.5 0.2 0.30 1.933 4.77 20 221.7 0.719 71.92 
500 0.25 0.2 0.67 1.546 3.74 20 320.2 0.714 71.41 
500 0.25 0.4 0.47 1.637 4.32 20 258.6 0.713 71.28 
500 0.5 0.2 0.43 1.926 4.75 20 221.6 0.718 71.84 
600 0.25 0.2 0.95 1.543 3.74 20 320.2 0.714 71.37 
600 0.25 0.4 0.65 1.634 4.32 20 258.7 0.712 71.24 
600 0.5 0.2 0.58 1.92 4.74 20 221.7 0.718 71.78 
700 0.25 0.2 1.31 1.54 3.73 20 320.1 0.713 71.34 
700 0.25 0.4 0.87 1.631 4.31 20 258.6 0.712 71.22 
700 0.5 0.2 0.76 1.916 4.73 20 221.7 0.717 71.73 
800 0.25 0.4 1.15 1.63 4.31 20 258.6 0.712 71.19 
800 0.5 0.2 0.98 1.913 4.73 20 221.6 0.717 71.7 
800 0.5 0.4 0.55 2.045 5.39 20 160.1 0.715 71.52 
900 0.25 0.4 1.50 1.628 4.31 20 258.7 0.712 71.17 
900 0.5 0.2 1.25 1.91 4.72 20 221.7 0.717 71.66 
900 0.5 0.4 0.69 2.042 5.38 20 160.1 0.715 71.5 
1000 0.5 0.2 1.57 1.907 4.71 20 221.7 0.716 71.64 
1000 0.5 0.4 0.84 2.04 5.38 20 160.1 0.715 71.47 
1000 0.75 0.2 1.28 2.232 5.61 20 188.9 0.718 71.84 

z0 = 25 n 
Metal Thickness = 0.35 /mi 

100 0.25 0.2 0.08 0.09903 0.848 20 320.2 0.224 358.1 
100 0.5 0.2 0.05 0.1022 1.1 20 221.8 0.231 369.8 
100 0.75 0.2 0.04 0.1027 1.36 20 189.2 0.238 380.3 
200 0.75 0.2 0.10 0.1023 1.35 20 189.2 0.238 380.3 

z 0 = 50 n 
Metal Thickness = 0.35 /mi 

100 0.5 0.5 0.03 0.3976 2.3 20 148.1 0.390 155.8 
100 1 0.5 0.02 0.4935 2.99 20 99.03 0.388 155.2 
100 0.5 1 0.02 0.3808 3.26 20 124.4 0.403 161.3 
200 0.5 0.5 0.06 0.3951 2.29 20 148.1 0.389 155.7 
200 1 0.5 0.04 0.4881 2.98 20 99.05 0.388 155 
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Tahle A.1 - continued from previous page 
L Ws WG Snl'in S(Zo) W T Rtl' R L C 

100 0.5 0.2 0.05 2.014 4.93 20 221.7 0.727 72.65 
200 0.25 0.2 0.17 1.57 3.79 20 320.2 0.717 71.66 
200 0.25 0.4 0.12 1.659 4.37 20 258.6 0.715 71.5 
200 0.5 0.2 0.12 1.964 4.83 20 221.7 0.722 72.22 
300 0.25 0.2 0.30 1.558 3.77 20 320.2 0.715 71.52 
300 0.25 0.4 0.21 1.647 4.34 20 258.6 0.714 71.39 
300 0.5 0.2 0.20 1.944 4.79 20 221.7 0.720 72.03 
400 0.25 0.2 0.46 1.552 3.75 20 320.2 0.714 71.44 
400 0.25 0.4 0.33 1.641 4.33 20 258.5 0.713 71.32 
400 0.5 0.2 0.30 1.933 4.77 20 221.7 0.719 71.92 
500 0.25 0.2 0.67 1.546 3.74 20 320.2 0.714 71.41 
500 0.25 0.4 0.47 1.637 4.32 20 258.6 0.713 71.28 
500 0.5 0.2 0.43 1.926 4.75 20 221.6 0.718 71.84 
600 0.25 0.2 0.95 1.543 3.74 20 320.2 0.714 71.37 
600 0.25 0.4 0.65 1.634 4.32 20 258.7 0.712 71.24 
600 0.0 0.2 0.58 1.92 4.74 20 221.7 0.718 71.78 
700 0.25 0.2 1.31 1.54 3.73 20 320.1 0.713 71.34 
700 0.25 0.4 0.87 1.631 4.31 20 258.6 0.712 71.22 
700 0.0 0.2 0.76 1.916 4.73 20 221.7 0.717 71.73 
800 0.25 0.4 1.15 1.63 4.31 20 258.6 0.712 71.19 
800 0.0 0.2 0.08 1.013 4.73 20 221.G 0.717 71.7 
800 0 .. ) 0.4 0.55 2.045 5.39 20 160.1 0.715 71.52 
900 0.25 0.4 1.50 1.628 4.31 20 258.7 0.712 71.17 
900 0.5 0.2 1.2.5 1.91 4.72 20 221.7 0.717 71.66 
900 0.5 0.4 0.69 2.042 5.38 20 160.1 0.715 71.5 
1000 0.5 0.2 1.57 1.907 4.71 20 221.7 0.716 71.64 
1000 0.0 0.4 0.84 2.04 5.38 20 160.1 0.715 71.47 
1000 0.75 0.2 1.28 2.232 5.61 20 188.9 0.718 71.84 

Zo = 25 [2 

).;letal Thickness = 0.35 IlID 

100 0.25 0.2 0.08 0.09903 0.848 20 320.2 0.224 358.1 
100 0.5 0.2 0.05 0.1022 1.1 20 221.8 0.231 :369.8 
100 0.75 0.2 0.04 0.1027 1.36 20 180.2 0.238 380.3 
200 0.75 0.2 0.10 0.1023 1.35 20 189.2 0.238 380.3 

Zo = 50 [2 

).;letal Thickness = 0.35 Ilill 
100 0.5 0 .. 5 0.03 0.3976 2.3 20 148.1 0.390 155.8 
100 1 0.5 0.02 0.4935 2.99 20 99.03 0.388 155.2 
100 0.0 1 0.02 0.3808 3.26 20 124.4 0.403 161.3 
200 0.5 0.5 0.06 0.3951 2.29 20 148.1 0.389 15.5.7 
200 1 0.5 0.04 0.4881 2.98 20 99.05 0.388 105 
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Table A . l - continued from previous page 
L W s w G S (Z 0 ) W T Rtr R L C 

200 0.5 1 0.04 0.3784 3.26 20 124.4 0.403 161.3 
300 0.5 0.5 0.10 0.3942 2.29 20 148.1 0.389 155.7 
300 1 0.5 0.06 0.4861 2.97 20 99.03 0.387 154.9 
300 0.5 1 0.07 0.3776 3.26 20 124.4 0.403 161.3 
400 0.5 0.5 0.16 0.3937 2.29 20 148.1 0.389 155.6 
400 1 0.5 0.09 0.485 2.97 20 99.03 0.387 154.9 
400 0.5 1 0.10 0.3771 3.25 20 124.4 0.403 161.3 
500 0.5 0.4 0.25 0.3947 2.09 20 160.2 0.386 154.5 
500 0.5 0.5 0.22 0.3934 2.29 20 148.1 0.389 155.6 
500 1 0.2 0.33 0.46 2.32 20 172.8 0.384 153.8 
600 0.5 0.5 0.30 0.3931 2.29 20 148.1 0.389 155.6 
600 1 0.5 0.18 0.4837 2.97 20 99.03 0.387 154.8 
600 0.5 1 0.20 0.3766 3.25 20 124.4 0.403 161.3 
700 0.5 0.5 0.38 0.393 2.29 20 148.1 0.389 155.6 
700 1 0.5 0.23 0.4832 2.97 20 99.03 0.387 154.8 
700 0.5 1 0.27 0.3765 3.25 20 124.4 0.403 161.3 
800 1 0.5 0.29 0.4829 2.97 20 99.04 0.387 154.7 
800 0.5 1 0.34 0.3764 3.25 20 124.4 0.403 161.3 
800 1.5 0.5 0.23 0.5498 3.6 20 82.91 0.386 154.6 
900 1 0.5 0.36 0.4826 2.97 20 99.03 0.387 154.7 
900 1.5 0.5 0.29 0.5494 3.6 20 82.91 0.386 154.5 
900 1 1 0.21 0.4861 3.97 20 74.99 0.394 157.4 
1000 1 0.5 0.43 0.4824 2.96 20 99.03 0.387 154.7 
1000 1.5 0.5 0.35 0.549 3.6 20 82.91 0.386 154.5 
1000 1 1 0.25 0.4859 3.97 20 74.99 0.393 157.4 
2000 2 1 0.60 0.643 5.29 20 50.7 0.386 154.5 
2000 1.5 1.5 0.54 0.5739 5.65 20 51.15 0.393 157.1 
2000 2.5 1 0.53 0.7061 5.91 20 46.04 0.385 153.8 
2500 2.5 2 0.49 0.7475 8 20 34.65 0.386 154.4 
2500 3 2 0.43 0.8249 8.65 20 31.43 0.383 153.2 
2500 4 2 0.37 0.9661 9.93 20 27.5 0.379 151.4 
3000 2.5 2 0.73 0.747 7.99 20 34.67 0.386 154.4 
3000 3.5 1.5 0.75 0.8636 8.23 20 32.92 0.381 152.4 
3000 3 2 0.65 0.8242 8.65 20 31.43 0.383 153.2 
3500 4 2 0.79 0.964 9.93 20 27.5 0.378 151.4 
3500 3 3 0.74 0.85 10.7 20 28.22 0.383 153.2 
3500 5 2 0.73 1.09 11.2 20 25.17 0.375 150.1 
4000 4.5 2 1.02 1.027 10.6 20 26.2 0.377 150.7 
4000 5 2 0.99 1.089 11.2 20 25.18 0.375 150.1 
4000 3.5 3 0.90 0.9339 11.4 20 25.82 0.380 152 
4500 5 3 0.98 1.165 13.3 20 21.57 0.373 149.3 
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Table A.1 - contiuued from previous paiSe 
L Ws We Snl"in S(Zo) W T Rtr R L C 

200 O .. j 1 0.04 0.3784 3.26 20 124.4 0.403 161.3 
300 0.5 0.5 0.10 0.3942 2.29 20 148.1 0.389 155.7 
300 1 O.S 0.06 0.4861 2.97 20 99.03 0.387 154.9 
300 0 . .) 1 0.07 0.3776 3.26 20 124.4 0.403 l(i 1. 3 
400 0 . .) O.S 0.16 0.3937 2.29 20 148.1 0.389 15,5.6 
400 1 0.5 0.09 0.485 2.97 20 99.0:3 0.387 1,)4.9 
400 0.5 1 0.10 0.3771 3.25 20 124.4 0.403 161.3 
.jOO 0.5 0.4 0.25 0.3947 2.09 20 160.2 0.386 154.5 
500 0.5 0.5 0.22 0.3934 2.29 20 148.1 0.389 155.6 
500 I O.::! (u:~ 0.46 2.32 20 172.8 0.384 153.8 
600 0.5 O.S (UO 0.3931 2.29 20 148.1 0.389 155.6 
600 1 0.5 0.18 0.4837 2.97 20 99.03 0.387 154.8 
600 0.5 1 0.20 0.3766 3.25 20 124.4 0.403 161.3 
700 0.5 O.S 0.38 0.:393 2.29 20 148.1 0.389 155.6 
700 1 0.5 0.23 0.1832 2.97 20 99.03 0.387 154.8 
700 0.5 1 0.27 0.3765 3.25 20 124.4 0.40~~ 161.3 
800 1 0.5 0.29 0.4829 2.97 20 99.04 0.387 154.7 
800 0.5 1 0.34 0.3764 3.25 20 124.4 0.403 161.3 
800 1.5 0.5 0.23 0.5498 3.6 20 82.91 0.386 154.6 
900 1 0.5 0.36 0.4826 2.97 20 99.03 0.387 154.7 
900 1.,) O.S 0.29 0.54!J4 3.6 20 82.91 0.386 154.5 
900 1 1 0.21 0.4861 3.97 20 74.99 0.394 157.4 

lOOO 1 0.5 0.43 0.4824 2.96 20 99.03 0.387 154.7 
1000 1.5 O .. j 0.35 0.549 3.6 20 82.91 0.386 154.5 
1000 1 1 0.25 0.4859 3.97 20 74.99 0.393 157.4 
2000 2 1 0.60 0.643 5.29 20 50.7 0.386 154.5 
2000 1.,) 1.,) O.S4 0.S739 S.tiS 20 51.1S 0.393 lS7.1 
2000 2.:"i 1 0.53 0.7061 5.91 20 46.04 0.385 15:3.8 
2500 2.,5 2 0.49 0.7475 8 20 34.65 0.386 154.4 
2500 3 2 0.43 0.8249 8.65 20 31.43 0.383 153.2 
2500 4 2 0.37 0.9661 9.93 20 27.5 0.379 151.4 
3000 2.5 2 0.73 0.747 7.99 20 34.67 0.386 15L1.4 
3000 3.5 l.') O.Ti 0.8636 8.23 20 32.92 0.381 152.4 
3000 3 2 0.65 0.8242 8.65 20 31.43 0.383 153.2 
3500 4 2 0.79 0.964 9.93 20 27.5 0.378 151.4 
3500 3 3 0.74 0.85 10.7 20 28.22 0.383 153.2 
3500 5 2 0.73 1.09 11.2 20 25.17 0.375 150.1 
4000 4.5 2 1.02 1.027 10.6 20 26.2 0.377 150.7 
4000 5 2 0.99 1.089 11.2 20 25.18 0.375 150.1 
4000 3.5 3 0.90 0.9339 11.4 20 25.82 0.380 152 
4500 5 3 0.98 1.165 13.3 20 21.57 0.373 149.3 
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Table A . l - continued from previous page 
L w 5 w G 

Q . 
^mvn S(Z 0 ) W T Rtr R L C 

4500 7 2 1.20 1.304 13.6 20 22.49 0.371 148.5 
4500 4 4 0.97 1.047 14.1 20 22.58 0.376 150.5 
5000 5.5 3 1.19 1.235 14 20 20.66 0.372 148.7 
5000 4.5 4.5 1.11 1.148 15.8 20 20.66 0.373 149.3 
10000 13 8 2.63 2.693 34.4 20 10.38 0.353 141 
10000 14 8 2.58 2.838 35.7 20 10.01 0.352 140.8 
10000 14 8 2.58 2.838 35.7 20 10.01 0.352 140.8 
11000 16 8 3.02 3.11 38.2 20 9.4 0.351 140.4 
11000 15 9 2.93 3.061 39.1 20 9.336 0.350 140.2 
11000 14 10 2.91 2.979 40 20 9.436 0.350 140.1 
12000 16 11 3.24 3.354 44.7 20 8.592 0.348 139.3 

z0 = 75 n 
Metal Thickness = 0.35 /mi 

100 0.25 0.2 0.08 0.7852 2.22 20 320.2 0.546 97.01 
100 0.25 0.4 0.05 0.8085 2.67 20 258.6 0.547 97.28 
100 0.5 0.2 0.05 0.9563 2.81 20 221.8 0.550 97.74 
200 0.25 0.2 0.17 0.7781 2.21 20 320.2 0.544 96.79 
200 0.25 0.4 0.12 0.8015 2.65 20 258.6 0.546 97.12 
200 0.5 0.2 0.12 0.9437 2.79 20 221.8 0.548 97.4 
300 0.25 0.2 0.30 0.7753 2.2 20 320.2 0.544 96.69 
300 0.25 0.4 0.21 0.7989 2.65 20 258.6 0.546 97.04 
300 0.5 0.2 0.20 0.9387 2.78 20 221.8 0.547 97.25 
400 0.25 0.2 0.46 0.7738 2.2 20 320.2 0.544 96.62 
400 0.25 0.4 0.33 0.7974 2.64 20 258.5 0.546 97 
400 0.5 0.2 0.30 0.9358 2.77 20 221.8 0.547 97.16 
500 0.25 0.2 0.67 0.7727 2.2 20 320.2 0.543 96.58 
500 0.25 0.4 0.47 0.7964 2.64 20 258.6 0.545 96.97 
500 0.5 0.2 0.43 0.9339 2.77 20 221.8 0.546 97.1 
600 0.25 0.4 0.65 0.7957 2.64 20 258.7 0.545 96.94 
600 0.5 0.2 0.58 0.9325 2.76 20 221.8 0.546 97.05 
600 0.5 0.4 0.34 0.9778 3.26 20 160.2 0.546 97.15 
700 0.5 0.2 0.76 0.9314 2.76 20 221.7 0.546 97.01 
700 0.5 0.4 0.44 0.9768 3.25 20 160.1 0.546 97.12 
700 0.75 0.2 0.64 1.065 3.28 20 189 0.547 97.28 
800 0.5 0.4 0.56 0.976 3.25 20 160.1 0.546 97.09 
800 0.75 0.2 0.82 1.063 3.28 20 189 0.547 97.24 
800 0.75 0.4 0.42 1.129 3.81 20 127.5 0.547 97.17 
900 0.5 0.4 0.69 0.9753 3.25 20 160.2 0.546 97.07 
900 0.75 0.2 1.03 1.062 3.27 20 189 0.547 97.21 
900 0.75 0.4 0.51 1.128 3.81 20 127.4 0.546 97.15 
1000 0.5 0.4 0.84 0.9747 3.25 20 160.2 0.546 97.06 
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Tahlp. A.1 - continup.d from prp.vious pagp. 

L Ws We Smin S(Zo) WT R t ,· R L C 
4500 7 2 1.20 1.304 13.6 20 22.49 0.371 148.5 
4500 4 4 0.97 1.047 14.1 20 22.58 0.376 150.5 

5000 5.5 3 1.19 1.235 14 20 20.66 0.372 148.7 
5000 4.5 4.5 1.11 1.148 Ei.8 20 20.66 0.373 149.3 
10000 13 8 2.63 2.693 34.4 20 10.38 0.353 141 
10000 14 8 2.58 2.838 35.7 20 10.01 0.352 140.8 
10000 14 8 2.58 2.838 35.7 20 10.01 0.352 140.8 

11000 16 8 3.02 3.11 38.2 20 9.4 0.351 140.4 
11000 15 9 2.93 3.061 39.1 20 9.336 0.350 140.2 
11000 14 10 2.91 2.979 40 20 9.436 0.3S0 140.1 
12000 16 11 3.24 3.:354 44.7 20 8.592 0.348 139.3 

Zo = 75 0 
Metal Thickness = 0.35 pm 

100 0.25 0.2 0.08 0.7852 2.22 20 320.2 0 .. 546 97.01 
100 0.25 0.4 0.05 0.8085 2.67 20 258.6 0.547 97.28 
100 0.5 0.2 O.OS 0.%63 2.81 20 221.8 O.SSO 97.74 
200 0.25 0.2 0.17 0.7781 2.21 20 320.2 0.544 96.79 
200 0.25 0.4 0.12 0.8015 2.65 20 258.6 0.546 97.12 
200 0 .. 5 0.2 0.12 0.9437 2.79 20 221.8 0.548 97.4 
300 0.25 0.2 0.30 0.7753 2.2 20 320.2 0.544 96.69 
300 0.25 0.4 0.21 0.7989 2.65 20 258.6 0.546 97.04 
300 0.5 0.2 0.20 0.9387 2.78 20 221.8 0.547 97.25 
400 0.2.5 0.2 0.46 0.7738 2.2 20 320.2 0.544 96.62 
400 0.25 0.4 0.33 0.7974 2.64 20 258.5 0.546 97 
400 0 .. 5 0.2 0.30 0.9358 2.77 20 221.8 0.547 97.16 
500 0.25 0.2 0.67 0.7727 2.2 20 320.2 0.543 96.58 
500 0.25 0.4 0.47 0.7964 2.64 20 258.6 0.545 96.97 
500 0.5 0.2 0.43 0.9339 2.77 20 221.8 0.546 97.1 

600 0.25 0.4 0.65 0.7957 2.64 20 2.58.7 0.545 96.94 
600 0.5 0.2 0.58 0.9325 2.76 20 221.8 0.546 97.05 
600 0 .. 5 0.4 0.34 0.9778 3.26 20 160.2 0 .. 546 97.15 
700 0.5 0.2 0.76 0.9314 2.76 20 221.7 0.546 97.01 
700 0.5 0.4 0.44 0.9768 3.25 20 l(jO.1 0.546 97.12 
700 0.75 0.2 0.64 1.065 3.28 20 189 0.547 97.28 
800 0.5 0.4 0.56 0.976 3.25 20 160.1 0.546 97.09 
800 0.75 0.2 0.82 1.063 3.28 20 189 0.547 97.24 
800 0.75 0.4 0.42 1.129 3.81 20 127.5 0.547 97.17 

900 0.5 0.4 0.69 0.9753 3.25 20 160.2 0.546 97.07 
900 0.7S 0.2 l.03 l.062 3.27 20 189 0.547 97.21 
900 0.75 0.4 0.51 1.128 3.81 20 127.4 0.546 97.15 
1000 0.5 0.4 0.84 0.9747 3.25 20 160.2 0.546 97.06 
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Table A . l - continued from previous page 
L w 5 w G 

Q . 
^min S(Z 0 ) W T Rtr R L C 

1000 0.75 0.4 0.62 1.127 3.8 20 127.5 0.546 97.12 
1000 1 0.5 0.43 1.294 4.59 20 98.9 0.546 97.08 
2000 1.5 0.5 1.40 1.534 5.57 20 82.7 0.545 96.93 
2000 1 1 1.01 1.383 5.77 20 74.55 0.545 96.83 
2000 2 0.5 1.27 1.751 6.5 20 74.75 0.546 96.98 
3000 2 1 1.44 1.947 7.89 20 50.27 0.542 96.29 
3000 1.5 1.5 1.31 1.766 8.03 20 50.37 0.542 96.32 
3000 2.5 1 1.29 2.189 8.88 20 45.53 0.541 96.19 
4000 2 1.5 1.98 2.066 9.13 20 42.3 0.540 95.95 
4000 3 1 2.32 2.407 9.81 20 42.42 0.540 96.06 
4000 2.5 1.5 1.70 2.342 10.2 20 37.52 0.539 95.74 
5000 3 1.5 2.57 2.596 11.2 20 34.36 0.537 95.55 
5000 2.5 2 2.32 2.45 11.4 20 33.68 0.537 95.46 
5000 3 3 1.64 2.926 14.9 20 26.8 0.533 94.83 

Z 0 = 100 il 
Metal Thickness = 0.35 //m 

100 0.25 0.2 0.08 1.598 3.85 20 320.2 0.720 71.97 
100 0.25 0.4 0.05 1.688 4.43 20 258.6 0.718 71.76 
100 0.5 0.2 0.05 2.016 4.93 20 221.7 0.726 72.64 
200 0.25 0.2 0.17 1.57 3.79 20 320.2 0.717 71.66 
200 0.25 0.4 0.12 1.659 4.37 20 258.6 0.715 71.5 
200 0.5 0.2 0.12 1.965 4.83 20 221.8 0.722 72.2 
300 0.25 0.2 0.30 1.558 3.77 20 320.2 0.715 71.52 
300 0.25 0.4 0.21 1.647 4.34 20 258.6 0.714 71.39 
300 0.5 0.2 0.20 1.946 4.79 20 221.7 0.720 72.02 
400 0.25 0.2 0.46 1.552 3.75 20 320.2 0.714 71.44 
400 0.25 0.4 0.33 1.641 4.33 20 258.5 0.713 71.32 
400 0.5 0.2 0.30 1.934 4.77 20 221.8 0.719 71.9 
500 0.25 0.2 0.67 1.546 3.74 20 320.2 0.714 71.41 
500 0.25 0.4 0.47 1.637 4.32 20 258.6 0.713 71.28 
500 0.5 0.2 0.43 1.927 4.75 20 221.8 0.718 71.82 
600 0.25 0.2 0.95 1.543 3.74 20 320.2 0.714 71.37 
600 0.25 0.4 0.65 1.634 4.32 20 258.7 0.712 71.24 
600 0.5 0.2 0.58 1.921 4.74 20 221.7 0.718 71.76 
700 0.25 0.2 1.31 1.54 3.73 20 320.1 0.713 71.34 
700 0.25 0.4 0.87 1.631 4.31 20 258.6 0.712 71.22 
700 0.5 0.2 0.76 1.917 4.73 20 221.7 0.717 71.72 
800 0.25 0.4 1.15 1.63 4.31 20 258.6 0.712 71.19 
800 0.5 0.2 0.98 1.914 4.73 20 221.8 0.717 71.68 
800 0.5 0.4 0.56 2.047 5.39 20 160.1 0.715 71.5 
900 0.25 0.4 1.50 1.628 4.31 20 258.7 0.712 71.17 
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Table A.1 - continued from previous page 
L Ws We Smin S(Zo) WT Rt1" R L C 

1000 0.75 0.4 0.62 1.127 3.8 20 127.5 0.546 97.12 
1000 1 0.5 0.43 1.294 4.59 20 98.9 0.546 97.08 
2000 1.5 0.5 1.40 1.534 5.57 20 82.7 0.545 96.93 
2UOU 1 1 1.01 1.383 5.77 20 74.55 0.545 96.S3 
2000 2 0.5 1.27 1.751 6.5 20 74.75 0.546 96.98 
3000 2 1 1.44 1.947 7.89 20 50.27 0.542 96.29 
3000 1.5 1.5 1.31 1.766 8.03 20 50.37 0.542 96.32 
3000 2 -.0 1 1.29 2.189 8.88 20 45.53 0.541 96.19 
4000 2 1.5 1.98 2.066 9.13 20 42.3 0.540 95.95 
4000 3 1 2.32 2.407 9.81 20 42.42 0.540 96.06 
4000 2.5 1.5 1.70 2.342 10.2 20 37.52 0.539 95.74 
5000 :3 1.5 2.57 2.596 11.2 20 34.36 0.537 95.55 
5000 2 -.0 2 2.32 2.45 11.4 20 33.68 0.537 95.46 
5000 3 3 1.64 2.926 14.9 20 26.8 0.533 94.83 

Zo = 1000 
"Metal Thickness = 0.35 fim 

100 0.25 0.2 0.08 1.598 3.85 20 320.2 0.720 71.97 
100 0.25 0.4 0.05 1.688 4.43 20 258.6 0.718 71.76 
100 0.5 0.2 0.05 2.016 4.93 20 221.7 0.726 72.64 
200 0.25 0.2 0.17 1.57 3.79 20 320.2 0.717 71.66 
200 0.25 0.4 0.12 1.659 4.37 2U 25S.6 0.715 71.5 
200 0.5 0.2 0.12 1.965 4.83 20 221.8 0.722 72.2 
:300 0.25 0.2 0.30 1.558 3.77 20 320.2 0.715 71.52 
300 0.25 0.4 0.21 1.647 4.34 20 258.6 0.714 71.39 
300 0.5 0.2 0.20 1.946 4.79 20 221.7 0.720 72.02 
400 0.25 0.2 0.46 1.552 3.75 20 320.2 0.714 71.44 
400 0.25 0.4 U.33 1.641 4.33 20 25S.5 0.713 71.32 
400 0.5 0.2 0.30 1.934 4.77 20 221.8 0.719 71.9 
500 0.25 0.2 0.67 1.546 3.74 20 320.2 0.714 71.41 
500 0.25 0.4 0.47 1.637 4.32 20 258.6 0.713 71.28 
.500 0.5 0.2 0.43 1.927 4.75 20 221.8 0.718 71.82 
600 0.25 0.2 0.95 1.543 3.74 20 320.2 0.714 71.37 
600 0.25 0.4 0.65 1.634 4.32 20 258.7 0.712 71.24 
600 0.5 0.2 0.58 1.921 4.74 20 221.7 0.718 71.76 
700 0.25 0.2 1.31 1.54 3.73 20 320.1 0.713 71.34 
700 0.25 0.4 0.87 1.631 4.31 20 258.6 0.712 71.22 
700 0.5 0.2 0.76 1.917 4.73 20 221.7 0.717 71.72 
SOO 0.25 0.4 1.15 1.63 4.31 20 25S.6 0.712 71.19 
800 0.5 0.2 0.98 1.914 4.73 20 221.8 0.717 71.68 
800 0 .. 5 0.4 0.56 2.047 5.39 20 160.1 0.715 71.5 
900 0.25 0.4 1.50 1.628 4.31 20 258.7 0.712 71.17 
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Table A . l - continued from previous page 
L w. , w G 

Q . S(Z 0 ) W T R L C 
900 0.5 0.2 1.25 1.911 4.72 20 221.8 0.716 71.65 
900 0.5 0.4 0.69 2.044 5.39 20 160.2 0.715 71.47 
1000 0.5 0.2 1.57 1.909 4.72 20 221.7 0.716 71.62 
1000 0.5 0.4 0.84 2.042 5.38 20 160.2 0.715 71.45 
1000 0.75 0.2 1.28 2.232 5.61 20 189 0.718 71.84 
5000 2.5 2 2.32 5.769 18 20 33.34 0.703 70.34 

Frequency = 25 GHz 
z 0 - 50 n 

Metal Thickness = 0.35 pra 
500 0.5 0.4 0.25 0.3947 2.09 20 160.2 0.386 154.5 
500 1 0.2 0.33 0.4602 2.32 20 173 0.384 153.7 
500 0.5 0.6 0.20 0.3895 2.48 20 140.3 0.393 157.1 

2500 2.5 2 0.54 0.7577 8.02 20 35.82 0.384 153.5 
Z 0 = 75 n 

Metal Thickness = 0.35 fim 
5000 2.5 2 2.45 2.465 11.4 20 34.44 0.536 95.25 
5000 3 3 1.80 2.953 14.9 20 27.64 0.532 94.52 

z 0 = ioo n 
Metal Thickness = 0.35 /.im 

5000 2.5 2 2.45 5.79 18.1 20 33.96 0.703 70.26 
Frequency = 30 GHz 

z G = so n 
Metal Thickness = 0.35 //m 

100 0.5 0.2 0.05 0.3972 1.69 20 221.9 0.382 152.6 
100 0.5 0.4 0.00 0.3991 2.1 20 160.6 0.387 154.8 
100 1 0.2 0.04 0.4703 2.34 20 173.3 0.386 154.4 
150 0.5 0.2 0.08 0.3956 1.69 20 221.9 0.381 152.5 
150 0.5 0.4 0.05 0.3974 2.09 20 160.6 0.387 154.7 
150 1 0.2 0.06 0.4666 2.33 20 173.3 0.386 154.2 
200 0.5 0.2 0.12 0.3947 1.69 20 221.9 0.381 152.4 
200 0.5 0.4 0.07 0.3966 2.09 20 160.6 0.387 154.6 
200 1 0.2 0.08 0.4647 2.33 20 173.3 0.385 154.1 
250 0.5 0.2 0.16 0.3941 1.69 20 221.9 0.381 152.3 
250 0.5 0.4 0.09 0.396 2.09 20 160.6 0.387 154.6 
250 1 0.2 0.11 0.4634 2.33 20 173.3 0.385 153.9 
300 0.5 0.2 0.20 0.3936 1.69 20 221.9 0.381 152.3 
300 0.5 0.4 0.12 0.3956 2.09 20 160.6 0.386 154.6 
300 1 0.2 0.15 0.4625 2.33 20 173.3 0.385 153.9 
350 0.5 0.2 0.25 0.3933 1.69 20 221.9 0.381 152.2 
350 0.5 0.4 0.15 0.3953 2.09 20 160.6 0.386 154.6 
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Table A.1 - contiullecl from previous page 
L Ws We; Snl/in S(Zo) W T Ri>' R L C 

900 0.5 0.2 l.25 1.911 4.72 20 221.8 0.716 7l.65 
900 0.5 0.4 0.69 2.044 5.39 20 160.2 0.715 71.47 
1000 0.3 0.2 l.57 1.909 4.72 20 22l.7 0.716 71.62 
1000 U.5 0.4 0.84 2.0,12 S.38 20 160.2 O.71S 71.45 
LOOO 0.75 0.2 1.28 2.2~{2 5.61 20 189 0.718 7UI4 

5000 2.5 2 2.:~2 5.769 18 20 33.34 0.703 70.~{4 

Frequencv = 25 GHz 

Z" = 50 [1 

~Ietal Thickness = 0.35 pm 
500 0.5 0.4 0.25 0.3947 2.09 20 160.2 0.386 lS4.S 
500 1 0.2 0.33 0.4602 2.:32 20 173 0.384 153.7 
500 0.5 0.6 0.20 0.3895 2.48 20 140.3 0.393 157.1 

2500 2.5 2 0.54 0.7577 8.02 20 35.82 0.384 153.5 

Z" = 75 n 
Metal Thickness = 0.35 IIIll 

5000 2.5 2 2.'15 2/165 11.'1 20 34.44 0.536 95.25 
SOOO 3 3 1.80 2.%3 14.0 20 27.64 0.S32 9/1.S2 

Zo = 100 [1 

~Ietal Thickness = 0.35 Jim 

5000 2 .. J 2 2.45 5.79 18.1 20 33.96 0.703 70.26 
Frequency = 30 G Hz 

Zo = 50 n 
:vrctal ThickJl(~sS - 0.3S IIIll 

100 0.0 0.2 0.0;) 0.3972 l.6~) 2() 221.9 0.382 l.J2.6 
100 0.5 0.4 0.00 0.3991 2.1 20 160.6 0.387 154.8 
100 1 0.2 0.04 0.4703 2.34 20 173.3 0.386 154.4 
150 0.5 0.2 0.08 0.3956 l.69 20 221.9 0.381 Ei2.5 
150 0.5 0.4 0.05 0.:EI74 2.09 20 160.6 0.387 154.7 
150 1 0.2 O.OG OAGGG 2.:33 20 1n.3 0.386 154.2 
200 O .. J 0.2 0.12 0.3947 1.69 20 221.9 0.381 152.4 
200 0.5 0.4 0.07 0.3966 2.09 20 160.6 0.387 154.6 
200 1 0.2 0.08 0.4647 2.33 20 173.3 0.385 154.1 
250 0.5 0.2 O.lG 0.3941 l.69 20 22l.9 0.381 152.3 
2S0 0.5 0.4 0.09 0.396 2.09 :20 HiO.0 0.387 154.6 
2S0 1 0.2 0.11 0.163,1 2.3:3 20 173.3 0.385 153.9 
300 0.5 0.2 0.20 0.:3936 l.69 20 221.9 0.381 152.3 
300 0.5 0.4 0.12 0.3956 2.09 20 160.6 0.386 154.6 
300 1 0.2 O.l.J 0.4625 2.33 20 173.3 0.385 153.9 

350 0.5 0.2 0.25 0.3933 1.69 20 221.9 0.381 152.2 
3S0 0.5 0.4 0.15 0.3%3 2.09 20 160.0 0.38G 154.G 
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Table A . l - continued from previous page 
L w, . W G 

^ • S(Z0) W r Rtr R L C 
350 1 0.2 0.19 0.4619 2.32 20 173.3 0.385 153.8 
400 0.5 0.2 0.30 0.3931 1.69 20 221.9 0.380 152.2 
400 0.5 0.4 0.18 0.3951 2.09 20 160.6 0.386 154.5 
400 1 0.2 0.23 0.4613 2.32 20 173.3 0.384 153.8 
450 0.5 0.2 0.36 0.3928 1.69 20 221.9 0.380 152.2 
450 0.5 0.4 0.22 0.3949 2.09 20 160.6 0.386 154.5 
450 1 0.2 0.28 0.4609 2.32 20 173.3 0.384 153.7 
500 0.5 0.4 0.26 0.3948 2.09 20 160.6 0.386 154.5 
500 1 0.2 0.33 0.4605 2.32 20 173.3 0.384 153.7 
500 0.5 0.6 0.20 0.3898 2.48 20 140.6 0.393 157 
600 0.5 0.4 0.34 0.3945 2.09 20 160.6 0.386 154.5 
600 1 0.2 0.45 0.4599 2.32 20 173.3 0.384 153.6 
600 0.5 0.6 0.27 0.3895 2.48 20 140.6 0.392 157 
700 0.5 0.6 0.35 0.3894 2.48 20 140.6 0.392 157 
700 1 0.4 0.29 0.479 2.76 20 111.9 0.386 154.2 
700 0.5 0.8 0.30 0.3853 2.87 20 131.1 0.397 158.7 
800 1 0.4 0.36 0.4786 2.76 20 111.9 0.386 154.2 
800 0.5 0.8 0.38 0.3852 2.87 20 131 0.397 158.7 
800 1 0.6 0.25 0.4866 3.17 20 91.66 0.388 155.1 
900 1 0.4 0.44 0.4784 2.76 20 111.9 0.385 154.2 
900 1 0.6 0.31 0.4864 3.17 20 91.67 0.388 155.1 
900 1.5 0.4 0.38 0.5412 3.38 20 96.2 0.385 154.1 
1000 1 0.5 0.44 0.483 2.97 20 99.66 0.386 154.6 
1000 1 0.6 0.38 0.4862 3.17 20 91.66 0.388 155 
1000 1.5 0.4 0.46 0.5408 3.38 20 96.21 0.385 154.1 
2000 2 1 0.65 0.6497 5.3 20 52.3 0.384 153.8 
2000 2.5 1 0.59 0.7165 5.93 20 47.77 0.382 152.8 
2000 2 1.5 0.49 0.6697 6.34 20 45.09 0.385 154.1 
2500 2.5 2 0.59 0.7682 8.04 20 37.03 0.381 152.6 
3000 3.5 1.5 0.88 0.8866 8.27 20 34.97 0.377 150.8 
3000 3 2 0.79 0.8485 8.7 20 33.73 0.378 151.3 
3000 3.5 2 0.74 0.9262 9.35 20 31.47 0.375 150.2 
6000 9 4 1.71 1.868 20.7 20 16.72 0.357 142.9 
6000 8 5 1.63 1.823 21.6 20 16.5 0.356 142.6 
6000 7 6 1.62 1.719 22.4 20 16.97 0.357 142.7 
7000 9 6 2.01 2.047 25.1 20 14.86 0.354 141.5 
8000 12 6 2.41 2.48 29 20 12.93 0.351 140.5 
8000 14 5 2.51 2.598 29.2 20 12.9 0.352 140.8 
8000 11 7 2.35 2.425 29.9 20 12.9 0.351 140.2 
9000 14 7 2.76 2.853 33.7 20 11.47 0.349 139.6 
9000 13 8 2.69 2.801 34.6 20 11.42 0.348 139.3 
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Table A.1 - continnecl from previons pap;e 
L Ws We 8min 8(Zo) W T Rtr R L C 

3.50 1 0.2 0.19 0.4619 2.32 20 173.3 0.385 153.8 
400 0.5 0.2 0.30 0.3931 1.69 20 221.9 0.380 152.2 
400 0.5 0.4 0.18 0.3951 2.09 20 160.6 0.386 154.5 
400 1 0.2 0.23 0.4613 2.32 20 173.3 0.31)4 153.8 
450 0.5 0.2 0.36 0.3928 1.69 20 221.9 0.380 152.2 
450 0.5 0.4 0.22 0.3949 2.09 20 160.6 0.386 154.5 
450 1 0.2 0.28 0.4609 2.32 20 173.3 0.384 153.7 
500 0.5 0.4 0.26 0.3948 2.09 20 160.6 0.386 154.5 
500 1 0.2 0.33 0.4605 2.32 20 173.3 0.384 15:3.7 
500 0.5 0.6 0.20 0.3898 2.48 20 140.6 0.393 157 
600 0.5 0.4 0.34 0.3945 2.09 20 160.6 0.386 154.5 
600 1 0.2 0.45 0.4599 2.32 20 173.3 0.384 153.6 
600 0.5 0.6 0.27 0.3895 2.48 20 140.6 0.392 157 
700 0.5 0.6 0.35 0.3894 2.48 20 140.6 0.392 157 
700 1 0.4 0.29 0.479 2.76 20 111.9 0.386 154.2 
700 0.5 0.8 0.30 0.3853 2.87 20 131.1 0.397 158.7 
800 1 0.4 0.36 0.4786 2.76 20 111.9 0.386 154.2 
800 0 .. 5 0.8 0.38 0.3852 2.87 20 131 0.397 158.7 
800 1 0.6 0.25 0.4866 3.17 20 91.66 0.388 155.1 
900 1 0.4 0.44 0.4784 2.76 20 111.9 0.385 154.2 
900 1 0.6 0.31 0.4864 3.17 20 91.67 0.388 155.1 
900 1.5 0.4 0.38 0.5412 3.38 20 96.2 0.385 154.1 
1000 1 0.5 0.44 0.483 2.97 20 99.66 0.386 154.6 
1000 1 0.6 0.38 0.4862 3.17 20 91.66 0.388 155 
1000 1.5 0.4 0.46 0 .. 5408 3.38 20 96.21 0.385 154.1 
2000 2 1 0.65 0.6497 5.3 20 52.3 0.384 153.8 
2000 2.0 1 0.59 0.7165 5.93 20 47.77 0.382 152.8 
2000 2 1.5 0.49 0.6697 6.~34 20 45.09 0.385 154.1 
2500 2.5 2 0.59 0.7682 8.04 20 37.03 0.381 152.6 
3000 3.;J 1..5 0.88 0.8866 8.27 20 34.97 0.377 150.8 
3000 3 2 0.79 0.8485 8.7 20 33.73 0.378 151.3 
:3000 3 . .5 2 0.74 0.9262 9.3.5 20 31.-'17 0.375 150.2 
6000 <) 1 1.71 1.868 20.7 20 16.72 0.357 142.9 
6000 8 v 1.6:3 1.823 21.6 20 16 . .5 0.356 142.6 
6000 7 6 1.62 1.719 22.4 20 16.97 0.357 142.7 
7000 9 6 2.01 2.047 2·5.1 20 14.86 0.354 1-11.5 
8000 12 G 2.41 2.48 29 20 12.93 0.351 140.5 
8000 14 5 2.51 2.598 29.2 20 12.9 0.352 140.8 
8000 11 7 2.35 2.420 29.9 20 12.9 0.351 140.2 
9000 14 7 2.76 2.853 33.7 20 11.47 0.349 1:39.6 
9000 13 8 2.69 2.801 34.6 20 11.42 0.348 139.3 
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Table A . l - continued from previous page 
L w 5 w G 

S • 
* 'nun 

S(Z0) W T Rtr R L C 
9000 12 9 2.67 2.712 35.4 20 11.58 0.348 139.2 
10000 16 8 3.13 3.223 38.4 20 10.33 0.347 138.8 
10000 15 9 3.04 3.174 39.3 20 10.26 0.347 138.6 
10000 14 10 3.02 3.093 40.2 20 10.37 0.346 138.5 
11000 16 11 3.41 3.472 44.9 20 9.445 0.345 137.9 
11000 16 12 3.34 3.534 47.1 20 9.255 0.344 137.7 
11000 15 13 3.34 3.417 47.8 20 9.427 0.344 137.6 
Frequency = 35 GHz 

z 0 = 50 n 
Metal Thickness = 0.35 /mi 

500 0.5 0.4 0.26 0.3948 2.09 20 160.8 0.386 154.5 
500 1 0.2 0.33 0.4608 2.32 20 173.6 0.384 153.6 
500 0.5 0.6 0.20 0.3918 2.48 20 141 0.391 156.5 

2500 2.5 2 0.65 0.7786 8.06 20 38.25 0.379 151.7 

Zo = 75 Q 
Metal Thickne ss = 0.35 /mi 

5000 3 3 2.12 3.003 15 20 29.32 0.528 93.93 
z G = ioo n 

Metal Thickness = 0.35 /im 
5000 2.5 2 2.76 5.834 18.2 20 35.32 0.701 70.08 

Frequency = 40 GHz 
Z 0 = 50 il 

Metal Thickness = 0.35 /im 
500 
500 
500 

0.5 0.4 0.26 0.3942 
1 0.2 0.33 0.4605 

0.5 0.6 0.20 0.3913 

2.09 
2.32 
2.48 

20 
20 
20 

161.2 0.387 154.6 
174.2 0.384 153.7 
141.6 0.392 156.6 

2500 2.5 2 0.70 0.7896 8.08 20 39.6 0.377 150.8 
Z G = 75 tt 

Metal Thickness = 0.35 //m 
5000 3 3 2.28 3.028 15.1 20 30.18 0.527 93.65 

Z 0 = ioo n 
Metal Thickness = 0.35 /im 

5000 2.5 2 2.94 5.865 18.2 20 36.14 0.700 69.96 
Frequency = 45 GHz 

Z 0 = 50 n 
Metal Thickness = 0.35 /;,m 

500 0.5 0.4 0.26 0.3943 2.09 20 161.5 0.386 154.6 
500 1 0.2 0.34 0.461 2.32 20 174.6 0.384 153.6 
500 0.5 0.6 0.21 0.3917 2.48 20 142.2 0.391 156.6 

2500 2.5 2 0.76 0.7991 8.1 20 40.8 0.375 150 
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Table A.1 - continued from previous page 
L Ws We Srn'in S(Zo) W T RI>. R L C 

9000 12 9 2.67 2.712 3E).4 20 11.08 0.348 139.2 
10000 16 8 3.13 3.223 38.4 20 10.33 0.347 138.8 
10000 15 9 3.04 3.174 39.3 20 10.26 0.347 138.6 
10000 14 10 3.02 3.093 40.2 20 10.37 0.346 13ts.5 
11000 16 11 3.41 3.472 44.9 20 9.445 0.345 137.9 
11000 16 12 3.34 3.534 47.1 20 9.255 0.344 137.7 
11000 15 13 3.34 3.417 47.8 20 9.427 0.344 137.6 

Frequency = 30 GHz 
Zo = 50 n 

Metal Thickne~~ = 0.35 1/,111 

500 0.0 0.4 0.26 0.3948 2.09 20 160.8 0.386 154.5 
300 1 0.2 0.33 0.4608 2.32 20 173.6 0.384 153.6 
000 O .. j 0.6 0.20 0.3918 2.48 20 141 0.391 156.5 

2500 2 -.0 2 0.65 0.7786 8.06 20 38.25 0.379 151.7 

Zo = 75 n 
.Metal Thickne~~ = 0.35 1/,111 

;jOOO 3 3 2.12 ;3.003 IS 20 29.32 0.328 93.93 
Zo = 100 n 

.Metal Thickness = 0.35 tim 

.jOOO 2.5 2 2.76 5.834 18.2 20 35.32 0.701 70.08 
Frequencv = 40 GHz 

" 
Zo = 50 n 

:Vietal Thickness = 0.35 11111 

500 0.0 0.4 0.26 0.~3942 2.09 20 161.2 0.387 154.6 
500 1 0.2 0.33 0.4605 2.32 20 174.2 0.384 153.7 
500 0.5 0.6 0.20 0.3913 2.48 20 141.6 0.392 156.6 

2500 2.5 2 0.70 0.7896 8.08 20 39.6 0.377 150.8 

Zo = 75 n 
Metal Thickness = 0.3S 11m 

5000 3 3 2.28 3.028 L5.1 20 30.18 0.527 93.65 

Zo = 100 n 
:vletal Thickness = 0.35 tlln 

0000 2.0 2 2.94 5.865 18.2 20 36.14 0.700 69.96 
-Frequencv = 40 GHz v 

Zo = 50 n 
.Metal Thickness = 0.3S 11m 

500 0.5 0.4 0.26 0.3943 2.09 20 161.5 0.386 154.6 
500 1 0.2 0.34 0.461 2.32 20 174.6 0.384 153.6 
500 0.5 0.6 0.21 0.3917 2.48 20 142.2 0.391 156.6 
2500 2.0 2 0.76 0.7991 8.1 20 40.8 0.375 100 
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Table A . l - continued from previous page 
W o W r S (Z 0 ) W T Rtr R L C 

Frequency = 50 GHz 

z 0 = so n 
Metal Thickness = 0.35 /mi 

500 0.5 0.4 0.26 0.3949 2.09 20 162 0.386 154.5 
500 1 0.2 0.34 0.4619 2.32 20 175.2 0.384 153.4 
500 0.5 0.6 0.21 0.3921 2.48 20 142.7 0.391 156.5 

2500 2.5 2 0.81 0.8079 8.12 20 41.92 0.373 149.3 
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Table A.l - continned from previous page 

Frequency = 50 GHz 
Zo = 50 n 

Metal Thickness = 0.35 ~lm 
500 0.5 0.4 0.26 0.3949 2.09 20 162 0.386 154.5 
500 1 0.2 0.34 0.4619 2.32 20 175.2 0.384 153.4 
500 0.5 0.6 0.21 0.3921 2.48 20 142.7 0.391 156.5 
2500 2.5 2 0.81 0.8079 8.12 20 4l.92 0.373 149.3 



APPENDIX B 

ADDITIONAL TRANSMISSION LINE 

SIMULATION FIGURES 

B.l Transmission Line Driver and Buffer Comparisons 
Figures B.l through B.8 show the amount of overshoot for above VDD and below 

ground for various driver and buffer setups. Section 4.2.1 describes this and other 

driver comparisons in more detail. 

B.2 Receiver Comparisons 
Figures B.9 through B.12 show the amount of overshoot for above V D D and 

below ground for various receivers. Section 4.3.2 describes this and other receiver 

comparisons in more detail. Also, refer to Figure 4.23 for the receiver comparisons 

legend. 

APPENDIX B 

ADDITIONAL TRANSMISSION LINE 

SIMULATION FIGURES 

B .1 Transmission Line Driver and Buffer Comparisons 

Figure::; B.1 through B.8 show the amount of overshoot for above V DD and below 

ground for various driver and buffer setups . Section 4.2.1 describes this and other 

driver comparisons in more detail. 

B.2 Receiver Comparisons 

Figures B.9 through B. 12 show the amount of overshoot for above V DD and 

below ground for various receivers. Section 4.3.2 describes this and other receiver 

comparisons in more detail. Also, refer to Figure 4.23 for the receiver comparisons 

legend. 
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Figure B . l . Overshoot below ground at transmission line front end (conventional 
buffer, annular driver) 
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Figure B.2. Overshoot below ground at transmission line front end (annular 
buffer, annular driver) 
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Figure B .3 . Overshoot above VDD at transmission line front end (conventional 
buffer, annular driver) 
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Figure B.4. Overshoot above VDD at transmission line front end (annular buffer, 
annular driver) 
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Figure B .5 . Overshoot below ground at transmission line back end (conventional 
buffer, annular driver) 
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Figure B.6. Overshoot below ground at transmission line back end (annular buffer, 
annular driver) 
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Figure B.7. Overshoot above VDD at transmission line back end (conventional 
buffer, annular driver) 
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Figure B.8. Overshoot above VDD at transmission line back end (annular buffer, 
annular driver) 
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Figure B.9. Minimum voltage (front end) - various receivers 
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Figure B.10. Maximum voltage (front end) - various receivers 
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Figure B . l l . Minimum voltage (back end) - various receivers 
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